ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ

ΤΜΗΜΑ ΜΗΧΑΝΙΚΩΝ ΟΡΥΚΤΩΝ ΠΟΡΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΕΦΑΡΜΟΣΜΕΝΗΣ ΓΕΩΦΥΣΙΚΗΣ

ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

«ΣΥΜΒΟΛΗ ΤΩΝ ΓΕΩΗΛΕΚΤΡΙΚΩΝ ΜΕΘΟΔΩΝ ΣΤΗ ΜΕΛΕΤΗ ΤΟΥ ΦΑΙΝΟΜΕΝΟΥ ΤΗΣ ΥΦΑΛΜΥΡΩΣΗΣ ΣΤΑ ΦΑΛΑΣΑΡΝΑ ΧΑΝΙΩΝ»

ΠΑΠΑΔΟΠΟΥΛΟΣ ΔΕΥΚΑΛΙΩΝ

Εξεταστική επιτροπή

Βαφείδης Αντώνιος , Καθηγητής Π.Κ.(επιβλέπων)

Μανούτσογλου Εμμανουήλ, Αναπληρωτής Καθηγητής Π.Κ.

Στειακάκης Εμμανουήλ, Λέκτορας Π.Κ.

ΧΑΝΙΑ ΣΕΠΤΕΜΒΡΙΟΣ 2009 Αφιερώνεται στους γονείς μου, Νίκο και Σοφία, και στις αδελφές μου Αθηνά και Εύα

ΠΡΟΛΟΓΟΣ

Οι γεωφυσικές τεχνικές εφαρμόζονται στην ανίχνευση της υπεδάφειας ρύπανσης και στον έλεγχο της ποιότητας των υπογείων υδάτων. Ειδικότερα, η μέθοδος της ειδικής ηλεκτρικής αντίστασης (ηλεκτρική βυθοσκόπηση και ηλεκτρική τομογραφία) ανιχνεύει την παρουσία ρύπανσης στο υπέδαφος, μετρώντας την μεταβολή της αγωγιμότητας του υπεδάφους, η οποία προκαλείται από τους ρυπογόνους παράγοντες.

Στην περιοχή μελέτης έχει παρατηρηθεί το φαινόμενο της υφαλμύρινσης υπόγειων υδροφορέων. Με τον όρο «υφαλμύρωση υπογείων υδροφορέων» εννοείται η ύπαρξη διείσδυσης αλμυρού νερού στο υπέδαφος.

Αυτή η διπλωματική εργασία, με τίτλο «Συμβολή των Γεωηλεκτρικών μεθόδων στην μελέτη του φαινομένου της υφαλμύρωσης στα Φαλάσαρνα Χανίων» αποσκοπεί στον προσδιορισμό του μετώπου θαλασσινού/γλυκού νερού στην περιοχή Φαλάσαρνα του Νομού Χανίων, όπου παρατηρήθηκε το φαινόμενο της υφαλμύρωσης σε υδρογεωτρήσεις.

Με την ολοκλήρωση της διπλωματικής μου εργασίας, θα ήθελα να ευχαριστήσω όλους όσους με βοήθησαν. Αρχικά, θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή, κύριο Αντώνη Βαφείδη για την υποστήριξη και την βοήθεια του. Επίσης, ευχαριστώ πολύ τους υποψήφιους διδάκτορες του Τμήματος των Μηχανικών Ορυκτών Πόρων, Κρητικάκη Γιώργο και Hamdan Hamdan για τις συμβουλές τους και την καλή συνεργασία που είχαμε. Θα ήθελα επίσης να ευχαριστήσω του τέταρτου έτους του τμήματος του Μηχ.Ο.Π. για τις μετρήσεις που πήραν στην περιοχή των Φαλασάρνων, στα πλαίσια του μαθήματος «Ασκήσεις Υπαίθρου ΙV».

Τέλος θα ήθελα να ευχαριστήσω τον Αναπληρωτή Καθηγητή, κύριο Μανούτσογλου Εμμανουήλ, καθώς και τον Λέκτορα, κύριο Στειακάκη Εμμανουήλ οι οποίοι συμμετέχουν ως μέλη της εξεταστικής επιτροπής.

ΠΕΡΙΛΗΨΗ

Οι γεωφυσικές μέθοδοι χρησιμοποιούνται στην ανίχνευση του μετώπου υφαλμύρωσης. Η μέθοδος της ειδικής ηλεκτρικής αντίστασης είναι η πιο κατάλληλη για τον εντοπισμό των υφάλμυρων υπόγειων νερών.

Στην εργασία αυτή παρουσιάζονται και αξιολογούνται τα αποτελέσματα της γεωφυσικής έρευνας στην περιοχή των Φαλασάρνων με τις μεθόδους της ηλεκτρικής βυθοσκόπησης και της ηλεκτρικής τομογραφίας. Μετά την επεξεργασία των δεδομένων με τα προγράμματα IPI2WIN και RES2DINV προέκυψαν τα γεωηλεκτρικά στρώματα της περιοχής μελέτης. Τα αποτελέσματα αυτά συνδυάστηκαν με κριτήρια την θέση και την ανάπτυξη των γεωηλεκτρικών στρωμάτων στο χώρο χρησιμοποιώντας το σχεδιαστικό πρόγραμμα COREL.

Στη συνέχεια έγινε προσπάθεια απεικόνισης της υφαλμύρωσης στην περιοχή. Οι σχηματισμοί που εμφανίζονται σε αυτή την περιοχή και κάτω από το στρώμα της φυτικής γης, είναι ο μαργαϊκός ασβεστόλιθος, οι ποτάμιες και οι θαλάσσιες αναβαθμίδες, οι μάργες και το κροκαλοπαγές βάσης.

Από τους παραπάνω γεωλογικούς σχηματισμούς, υδροφορία παρατηρείται κυρίως στο κροκαλοπαγές βάσης. Η υφαλμύρωση εντοπίστηκε σε θέσεις όπου παρατηρείται δραστική μείωση της ειδικής ηλεκτρικής του αντίστασης. Τέλος, καταγράφηκαν οι λόγοι για τους οποίους η ρύπανση του υδροφορέα στο κεντρικό τμήμα της περιοχής μελέτης είναι περιορισμένη.

ΠΕΡΙΕΧΟΜΕΝΑ

ΠΡΟΛΟΓΟΣii
ПЕРІЛНҰНііі
IIEPIEXOMENAiv
1.ΕΙΣΑΓΩΓΗ1
2.ΠΕΡΙΟΧΗ ΜΕΛΕΤΗΣ
2.1.ΓΕΩΛΟΓΙΑ ΤΗΣ ΠΕΡΙΟΧΗΣ ΜΕΛΕΤΗΣ3
2.2.ΠΡΟΒΛΗΜΑ ΤΗΣ ΥΦΑΛΜΥΡΩΣΗΣ ΣΤΗΝ ΠΕΡΙΟΧΗ ΜΕΛΕΤΗΣ7
2.3.ΕΠΙΣΚΟΠΗΣΗ ΕΡΕΥΝΗΤΙΚΟΥ ΠΕΔΙΟΥ ΚΑΙ ΠΑΡΟΥΣΙΑΣΗ ΕΦΑΡΜΟΓΩΝ
2.3.1.Υφαλμύρωση και γεωφυσική8
3.ΜΕΘΟΔΟΣ ΤΗΣ ΕΙΔΙΚΗΣ ΗΛΕΚΤΡΙΚΗΣ ΑΝΤΙΣΤΑΣΗΣ12
3.1.ΕΙΣΑΓΩΓΗ12
3.2.ΡΟΗ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ ΣΕ ΟΜΟΓΕΝΗ ΚΑΙ ΙΣΟΤΡΟΠΗ ΓΗ
3.3.ΦΑΙΝΟΜΕΝΗ ΕΙΔΙΚΗ ΗΛΕΚΤΡΙΚΗ ΑΝΤΙΣΤΑΣΗ17
3.4.ΤΡΟΠΟΙ ΔΙΑΤΑΞΗΣ ΗΛΕΚΤΡΟΔΙΩΝ17
3.5.ΓΕΩΗΛΕΚΤΡΙΚΗ ΒΥΘΟΣΚΟΠΗΣΗ20
3.5.1.Εισαγωγή20
3.5.2.Τρόπος πραγματοποίησης μετρήσεων στην ηλεκτρική βυθοσκόπηση20
3.5.3.Διαδικασία ηλεκτρικής βυθοσκόπησης21
3.5.4.Προβλήματα στην ερμηνεία των γεωηλεκτρικών βυθοσκοπήσεων22
3.5.4.1.Αρχή της ισοδυναμίας23
3.5.4.2.Αρχή της επικάλυψης24
3.6.НЛЕКТРІКН ТОМОГРАФІА25
3.6.1.Εισαγωγή25

3.6.2.Αντιστροφή δεδομένων28
4.ΓΕΩΗΛΕΚΤΡΙΚΗ ΔΙΑΣΚΟΠΗΣΗ ΣΤΗ ΦΑΛΑΣΑΡΝΑ32
4.1.ΕΙΣΑΓΩΓΗ32
4.2.ΗΛΕΚΤΡΙΚΕΣ ΒΥΘΟΣΚΟΠΗΣΕΙΣ34
4.2.1.Βυθοσκόπηση Ο1Α34
4.2.2. Βυθοσκόπηση Ο1C235
4.2.3. Βυθοσκόπηση O1D36
4.2.4. Βυθοσκόπηση O1E37
4.2.5. Βυθοσκόπηση Ο2Α39
4.2.6. Βυθοσκόπηση Ο2C40
4.2.7.Συνοπτική παρουσίαση αποτελεσμάτων των ηλεκτρικών βυθοσκοπήσεων41
4.3.ΗΛΕΚΤΡΙΚΕΣ ΤΟΜΟΓΡΑΦΙΕΣ43
4.3.1.Ηλεκτρική τομογραφία Line 444
4.3.2.Ηλεκτρική τομογραφία Line 546
4.3.3.Ηλεκτρική τομογραφία Line 648
4.3.4.Ηλεκτρική τομογραφία Line 750
4.3.5.Ηλεκτρική τομογραφία Line 1252
5.ΣΥΝΔΥΑΣΤΙΚΗ ΑΝΑΠΑΡΑΣΤΑΣΗ ΑΠΟΤΕΛΕΣΜΑΤΩΝ54
5.1.ΕΙΣΑΓΩΓΗ54
5.2. Γ E Ω H Λ EKTPIKE Σ TOME Σ Line 4, Line 5, Line 6 KAI Line 756
5.3. ΓΕΩΗΛΕΚΤΡΙΚΗ ΤΟΜΗ Line 7 ΚΑΙ ΒΥΘΟΣΚΟΠΗΣΗ Ο1C258
5.4. ΓΕΩΗΛΕΚΤΡΙΚΗ ΤΟΜΗ Line 12 ΚΑΙ ΒΥΘΟΣΚΟΠΗΣΗ Ο1Α60
5.5.ΣΥΝΔΥΑΣΜΟΣ ΤΩΝ ΒΥΘΟΣΚΟΠΗΣΕΩΝ Ο2Α, Ο2C ΚΑΙ Ο1D62
6.ΣΥΜΠΕΡΑΣΜΑΤΑ – ΠΡΟΤΑΣΕΙΣ
6.1.ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΚΑΙ ΥΦΑΛΜΥΡΩΣΗ64

6.2.ΣΥΜΠΕΡΑΣΜΑΤΑ ΑΠΟ ΤΗΝ ΣΥΝΔΥΑΣΤΙΚΗ ΑΝΑΠ	ΑΡΑΣΤΑΣΗ66
ВІВЛІОГРАФІА	
ПАРАРТНМА А	72
ПАРАРТНМА В	75

1. ΕΙΣΑΓΩΓΗ

Η υφαλμύρωση είναι μια διαδικασία κατά την οποία το νερό της θάλασσας ρέει υπόγεια και εισχωρεί στο υπέδαφος σε μεγάλη απόσταση από την ακτή. Αυτό μπορεί να συμβεί όταν ο ρυθμός άντλησης του υπόγειου νερού είναι μεγαλύτερος από τον ρυθμό αναπλήρωσής του, οπότε και εισρέει το θαλασσινό νερό.

Αποτέλεσμα είναι τα υπόγεια νερά να γίνονται υφάλμυρα και να είναι πια ακατάλληλα για ύδρευση ή και άρδευση. Επιπλέον, η υφαλμύρωση αποτελεί αιτία για την υποβάθμιση της ποιότητας των εδαφών, όπου σε ακραίες περιπτώσεις η φυτική γη καθίσταται εντελώς άγονη. Είναι ένα πρόβλημα που απασχολεί τις εύφορες παραθαλάσσιες πεδινές περιοχές, λόγω αδρεύσεων, και εκτιμάται ότι η κατάσταση επιδεινώνεται συνεχώς.

Τα αίτια της υφαλμύρωσης μπορεί να είναι: α) φυσικά (όπως το γεωλογικό υπόστρωμα, η ανύψωση της στάθμης της θάλασσας, η ξηρασία κ.τ.λ.), β) ανθρωπογενή (υπεράντληση υπογείων νερών, λειψυδρία) ή και συνδυασμός των δύο παραπάνω.

Η υφαλμύρωση υπογείων υδροφορέων λόγω υπεράντλησης, αποτελεί ειδική περίπτωση υπόγειας ροής και διαφοροποιείται στους υδροφορείς, ανάλογα με τα υδρογεωλογικά τους χαρακτηριστικά. Όταν ο ρυθμός άντλησης από παραθαλάσσιο υδροφορέα υπερβεί τον ρυθμό τεχνητής ή φυσικής επαναφόρτισης του, τότε το θαλασσινό νερό εισρέει στους υδροφορείς, καταστρέφοντάς τους από πηγή αξιοποιήσιμου νερού. Κατά την εισροή της θάλασσας σε έναν υδροφορέα οι συνθήκες μόνιμης ροής στην πραγματικότητα δεν αποκαθίστανται εύκολα. Επομένως το φαινόμενο αυτό είναι πολύ δύσκολα αναστρέψιμο, γι' αυτό και η αντιμετώπισή του συνδέεται πρακτικά με πρόβλεψη και ορθή διαχείριση των υδάτινων πόρων (Νάνου-Γιάνναρου, 2001).

Το πρόβλημα της υφαλμύρωσης στις περισσότερες περιπτώσεις αναγνωρίζεται εκ του αποτελέσματός του (υποβάθμιση της ποιότητας των υπογείων υδάτων). Συνήθως, όμως είναι άγνωστη η έκτασή του, λόγω έλλειψης στοιχείων. Δεν είναι δηλαδή εύκολη η ποσοτικοποίηση του προβλήματος. Επιπλέον, τις περισσότερες φορές το πρόβλημα φτάνει σε ανεπίτρεπτα όρια, λόγω του ότι τα κατάλληλα μέτρα δεν λαμβάνονται εγκαίρως. Η εφαρμογή των μέτρων αυτών είναι συνήθως συνδεδεμένη με οικονομικούς, κοινωνικούς και πολιτικούς παράγοντες και αυτό δυσχεραίνει ιδιαίτερα το πρόβλημα.

Η μελέτη στην περιοχή αυτή έγινε χρησιμοποιώντας της ηλεκτρικές μεθόδους της γεωφυσικής, για μια πρώτη αποτύπωση του προβλήματος στα Φαλάσαρνα. Από τις μεθόδους της ηλεκτρικής τομογραφίας και βυθοσκόπησης προέκυψαν τα γεωηλεκτρικά στρώματα που εμφανίζονται στην περιοχή, μέχρι και στο βάθος των 50m. Η εμφάνιση υφάλμυρου νερού σε κάποιο από τα στρώματα, αποτελεί μια αρχική ένδειξη για το ποιά στρώματα είναι αυτά που επιτρέπου την διείσδυση του υφάλμυρου νερού. Στη συνέχεια, μια διεξοδικότερη μελέτη αυτού του πετρώματος θα δείξει ποια είναι αυτά τα στοιχεία που επηρεάζουν την είσοδο στον υδροφορέα του θαλασσινού νερού.

ΠΕΡΙΟΧΗ ΜΕΛΕΤΗΣ

Αφορμή για την υλοποίηση της παρούσας εργασίας, αποτέλεσε η διαπίστωση παρουσίας υφάλμυρου νερού σε γεωτρήσεις, στα Φαλάσαρνα του νομού Χανίων (Εικόνα 2.1)

Εικόνα 2.1: Χάρτης νομού Χανίων, όπου απεικονίζεται η ευρύτερη περιοχή μελέτης.

2.1. ΓΕΩΛΟΓΙΑ ΤΗΣ ΠΕΡΙΟΧΗΣ ΜΕΛΕΤΗΣ

Οι γεωλογικοί σχηματισμοί στην ευρύτερη περιοχή μελέτης, σύμφωνα με τον γεωλογικό χάρτη του Ι.Γ.Μ.Ε. ΦΥΛΛΟ ΚΑΣΤΕΛΛΙ (1:50000 – Εικόνα 2,2) χωρίζονται σε 5 ενότητες (τεταρτογενές, ζώνη Τρίπολης, μεσοζωικό, μεταμορφωμένο υπόβαθρο κρυσταλλοσχιστώδους Κρήτης και ζώνη Ωλονού Πίνδου). Ειδικότερα:

<u>ΤΕΤΑΡΤΟΓΕΝΕΣ</u>

- Σύγχρονες παράκτιες αποθέσεις και θίνες (Qal θ).
- Αλουβιακές αποθέσεις (Qal₂): Πηλοί, άργιλοι, άμμοι και χάλικες, χαλαρής συνοχής. Πάχος έως 3 m.

- Πλευρικά κορήματα (Qal₁): Σύγχρονα και παλαιά. Από ασβεστολιθικές και χαλαζιακές κυρίως λατύπες, κατά θέσεις χαλαρά συνδεδεμένες με αμμώδη πηλό ή/και ασύνδετες. Πάχος έως 2 m.
- Νεώτερη θαλάσσια αναβαθμίδα (Qtm₁): Συνάγματα και άμμοι σε υψόμετρο
 3 m.
- Νεώτερες ποτάμιες αναβαθμίδες (Qt₁): Ασύνδετοι χάλικες και άμμοι.
- Παλαιότερες ποτάμιες αναβαθμίδες (Qt): Άργιλοι ερυθροκαστανόχρωες με υψηλό ποσοστό άμμου, ψηφήδων και κροκάλων από ασβεστόλιθους, κερατόλιθους και σπανιότερα από ψαμμίτη του φλύσχη.
- Παλαιότερες θαλάσσιες αναβαθμίδες (Qt_{n1}): Συνεκτικό (με λεπτοαμμούχο άργιλο) κροκαλοπαγές.
- Κροκαλοπαγές (Qdl): Ποτάμιο, με καλά στρογγυλεμένες κροκάλες και άμμους.
- Μαργαϊκοί ασβεστόλιθοι (Mi, mk): Συμπαγείς, υπόφαιοι έως υποκίτρινοι.
- Μάργες (Mi, m): Λευκές υποκίτρινες και στα βαθύτερα στρώματα πρασινόφαιες σε εναλλαγή με μαργαϊκούς ψαμμίτες και τράπεζες μαργαϊκών ασβεστόλιθων.
- Κροκαλοπαγές (Mic): Συμπαγείς κροκάλες κυρίως από μεσοζωικούς ασβεστόλιθους, κερατόλιθους και κρυσταλλικά πετρώματα (σχιστόλιθους, χαλαζίτες κλπ) με φαιοκίτρινη μαργαϊκή συνδετική ύλη.

<u>ΖΩΝΗ ΤΡΙΠΟΛΗΣ</u>

- Φλύσχης (F_T): Αργιλικοί σχιστόλιθοι και αργιλομιγείς ψαμμίτες σε εναλλασ.
 στρώματα μικρού πάχους.
- Ασβεστόλιθοι (e,k): Μελανόφαιοι, συμπαγείς, λεπτοκρυσταλλικοί, απολιθωματοφόροι με έντονη οσμή βιτουμενίων. (ΗΩΚΑΙΝΟ)
- Ασβεστόλιθοι (Ks): Λευκότεφροι έως κυανότεφροι συμπαγείς καρστικοποιημένοι. (ΑΝΩ ΚΡΗΤΙΔΙΚΟ)

<u>ΜΕΣΟΖΩΙΚΟ</u>

Ασβεστόλιθοι (Mu): Λευκότεφροι έως υποκύανοι μικροκρυσταλλικοί.
 (ΜΕΣΟΖΩΙΚΟ)

<u>ΜΕΤΑΜΟΡΦΩΜΕΝΟ ΥΠΟΒΑΘΡΟ ΚΡΥΣΤΑΛΛΟΣΧΙΣΤΩΔΟΥΣ</u> <u>ΚΡΗΤΗΣ</u>

- Ασβεστόλιθοι (PCk): (Μάρμαρα) ενίοτε δολομιτικοί, λευκότεφροι συμπαγείς
 σε τράπεζες και ασβεστόλιθοι κυανόφαιοι έως μελανότεφροι. Με εμφανίσεις
 σιδηρομετελλευμάτων (Fe).
- Κρυσταλλικοί σχιστόλιθοι (PCsh): Λαμπυρίζοντες μαρμαρυγιακοί ή γραφιτικοί φυλλίτες και χλωριτικοί σχιστόλιθοι. Με εμφανίσεις σιδηρομετελλευμάτων (Fe).

ΖΩΝΗ ΩΛΟΝΟΥ ΠΙΝΔΟΥ

- Φλύσχης (fo): Αργιλικοί σχιστόλιθοι και αργιλικοί ψαμμίτες σε εναλλασσόμενα στρώματα.
- Ασβεστόλιθοι (j-k): Λευκοί έως φαιοί, συμπαγείς συνήθως στιφροί ή/και μικροκρυσταλλικοί, κατά τόπους λιθογραφικοί και λεπτοπλακώδεις, σε τράπεζες με έντονη καρστική διάβρωση. (ΚΡΗΤΙΔΙΚΟ)
- Σχιστοκερατόλιθοι (jo): Ερυθροκαστανόχρωοι, σπανιότερα μελανόφαιοι, συνιστάμενοι από εναλλασσόμενα στρώματα αργιλικών σχιστολίθων, κερατολίθων και κυανόφαιων λεπτοπλακωδών ασβεστολίθων. (ΙΟΥΡΑΣΙΚΟ)

Εικόνα 2.2: Γεωλογικός χάρτης της περιοχής μελέτης (Ι.Γ.Μ.Ε. ΦΥΛΛΟ ΚΑΣΤΕΛΛΙ σε κλίμακα 1:50000).

2.2. ΤΟ ΠΡΟΒΛΗΜΑ ΤΗΣ ΥΦΑΛΜΥΡΩΣΗΣ ΣΤΗΝ ΠΕΡΙΟΧΗ ΜΕΛΕΤΗΣ

Η ευρύτερη περιοχή της Φαλάσαρνας έχει χαρακτηριστεί ως περιοχή με ιδιαίτερο φυσικό κάλλος, με πλήθος από τύπους οικοτόπων, με αρχαιολογικό ενδιαφέρον και έχει καταχωρηθεί στα δίκτυα Natura 2000 και Corine. Δυστυχώς, μερικά από τα ερευνητικά προγράμματα της Ευρωπαϊκής Ένωσης που εκτελούνται στην περιοχή, διολίσθησαν σε ελλιπείς δράσεις προστασίας του περιβάλλοντος και της Φύσης, καθότι η κοινωνική αποδοχή-συναίνεση και η περιβαλλοντική εκπαίδευση για την αειφορία, σκιαγραφήθηκαν μόνο στα χαρτιά.

Η Φαλάσαρνα είναι μια περιοχή του νομού Χανίων, ιδιαίτερα γνωστή για τον τουρισμό της, αλλά και για τον λόγο ότι είναι από τους παραγωγικότερους παράκτιους κάμπους.

Οι υπαίθριες καλλιέργειες και οι ελαιώνες, καλύπτουν το 48% του συνολικού κάμπου, το 4% είναι θερμοκηπιακές μονάδες (600 στρέμματα) και ο υπόλοιπος κάμπος καλύπτεται από φυσικές περιοχές, κυρίως φρυγανολιβαδική βλάστηση.

Εδώ και μερικά χρόνια και στο πλαίσιο περιορισμού της έντονης υφαλμύρωσης που αναπτύχθηκε στην περιοχή, εξαιτίας της υπεράντλησης και των εντατικών δραστηριοτήτων των ανθρώπων, η περιοχή υπάγεται στα μέτρα προστασίας υδάτινου δυναμικού με απαγόρευση ανόρυξης νέων γεωτρήσεων και πηγαδιών. Άλλωστε, το σύστημα των πολυάριθμων υγροτοπικών εκτάσεων που χαρακτήριζε κάποτε τη Φαλάσαρνα, έχει περιοριστεί σημαντικά, ενώ η ολοένα μεγαλύτερη ανάγκη εξασφάλισης νερού για την κάλυψη των αρδευτικών αναγκών της ευρύτερης περιοχής αυξάνει την απειλή για παραπέρα ποιοτική υποβάθμιση των υπογείων νερών.

