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Abstract
Wildfire is an integral part of the Earth system, but at the same time it can pose serious threats to
human society and to certain types of terrestrial ecosystems. Meteorological conditions are a key
driver of wildfire activity and extent, which led to the emergence of the use of fire danger indices
that depend solely on weather conditions. The Canadian Fire Weather Index (FWI) is a widely used
fire danger index of this kind. Here, we evaluate how well the FWI, its components, and the climate
variables from which it is derived, correlate with observation-based burned area (BA) for a variety
of world regions. We use a novel technique, according to which monthly BA are grouped by size for
each Global Fire Emissions Database (GFED) pyrographic region. We find strong correlations of
BA anomalies with the FWI anomalies, as well as with the underlying deviations from their
climatologies for the four climate variables from which FWI is estimated, namely, temperature,
relative humidity, precipitation, and wind. We quantify the relative sensitivity of the observed BA
to each of the four climate variables, finding that this relationship strongly depends on the
pyrographic region and land type. Our results indicate that the BA anomalies strongly correlate
with FWI anomalies at a GFED region scale, compared to the strength of the correlation with
individual climate variables. Additionally, among the individual climate variables that comprise the
FWI, relative humidity and temperature are the most influential factors that affect the observed
BA. Our results support the use of the composite fire danger index FWI, as well as its sub-indices,
the Build-Up Index (BUI) and the Initial Spread Index (ISI), comparing to single climate variables,
since they are found to correlate better with the observed forest or non-forest BA, for the most
regions across the globe.

1. Introduction

Due to the existence of vegetation, atmospheric oxy-
gen, and the widespread presence of ignition sources,
wildfire has been an integral part of many of the
Earth’s terrestrial ecosystems [1]. Wildfires com-
prise a significant source of greenhouse gases and
aerosols playing a key role in atmospheric radiat-
ive forcing and air quality [2–4]. In densely pop-
ulated regions with extensive wildland-urban inter-
face, wildfires usually have a direct impact in terms of

fire suppression financial cost, homes and infrastruc-
ture damages, crops and livestock losses and, most
importantly, human losses, injuries, long-term health
implications [5] and other socioeconomic impacts
[6].

Wildfire activity is controlled by weather and cli-
mate parameters either in a time window of several
months by controlling biomass growth and snowpack
accumulation and hence fire fuel availability, or in
shorter term by determining vegetation and duff
layer moisture content and, hence, their flammability
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[7–10]. Analyzing wildfire activity at a global scale
for different ecoregions, Abatzoglou et al [11] showed
that climate variability can explain one-third of the
interannual variability in burned area (BA), high-
lighting the controlling role of climate parameters.
Further studies at a global scale have shown that tem-
perature related indicators are the best climate pre-
dictors for BA [12, 13]. Furthermore, climate for-
cings on wildfire activity vary by climatic region. For
example, large boreal forest fires of North Amer-
ica, have been correlated to weather patterns that
associate with strong winds, and low precipitation
conditions [14]. Ying et al [15], indicated that the
most important climate related ignition factor for
the Chinese province of Yunnan is relative humid-
ity. For Europe, significant correlation has been detec-
ted between large wildfires and high temperature for
Spain [16, 17], as well as for Italy [18], but also
for Greece, along with other variables [19] such as
humidity and high pressure. Further studies have
shown that severe fire weather conditions associate
with specific synoptic-scale atmospheric circulation
patterns [20, 21]. Additional factors affecting wildfire
activity and the resulting BA include land-use modi-
fication Kelley et al [22], as well as human fire igni-
tions and fire suppression media [23]. In recent dec-
ades, there has been an observed increase in the size
of wildfires whose cause has been debated, with some
studies attributing it to climate change [24, 25] and
others to decadal climate variability [26, 27]. Further-
more, recent analyses of remotely sensed data found
a decline in the total BA by as high as 25% that has
been attributed to agricultural expansion and intens-
ification in African regions previously occupied by
savannas and grasslands [28, 29] and to fuel mois-
ture antecedent and during the fire season [30]. This
further entangles the relation between climate and
wildfires.

Andela et al [31] analyzedMODISMCD64A1 BA
product for the period 2003–2016, identifying 13.3
million individual fires globally, with an average dur-
ation of 4.5 d, which varies by region and land use
type. This led to the development of the Global Fire
Atlas [32], an important global dataset of wildfire
dynamics, among other datasets such as Copernicus
Proba-V [33] and Fire CCI [34]. Despite the exist-
ence of such high resolution data, studies havemainly
examined the correlation between climate variability
and fire activity on longer timescales, e.g. interannual
and seasonal [11, 35–37].

