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Summary 

Recent advantages in Field Programmable Gate Array (FPGA) technology have 

made it possible to create soft-core Multiprocessor Embedded Systems (MES), 

which emphasize in reducing the amount of the dedicated hardware needed to 

design a system, while increasing the flexibility of the design with the use of 

software.  

A soft-core multiprocessor system is a network of programmable processors 

crafted out of processing elements, logic blocks and memories on an FPGA. They 

allow the user to customize the number of programmable processors, interconnect 

schemes, memory layout and peripheral support to meet the application needs. 

In this thesis, we implemented and evaluated a Multiprocessor Embedded System 

(MES) that can be used for different applications, built from Xilinx Microblaze soft-

processors. In order to demonstrate the design flow and the interconnections 

between the processors and the different peripherals, we build up a MES on a 

Xilinx Virtex-II Pro FPGA that solves the BLAST-n algorithm. All processors at the 

same time compare the same query with a different part of the database and 

report the results.  

The main goal is to create a system that utilizes the advantages of FPGAs and 

soft-core processors, and with a proper parallelism of data, to increase the runtime 

performance and the throughput of BLAST software compared to the software 

runs on a common PC.                                                                                     
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1. Introduction 

1.1 Description of Soft-Core Multiprocessor Embedded Systems 

Parallel computing systems have long been used as means of accelerating 

program execution in the context of increasing problem size (i.e. data, 

computational complexity or both). These systems have been traditionally 

implemented either on high-end multiprocessor computing systems available from 

companies like IBM, HP and Sun, or on Linux clusters built from commercial of-

the-self (CTOS) computers (i.e. Sony Playstation) Both implementation styles for 

parallel computers have until recently been limited to a single processor per silicon 

die. New trends in integrated circuit fabrication allow for multiple processing cores 

to be implemented on the same die. This in turn allows for the characteristics of 

parallel computing systems to be ported into the embedded computing space. 

Multiprocessor embedded systems (MES) provide designers a greater flexibility in 

systems specification and shift more of the development complexity from hardware 

to software. This approach does not rule out the use of dedicated hardware 

acceleration units, which are common in single processor systems. The key 

characteristic of an MES is the emphasis in reducing the amount of dedicated 

hardware needed to satisfy design constraints, while increasing the applicability of 

the design through the software. Efficient use of data and instruction parallelism 

allow multiprocessor systems to avoid the impact of the underlying hardware and 

increase the system throughput. The key to this improvement is the correct 

partitioning and decomposition of the application in terms of both software and 

hardware.  

A soft-core multiprocessor system is a network of programmable processors 

crafted out of processing elements, logic blocks and memories on a Field 

Programmable Gate Array (FPGA). They allow the user to customize the number 

of programmable processors, interconnect schemes, memory layout and 

peripheral support to meet the application needs. Deploying an application on the 

FPGA is tantamount to writing software for this multiprocessor system. Results in 

[8] show that soft multiprocessor systems are viable alternatives for high 

performance applications. They avoid risks due to high silicon development costs 

and design turnaround times, while providing a software abstraction to enable a 
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quick implementation on the FPGA. They also open FPGAs to the larger world of 

software designers.   

Modern FPGAs provide the processing capacity to build a variety of micro-

architectural configurations. Today, we can build multiprocessors composed of 10-

50 processors (and growing with Moore’s law), complex memory hierarchies, 

heterogeneous interconnection schemes and custom co-processors for 

performance critical operations. Future projections forecast that embedded 

systems will be soon composed of over 100 processors on a single chip to 

guarantee acceptable performance [9]. However, the diversity in the architectural 

design space makes the task of determining an efficient multiprocessor 

configuration tuned for a target application challenging. Currently, the designer 

must manually explore the large and complex design space of micro-architecture 

to achieve the full performance potential of FPGA multiprocessors.  

Xilinx provides tools and libraries for developing soft multiprocessor system in the 

Virtex family of FPGAs [16]. This environment gives user the opportunity to 

integrate IBM PowerPC 405 cores, Microblaze soft processors, peripherals and 

customized hardware onto an FPGA chip.   

To sum up, embedded systems are no longer used as simple controllers. 

Embedded systems need more computational power to satisfy today’s 

applications’ needs like audio/video encoding/decoding, image processing, 

bioinformatics applications, etc. and MES are an option to deal with this increasing 

computational needs.[10], [11] 

In the Microprocessor and Hardware Lab (MHL) together with assistant Professor 

Ioannis Papaefstathiou, we use state-of-art FPGA technology in order to develop a 

general purpose soft-core multiprocessor platform. The purpose of this thesis is 

the implementation and evaluation of a MES that can be used for different 

applications, built from Xilinx Microblaze soft-processors. In order to demonstrate 

the design flow and the interconnections between the processors and the different 

peripherals, we build up a MES on a Xilinx Virtex-II Pro FPGA that solves the 

BLAST-n algorithm [1]. All processors at the same time compare the same query 

with a different part of the database and report the results. The main goal is to 

create a system that utilizes the advantages of FPGAs and soft-core processors, 
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and with a proper parallelism of data, to increase the runtime performance and the 

throughput of BLAST software compared to the software runs on a common PC.                                                                                     

 

1.2 Contribution of the current thesis 

The contribution of this thesis is the following: 

 Implementation of a soft-core multiprocessor platform with its own common 

shared external SRAM, with the use of Xilinx tools (ISE 7.1, EDK 7.1) on a 

Xilinx Virtex-II Pro FPGA. 

 Software implementation of BLAST-n machine for better understanding of 

the algorithm. This implementation is also used as the software of the 

multiprocessor platform and, of course, serves as the verification and the 

profiling tool of the multiprocessor platform. 

 Embedment of the BLAST-n machine on the multiprocessor platform with 

proper parallelism of data, verification and behavioral simulation with 

ModelSim 6.0. 

 Evaluation and comparison of the BLAST-n platform results with those from 

a common PC. 

 

1.3 Thesis Overview 

In chapter 2, some of the approaches that have been introduced until today in the 

implementation of soft-core multiprocessor platforms, are briefly described. In 

particular, in this chapter those platforms that use the Xilinx Microblaze processor 

and of course the different approaches for the solution of this problem (number of 

processors, interconnections between processors and between processors and 

peripherals) are described. Finally in this chapter the results of each platform that 

described above are presented, in association with the specific applications that 

they implement. 

Chapter 3 contains a brief overview of the different parts that are used to develop 

the soft-core multiprocessor platform of this project. In particular, this chapter 
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describes the structure and functionality of the Microblaze, the model of the 

memory that is used, the structure of the custom peripherals that were created to 

support specific operations of the platform and finally the functionality of the 

necessary Intellectual Properties (IPs) that are available from Xilinx libraries 

(buses, block RAMS, bridges), so as the implementation to become feasible. Also 

the contents of chapter 3 deal with the architecture of the multiprocessor platform 

in details. In this chapter, the way that the platform is implemented and the reason 

for this specific architecture is described. At this stage, we use simple software so 

as an initial simulation and verification of the functionality of the platform to be 

made. At a later stage, a specific application will be developed so as the extraction 

of useful results to be possible. Finally, in this chapter, the different architectures, 

that described previously, are compared to this one and the differences are 

discussed.  

Chapter 4 contains a brief description for the verification of the MPLEM system. To 

be more specific, in this chapter all the steps that were made in order to verify the 

correct functionality of our multiprocessor platform are described. A verification 

process is followed not only for every peripheral that is connected to the system, 

but also for the whole platform. All the verification process was made with the 

Modelsim 6.0a with behavioral simulation.  

Chapter 5 describes a brief overview of the BLAST algorithm and its use in 

molecular biology. Besides that, the contents of chapter 5 deal with BLAST 

software. After distinguishing the different software programs according to the form 

of the processed data, the BLAST-n program of the popular NCBI software is 

presented. Also, we describe the implementation of a software system we 

developed from scratch, running the main BLAST-n machine and the verification 

we made by comparing the output of this machine to the output of the NCBI tool. 

Last but not least, it is described the reason for choosing this particular algorithm 

to be applied on a multiprocessor platform and the way this software is embedded 

in it. 

Chapter 6 includes all the results and the performance comparisons between the 

multiprocessor platform and the software machine that is developed, while chapter 

7 proposes future work to further evolve this system in order to increase its 

performance and its reliability.  
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2. Soft-core Multiprocessor Platforms   

The approaches of soft-core multiprocessor systems that have been introduced 

until today are quite a few. In this chapter some of these approaches will be 

described. Each one of them uses a different architecture and a different test 

application. On the other hand, the soft-processor that is used in all these 

approaches is the Xilinx Microblaze. 

2.1 Soft Multiprocessor System for JPEG Compression 

In [12] the design flows of an FPGA-based multiprocessor system for high 

performance multimedia application is demonstrated and are explored different on-

chip interconnects for multiprocessor system. In this approach, a JPEG encoder is 

constructed on a Xilinx Virtex-II Pro FPGA. This design can compress a BMP into 

JPG image in high speed. Also in this approach different interconnections between 

processors, including bus, dual-port memory, FIFO and DMA controller are 

implemented so as the trade-off between them to be explored.  

A typical single-core Microblaze system is as follows and a JPEG encoder has 

been mapped onto it. A cache can be put between processor and external 

SDRAM. It’s not shown on the following diagram because cache is considered as 

part of the Microblaze processor component in EDK.  

 

Figure 2.1 Typical single–core Microblaze systems 

2.1.1 Soft Multiprocessor Systems on Xilinx FPGA 

The JPEG encoder is implemented on a Xilinx Virtex-II Pro 2VP30 FPGA with 

Xilinx Embedded Development Kit (EDK). For the entire system, including I/O, a 
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Xilinx XUP2Pro board, with Compact Flash (CF) card interface and external 

memory is used.  

The soft multiprocessor system consists of four Microblaze processors, BRAMs, 

peripherals, external memory and interconnections as shown below. Besides FIFO 

interconnection, three other types of interconnections, OP bus, dual port memory 

and DMA, are evaluated later. 

 

Figure 2.2 A soft multiprocessor system 

Microblaze 0 in the system is used for I/O, external memory access and 

debugging while the rest three processors do the computation. External DDR 

memory is used as image buffer because CF card access is slow. The system 

runs at 100MHz, due to the limitation of OPB bus. 

2.1.2 JPEG Encoder Application 

Regarding the application, a baseline JPEG encoder with color conversion and 

sub sampling is implemented on the multiprocessor platform. Except for the I/O 

and bootstrap, the JPEG encoder algorithm includes BMP and JPG header 

parsing, color conversion, DCT, zigzag scan, quantization and variable-length 

encoding. Following is the data flow of JPEG encoder. 
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Figure 2.3 JPEG encoder data flow 

These tasks are partitioned onto four processors, for instance the FIFO 

interconnection scheme is as follows. 