Σύμφωνα με στοιχεία των αρμόδιων αρχών τα τελευταία 30 χρόνια η καλλιεργούμενη γη αυξήθηκε κατά 52%, και οι θερμοκηπιακές μονάδες από 13 το 1970, σήμερα είναι πάνω από 270 μονάδες σήμερα, χωρίς εν τω μεταξύ να γίνει το παραμικρό για την προστασία του εδάφους, του αέρα, των ανθρώπων που εργάζονται εκεί, των προϊόντων και του νερού (υπόγειου, επιφανειακού, θαλασσινού) (Χανιώτικα Νέα).

7

2.3. ΕΠΙΣΚΟΠΗΣΗ ΕΡΕΥΝΗΤΙΚΟΥ ΠΕΔΙΟΥ ΚΑΙ ΠΑΡΟΥΣΙΑΣΗ ΕΦΑΡΜΟΓΩΝ

Οι γεωφυσικές μέθοδοι της ειδικής ηλεκτρικής αντίστασης, κυρίως η ηλεκτρική βυθοσκόπηση και η ηλεκτρική τομογραφία, έχουν χρησιμοποιηθεί από πολλούς ερευνητές για τον εντοπισμό και τη χαρτογράφηση των ζωνών ανάμειξης του θαλασσινού με το γλυκό νερό, καθώς οι τιμές της ειδικής ηλεκτρικής αντίστασης των διαφόρων πετρωμάτων επηρεάζονται από την αλατότητα του νερού. Αυτό έχει ως αποτέλεσμα, χρησιμοποιώντας τις μεθόδους αυτές να είναι δυνατός ο διαχωρισμός των υδροφορέων που περιέχουν υφάλμυρο, από αυτούς με γλυκό νερό.

2.3.1. Υφαλμύρωση και γεωφυσική

Ο Singh etal. (2004) κατάφεραν να χαρτογραφήσουν το μέτωπο γλυκού και θαλασσινού νερού στην περιοχή της Orissa της Ινδίας, χρησιμοποιώντας την μέθοδο της ηλεκτρικής βυθοσκόπησης, ενώ οι Nassir και Nawawi (2004) απέδειξαν ότι η ηλεκτρική τομογραφία αποτελεί ένα πολύ χρήσιμο εργαλείο για την χαρτογράφηση του μετώπου ανάμειξης αλμυρού και γλυκού νερού, καθώς με αυτήν την μέθοδο μπορεί να απεικονιστεί η πλευρική διαφοροποίηση αλατότητας των υπογείων νερών μέσα σε περατούς γεωλογικούς σχηματισμούς στην περιοχή Yan της Μαλαισίας.

Στην περιοχή Korin του Ιράν, ο Lashkaripour (2003) πραγματοποίησε ένα πυκνό δίκτυο ηλεκτρικών βυθοσκοπήσεων με σκοπό τον προσδιορισμό του πάχους, του βάθους και της θέσης του υδροφορέα. Αυτό είχε σαν αποτέλεσμα τον ποσοτικό και ποιοτικό προσδιορισμό της υδροφορίας της περιοχής για μελλοντική εκμετάλλευση. Επίσης, πραγματοποιήθηκε η εκτίμηση της ποιότητας του υπόγειου νερού και ο εντοπισμός του μέτωπου ανάμειξης του με το θαλασσινό νερό στην παράκτια περιοχή Chennai της Ινδίας από τους Gnanasundar και Elango (1999) χρησιμοποιώντας την ηλεκτρική βυθοσκόπηση.

Ο Imhof etal. (2001) χρησιμοποίησαν την ηλεκτρική βυθοσκόπηση για την οριοθέτηση των ζωνών υφαλμύρωσης στην περιοχή Colonia Loveras της Αργεντινής με εντυπωσιακά αποτελέσματα. Ο υδροφόρος ορίζοντας σε αλλουβιακές προσχώσεις εντοπίστηκε από τους Singh και Yadav (1982) στην περιοχή της Allahabad της Ινδίας χρησιμοποιώντας ηλεκτρικές βυθοσκοπήσεις. Παρόμοια εντυπωσιακά αποτελέσματα έδωσε η εφαρμογή της ηλεκτρικής βυθοσκόπησης στην περιοχή Οmaruru της

Ναμίμπιας, όπου ο υδροφόρος ορίζοντας εντοπίστηκε σε αλλουβιακές προσχώσεις από τον Beer και τους συνεργάτες του (1981).

Ο Casas etal. (2004) χρησιμοποίησαν τη μέθοδο της ηλεκτρικής τομογραφίας για να χαρτογραφήσουν το μέτωπο γλυκού και θαλασσινού νερού στη περιοχή Empordà της βορειοανατολικής Ισπανίας. Ο σκοπός της μελέτης αυτής ήταν να εκτιμηθεί η ακρίβεια και η αξιοπιστία της ηλεκτρικής τομογραφίας και η αποτελεσματικότητά της σε συνδυασμό με γεωχημικά δεδομένα σε παράκτιες περιοχές. Χρησιμοποιήθηκαν συμβατικές διατάξεις ηλεκτροδίων (Wenner, Schlumberger, Wenner-Schlumberger και διπόλου-διπόλου) και μέθοδοι αντιστροφής όπως η Συνδυασμένη Μέθοδος Αντιστροφής (combined inversion method) και η Μέθοδος Αντιστροφής με τη Χρήση της Νόρμας L1 (Robust).

O Crane etal. (2002,2005) ερεύνησαν τα υπόγεια νερά στο Τουρκμενιστάν με γεωφυσικές μεθόδους. Mε διάφορες την εφαρμογή σεισμικών και ηλεκτρομαγνητικών μεθόδων μπόρεσαν να εντοπίσουν τα κορεσμένα σε νερό στρώματα του υπεδάφους και εκτιμήσουν την αλατότητα τους. Η έρευνά τους στηρίχθηκε στο ότι οι γεωηλεκτρικές μέθοδοι εντοπίζουν τη διεπιφάνεια μεταξύ αλμυρού και γλυκού νερού (Fitterman και Stuart, 1986, Goldman et al., 1991) αλλά γενικότερα δεν προτιμώνται για τον προσδιορισμό του βάθους του υδροφόρου ορίζοντα. Ο συνδυασμός γεωηλεκτρικών και σεισμικών μεθόδων δεν οριοθετεί μόνο το υπόγειο νερό αλλά προσδιορίζει και την αλατότητα (Shtivelman και Goldman, 2000).

Εκτός από τη μέθοδο της ειδικής ηλεκτρικής αντίστασης, έχουν χρησιμοποιηθεί και άλλες γεωφυσικές μέθοδοι για τον εντοπισμό του υδροφόρου ορίζοντα, αλλά και της ζώνης υφαλμύρωσης. Οι Haxhiu και Uci (1994) χρησιμοποίησαν συνδυασμό ηλεκτρικών βυθοσκοπήσεων και επαγόμενης πολικότητας για τον εντοπισμό της ζώνης υφαλμύρωσης του υπογείου νερού στην περιοχή Lushnja της Αλβανίας. Ο Parkish και οι συνεργάτες του (1980) συνδύασαν ηλεκτρικές βυθοσκοπήσεις και διαγραφίες για την υδρογεωλογική μελέτη της περιοχής Deccan Trap με μεγάλη επιτυχία.

Σε παράκτιες περιοχές η γνώση της γεωλογικής δομής βοηθά στην κατανόηση των αιτίων της υφαλμύρωσης. Οι σεισμικές μέθοδοι (ανάκλασης και διάθλασης) έχουν χρησιμοποιηθεί κατά καιρούς σε τέτοιες περιοχές με σκοπό την ακριβή περιγραφή των γεωλογικών δομών, για τον προσδιορισμό του μετώπου γλυκού / θαλασσινού νερού σε συνδυασμό με τις ηλεκτρικές μεθόδους.

Ο Balia etal. (2003) χρησιμοποίησαν την μέθοδο της σεισμικής ανάκλασης για την χαρτογράφηση των γεωλογικών σχηματισμών του Τεταρτογενούς αλλά και του Παλαιοζωικού υπόβαθρου. Ο συνδυασμός σεισμικών και ηλεκτρικών μεθόδων προσδιόρισε με μεγάλη επιτυχία το μέτωπο γλυκού / θαλασσινού νερού, σε περιοχή της νοτιοανατολικής Σαρδηνίας. Ο Mela (1997) προτείνει την χρήση της σεισμικής ανάκλασης υψηλής ανάλυσης για την εκτίμηση των υδρογεωλογικών παραμέτρων, όπως είναι η υδραυλική αγωγιμότητα και η ακτίνα συσχέτισης της (correlation length). Αξιόπιστη εκτίμηση τέτοιων παραμέτρων μπορεί να επιτευχθεί καθώς η σεισμική ταχύτητα των γεωλογικών σχηματισμών και το πορώδες συνδέονται άμεσα.

Οι Jarvis και Knight (2002) θεωρούν επίσης, ότι είναι εφικτή η εκτίμηση των υδραυλικών παραμέτρων των γεωλογικών σχηματισμών, χρησιμοποιώντας την μέθοδο της σεισμικής ανάκλασης. Ανέπτυξαν μια μεθοδολογία για τον υπολογισμό της σεισμικής ταχύτητας, σύμφωνα με την οποία γίνεται διαχωρισμός των γεωλογικών σχηματισμών σε διάφορους τύπους λιθολογίας και στη συνέχεια εκτίμηση των υδραυλικών παραμέτρων των ιζηματογενών πετρωμάτων.

Ο Haeni (1986) εφάρμοσε την μέθοδο της σεισμικής διάθλασης στην περιοχή της Νέας Αγγλίας για τη χαρτογράφηση του υπόβαθρου, αλλά και το προσδιορισμό του βάθους και του πάχους των υπερκείμενων υδροφορέων με μεγάλη επιτυχία.

Ο Hamdan και οι συνεργάτες του etal. (2002) αναζήτησαν τους υδροφόρους σχηματισμούς με την χρήση ηλεκτρικών βυθοσκοπήσεων και δημιούργησαν ένα τρισδιάστατο μοντέλο των γεωλογικών σχηματισμών και ιδιαίτερα αυτών που παρουσιάζουν υδρογεωλογικό ενδιαφέρον για την περιοχή Κίσσαμου του νομού Χανίων. Ο εντοπισμός και διαχωρισμός των γεωλογικών σχηματισμών σχηματισμών έγινε με γεωηλεκτρική διασκόπηση.

Το 2007 ο Hamdan etal. ερεύνησαν την ποιοτική υποβάθμιση των υπόγειων υδάτων και αποτύπωσαν τους καρστικούς σχηματισμούς στο χωριό Στύλος του νομού Χανίων της Κρήτης. Για την έρευνά τους χρησιμοποίησαν σεισμικές και ηλεκτρικές μεθόδους. Ο συνδυασμός της ειδικής ηλεκτρικής αντίστασης και των σεισμικών μεθόδων οδηγεί σε ένα ισχυρό εργαλείο για την απεικόνιση της ζώνης υφάλμυρου νερού στους καρστικούς σχηματισμούς.

3. ΜΕΘΟΔΟΣ ΤΗΣ ΕΙΔΙΚΗΣ ΗΛΕΚΤΡΙΚΗΣ ΑΝΤΙΣΤΑΣΗΣ 3.1. ΕΙΣΑΓΩΓΗ

Η εμφάνιση των ηλεκτρικών μεθόδων γεωφυσικής διασκόπησης χρονολογείται από τις αρχές του εικοστού αιώνα. Με τη χρήση των μεθόδων αυτών επιτεύχθηκε ο εντοπισμός φυσικού αερίου στη Ρουμανία το 1923 και αλατούχων δόμων στη Γαλλία το 1926. Η συστηματική εφαρμογή τους ξεκίνησε τη δεκαετία του '70 και αυτό λόγω της ανάπτυξης της τεχνολογίας των ηλεκτρονικών υπολογιστών, γεγονός που βοήθησε τόσο στη συλλογή των δεδομένων όσο και στην επεξεργασία τους.

Βασική επιδίωξη των ηλεκτρικών μεθόδων γεωφυσικής διασκόπησης είναι ο καθορισμός των ηλεκτρικών ιδιοτήτων των πετρωμάτων των επιφανειακών στρωμάτων του φλοιού της Γης. Πιο συγκεκριμένα πραγματοποιούνται τα ακόλουθα βήματα, α) διοχετεύεται ρεύμα (Ι) και μετράται το ΔV, β) πραγματοποιείται αναγωγή της μετρούμενης αντίστασης (ΔV/Ι) σε φαινόμενη ειδική ηλεκτρική αντίσταση ανάλογα με την διάταξη ηλεκτροδίων και γ) υπολογίζεται η κατανομή της ειδικής ηλεκτρικής αντίστασης στο υπέδαφος με μεθόδους αντιστροφής. Ιδιαίτερο ενδιαφέρον παρουσιάζει ο καθορισμός της τιμής της ειδικής ηλεκτρικής αντίστασης, καθώς και η μελέτη των κατακόρυφων ή και πλευρικών μεταβολών αυτής στα επιφανειακά στρώματα.

Για την εφαρμογή των ηλεκτρικών γεωφυσικών μεθόδων απαιτείται αντίθεση στις ηλεκτρικές ιδιότητες μεταξύ του υπό μελέτη γεωλογικού σχηματισμού και του ευρύτερου γεωλογικού περιβάλλοντος. Η χρήση των ηλεκτρικών μεθόδων καλύπτει ένα ευρύ φάσμα των γεωεπιστημών όπως είναι η κοιτασματολογία, η υδρογεωλογία, η τεχνική γεωλογία, η χαρτογράφηση γεωλογικών σχηματισμών αλλά και την αρχαιολογία.

Από τις ηλεκτρικές μεθόδους γεωφυσικής διασκόπησης οι πιο σημαντικές είναι η μέθοδος της ειδικής ηλεκτρικής αντίστασης, η μέθοδος των ισοδυναμικών γραμμών, η μέθοδος της επαγόμενης πολικότητας, η μέθοδος του φυσικού δυναμικού και η μέθοδος των τελλουρικών ρευμάτων. Για τη συλλογή δεδομένων στην παρούσα εργασία χρησιμοποιήθηκε η μέθοδος της ειδικής ηλεκτρικής αντίστασης και συγκεκριμένα η ηλεκτρική τομογραφία και η ηλεκτρική βυθοσκόπηση.

3.2. ΡΟΗ ΗΛΕΚΤΡΙΚΟΥ ΡΕΥΜΑΤΟΣ ΣΕ ΟΜΟΙΟΓΕΝΗ ΚΑΙ ΙΣΟΤΡΟΠΗ ΓΗ

Η μέθοδος της ειδικής ηλεκτρικής αντίστασης βασίζεται στον νόμο που διατύπωσε το 1827 ο George Simon Ohm (Robinson, 1988), σύμφωνα με τον οποίο αντίσταση R (σε Ω) ενός αγωγού ονομάζεται ο σταθερός λόγος της διαφοράς δυναμικού ΔV (σε Volt) που παρουσιάζεται στα άκρα του αγωγού, προς την ένταση I (σε Ampere) του ρεύματος που διαρρέει τον αγωγό.

$$\mathbf{R} = \Delta V$$
 3 1

Η αντίσταση ενός ομογενούς αγωγού είναι ανάλογη με το μήκος L του αγωγού, αντιστρόφως ανάλογη με το εμβαδόν Α της διατομής του αγωγού, ενώ εξαρτάται από το υλικό και τη θερμοκρασία του (Σχήμα3,1)

$$\mathbf{R} = \rho \frac{L}{A} \tag{3.2}$$

όπου ρ είναι η ειδική ηλεκτρική αντίσταση του υλικού του αγωγού.

Σχήμα 3.1: Ηλεκτρικό κύκλωμα αποτελούμενο από πηγή και αγωγό σχήματος ορθογωνίου παραλληλεπιπέδου.

Στο διεθνές σύστημα μονάδων (SI) μονάδα ειδικής ηλεκτρικής αντίστασης είναι το 1 Ωm. Πολλές φορές όμως χρησιμοποιείται και η μονάδα 1Ωcm και είναι 1 Ωm = 100 Ωcm. Η ειδική ηλεκτρική αντίσταση των πετρωμάτων και ορυκτών είναι μια από τις περισσότερο μεταβαλλόμενες φυσικές ιδιότητες των πετρωμάτων και ορυκτών. Οι σημαντικότεροι παράγοντες που επηρεάζουν την ειδική ηλεκτρική αντίσταση των πετρωμάτων είναι: α) η λιθολογία, β) το πορώδες και η περιεκτικότητά του σε γλυκό ή και σε υφάλμυρο νερό, γ) η γεωλογική ηλικία και δ) η θερμοκρασία τους.

Τοποθετώντας δύο ηλεκτρόδια στην επιφάνεια του εδάφους συνδεμένα με τους πόλους ηλεκτρικής πηγής συνεχούς ρεύματος δημιουργείται κλειστό κύκλωμα, στο οποίο η γη αποτελεί τον αγωγό του ηλεκτρικού ρεύματος. Επειδή ο αέρας της ατμόσφαιρας είναι κακός αγωγός του ηλεκτρισμού, όλο το ρεύμα από το ηλεκτρόδιο διαρρέεται στη γη.

Παρακάτω, για την κατανόηση της ροής του ηλεκτρικού ρεύματος στο υπέδαφος θα θεωρηθεί ότι η γη είναι ομοιογενής και ισότροπη ειδικής ηλεκτρικής αντίστασης ρ. Επιπλέον τα ηλεκτρόδια θεωρούνται σημειακά, δηλαδή οι εξισώσεις που προκύπτουν, ισχύουν για σημειακή πηγή.

Αρχικά η απόσταση μεταξύ των δύο ηλεκτροδίων θεωρείται πολύ μεγάλη, ώστε να μπορεί να μελετηθεί το κάθε ηλεκτρόδιο ξεχωριστά. Στο θετικά φορτισμένο ηλεκτρόδιο η κίνηση των θετικών φορτίων είναι από το ηλεκτρόδιο προς τη γη. Επειδή η γη θεωρείται ομοιογενής το ρεύμα ρέει ομοιόμορφα προς όλες τις κατευθύνσεις και οι γραμμές που απεικονίζουν τη ροή (γραμμές ρεύματος) μπορούν να θεωρηθούν ως ακτίνες ημισφαιρικών επιφανειών που έχουν κέντρο την πηγή (Σχήμα 3.2). Η αντίσταση R στη ροή του ηλεκτρικού ρεύματος που παρουσιάζει μία ημισφαιρική δομή ακτίνας d, δίνεται σύμφωνα με τη σχέση:

$$\mathbf{R} = \rho \frac{d}{2\pi d^2} = \frac{\rho}{2\pi d} \tag{3.3}$$

από το γινόμενο της ειδικής ηλεκτρικής αντίστασης ρ με τον λόγο της ακτίνας d προς το εμβαδόν 2πd² της ημισφαιρικής επιφάνειας.

Η διαφορά ΔV_d του δυναμικού V_0 της πηγής από το δυναμικό V_d όλων των σημείων που απέχουν απόσταση d από την πηγή που προκαλείται από τη ροή ρεύματος, έντασης I, μέσα από την ημισφαιρική δομή είναι:

$$\Delta V_d = V_d - V_0 = IR = \frac{I\rho}{2\pi d}$$
(3.4)

Η επιφάνεια που περιλαμβάνει όλα τα σημεία με το ίδιο δυναμικό ονομάζεται ισοδυναμική επιφάνεια. Το δυναμικό στο απομακρυσμένο ηλεκτρόδιο που συνδέεται με τον αρνητικό πόλο της ηλεκτρικής πηγής είναι $-V_0$. Το αρνητικά φορτισμένο ηλεκτρόδιο έλκει τα θετικά ηλεκτρικά φορτία, με αποτέλεσμα οι γραμμές ρεύματος να συγκλίνουν προς αυτό από όλες τις διευθύνσεις. Μία ημισφαιρική δομή ακτίνας d με κέντρο αυτό το ηλεκτρόδιο θα παρουσιάζει αντίσταση R στη ροή του ρεύματος σύμφωνα με τη σχέση (3.3). Η διαφορά μεταξύ του δυναμικού $-V_d$ όλων των σημείων που απέχουν απόσταση d από το αρνητικά φορτισμένο ηλεκτρόδιο και του δυναμικού του V_0 θα είναι:

$$-\Delta V_d = -V_d - (V_0) = V_0 - V_d = -IR = -\frac{I\rho}{2\pi d}$$
(3.5)

Στην περίπτωση λοιπόν που το ηλεκτρόδιο είναι θετικά φορτισμένο, το ηλεκτρικό ρεύμα απομακρύνεται από αυτό, ενώ όταν το ηλεκτρόδιο είναι αρνητικά φορτισμένο, το ρεύμα συγκλίνει προς αυτό. Και στις δύο περιπτώσεις οι γραμμές ρεύματος αρχίζουν ακτινικά από το ηλεκτρόδιο, ενώ οι ισοδυναμικές επιφάνειες είναι ημισφαιρικές επιφάνειες με κέντρο το ηλεκτρόδιο(Σχήμα 3.2).

Σχήμα 3.2: Ροή ηλεκτρικού ρεύματος σε ομοιογενή και ισότροπη γη στην περίπτωση που δεν υπάρχει αλληλεπίδραση μεταξύ των δύο ηλεκτροδίων (Γκανιάτσος, 2000, Σούρλας, 2000).

Όταν η απόσταση των δύο ηλεκτροδίων θεωρηθεί μικρή, το ηλεκτρικό πεδίο του ενός ηλεκτροδίου αλληλεπιδρά με το ηλεκτρικό πεδίο του άλλου ηλεκτροδίου, με αποτέλεσμα το δυναμικό σε ένα σημείο του υπεδάφους να ισούται με το αλγεβρικό άθροισμα των δυναμικών των ηλεκτρικών πεδίων των δύο ηλεκτροδίων. Το συνολικό δυναμικό V σε ένα σημείο του υπεδάφους που απέχει αποστάσεις d₁ και d₂ από την πηγή και τη γείωση αντίστοιχα, ισούται με το άθροισμα του δυναμικού V_{d1} που οφείλεται στην πηγή, με το δυναμικό V_{d2} που οφείλεται στη γείωση:

$$V = V_{d1} + V_{d2} = V_{d1} - V_0 + V_0 + V_{d2} = \frac{l\rho}{2\pi} \left(\frac{1}{d_1} - \frac{1}{d_2}\right)$$
(3.6)

Και επομένως η μετρούμενη αντίσταση θα δίνεται από την σχέση:

$$R = \frac{V}{I} = \frac{\rho}{2\pi} \left(\frac{1}{d_1} - \frac{1}{d_2} \right) \tag{3.7}$$

Με βάση τη σχέση (3.6) υπολογίζεται το δυναμικό σε όλα τα σημεία του υπεδάφους και γίνεται η σχεδίαση των ισοδυναμικών επιφανειών. Οι γραμμές ρεύματος σχεδιάζονται κάθετα στις ισοδυναμικές επιφάνειες. Τόσο οι γραμμές ρεύματος όσο και οι ισοδυναμικές επιφάνειες είναι συμμετρικές ως προς την ευθεία που τέμνει κάθετα και στο μέσο το ευθύγραμμο τμήμα που ενώνει τα δύο ηλεκτρόδια(Σχήμα 3.3). Αυτό ισχύει για κάθε ημιχώρο που περιέχει τα δύο ηλεκτρόδια, ανεξάρτητα από την κλίση της επιφάνειας του ως προς το οριζόντιο επίπεδο.

Σχήμα 3.3: Ροή ηλεκτρικού ρεύματος στην περίπτωση που δύο ηλεκτρόδια εισάγονται σε ομοιογενές και ισότροπο έδαφος (Dobrin, 1976).

3.3. ΦΑΙΝΟΜΕΝΗ ΕΙΔΙΚΗ ΗΛΕΚΤΡΙΚΗ ΑΝΤΙΣΤΑΣΗ

Για μη ομοιογενή μέσα, η αντίσταση που υπολογίζεται από τη σχέση (3.7) εκφράζει το μέσο όρο των τιμών των αντιστάσεων των διαφόρων υλικών, σταθμισμένο με την απόσταση που διαρρέει το ρεύμα το κάθε ένα από αυτά τα υλικά, και ονομάζεται φαινόμενη ειδική ηλεκτρική αντίσταση (ρ_α).

Η τιμή της φαινόμενης ειδικής ηλεκτρικής αντίστασης εξαρτάται από την κατανομή της ειδικής ηλεκτρικής αντίστασης στο υπέδαφος και από τη γεωμετρία των ηλεκτροδίων. Ο υπολογισμός της είναι πολύ σημαντικός για τον προσδιορισμό της πραγματικής ειδικής ηλεκτρικής αντίστασης του υπεδάφους. Για τον υπολογισμό της φαινόμενης ειδικής ηλεκτρικής αντίστασης, είναι δυνατόν να χρησιμοποιηθούν διαφορετικές διατάξεις ηλεκτροδίων, οι οποίες θα περιγραφούν παρακάτω.