Several indices have been developed and are being
used in order to integrate the complex interactions
between climate drivers and wildfire danger [38].
Such indices include theCanadian FireWeather Index
(FWI) [39], the McArthur Forest Fire Danger Index
[40] and others [41]. The FWI is probably the most
extensively used fire danger estimation index Due to
its simplicity and robustness, the FWI has beenwidely
used on regional or local scales [42–44] as well as on a

global scale [11, 45, 46], to estimate the resulting fire
danger due to weather and climate variations. Fur-
thermore, it has been used for fire danger forecasts
as a part of European Forest Fire Information Sys-
tem (EFFIS) and Canadian Wildland Fire Informa-
tion System (CWFIS), and also as a reanalysis product
[47–49].

Given the complex influences of weather and
socioeconomic factors, the quantitative assessment of
the BA sensitivity to weather conditions still remains
a challenge. Here, we estimate how deviations from
the FWI climatology, and the anomaly in the associ-
ated weather variables, correlate to satellite observed
BA changes. The analysis begins with the FWI cor-
relation to BA, then expands to individual climate
parameters and FWI sub-indices, and to the estim-
ation of the relative BA sensitivity to different climate
drivers and/or indices. For the sake of simplicity, tem-
perature, humidity, wind, and precipitation paramet-
ers are referred to as climate variables, regardless the
temporal context (i.e. weather or climate) to which
they refer. This is the first study to correlate FWI and
underlying climate variable anomalies to BA anom-
alies at a monthly basis, and to rank their relative
importance at a regional scale.

2. Data andmethods

2.1. The fire weather index
The FWI makes use of temperature, relative humid-
ity, wind speed (all at local noon), as well as daily
rainfall, to estimate moisture in three layers of the
forest floor. This information is further processed
to provide two sub-indices, the Initial Spread Index,
and the Buildup index. The Initial Spread Index (ISI)
is related to the short-term fuel dryness and wind
speed that reflects fire’s initial potential rate of spread.
The Buildup Index (BUI) that reflects the long-term
weather effect on the fire danger and the total amount
of fuel available for combustion. The FWI com-
bines the ISI and BUI and is an overall measure of
fire danger, physically related to the fire’s potential
intensity.

2.2. Fire, weather and FWI data
Daily BA for years 2001–2016 from MODIS Global
LandCover Product (MCD64A1) [50] forms the basis
of the analysis. This dataset provides BA globally
at a resolution of 0.25◦ for a range of land types,
from barren or sparsely vegetated regions to ever-
green broadleaf forests. Along with the BA, MODIS
also offers information about the quality of indi-
vidual fire pixels. The quality flag meaning however
may vary by region, while its interpretation should be
case study specific, hence it is not considered in this
work. Another limitation is that MODIS cannot dis-
criminate between one or more actively burning hot-
spots within a gridcell, or to discriminate the type of
thermal anomaly that creates the signal [51]. Other
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known limitations of MODIS BA estimation are dis-
cussed in [52].

Following a similar definition to Abatzoglou et al
[11], the BA of forested (i.e. the combination of
evergreen and deciduous, needleleaf and broadleaf
as well as mixed forests), non-forested (i.e. shrub-
lands, savannas and grasslands) as well as their com-
bined BA are considered. Cropland fires are excluded
from the analysis as being mostly correlated to pre-
scribed burnings [11]. Mean annual BA by type, as
well as distributions by calendar month are provided
in supplementary figures S1 and S2 (available online
at stacks.iop.org/ERL/17/045021/mmedia).

Climate data are obtained from the Global Fire
Weather Database (GFWED) [48]. The GFWED con-
tains daily and monthly FWI data calculated from
MERRA2 reanalysis [53] which is provided on a
0.625◦ × 0.5◦ grid. In addition, temperature, precip-
itation, relative humidity, and wind speed are con-
sidered which are the four climate input values to
the FWI calculations. These climate variables refer
to noon values rather than daily aggregates, corres-
ponding to the time at which daily FWI values are
calculated.