 

Figure 2.4 JPEG task partitioning 

The table is a detailed description including input and output of every processor. 

 

Table 2.1 Detailed task partitioning with input and output 
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The advantages of this partitioning are: 

 Low memory requirement. Actually Microblaze 1, 2 and 3 needs to store 

only a few macro blocks which is 16x16 pixels each.  

 Easy to improve performance by dedicated hardware accelerators because 

every processor is dedicated to a well-defined task. 

2.1.3 Streaming Programming Model 

With regards to the programming model, this is modified from a shared memory 

model to a streaming model. All tasks share the same address space and 

communicate via shared memory. However, in order to maximize the throughput, 

this four processors need to run in parallel and therefore a streaming model is 

better. The inter-process communication is adapted to a message-oriented model 

as well. Compared to shared memory, explicit message passing is easier to 

deploy, monitor and debug.  

2.1.4 Interconnection Exploration: Bus Interconnection 

Besides that, in [12] different types of interconnections for evaluation and 

comparison purposes  are also presented four. The first type of interconnection is 

the “Bus interconnection”. This is an easy way to connect four processors via a 

bus. Xilinx provides OPB bus with arbitration. All processors, external memory and 

peripherals can just be connected to the OPB bus and it works. The hardware 

architecture of four processor system connected by bus is as follows. 

 

Figure 2.5 Hardware architecture of four-processor system connected by bus 
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The bus is shared by four processors, peripherals and external memory. Therefore 

it’s a bottleneck of the system. It’s very difficult for four processors to archive full-

parallel running with bus interconnection. It may be used for a starting point for 

multiprocessor platform design. 

2.1.5 Interconnection Exploration: Dual Port Memory Interconnection 

The second type of interconnection is the “Dual Port Memory Interconnection”. 

Because all on-chip memory blocks on Xilinx FPGA are dual port memories, it’s 

easy and efficient to employ dual port memory as communication channel 

between processors. The hardware and software architecture of four processor 

system connected by dual port memory blocks is as follows. 

 

Figure 2.6 Hardware architecture of four-processor system connected by dual port 

memory blocks 

Similar to the general architecture, every processor has two LMB buses, I-LMB 

bus and D-LMB bus. However, the data LMB bus here is connected to two dual 

port memory blocks in addition to data memory block. Each port of every dual 

memory block is connected to the data LMB bus of two different processors and . 

 therefore constitutes a communication channel. Every dual port memory is 

assigned to its dedicated address space as well. Processors can access dual port 

memory via normal memory access. The access is one-cycle-access and 
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predictable because it’s connected to LMB bus. There is no inter-process 

synchronization directly supported by dual port memory interconnection. It needs 

to be implemented through additional code or additional hardware.  

2.1.6 Interconnection Exploration: FIFO Interconnection 

Another often-used communication channel in a multiprocessor system is a “FIFO 

interconnection”. Compared to the last implementation, dual port memory blocks 

are replaced by FIFOs. The hardware architecture of four-processor system is as 

follows.  

 

Figure 2.7 Hardware architecture of four-processor system connected by FIFO 

FIFO is connected to processor via FSL bus. So there are two more buses for 

every processor, FSL master and FSL slave. FSL has built-in FIFO capacity. It’s 

an ideal solution for FIFO implementation. Furthermore, there is hardware 

synchronization mechanism built in which is easy and efficient.  

2.1.7 Interconnection Exploration: DMA Interconnection 

The last interconnection that is presented in [12] is the “DMA interconnection”. 

DMA has its advantage in multiprocessor systems and is getting more and more 

deployed. Compared to dual port memory and FIFO, it’s an active component. So 

it can move data in parallel to processors without any attention from processor. 
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The hardware architecture of four Microblaze system connected by FIFO and DMA 

is as follows.  

  

Figure 2.8 Hardware architecture of four-processor system connected by FIFO 

and DMA 

Compared to the previous system, the FIFO between processor 0 and processor 1 

is replaced by DMA controller. The DMA controller has two sets of interfaces, to 

processor 0 and processor 1 respectively. For each interface, there is a memory 

bus connected directly to local data memory of the processor. It reads directly from 

the local data memory or writes directly to it. Besides that, the processor can 

configure and read back status via FSL master and slave bus. There is one 

channel inside the DMA controller. The processor only needs to set starting 

address, ending address, size of data block and go. No CPU intervention need.  

Synchronization is also provided by controller and if no data moved by DMA, the 

processor can stop as well. 

2.1.8 Interconnection Exploration: Conclusions 

Regarding the results that can be conducted there is a trade-off between different 

types of on-chip interconnections and therefore they should be deployed 

depending on the application. Bus is easier to implement but poor in performance. 
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Dual port memory is easy to implement and efficient but it’s resource consuming, 

inflexible due to the fixed topology and it needs synchronization mechanism. FIFO 

is easy to implement and uses built-in synchronization mechanism but it’s 

inflexible due to its fixed topology and less efficient because it requires the 

processor to copy data into the FIFO. Finally, DMA controller is flexible, scalable 

and efficient. The disadvantage is the complexity of the controller. 

Because of the after-manufacturing programmability of FPGA, the best 

interconnection is a combination of these interconnection types in a topology that 

targets for the application. 

 

2.2 Soft Multiprocessor System for IPV4 Packet Forwarding 

In [13] is presented IPv4 packet forwarding on a multiprocessor on a Xilinx Virtex-II 

Pro FPGA. This particular design achieves a 1.8 Gbps throughput and loses only 

2.6x in performance compared to an implementation on the Intel IXP-2800 network 

processor.  

2.2.1 Soft Multiprocessor Systems on Xilinx FPGAs 

The packet forwarder is implemented on a Xilinx Virtex-II Pro 2VP50 FPGA, using 

the Xilinx EDK [16]. The building block of the multiprocessor system is the Xilinx 

Microblaze soft processor. The soft multiprocessor is a network composed of the 

multiple soft Microblaze cores, the peripherals in the fabric, the dual IBM PowerPC 

405 cores, and the distributed BRAMs on the chip. The multiprocessor network is 

supported by two communication links: the IBM CoreConnect buses and the point-

to-point FIFOs. The multiprocessor is clocked at 100 MHz due to restrictions on 

the clock rate of the OPB. 

2.2.2 IPv4 Packet Forwarding Application 

The IPv4 packet forwarding application runs at the core of network routers and 

forwards packets to their final destination. As a result, a soft-multiprocessor is 

designed for the data plane of the IPv4 packet forwarding application.  
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Figure 2.9 Data Plane of the IPv4 packet forwarding application 

The design objective is to maximize router throughput.  

2.2.3 Soft Multiprocessor Design for Header Processing 

The forwarding data plane (Figure 2.9) has two components: IPv4 header 

processing and the packet payload transfer. In [13] first the construction of a soft 

multiprocessor system for header processing is described. Figure 2.10 shows the 

final multiprocessor design. The micro-architecture consists of multiple arrays of 

pipelined Microblaze processors. 

 

Figure 2.10 soft multiprocessor systems for the data plane of the IPv4 packet 

forwarding application 

A staring reference for baseline performance is a single processor solution, where 

the entire header processing runs on a Microblaze. The route table is stored in 
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BRAM and accessed over the OPB. Under this scenario the IPv4 forwarding 

requires 270 cycles per packet. The maximum throughput that can be achieved by 

this single processor design operating at 100MHz is 0.17 Gbps.  

At a first step towards multiprocessor design, the header processing is pipelined. 

Each branch of the header processing micro-architecture in Figure 2.10 is a 

pipelined array of three Microblaze processors along which a single header is 

processed. FSL links transfer the entire header among processors. The first 

pipeline stage performs IP header verification. The 6 lookup memory accesses of 

the trie lookup algorithm are partitioned equally between the second and the third 

pipeline stages, and hence can be performed in parallel. The third pipeline stage 

performs an additional memory access to determine the egress port. The trie table 

is also divided among multiple BRAM modules, and each processor accesses 

route table over a separate OPB bus. For the application decomposition in Figure 

2.10, the throughput of a single array is around 0.5 Gbps.  

Pipelining is a means to parallelize the application temporally. The next degree of 

parallelism comes from replicating the pipeline arrays in space. Each header 

constitutes a logically independent control flow. Hence, multiple branches can 

process different headers in parallel. Each branch executes the same 

decomposition of the header processing application. Two factors restrict the 

number of branches in the design: 

 FPGA  BRAM cells bound the number of processors (with a 300KB route 

table and 8KB local memory per processor, a Virtex-II Pro 2VP50 FPGA 

can allow only 15-20 processors) 

 Branch executions are not independent due to concurrent memory 

accesses to the route table over a shared bus. 

Taking area and arbitration constraints into account, the final multiprocessor 

design for header processing (Figure 2.10) replicates the single pipeline array into 

4 branches. All processors in lookup stages 1 and 2 access the same part of the 

route table in shared memory over the OPB bus. From experiments, there is a 

significant drop in OPB performance if more than 2 processors share the same 

bus. The BRAM memory is dual-ported. Hence, the same route table memory can 

be serviced by 2 OPB buses. Thus, the choice of 4 branches is optimum for 

multiprocessor designs where shared resources are accessed over the OPB. The 
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measured throughput of the header processing multiprocessor in Figure 2.10 is 

1.8 Gbps.  

2.2.4 Performance Characteristics 

Regarding the performance characteristics of the soft multiprocessor for header 

processing, the breakup of the number if instructions and cycles executed by each 

pipeline stage of the multiprocessor for header processing in Figure 2.10 is shown 

in Table 2.2. The two IP lookup stages are bottlenecks in the design. Table 2.3 

summarizes area, memory and performance of the multiprocessor for header 

processing in Figure 2.10. Area utilization is less than 50% but memory is a tighter 

constraint. The local memories occupy 14x8 =112 KB, and the routing table 

occupies 300KB. The throughput of the router in Figure 2.10 is 1.8 Gbps. 