3.4. ΤΡΟΠΟΙ ΔΙΑΤΑΞΗΣ ΗΛΕΚΤΡΟΔΙΩΝ

α) Διάταξη Wenner

Στη διάταξη Wenner τα ηλεκτρόδια ρεύματος και δυναμικού διατάσσονται σε ίσες μεταξύ τους αποστάσεις, δηλαδή, AM = MN = NB = α, όπως φαίνεται στο Σχήμα 3.4α. Έτσι η φαινόμενη ειδική ηλεκτρική αντίσταση $ρ_{\alpha}$ υπολογίζεται από την σχέση:

$$\rho_{\alpha} = 2\pi \frac{V_{MN}}{I} \left(\frac{1}{\alpha} - \frac{1}{2\alpha} - \frac{1}{2\alpha} + \frac{1}{\alpha}\right)^{-1} = 2\pi\alpha \frac{V_{MN}}{I}$$
(3.8)

Η ποσότητα

$$2\pi \left(\frac{1}{\alpha} - \frac{1}{2\alpha} - \frac{1}{2\alpha} + \frac{1}{\alpha}\right) = 2\pi\alpha \tag{3.9}$$

ονομάζεται γεωμετρικός συντελεστής και συμβολίζεται με Κ. Η τιμή του μπορεί να υπολογιστεί αν οι αποστάσεις των ηλεκτροδίων είναι γνωστές.

Κατά την εφαρμογή της διάταξης Wenner για ηλεκτρική βυθοσκόπηση, δηλαδή κατακόρυφη ηλεκτρική διασκόπηση, τα ηλεκτρόδια αναπτύσσονται κάθε φορά συμμετρικά ως προς ένα σημείο, που θεωρείται κέντρο της βυθοσκόπησης. Στην περίπτωση της ηλεκτρικής χαρτογράφησης το α παραμένει σταθερό και τα τέσσερα ηλεκτρόδια μεταφέρονται κατά μήκος γραμμής μελέτης. Η τιμή της φαινόμενης ειδικής ηλεκτρικής αντίστασης αντιστοιχείται στο κέντρο της διάταξης.

Η διάταξη Wenner παρά τη γεωμετρική της απλότητα παρουσιάζει ένα σημαντικό μειονέκτημα, αφού κατά την πραγματοποίηση κάθε νέας μέτρησης πρέπει να μετακινούνται όλα τα ηλεκτρόδια.

Σχήμα 3.4: Διατάξεις Wenner (α), Schlumberger (β), διπόλου-διπόλου (γ) (Παπαζάχος, 1986).

β) Διάταξη Schlumberger

Στη διάταξη Schlumberger, τα ηλεκτρόδια ρεύματος Α και Β βρίσκονται σε απόσταση L και σε συμμετρικές θέσεις ως προς το κέντρο της διάταξης. Τα ηλεκτρόδια του δυναμικού M και N είναι ανάμεσα στα A και B και σε απόσταση b από το κέντρο της διάταξης. Έτσι είναι AB = 2L και MN = 2b = 1 (Σχήμα 3.4β), η απόσταση 2b μεταξύ των ηλεκτροδίων δυναμικού είναι πολύ μικρότερη από την απόσταση 2L μεταξύ των ηλεκτροδίων ρεύματος. Έτσι ο γεωμετρικός συντελεστής K θα υπολογίζεται από την σχέση:

$$K = 2\pi \left(\frac{1}{L-b} - \frac{1}{L+b} - \frac{1}{L+b} - \frac{1}{L-b}\right)^{-1} = (L^2 - b^2)\frac{\pi}{2b} \qquad (3.10)$$

Επειδή όμως (L>>b) τότε (L2- b2) ~ L2, και έτσι η φαινόμενη ειδική ηλεκτρική αντίσταση θα υπολογίζεται από την σχέση

$$\rho_{\alpha} = \frac{\pi L^2}{2b} \frac{\Delta V}{l} \tag{3.11}$$

Κατά την εφαρμογή της διάταξης Schlumberger για ηλεκτρική βυθοσκόπηση, τα ηλεκτρόδια δυναμικού παραμένουν σταθερά. Αντίθετα η απόσταση για τα ηλεκτρόδια ρεύματος αυξάνεται σταδιακά και συμμετρικά ως προς το κέντρο της διάταξης.

Η διάταξη Schlumberger είναι η πιο διαδεδομένη διάταξη για την διεξαγωγή ηλεκτρικής βυθοσκόπισης. Αυτό οφείλεται κυρίως στο μικρό χρόνο πραγματοποίησης των μετρήσεων, επειδή αντίθετα με τις άλλες διατάξεις απαιτεί μετακίνηση μόνο των δύο ηλεκτροδίων ρεύματος κατά την γεωηλεκτρική βυθοσκόπηση. Τα ηλεκτρόδια του δυναμικού παραμένουν σταθερά, γεγονός που βοηθάει επίσης στον περιορισμό των ανεπιθύμητων επιδράσεων που μπορεί να οφείλονται σε πλευρικές μεταβολές της ειδικής ηλεκτρικής αντίστασης των

γ) Διάταξη Διπόλου-Διπόλου

Σε αυτή τη διάταξη η απόσταση ανάμεσα στα ηλεκτρόδια του ρεύματος είναι ίση με α. Ομοίως α είναι και το διάστημα μεταξύ των ηλεκτροδίων δυναμικού. Η απόσταση μεταξύ των ζευγαριών των ηλεκτροδίων είναι μεγάλη και ίση με πα (na>>a), όπως φαίνεται στο Σχήμα (3.4γ).

Ο γεωμετρικός συντελεστής Κ για την διάταξη διπόλου-διπόλου και για n>>1, υπολογίζεται από τη σχέση:

$$K = n\pi\alpha(n+1)(n+2)$$
 (3.12)

και η φαινόμενη ειδική αντίσταση από την σχέση

$$\rho_{\alpha} = n\pi\alpha(n+1)(n+2)\frac{\Delta V}{I}$$
(3.13)

Το μεγαλύτερο πλεονέκτημα της διάταξης αποτελεί η απόσταση 2na, ανάμεσα στα δίπολα ρεύματος και δυναμικού, που μπορεί να αυξηθεί αρκετά χωρίς να χρειάζονται καλώδια μεγάλου μήκους.

3.5. ΓΕΩΗΛΕΚΤΡΙΚΗ ΒΥΘΟΣΚΟΠΗΣΗ 3.5.1. Εισαγωγή

Η γεωηλεκτρική βυθοσκόπηση αποτελεί μέρος της ηλεκτρικής διασκόπησης, στην οποία μελετάται η μεταβολή της ηλεκτρικής αντίστασης με το βάθος. Απεικονίζει δηλαδή την μεταβολή της ηλεκτρικής αντίστασης κατά μία μόνο διάσταση, αυτή του βάθους, πράγμα το οποίο επιτρέπει τη σύγκριση των αποτελεσμάτων της με πληροφορίες από γεώτρηση. Στην ηλεκτρική βυθοσκόπηση, προκύπτει γράφημα της ειδικής αντίστασης συναρτήσει του βάθους. Η βυθοσκόπηση είναι μία σχετικά γρήγορη και μικρού κόστους γεωηλεκτρική διασκόπηση η οποία επιτρέπει την εξαγωγή αξιόλογων συμπερασμάτων για την εναλλαγή των γεωηλεκτρικών στρωμάτων με το βάθος.

3.5.2. Τρόπος Πραγματοποίησης Μετρήσεων στην Ηλεκτρική Βυθοσκόπηση

Η περιγραφή της γεωλογικής δομής του υπεδάφους κατά την εφαρμογή της γεωηλεκτρικής βυθοσκόπησης, προκύπτει από τον υπολογισμό των τιμών της ειδικής ηλεκτρικής αντίστασης και του πάχους ή/και του βάθους των γεωλογικών στρωμάτων.

Με τη γεωηλεκτρική βυθοσκόπηση προσδιορίζεται η φαινόμενη ειδική ηλεκτρική αντίσταση $ρ_{\alpha}$ σε σταθερό σημείο της επιφάνειας για διαδοχικά αυξανόμενες τιμές του γεωμετρικού συντελεστή Κ. Αυτό συμβαίνει αυξάνοντας συνεχώς την απόσταση μεταξύ των ηλεκτροδίων ρεύματος. Καθώς η διάταξη των ηλεκτροδίων απλώνεται, η ίδια ποσότητα ρεύματος διαρρέει μεγαλύτερα βάθη. Άρα, η ηλεκτρική αντίσταση των βαθύτερων γεωλογικών στρωμάτων επηρεάζει τη φαινόμενη ειδική ηλεκτρική αντίσταση. Εναλλαγές, υψηλής και χαμηλής ηλεκτρικής αντίστασης, μπορεί να εμφανισθούν σε γράφημα της φαινόμενης ειδικής ηλεκτρικής αντίστασης των ηλεκτροδίων του ρεύματος (Σχήμα 3.7).

Ανάμεσα στις διάφορες διατάξεις ηλεκτροδίων, η διάταξη Wenner είναι η λιγότερο κατάλληλη για τις γεωηλεκτρικές βυθοσκοπήσεις (παρόλο που χρησιμοποιείται αρκετά συχνά), λόγω της μετακίνησης των τεσσάρων ηλεκτροδίων σε κάθε πρόσθετη μέτρηση. Αντίθετα στη διάταξη Schlumberger τα ηλεκτρόδια δυναμικού παραμένουν στην ίδια θέση, και μόνο τα ηλεκτρόδια του ρεύματος μετακινούνται για κάθε επιπλέον μέτρηση. Τέλος, η διάταξη διπόλου–διπόλου, όπου τα ηλεκτρόδια ρεύματος παραμένουν σταθερά και μετακινούνται τα ηλεκτρόδια δυναμικού, είναι η πιο κατάλληλη για βαθιές βυθοσκοπήσεις.

Σχήμα 3.7: Γράφημα της φαινόμενης ειδικής ηλεκτρικής αντίστασης συναρτήσει της απόστασης των ηλεκτροδίων του ρεύματος, στην περίπτωση εναλλαγών χαμηλής (R₁,R₃) και υψηλής (R₂,R₄) ηλεκτρικής αντίστασης, με τη βοήθεια της διάταξης Wenner.

3.5.3. Διαδικασία Ηλεκτρικής Βυθοσκόπησης

Η διαδικασία εκτέλεσης της ηλεκτρικής βυθοσκόπησης αποτελείται από τα παρακάτω βήματα, αναφερόμενα με σειρά προτεραιότητας.

Ορίζεται η ευθεία πάνω στην οποία θα γίνει η ανάπτυξη της γραμμής.
 Ελέγχεται η περιοχή μελέτης πριν ξεκινήσει η βυθοσκόπηση για την αποφυγή εμποδίων όπως η ύπαρξη χειμάρρων, φαραγγιών, λόφων, οικημάτων, φρακτών κ.α.

 Συνδέεται το όργανο με τα καλώδια, και τοποθετείται στο σημείο που θα αποτελεί το κέντρο της Βυθοσκόπησης (O).

Τοποθετούνται τα ηλεκτρόδια δυναμικού και ρεύματος εκατέρωθεν του σημείου Ο σε απόσταση MN/2 και AB/2 αντίστοιχα. Στη συνέχεια γίνεται η σύνδεση των ηλεκτροδίων A, B με τα καλώδια, διοχετεύεται ηλεκτρικό ρεύμα και πραγματοποιείται η μέτρηση, όπου λαμβάνονται συγκεκριμένες τιμές ρεύματος i και δυναμικού V. Στη συνέχεια τοποθετούνται τα ηλεκτρόδια του ρεύματος σε μεγαλύτερη απόσταση AB/2 και επαναλαμβάνεται η ίδια διαδικασία.

Η συνάρτηση μεταβολής της φαινόμενης ειδικής ηλεκτρικής αντίστασης, ρα,
 με το βάθος σχεδιάζεται σε διπλό λογαριθμικό χαρτί κατά τη λήψη των
 μετρήσεων.

Η διαφορά δυναμικού μειώνεται με την αύξηση της απόστασης AB/2, ενώ όταν η τιμή προσεγγίζει το 0,1 mV, η μέτρηση θεωρείται μη αξιόπιστη. Σε αυτή την περίπτωση αυξάνεται το μήκος του MN/2 και για το ίδιο AB/2 λαμβάνεται διπλή μέτρηση.

 Το μέγιστο μήκος των ηλεκτροδίων ρεύματος καθορίζεται από το βάθος διασκόπησης.

 Η απόσταση του ημιαναπτύγματος AB/2 και οι μετρούμενες τιμές της έντασης του ρεύματος και της διαφοράς δυναμικού καταγράφονται σε ειδικά διαμορφωμένο έντυπο για την μετέπειτα επεξεργασία τους

3.5.4. Προβλήματα στην Ερμηνεία των Γεωηλεκτρικών Βυθοσκοπήσεων

Κατά την ερμηνεία των γεωηλεκτρικών δεδομένων, παρουσιάζονται κάποια προβλήματα όπως είναι η αρχή της ισοδυναμίας και η αρχή της επικάλυψης. Γι' αυτό, θεωρείται απαραίτητη η ύπαρξη πληροφοριών για το πάχος των στρωμάτων και για τις τιμές της ειδικής αντίστασης, για την αντιμετώπιση των παραπάνω προβλημάτων και την καλύτερη ερμηνεία των γεωηλεκτρικών δεδομένων.

Σχήμα 3.8: Απεικόνιση της αρχής της ισοδυναμίας για αγώγιμο στρώμα ανάμεσα από δύο μη αγώγιμα (Sharma, 1986).

3.5.4.1. Αρχή της Ισοδυναμίας

Η αρχή της ισοδυναμίας ισχύει για μοντέλο τριών στρωμάτων, όπου το ενδιάμεσο στρώμα εμφανίζει ειδική ηλεκτρική αντίσταση μεγαλύτερη ή μικρότερη σε σχέση με τα δύο στρώματα που το περικλείουν (Σχήμα 3.8).

Στην περίπτωση που το ενδιάμεσο στρώμα έχει την μεγαλύτερη ειδική ηλεκτρική αντίσταση, η καμπύλη της φαινόμενης αντίστασης δεν μεταβάλλεται όταν το γινόμενο της ειδικής ηλεκτρικής αντίστασης ρ επί το πάχος του ενδιάμεσου στρώματος h είναι σταθερό, ενώ ξεχωριστά οι δύο παράμετροι μεταβάλλονται. Αυτό σημαίνει ότι υπάρχουν άπειρα μοντέλα για τα οποία το πάχος και η αντίσταση του ενδιάμεσου στρώματος έχουν διαφορετική τιμή, ενώ το γινόμενο τους, που ονομάζεται Εγκάρσια Αντίσταση Τ, παραμένει σταθερό. Η Εγκάρσια Αντίσταση Τ δίνεται από τον τύπο,

$$\Gamma = hp$$
 (3.27)

Στην περίπτωση που το ενδιάμεσο στρώμα είναι αγώγιμο, η καμπύλη της φαινόμενης ειδικής ηλεκτρικής αντίστασης δεν μεταβάλλεται όταν ο λόγος πάχους του ενδιάμεσου στρώματος προς την ειδική ηλεκτρική αντίσταση ρ είναι σταθερός,

ανεξάρτητα αν οι επιμέρους παράμετροι μεταβάλλονται. Ο παραπάνω λόγος χαρακτηρίζεται ως Διαμήκης Αγωγιμότητα και είναι,

$$S=h/p$$
 (3.28)

3.5.4.2. Αρχή της Επικάλυψης

Η αρχή της επικάλυψης αναφέρεται σε μοντέλο τριών στρωμάτων όπου το ενδιάμεσο στρώμα έχει μικρό πάχος και η ειδική αντίσταση αυτού είναι μεταξύ των ρ των στρωμάτων που το περικλείουν. Το ενδιάμεσο στρώμα επηρεάζει ελάχιστα την καμπύλη της φαινόμενης ειδικής ηλεκτρικής αντίστασης και συνεπώς δεν είναι εύκολη η αναγνώρισή του με τη μέθοδο της γεωηλεκτρικής βυθοσκόπησης.

3.6. ΗΛΕΚΤΡΙΚΗ ΤΟΜΟΓΡΑΦΙΑ 3.6.1. Εισαγωγή

Με τη μέθοδο της ηλεκτρικής τομογραφίας επιτυγχάνεται η λεπτομερής απεικόνιση του υπεδάφους καθώς είναι μέθοδος υψηλής διακριτικής ικανότητας. Ο όρος τομογραφία παράγεται από τη λέξη «τομή» και σημαίνει απεικόνιση τομής των γεωηλεκτρικών ιδιοτήτων του υπεδάφους. Στην ηλεκτρική τομογραφία απεικονίζεται η κατανομή της ειδικής ηλεκτρικής αντίστασης στο υπέδαφος σε δύο διαστάσεις. Το ευθύ πρόβλημα στη μέθοδο της ειδικής ηλεκτρικής αντίστασης περιλαμβάνει τον υπολογισμό της διαφοράς δυναμικού και εν συνεχεία της φαινόμενης ειδικής ηλεκτρικής αντίστασης από ήδη γνωστές ηλεκτρικές αντιστάσεις. Το αντίστροφο πρόβλημα, περιλαμβάνει τον υπολογισμό των πραγματικών ειδικών ηλεκτρικών αντιστάσεων από τις μετρούμενες φαινόμενες (Σχήμα 3.5, Γκανιάτσος, 1995). Αν και η αντιστροφή είναι ένα δύσκολο πρόβλημα, η μέθοδος των ελαχίστων τετραγώνων του Gauss – Newton με περιορισμό εξομάλυνσης αποφεύγει τις ασταθείς λύσεις και συγκλίνει γρήγορα, με αποτέλεσμα να χρησιμοποιείται περισσότερο από οποιαδήποτε άλλη μέθοδο.

Σχήμα 3.5: Διάγραμμα ροής της επεξεργασίας των δεδομένων της ηλεκτρικής τομογραφίας.

Σχήμα 3.6: Δημιουργία ψευδοτομής (pseudosection) φαινόμενων ειδικών ηλεκτρικών αντιστάσεων.

3.6.2. Αντιστροφή των Δεδομένων

Με την αντιστροφή γίνεται ο υπολογισμός των πραγματικών ειδικών ηλεκτρικών αντιστάσεων από τις φαινόμενες αντιστάσεις. Στα περισσότερα γεωφυσικά προβλήματα τα δεδομένα συνδέονται με μη γραμμικές σχέσεις με τις παραμέτρους του μοντέλου. Έτσι και στην περίπτωση της αντιστροφής των φαινόμενων αντιστάσεων το πρόβλημα είναι μη γραμμικό. Επιπλέον το πρόβλημα είναι υπερπροσδιορισμένο, δηλαδή ο αριθμός των δεδομένων υπερβαίνει τον αριθμό των παραμέτρων του μοντέλου.

Για την επίλυση του προβλήματος εφαρμόζονται επαναληπτικές τεχνικές που χρησιμοποιούν τη μέθοδο των ελαχίστων τετραγώνων. Αρχικά όμως γίνεται προσέγγιση του μη γραμμικού προβλήματος με γραμμικό με τη βοήθεια της σειράς Taylor.

Αν m=(m₁, m₂,m_M) είναι οι παράμετροι του μοντέλου (δεκαδικός λογάριθμος της ειδικής ηλεκτρικής αντίστασης) και d_i=(d₁, d₂,,d_N) i=1, 2,....,N είναι οι μετρήσεις (δεκαδικός λογάριθμος της φαινόμενης ειδικής ηλεκτρικής αντίστασης), η μη γραμμική σχέση που συνδέει τις μετρήσεις με τις παραμέτρους είναι:

$$d_i = f_i(m_1, m_2, \dots, m_M) + e$$
 (3.14)

όπου
ε το σφάλμα των μετρήσεων ή και του μοντέλου. Για το αρχικό μοντέλο
 $m^0 = (m_1^{\ 0}, m_2^{\ 0},, m_M^{\ 0})$ θα ισχύει:

$$d_{i}=f_{i}(m_{1}^{0},m_{2}^{0},...,m_{M}^{0})+e \qquad (3.15)$$

Προσεγγίζοντας τη συνάρτηση f_i από τον πρώτο όρο της σειράς Taylor γύρω από το m° προκύπτει

$$f_{i}(m) = f_{i}(m_{1}^{0} + \delta m_{1}, m_{2}^{0} + \delta m_{2}, \dots, m_{M}^{0} + \delta m_{M})$$
(3.16)

Το σφάλμα από τη σχέση (3.14) είναι:

$$e_i = d_i - f_i(m) \approx d_i - f_i(m^{\circ}) - \sum_{j=1}^M \left\{ \frac{\partial f_i(m)}{\partial m_j} \middle| \delta m_j \right\}$$
(3.17)

Αν $\Delta d = d_i - f_i (m^0)$ είναι ο πίνακας στήλη των διαφορών ανάμεσα στις πραγματικές μετρήσεις και στις θεωρητικές, Α ο πίνακας των μερικών παραγώγων της συνάρτησης f ως προς τις παραμέτρους του μοντέλου, και x ο πίνακας στήλη των διορθώσεων δm που πρέπει να προστεθούν στο m^o για να προκύψει το βελτιωμένο μοντέλο, η παραπάνω σχέση γίνεται:

$$\mathbf{e}_{\mathbf{i}} \approx \Delta \mathbf{d} \cdot \mathbf{A} \mathbf{x} \tag{3.18}$$

Υπάρχουν πολλοί τρόποι για να ελαχιστοποιηθεί το σφάλμα **e**_i, αλλά ο πιο κατάλληλος βασίζεται στη μέθοδο των ελαχίστων τετραγώνων. Με τη μέθοδο αυτή ελαχιστοποιείται το άθροισμα των τετραγώνων των σφαλμάτων, δηλαδή η αντικειμενική συνάρτηση:

$$q = \sum_{i=1}^{N} e_i^2 = e^T e \approx (\Delta d - Ax)^T (\Delta d - Ax)$$
(3.19)

Η ελαχιστοποίηση πραγματοποιείται παραγωγίζοντας το q ως προς x και εξισώνοντας την παράγωγο με μηδέν. Η λύση x προστίθεται στο αρχικό μοντέλο m^{0} και προκύπτει το βελτιωμένο μοντέλο m¹

$$m^1 = m^0 + x$$
 (3.20)

Λόγω όμως του ότι η λύση προκύπτει από προσέγγιση μη γραμμικού προβλήματος είναι απαραίτητο να εφαρμοσθεί επαναληπτικά η όλη διαδικασία χρησιμοποιώντας το m¹ ως το νέο αρχικό μοντέλο. Το μέσο τετραγωνικό σφάλμα (RMS),

$$RMS = \sqrt{\frac{\Delta d^T \Delta d}{N}}$$
(3.21)

όπου N ο αριθμός των μετρήσεων, δίνει ένα μέτρο του πόσο καλά ταιριάζουν οι θεωρητικές μετρήσεις με τις πραγματικές για κάθε μοντέλο. Πρέπει τέλος να σημειωθεί ότι το πρόβλημα της αντιστροφής δεν έχει μονοσήμαντη λύση. Το μοντέλο

με το μικρότερο σφάλμα δε σημαίνει ότι είναι γεωλογικά αποδεκτό. Από τη χρήση γεωλογικών πληροφοριών βελτιώνεται η αξιοπιστία του προκύπτοντος μοντέλου. Στην όλη διαδικασία οι υπολογισμοί γίνονται με τους λογάριθμους των τιμών της ειδικής ηλεκτρικής αντίστασης και της φαινόμενης αντίστασης.

Από τη μέθοδο των ελαχίστων τετραγώνων προκύπτουν οι κανονικές εξισώσεις:

$$(A^{T}D^{T}DA)x = (A^{T}D^{T}D)\Delta d \qquad (3.22)$$

όπου D είναι ο πίνακας στατιστικών βαρών, τα στοιχεία του οποίου είναι τα σχετικά βάρη που εξαρτώνται από την ακρίβεια κάθε μέτρησης. Από την επίλυσή τους ως προς x προκύπτει η νέα εξίσωση :

$$\mathbf{x} = (\mathbf{A}^{\mathrm{T}} \mathbf{D}^{\mathrm{T}} \mathbf{D} \mathbf{A})^{-1} (\mathbf{A}^{\mathrm{T}} \mathbf{D}^{\mathrm{T}} \mathbf{D}) \Delta \mathbf{d}$$
(3.23)

όπου το $(A^T D^T D A)^{-1} (A^T D^T D)$ είναι ο ψευδοαντίστροφος του A

Με βάση την παραπάνω εξίσωση (3.23) μπορεί να καθοριστεί ένας επαναληπτικός αλγόριθμος επίλυσης του αντίστροφου γεωηλεκτρικού προβλήματος. Έστω ότι κατά την κ επανάληψη η εκτίμηση του μοντέλου της αντίστασης είναι m_k τότε:

- Υπολογίζονται οι συνθετικές φαινόμενες αντιστάσεις $f(m_k)$ και ο Ιακωβιανός πίνακας A_k για την κατανομή της αντίστασης m_k , μέσω της επίλυσης του ευθέως προβλήματος.
- Υπολογίζεται το διάνυσμα διόρθωσης του μοντέλου των αντιστάσεων

$$\mathbf{x}_{k} = (\mathbf{A}_{k}^{\mathrm{T}} \mathbf{D}^{\mathrm{T}} \mathbf{D} \mathbf{A}_{K})^{-1} (\mathbf{A}_{K}^{\mathrm{T}} \mathbf{D}^{\mathrm{T}} \mathbf{D}) \Delta \mathbf{d}_{K}$$
(3.24)

 Το βελτιωμένο μοντέλο των αντιστάσεων προκύπτει από την πρόσθεση της διόρθωσης στο προηγούμενο μοντέλο m_{k+1}=m_k+x_k Η επαναληπτική διαδικασία συνεχίζεται μέχρι να ικανοποιηθούν κάποια προκαθορισμένα κριτήρια σύγκλισης και τερματισμού.