2.3. Spatiotemporal aggregation
The analysis is based on linear regression between
the monthly sums of BA and the respective climate
variables or the indices FWI, ISI and BUI, after re-
gridding all the data to a spatial resolution of 1◦ × 1◦.
The logarithm of BA is used for the analysis, as it
has been found to correlate well with drought and
fire indices on seasonal and interannual timescales
[11, 54, 55], in a linear manner. This happens because
the BA exhibits a roughly exponential change in cli-
mate driver change. Additionally, we apply a new
approach to further aggregate the BA and climate and
fire danger variables, which increases the correlation
skill. We ‘group’ (or bin), the BA data by their cli-
matological monthly mean anomaly size, rather than
analyzing specific wildfire events. This aggregation by
fire size anomaly, smooths out the noise added to
the correlation by small-scale climate factors, topo-
graphy, socioeconomic drivers, that can potentially
affect BA. This analysis is performed for each one
of the 14 Global Fire Emissions Database (GFED4)
pyrographic macro-regions (Giglio et al [56]; also
see figure 1). For each GFED4 region, each grid-
cell and month with non-zero BA is considered as
a discrete wildfire set of events, hereafter refer to as
a wildfire cluster. Each cluster is the sum of several
fires within the specific month and grid-cell, yet it is
assumed here that these fires are probably driven by
similar environmental drivers, e.g. hot weather, low
moisture, and antecedent built-up drought caused by
synoptic scale climatological features [20]. The nor-
malized anomaly for each calendar month is estim-
ated for the logarithm (base 10) of BA, as well as

for the climate variables, the FWI and its sub-indices
(equations (1) and (2)):

BAAm,y = log10
(
BAm,y

)
− log10

(∑
BAm

nm

)
, (1)

XAm,y = Xm,y −
(∑

Xm

nm

)
, (2)

where BAA is the BA anomaly, m is the calendar
month and y the year, X is each climate variable, the
FWI or its subindices, n is their count, while the XA
is their estimated anomaly.

The clusters are grouped and averaged by the size
of the estimated BA anomaly into bins. Each bin con-
tains 400 clusters. In the cases where less nonzero
clusters were available, aminimumnumber of 10 bins
is used. This selection is based on a formal sensitiv-
ity analysis on the effect of wildfire clusters per bin
(supplementary section 3). The respective procedure
is performed for the climate and FWI anomalies that
correspond to the above-mentionedwildfires. Finally,
the Pearson’s correlation coefficient is estimated for
the bin averages of BA. Furthermore, since the linear-
ity of such correlations is not proven in the literat-
ure, we also estimate the Spearman’s rank coefficient
estimated for comparison purposes. The procedure
is repeated for each GFED region and for the forest
and non-forest BA types, as well as their combination.
A step-by-step guide of the procedure is provided in
supplementary figure S3.

To estimate the potentially most influential para-
meters affecting each type of BA, the slope of the
regression between the BA and the different climate
parameters and indices is assessed. To ensure com-
parability among the BA sensitivity to the different
variables, a mean–standard deviation normaliza-
tion (supplementary material equation (1)) is per-
formed before the estimation and comparison of the
regression slopes. To apply this type of normaliza-
tion, the normality of the anomalies is tested using
a Kolmogorov—Smirnov (KS) test, which shows
that in the vast majority of the variables, their
anomalies are normally distributed (supplementary
table S3).

3. Results

3.1. Spatial patterns of BA-FWI correlation
Monthly aggregates of BA anomalies are correlated to
FWI anomalies at a grid-cell scale (figure 1), for forest
land type BA, non-forest, and their combined total
BA. Grid-cells with less than 5 months of observed
BA are omitted, to avoid artificially high Pearson’s
r. Results reveal several regions with high correla-
tion coefficient (Pearson’s r), in the range of 0.6–0.9.
These regions are primarily located in the tropical
and subtropical regions within Southern Hemisphere
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Figure 1. Pearson’s correlation between monthly FWI and total burned area (log10) anomalies, for the period 2001–2016, for (a)
forest land type, (b) non-forest land type, and (c) their combined burned area. Stippled regions define significant correlation at a
95% confidence level. Grid-cells with less than 5 months of observed burned area are omitted. Regional means are provided in
supplementary table S1. BONA: boreal North America; TENA: temperate North America; CEAM: central America; NHSA:
Northern Hemisphere South America; SHSA: Southern Hemisphere South America; EURO: Europe; MIDE: Middle East; NHAF:
Northern Hemisphere Africa; SHAF: Southern Hemisphere Africa; BOAS: boreal Asia; CEAS: central Asia; SEAS: Southeast Asia;
EQAS: equatorial Asia; AUST: Australia.