 

Table 2.2 Execution times for processing one packet header 

 

Table 2.3 Design characteristics of the soft multiprocessor for header processing 

on the Xilinx Virtex-II Pro 2VP50 

2.2.5 Payload Transfer in the Multiprocessor Design 

Later in [13] is described the payload transfer in the multiprocessor design. The 

multiprocessor in Figure 2.10 shows the payload transfer component and its 

interface to the multiprocessor for header processing for a 2-port 2 Gbps router. A 

Gigabit Ethernet MAC (GEMAC) for each port handles packet reception and 

transmission under the control of the PowerPC processors. The GEMACs transfer 

the packet header and payload to BRAM memory over the PLB. The header and a 
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pointer to the payload location are then transferred over the On-Chip Memory 

(OCM) bus into memory that is shared between the PowerPC and the header 

processing multiprocessor. There is one source Microblaze processor per router 

port, which reads the header from the OCM, transfers the header to the 

Microblaze array, and writes back the processed header back into the OCM. Each 

packet is transferred over the PLB twice, once during the reception and once 

during transmission. The PLB has simultaneous read and write data paths with a 

total bandwidth of 12.8 Gbps. This is sufficient to buffer and transfer the packet 

payload at 2 Gbps line rates.  

2.2.6 Evaluation of Soft Multiprocessor Solutions 

Finally, in [13] the performance of the soft multiprocessor system which presented 

above is compared to the performance of a software solution of IPv4 forwarding 

application, on the Intel IXP2800 network processor. The IXP2800 is a state-of-

the-art multiprocessor specialized for packet forwarding applications. It has 16 

RISC micro-engines clocked at 1.4 GHz for data plane operations and an Intel 

XScale processor for control and management plane operations. Meng, et al, 

report a throughput of 10 Gbps on the IXP2800 for the packet forwarding 

application for different packet sizes.    

Table 2.4 shows the relative performance of the IXP2800 and soft multiprocessor 

solutions for IPv4 packet forwarding. The IXP28000 performs about 2.6x better 

that the soft multiprocessor for packet forwarding in terms of normalized 

throughput. This is because the IXP28000 was specifically designed to target 

forwarding applications. 

 

Table 2.4 Performance results of the data of the IPv4 packet forwarding 

application 

However, the advantage of soft multiprocessors is the low development cost for 

deploying an application on a target platform.  
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2.3 A Microblaze Based Multiprocessor Soc 

[14] presents a study of the viability of making a multiprocessor system in a chip 

using the Microblaze soft- core processor of Xilinx. Performance of data 

communication is studied, and also some parallel applications are used for testing 

speedup and efficiency of the system. 

2.3.1 Communication test 

For testing and measuring the capabilities of the FSL links (its architecture will be 

described later in this thesis) transmitting data between processors, a simple 

system has been built. This system consists of 2 Microblaze cores interconnected 

via 2 FSL links, BRAMs for data and instruction memory, for each processor 

connected to the local memory buses, and a timer for measuring data transfer 

times connected to MB_0. A diagram of this system can be seen in the next 

Figure: 

 

Figure 2.11 Microblaze System for testing communication 

This system was used to test the viability of transmitting data over the FSL links 

and measure the time consumed in this task. 

For testing the speed of the links, a program,, for data transfers has been 

developed. This program was used for transferring different sizes of data, from a 

simple 32 bit word to a matrix of 32x32 unsigned integers (4KB). In the next graph 

we can see the different speeds obtained with these tests. 
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Table 2.5 Direct transfer speeds over FSL link 

In this graph the cycles per word consumed for different sizes of data transmitted 

are represented. With this kind of transmission and large data sizes, speeds of 2 

cycles per word transmitted are reached. This configuration is good if a low 

volume of data is transferred. 

2.3.2 Network Topology 

There are many network topologies that can be materialized with point to point 

links. The pros and cons of three of them will be described and the viability of 

using them in a multi Microblaze design using FSL links for point to point data 

transfer: 

 Completely Meshed: a completely meshed network is a network in which 

each node is connected to every other node in the network. It is a good way 

to reduce the travelling time of packets over a network, because data goes 

directly from sender to receiver, but its main disadvantage is that the 

number of links grows extremely quickly when the number of nodes is 

increased. A completely meshed network topology with Microblaze and FSL 

links will only be possible for just 9 Microblazes, because of the limitation of 

8 FSL links for each Microblaze processor. 
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Figure 2.12 Completely meshed network 

 Ring Network: a ring network is a network in which each node in the 

network is connected to the following and the preceding node in the 

network, forming a ring. Data is passed from node to node until it reaches 

the destination node. With Microblaze and FSL links there will not be a size 

limit for the network, because each Microblaze would just use 2 FSL links. 

The main problem of this topology is that data transfers from  two nodes are 

far from each other and very consuming 

 

Figure 2.12 Ring network 

 Star Network: a star network is a network in which each node is connected 

to a central node. The weak point of this topology is that if the central node 

fails, the whole system fails. This weakness is not very important in an 

embedded system, where all the nodes are in the same chip. Another 
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weakness is that all communications go through the central node, so if the 

application run is communication intensive an important bottleneck will be 

presented in the central node. Using this topology it is possible to build 

systems with 1 Microblaze as a central node, and up to 8 Microblazes as 

general nodes. Also bigger systems can be built by linking various 

subsystems together. This is the choice taken for developing this particular 

multi Microblaze system. With this architecture, the central node will be the 

one that decides which fragments of the work are assigned to each general 

node, and will also be responsible for grouping the results given by the 

general nodes.  

 

Figure 2.13 Star network (left), and linked star networks (right) 

 

2.3.3 Complete System 

Once the communication method (FSL links) and the network topology (star 

network) were decided, 4 systems were built: 1, 2, 4 and 8 Microblazes each. The 

system with 1 Microblaze consisted of just the central node, and was built with: 1 

Microblaze, 16KB of BRAM for instruction and data memory, an uartlite and a 

timer attached to the OPB bus. The general nodes were built with one Microblaze 

and 16KB of BRAM for instruction and data memory. With this system some 

parallelizable applications for testing the speedup obtained due to the use of many 

processors instead of one were used. 
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2.3.4 Speedup and Efficiency 

The speedup of a parallel algorithm is defined as the time needed to solve the 

problem using just one processor divided by the time needed to solve the problem 

with p processors. In an ideal system and with ideal parallel algorithm, the 

speedup would be equal to the number of processors p. In real world, it is always 

lower due to communications overhead. 

 

Another measure of the performance of a parallel system is efficiency. Efficiency is 

defined as the speedup per processor. 

 

In an ideal system with an ideal parallel algorithm, the efficiency would be equal to 

1. 

2.3.5 First Application: Matrix Multiplication 

The first application used to test the system that is described in [14] was an 

application that performed matrix multiplications. The parallelization of the matrix 

multiplication algorithm implemented consists of sending one or more rows of the 

first matrix, and the whole second matrix to each processor. So each processor 

obtains one or more rows of the resulting matrix and returns it to the central 

processor, which is the responsible for merging the results. 

The results obtained for speedup and performance are shown in the following 

tables: 
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Table 2.6 Speedup and efficiency for 32x32 integer matrix multiplication parallel 

program 

As it can be seen in Table 2.6, results are not as good as it could be expected. It 

can be seen that the efficiency falls quickly, when the number of processors 

grows, reaching an efficiency of 20% with 8 processors. This is because when the 

number of processors is increased, more time is spent in communications; 

consequently the time saved with parallelism is spent in data communication.  

2.3.6 Second Application: Cryptographic Application 

Another application used to test the efficiency of the system in [14] was a 

cryptographic application using the AES (Rijndael) algorithm. The AES takes an 

input of 128 bits and a key of 128, 196 or 256 bits and generates an output of 

encrypted 128 bits. The decryption is made with the same key used in the 

encryption process with a similar process. The implemented version of AES used 

to test the system is the 128 bits key version. The test implemented consists on 

encrypted or decrypting a test of 1024 bytes in size. The text is split in 16 bytes 
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blocks, and each processor is always ready to process a 16 byte block. When the 

central processor receives a text file to be encrypted / decrypted, it starts to send 

blocks to each processor. It also has to send the encryption key to be used. The 

results obtained, are shown in the next table: 

 

Table 2.7 Speedup and efficiency fro AES encryption/decryption 

As it can be seen, the system offers a good performance, with efficiencies higher 

than 90%, quite better than the matrix multiplication test. The efficiency when 
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doing decryption is higher than with encryption, because the decryption algorithm 

is a little more time consuming so the relationship between computing time against 

communications time is higher.  

2.3.7 Conclusions 

From [14] can be concluded that the FSL links are an ideal choice for exchanging 

data between processors due to their high speed data transfer rates. This system 

is very appropriate for parallel algorithms in which the data transfer time is 

substantially lower than the computing time and that soft-core processors are 

appropriate for building multiprocessors systems on a chip.  
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3. MPLEM Architecture 

This chapter describes the structure and functionality of the Microblaze, the model 

of the memory that is used, the structure of the custom peripherals that were 

created to support specific operations of the platform and finally the functionality of 

the necessary Intellectual Properties (IPs) that are available from Xilinx libraries 

(buses, block RAMs, bridges), so as the implementation to become feasible. Also 

here the architecture of the multiprocessor platform we implemented is described. 

More specifically,  not only the way all the interconnections are made between the 

peripherals, the memory and the processors is described, but also the reason for 

this specific architecture. Besides that, an early simulation for this platform in this 

chapter is described. Simple software is implemented, to test the correct 

functionality, not only of the platform, but also of all peripherals that are used. The 

name is chosen for this platform is Multiprocessor Platform for Embedded systems 

or M.PL.EM.  

3.1 Description of Hardware 

3.1.1 Microblaze Architecture 

Microblaze is a soft, 32-bit reduced instruction set computer (RISC) processor 

designed by Xilinx for their FPGAs. Compared to other general purpose 

processors, it’s quite flexible with a few configurable parts and capable of being 

extended by customized co-processors. There are a number of on-chip 

communication strategies available including a variety of memory interfaces. 

Following is the core block diagram of Microblaze processor. [19] 
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Figure 3.1 Microblaze core block diagram 

Similar to most of RISC processors, Microblaze processor has an instruction 

decoding unit, 32x32b general purpose register file, arithmetic unit and special 

purpose registers. In addition, it has an instruction prefetch buffer. The arithmetic 

unit is configurable, as shown in Figure 3.1. The Barrel Shift, Multiplier, Divider 

and Floating Point Unit (FPU) are optional features. Microblaze processor has a 

three-stage pipeline: fetch, decode and execute. For most of instructions, each 

stage takes one clock cycle. There is no branch prediction logic. Branch with delay 

slot is supported to reduce the branch penalty.  

Microblaze is a Harvard-architecture processor, with both 32-bit Instruction-bus 

and Data-bus. Cache is also an optional feature. Three types of buses, FSL, LMB, 

and OPB are available. All three types of buses will be described later.  