Κανονικοποίηση μηδενικού βαθμού:

Η πιο απλή μέθοδος κανονικοποίησης που μπορεί να εφαρμοστεί είναι χρησιμοποιώντας τον μοναδίαιο Ι και ταυτόχρονα, αν θεωρηθεί ότι σε κάθε
επανάληψη k της αντιστροφής το αρχικό μοντέλο x_0 είναι ίσο με το βελτιωμένο μοντέλο x_k τότε προκύπτει :

$$x_{k} = (A_{K}^{T} D^{T} D A_{K} + \lambda I)^{-1} (A_{K}^{T} D^{T} D) \Delta d_{K}$$
(3.25)

Οι εξισώσεις αποτελούν την μαθηματική έκφραση της ευρύτατα διαδεδομένης είναι μεθόδου που γνωστή ως "μέθοδος Marquadt-Levenberg" ή "μέθοδος ελαχίστων τετραγώνων με περιορισμό απόσβεσης" (Levenberg, 1944, Marquardt, 1963).

Η μέθοδος έχει χρησιμοποιηθεί ευρύτατα στην αντιστροφή γεωηλεκτρικών δεδομένων σε μία (Meju 1992), δύο (Pelton et al. 1978, Tripp et al. 1984) και τρεις διαστάσεις (Petrick et al. 1979, Dabas et al. 1994). Τα κυριότερα μειονεκτήματα της μεθόδου είναι ότι το τελικό αποτέλεσμα εξαρτάται από την επιλογή του αρχικού μοντέλου (Smith και Vozoff 1984) και επιπλέον πολλές φορές οι λύσεις που προκύπτουν μπορεί να είναι μεν μαθηματικά ορθές αλλά στερούνται φυσικής σημασίας (Smith και Shanno 1971).

Κανονικοποίηση με περιορισμούς εξομάλυνσης:

Ένας άλλος τρόπος για να αντιμετωπιστεί η αστάθεια της αντιστροφής αποτελεί η εισαγωγή περιορισμού εξομάλυνσης. Η τεχνική αυτή χρησιμοποιήθηκε για πρώτη από τον Constable και τους συνεργάτες του (1987) για την αντιστροφή μαγνητοτελλουρικών δεδομένων σε μία διάσταση. Εν συνεχεία η μέθοδος επεκτάθηκε για το πρόβλημα των δύο διαστάσεων (deGroot-Hedlin and Constable 1990). Από τα παραπάνω προκύπτει:

$$x_{k} = (A_{K}^{T}D^{T}DA_{K} + \lambda C^{T}C)^{-1} (A_{K}^{T}D^{T}D)\Delta d_{K}$$
(3.26)

Όπου ο πίνακας εξομάλυνσης C αποτελεί μία πεπερασμένη έκφραση της δεύτερης χωρικής παραγώγου (ή Λαπλασιανής).

Αυτή η μέθοδος αντιστροφής αποτελεί σήμερα ένα αξιόπιστο εργαλείο για την ερμηνεία γεωηλεκτρικών δεδομένων και για την ανακατασκευή ακόμα και πολύπλοκων δομών του υπεδάφους σε μία (Vedanti et al. 2005), δύο (Sasaki 1989, 1992, Loke και Barker 1995, LaBrecque et al. 1996, Pinheiro et al. 1997) και τρεις διαστάσεις (Sasaki 1994, Loke και Barker 1996b, LaBrecque, et al. 1999, Tsourlos και Ogilvy 1999).

4. ΓΕΩΗΛΕΚΤΡΙΚΗ ΔΙΑΣΚΟΠΗΣΗ ΣΤΑ ΦΑΛΑΣΑΡΝΑ 4.1. ΕΙΣΑΓΩΓΗ

Η γεωηλεκτρική διασκόπηση πραγματοποιήθηκε κατά το διάστημα 31/5/2008 έως 08/6/2008 από τους φοιτητές του 6^{ου} εξαμήνου του τμήματος Μηχ.Ο.Π., στα πλαίσια του προπτυχιακού μαθήματος "Ασκήσεις υπαίθρου ΙV".

Η εφαρμογή των γεωφυσικών μεθόδων πραγματοποιήθηκε σε τρία διαφορετικά τμήματα της ευρύτερης περιοχής μελέτης (βόρειο, κεντρικό και νότιο). Στην παρούσα εργασία παρατίθενται οι μετρήσεις καθώς και τα αποτελέσματα επεξεργασίας με τη μέθοδο της ηλεκτρικής βυθοσκόπησης και της ηλεκτρικής τομογραφίας που πραγματοποιήθηκαν στο κεντρικό τμήμα της περιοχής μελέτης.

Ειδικότερα, στο κεντρικό τμήμα πραγματοποιήθηκαν έξι ηλεκτρικές βυθοσκοπήσεις (O1A, O1C2, O1E, O2A, O2C, O1D), και πέντε γραμμές ηλεκτρικής τομογραφίας (Line 4,5,6,7,12). Οι θέσεις των βυθοσκοπήσεων απεικονίζονται στον γεωλογικό χάρτη του Σχήματος 4.1.

Η γεωλογική ερμηνεία των αποτελεσμάτων πραγματοποιήθηκε: α) με την βοήθεια του γεωλογικού χάρτη, β) του πίνακα 4.1 και γ) από υπάρχοντα στοιχεία γεωτρήσεων της περιοχής μελέτης.

ΕΙΔΟΣ ΠΕΤΡΩΜΑΤΟΣ	ΑΝΤΙΣΤΑΣΗ (Ωm)
ΕΠΙΦΑΝΕΙΑΚΕΣ ΠΡΟΣΧΩΣΕΙΣ	80-250
NEOFENH IZHMATA	
Άργιλοι	2-20
Μάργες	20-60
Άμμοι και Χαλίκια κορεσμένα	50-500
Εβαπορίτες (Γύψοι)	200
Μαργαϊκοί Ασβεστόλιθοι	150-500
Κροκαλοπαγή βάσεως	200-300
Ψαμμίτες	50-70
Συμπαγής δολομίτης	>104
Πορώδης δολομίτης	100-1000
ΑΛΠΙΚΑ ΙΖΗΜΑΤΑ	
Φλύσχης	70-80
Σχιστόλιθοι-Οφιόλιθοι	100-300
Ασβεστόλιθοι	>500
ΠΥΡΙΓΕΝΗ ΚΑΙ ΜΕΤΑΜΟΡΦΩΜΕΝΑ ΠΕΤΡΩΜΑΤΑ	102 –106

Πίνακας 4.1:	Τιμές ει	δικής η	λεκτρικής	αντίστασης	πετρωμάτων.

Σχήμα 4.1: Γεωλογικός χάρτης της περιοχής μελέτης όπου απεικονίζονται και οι θέσεις των γεωηλεκτρικών γραμμών (Ι.Γ.Μ.Ε. ΦΥΛΛΟ ΚΑΣΤΕΛΛΙ σε κλίμακα 1:50000).

4.2. ΗΛΕΚΤΡΙΚΕΣ ΒΥΘΟΣΚΟΠΗΣΕΙΣ

Η επεξεργασία των δεδομένων των γεωηλεκτρικών βυθοσκοπήσεων πραγματοποιήθηκε με το λογισμικό πακέτο IPI2WIN για τον προσδιορισμό της κατανομής της ειδικής ηλεκτρικής αντίστασης με το βάθος. Ακολούθως, παρατίθενται τα αποτελέσματα επεξεργασίας των δεδομένων των ηλεκτρικών βυθοσκοπήσεων.

4.2.1. Βυθοσκόπηση Ο1Α

Η βυθοσκόπηση Ο1Α βρίσκεται στα δυτικά του κεντρικού τμήματος της περιοχής μελέτης (Σχήμα 4.1) με το κέντρο της να έχει συντεταγμένες (x,y)=(462153,3928183) (ΕΓΣΑ '87). Το συνολικό μήκος του αναπτύγματος των ηλεκτροδίων ρεύματος ήταν 940 m. Στο παράρτημα Α παρατίθενται οι τιμές της φαινόμενης ειδικής ηλεκτρικής αντίστασης που μετρήθηκαν κατά την διεξαγωγή της εν λόγω βυθοσκόπησης. Τα αποτελέσματα της βυθοσκόπησης Ο1Α παρουσιάζονται στο Σχήμα 4.2.

Σχήμα 4.2: Γεωηλεκτρική βυθοσκόπηση Ο1Α. Προσαρμογή της θεωρητικής γεωηλεκτρικής καμπύλης (κόκκινη γραμμή) στις μετρήσεις της φαινόμενης ειδικής ηλεκτρικής αντίστασης (κύκλοι). Στο διλογαριθμικό διάγραμμα ο κατακόρυφος άξονας αντιστοιχεί στην ειδική ηλεκτρική αντίσταση (Ωm) και ο οριζόντιος, στο ημιανάπτυγμα των ηλεκτροδίων ρεύματος ή στο βάθος (m). Το μέσο εκατοστιαίο τετραγωνικό σφάλμα είναι 8.55%.

- Ένα επιφανειακό γεωηλεκτρικό στρώμα με πάχος 2.92 m, με την ειδική ηλεκτρική αντίσταση στα 157 Ωm. Αυτό το στρώμα αντιστοιχεί σε φυτική γη.
- Το δεύτερο στρώμα έχει πάχος 29.3 m, ειδική ηλεκτρική αντίσταση 412 Ωm
 και αντιστοιχεί σε ακόρεστο μαργαϊκό ασβεστόλιθο.

- Το τρίτο στρώμα έχει πάχος 59.5 m, ειδική ηλεκτρική αντίσταση 11.1 Ωm και αντιστοιχεί σε κορεσμένο κροκαλοπαγές βάσης.
- Το τελευταίο στρώμα έχει ειδική ηλεκτρική αντίσταση 186 Ωm και αντιστοιχεί σε ασβεστόλιθο Τρίπολης.

4.2.2. **Βυθοσκόπηση O1C2**

Η βυθοσκόπηση O1C2 βρίσκεται στα δυτικά του κεντρικού τμήματος της περιοχής μελέτης (Σχήμα 4.1), με το κέντρο της να έχει συντεταγμένες (x,y)=(462226,3927845) (ΕΓΣΑ '87). Το συνολικό μήκος του αναπτύγματος των ηλεκτροδίων ρεύματος ήταν 540 m. Τα αποτελέσματα της βυθοσκόπησης O1C2 παρουσιάζονται στο Σχήμα 4.3

Σχήμα 4.3: Γεωηλεκτρική βυθοσκόπηση O1C2. Προσαρμογή της θεωρητικής γεωηλεκτρικής καμπύλης (κόκκινη γραμμή) στις μετρήσεις της φαινόμενης ειδικής ηλεκτρικής αντίστασης (κύκλοι). Στο διλογαριθμικό διάγραμμα ο κατακόρυφος άξονας αντιστοιχεί στην ειδική ηλεκτρική αντίσταση (Ωm) και ο οριζόντιος, στο ημιανάπτυγμα των ηλεκτροδίων ρεύματος ή στο βάθος (m). Το μέσο εκατοστιαίο τετραγωνικό σφάλμα είναι 5.82%.

- Ένα επιφανειακό γεωηλεκτρικό στρώμα πάχους 3.69 m με την ειδική ηλεκτρική αντίσταση στα 439 Ωm και το οποίο αποδίδεται σε φυτική γη.
- Το δεύτερο στρώμα έχει πάχος 25.5 m, ειδική ηλεκτρική αντίσταση 326 Ωm
 και αποτελείται από ακόρεστο μαργαϊκό ασβεστόλιθο.

- Το τρίτο στρώμα έχει πάχος 15.7 m, ειδική ηλεκτρική αντίσταση 48.1 Ωm
 και αντιστοιχεί σε μάργες.
- Το τελευταίο στρώμα έχει ειδική ηλεκτρική αντίσταση 340 Ωm και αποτελείται από κροκαλοπαγές βάσης ή ασβεστόλιθο Τρίπολης.

4.2.3. Βυθοσκόπηση Ο1D

Η βυθοσκόπηση O1D βρίσκεται στα ανατολικά του κεντρικού τμήματος της περιοχής μελέτης (Σχήμα 4.1) με το κέντρο της να έχει συντεταγμένες (x,y)=(462524, 3927136) (ΕΓΣΑ '87). Το συνολικό μήκος του αναπτύγματος των ηλεκτροδίων ρεύματος ήταν 660 m. Τα αποτελέσματα της βυθοσκόπησης O1D παρουσιάζονται στο Σχήμα 4.4

Σχήμα 4.4: Γεωηλεκτρική βυθοσκόπηση O1D. Προσαρμογή της θεωρητικής γεωηλεκτρικής καμπύλης (κόκκινη γραμμή) στις μετρήσεις της φαινόμενης ειδικής ηλεκτρικής αντίστασης (κύκλοι). Στο διλογαριθμικό διάγραμμα ο κατακόρυφος άξονας αντιστοιχεί στην ειδική ηλεκτρική αντίσταση (Ωm) και ο οριζόντιος, στο ημιανάπτυγμα των ηλεκτροδίων ρεύματος ή στο βάθος (m). Το μέσο εκατοστιαίο τετραγωνικό σφάλμα είναι 4.27%.

- Ένα επιφανειακό γεωηλεκτρικό στρώμα πάχους 0.6 m με την ειδική ηλεκτρική αντίσταση στα 86.7 Ωm που αντιστοιχεί σε φυτική γη.
- Το δεύτερο στρώμα έχει πάχος 25.6 m και ειδική ηλεκτρική αντίσταση 50.3
 Ωm και αποτελείται από μάργες.
- Το τρίτο στρώμα έχει πάχος 58.4 m και ειδική ηλεκτρική αντίσταση 138 Ωm
 και αποτελείται σύμφωνα με τον γεωλογικό χάρτη από εναλλαγές ψαμμίτη
 και μαργαϊκού ασβεστολίθου, πιθανότατα κορεσμένου με γλυκό νερό, γιατί οι

μετρούμενες αντιστάσεις είναι σχετικά χαμηλές για να δικαιολογήσουν ακόρεστο σχηματισμό και υψηλές για την ύπαρξη υφάλμυρου νερού.

 Το τελευταίο στρώμα έχει ειδική ηλεκτρική αντίσταση 41.2 Ωm και αντιστοιχεί σε κροκαλοπαγές βάσης κορεσμένο με υφάλμυρο νερό.

4.2.4. Βυθοσκόπηση Ο1Ε

Η βυθοσκόπηση ΟΙΕ βρίσκεται στα ανατολικά του κεντρικού τμήματος της περιοχής μελέτης (Σχήμα 4.1) με το κέντρο της να έχει συντεταγμένες (x,y)=(462685,3927651) (ΕΓΣΑ '87). Το συνολικό μήκος του αναπτύγματος των ηλεκτροδίων ρεύματος ήταν 112m. Τα αποτελέσματα της βυθοσκόπησης ΟΙΕ παρουσιάζονται στο Σχήμα 4.5

Σχήμα 4.5: Γεωηλεκτρική βυθοσκόπηση Ο1Ε. Προσαρμογή της θεωρητικής γεωηλεκτρικής καμπύλης (κόκκινη γραμμή) στις μετρήσεις της φαινόμενης ειδικής ηλεκτρικής αντίστασης (κύκλοι). Στο διλογαριθμικό διάγραμμα ο κατακόρυφος άξονας αντιστοιχεί στην ειδική ηλεκτρική αντίσταση (Ωm) και ο οριζόντιος, στο ημιανάπτυγμα των ηλεκτροδίων ρεύματος ή στο βάθος (m). Το μέσο εκατοστιαίο τετραγωνικό σφάλμα είναι 1.76%.

- Ένα επιφανειακό γεωηλεκτρικό στρώμα με πάχος 0.2695 m με την ειδική ηλεκτρική αντίσταση στα 178.6 Ωm και αποδίδεται σε φυτική γη.
- Το δεύτερο στρώμα έχει πάχος 4.85 m και ειδική ηλεκτρική αντίσταση 74.61
 Ωm και αντιστοιχεί σε μάργες ή σε μαργαϊκό ψαμμίτη.
- Το τρίτο στρώμα έχει πάχος 6.457 m, ειδική ηλεκτρική αντίσταση 186.6 Ωm
 και αντιστοιχεί σε μαργαϊκό ασβεστόλιθο που βρίσκεται σε εναλλαγές εντός
 του σχηματισμού των μαργών.

 Το τελευταίο στρώμα έχει ειδική ηλεκτρική αντίσταση 35.24 Ωm και αποδίδεται σε μάργες.

4.2.5. Βυθοσκόπηση Ο2Α

Η βυθοσκόπηση O2A βρίσκεται στα δυτικά του κεντρικού τμήματος της περιοχής μελέτης (Σχήμα 4.1) με το κέντρο της να έχει συντεταγμένες (x,y)=(462018,3927442) (ΕΓΣΑ '87). Το συνολικό μήκος του αναπτύγματος των ηλεκτροδίων ρεύματος ήταν 112 m. Τα αποτελέσματα της βυθοσκόπησης O2A παρουσιάζονται στο Σχήμα 4.6.

Σχήμα 4.6: Γεωηλεκτρική βυθοσκόπηση O2A. Προσαρμογή της θεωρητικής γεωηλεκτρικής καμπύλης (κόκκινη γραμμή) στις μετρήσεις της φαινόμενης ειδικής ηλεκτρικής αντίστασης (κύκλοι). Στο διλογαριθμικό διάγραμμα ο κατακόρυφος άξονας αντιστοιχεί στην ειδική ηλεκτρική αντίσταση (Ωm) και ο οριζόντιος, στο ημιανάπτυγμα των ηλεκτροδίων ρεύματος ή στο βάθος (m). Το μέσο εκατοστιαίο τετραγωνικό σφάλμα είναι 2.43%.

- Ένα επιφανειακό γεωηλεκτρικό στρώμα με πάχος 1.15 m με την ειδική ηλεκτρική αντίσταση στα 155 Ωm που αποδίδεται σε φυτική γη.
- Το δεύτερο στρώμα έχει πάχος 9.88m, ειδική ηλεκτρική αντίσταση 78 Ωm και αποδίδεται σε νεότερες ποτάμιες ή θαλάσσιες αναβαθμίδες.
- Το τελευταίο στρώμα έχει ειδική ηλεκτρική αντίσταση 183 Ωm και αποδίδεται σε μαργαϊκούς ασβεστολίθους.

7.1.1. Βυθοσκόπηση Ο2C

Η βυθοσκόπηση O2C βρίσκεται στα δυτικά του κεντρικού τμήματος της περιοχής μελέτης (Σχήμα 4.1) με το κέντρο της να έχει συντεταγμένες (x,y)=(462184,3927265) (ΕΓΣΑ '87). Το συνολικό μήκος του αναπτύγματος των ηλεκτροδίων ρεύματος ήταν 440 m. Τα αποτελέσματα της βυθοσκόπησης O2C παρουσιάζονται στο Σχήμα 4.7.

Σχήμα 4.7: Γεωηλεκτρική βυθοσκόπηση O2C. Προσαρμογή της θεωρητικής γεωηλεκτρικής καμπύλης (κόκκινη γραμμή) στις μετρήσεις της φαινόμενης ειδικής ηλεκτρικής αντίστασης (κύκλοι). Στο διλογαριθμικό διάγραμμα ο κατακόρυφος άξονας αντιστοιχεί στην ειδική ηλεκτρική αντίσταση (Ωm) και ο οριζόντιος, στο ημιανάπτυγμα των ηλεκτροδίων ρεύματος ή στο βάθος (m). Το μέσο εκατοστιαίο τετραγωνικό σφάλμα είναι 6.51%.

- Ένα επιφανειακό γεωηλεκτρικό στρώμα με πάχος 5.58 m με την ειδική ηλεκτρική αντίσταση στα 600 Ωm και αντιστοιχεί σε φυτική γη.
- Το δεύτερο στρώμα έχει πάχος 8.34 m, ειδική ηλεκτρική αντίσταση 270 Ωm και αντιστοιχεί σε ακόρεστες αναβαθμίδες, ποτάμιες ή θαλάσσιες.
- Το τρίτο στρώμα έχει πάχος 62.2 m, ειδική ηλεκτρική αντίσταση 178 Ωm και αντιστοιχεί σε μαργαϊκό ασβεστόλιθο.
- Το τελευταίο στρώμα έχει ειδική ηλεκτρική αντίσταση 151 Ωm και αντιστοιχεί σε κροκαλοπαγές βάσεως.

11.1.1. Συνοπτική παρουσίαση αποτελεσμάτων των ηλεκτρικών βυθοσκοπήσεων

	ΒΥΘΟΣΚΟΠΗΣΗ Ο1Α						
ΣΥΝΤΕΤΑΓΜΕΝΕΣ (ΕΓΣΑ '87): X=462153 Y=3928183							
α/α	p(Ωm.)	πάχος(m)	βάθος(m)	ΓΕΩΛΟΓΙΚΟΣ ΣΧΗΜΑΤΙΣΜΟΣ			
1	157	2.92		φυτική γη			
2	412	29.3	2.92	μαργαϊκός ασβεστόλιθος			
3	11.1	59.5	32.2	κορεσμένο κροκαλοπαγές βάσης			
4	186		91.7	ασβεστόλιθο Τρίπολης			

ΒΥΘΟΣΚΟΠΗΣΗ Ο1C2						
ΣΥΝΤΕΤΑΓΜΕΝΕΣ (ΕΓΣΑ '87): X=462226 Y=3927845						
α/α	p(Ωm.)	πάχος(m)	βάθος(m)	ΓΕΩΛΟΓΙΚΟΣ ΣΧΗΜΑΤΙΣΜΟΣ		
1	439	3.69		φυτική γη		
2	326	25.5	3.69	ακόρεστος μαργαϊκός ασβεστόλιθος		
3	48.1	15.7	29.2	μάργες		
4	340		45	κροκαλοπαγές βάσεως		

ΒΥΘΟΣΚΟΠΗΣΗ Ο1D					
ΣΥΝΤΕΤΑΓΜΕΝΕΣ (ΕΓΣΑ '87): X=462524 Y=3927136					
α/α	p(Ωm.)	πάχος(m)	βάθος(m)	ΓΕΩΛΟΓΙΚΟΣ ΣΧΗΜΑΤΙΣΜΟΣ	
1	86.7	0.6		φυτική γη	
2	50.3	25.6	0.6	μάργες	
3	138	58.4	26.2	εναλλαγές ψαμμίτη και μαργαϊκού ασβεστόλιθου κορεσμένου με γλυκό νερό	
4	41.2		84.7	κροκαλοπαγές βάσης κορεσμένο με υφάλμυρο νερό	

ΒΥΘΟΣΚΟΠΗΣΗ Ο1Ε						
ΣΥΝΤΕΤΑΓΜΕΝΕΣ (ΕΓΣΑ '87): X=462685 Y=3927651						
α/α	p(Ωm.)	πάχος(m)	βάθος(m)	ΓΕΩΛΟΓΙΚΟΣ ΣΧΗΜΑΤΙΣΜΟΣ		
1	178.6	0.2695		φυτική γη		
2	74.61	4.85	0.2695	μάργες ή/και ψαμμίτες		
3	186.6	6.457	5.119	μαργαϊκοί ασβεστόλιθοι		
4	35.21		11.58	μάργες		

	ΒΥΘΟΣΚΟΠΗΣΗ Ο2Α						
ΣΥΝΤΕΤΑΓΜΕΝΕΣ (ΕΓΣΑ '87): X=462018 Y=3927442							
α/α	p(Ωm.)	πάχος(m)	βάθος(m)	ΓΕΩΛΟΓΙΚΟΣ ΣΧΗΜΑΤΙΣΜΟΣ			
1	155	1.15		φυτική γη			
2	78	9.88	1.15	νεότερες ποτάμιες ή θαλάσσιες αναβαθμίδες			
3	183		11	μαργαϊκοί ασβεστόλιθοι			

	ΒΥΘΟΣΚΟΠΗΣΗ Ο2C					
ΣΥΝΤΕΤΑΓΜΕΝΕΣ (ΕΓΣΑ '87): Χ=462184 Υ=3927265						
α/α	p(Ωm.)	πάχος(m)	βάθος(m)	ΓΕΩΛΟΓΙΚΟΣ ΣΧΗΜΑΤΙΣΜΟΣ		
1	600	5.58		φυτική γη		
2	270	8.34	5.58	ακόρεστες ποτάμιες ή θαλάσσιες αναβαθμίδες		
3	178	62.2	13.9	μαργαϊκοί ασβεστόλιθοι		
4	151		76.1	κροκαλοπαγές βάσεως		

4.3. ΓΕΩΗΛΕΚΤΡΙΚΕΣ ΤΟΜΕΣ

Για την απόκτηση των δεδομένων της ηλεκτρικής τομογραφίας χρησιμοποιήθηκε ο συνδυασμός των διατάξεων Wenner και Schlumberger. Η απόσταση MN των ηλεκτροδίων δυναμικού είναι σταθερή και ίση με α. Η απόσταση των ηλεκτροδίων ρεύματος AB αρχικά είναι 3α και αυξάνεται κατά 2α κάθε φορά που γίνεται η μέτρηση. Αφού γίνονται οι μετρήσεις κατά μήκος της γραμμής μελέτης, το κέντρο μετακινείται κατά α και επαναλαμβάνεται η ίδια διαδικασία.