South America and Southern Hemisphere Africa, but
also within equatorial Asia andNorthernHemisphere
Africa also to a lesser extent. Interestingly, the tropical
rainforest regions of the Amazon and Congo basins,
as defined by Koppen-Geiger’s Af scale [57] do not
exhibit good correlation. Parts of the boreal forest
regions also exhibitmoderate to high correlation skill.
For the total BA correlation to FWI (figure 1(c)),
a rough 42% of the grid-cells that exhibit any cor-
relation, show statistical significance at 95% level.
The region with the highest rate of significant posit-
ive correlation is Southern Hemisphere Africa (82%),

followed by central America, Northern and Southern
Hemisphere South America, and equatorial Asia each
to approximately 60% of grid-cells. Comparing the
respective analysis between the forest and non-forest
BA land types (figures 1(a) and (b)), the latter exhib-
its a slightly higher correlation skill (supplementary
figure S4). Overall, the correlation of ungrouped val-
ues at the gridpoint scale is shown to exhibit mod-
erate skill. The highest regional average Pearson’s r is
the one of SouthernHemisphere Africa for non-forest
BA, with most of the regions and BA land types being
significantly lower (supplementary table S1).

4



Environ. Res. Lett. 17 (2022) 045021 M Grillakis et al

Figure 2. Correlation between FWI anomaly and log10(burned area) anomaly per region. Each scatterplot and burn area type
consist of a number of points indicated in the supplementary figure S9. Pearson’s correlations of forest, non-forest and total
burned area are shown. The region definitions are depicted on the map of figure 1. Subplots axes scales were optimized
individually.

3.2. Bin based correlation analysis
When the binning procedure is applied to the 14
GFED regions, the attained correlations become
stronger. Figure 2 shows the Pearson’s correlations
betweenmonthly BA anomaly and the respective FWI
anomaly. Correlations are found to vary with the BA
land type and region, however, inmost of the regions,
the correlations have a Pearson’s r > 0.7. Exceptions to
this are the Middle East, where the non-forest Pear-
son’s r is very low, as well as for the Northern and
SouthernHemisphere Africa regions. The FWI values
in figure 2 are highly positive, even though they refer
to anomalies, since wildfires are mostly occurring
on periods with positive FWI anomalies. It is worth
noting that for boreal North America and temper-
ate North America for which the FWI was designed,
the FWI correlates best with forest BA. This is also
the case for the boreal Asia regions which has a com-
parable land cover to boreal North America. We also
note that the Pearson’s correlation between total BA
and FWI anomalies is overall closer to the respective
non-forest correlation, since the number of the cell-
months with a non-zero non-forest BA is larger than
for forest BA, (supplementary figure S5). It is worth
noting that Spearman’s rank correlation coefficient
results are similar to those of Pearson’s r (supplement-
ary figure S6).

We next extend the correlation analysis to study
the influence of individual climate variables involved
in the FWI calculation, as well as the FWI sub-indices,
ISI and BUI. We find that the FWI or ISI and BUI
subindices typically exhibit stronger correlations to

BA than individual climate variables (figure 3). This
indicates that more synthetic variables can be better
predictors of BA for the majority of regions. Only
for a few GFED regions and land types may a cli-
mate variable marginally surpass in correlation skill
the FWI or its subindices. This is the case for forest
BA in temperate North America, Middle East, equat-
orial Asia, and Australia, as well as boreal Asia for
the case of non-forest BA. It is worth noting that
even on a global scale, this type of analysis reveals a
good correlation skill (>0.7 in the case of synthetic
indices).

3.3. Burned area sensitivity assessment
In figure 4, the four climate variables are sorted by
their descending normalized sensitivity. Hence, this
shows which individual climate variable anomaly is
more associated with the BA anomaly, suggesting
which variables may be the key drivers of the BA
anomaly. The ISI and BUI are also sorted accordingly.
In the case of forest BA anomaly, it is shown that it is
most sensitive to relative humidity anomalies for 11
out of 14 regions. For the non-forest BA anomaly, 10
out of 14 regions are most sensitive to the respective
relative humidity or temperature anomaly. The com-
bined BA anomaly in 13 out of 14 regions is mostly
sensitive to temperature or relative humidity anom-
aly. Further, for both forest and non-forest BA anom-
aly, the regionsmost sensitive to BUI or ISI are almost
equally split, but do not coincide. Finally, for the com-
bined BA anomaly, results resemble those found for
the non-forest regions’ BA.
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Figure 3. Pearson’s correlation of anomalies in each climate parameter, the FWI and its subindices, with the BA anomalies. In each
bar plot, the correlation for temperature (TEMP), precipitation (PRECIP), relative humidity (R. HUM), wind, initial spread
index (ISI), buildup index (BUI) and fire weather index (FWI) are shown, respectively. The three bar charts per region show the
correlations for the forest BA, non-forest BA and total BA. Brown columns of FWI correlation are the same as in figure 2. Stars
indicate the best correlating parameter. Numerical values of the correlations are provided in supplementary table S2.