3.1.2 On-Chip Peripheral Bus V2.0 (OPB) with OPB Arbiter 

The OPB Bus with OPB Arbiter module is used as the OPB interconnect for Xilinx 

FPGA based embedded processor systems. The bus interconnect in the OPB 

V2.0 specification is a distributed multiplexer implemented as an AND function in 

the master or slave driving the bus, and an OR function to combine the drivers into 

a single bus. [18]  

The features of OPB V2.0 with OPB arbiter are the following: 

 Includes parameterized OPB Arbiter 
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 Includes parameterized I/O signals to support up to 16 masters and any 

number of slaves 

 The OR structure can  be implemented using only LUTs or can use a 

combination or LUTs and fast carry adder to reduce the number of LUTs in 

the OR interconnect 

 Includes a 16-clock Power-on OPB bus Reset and parameter for high or 

low external bus reset.  

 Includes input for reset from Watchdog Timer. 

The Xilinx OPB V20 bus core allows the designer to tailor the OPB bus arbiter 

to suit the application by setting certain parameters to enable/disable features.  

 

Figure 3.2 OPB System Using OPB_V20 

3.1.3 Fast Simplex Link Channel (FSL)  

Microblaze contains eight input and eight output FSL interfaces. The FSL channels 

are dedicated unidirectional point-to-point data streaming interfaces. The FSL 

interfaces in Microblaze are 32 bits wide. Further, the same FSL channels can be 

used to transmit or receive either control or data words. The performance of the 

FSL interface can reach up to 30 MB/sec. This throughput depends on the target 

device itself. The FSL bus system is ideal for Microblaze-to-Microblaze or 

streaming I/O communications. [18] 
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The main features of the FSL interface are: 

 Unidirectional point-to-point communication 

 Unshared non-arbitrated communication mechanism 

 Control and Data communication support 

 FIFO-based communication 

 Configurable data size 

 600 MHz standalone operation 

The FSL bus is driven by one Master and drives one Slave. The next figure shows 

the principle of the FSL bus system and the available signals. 

 

Figure 3.3 FSL Interface Signals 

Xilinx EDK provides a set of macros for reading and writing to or from an FSL link. 

There are two ways of reading/writing on an FSL link: blocking or not blocking, and 

also there are different instructions for reading/writing data or control words. 

3.1.4 Local Memory Bus (LMB) 

The LMB module is used as the LMB interconnect for Xilinx FPGA-based 

embedded processor systems. The LMB is a fast, local bus for connecting 

Microblaze instruction and data ports to high-speed peripherals, primarily on-chip 

block RAM (BRAM). [18] 

The main features of LMB are: 

 Efficient, single master bus (requires no arbiter) 
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 Separate read and write data buses7Low FPGA resource utilization 

 125 MHz operation 

A typical Microblaze system using two LMBs is shown in figure 3.4. This system 

illustrates the use of both Instruction and Data side LMB buses connecting to a 

dual-ported BRAM Block via separate LMB BRAM interface controllers. 

 

Figure 3.4 Typical Microblaze System using Two LMBs 

3.1.5 LMB Block RAM Interface Controller 

The LMB BRAM interface controller is the interface between the LMB and the 

bram_block peripheral. A BRAM memory subsystem consists of the controller 

along with the actual BRAM components that are included in the bram_block 

peripheral. [18] 

The main features of LMB BRAM Controller are: 

 LMB bus interfaces with byte enable support 

 Used in conjunction with bram_block peripheral to provide fast BRAM 

memory solution for Microblaze ILMB and DLMB ports 

 Supports byte, half-word, and word transfers  

3.1.6 Block RAM (BRAM) 

The BRAM block is a configurable module that attaches to a variety of BRAM 

interface Controllers. The BRAM Block structural HDL is generated by the EDK 
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design tools based in the configuration of the BRAM interface controller IP. All 

BRAM Block parameters are automatically calculated and assigned by the EDK 

tools Platgen and Simgen. [18] 

The features of BRAM are: 

 Fully automated generation and configuration of HDL through EDK 

Platgen/Simgen tools 

 Number of BRAM primitives utilized is a function of the configuration 

parameters for: memory, address range, number of byte-write enables, the 

data width, and the targeted architecture 

 Both Port A and Port B of the memory block can be connected to 

independent BRAM Interface Controllers: LMB, OPB, Processor Local Bus 

(PLB), and On-Chip Memory  (OCM) 

 Supports byte, half-word, word and doubleword transfers provided to the 

correct number of byte-write enables have been configured 

3.1.7 OPB to OPB Bridge (Lite Version) 

The OPB to OPB Lite Bridge is used to connect two OPB buses. The bridge has 

one master port and one slave port. Two bridges may be used together to support 

full bus mastership in both directions. [18] 

The features of OPB to OPB Bridge are: 

 Provides a bridge between two OPB buses 

 Connections for one master-side bus and one slave-side bus 

 Parameterized data bus widths 

 Simple transaction forwarding reduces LUT count 

 Requires the two OPB buses to be on the same clock and the same size 

 No support for data buffering or posted writes 
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Figure 3.5 OPB System with Bridge 

Figure 3.5 shows a typical system with two OPB buses interconnected with a 

bridge. Any OPB master on OPB B can initiate a transaction (read or write) on 

OPB A. Note that masters on OPB A cannot get to OPB B unless another bridge is 

used in the opposite direction. Figure 3.6 shows a system with two bridges. In this 

system, masters on OPB B can initiate reads and writes to slaves on OPB A, and 

masters on OPB A can initiate reads and writes to slaves on OPB B. 

 

Figure 3.6 OPB System with Two Lite Bridges 

3.1.8 Cypress CY7C1041 256Kx16 Static RAM 

The behavioral model of external memory that is used to store the input data of the 

multiprocessor platform is the CY7C1041 provided from Cypress. The CY7C1041 

is a high-performance CMOS static RAM organized as 262,144 words by 16 bits. 
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Writing to the device is accomplished by taking Chip Enable and Write Enable 

inputs LOW. If Byte Low Enable is LOW, then data from I/O pins (I/O0 through 

I/O7) is written into the location specified on the address pins (A0 through A17). If 

Byte High Enable is LOW, then data from I/O pins (I/O8 through I/O15) is written 

into the location specified on the address pins (A0 through A17). 

Reading from the device is accomplished by taking Chip Enable and Output 

Enable LOW while forcing the Write Enable HIGH. If Byte Low Enable is LOW, 

then data from the memory location specified by the address pins will appear on 

I/O0 to I/O7. If Byte High Enable is LOW, then data from memory will appear in 

I/O8 to I/O15. The input/output pins are placed in high impedance state when the 

device is deselected, the outputs are disabled, the Byte High Enable and Byte Low 

Enable are disabled, or during a write operation. [20]  

 

Figure 3.7 SRAM Logic Block Diagram 
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Figure 3.8 SRAM Truth Table 

Figure 3.7 shows the logic block diagram of the memory, while figure 3.8 shows its 

truth table. 

3.1.9 FSL Peripheral 

The FSL Peripheral is a custom peripheral built to support the multiplatform 

functionality. This peripheral is used to store the data from the external SRAM that 

described previously, and send this data to a Microblaze processor. The FSL 

peripheral is connected with the Microblaze via an FSL bus, and is connected with 

the SRAM with custom logic (there is no bus available from the Xilinx libraries that 

connects this peripheral with this specific model of SRAM).  

The FSL peripheral contains a Dual Port BRAM organized as 4096 words by 32 

bits that stores the data which come from the external memory, and a controller 

used to arbitrate the communication of this peripheral with the processor and the 

SRAM.  

Figure 3.9 presents the logic block diagram of this peripheral, while figure 3.10 

presents the Finite State Machine (FSM) that acts as the controller of the FSL 

peripheral.  
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Figure 3.9 FSL Peripheral Block Diagram 

 

Figure 3.10 FSM of the FSL Peripheral Control 
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In figure 3.9 is presented the connection of the custom peripheral we built with the 

processor and the external SRAM.  The pin out of the peripheral is explained in 

table 3.1. 

Signal Name I/O Description

fsl_clk in system clock

fsl_rst in system reset

fsl_s_clk in slave clock (not used)

fsl_m_data out data from BRAM to processor

fsl_s_read out read data from FSL link

fsl_s_control in slave control (not used)

fsl_m_clk out master clock (not used)

fsl_m_write out write enable to FSL link

fsl_m_control out master control data (not used)

fsl_m_full in FSL link full

fsl_s_data in address from processor

fsl_s_exists in indicates if the processor tries to read from the peripheral

end_of_mem in indicates if the reading from the SRAM  ends

write_addr in address to FSL BRAM 

write_data in data from SRAM to FSL BRAM

wren in write enable to BRAM

read_sram out read data from SRAM

Table 3.1 Pin out of FSL Peripheral 

 

Regarding the size of the BRAM of this peripheral, it is chosen as follows: the total 

number of the BRAM on XUP2VP30 (the FPGA that is used for this thesis) is 136.  

Each BRAM has 18 Kbit size. The remaining number of BRAMs after the 

placement of the 14 Microblaze processors is 72. We split this number of BRAMs 

to 14 peripherals (one for each processor), so for each peripheral correspond 5 

BRAMs. So the total number of Kbits of each BRAM is 5*18 or 90 Kbits. We also 

need each position of the memory to be 32 bits wide, because this is the most 

convenient as each register of a Microblaze processor is 32 bits wide. As a result 

we need 90 Kbits/ 32 bits positions or 2812 positions. But the Xilinx tools cannot 

commit BRAMs of this size. The Xilinx tools commit memories of 4096 positions of 

32 bits. So it is necessary to reduce the number of the BRAMs that is committed 

from the processors, so as to fulfill this constraint. The exact number of BRAMs 

that is used from the processors and the way we use them will be described in the 

next chapter of this thesis.   



Parallel Computing System Implemented on a FPGA 

Microprocessor and Hardware Lab-MHL 48 

Regarding the ports of the BRAM, the port A is used for asynchronous read of the 

stored data, while Port B is used for synchronous write from the SRAM.   

The FSM of the FSL controller that is described in figure 3.10 works as follows: 

Before the processor asks for a read from the FSL peripheral, it is in idle state. If 

the processor asks for data from the FSL peripheral, then the FSL controller asks 

the external SRAM to initialize the FSL BRAM. When the BRAM is initialized from 

the external SRAM (this process will be described later in this thesis) and the 

processor asks for a read, the peripheral enters in the read mode. Then each 

address that is asked from the processor is passed to the BRAM where the data 

are stored, until the number of reads goes to 0. The number of reads that are 

made from the processor are 4096, equal to the positions of the BRAM. When the 

number of reads is 0 the peripheral enters in the delay state. This state is 

necessary, because the dual port BRAM needs two cycles to read the address 

and put out the data from an address. During this state, the controller also 

initializes the counter of the number of reads from the processor, and asks from 

the SRAM to re-initialize the BRAM of the FSL peripheral. Then the peripheral 

enters the Write state. The data read from the BRAM are written on the FIFO of 

the FSL link and as a result the processor can read, and consequently use them.  