Για την αντιστροφή των δεδομένων χρησιμοποιήθηκε το πρόγραμμα Res2Diny. Το συγκεκριμένο λογισμικό περιέχει διάφορες επιλογές ως προς την μέθοδο αντιστροφής των δεδομένων. Από αυτές, *χρησιμοποιήθηκε* η Κανονικοποίηση Περιορισμούς Εξομάλυνσης. Με με τη μέθοδο αυτή ελαχιστοποιείται το άθροισμα των τετραγώνων του σφάλματος μεταξύ των πραγματικών και των συνθετικών δεδομένων με χρήση της νόρμας L2. Αποφεύγει τις ασταθείς λύσεις και συγκλίνει γρήγορα, στην τελική λύση.

Για την καλύτερη σύγκριση των αποτελεσμάτων, σε όλες τις γεωηλεκτρικές τομές, αποδόθηκε κοινή χρωματική κλίμακα, ορίζοντας ως την ελάχιστη ηλεκτρική αντίσταση τα 40 Ωm και ως μέγιστη, τα 400 Ωm. Το εύρος αυτό καλύπτει όλες τις τιμές της φαινόμενης ειδικής ηλεκτρικής αντίστασης που προσδιορίστηκαν στις γεωηλεκτρικές τομές της περιοχής μελέτης.

4.3.1. Ηλεκτρική Τομογραφία Line 4

Οι μετρήσεις στην γραμμή της ηλεκτρικής τομογραφίας Line 4 πραγματοποιήθηκαν στις 2-6-2008. Η γραμμή αυτή οριοθετείται από 41 ηλεκτρόδια σε ίσες αποστάσεις των 3 m, έχει συνολικό μήκος 120 m και διευθύνεται από δυτικά προς ανατολικά. Οι συντεταγμένες του δυτικού και ανατολικού άκρου της είναι (ΕΓΣΑ '87) (x,y)=(461793,3928123) και (x,y)=(461909,3928145), αντίστοιχα. Το δυτικό άκρο της τομής βρίσκεται στα 10 m από το ύψος της θάλασσας ενώ το ανατολικό στα 20 m. Στο παράρτημα B παρατίθενται οι μετρήσεις της εν λόγω τομογραφίας.

Στο Σχήμα 4.8 συνοψίζονται τα αποτελέσματα που προέκυψαν από την επεξεργασία των μετρήσεων της εν λόγω τομογραφίας. Στο σχήμα αυτό απεικονίζεται η γεωηλεκτρική τομή, η μετρούμενη ψευδοτομή και η υπολογισμένη ψευδοτομή, η οποία έχει προκύψει από την γεωηλεκτρική τομή. Το μέσο εκατοστιαίο τετραγωνικό σφάλμα μεταξύ της μετρούμενης και υπολογισμένης ψευδοτομής είναι 4.4 %.

Εμφανίζονται συνολικά τέσσερα γεωηλεκτρικά στρώματα:

- Το επιφανειακό στρώμα έχει μέσο πάχος 1,5 m, οι αντιστάσεις του κυμαίνονται από 140 Ωm έως 260 Ωm και αποδίδεται σε φυτική γη.
- Το δεύτερο στρώμα εμφανίζεται από το μέσο περίπου της γραμμής μελέτης και προς τα ανατολικά, έχει ειδική ηλεκτρική αντίσταση από 75 Ωm έως 160 Ωm και φτάνει μέχρι το βάθος των 12 m. Αυτό το στρώμα αποδίδεται σε παλαιότερες ποτάμιες αναβαθμίδες.
- Το τρίτο στρώμα έχει αντίσταση που κυμαίνεται από 160 Ωm έως 400 Ωm.
 Το στρώμα αυτό απαντάται δυτικά σε βάθος μεγαλύτερο από τα 23 m, ενώ στα ανατολικά, φτάνει μέχρι τα 15 m. Αυτό το στρώμα αντιστοιχεί σε μη κορεσμένο μαργαϊκό ασβεστόλιθο, ενώ οι μικρές αντιστάσεις που απαντώνται κατά τόπους οφείλονται πιθανότατα σε αύξηση του ποσοστού των αργιλικών.
- Το τελευταίο στρώμα εμφανίζεται από το μέσο της διάταξης και προς τα ανατολικά και απαντάται από τα 10 m βάθος. Η ειδική ηλεκτρική αντίσταση του στρώματος κυμαίνεται από 60 Ωm έως 150 Ωm και αντιστοιχεί σε μάργα ή σε κροκαλοπαγές βάσεως.

Σχήμα 4.8: Μετρούμενη (a) και υπολογιζόμενη (b) ψευδοτομή και γεωηλεκτρική τομή (c) της γραμμής μελέτης Line 4. Το μέσο εκατοστιαίο τετραγωνικό σφάλμα μετά το τέλος της αντιστροφής είναι 4.4 %. Με διακεκομμένες μαύρες γραμμές χωρίζονται τα γεωηλεκτρικά στρώματα.

4.3.2. Ηλεκτρική Τομογραφία Line 5

Οι μετρήσεις στην γραμμή της ηλεκτρικής τομογραφίας Line 5 πραγματοποιήθηκαν στις 2-6-2008. Η γραμμή αυτή οριοθετείται από 41 ηλεκτρόδια σε ίσες αποστάσεις των 4 m, έχει συνολικό μήκος 160 m και διευθύνεται από δυτικά προς ανατολικά. Οι συντεταγμένες του δυτικού και ανατολικού άκρου της είναι (ΕΓΣΑ '87) (x,y)=(461950,3927907) και (x,y)=(462110,3927912), αντίστοιχα. Το δυτικό άκρο της τομής βρίσκεται στα 10 m από την επιφάνεια της θάλασσας ενώ το ανατολικό στα 20 m.

Στο Σχήμα 4.9 συνοψίζονται τα αποτελέσματα που προέκυψαν από την επεξεργασία των μετρήσεων της εν λόγω τομογραφίας. Στο σχήμα αυτό απεικονίζεται η μετρούμενη και η υπολογισμένη ψευδοτομή, η οποία έχει προκύψει από την κατανομή της ειδικής ηλεκτρικής αντίστασης στο υπέδαφος. Το μέσο εκατοστιαίο τετραγωνικό σφάλμα μεταξύ της μετρούμενης και υπολογισμένης ψευδοτομής είναι 6.3 %.

Εμφανίζονται συνολικά τρία γεωηλεκτρικά στρώματα:

- Το πρώτο στρώμα παρατηρείται από το μέσο της γραμμής μελέτης και συνεχίζεται προς τα ανατολικά, ενώ φτάνει ως τα 23 m βάθος. Η αντίσταση του στρώματος κυμαίνεται από 60 έως 260 Ωm και αντιστοιχεί σε παλαιότερες ποτάμιες αναβαθμίδες.
- Το δεύτερο στρώμα παρουσιάζεται επιφανειακά στα δυτικά έως και το μέσο της γραμμής. Το πάχος του στα δυτικά της γραμμής μελέτης υπερβαίνει τα 31
 m. Η αντίστασή του κυμαίνεται από 180 έως 400 Ωm και αντιστοιχεί σε μαργαϊκό ασβεστόλιθο.
- Το τρίτο στρώμα βρίσκεται στα δυτικά της τομογραφίας, βρίσκεται κάτω από τα 10 m και φτάνει μέχρι και τα 25 καταλαμβάνοντας ένα μικρό μόνο τμήμα της γεωηλεκτρικής τομής, έχει ειδική ηλεκτρική αντίσταση 140 Ωm και αντιστοιχεί σε κορεσμένο κροκαλοπαγές βάσης.

Σχήμα 4.9: Μετρούμενη (a) και υπολογιζόμενη (b) ψευδοτομή και γεωηλεκτρική τομή (c) της γραμμής μελέτης Line 5. Το μέσο εκατοστιαίο τετραγωνικό σφάλμα μετά το τέλος της αντιστροφής είναι 6.3 %. Με διακεκομμένες μαύρες γραμμές χωρίζονται τα γεωηλεκτρικά στρώματα.

4.3.3. Ηλεκτρική Τομογραφία Line 6

Οι μετρήσεις στην γραμμή της ηλεκτρικής τομογραφίας Line 6 πραγματοποιήθηκαν στις 3-6-2008. Η γραμμή αυτή οριοθετείται από 41 ηλεκτρόδια σε ίσες αποστάσεις των 6 m, έχει συνολικό μήκος 240 m και διευθύνεται από δυτικά προς ανατολικά. Οι συντεταγμένες του δυτικού και ανατολικού άκρου της είναι (ΕΓΣΑ '87) (x,y)=(461979,3927578) και (x,y)=(462219,3927586), αντίστοιχα. Το δυτικό άκρο της τομής βρίσκεται στα 10 m από την επιφάνεια της θάλασσας ενώ το ανατολικό στα 20 m.

Στο Σχήμα 4.10 συνοψίζονται τα αποτελέσματα που προέκυψαν από την επεξεργασία των μετρήσεων της εν λόγω τομογραφίας. Το μέσο εκατοστιαίο τετραγωνικό σφάλμα μεταξύ της μετρούμενης και υπολογισμένης ψευδοτομής είναι 5.7 %.

Εμφανίζονται συνολικά τέσσερα γεωηλεκτρικά στρώματα:

- Το πρώτο στρώμα εμφανίζεται επιφανειακά στα δυτικά και εκτείνεται μέχρι τα 26 m ενώ αποσφηνώνεται προς το κέντρο της γραμμής μελέτης. Η ειδική ηλεκτρική του αντίσταση κυμαίνεται από τα 75 έως τα 150 Ωm και αντιστοιχεί σε νεότερες ποτάμιες ή θαλάσσιες αναβαθμίδες.
- Το δεύτερο στρώμα εμφανίζεται επιφανειακά περίπου στα 168m της γραμμής μελέτης και εκτείνεται προς τα ανατολικά όπου και φτάνει μέχρι τα 18 m. Η ειδική ηλεκτρική αντίσταση του στρώματος κυμαίνεται από 50 έως 150 Ωm και αντιστοιχεί σε παλαιότερες ποτάμιες αναβαθμίδες.
- Το τρίτο στρώμα απαντάται κάτω από τα δύο προηγούμενα και η αντίσταση του κυμαίνεται από 180 έως 300 Ωm και κατά τόπους φτάνει μέχρι και 400 Ωm. Το στρώμα αυτό αντιστοιχεί σε μαργαϊκό ασβεστόλιθο.
- Το τελευταίο στρώμα απαντάται στο ανατολικό μισό της γραμμής μελέτης σε βάθος μεγαλύτερο από 25 m. Η αντίστασή του κυμαίνεται από 100 μέχρι 160 Ωm και αποτελείται από κροκαλοπαγές βάσης.

Σχήμα 4.10: Μετρούμενη (a) και υπολογιζόμενη (b) ψευδοτομή και γεωηλεκτρική τομή (c) της γραμμής μελέτης Line 6. Το μέσο εκατοστιαίο τετραγωνικό σφάλμα μετά το τέλος της αντιστροφής είναι 5.7 %. Με διακεκομμένες μαύρες γραμμές χωρίζονται τα γεωηλεκτρικά στρώματα.

4.3.4. Ηλεκτρική Τομογραφία Line 7

Οι μετρήσεις στην γραμμή της ηλεκτρικής τομογραφίας Line 7 πραγματοποιήθηκαν στις 3-6-2008. Η γραμμή αυτή οριοθετείται από 41 ηλεκτρόδια σε ίσες αποστάσεις των 5 m, έχει συνολικό μήκος 200 m και διευθύνεται από δυτικά προς ανατολικά. Οι συντεταγμένες του δυτικού και ανατολικού άκρου της είναι (ΕΓΣΑ '87) (x,y)=(461968,3927708) και (x,y)=(462107,3927723), αντίστοιχα. Το δυτικό άκρο της τομής βρίσκεται στα 10 m από την επιφάνεια της θάλασσας ενώ το ανατολικό στα 20 m.

Στο Σχήμα 4.11 συνοψίζονται τα αποτελέσματα που προέκυψαν από την επεξεργασία των μετρήσεων της εν λόγω τομογραφίας. Το μέσο εκατοστιαίο τετραγωνικό σφάλμα μεταξύ της μετρούμενης και υπολογισμένης ψευδοτομής είναι 5.8 %.

Εμφανίζονται συνολικά τρία γεωηλεκτρικά στρώματα:

- Το επιφανειακό στρώμα έχει μέγιστο πάχος 7 m και ειδική ηλεκτρική αντίσταση που κυμαίνεται από τα 75 έως τα 180 Ωm, αντιστοιχεί σε φυτική γη.
- Το δεύτερο στρώμα, στα βορειοδυτικά απαντάται μέχρι το μέγιστο βάθος διασκόπισης (37 m), ενώ στα νοτιοανατολικά φτάνει μέχρι τα 22 m, περίπου.
 Η ειδική ηλεκτρική αντίστασή του κυμαίνεται από 180 έως 300 Ωm και αντιστοιχεί σε μαργαϊκό ασβεστόλιθο.
- Το τρίτο στρώμα απαντάται στο ανατολικό μισό της γραμμής μελέτης σε βάθος μεγαλύτερο από 10 m. Η αντίστασή του κυμαίνεται από 60 έως 150 Ωm και αντιστοιχεί σε μάργες ή κροκαλοπαγές βάσεως.

Σχήμα 4.11: Μετρούμενη (a) και υπολογιζόμενη (b) ψευδοτομή και γεωηλεκτρική τομή (c) της γραμμής μελέτης Line 7. Το μέσο εκατοστιαίο τετραγωνικό σφάλμα μετά το τέλος της αντιστροφής είναι 5.8 %. Με διακεκομμένες μαύρες γραμμές χωρίζονται τα γεωηλεκτρικά στρώματα.

4.3.5. Ηλεκτρική Τομογραφία Line 12

Οι μετρήσεις στην γραμμή της ηλεκτρικής τομογραφίας Line 12 πραγματοποιήθηκαν στις 6-6-2008. Η γραμμή αυτή οριοθετείται από 41 ηλεκτρόδια σε ίσες αποστάσεις των 10 m, έχει συνολικό μήκος 400 m και διευθύνεται από βορειοδυτικά προς νοτιοανατολικά. Οι συντεταγμένες του νοτιοανατολικού και βορειοδυτικού άκρου της είναι (ΕΓΣΑ '87) (x,y)=(462189,3928086) και (x,y)=(462062,3928456), αντίστοιχα. Και τα δυο άκρα της τομής βρίσκονται στα 20 m.

Στο Σχήμα 4.12 συνοψίζονται τα αποτελέσματα που προέκυψαν από την επεξεργασία των μετρήσεων της εν λόγω τομογραφίας. Το μέσο εκατοστιαίο τετραγωνικό σφάλμα μεταξύ της μετρούμενης και υπολογισμένης ψευδοτομής είναι 6.3 %.

Εμφανίζονται συνολικά τρία γεωηλεκτρικά στρώματα:

- Το επιφανειακό στρώμα απαντάται μέχρι τα 10 m και η ειδική ηλεκτρική αντίστασή του κυμαίνεται από 60 έως 180 Ωm. Αντιστοιχεί σε παλαιότερες ποτάμιες αναβαθμίδες.
- Το δεύτερο στρώμα στα βορειοδυτικά απαντάται μέχρι και τα 40 m, ενώ στα νοτιοανατολικά περίπου μέχρι και τα 62 m. Η ειδική ηλεκτρική αντίσταση του στρώματος κυμαίνεται από 180 έως 400 Ωm και αντιστοιχεί σε ακόρεστους μαργαϊκούς ασβεστολίθους.
- Στο τελευταίο στρώμα, η ειδική ηλεκτρική αντίσταση κυμαίνεται από 100 έως
 150 Ωm και αντιστοιχεί σε κροκαλοπαγές βάσεως.

Σχήμα 4.12: Μετρούμενη (a) και υπολογιζόμενη (b) ψευδοτομή και γεωηλεκτρική τομή (c) της γραμμής μελέτης Line 12. Το μέσο εκατοστιαίο τετραγωνικό σφάλμα μετά το τέλος της αντιστροφής είναι 6.3 %. Με διακεκομμένες μαύρες γραμμές χωρίζονται τα γεωηλεκτρικά στρώματα.

5. ΣΥΝΔΥΑΣΤΙΚΗ ΑΝΑΠΑΡΑΣΤΑΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ 5.3. ΕΙΣΑΓΩΓΗ

Στο κεφάλαιο αυτό πραγματοποιείται συνδυαστική αναπαράσταση των αποτελεσμάτων των πέντε γεωηλεκτρικών τομών και των έξι βυθοσκοπήσεων, με την χρήση του σχεδιαστικού προγράμματος COREL. Για τον καλύτερο συνδυασμό μεταξύ των βυθοσκοπήσεων και των γεωηλεκτρικών τομών, επιλέχθηκαν αυτές οι οποίες βρίσκονται σε μικρή μεταξύ τους απόσταση. Συνολικά, πραγματοποιήθηκαν τέσσερις συνδυασμοί.

Στο κεντρικό τμήμα της περιοχής μελέτης, παρατηρείται ότι τέσσερις γραμμές ηλεκτρικής τομογραφίας (Line 4, Line 5, Line 7 και Line 6) οι οποίες διευθύνονται από τα δυτικά προς τα ανατολικά απέχουν μεταξύ τους σχετικά μικρή απόσταση. Έτσι, τα στοιχεία αυτά καθιστούν εύκολη την συνδυαστική απεικόνισή τους. Η απεικόνιση αυτή πραγματοποιήθηκε πάνω σε γεωλογικό χάρτη, με τον λόγο της απόστασης στην διεύθυνση Α-Δ προς την αντίστοιχη απόσταση στην διεύθυνση N-B να είναι 2:1. Τα άκρα των γραμμών των ηλεκτρικών τομογραφιών τοποθετήθηκαν στις πραγματικές τους θέσεις και αποστάσεις, κάνοντας έτσι ευκολότερη την σύγκριση των αποτελεσμάτων (Σχήμα 5.1).

Στην συνέχεια, έγινε ο συνδυασμός μεταξύ της γεωηλεκτρικής τομής Line 7, και της ηλεκτρικής βυθοσκόπησης O1C2. Αυτές βρίσκονται κοντά στο κεντρικό τμήμα της περιοχής μελέτης, με την γεωηλεκτρική τομή πιο κοντά στην θάλασσα και με διεύθυνση από τα δυτικά προς τα ανατολικά. Το κέντρο της ηλεκτρικής βυθοσκόπησης, βρίσκεται σε απόσταση 167 m από το ανατολικό άκρο της γεωηλεκτρικής τομής και λίγο βορειότερα από αυτήν, ενώ η διεύθυνση της γραμμής των ηλεκτροδίων της, ήταν από βορρά προς νότο. Στην συγκεκριμένη απεικόνιση, χρησιμοποιήθηκε η προβολή της βυθοσκόπησης στην γραμμή Line 7 (Σχήμα 5.2).

Για την τρίτη συνδυαστική αναπαράσταση, επιλέχθηκαν η γεωηλεκτρική τομή Line 12 και η βυθοσκόπηση O1A. Και οι δύο βρίσκονται στο βόρειο τμήμα της κεντρικής περιοχής μελέτης με διεύθυνση της Line 12 βορειοδυτικά νοτιοανατολικά. Άλλο ένα κριτήριο για την επιλογή των Line 12 και Ο1A, ήταν το ότι το κέντρο της O1A βρίσκεται επί της γραμμής Line 12 και πιο συγκεκριμένα, 103 m από το νοτιοανατολικό άκρο της (Σχήμα 5.3). Στην τελευταία συνδυαστική απεικόνιση, επιλέχθηκαν τρεις βυθοσκοπήσεις. Αυτές ήταν οι O1D, O2A και O2C, οι οποίες βρίσκονται στο νότιο μέρος της περιοχής μελέτης με την O2A πιο κοντά στην θάλασσα και την O1D πιο μακριά από αυτήν. Τα ηλεκτρόδια αναπτύχθηκαν στη διεύθυνση βορρά- νότου. Τέλος, συνδέοντας αυτές τις τρεις βυθοσκοπήσεις, οριοθετείται μία γεωηλεκτρική τομή με διεύθυνση βορειοδυτικά νοτιοανατολικά. Για την καλύτερη παρατήρηση των αποτελεσμάτων αυτής της συνδυαστικής αναπαράστασης αποδόθηκαν κοινά χρώματα στα διάφορα γεωηλεκτρικά στρώματα που εντοπίστηκαν (Σχήμα 5.4).

5.4. ΣΥΝΔΥΑΣΜΟΣ ΤΩΝ ΓΕΩΗΛΕΚΤΡΙΚΩΝ ΤΟΜΩΝ Line 4, Line 5, Line 6 KAI Line 7

Στο Σχήμα 5.1, απεικονίζονται οι γεωηλεκτρικές τομές Line 4, Line 5, Line 6 και Line 7. Παρατηρείται ότι υπάρχει μία συνέχεια στην στρωματογραφία της περιοχής.

Ειδικότερα, στο ανατολικό τμήμα των γεωηλεκτρικών τομών, εμφανίζεται ένα γεωηλεκτρικό στρώμα με αντιστάσεις που κυμαίνονται από 70 έως 140 Ωm και αποδίδεται σε παλαιότερες ποτάμιες αναβαθμίδες, το πάχος των οποίων, με εξαίρεση στην θέση της Line 7, δείχνει να μην υπερβαίνει τα 10 m. Το κυρίαρχο γεωηλεκτρικό στρώμα εμφανίζεται στις γεωηλεκτρικές τομές, με αντιστάσεις από 150 έως και τα 400 Ωm, και αποδίδεται σε μαργαϊκό ασβεστόλιθο. Πολλές φορές, εκτείνεται και σε βάθος μεγαλύτερο από 40 m, και στα ανατολικά αναπτύσσεται κάτω από την στρώση των παλαιότερων ποτάμιων αναβαθμίδων.

Περίπου στο κέντρο όλων των γεωηλεκτρικών τομών, και σε βάθος μεγαλύτερο των 20 m, εμφανίζεται ένα γεωηλεκτρικό στρώμα με μικρότερες αντιστάσεις από αυτές του μαργαϊκού ασμεστολίθου (από 50 έως 140 Ωm), το οποίο αποδίδεται σε μάργες ή κορεσμένο κροκαλοπαγές βάσης. Τέλος, στο δυτικό άκρο και πιο συγκεκριμένα από την επιφάνεια και μέχρι το βάθος των 30 m, της γεωηλεκτρικής τομής Line 6, εμφανίζεται ένα στρώμα με αντίσταση από 140 έως 180 Ωm που αποδίδεται σε νεότερες ποτάμιες αναβαθμίδες, αν και υπήρξε προβληματισμός λόγω του πολύ μεγάλου πάχους του.

Σχήμα 5.1: Συνδυαστική αναπαράσταση των γεωηλεκτρικών τομών Line 4, Line 5, Line 6 και Line 7, πάνω στο φόντο του γεωλογικού χάρτη της περιοχής μελέτης. Η απόσταση στην διεύθυνση Α-Δ προς την αντίστοιχη απόσταση στη διεύθυνση N-B είναι 2:1.

5.5. ΣΥΝΔΥΑΣΜΟΣ ΤΗΣ ΓΕΩΗΛΕΚΤΡΙΚΗΣ ΤΟΜΗΣ Line 7 ΚΑΙ ΤΗΣ ΒΥΘΟΣΚΟΠΗΣΗΣ Ο1C2

Όπως φαίνεται στο Σχήμα 5.2, το κέντρο της ηλεκτρικής βυθοσκόπησης O1C2 βρίσκεται σε απόσταση περίπου 120 m, από το ανατολικό άκρο της Line 7 κατά μήκος της γραμμής μελέτης, ενώ απέχει από αυτήν 118m. Επίσης, η Line 7 διευθύνεται από δυτικά προς ανατολικά, ενώ η O1C2 έχει διεύθυνση από βορρά προς νότο.