4. Discussion

We show that individual climate parameters as well
as their corresponding FWI and subindices, correlate
well to BA of both forest and non-forest areas, as
well as their combination. The grid-cell level analysis
(figure 1) is in broad agreement with the ecoregion-
based analysis of Abatzoglou et al [11]. Differences
between the FWI and forest and non-forest BA, over
the regions boreal North America, temperate North
America and boreal Asia, agree with those in Abatzo-
glou et al [11], for their North America and Russia
regions. Moreover, at lower latitudes, there is gen-
eral agreement in correlation over Central and South
America, the forested regions of equatorial Asia, and
southeastern Australia. The greatest differences to our
results are found over Africa, for which our regions of
coherent positive correlations appear to be weaker in
their study for forest BA and largely absent for non-
forest BA.

The regression analysis with binned data accord-
ing to BA magnitude, shows that there is a clear met-
eorological forcing of the anomaly of BA at amonthly
timescale, which is found to become even stronger

correlating to the FWI. Further, it shows that the
FWI correlation to the BA using the binning method
is generally higher than the grid-cell level correla-
tion. Exceptions are the Northern but most import-
antly Southern Hemisphere Africa, the SHAF which
is a hotspot of global wildfire activity. This may be
explained by the results of Chuvieco et al [58], who
show that Northern and Southern Hemisphere Africa
are the two region in which the BA annual variabil-
ity is strongly controlled by socio-economic factors,
as captured by the human development index (HDI)
and Gross Domestic Production per capita (GDP).
Similar results about the BA and FWI anomalies cor-
relation are reported by Tian et al [59] for China.

Globally, in the case of forest BA anomaly, the
most highly associated climate variable is found to be
relative humidity, while in the case of the non-forest
BA anomaly, temperature and relative humidity are
found to be most highly associated for most of the
regions, without, however, exhibiting any clear spa-
tial or latitudinal pattern. The most highly associated
variables for the combined BA anomaly are similar
to those for the non-forest BA. Similarly, Krawchuk
et al [60], mention that net primary productivity,
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Figure 4. The sequence of the upper four squares indicates
the most to least affecting climate variable for each region’s
BA. The sequence of the two lower squares indicates the
most and less affecting parameter between BUI and ISI.
Normalized slopes are provided in supplementary table S4.

mean temperature of the warmest month and precip-
itation are the three most important variables affect-
ing fire probability at a global scale. Further regional
comparisons reveal patterns of similarities and dif-
ferences. Most notable similarities are those of forest
BA, where the boreal regions (boreal North Amer-
ica, boreal Asia) show increased sensitivity to dry
(low RH) and arid (low precipitation) conditions,
while temperature along with wind are ranked last.
Sedano and Randerson [61], analyzed wildfire data
for Alaska during 2002–2011, finding a significant
correlation between daily VPD and likelihood that a
lightning strike would develop into a fire ignition, in
line with our results for the boreal North America.
Regarding temperate North America, Mueller et al
[62] studied climate and wildfire relationships for
Arizona and New Mexico, indicating strong relation-
ships between the annual BA and wildfire severity
with vapor pressure deficit (VPD) which links to low
atmospheric humidity. In the same line are the res-
ults of Li and Banerjee [63], who found that regions
in California with high temperature and high VPD
exhibit high risk of wildfire occurrence. Furthermore,
Ying et al [15] tested a range of climate and socioeco-
nomic wildfire ignition factors for China, indicat-
ing that the most important climate factor is low

relative humidity, in line with our results for central
Asia.