In this point, it is necessary to mention that if the BRAM of the peripheral is not 

initialized the processor doesn’t need to resend the addresses, but it stalls until the 

memory is ready to be read. So no stall mechanism is needed to be build, thus the 

FSL supports this function with the use of the FIFO in the FSL link.  

3.1.10 SRAM controller 

In order to use the SRAM which is described previously, a controller is designed. 

This controller arbitrates the accesses to the SRAM from the FSL peripherals by 

defining the way that the data is sent to them. The SRAM controller is connected 

to the SRAM from the one side and with all the FSL peripherals from the other 

side.  

In figure 3.12 the FSM of the controller of the SRAM is presented and in Table 3.2 

the pin out of the SRAM controller is presented.  
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Figure 3.11 FSM of the SRAM controller 

Signal Name I/O Description

clk in system clock

reset in system reset

addrin in input addrsss (18-bit)

datain in input data (32-bit)

write_mem in write mem if read_mem=0

read_mem in read_mem if write_mem=0

addrout out addrout to FSL peripheral (12-bit)

dataout out data to fsl peripheral (32-bit)

wren0-13 out write enable BRAM of the FSL peripheral  

Table 3.2 Pin out of the SRAM controller. 

The SRAM controller that is presented in figure 3.11, implements a round robin 

algorithm for the initialization of the BRAMS of the FSL peripherals. The 

initialization of the memory is supposed to have been done with a “magic” way. 

Despite this fact, the SRAM controller supports writing to the memory, but in this 

thesis it is never used.  
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To be more specific, the SRAM controller works as follows: Initially, the SRAM 

controller is at the idle state. At this phase, the SRAM controller waits for a read or 

a write request, while it initializes all the signals and the necessary counters for the 

implementation of the Round Robin algorithm. When a read request comes from 

the FSL peripheral, a transition takes place from the idle to the read state. Then 

the controller starts to read data from the SRAM and initializes the FSL peripherals 

serially. There are three counters, one that counts the number of the peripherals to 

be initialized, one that counts the address to be send to the FSL peripheral, and 

one that counts the address to be send to the SRAM. After that the controller sets 

the control signals of the SRAM as follows: CE_b=0, OE_n=0, WE_n=1, BLE_n=0, 

BHE_n=0 [20]. Also, the controller sets the appropriate write enable signal for the 

FSL peripheral to be initialized, and sets the addresses signals to the SRAM and 

to the FSL peripheral BRAM.  After that, a transition takes place from the read to 

the idle state. This state is obligatory only due to the SRAM functionality (a 

transition of the previously described control signals of the SRAM has to be 

made).  

Then a continuous transition from idle read to read state is made for 4096 times, 

so as the whole BRAM of the FSL peripheral to be initialized with data. After 4096 

times the control goes to the idle state and the whole process is repeated for all 

the 14 peripherals. After 14 repetitions the control goes to the memory-end state 

where it stays for ever because, in this thesis, it is not predicted the SRAM to be 

re-initialized externally (as it is mentioned above the SRAM is initialized externally 

with a “magic” way which will be described later in this thesis). 
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3.2 MPLEM Platform Topology and Interconnection 

In figure 3.12 is presented the block diagram of the multiprocessor platform. At this 

block diagram all the interconnections that have been made for the implementation 

can be seen and will be explained later at this chapter.  

For the implementation of this platform were used:  

 14 Xilinx Microblaze soft-core processors, 14 custom FSL peripherals, and 

14 BRAMS, one for each processor.  

 A 4 MB external Cypress SRAM 

 2 OPB buses 

 2 OPB to OPB bridges 

 2 shared BRAMS 

 An RS232 peripheral for I/O purposes 

In [14] different network topologies for a Microblaze multiprocessor platform are 

presented. At these topologies, all Microblaze processors communicate directly 

each other through the FSL bus.  In this thesis a different topology is chosen. All 

processors communicate each other, not directly, but with the use of the OPB 

buses. The reason this topology is used, is that the processors work almost 

independently and there is no need for fast transfer of data from one processor to 

the other. Furthermore, the main goal for the implementation of this platform is to 

fit in one single FPGA the maximum number of processors that can
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Figure 3.12 Multiprocessor Platform Block Diagram
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share simple messages and work in parallel with different data that come from the 

external SRAM. So the best way for this is to connect all the Microblaze 

processors on the OPB buses.  

3.2.1 Microblaze to OPB interconnection 

Every Microblaze processor is connected directly to the OPB bus with the use of 

two links, one for data and one for instructions. Besides that, every Microblaze 

processor is connected on the OPB bus as a Master, so it has the right to write 

onto the bus and to send data to other slave peripherals or other processors. The 

interconnection of one Microblaze processor on the OPB bus is presented in figure 

3.13. 

 

Figure 3.13 Single Microblaze interconnection 

3.2.2 Microblaze to Local BRAM interconnection 

In figure 3.13 the connection of the Microblaze processor with its local memory is 

also presented. The connection is made through two buses: the data local memory 

bus (DLMB) and the instruction local memory bus (ILMB). The DLMB is used to 

transfer data to and from the processor, while the ILMB is used to transfer the 

instructions to and from the processor. At this point it should be mentioned that the 

software and the data of the processor are stored in this local memory. Also, the 

size of the local BRAM should be enough so as the software of the Microblaze to 

fit in. 
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3.2.3 Microblaze to FSL peripheral interconnection 

Every Microblaze processor is also connected with an FSL peripheral (its 

functionality was described in the previous chapter) with the use of the FSL link. 

This peripheral is not connected with the Microblaze processor through the OPB 

bus, because a high transfer speed is needed between this peripheral and the 

processor. The FSL link can work up to 600 MHz clock rate while the OPB bus is 

much slower if many processors and peripherals are connected onto this. 

The Microblaze is the master peripheral of the FSL bus while the FSL peripheral is 

the slave. This means that the processor can ask any time data from the FSL 

peripheral and the peripheral can write them on the FSL bus. If the bus is full, then 

the processor and the FSL peripheral wait until the FIFO of the FSL bus empties.  

The communication between the processor and the FSL bus is made with the use 

of some macros, which are provided from the Xilinx library.  The macros are used 

are 2: 

 microblaze_bread_datafsl (val, id): This macro performs a blocking data get 

function on an input FSL of Microblaze; id is the FSL identifier and can 

range from 0 to 7. 

 microblaze_bwrite_datafsl (val, id): This macro performs a blocking data put 

function on an output FSL of Microblaze; id is the FSL identifier and can 

range from 0 to 7. [21] 

These two macros are used together, the one after the other. The first macro is 

used to write to the FSL bus the addresses in the BRAM of the FSL peripheral that 

contain the data the Microblaze wants, while the second macro is used by the 

Microblaze so as to read the data that the FSL peripheral writes in the FSL bus.   

Both macros use block reads and write because the processor needs to wait for 

the data to be ready so as to continue its execution. On the contrary if the non-

block macros were used then the data the processor would receive would be 

wrong. 

3.2.4 OPB to OPB interconnection 

As it was previously described, the main goal of this work is the creation of a 

multiprocessor soft core system by utilizing all the resources that a specific FPGA 
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chip provides to us. So after some experimentation, it was found that on a Virtex II 

Pro FPGA (XC2VP30) chip fit 14 Xilinx Microblaze processors. But all these 

processors cannot be connected on a single OPB bus. An OPB bus can hold only 

up to 8 Master peripherals and an infinite number of Slave peripherals. So, for the 

implementation of a system that has 14 processors, 2 OPB buses are needed. In 

figure 4.1 is presented the way the 2 OPB buses are connected together to hold 

14 Microblaze processors. The connection of 2 OPB buses is succeeded with the 

use of the OPB to OPB bridges. In this thesis, 2 bridges were used; in order every 

processor in each bus to have the right to access as Master to a processor that 

exists on the other bus. (The functionality of OPB to OPB bridges is described in 

the previous chapter). 

 

Figure 3.14 OPB to OPB Bridge Interconnection 

In Figure 3.14 presented in details the interconnection of the bridges with the OPB 

buses. The OPB_OPB_0 bridge acts as master in OPB0 and as a slave in OPB1, 

while OPB_OPB_1 acts as master in OPB1 and as a slave peripheral in OPB0. In 

this way a processor which is connected in OPB1 can write data in OPB0 through 

the OPB_OPB_1. At this point it should be mentioned that as the OPB to OPB 

bridge acts a master in the one side of a bus, the number of processors, or other 

master peripherals in general, that can be connected on a bus is reduced to 7. 

This is the reason why in this project every bus holds only 7 processors and not 8.  

The communication between two processors that are on a different bus, is not 

made with the use of a specific macro, but with message sharing with the use of 

the shared BRAM 0, that is connected in OPB0, and the shared BRAM 1, that is 

connected in OPB1. For example, if Microblaze 0 wants to send a message to 

Microblaze 7 (these processors are on a different bus), has only to write in shared 

BRAM 1 and then the Microblaze 7 reads the data from shared BRAM 1. The 

same stands for the opposite.  
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3.2.5 Slave Peripherals on OPB 

As it was previously mentioned, on the OPB are also connected two shared 

BRAMS, one on each bus. These BRAMS (Shared BRAM 0, Shared BRAM 1) are 

connected as slaves on the buses, and they act as shared memories for the 

processors in order message passing to be possible. Every processor can access 

any time to every BRAM and to write or read data. The priority for accessing to 

these memories is controlled by the OPB arbiter that is embedded in the OPB bus.  

Also, a serial port peripheral is connected on the OPB bus. This peripheral is used 

only for test reasons (if the design would be downloaded on the XUP board). 

3.2.6  FSL peripheral to SRAM controller interconnection 

Every FSL peripheral, as it is presented in figure 3.15, is connected to the SRAM 

controller, which is inside in the FPGA and is connected to the external SRAM.  

In Figure 3.15 the interconnection of an FSL peripheral with the SRAM controller is 

presented.   

 

Figure 3.15 FSL Peripheral with SRAM Controller Interconnection 



Parallel Computing System Implemented on a FPGA 

Microprocessor and Hardware Lab-MHL 57 

Every FSL Peripheral is connected with the SRAM controller via 5 signals, as 

there was no library bus provided from Xilinx, because the SRAM controller is 

custom. The functionality of these signals is described in the previous chapter of 

this thesis.  

As it can be conducted from here, the processors are not depended on the SRAM 

controller and thus they can process data while the FSL peripheral communicates 

with the SRAM for its initialization.  