Επιφανειακά εμφανίζεται στρώμα με πάχος από 3.5 έως και 5 m και αντιστάσεις που ποικίλουν το οποίο αποδίδεται σε φυτική γη ή/και παλαιότερες ποτάμιες αναβαθμίδες. Ακολουθεί στρώμα με ειδική ηλεκτρική αντίσταση από 180 έως 400 Ωm και πάχος 22 έως 25 m το οποίο αποδίδεται σε μαργαϊκό ασβεστολίθο. Το επόμενο στρώμα που εμφανίζεται έχει ειδική ηλεκτρική αντίσταση από 40 έως 140 Ωm και αποδίδεται σε μάργες ή σε κορεσμένο κροκαλοπαγές βάσης, το βάθος του οποίου όπως φαίνεται από την ηλεκτρική βυθοσκόπηση φτάνει μέχρι τα 45 m. Το τελευταίο στρώμα, το οποίο εμφανίζεται μόνο στην ηλεκτρική βυθοσκόπηση έχει ειδική ηλεκτρική αντίσταση 350 Ωm και αποδίδεται σε ασβεστόλιθο Τρίπολης.

Σχήμα 5.2: Συνδυαστική αναπαράσταση της γεωηλεκτρικής τομής Line 7 και της βυθοσκόπησης O1C2.

5.6. ΣΥΝΔΥΑΣΜΟΣ ΤΗΣ ΓΕΩΗΛΕΚΤΡΙΚΗΣ ΤΟΜΗΣ Line 12 ΚΑΙ ΤΗΣ ΒΥΘΟΣΚΟΠΗΣΗΣ Ο1Α

Στο Σχήμα 5.3, το κέντρο της ηλεκτρικής βυθοσκόπησης Ο1Α βρίσκεται στα 103 m από την αρχή της Line 12 και πιο συγκεκριμένα ανάμεσα στο ενδέκατο και στο δωδέκατο ηλεκτρόδιο. Έτσι λοιπόν, για το βορειοδυτικό κυρίως άκρο υπάρχει συμφωνία.

Το πρώτο στρώμα που εμφανίζεται στα νοτιοανατολικά έως και το 15, περίπου ηλεκτρόδιο, έχει ειδική ηλεκτρική αντίσταση 160 Ωm, πάχος 3 m και αποδίδεται σε φυτική γη. Αντίθετα προς τα βορειοδυτικά εμφανίζεται ένα στρώμα μέγιστου πάχους 10 m και ειδικής ηλεκτρικής αντίστασης από τα 60 έως τα 150 Ωm και το οποίο αποδίδεται σε ποτάμιες αναβαθμίδες. Κάτω από τα προηγούμενα δύο στρώματα εμφανίζεται ένα στρώμα με ειδική ηλεκτρική αντίσταση από 180 έως 450 Ωm, φτάνοντας στα νοτιοανατολικά σε βάθος 32.2 m, ενώ βαθαίνει προς τα βορειοδυτικά, φθάνοντας σε βάθος 70 m και αποδίδεται σε μαργαϊκό ασβεστολίθο. Το επόμενο στρώμα που μας δίνει η ηλεκτρική βυθοσκόπηση, έχει πάχος 60 m και πολύ χαμηλή ειδική ηλεκτρική αντίσταση, αντιστοιχώντας σε κορεσμένο κροκαλοπαγές βάσης. Ακολούθως, παρατηρείται ήπια τάση για αύξηση της ειδικής ηλεκτρικής αντίστασης (180 Ωm) σε βάθος 92 m. Η αύξηση αυτή πιθανότατα αποδίδεται στην ύπαρξη ασβεστόλιθου Τρίπολης σε μεγαλύτερα βάθη.

5.7. ΣΥΝΔΥΑΣΜΟΣ ΤΩΝ ΒΥΘΟΣΚΟΠΗΣΕΩΝ Ο2Α, Ο2C ΚΑΙ 01D

Στο Σχήμα 5.4, αποτυπώνονται οι βυθοσκοπήσεις O2A, O2C και O1D οριοθετώντας μία τομή με διεύθυνση από βορειοδυτικά προς τα νοτιοανατολικά. Από την συνδυαστική απεικόνιση προκύπτει μια στρωματογραφική ακολουθία, η οποία σε γενικές γραμμές επαληθεύεται από τις μετρήσεις και των τριών βυθοσκοπήσεων.

Το επιφανειακό στρώμα με πάχος έως 2,5 m εμφανίζεται και στα 600 m της τομής και αποδίδεται σε φυτική γη. Το δεύτερο στρώμα που εμφανίζεται κάτω από την φυτική γη και προκύπτει από τις βυθοσκοπήσεις O2A και O2C, έχει ειδική ηλεκτρική αντίσταση από 80 έως 270 Ωm, φτάνει ως τα 11 m βάθος και αποδίδεται σε ποτάμιες αναβαθμίδες. Το δεύτερο στρώμα που απαντάται στην βυθοσκόπηση O1D, έχει ειδική ηλεκτρική αντίσταση 50 Ωm, φτάνει μέχρι βάθους 26 m και αποδίδεται σε μάργες.

Το τρίτο στρώμα που απαντάται σε όλη την τομή έχει ειδική ηλεκτρική αντίσταση από 140 έως 180 Ωm, κάτω από την βυθοσκόπηση O1D απαντάται μέχρι τα 85 m, κάτω από την O2C, μέχρι τα 150 m, ενώ κάτω από την O2A δεν είναι γνωστό το κάτω όριο του. Το στρώμα αυτό αποδίδεται σε μαργαϊκό ασβεστόλιθο. Το τελευταίο στρώμα που εντοπίστηκε από τις βυθοσκοπήσεις O1D και O2C έχει ειδική ηλεκτρική αντίσταση από 40 έως 150 Ωm και αποδίδεται σε μάργες ή κροκαλοπαγές βάσης.

Στο Σχήμα 5.4 παρουσιάζονται τα αποτελέσματα των τριών βυθοσκοπήσεων με τα πραγματικά τους υψόμετρα. Επίσης, τα στρώματα απεικονίζονται με διαφορετικά χρώματα ώστε να γίνονται πιο εύκολα αντιληπτές οι αλλαγές των γεωηλεκτρικών στρωμάτων.

Σχήμα 5.4: Συνδυασμός των ηλεκτρικών βυθοσκοπήσεων O2A, O2C και O1D. Τα γεωηλεκτρικά στρώματα διαχωρίζονται με τα διάφορα χρώματα, ενώ οι πιο αχνές περιοχές αντιστοιχούν σε θέσεις που υπάρχει αβεβαιότητα λόγω του μικρού βάθους διασκόπησης.

6. ΣΥΜΠΕΡΑΣΜΑΤΑ – ΠΡΟΤΑΣΕΙΣ 6.1. ΑΞΙΟΛΟΓΗΣΗ ΤΩΝ ΑΠΟΤΕΛΕΣΜΑΤΩΝ ΚΑΙ ΥΦΑΛΜΥΡΩΣΗ

Στις γεωηλεκτρικές τομές και τις ηλεκτρικές βυθοσκοπήσεις, απεικονίστηκαν τα ρηχά γεωηλεκτρικά στρώματα, ενώ έγινε και προσπάθεια να προσδιοριστούν οι περιοχές στις οποίες υπάρχει διείσδυση του θαλασσινού νερού στον υπόγειο υδροφορέα. Παρατηρήθηκε, ότι οι γεωηλεκτρικές τομές συμφωνούν μεταξύ τους ως προς την ανάπτυξη των στρωμάτων στο χώρο, καθώς και ως προς τις τιμές της ειδικής ηλεκτρικής αντίστασης που αποδίδονταν σε κάθε στρώμα. Αντίθετα, τα αποτελέσματα από την μέθοδο της ηλεκτρικής βυθοσκόπησης έχουν μεγαλύτερη αβεβαιότητα λόγω μη μοναδικότητας της λύσης που προκύπτει από την αντιστροφή.

Επίσης, ενώ στην ηλεκτρική τομογραφία απεικονίζονται τα γεωηλεκτρικά στρώματα κάτω από ολόκληρη τη γραμμή των ηλεκτροδίων, στην ηλεκτρική βυθοσκόπηση το γεωλογικό μοντέλο αντιστοιχείται στο κέντρο της διάταξης των ηλεκτροδίων. Αυτό έχει ως αποτέλεσμα, το γεωηλεκτρικό μοντέλο που προκύπτει από την ηλεκτρική βυθοσκόπηση να επηρεάζεται έντονα από την πλευρική ανομοιογένεια των σχηματισμών.

Όταν οι γεωλογικοί σχηματισμοί είναι κορεσμένοι σε υφάλμυρο νερό, παρατηρείται δραστική μείωση της ειδικής ηλεκτρικής τους αντίστασης. Αυτό καθιστά δυνατό τον εντοπισμό της υφαλμύρωσης με τις ηλεκτρικές μεθόδους. Αλλά σε αυτή την περίπτωση είναι πρακτικά αδύνατος ο διαχωρισμός των εδαφικών σχηματισμών κορεσμένων σε υφάλμυρο νερό.

Για την απεικόνιση της γεωλογικής δομής σε περιοχή στην οποία εμφανίζεται το πρόβλημα της υφαλμύρωσης, θα πρέπει, εκτός από τις ηλεκτρικές μεθόδους, να χρησιμοποιούνται και άλλες καταλληλότερες, όπως οι σεισμικές μέθοδοι. Επίσης, θα πρέπει να λαμβάνονται υπόψη και πληροφορίες από γεωτρήσεις που υπάρχουν στην περιοχή. Για τις γεωτρήσεις θα πρέπει είναι γνωστά η ακριβής τους θέση, τα πετρώματα που διατρήθηκαν καθώς και τα βάθη στα οποία αυτά βρέθηκαν, αλλά και στοιχεία για τη στάθμη του νερού στην γεώτρηση και την αγωγιμότητά του. Στην υπό μελέτη περιοχή τα στοιχεία από τις υπάρχουσες γεωτρήσεις είναι ελλιπή.

6.2. ΣΥΜΠΕΡΑΣΜΑΤΑ ΑΠΟ ΤΗΝ ΣΥΝΔΥΑΣΤΙΚΗ ΑΝΑΠΑΡΑΣΤΑΣΗ

Στο Κεφάλαιο 5 παρουσιάστηκαν τέσσερις συνδυαστικές αναπαραστάσεις στις οποίες παρατηρείται η συνέχεια των διαφόρων γεωηλεκτρικών στρωμάτων στον χώρο. Οι συνδυαστικές αναπαραστάσεις που έδωσαν τα καλύτερα χωρικά αποτελέσματα στην απεικόνισή των στρωμάτων, ήταν ο συνδυασμός των γεωηλεκτρικών τομών Line 4, Line 5, Line 6 και Line 7, καθώς και ο συνδυασμός των τριών βυθοσκοπήσεων O2A, O2C και O1D.

Από την συνδυαστική αναπαράσταση των τεσσάρων τομών και του γεωλογικού χάρτη, παρατηρήθηκε ότι οι επιφανειακές εμφανίσεις των γεωηλεκτρικών σχηματισμών στο χάρτη σε ορισμένες περιπτώσεις δεν συμπίπτουν ακριβώς με τα αποτελέσματα των γεωηλεκτρικών τομών. Αυτό συμβαίνει γιατί στην χαρτογράφηση υπό κλίμακα 1:50000 δεν είναι δυνατή η αποτύπωση των ορίων των γεωλογικών σχηματισμών με την ακρίβεια την οποία προσδιορίστηκαν από την ηλεκτρική τομογραφία.

Αυτό που παρατηρήθηκε όμως, στις περισσότερες περιπτώσεις είναι η εναλλαγή των στρωμάτων κοντά στα όρια που δίνονται από τον χάρτη. Έτσι από τις γεωηλεκτρικές τομές είναι δυνατό να οριοθετηθούν καλύτερα οι επαφές των σχηματισμών.

Οι κυριότεροι σχηματισμοί που απαντήθηκαν κάτω από το στρώμα της φυτικής γης ήταν ο μαργαϊκός ασβεστόλιθος, οι ποτάμιες και οι θαλάσσιες αναβαθμίδες, οι μάργες και το κροκαλοπαγές βάσεως, κορεσμένο με γλυκό ή/και υφάλμυρο νερό.

Έτσι λοιπόν, από την μελέτη των πέντε γεωηλεκτρικών τομών και των έξι βυθοσκοπήσεων, φαίνεται ότι η ύπαρξη υφαλμύρωσης στο κεντρικό τμήμα της περιοχής μελέτης είναι περιορισμένη. Αυτό συνεπάγεται από τις παρατηρούμενες τιμές της ειδικής ηλεκτρικής αντίστασης, οι οποίες δεν σχετίζονται με κορεσμένους σε υφάλμυρο νερό σχηματισμούς.

Το στρώμα το οποίο θα μπορούσε να εξεταστεί πιο διεξοδικά και με άλλες μεθόδους (π.χ. σεισμικές), είναι κυρίως το κροκαλοπαγές βάσης, μιας και σε ορισμένες θέσεις παρατηρείται πτώση της ειδικής ηλεκτρικής αντίστασης. Αυτή όμως δεν είναι πάντοτε τόσο μεγάλη και έτσι θα μπορούσε να οφείλεται σε ύπαρξη γλυκού και όχι υφάλμυρου νερού.

Για παράδειγμα, αναφέρεται το τελευταίο γεωηλεκτρικό στρώμα στην συνδυαστική αναπαράσταση των τριών βυθοσκοπήσεων O2A, O2C και O1D, αν θεωρηθεί ότι αποδίδεται στο κροκαλοπαγές βάσης κάτω από το βάθος των 60 m (από την επιφάνια της θάλασσας). Οι αντιστάσεις που οριοθετούν πιθανή ύπαρξη υφαλμύρωσης εντοπίζονται στην βυθοσκόπηση O1D με ειδική ηλεκτρική αντίσταση 40 Ωm. Στην βυθοσκόπηση όμως O2C παρατηρείται ειδική ηλεκτρική αντίσταση κοντά στα 150 Ωm παραπέμποντας σε ύπαρξη γλυκού και όχι υφάλμυρου νερού.

Στην συνδυαστική αναπαράσταση της γεωηλεκτρικής τομής Line 12 και της βυθοσκόπησης O1A παρατηρούνται ειδικές ηλεκτρικές αντιστάσεις της τάξης των 10 Ωm, από τα 30 έως και τα 90 m. Αντίθετα στην Line 12, η αντίσταση είναι υψηλότερη και δεν μπορεί να θεωρηθεί ότι οφείλεται σε υφαλμύρωση. Σε αυτή την περιοχή προτείνεται να πραγματοποιηθούν συμπληρωματικές γεωφυσικές μετρήσεις.

Στην τρίτη συνδυαστική απεικόνιση των Line 7 και O1C2, σε βάθος 30 με 40 m, σύμφωνα και με τις δύο μεθόδους μετρήθηκε χαμηλότερη ειδική ηλεκτρική αντίσταση (40 με 50 Ωm) γεγονός που θα μπορούσε να αποδοθεί σε ύπαρξη υφάλμυρου νερού, μόνο όμως σε συνδυασμό με υδροφορέα το κροκαλοπαγές βάσης.

Τέλος, στην συνδυαστική αναπαράσταση των γεωηλεκτρικών τομών Line 4, Line 5, Line 6 και Line 7 παρατηρήθηκε ένα γεωηλεκτρικό στρώμα χαμηλότερων αντιστάσεων (50 – 140 Ωm), και σε βάθος μεταξύ των 30 και 40 m. Και σε αυτή την περίπτωση, οι αντιστάσεις που παραπέμπουν σε υφαλμύρωση, με υδροφορέα το κροκαλοπαγές βάσης, φαίνεται να υπάρχουν κυρίως στην γεωηλεκτρική τομή 4 και 7, με την ειδική ηλεκτρική αντίσταση να πέφτει στα 50 Ωm, σε αντίθεση με τις άλλες δύο τομές όπου η αντίσταση δεν πέφτει κάτω από τα 100 Ωm.

ΒΙΒΛΙΟΓΡΑΦΙΑ

Ελληνική Βιβλιογραφία

- Γκανιάτσος Ι. (1995). Γεωηλεκτρική τομογραφία με τη διάταξη Wenner, Διπλω-ματική εργασία, Τμήμα Μηχανικών Ορυκτών Πόρων, Χανιά.
- Γκανιάτσος Ι. (2000). Γεωηλεκτρική τομογραφία σε τρεις διαστάσεις, Μεταπτυ-χιακή διατριβή, Τμήμα Μηχανικών Ορυκτών Πόρων, Χανιά.
- 3. Ι.Γ.Μ.Ε. φύλλο Σαστέλλι
- Νάνου-Γιάνναρου, Α., (2001), Υφαλμύρινση Παράκτιων Υδροφορέων, Συμπόσιο «Αιγαίο-Νερό-Βιώσιμη Ανάπτυξη», 6-7 Ιουλίου, Πάρος.
- Παπαδόπουλος, Ν., (2007), Ανάπτυξη Αλγορίθμων για την Τρισδιάστατη Αντιστροφή Γεωηλεκτρικών Δεδομένων που προέρχονται από Αρχαιολογικούς Χώρους, Διδακτορική Διατριβή, ΑΠΘ, Θεσσαλονίκη.
- Hamdan, H., Ζήσης, Κ., Μανούτσογλου, Ε., Βαφείδης, Α., Σοφός, Φ. (2002). Τρισδιάστατη χαρτογραφική απεικόνιση πιθανών υδροφόρων σχηματισμών στην περιοχή Κισσάμου, Ν. Χανίων.
- 7. Χανιώτικα Νέα
Διεθνής Βιβλιογραφία

- Abdul Nassir S.S., Loke M.H., Nawawi M.N., (2004), "Salt-water intrusion mapping by geoelectrical imaging surveys", *Geophysical Prospecting*, 48, pp 647-661.
- Balia R., Gavaudo E., Ardau F., Ghiglieri., (2003) "Geophysical approach to the environmental study of a coastal plaijn", *Geophysics*, Vol.68, No.5, pp 1446-1459.
- Beer J.H., Joubert S.J., Van Zijl J.S., (1981), "Resistivity studies of an Alluvial aquifer in the Omaruru Delta, southwest Africa/Namibia", *Transaction of the Geological Society of South Africa*, Volume 84. pp 115-122, 1981.
- Casas, A., Himi, M., Tapias, J. C., Ranieri, G., Mota, R., (2004), "Mapping Saltwater Intrusion in Coastal Aquifers by Electrical Imaging Using Different Arrays: A Comparative Study", 18th SWIM, Cantagena, Spain, 31 May-3 June.
- Crane-Goldman-Kuliev, (2002-2005), "Integration of Geophysical Methods for Groundwater Exploration in Turmenistan", Final Report, The Geophysical Institute of Israel, ProjectDuration: May 1, 2002-June 30, 2005.
- deGroot-Hedlin and Constable, 1990. C. deGroot-Hedlin and S. Constable, Occam's inversion to generate smooth, two-dimensional models from magnetotelluric data. *Geophysics* 55.
- Dobrin, M. B. (1976). Introduction to geophysical prospecting, McGraw Hill Book Comp. Inc., New York, USA.
- Donald Marquardt (1963). "An Algorithm for Least-Squares Estimation of Nonlinear Parameters". SIAM Journal on Applied Mathematics 11.
- Gnanasundar D., Elango L., (1999), "Groundwater quality assessment of a coastal aquifer using geoelectrical techniques", *Journal of Environmental Hydrology*, Volume 7, paper 2, 1999.

- Haeni F.P., (1986), "Application of seismic refraction methods in groundwater modeling studies in New England", *Geophysics*, Volume 51, No. 2, pp 236-249.
- 11. Hamdan H., Kritikakis G., Vafidis A., and Manoutsoglou E., (2007), "The role of geophysical methods in salt-water intrusion mapping for strongly karst formations, a case study at Stylos, Chania, Greece"
- 12. Haxhiu P., Uci A., (1994), "The determination of unpolluted underground water bounds in the Lushnja (Albania) seaside region", *Publication of the academy of Finland*, Volume 4, pp 119-124.
- Imhof A.L., Guell A.E., Villagra S.M., (2001), "Resistivity sounding method applied to saline horizons' determination in Colonia Lloveras-San Juan Province-Argentina", *Brazilian Journal of Geophysics*, Vol.19 (3).
- 14. Jarvis K.D., Knight R.J., (2002), "Aquifer heterogeneity from SH-wave seismic impedance inversion", *Geophysics*, Vol.67, No.5.
- 15. Kenneth Levenberg (1944). "A Method for the Solution of Certain Non-Linear Problems in Least Squares". *The Quarterly of Applied Mathematics* 2.
- LaBrecque et al., 1999 D.J. LaBrecque, G. Morelli, W. Daily, A. Ramirez and P. Lundegard, Occam's inversion of 3-D electrical resistivity tomography. In: M. Oristaglio and B. Spies, Editors, *Three-Dimensional Electromagnetics, Geophysical Developments Series* vol. 7, Society of Exploration Geophysicists, Tulsa.
- Lashkaripour G.R., (2003), "An investigation of groundwater condition by geoelectrical resistivity method: A case study in Korin aquifer, southeast Iran", *Journal of Spatial Hydrology*, Vol.3, No.1, Fall 2003.
- Loke and Barker, 1996b M.H. Loke and R.D. Barker, Practical techniques for 3-D resistivity surveys and data inversion, *Geophys. Prospect.* 44.
- 19. Meju, 1992. M.A. Meju, An effective ridge regression procedure for resistivity data inversion. *Computers & Geosciences* v. 18 no. 2/3 (1992).
- 20. Mela K., (1997), "Viability of using seismic data to predict hydrogeological parameters", *SAGEEP*.

- Parkish D., Kumar K.V., Tata S.N., (1980), "Geophysical studies for ground water exploration in Deccan Traps", *Annual Convention and seminar on Exploration Geophysics*, pp 25-26.
- 22. Pelton et al., 1978 W.H. Pelton, L. Rijo and C.M.J.R. Swift, Inversion of twodimensional resistivity and induced-polarization data, *Geophysics* 43.
- 23. Sasaki, Y., 1989. 2-D joint inversion of magnetotelluric and dipole-dipole resistivity data. Geophysics, 54.
- Sasaki, Y., 1992. Resolution of resistivity tomography inferred from numerical simulation. Geophys. Pros-pect. 40.
- 25. Sasaki, 1994 Y. Sasaki, 3-D resistivity inversion using the finite-element method, *Geophysics* 59.
- 26. Singh C.L., Yadav G.S., (1982), "Geoelectrical soundings for the study of suitable aquifers in the Gangetic alluvium of Allahabad region", *Proceeding of the Indian academy of Science*, vol.91, No.1, pp. 21-28.
- 27. Singh U.K., Das R.K., Hodlur G.K., (2004), "Significance of Dar-Zarrouk parameters in the expoloration of quality affected coastal aquifer systems", *Environmental Geology*, pp 697-702.
- Smith and Vozoff, 1984. N.C. Smith and K. Vozoff, Two-dimensional DC resistivity inversion for dipole—dipole data. *IEEE Trans. Geosci. Remote Sensing* 22.
- 29. Tripp et al., 1984 A.C. Tripp, G.W. Hohmann and C.M. Swift, Twodimensional resistivity inversion, *Geophysics* 49.
- 30. Vedanti et al., 2005 N. Vedanti, R. Srivastava, J. Sagode and V.P. Dimri, An efficient 1D Occam's inversion algorithm using analytically computed first-and second-order derivatives for DC resistivity soundings, *Computers & Geosciences* 31 (3).