When it comes to the sub-indices, BUI is con-
sistently more important than the ISI sub-index in
boreal regions, suggesting a greater role of season-
scale drying. The relative humidity and temperature
variables are the most commonly influential para-
meters elsewhere across the globe (central America,
northern and southern Hemisphere South America,
Europe, Middle East, Northern Hemisphere Africa,
central Asia, southeast Asia, Australia), usually fol-
lowed by precipitation, except for the cases of South-
ern Hemisphere South America and Southeast Asia,
where wind is the thirdmost influential variable. This
similarity may be attributed to the monsoonal circu-
lation patterns that affect both regions [64]. Further-
more, Southern Hemisphere Africa and equatorial
Asia BA are found to be mostly affected positively by
wind and negatively by precipitation, which is prob-
ably related to the strong effect of ENSOperiodic vari-
ation that causes synchronized warm and dry condi-
tions, and enhanced eastern winds over eastern Africa
[65]. Furthermore, those regions’ forest BA is most
sensitive to ISI. For the non-forest regions, BA is
mostly sensitive to temperature and relative humidity
(temperate North America, central America, South-
ern Hemisphere South America, Europe, Northern
Hemisphere Africa, central Asia, Southeast Asia, Aus-
tralia), generally followed by wind rather than precip-
itation, with exceptions to the latter being the cases of
central Asia and Southeast Asia. Similarities are also
found for the boreal (boreal North America, boreal
Asia) regions, where precipitation and temperature
are the two most influential variables in all those
regions. A notable difference comparing the forest
and non-forest most influential climate variables for
BA is that in the latter there are more regions in
which temperature is the first or second most influ-
ential variable (boreal North America, boreal Asia,
temperate North America, equatorial Asia). This is
to some extent intuitive, since forests are more resili-
ent to heatwaves and hence to the consequent associ-
ated wildfires, compared to non-forest areas [66]. In
contrast to those four regions, Australia exhibits the
opposite behavior, with temperature being one of the
top two most influential variables for the forest BA
but not for the non-forest BA.

This work focused solely in analyzing the BA and
did not expand to other important wildfire aspects.
Fire severity for example [67] has been found to be an
equally important fire behaviour property. Addition-
ally, we assume that the reanalysis climate variables
adequately represent the past climate conditions for
the period of months determining the FWI preced-
ing the wildfires. Another caveat of the analysis stems
from the limitations of MCD64A1 BA product that
has a minimum detectable burn size of 40 ha, and
alsomay underestimate the BA in specific regions due
to cloudiness [52]. An assumption that needs to be
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discussed is the onemade about the stationarity in the
climate-wildfire interlinkages for the study period.
This is particularly important for both BA and the cli-
mate variables. For example, Zhuang et al [68] high-
light the role of VPD in wildfire for the Western US,
detecting a positive trend in VPD between 1979–2000
which was attributed to anthropogenic warming. In
the same line, Abram et al [69] show a positive VPD
trend in the last decade for Australia. Such changes
within the study period challenge the normalization
that is performed in the studied variables. Accord-
ingly, as discussed earlier, the BA has been detec-
ted to decline in Northern and Southern Hemisphere
Africa as a result of agricultural expansion and intens-
ification in regions previously occupied by savannas
and grasslands [28, 29, 70]. This may also explain the
poor correlations obtained for Northern and south-
ern Hemisphere Africa regions in the current study.
Finally, it has to be stressed that the presented regres-
sion analyses between specific climate variables and
BA, cannot be used as a prediction tool, since the
climatic parameters and indices were analyzed inde-
pendently, disregarding the synergy between them,
and because the analysis is performed by preselecting
gridcell-months with already recorded BA.

5. Conclusions

This work focuses on exploring the correlation and
determining the relative sensitivity of BA tomajor cli-
matic drivers, as well as the FWI and its sub-indices,
by adopting a novel correlation approach based on
the binning of data based on the BA size. This type
of analysis is shown to be powerful as it reveals signi-
ficant correlations on both regional and global scales,
for forest and non-forest BA, as well as their combin-
ation. The region-specific sensitivity of BA to each cli-
matological parameter may serve as a benchmarking
tool for fire-enabled vegetationmodels and intercom-
parison projects such as FireMIP [13, 71] and ISIMIP
[72]. This type of analysis can also facilitate the attri-
bution of specific wildfire events to the variability of
specific climate parameters by comparing the specific
event’s climatic conditions to the climatic conditions
of other BA events of the same class. Since this is the
first study that ranks the relative effect of the four ana-
lyzed climate variables to the observed BA, the results
of this work support the better understanding of the
climatic control on wildfires and hence aim towards a
more proactive wildfire management.
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