3.2.7 SRAM controller to SRAM interconnection 

As it was previously mentioned, the external SRAM is used must be supported 

from an SRAM controller that is inside the FPGA chip. So, we implemented an 

SRAM controller, which is inside the chip. The interconnection of this controller 

with the external SRAM is presented in figure 3.16 

 

Figure 3.16 SRAM controller to SRAM interconnection 

The clock and the reset signals of the SRAM controller are the same as for the 

rest of the platform. The signals “addrin”, “datain” and “write_mem” are external 

inputs of the controller and are used for initializing the SRAM. In this thesis, the 

SRAM is never initialized manually but is initialized in the testbench for the 

simulation of the platform.  
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The functionality of the SRAM and the SRAM controller was described in the 

previous chapter. The SRAM controller defines  the way the SRAM communicates 

with the rest of the system. The reason an SRAM was chosen for this platform and 

not a DDR memory is that the implementation of a DDR controller is very 

complicated (which is not included in the goals of this thesis). In the future a DDR 

controller may be implemented to support fast transfer of the data to and from the 

rest of the platform. The only reason an SRAM was chosen is that it’s easy to 

implement an SRAM controller and the I/O communication is much faster that any 

other way of communication (serial port for example). 

3.3 MPLEM Functionality 

The multiprocessor platform that previously described works as follows: Initially, 

the system is at a reset state. After some cycles, the software of the processors, 

which is the same for every processor, begins to execute. The SRAM controller 

will begin to work, only when all the processors ask for data from the memory. This 

happens, because we want the data from the external SRAM to be divided 

uniformly among the processors. Then the SRAM will initialize all the memories of 

the FSL peripherals. When every memory of the FSL peripherals would have been 

initialized, then the corresponding processor starts to read the data. When it 

finishes the initialization, the FSL peripheral is ready to be reinitialized. When all 

the peripherals are ready, the SRAM starts to send new data to these memories. 

At the same time, the processors execute the rest of the software. This process is 

repeated until all data of the SRAM are sent to the FSL peripherals. In this way, all 

the processors work in parallel by processing different data at the same time.  

The SRAM initialization can be done externally, in case the platform is 

downloaded on a board. In this thesis on the contrary, the memory initialization is 

done only in simulation mode, since the model of the memory is available to us 

only in behavioral mode. So, as we need 32-bit data long, we use 2 instances of 

the model we have, connected in parallel. As a result, the total amount of memory 

that is available is 262144 positions by 32 bits long. For the initialization of the 

memory in behavioral mode, a procedure is created which reads the data from a 

memory initialization file (MIF) and stores those data in the array which stands for 

the memory. This file is read by the memory, when a read operation is made. 

Finally, in order the SRAM model to work properly, the switching characteristics of 
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this behavioral model are set, according to those described in [20]. The switching 

characteristics, which are chosen for the behavioral simulation of this platform, are 

those presented in table 4.1: 

Parameter Description Time (ns) 

Trc Read Cycle Time 20 

Taa Address to Data Valid 1 

Toha Data Hold From Address Change 1 

Tace (not CE) LOW to DATA Valid 1 

Tdoe (not OE) LOW to DATA Valid 0 

Tdbe Byte Enable to Data Valid 3 

Thzbe Byte Disable to High Z 6 

Thzoe (not OE) HIGH to High Z 3 

Thzce (not CE) HIGH to High Z 3 

Twc Write Cycle Time 20 

Tsce (not CE) LOW to Write End 20 

Taw Address Set-Up to Write End 20 

Tha Address Hold from Write End 0 

Tsa Address Set-Up to Write Start 0 

Tpwe WE Pulse Width 20 

Tsd Data Set-Up to Write End 15 

Thd Data Hold from Write End 0 

Tbw Byte Enable to End of Write 20 

Table 3.3 SRAM Switching characteristics 
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3.4 Parallel Interconnection 

The number of processors is limited for this implementation due to the size of the 

target FPGA (we used the Virtex-II Pro xc2vp30 FPGA). In order to increase the 

number of processors, and consequently increase the throughput and the runtime 

performance of the system, we can do two things:  

 Use a larger FPGA  

 Connect many FPGAs in parallel.  

Regarding the first idea, the topology of the network will not change significantly. 

We will have to use more OPB buses, since, as it was previously mentioned, the 

number of master peripherals on every bus is limited to 8. In figure 3.16 is 

presented the interconnection when using a larger FPGA: 

 

Figure 3.17 Multiple buses interconnections 

At this case, the number of processors in OPB0 will remain the same (7 

processors). On the contrary, the number of processors in OPB1 will be reduced 

to 6, since one master position should be occupied by the OPB_OPB_0 bridge. 

The number of processors in OPB3 will be the same as in OPB0 (7 Microblaze 

processors). So, the total number of processors in this case is 20.  Likewise, if the 

size of the FPGA does not limit us, we can add more buses and, consequently, 

more processors.  

Another way to increase the total number of processors is to connect many 

FPGAs in parallel.  In figure 3.18 is presented one way to connect many FPGAs in 

parallel.  
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Figure 3.18 Parallel FPGA Interconnection 

The main idea in order to connect many FPGAs, which run MPLEM on them, is to 

connect them with the use of the external memory. As the memory is outside the 

FPGA, we can connect many of them with the memory. The arbitration is done by 

the memory, which divides the data among the processors.  

In order to implement the parallel interconnection, is just to put out the signals from 

each FPGA that are connected to the external memory.  

With this implementation, we increase significantly the number of processors. 

Despite that, the number of FPGAs that are connected in parallel is unlimited. The 

only disadvantage is the bottleneck from the external memory. It is very slow to 

initialize all the processors so if we connect many FPGAs in parallel, the 

throughput will remain the same, the runtime performance too.  
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4. System Verification and Synthesis 

In order to verify the correct functionality of the platform, initially all the custom 

peripherals were simulated and verified. After that, the whole platform functionality 

was verified, by implementing simple software for the platform. All the verification 

was made with behavioral simulation at ModelSim 6.0a.  

4.1 SRAM Behavioral Model Verification 

The model of the SRAM is used in this thesis is provided by Cypress. As a 

consequence, it should have been verified for its proper functionality. Despite that, 

in order to ensure the correct functionality of the memory and, as a result, the 

correct functionality of the system, the model of the SRAM is verified in behavioral 

simulation with ModelSim 6.0a. Many testbenches were created, which examine 

the most cases for reading from and writing to the memory. A testbench is created 

with no values, in order to examine whether the SRAM works properly and reads 

no values or not. Also a testbench with values in different positions was created so 

as to examine if we can read or write at random places in the memory. Finally, a 

testbench was created in order to examine whether or not we could read all the 

positions in this specific model of memory.  

Also, at this point the correct use of the memory initialization file is verified. As it 

was previously mentioned, a memory initialization file was created with some initial 

values for the memory. What was tested is if the memory was initialized properly 

and, of course, if theses values appear in the output when a read operation is 

tried.  

4.2 SRAM controller Verification 

The SRAM controller that is implemented to support the functionality of the SRAM 

was also verified through behavioral simulation. A testbench was created, which 

examines all the cases for the SRAM controller. The behavioral simulation was 

done with the use of ModelSim 6.0a.  

Besides the standalone simulation of the controller, it was also tested with the 

SRAM, in order to verify the correct communication between the two peripherals. 

For this reason a test bench was created that does many read and write 
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operations to and from the memory. In order to examined the correct functionality 

of the SRAM controller with the memory, we examine the output from the 

Modelsim in order to verify that the SRAM returns the correct values and also to 

verify if we write in some positions in the memory we can later read them.  

4.3 FSL Peripheral Verification 

Another peripheral that was verified is the FSL peripheral. In order to simulate this 

peripheral, the local BRAM is initialized with some random values with the use of a 

memory initialization file (MIF). The testbench that was created tries to replace the 

communication with the Microblaze processor. Some requests are made to the 

FSL peripheral, and this returns the values that are stored in the local BRAM. The 

cases that were tested are for many successive reads and for full or not full FSL.  

4.4 Multiprocessor network Verification 

The Microblaze network, without the external SRAM and the SRAM controller was 

also verified for its correct functionality. In order to simulate this network, simple 

software was developed. This software asks for some data from the FSL 

peripheral, reads the returned values (communication between Microblaze and 

FSL peripheral testing), and sends some of them through the OPB bus to other 

processors and to other slave peripherals (communication between processors 

testing). 

4.5 MPLEM Verification 

Finally, it was made the verification of the whole system. Initially we examined the 

correct communication between the processors. So testing software was created, 

that runs on all processors, and its main work is to exchange values between the 

processors. The first processor sends a value to every other processor and waits 

for their response. When a processor receives this value adds a number to this 

value according to its position in the network and sends it back to the first 

processor. The output from the simulation tool (Modelsim) is the same with the 

one expected. We can see that every processor replies to the first through the 

OPB bus.  
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Besides that, the communication with the FSL peripheral and the SRAM controller 

should be verified. So testing software was created, that runs on every Microblaze 

that asks for some values from its own FSL peripheral. The way these requests 

are made is with the use of some functions that are provided from the Xilinx 

software library. So, we have to examine in the simulation tool if the processor 

reads correctly the values from the FSL peripheral. This data come from the 

external memory with the help of the SRAM controller.  

In every case, the system works properly, without an algorithm running on it. In 

chapter 5, after embedding the BLAST software in MPLEM, is described also a 

further verification for MPLEM. Many different simulations were made in order to 

examine not only the correct functionality of the BLAST software on the MPLEM 

but also to ensure the correct functionality of the platform itself on a parallel 

algorithm.  

Another way for verifying the correct functionality of the platform is to download the 

design on an FPGA chip, but now this is impossible since the model of the 

memory is not synthesizable.  

4.6 Synthesis Results 

As it was previously mentioned, the whole platform cannot be synthesized, since 

the model of the memory we used in this thesis, is behavioral. Nevertheless, the 

part of the design that consists of the processors (without the memory and the 

memory controller) can be synthesized. As a result, we can predict the overall 

speed of the design, without taking into account the speed of the external memory. 

This is feasible, since the memory is outside the FPGA chip (it’s a separate chip).  

The processors network has been implemented (until synthesis phase) with Xilinx 

EDK 7.1 and Xilinx ISE 7.1 tool, using as target FPGA the xc2vp30 of the Virtex-II 

Pro family, package ff896 with speed grade -7. Table 4.1 shows the design 

summary of the multiprocessor network system.  
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Device Utilization Summary 

Number of 4 Input LUTs 23010  out of  27392 84% 

Number of BRAMs 120  out of    136 88% 

Number of MULT18X18s 42  out of    136 30% 

Table 4.1 Synthesis Results 

The speed of the system is 96.483 MHz according to the synthesis report obtained 

from the Xilinx Tools.   