ПАРАРТНМА А

ΔΕΔΟΜΕΝΑ ΠΟΥ ΣΥΛΛΕΧΤΗΚΑΝ ΑΠΟ ΤΙΣ ΒΥΘΟΣΚΟΠΗΣΕΙΣ

βυθοσκόπ	ιιση Ο1Α	βυθοσκά	οπιση Ο1C2	βυθοσκόπ	τιση Ο1D
AB/2	Ro_a	AB/2	Ro_a	AB/2	Ro_a
1	189.97	1	543.85	1	76.616
1.2	144.69	1.2	445.83	1.2	75.465
1.5	126.39	1.5	428.14	1.5	70.579
1.8	161.05	1.8	413.05	1.8	67.654
2.2	184.95	2.2	414.89	2.2	54.863
2.7	192.97	2.7	450.03	2.7	58.371
3.3	185.33	3.3	456.5	3.3	59.943
3.9	155.22	3.9	436.52	3.9	54.971
4.7	176.87	4.7	398.84	4.7	54.033
5.6	189.46	5.6	449.83	5.6	55.143
6.8	246.83	6.8	406.54	6.8	55.463
8.2	266.03	8.2	357.87	8.2	51.727
10	280.4	10	385.59	10	52.375
12	284.4	12	359.47	12	50.189
15	264.94	15	346.19	15	49.737
18	311.31	18	329.63	18	49.748
22	255.62	22	283.74	22	48.48
27	147.19	27	358.92	27	54.021
33	114.55	33	285.53	33	59.498
39	137.07	39	252.65	39	63.52
47	25.31	47	264.27	47	69.764
56	29.541	56	210.72	56	63.862
68	25.65	68	611.27	68	68.24
82	23.198	82	177.35	82	89.731
100	42.076	100	172.7	100	90.275
120	62.398	120	189.91	120	173.03
150	34.795	150	211.95	150	5722
180	27.468	180	681.63	180	79.354
220	26.595	220	1030	220	72.948
270	32.046	270	7693	270	130.48
330	47.872	330	0	330	59.84
390	57.311				
470	61.846				

βυθοσκ	όπιση Ο1Ε	βυθοσκόπι	ση Ο2Α	βυθοσκόπι	ση O2C
AB/2	Ro_a	AB/2	Ro_a	AB/2	Ro_a
1	94.2	1	151.03	1	1.595
1.2	90.43	1.2	141.53	1.2	2.495
1.5	83.15	1.5	141.22	1.5	3.521
1.8	83.93	1.8	132.05	1.8	3.053
2.2	69	2.2	117.78	2.2	2.828
2.7	78.29	2.7	119.03	2.7	3.755
3.3	77.28	3.3	103.26	3.3	9.1
3.9	77.9	3.9	98.38	3.9	19.83
4.7	84.48	4.7	88.09	4.7	7.841
5.6	82.52	5.6	89.157	5.6	22.167
6.8	85.81	6.8	86.24	6.8	392.22
8.2	85.29	8.2	86.56	8.2	420.37
10	94.51	10	88.548	10	458.67
12	93.6	12	88.894	12	434.74
15	97.71	15	88.383	15	382.41
18	97.67	18	94.105	18	358.29
22	91.64	22	105.47	22	308.66
27	89.5	27	115.83	27	270.24
33	75.14	33	124.81	33	236.06
39	65.9	39	138.5	39	215.03
47	56.87	47	138.73	47	201.25
56	50.71	56	139.83	56	187.19
				68	159.79
				82	211.24
				100	179
				120	154
				150	203.23
				180	2100
				220	159.65

ПАРАРТНМА В

ΔΕΔΟΜΕΝΑ ΠΟΥ ΣΥΛΛΕΧΤΗΚΑΝ ΑΠΟ ΤΙΣ ΤΟΜΟΓΡΑΦΙΕΣ

		ΓΡΑΙ	MMH 4				ΓΡΑΜΜΗ	15	
θ	εση ηλ.(m)	αποσταση (m)	επιπεδ 0	p(Ωm)		θεση ηλ.(m)	αποσταση (m)	επιπεδο	p(Ωm)
	4,5	3	1	161,157		6	4	1	163,224
	7,5	3	1	170,85901		10	4	1	195,268
	10,5	3	1	138,576		14	4	1	143,436
	13,5	3	1	140,952		18	4	1	152,548
	16,5	3	1	136,953		22	4	1	221,136
	19,5	3	1	156,378		26	4	1	241,096
	22,5	3	1	167,74501		30	4	1	309,628
	25,5	3	1	165,789		34	4	1	283,336
	28,5	3	1	169,24799		38	4	1	267,812
	31,5	3	1	148,371		42	4	1	258,308
	34,5	3	1	158,853		46	4	1	233,356
	37,5	3	1	172,64099		50	4	1	186,568
	40,5	3	1	157,28101		54	4	1	182,488
	43,5	3	1	174,528		58	4	1	160,824
	46,5	3	1	192,804		62	4	1	195,376
	49,5	3	1	228,74099		70	4	1	206,1
	52,5	3	1	190,11599		74	4	1	218,988
	55,5	3	1	241,428		78	4	1	170,94
	58,5	3	1	186,23101		82	4	1	245,7
	61,5	3	1	196,15499		86	4	1	173,676
	64,5	3	1	184,79399		90	4	1	188,696
	67,5	3	1	164,085		94	4	1	179,804
	70,5	3	1	145,401		98	4	1	177,016
	73,5	3	1	147,252		102	4	1	233,136
	76,5	3	1	137,373		106	4	1	191,04
	79,5	3	1	118,992		110	4	1	222
	82,5	3	1	126,234		114	4	1	131,412
	85,5	3	1	119,064		118	4	1	114,004

88,5	3	1	142,719	122	4	1	121,764
91,5	3	1	118,866	126	4	1	123,884
94,5	3	1	147,579	130	4	1	127,916
97,5	3	1	152,133	134	4	1	83,836
100,5	3	1	126,438	138	4	1	111,16
103,5	3	1	121,203	142	4	1	82,732
106,5	3	1	139,74	146	4	1	127,672
109,5	3	1	101,061	150	4	1	140,932
112,5	3	1	133,107	10	4	2	214,932
115,5	3	1	117,36	14	4	2	156,624
7,5	3	2	238,13401	18	4	2	156,584
10,5	3	2	221,01	22	4	2	190,548
13,5	3	2	199,347	26	4	2	216,568
16,5	3	2	186	30	4	2	257,768
19,5	3	2	183,807	34	4	2	227,132
22,5	3	2	220,28101	38	4	2	215,848
25,5	3	2	206,76899	42	4	2	258,632
28,5	3	2	191,72401	46	4	2	250,444
31,5	3	2	172,09501	50	4	2	175,66
34,5	3	2	186,15	54	4	2	194,164
37,5	3	2	205,09799	58	4	2	193,104
40,5	3	2	168,35099	62	4	2	187,5
43,5	3	2	175,37701	66	4	2	156,796
46,5	3	2	212,478	82	4	2	238,164
49,5	3	2	219,51	86	4	2	178,604
52,5	3	2	188,78699	90	4	2	180,3
55,5	3	2	238,56599	94	4	2	181,368
58,5	3	2	210,06301	98	4	2	156,632
64,5	3	2	244,218	102	4	2	168,532
67,5	3	2	196,24501	106	4	2	174,896
70,5	3	2	184,761	110	4	2	203,124
				 i			

73,5	3	2	198,84		114	4	2	108,3
76,5	3	2	175,41		118	4	2	107,304
79,5	3	2	141,792		122	4	2	109,308
82,5	3	2	148,335		126	4	2	115,14
85,5	3	2	149,481		130	4	2	127,072
88,5	3	2	136,239		134	4	2	77,024
91,5	3	2	92,544003		138	4	2	95,604
94,5	3	2	116,319		142	4	2	91,104
97,5	3	2	140,634		146	4	2	100,788
100,5	3	2	103,392		150	4	2	112,512
103,5	3	2	105,246		14	4	3	158,064
106,5	3	2	115,329		18	4	3	151,08
109,5	3	2	93,155997		22	4	3	178,824
112,5	3	2	100,479		26	4	3	235,584
10,5	3	3	250,94099		30	4	3	257,748
13,5	3	3	232,335		34	4	3	202,752
16,5	3	3	201,129		38	4	3	199,6
19,5	3	3	206,01899		46	4	3	249,788
22,5	3	3	243,89099		50	4	3	174,54
25,5	3	3	230,775		54	4	3	203,78
28,5	3	3	201,108		58	4	3	206,924
31,5	3	3	175,797		62	4	3	206,352
34,5	3	3	193,053		66	4	3	176,34
37,5	3	3	205,422		70	4	3	193,244
40,5	3	3	176,91301		74	4	3	210,492
43,5	3	3	182,982		78	4	3	166,624
46,5	3	3	201,279	1	82	4	3	246,208
49,5	3	3	235,97999		86	4	3	188,5
52,5	3	3	196,04099	1	90	4	3	193,592
55,5	3	3	227,772	1	94	4	3	157,404
58,5	3	3	204,77401		98	4	3	140

61,5	3	3	255,183	102	4	3	171,14
64,5	3	3	251,46301	106	4	3	200,592
67,5	3	3	214,49099	110	4	3	233,664
70,5	3	3	201,14399	114	4	3	104,736
73,5	3	3	205,722	118	4	3	98,804
76,5	3	3	206,847	122	4	3	113,884
79,5	3	3	170,09099	126	4	3	140,836
82,5	3	3	184,13401	130	4	3	161,2
85,5	3	3	168,936	134	4	3	80,384
88,5	3	3	149,409	138	4	3	93,66
91,5	3	3	101,4	142	4	3	86,296
94,5	3	3	128,034	146	4	3	113,132
97,5	3	3	149,958	18	4	4	144,304
100,5	3	3	125,766	22	4	4	179,82
103,5	3	3	113,94	26	4	4	218,34
106,5	3	3	120,333	30	4	4	261,64
109,5	3	3	100,551	34	4	4	217,008
13,5	3	4	229,17001	38	4	4	203,848
16,5	3	4	223,053	42	4	4	238,98
19,5	3	4	218,80499	46	4	4	233,568
22,5	3	4	266,59501	50	4	4	177,836
25,5	3	4	239,08801	54	4	4	210,044
28,5	3	4	215,87401	62	4	4	218,82
31,5	3	4	181,092	66	4	4	176,968
34,5	3	4	181,63801	70	4	4	203,512
37,5	3	4	204,10201	74	4	4	218,12
40,5	3	4	180,246	78	4	4	181,148
43,5	3	4	183,267	82	4	4	269,688
46,5	3	4	211,22701	86	4	4	191,956
49,5	3	4	235,17001	90	4	4	187,292
52,5	3	4	200,529	94	4	4	139,616

55,5	3	4	234,98699		98	4	4	127,34
58,5	3	4	203,982		102	4	4	191,116
61,5	3	4	247,239		106	4	4	209,236
64,5	3	4	247,22701		110	4	4	249,232
67,5	3	4	209,343		114	4	4	111,344
70,5	3	4	203,892		118	4	4	114,072
73,5	3	4	202,818		122	4	4	115,172
76,5	3	4	207,432		126	4	4	145,688
79,5	3	4	193,407		130	4	4	177,524
82,5	3	4	206,04901		134	4	4	102,04
85,5	3	4	177,83699		138	4	4	102,484
88,5	3	4	156,44099		142	4	4	85,324
91,5	3	4	113,751		22	4	5	173,656
94,5	3	4	138,264		26	4	5	211,572
97,5	3	4	165,228		30	4	5	257,604
100,5	3	4	139,377		34	4	5	233,872
103,5	3	4	129,918		38	4	5	207,444
106,5	3	4	132,612		42	4	5	239,108
16,5	3	5	227,571		46	4	5	227,116
19,5	3	5	238,821		50	4	5	171,148
22,5	3	5	271,81199		54	4	5	193,108
25,5	3	5	252,44399		58	4	5	203,072
28,5	3	5	220,536		62	4	5	199,74
31,5	3	5	181,014		66	4	5	186,88
34,5	3	5	179,31		70	4	5	215,692
37,5	3	5	193,66199		74	4	5	232,836
40,5	3	5	175,37999		78	4	5	188,14
43,5	3	5	188,89501		86	4	5	190,02
46,5	3	5	215,95499		94	4	5	128,056
49,5	3	5	231,864		98	4	5	138,096
52,5	3	5	202,896		102	4	5	190,38
			1	11		1	1	1

55,5	3	5	239,025	106	4	5	220,552
58,5	3	5	202,932	110	4	5	240,576
61,5	3	5	237,465	114	4	5	132,084
64,5	3	5	237,42599	118	4	5	123,796
67,5	3	5	200,418	122	4	5	124,696
70,5	3	5	189,414	126	4	5	152,448
73,5	3	5	195,207	130	4	5	200,808
76,5	3	5	208,683	134	4	5	101,736
79,5	3	5	192,735	138	4	5	117,356
82,5	3	5	208,896	26	4	6	219,272
85,5	3	5	183,00601	30	4	6	268,644
88,5	3	5	159,31199	34	4	6	225,508
91,5	3	5	115,248	38	4	6	219,176
94,5	3	5	151,125	42	4	6	252,616
97,5	3	5	176,178	46	4	6	219,68
100,5	3	5	149,103	50	4	6	154,16
103,5	3	5	144,057	54	4	6	195,668
19,5	3	6	232,893	58	4	6	192,768
22,5	3	6	289,17299	62	4	6	203,52
25,5	3	6	254,247	66	4	6	177,184
28,5	3	6	220,815	70	4	6	226,464
31,5	3	6	182,68801	74	4	6	260,372
34,5	3	6	180,38401	78	4	6	191,184
37,5	3	6	189,29099	82	4	6	271,804
40,5	3	6	174,564	90	4	6	176,236
43,5	3	6	187,836	94	4	6	140,16
46,5	3	6	211,683	98	4	6	140,272
49,5	3	6	240,033	102	4	6	184,388
52,5	3	6	203,736	106	4	6	204,592
55,5	3	6	232,14901	110	4	6	280,048
58,5	3	6	198,83401	114	4	6	139,416

61,5	3	6	238,73401	118	4	6	151,816
64,5	3	6	230,90099	122	4	6	125,964
67,5	3	6	190,392	126	4	6	159,484
70,5	3	6	185,7	130	4	6	190,644
76,5	3	6	200,01599	134	4	6	120,988
79,5	3	6	179,832	30	4	7	261,156
82,5	3	6	197,83801	34	4	7	226,52
85,5	3	6	190,52401	38	4	7	214,644
88,5	3	6	165,46199	42	4	7	256,256
91,5	3	6	118,509	46	4	7	215,736
94,5	3	6	154,82701	50	4	7	156,188
97,5	3	6	188,772	54	4	7	169,136
100,5	3	6	154,56899	58	4	7	189,42
22,5	3	7	285,81301	62	4	7	182,208
25,5	3	7	259,539	66	4	7	182,436
28,5	3	7	220,65	70	4	7	225,544
31,5	3	7	184,24501	74	4	7	267,808
34,5	3	7	181,107	78	4	7	188,104
37,5	3	7	199,66199	82	4	7	274,84
40,5	3	7	172,575	86	4	7	167,576
43,5	3	7	174,45	90	4	7	193,3
46,5	3	7	211,37401	94	4	7	134,368
49,5	3	7	238,55099	98	4	7	128,34
52,5	3	7	202,068	102	4	7	181,76
55,5	3	7	226,15499	106	4	7	222,988
58,5	3	7	195,357	110	4	7	265,896
61,5	3	7	232,39799	114	4	7	145,432
64,5	3	7	225,40499	118	4	7	119,652
67,5	3	7	183,639	122	4	7	136,364
70,5	3	7	184,32001	126	4	7	157,172
73,5	3	7	184,761	130	4	7	202,232

76,5	3	7	190,07401	34	4	8	246,436
79,5	3	7	174,354	38	4	8	234,684
82,5	3	7	194,63101	42	4	8	227,776
85,5	3	7	176,03101	46	4	8	221,264
88,5	3	7	170,76301	50	4	8	183,34
91,5	3	7	123,75	54	4	8	172,012
94,5	3	7	160,365	58	4	8	181,904
97,5	3	7	193,008	62	4	8	191,548
25,5	3	8	253,578	66	4	8	204,352
28,5	3	8	227,35201	70	4	8	233,696
31,5	3	8	196,557	74	4	8	231,416
34,5	3	8	193,407	78	4	8	250,848
37,5	3	8	189,47701	82	4	8	224,348
40,5	3	8	182,25901	86	4	8	226,552
43,5	3	8	185,625	90	4	8	177,784
46,5	3	8	205,28401	94	4	8	157,764
49,5	3	8	214,07401	98	4	8	153,436
52,5	3	8	221,60099	102	4	8	190,964
55,5	3	8	210,57599	106	4	8	234,44
58,5	3	8	216,85499	110	4	8	227,44
61,5	3	8	207,91199	114	4	8	186,48
64,5	3	8	210,23699	118	4	8	148,196
67,5	3	8	197,94	122	4	8	138,128
70,5	3	8	176,63699	126	4	8	175,048
73,5	3	8	173,15099	38	4	9	233,924
76,5	3	8	173,133	42	4	9	231,456
79,5	3	8	176,01899	46	4	9	204,748
82,5	3	8	170,865	50	4	9	192,484
85,5	3	8	175,11599	54	4	9	181,12
88,5	3	8	156,879	58	4	9	190,312
91,5	3	8	154,593	62	4	9	197,424

94,5	3	8	165,01199	66	4	9	207,24
28,5	3	9	218,7	70	4	9	228,628
31,5	3	9	203,79901	74	4	9	229,824
34,5	3	9	193,79399	78	4	9	237,752
37,5	3	9	185,54099	82	4	9	233,832
40,5	3	9	187,88401	86	4	9	241,84
43,5	3	9	185,57701	90	4	9	174,02
46,5	3	9	202,422	94	4	9	152,52
49,5	3	9	206,07001	98	4	9	174,076
52,5	3	9	217,668	102	4	9	204,076
55,5	3	9	204,73801	106	4	9	253,828
58,5	3	9	204,957	110	4	9	226,184
61,5	3	9	208,461	114	4	9	206,496
64,5	3	9	216,21301	118	4	9	142,136
67,5	3	9	195,825	122	4	9	151,736
70,5	3	9	171,72001	42	4	10	224,404
73,5	3	9	168,99901	46	4	10	211,916
76,5	3	9	164,01	50	4	10	181,964
79,5	3	9	166,19399	54	4	10	191,02
82,5	3	9	168,15	58	4	10	201,948
85,5	3	9	164,74799	62	4	10	203,012
88,5	3	9	149,979	66	4	10	183,028
91,5	3	9	150,702	70	4	10	235,976
31,5	3	10	198,735	74	4	10	219,716
34,5	3	10	192,183	78	4	10	261,544
37,5	3	10	191,29501	82	4	10	244,384
40,5	3	10	186,55499	86	4	10	243,788
43,5	3	10	187,40099	90	4	10	176,664
46,5	3	10	200,91599	94	4	10	161,768
49,5	3	10	205,21199	98	4	10	161,796
52,5	3	10	205,26899	102	4	10	223,524

55,5	3	10	198,093	106	4	10	257,66
58,5	3	10	210,04799	110	4	10	238,368
61,5	3	10	217,65901	114	4	10	184,712
64,5	3	10	212,118	118	4	10	146,572
67,5	3	10	189,21	46	4	11	211,892
70,5	3	10	171,36	50	4	11	190,176
73,5	3	10	164,86199	54	4	11	191,348
76,5	3	10	156,414	58	4	11	203,688
79,5	3	10	159,918	62	4	11	201,3
82,5	3	10	156,38401	66	4	11	200,372
85,5	3	10	163,653	70	4	11	225,012
88,5	3	10	146,148	74	4	11	247,972
34,5	3	11	190,821	78	4	11	276,22
37,5	3	11	189,933	82	4	11	245,588
40,5	3	11	184,34099	86	4	11	237,344
43,5	3	11	183,975	90	4	11	193,312
46,5	3	11	200,865	94	4	11	163,7
49,5	3	11	199,182	98	4	11	166,528
52,5	3	11	198,70499	102	4	11	214,292
55,5	3	11	194,53801	106	4	11	276,324
58,5	3	11	215,115	110	4	11	231,62
61,5	3	11	214,086	114	4	11	200,528
64,5	3	11	206,07599	50	4	12	193,216
67,5	3	11	181,335	54	4	12	195,652
70,5	3	11	163,635	58	4	12	195,132
73,5	3	11	163,071	62	4	12	203,74
76,5	3	11	154,06199	66	4	12	177,536
79,5	3	11	150,861	70	4	12	245,292
82,5	3	11	149,703	74	4	12	252,944
85,5	3	11	154,311	78	4	12	276,62
37,5	3	12	182,643	82	4	12	240,944

40,5	3	12	182,22001	86	4	12	257,012
43,5	3	12	186,24	90	4	12	179,58
46,5	3	12	197,385	94	4	12	172,504
49,5	3	12	202,18801	98	4	12	152,296
52,5	3	12	208,329	102	4	12	220,9
55,5	3	12	199,94399	106	4	12	251,288
58,5	3	12	206,84399	110	4	12	244,344
61,5	3	12	204,204	54	4	13	185,728
64,5	3	12	200,30099	58	4	13	202,52
67,5	3	12	182,529	62	4	13	207,968
70,5	3	12	162,078	66	4	13	216,796
73,5	3	12	156,44399	70	4	13	268,716
76,5	3	12	151,056	74	4	13	252,996
79,5	3	12	149,307	78	4	13	270,584
82,5	3	12	146,466	82	4	13	265,048
40,5	3	13	177,204	86	4	13	253,716
43,5	3	13	181,92299	90	4	13	198,104
46,5	3	13	197,043	94	4	13	155,436
49,5	3	13	206,535	98	4	13	173,056
52,5	3	13	213,933	102	4	13	209,34
55,5	3	13	198,47999	106	4	13	258,296
58,5	3	13	194,29501	58	4	14	209,284
61,5	3	13	196,425	62	4	14	214,532
64,5	3	13	198,62999	66	4	14	232,448
67,5	3	13	178,617	70	4	14	279,896
70,5	3	13	158,307	74	4	14	247,724
73,5	3	13	156,87599	78	4	14	291,552
76,5	3	13	148,422	82	4	14	245,512
79,5	3	13	149,334	86	4	14	288,772
43,5	3	14	188,004	90	4	14	182,776
46,5	3	14	205,692	94	4	14	167,844
					·		

49,5	3	14	211,983	98	4	14	143,176
52,5	3	14	211,11301	102	4	14	222,84
55,5	3	14	192,15	62	4	15	224,504
58,5	3	14	181,17001	66	4	15	199,376
61,5	3	14	188,45099	70	4	15	273,756
64,5	3	14	188,46301	74	4	15	284,924
67,5	3	14	180,45	78	4	15	293,172
70,5	3	14	160,986	82	4	15	280,336
73,5	3	14	155,74501	86	4	15	272,32
76,5	3	14	149,421	90	4	15	206,52
46,5	3	15	210,789	94	4	15	148,196
49,5	3	15	213,47701	98	4	15	160,5
52,5	3	15	204,132	66	4	16	195,096
55,5	3	15	187,06199	70	4	16	302,292
58,5	3	15	182,07001	74	4	16	271,564
64,5	3	15	185,80499	78	4	16	347,776
67,5	3	15	174,567	82	4	16	291,58
70,5	3	15	160,04399	86	4	16	292,776
73,5	3	15	155,778	90	4	16	154,628
49,5	3	16	207,183	94	4	16	162,788
52,5	3	16	196,71599	70	4	17	299,476
55,5	3	16	186,528	74	4	17	318,624
58,5	3	16	175,36199	78	4	17	343,544
61,5	3	16	188,79901	82	4	17	299,844
64,5	3	16	190,26899	86	4	17	230,096
67,5	3	16	173,571	90	4	17	176,104
70,5	3	16	156,336	74	4	18	317,844
52,5	3	17	196,37999	78	4	18	361,144
55,5	3	17	186,66899	82	4	18	254,764
58,5	3	17	176,358	86	4	18	271,22
61,5	3	17	192,393	78	4	19	327,776

64,5	3	17	192,34501	82	4	19	274,712
67,5	3	17	177,186				
55,5	3	18	185,84399				
58,5	3	18	184,86899				
61,5	3	18	192,46199				
64,5	3	18	191,835				
58,5	3	19	185,1				
61,5	3	19	197,29799				

	ΓΡΑΝ	1MH 6		ΓΡΑΜΜΗ 7				
θεση ηλ.(m)	αποσταση (m)	επιπεδο	p(Ωm)	I	θεση ηλ.(m)	αποσταση (m)	επιπεδο	p(Ωm)
9	6	1	93,64		7,5	5	1	146
15	6	1	129,34		12,5	5	1	150,18
21	6	1	115,71		17,5	5	1	183,64
27	6	1	127,48		22,5	5	1	150,21
33	6	1	128,06		27,5	5	1	198,1
39	6	1	103,32		32,5	5	1	127,53
45	6	1	142,54		37,5	5	1	183,44
51	6	1	101,77		42,5	5	1	112,13
57	6	1	122,35		47,5	5	1	179,44
63	6	1	133,79		52,5	5	1	132,22
69	6	1	111,4		57,5	5	1	134,32
75	6	1	102,65		62,5	5	1	181,6
81	6	1	118,55		67,5	5	1	120,5
87	6	1	118,16		72,5	5	1	170
93	6	1	124,16		77,5	5	1	90,91
99	6	1	128,88		82,5	5	1	168,67
105	6	1	116		87,5	5	1	96,77
111	6	1	130,25		92,5	5	1	136,31
117	6	1	91,99		97,5	5	1	141,42
123	6	1	118,39		102,5	5	1	102,91
129	6	1	123,8		107,5	5	1	133,48
135	6	1	158,6		112,5	5	1	114,2
141	6	1	187,79		117,5	5	1	91,82
147	6	1	194,51		122,5	5	1	87,82
153	6	1	273,61	 	127,5	5	1	99,75
159	6	1	153,66	 	132,5	5	1	93,82
165	6	1	220,97	 	137,5	5	1	106,27
171	6	1	150,4	 	142,5	5	1	74,62