As the Table 3.4 shows the critical aspects of this design are the number of LUTs 

and the number of BRAMs. As a result, the maximum number of processor that 

can fit into a Virtex 2 Pro FPGA is 14 as this number is determined by the number 

of the available BRAMs and the number of the available LUTs.  

On a new technology and larger FPGA the number of processors can be 

increased significantly since the amount of the available resources would be 

increased. 
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5. BLAST Implementation 

In this chapter is described a brief overview of the BLAST algorithm and its use in 

molecular biology. At this point it should be mentioned that in this thesis all the 

terminologies and definitions of DNA sequence matching problems and BLAST 

algorithm are not described in details, since this is not the main goal of this thesis. 

All the terminology and definition details that are used in this thesis are described 

in detail in [2]. 

Besides that, the contents of this chapter deal with BLAST software. After 

distinguishing the different software programs according to the form of the 

processed data, the BLAST-n program of the popular NCBI software is presented. 

Also, we describe the implementation of a software system we developed from 

scratch, running the main BLAST-n machine and the verification we made by 

comparing the output of this machine to the output of the NCBI tool. Last but not 

least, it is described the reason for choosing this particular algorithm to be applied 

on a multiprocessor platform and the way this software is embedded in it. 

5.1 Brief Description of BLAST Algorithm 

BLAST is the acronym of Basic Local Alignment Tool and it was firstly presented in 

[2] by S.F Altchul et. al. in 1990. In order to remain consistent with the terminology 

found in the original paper, it is important for us to describe the basic terms.  

A segment is a substring of a sequence. Given two sequences, a segment pair is 

a pair of substrings of the same length, one of each sequence. The subsequences 

of a segment pair can be gaplsessly aligned as there are of the same length.  

Given a scoring scheme for DNA sequences, a + 5 for every match and a penalty 

of –4 for every mismatch, a Maximal Segment Pair (MSP) is defined to be the 

highest scoring pair of identical length segments chosen from two sequences. An 

MSP may be of any length as its boundaries are chosen to maximize its score. 

This score provides a measure of local similarity for any pair of sequences. 

However, as a molecular biologist may be interested in all conserved regions 

shared by two proteins, not only in their highest scoring pair, a segment pair is 

defined to be locally maximal if its score cannot be improved either by extending or 
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by shortening both segments. BLAST can seek all locally maximal segment pairs 

with scores above some cutoff [2]. 

We now have all the necessary information to describe precisely the performance 

of BLAST. Given a query sequence, BLAST returns all the segment pairs between 

the query and the database sequence with scores above a certain score S. Most 

severs running the BLAST software provide a default value of S, but also a user 

may also define a value for S. 

Blast algorithm consists of 3 steps which implementation depends on the form of 

the data processed, nucleotide sequences or amino acid sequences. In the 

following discussion, BLAST dealing with nucleotide data will be discussed in 

details, whereas shorter explanations will be given regarding the manipulation of 

amino acid data. 

The first step of the algorithm involves the compiling of the list of high scoring 

words. For DNA sequences this list contains all contiguous w-mers, i.e words of 

length w, in the query sequence. For nucleotide sequences, the value of w is 

usually 12 and a typical range of this value is between 11 and 15. Obviously this 

list will contain n-w+1 w-mers where n is the length of the query sequence. To 

better illustrate the algorithm steps for DNA sequences, we will use a smaller 

value for w in our examples. Let ACGTAAATGCAG be the query sequence of 

length 12 and let w be equal to 3. The word list will contain 10 w-mers. As it is 

shown in figure 5.1, ACG will be the first one, CGT the second, GTA the third etc. 

and CAG will be the last one.  

 

Figure 5.1 Step 1 of BLAST (from [15]) 
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For queries with protein sequences containing all words which score at least T 

when compared with some word in the query sequence. So, a query may be 

represented by no words in the list or by many. 

The Second Step is the search of the database for “hits”. After the word list 

generation, the database sequences are searched for an exact match between 

any substring of the w-mer list and the database sequence. Every word list found 

in the database is called hit and it is possible to be part of a High Scoring Pair 

(HSP). Figure 5.2 shows an instance of the execution of step 2, when the 

incoming database stream matches with a word of the lit list. 

 

Figure 5.2 Step 2 of BLAST 

As soon as a hit is identified, in a straightforward process, not differing in case of 

nucleotide or amino acid data, it is extended by the step3 of BLAST for finding a 

locally MSP. In the original BLAST paper it is stated that for timing reasons the 

process of extending in one direction is terminated when a segment pair which 

score is below a certain distance below the best score found for shorter extensions 

is reached. According to this paper, the added inaccuracy is negligible. 

Figure 5.3 shows step by step the extension of the hit found in figure 5.2. In the 

first iteration of the extension process there are matches in both extension 

directions, so the score increases by 10. In the second and third iterations there is 

a match only in the one extension direction so the score in both iterations is 

increased by one, as each match yields 5 and each mismatch is penalized with -4. 

In the fourth iteration, there are mismatches in both directions and the score 

should be decreased by 8. As the score decreases in this iteration, the extension 

process stops without taking into account the last iteration.  
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Figure 5.3 Step 3 of the BLAST Algorithm 

5.2 The Different BLAST Programs 

The BLAST algorithm is employed by the programs blastp, blastx, blastn, tblastn, 

tblastx. Their differenced are summarized in table 5.1. 

Program Description 

blastp Query: amino acid, Database: amino acid 

blastn Query: nucleotide, Database: nucleotide 

blastx Query: translated nucleotide sequence, Database: amino acid 

tblastn Query: amino acid, database: translated nucleotide sequence 
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tblastx Query: translated nucleotide sequence, database: translated 

nucleotide sequence 

Table 5.1 The different BLAST programs 

In the current thesis for simplicity, as it is explained later, it is the blastn program 

that is used and all the other programs are disregarded. 

5.3 The NCBI Implementation 

Since 1988 the National Center for Biotechnology Information (NCBI) [3], created 

public databases, conducts research in computational biology, develops software 

tools for analyzing genome data, and disseminates biomedical information- all for 

the better understanding of molecular processes affecting human health and 

disease.  

In this website there is an open source implementation of the BLAST algorithm 

while from the ftp pages of the Center there is available the genetic database 

which consists of numerous files containing biological data. In addition, there is 

available a web application which performs biological search in a certain 

application. For benchmarking reasons we downloaded the executable files of 

version 2.2.10 of the implementation. The details of the NCBI tool are described in 

details in [24]. 

5.4 Dimensioning 

Before continuing with any implementation, it is essential to discuss the different 

sizes of the queries and the databases. In [24] there is a concise description of the 

available sizes of the queries and the databases. As it is described in this paper, 

databases are classified by looking the size of a particular database, either in 

terms of characters or in terms of megabytes.  

There are three different cases; small, medium and large. Small consist of 400 

sequences or 4.7 MB, medium is between 400 and 6000 sequences or 5 MB and 

200 MB and large is between 6000 and 200000 sequences or 200 MB and 4 GB. 

On the other hand, the type of query is classified by the number of sequences 

(single or multiple) and by the total number of characters involved in the query 

(small, medium and large). In the case of a single sequence, small corresponds to 
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less than or equal to 2000 characters, medium is between 2000 and 50000 

characters, and large is between 50000 and 200000 characters. Multiple 

sequence queries were classified by the number of characters and by the total 

number of sequences per query. For multiple sequences; small corresponds to 

less than or equal to 2000 characters and a total of 20 sequences or less per 

query; medium is between 2000 and 50000 characters and between 20 and 200 

sequences query; large is between 50000 and 200000 characters and between 

200 and 2000 sequences per query.  

Last but not least is the size of the w-mers we will produce. According to NCBI 

manual, the most frequent values for the blastn program vary between 11 and 15, 

while the default value for this implementation is the 11. 

In this thesis, we use w-mer length 12, query length 1000 and small database 

sizes, since the size of the memory that is available to us is small.  

5.5 Software Implementation 

As it was previously mentioned, we have chosen to implement in software the 

blastn algorithm, for simplicity reasons. This software is implemented in C, 

compared with the NCBI tools for validation reasons, and later is used as the 

application for our multiprocessor platform. In figure 5.4 is presented the flowchart 

of our software implementation.  

The database for this implementation, for our convenience must be not only 

translated according to the table 5.2 but also all the comments should be removed 

in order to be in readable format. In table 5.2 is presented the mapping of the 

database letters. 

Nucleotide Character Number Conversion 

A 1 

T 2 

C 3 

G 4 

Table 5.2 Mapping of the DNA letters with numbers 
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Figure 5.4 Flowchart of blastn software implementation 

The software application we created in C language takes input a query file and a 

database file in readable format. The output is a list of all HSPs produced by the 

BLAST process and their scores without considering any statistical, pre-filtering or 

overlapping issues. The scoring matrix used is presented in table 5.3. 

 A T C G 

A 5 -4 -4 -4 

T -4 5 -4 -4 

C -4 -4 5 -4 

G -4 -4 -4 5 

Table 5.3 The scoring matrix of our software implementation 

According to table 5.3 the score for each match is 5 while the score for each 

mismatch is -4. The size w of the w-mers is fixed and equal to 12 while the 

threshold value T is 50. Obviously a seed (i.e. a portion of a database which 
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produces a hit) is scored with 60, as there are 12 letters matching with a w-mer 

and scored with 5.  

Now we will briefly describe the implementation details of each step of the 

algorithm. 

Step1: Initially the query file is scanned and its content is stored in an array as 

integers 1, 2, 3, 4. After that, we scan this array and create a linked list of the w- 

mers. We remind that this list consists of all possible words of length w that lie on 

buffer. For the implementation of the list, dynamic memory allocation has been 

used. Dynamic allocation was preferred because it is simpler to implement. As 

soon as step 1 finishes, we proceed to the database scanning. 

Steps 2, 3: This stage of the algorithm is repeated until the entire database file is 

scanned. For each iteration, one letter is read from the database file. Then for 

each letter, a word with length w is created and it’s compared against the list of the 

w-mers in order for hits to be found. If a hit is found we immediately proceed to the 

left extension while the score is greater than a threshold (we selected 50). In order 

for the left extension being possible, some of the last database letters have to be 

kept in the main memory. So, a buffer has been introduced with size double as the 

size o f the query where every new incoming letter is stored. When the left 

extension of an HSP finishes, we proceed with the right extension. However, as 

data for this process are not yet available, this HSP is added into a waiting list 

(called hit list) for the right extension. This hit list contains all the “active” HSPs, i.e. 

those HSPs whose extension has not finished yet. Obviously, HSPs are 

characterized by two integer numbers indication the starting positions of the HSP 

in the query and the database, its length and its score.  

The right extension is slightly different. First of all we disregard the score of the left 

extension and we consider that the score is the one obtained from the seed. Then 

for each database letter we extend by one letter all of the nodes located in the 

previously stated hit list. If a score of any node falls under the threshold the right 

extension procedure terminated for this node and the HSP is reported.  

For a better understanding of the procedure described for steps 2 and 3, we add 

the flowchart in figure 5.4 
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It should be admitted that this method is not really good, because the extension 

process is very weal. First we extend left until the threshold is met and afterwards 

we disregard this score for the right extension.  

Comparing the speed of this unit with the NCBI BLAST tool, it is obvious that the 

latter is much faster for the same inputs is the same computer. This is obvious 

because we did not care about the performance of the software.  

Regarding the outputs of both software tools, there were a lot of incompatibilities. 

The reason is that the NCBI tool performs a lot of optimizations as well it applies 

statistical methods in the output of its results. However, the outputs of the NCBI 

tool were included in the output of our implementation. For this reason we are 

confident for the functionality of this software.  

5.6 BLASTn Software on MPLEM 

Each Microblaze processor of our multiprocessor platform executes the custom 

BLASTn software tool we implemented, in order to compare the performance of 

this software on two different machines: on the multiprocessor platform and on a 

Personal Computer with a Pentium Processor. The performance comparison will 

be analyzed in the next chapter in this thesis.  

First of all, we will have to explain the reasons for choosing this particular 

algorithm for our multiprocessor platform. It’s easy to implement in software the 

custom BLASTn tool so the design time is very small. Besides that, the BLAST 

algorithm can be easily parallelized, in order every processor to execute the same 

software at the same time with the same results. To success this, every processor 

has at the same time, to compare the same query, with a different part of the DNA 

database. Besides that, this platform was not designed only for BLAST algorithm, 

so some changes have to be made in order to be possible the BLAST algorithm to 

be executed.  

The only part of the multiprocessor platform that has to be parameterized is the 

SRAM controller. The SRAM controller has to send to every processor the 1000 

next letters of the database to the FSL peripherals, in order the right extension to 

be possible.   
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So, the SRAM controller spits the database letters among the processors and at 

these letters are added 1000 more database letters, which is the worst case for 

the extension step.  

The worst case conducts from the size of the query that the processors examine. If 

the query is 1000 letters long, and a hit is found in last positions of the database 

part that a processor examines then right extension must be done for this hit. The 

worst case happens when for this hit we have the maximum extension. For 1000 

letters long query, there can be an extension up to 1000 letters.  

Besides that, the software must be parameterized, in a way that the Microblaze 

processors can execute this software. First of all, the way the letters are read from 

the database must be changed. In a PC the database is stored in a text file. But a 

Microblaze processor can not read a file, due to the absence of a hard disk drive. 

So, the database, after is translated, is stored in the external SRAM. The 

initialization of the SRAM is done with the use of the MIFs for behavioral 

simulation. Except for that, the query is no longer stored in a text file, but in the 

processors memories in an array of integers. Every processor has the same query 

to compare against a different part of the database.  

Regarding the results, those can be sending to the RS232 port. But, for testing 

reasons, the results are sent to the data BRAMS of each processor, because it’s 

difficult to simulate the functionality of the RS232.   

The rest software remained the same as the one that runs on a PC, so now a 

comparison in performance can be done (it will be described later in this thesis). 

Before compiling the C code on the processors, a linker script is necessary to be 

made, in order a mapping of the memory to be done.  This linker script is 

generated automatically by the Xilinx EDK.  

5.7 System Verification 

After the embedment of the software on the MPLEM, we are ready to simulate the 

platform in order to validate the correct functionality of the system. For this reason, 

we have loaded different databases to the external memory in order to examine all 

possible cases.  

We have examined the following cases: 



Parallel Computing System Implemented on a FPGA 

Microprocessor and Hardware Lab-MHL 76 

 No hits: we load in the external SRAM a small random database that 

consists of the four letters as it was previously described, and a query from 

which no hits with the sequence database are conducted.  

 Query part of the database: we load in the external SRAM a random 

database. The query is a small part of this database and we examine then 

the hits that are found 

 All the database the same letter: we create a small database which consists 

of the same letter. This case is not real, since there is no organism that all 

its genes are the same. We examine this database with a query that 

consists of the same letters. We expect that hits are found in all the 

positions of the database. 

 Database part of a common true database: we load in the MPLEM a real 

database in order comparison with the NCBI tool to be feasible.  

Those cases are the test benches we created in order to examine the correct 

functionality not only of the BLAST on the MPLEM, but also to verify the correct 

functionality of the MPLEM with a real parallel algorithm such BLAST.  

The simulator that is used for the verification of our system is the Modelsim 6.0a 

with behavioral simulation since timing simulation is not feasible cause of the 

reasons that were previously described.  

The outputs of our system for each hit are: the position of the hit in the query and 

the database, the score of this specific hit and the length of the hit. These outputs 

are then compared with the results that come up of the custom software we 

implemented. The test benches that are used as input for this software are the 

same with those used for the verification of MPLEM in order to be certain for the 

correct functionality of our platform. At this point we should mention that we can 

use this software as the validator tool since its functionality was compared with the 

NCBI tools.  
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6. MPLEM Performance 

In this chapter, a performance comparison will be made between the BLASTn 

software on the multiprocessor platform, and the BLASTn software that runs on a 

common Intel Pentium 4 processor.   

6.1 BLASTn Performance on PC 

Measurements of the BLASTn software, that we implemented, have been made 

on conventional computers, with identical queries. Runs of BLASTn software were 

performed on a 3.2 GHz Intel Pentium 4 processor with 512 MB of memory, 

running Microsoft Windows XP, and the CPU usage was profiled with the Intel 

VTune Performance Analyzer 9.0. The database and the query are part of ecoli.nt 

database. Different measurements were made for different sizes of database, 

whereas the size of the query remained always the same (1000 sequences long). 

Every measurement was repeated five times. In table 6.1 are presented the results 

from the measurements on the PC.  

Processor Speed 

(MHz) 

Database 

size (letters) 

Query size 

(letters) 

Execution 

time (sec) 

Throughput 

(letters/sec) 

Intel P4 3200 8192 1000 34.45 237.79 

Intel P4 3200 14336 1000 59.86 241.16 

Intel P4 3200 28672 1000 127.34 225.16 

Intel P4 3200 57344 1000 236.97 241.98 

Table 6.1 BLASTn Performance on PC 

6.2 BLASTn Performance on MPLEM 

Measurements of the BLASTn software have been also made on the 

multiprocessor platform we implemented. Every processor compares the same 

query with length 1000 sequences with a different part of the database. The 

database that was used is the same with the database used for the experiments 

on the PC. In Table 6.2 are presented the results of the experiments that have 

been made with the ModelSim 6.0a. Due to the long simulation time, in the 
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following table is presented only one measurement for a database 57344 letters 

long. 

 

Speed 

(MHz) 

Query size 

(letters) 

Database size 

(letters) 

Execution 

time (sec) 

Throughput 

(letters/sec) 

Speedup 

96.49 1000 57344 12.67 4528.01 19.10 

Table 6.2 BLASTn Performance on MPLEM  

6.3 Throughput Comparison 

In the following section we will present some measurements that show the 

variation of the system throughput when we change the number of processors of 

the system. Measurements of performance were made for 2, 4, 8, 10 and 14 

processors. The database that was used for these measurements was 8192 

letters long, while the query size was 1000 letters long. The measurements were 

made with behavioral simulation with the Modelsim 6.0a.  

Number of 

processors 

Query size 

(letters) 

Database 

size (letters) 

Execution 

time (sec) 

Throughput 

(letters/sec) 

Speedup 

2 1000 8192 5.68 1442.10 6.06 

4 1000 8192 4.14 1976.92 8.31 

8 1000 8192 1.52 5371.61 22.85 

10 1000 8192 1.26 6523.07 27.43 

14 1000 8192 0.93 8777.34 36.91 

Table 6.3 System throughput for different number of processors  

 

In figure 6.1 is presented a diagram which shows how the throughput changes –

increases in this case- when the number of the programmable processors is 

increased.  
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In figure 6.2 is presented a diagram which shows the estimated speedup increase 

for different number of Microblaze processors, compared with  the performance of 

blast software on an Intel Pentium 4 processor @ 3.2GHz. 

 

Figure 6.1 System throughputs for different number of processors  

 

Figure 6.2 Estimated Speedup for different number of processors 
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6.4 Comparison 

From the results that are presented in Tables 6.1 and 6.2, we can see that the 

BLAST-n machine is about 20 times faster that on a common PC. At this point we 

should mention that we have to make more measurements in order to be sure 

about the speedup that is achieved.  

Furthermore, from table 6.3 we can see that the system throughput increases 

when the number of processors is also increased. The system throughput when 

the system consists of 14 processors is  about 6 times bigger for the same 

database size and for the same query compared to 2 processors. Besides that, the 

speedup achieved when the system consists of 14 processors is about 37 higher 

compared to the BLAST software performance on a common pc.  
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7. Future Work 

Many things can be done in order to improve the performance of this 

multiprocessor platform, since this is its first implementation. First of all, a 

significant increase of the speed can be achieved, by increasing the number of 

soft-core processors of the platform. In order to achieve this, a new FPGA chip 

has to be used, and the topology of the network has to be changed. Besides that, 

the IBM PowerPC processor that is embedded in many FPGA chips can be used, 

in order to solve some I/O difficulties.  

Furthermore, the use of another SRAM chip can be studied, in order to increase 

the capacity and the speed of the system. At this point it should be mentioned that 

we can use a DDR memory instead of an SRAM in order to increase the capacity 

of the platform. Generally, DDR chips are faster and have more capacity than 

SRAM chips.  

Also, in order to increase the throughput of the MPLEM, we can connect many 

FPGAs in parallel and as a result to achieve better performance for our system. 

Finally, new topologies of the processors have to be studied, in order to find out 

the best architecture of this system. 

Besides the performance issues that are necessary to be studied, we can also 

improve some other things on this design. First of all, it’s a good idea to download 

the whole design on a board and compare the results with those that come up 

form the simulation. Furthermore, performance comparisons with other BLAST 

machines (software or hardware) can be done, in order to have a better view of 

the performance of this platform. Finally, other algorithms can be implemented on 

this platform, in order to explore their performance on it.  
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