177 6 1 112.3 147.5 5 1 116.31 189 6 1 81.24 152.5 5 1 105.04 195 6 1 87.44 157.5 5 1 104.26 201 6 1 90.93 162.5 5 1 112.61 207 6 1 90.93 167.5 5 1 114.02 213 6 1 75.68 177.5 5 1 114.02 219 6 1 75.68 177.5 5 1 114.02 219 6 2 126.3 182.5 5 1 114.02 219 6 2 126.3 182.5 5 1 114.02 219 6 2 126.3 182.5 5 1 114.02 219 6 2 127.6 127.5 5 2 194.83 33 6 2 115.32 12.5 5 2 194.83						L	1	
189 6 1 $81,24$ 152,5 5 1 105,04 195 6 1 $87,44$ 157,5 5 1 149,29 201 6 1 69,9 162,5 5 1 112,61 207 6 1 90,93 167,5 5 1 114,62 213 6 1 90,93 167,5 5 1 144,02 213 6 1 75,68 177,5 5 1 144,02 219 6 1 75,68 177,5 5 1 144,02 33 6 2 127,63 187,5 5 1 144,39 33 6 2 119,06 192,5 5 1 129,44 45 6 2 135,32 12,5 5 2 194,83 51 6 2 135,48 32,5 5 2 189,43 </td <td>177</td> <td>6</td> <td>1</td> <td>112,3</td> <td>147,5</td> <td>5</td> <td>1</td> <td>116,31</td>	177	6	1	112,3	147,5	5	1	116,31
19561 87.44 157.551149.2920161 69.9 162.5 51 112.61 20761 90.93 167.5 51 114.02 21361 83.73 172.5 51 114.02 21961 75.68 177.5 51 96.63 2762 124.3 182.5 51 113.6 3362 127.63 187.5 51 64.39 3362 119.66 192.5 51 129.44 4562 155.32 12.5 52 194.83 5162 118.53 17.5 52 209.48 5762 133.81 22.5 52 189.43 6362 152.92 27.5 52 180.26 7562 163.48 37.5 52 168.4 8162 148.54 42.5 52 148.471 9962 154.22 57.5 52 187.48 11162 162.05 67.5 52 168.74 11162 162.05 67.5 52 168.74 11162 162.05 67.5 52 168.74 11162 162.05 67.5 5	189	6	1	81,24	152,5	5	1	105,04
201 6 1 69,9 162,5 5 1 112,61 207 6 1 90,93 167,5 5 1 151,24 213 6 1 83,73 172,5 5 1 14,02 219 6 1 75,68 177,5 5 1 96,63 27 6 2 124,3 182,5 5 1 113,6 33 6 2 127,63 187,5 5 1 64,39 39 6 2 119,06 192,5 5 1 129,24 45 6 2 118,53 17,5 5 2 194,83 51 6 2 113,84 22,5 5 2 189,43 63 6 2 135,48 32,5 5 2 180,26 75 6 2 148,54 42,5 5 2 144,71 <tr< td=""><td>195</td><td>6</td><td>1</td><td>87,44</td><td>157,5</td><td>5</td><td>1</td><td>149,29</td></tr<>	195	6	1	87,44	157,5	5	1	149,29
207 6 1 90,93 167.5 5 1 151,24 213 6 1 $83,73$ $172,5$ 5 1 $114,02$ 219 6 1 $75,68$ $177,5$ 5 1 $96,63$ 27 6 2 $124,3$ $182,5$ 5 1 $113,6$ 33 6 2 $127,63$ $187,5$ 5 1 $64,39$ 33 6 2 $127,63$ $187,5$ 5 1 $129,24$ 45 6 2 $115,32$ 125 5 2 $194,83$ 51 6 2 $118,53$ $17,5$ 5 2 $209,48$ 57 6 2 $113,81$ $22,5$ 5 2 $189,43$ 63 6 2 $133,81$ $22,5$ 5 2 $180,26$ 75 6 2 $148,54$ $42,5$ 5 2 $180,26$ 75 6 2 $162,01$ $52,5$	201	6	1	69,9	162,5	5	1	112,61
213 6 1 $83,73$ $172,5$ 5 1 $114,02$ 219 6 1 $75,68$ $177,5$ 5 1 $96,63$ 27 6 2 $124,3$ $182,5$ 5 1 $113,6$ 33 6 2 $127,63$ $187,5$ 5 1 $64,39$ 39 6 2 $119,06$ $192,5$ 5 1 $129,24$ 45 6 2 $155,32$ $12,5$ 5 2 $194,83$ 51 6 2 $118,53$ $17,5$ 5 2 $209,48$ 57 6 2 $133,81$ $22,5$ 5 2 $184,83$ 63 6 2 $135,48$ $32,5$ 5 2 $180,26$ 75 6 2 $163,48$ $37,5$ 5 2 $216,42$ 93 6 2 $148,54$ $42,5$ 5 2 $144,71$ 99 6 2 $158,9$ $62,5$	207	6	1	90,93	167,5	5	1	151,24
21961 $75,68$ $177,5$ 51 $96,63$ 27 62 $124,3$ $182,5$ 51 $113,6$ 33 62 $127,63$ $187,5$ 51 $64,39$ 39 62 $119,06$ $192,5$ 51 $129,24$ 45 62 $155,32$ 12.5 52 $194,83$ 51 62 $118,53$ $17,5$ 52 $209,48$ 57 62 $133,81$ 22.5 52 $189,43$ 63 62 $152,92$ $27,5$ 52 $180,26$ 75 62 $135,48$ $32,5$ 52 $180,26$ 75 62 $148,54$ $42,5$ 52 $180,26$ 75 62 $143,81$ $47,5$ 52 $215,42$ 93 62 $162,01$ $52,5$ 52 $144,71$ 99 62 $158,9$ $62,5$ 52 $149,02$ 105 62 $128,69$ $72,5$ 52 $114,71$ 117 62 $128,69$ $72,5$ 52 $118,53$ 129 62 $187,8$ $82,5$ 52 $118,53$ 129 62 $128,69$ $72,5$ 52 $128,47$ 114 62 $190,05$ $92,5$ 52 $118,53$ 129 62 <td>213</td> <td>6</td> <td>1</td> <td>83,73</td> <td>172,5</td> <td>5</td> <td>1</td> <td>114,02</td>	213	6	1	83,73	172,5	5	1	114,02
2762 $124,3$ $182,5$ 51 $113,6$ 33 62 $127,63$ $187,5$ 51 $64,39$ 39 62 $119,06$ $192,5$ 51 $129,24$ 45 62 $155,32$ $12,5$ 52 $194,83$ 51 62 $118,53$ $17,5$ 52 $209,48$ 57 62 $133,81$ $222,5$ 52 $189,43$ 63 62 $152,92$ $27,5$ 52 $180,26$ 69 62 $135,48$ $32,5$ 52 $180,26$ 75 62 $163,48$ $37,5$ 52 $215,42$ 87 62 $148,54$ $42,5$ 52 $180,26$ 75 62 $162,01$ $52,5$ 52 $144,71$ 93 62 $162,01$ $52,5$ 52 $144,71$ 99 62 $154,22$ $57,5$ 52 $144,71$ 99 62 $122,69$ $72,5$ 52 $157,44$ 111 62 $120,55$ $67,5$ 52 $158,74$ 1123 62 $170,25$ $77,5$ 52 $158,74$ 1123 62 $190,81$ $87,5$ 52 $132,47$ 1141 62 $190,81$ $87,5$ 52 $132,47$ 141 6 <td< td=""><td>219</td><td>6</td><td>1</td><td>75,68</td><td>177,5</td><td>5</td><td>1</td><td>96,63</td></td<>	219	6	1	75,68	177,5	5	1	96,63
3362127,63187,55164,393962119,06192,551129,244562155,3212,552194,835162118,5317,552209,485762133,8122,552189,436362152,9227,552180,436362135,4832,552180,267562163,4837,552215,427562148,5442,552168,48762143,8147,552215,429362154,2257,552149,0210562158,962,552168,7111162128,6972,552168,7112362170,2577,552186,8112362190,8187,552132,4714162190,8187,552155,214762237,1297,552155,451536225,44102,552165,451536225,44102,552139,161596225,44102,55	27	6	2	124,3	182,5	5	1	113,6
3962119,06192,551129,24 45 62155,3212,552194,83 51 62118,5317,552209,48 57 62133,8122,552189,43 63 62152,9227,552215,46 69 62135,4832,552180,26 75 62163,4837,552216,46 87 62148,5442,552216,47 81 62148,5442,552216,47 93 62162,0152,552144,71 99 62154,2257,552149,02 105 62128,6972,552168,71 111 62162,0567,552168,71 111 62128,6972,552186,71 112 62190,8187,552132,47 144 62190,9592,552152,2 144 62237,1297,552152,47 144 62237,1297,552152,47 144 62208,54102,552165,45 153 62 </td <td>33</td> <td>6</td> <td>2</td> <td>127,63</td> <td>187,5</td> <td>5</td> <td>1</td> <td>64,39</td>	33	6	2	127,63	187,5	5	1	64,39
45 6 2 $155,32$ $12,5$ 5 2 $194,83$ 51 6 2 $118,53$ $17,5$ 5 2 $209,48$ 57 6 2 $133,81$ $22,5$ 5 2 $189,43$ 63 6 2 $152,92$ $27,5$ 5 2 $215,46$ 69 6 2 $135,48$ $32,5$ 5 2 $210,91$ 81 6 2 $163,48$ $37,5$ 5 2 $210,91$ 81 6 2 $148,54$ $42,5$ 5 2 $168,4$ 87 6 2 $143,81$ $47,5$ 5 2 $215,42$ 93 6 2 $162,01$ $52,5$ 5 2 $144,71$ 99 6 2 $154,22$ $57,5$ 5 2 $149,02$ 105 6 2 $128,69$ $72,5$ 5 2 $168,71$ 111 6 2 $122,69$ $72,5$ 5 2 $1168,71$ 123 6 2 $128,69$ $72,5$ 5 2 $1168,71$ 123 6 2 $190,81$ $87,5$ 5 2 $118,53$ 129 6 2 $199,81$ $87,5$ 5 2 $132,47$ 141 6 2 $199,81$ $87,5$ 5 2 $152,2$ 144 6 2 $199,85$ $92,5$ 5 2 $152,2$	39	6	2	119,06	192,5	5	1	129,24
51 6 2 $118,53$ $17,5$ 5 2 $209,48$ 57 6 2 $133,81$ $22,5$ 5 2 $1189,43$ 63 6 2 $152,92$ $27,5$ 5 2 $215,46$ 69 6 2 $135,48$ $32,5$ 5 2 $210,91$ 75 6 2 $163,48$ $37,5$ 5 2 $210,91$ 81 6 2 $148,54$ $42,5$ 5 2 $216,42$ 93 6 2 $143,81$ $47,5$ 5 2 $215,42$ 93 6 2 $162,01$ $52,5$ 5 2 $144,71$ 99 6 2 $154,22$ $57,5$ 5 2 $144,71$ 99 6 2 $158,9$ $62,5$ 5 2 $208,66$ 111 6 2 $128,69$ $72,5$ 5 2 $168,71$ 117 6 2 $170,25$ $77,5$ 5 2 $168,71$ 113 6 2 $190,81$ $87,5$ 5 2 $132,47$ 144 6 2 $190,81$ $87,5$ 5 2 $132,47$ 144 6 2 $237,12$ $97,5$ 5 2 $132,47$ 144 6 2 $208,54$ $102,5$ 5 2 $145,45$ 153 6 2 $208,54$ $107,5$ 5 2 $139,16$ <	45	6	2	155,32	12,5	5	2	194,83
57 6 2 $133,81$ $22,5$ 5 2 $189,43$ 63 6 2 $152,92$ $27,5$ 5 2 $215,46$ 69 6 2 $135,48$ $32,5$ 5 2 $180,26$ 75 6 2 $163,48$ $37,5$ 5 2 $210,91$ 81 6 2 $148,54$ $42,5$ 5 2 $210,91$ 81 6 2 $148,54$ $42,5$ 5 2 $2168,4$ 87 6 2 $143,81$ $47,5$ 5 2 $215,42$ 93 6 2 $162,01$ $52,5$ 5 2 $144,71$ 99 6 2 $154,22$ $57,5$ 5 2 $144,71$ 99 6 2 $158,9$ $62,5$ 5 2 $208,66$ 111 6 2 $122,05$ $67,5$ 5 2 $168,71$ 111 6 2 $170,25$ $77,5$ 5 2 $168,71$ 123 6 2 $190,81$ $87,5$ 5 2 $132,47$ 141 6 2 $190,81$ $87,5$ 5 2 $132,47$ 144 6 2 $228,44$ $102,5$ 5 2 $155,2$ 153 6 2 $228,44$ $102,5$ 5 2 $94,98$ 159 6 2 $208,54$ $107,5$ 5 2 $139,16$ <td>51</td> <td>6</td> <td>2</td> <td>118,53</td> <td>17,5</td> <td>5</td> <td>2</td> <td>209,48</td>	51	6	2	118,53	17,5	5	2	209,48
63 6 2 $152,92$ $27,5$ 5 2 $215,46$ 69 6 2 $135,48$ $32,5$ 5 2 $180,26$ 75 6 2 $163,48$ $37,5$ 5 2 $210,91$ 81 6 2 $148,54$ $42,5$ 5 2 $2168,4$ 87 6 2 $143,81$ $47,5$ 5 2 $215,42$ 93 6 2 $162,01$ $52,5$ 5 2 $144,71$ 99 6 2 $154,22$ $57,5$ 5 2 $144,71$ 99 6 2 $154,22$ $57,5$ 5 2 $144,02$ 105 6 2 $154,22$ $57,5$ 5 2 $144,71$ 105 6 2 $158,9$ $62,5$ 5 2 $208,66$ 111 6 2 $162,05$ $67,5$ 5 2 $157,44$ 117 6 2 $128,69$ $72,5$ 5 2 $168,71$ 112 6 2 $187,8$ $82,5$ 5 2 $170,15$ 123 6 2 $199,05$ $92,5$ 5 2 $132,47$ 141 6 2 $199,05$ $92,5$ 5 2 $155,2$ 147 6 2 $237,12$ $97,5$ 5 2 $155,45$ 153 6 2 $208,54$ $102,5$ 5 2 $194,98$ <td< td=""><td>57</td><td>6</td><td>2</td><td>133,81</td><td>22,5</td><td>5</td><td>2</td><td>189,43</td></td<>	57	6	2	133,81	22,5	5	2	189,43
69 6 2 135,48 32,5 5 2 180,26 75 6 2 163,48 37,5 5 2 210,91 81 6 2 148,54 42,5 5 2 215,42 93 6 2 143,81 47,5 5 2 215,42 93 6 2 162,01 52,5 5 2 144,71 99 6 2 154,22 57,5 5 2 144,71 105 6 2 158,9 62,5 5 2 208,66 111 6 2 162,05 67,5 5 2 168,71 117 6 2 128,69 72,5 5 2 168,71 1123 6 2 170,25 77,5 5 2 168,71 123 6 2 187,8 82,5 5 2 170,15 <	63	6	2	152,92	27,5	5	2	215,46
75 6 2 163,48 37,5 5 2 210,91 81 6 2 148,54 42,5 5 2 168,4 87 6 2 143,81 47,5 5 2 215,42 93 6 2 162,01 52,5 5 2 144,71 99 6 2 154,22 57,5 5 2 149,02 105 6 2 158,9 62,5 5 2 149,02 111 6 2 162,05 67,5 5 2 168,71 111 6 2 128,69 72,5 5 2 168,71 1123 6 2 170,25 77,5 5 2 118,53 123 6 2 190,81 87,5 5 2 170,15 135 6 2 199,05 92,5 5 2 15,2 <t< td=""><td>69</td><td>6</td><td>2</td><td>135,48</td><td>32,5</td><td>5</td><td>2</td><td>180,26</td></t<>	69	6	2	135,48	32,5	5	2	180,26
81 6 2 148,54 42,5 5 2 168,4 87 6 2 143,81 47,5 5 2 215,42 93 6 2 162,01 52,5 5 2 144,71 99 6 2 154,22 57,5 5 2 144,71 99 6 2 154,22 57,5 5 2 144,71 105 6 2 158,9 62,5 5 2 208,66 111 6 2 162,05 67,5 5 2 157,44 117 6 2 128,69 72,5 5 2 168,71 123 6 2 170,25 77,5 5 2 118,53 129 6 2 187,8 82,5 5 2 132,47 141 6 2 199,05 92,5 5 2 155,2 <tr< td=""><td>75</td><td>6</td><td>2</td><td>163,48</td><td>37,5</td><td>5</td><td>2</td><td>210,91</td></tr<>	75	6	2	163,48	37,5	5	2	210,91
87 6 2 143,81 47,5 5 2 215,42 93 6 2 162,01 52,5 5 2 144,71 99 6 2 154,22 57,5 5 2 144,71 99 6 2 154,22 57,5 5 2 149,02 105 6 2 158,9 62,5 5 2 208,66 111 6 2 162,05 67,5 5 2 157,44 117 6 2 128,69 72,5 5 2 168,71 123 6 2 170,25 77,5 5 2 118,53 129 6 2 190,81 87,5 5 2 132,47 141 6 2 199,05 92,5 5 2 155,2 147 6 2 237,12 97,5 5 2 155,45	81	6	2	148,54	42,5	5	2	168,4
93 6 2 162,01 52,5 5 2 144,71 99 6 2 154,22 57,5 5 2 149,02 105 6 2 158,9 62,5 5 2 208,66 111 6 2 162,05 67,5 5 2 157,44 117 6 2 128,69 72,5 5 2 168,71 123 6 2 170,25 77,5 5 2 118,53 129 6 2 187,8 82,5 5 2 132,47 135 6 2 199,05 92,5 5 2 155,2 141 6 2 237,12 97,5 5 2 165,45 153 6 2 258,44 102,5 5 2 139,16 159 6 2 208,54 112,5 5 2 139,16	87	6	2	143,81	47,5	5	2	215,42
99 6 2 154,22 57,5 5 2 149,02 105 6 2 158,9 62,5 5 2 208,66 111 6 2 162,05 67,5 5 2 157,44 117 6 2 128,69 72,5 5 2 168,71 123 6 2 170,25 77,5 5 2 118,53 129 6 2 187,8 82,5 5 2 170,15 135 6 2 190,81 87,5 5 2 132,47 141 6 2 199,05 92,5 5 2 155,2 141 6 2 237,12 97,5 5 2 165,45 153 6 2 258,44 102,5 5 2 94,98 159 6 2 208,54 107,5 5 2 139,16	93	6	2	162,01	52,5	5	2	144,71
105 6 2 158,9 62,5 5 2 208,66 111 6 2 162,05 67,5 5 2 157,44 117 6 2 128,69 72,5 5 2 168,71 123 6 2 170,25 77,5 5 2 118,53 129 6 2 187,8 82,5 5 2 170,15 135 6 2 190,81 87,5 5 2 132,47 141 6 2 199,05 92,5 5 2 155,2 147 6 2 237,12 97,5 5 2 94,98 153 6 2 258,44 102,5 5 2 94,98 159 6 2 208,54 112,5 5 2 139,16 165 6 2 208,54 112,5 5 2 157,69	99	6	2	154,22	57,5	5	2	149,02
11162162,0567,552157,4411762128,6972,552168,7112362170,2577,552118,5312962187,882,552170,1513562190,8187,552132,4714162199,0592,552155,214762237,1297,552165,4515362158,5107,552139,1616562208,54112,552157,69	105	6	2	158,9	62,5	5	2	208,66
11762128,6972,552168,7112362170,2577,552118,5312962187,882,552170,1513562190,8187,552132,4714162199,0592,552155,214762237,1297,552165,4515362258,44102,55294,9815962208,54112,552139,1616562208,54112,552157,69	111	6	2	162,05	67,5	5	2	157,44
12362170,2577,552118,5312962187,882,552170,1513562190,8187,552132,4714162199,0592,552155,214162237,1297,552165,4515362258,44102,55294,9815962158,5107,552139,1616562208,54112,552157,69	117	6	2	128,69	72,5	5	2	168,71
12962187,882,552170,1513562190,8187,552132,4714162199,0592,552155,214762237,1297,552165,4515362258,44102,55294,9815962158,5107,552139,1616562208,54112,552157,69	123	6	2	170,25	77,5	5	2	118,53
135 6 2 190,81 87,5 5 2 132,47 141 6 2 199,05 92,5 5 2 155,2 147 6 2 237,12 97,5 5 2 165,45 153 6 2 258,44 102,5 5 2 94,98 159 6 2 158,5 107,5 5 2 139,16 165 6 2 208,54 112,5 5 2 157,69	129	6	2	187,8	82,5	5	2	170,15
141 6 2 199,05 92,5 5 2 155,2 147 6 2 237,12 97,5 5 2 165,45 153 6 2 258,44 102,5 5 2 94,98 159 6 2 158,5 107,5 5 2 139,16 165 6 2 208,54 112,5 5 2 157,69	135	6	2	190,81	87,5	5	2	132,47
147 6 2 237,12 97,5 5 2 165,45 153 6 2 258,44 102,5 5 2 94,98 159 6 2 158,5 107,5 5 2 139,16 165 6 2 208,54 112,5 5 2 157,69	141	6	2	199,05	92,5	5	2	155,2
153 6 2 258,44 102,5 5 2 94,98 159 6 2 158,5 107,5 5 2 139,16 165 6 2 208,54 112,5 5 2 157,69	147	6	2	237,12	97,5	5	2	165,45
159 6 2 158,5 107,5 5 2 139,16 165 6 2 208,54 112,5 5 2 157,69	153	6	2	258,44	102,5	5	2	94,98
165 6 2 208,54 112,5 5 2 157,69	159	6	2	158,5	107,5	5	2	139,16
	165	6	2	208,54	112,5	5	2	157,69

171	6	2	197	117,5	5	2	103,13
177	6	2	144,25	122,5	5	2	114,06
183	6	2	131,93	127,5	5	2	124,11
195	6	2	112,04	132,5	5	2	129,76
201	6	2	95,24	137,5	5	2	131,24
207	6	2	129	142,5	5	2	92,12
213	6	2	94,51	147,5	5	2	130,86
219	6	2	83,85	152,5	5	2	154,37
225	6	2	94,23	157,5	5	2	161,65
21	6	3	139,72	162,5	5	2	146,91
27	6	3	131,64	167,5	5	2	188,01
33	6	3	133,28	172,5	5	2	160,3
39	6	3	128,32	177,5	5	2	145,45
45	6	3	162,5	182,5	5	2	148,58
51	6	3	132,38	187,5	5	2	113,13
57	6	3	142,99	17,5	5	3	260,39
63	6	3	157,21	22,5	5	3	200,4
69	6	3	153,21	27,5	5	3	224,08
75	6	3	178,11	32,5	5	3	185,87
81	6	3	155,08	37,5	5	3	250,12
87	6	3	154,53	42,5	5	3	171,47
93	6	3	176,49	47,5	5	3	230,02
99	6	3	183,59	52,5	5	3	151,02
105	6	3	180,91	57,5	5	3	166,96
111	6	3	184,95	62,5	5	3	229,99
117	6	3	148,54	67,5	5	3	172,71
123	6	3	201,19	72,5	5	3	193,05
129	6	3	196,87	77,5	5	3	110,36
135	6	3	191,33	82,5	5	3	178,51
141	6	3	220,34	87,5	5	3	161,7
147	6	3	237,46	92,5	5	3	185,45

153	6	3	245,06	97,5	5	3	151,13
159	6	3	149,14	102,5	5	3	115,66
165	6	3	208,09	107,5	5	3	155,32
171	6	3	198,02	117,5	5	3	119,96
177	6	3	180,38	122,5	5	3	127,38
183	6	3	154,51	127,5	5	3	154,99
189	6	3	138,98	132,5	5	3	162,67
195	6	3	137,18	137,5	5	3	151,61
201	6	3	111,86	142,5	5	3	96,84
207	6	3	136,87	147,5	5	3	145,46
213	6	3	120,36	152,5	5	3	166,15
219	6	3	79,82	157,5	5	3	197,96
27	6	4	146,09	162,5	5	3	169,78
33	6	4	141,55	167,5	5	3	212,3
45	6	4	168,65	172,5	5	3	195,49
51	6	4	135,74	177,5	5	3	148,46
57	6	4	155,27	182,5	5	3	181,22
63	6	4	168,83	22,5	5	4	240,16
69	6	4	157,75	27,5	5	4	227,75
75	6	4	184,31	32,5	5	4	193,45
81	6	4	163,2	37,5	5	4	265,65
87	6	4	156,3	42,5	5	4	175,99
93	6	4	184,39	47,5	5	4	245,33
99	6	4	196,82	52,5	5	4	153,71
105	6	4	195,39	57,5	5	4	172,45
111	6	4	201,02	62,5	5	4	245,13
117	6	4	153,13	67,5	5	4	173,59
123	6	4	188,93	72,5	5	4	193,34
129	6	4	195,28	77,5	5	4	112,87
135	6	4	199,34	82,5	5	4	181,43
141	6	4	218,41	87,5	5	4	170,53

147	6	4	226,58	92,	5 5	4	171,11
153	6	4	243	97,	5 5	4	188,29
159	6	4	151,9	102,	5 5	4	121,67
165	6	4	200,56	107,	5 5	4	167,01
171	6	4	194,22	112,	5 5	4	158,26
177	6	4	188,17	117,	5 5	4	129,09
183	6	4	171,39	122,	5 5	4	150,26
189	6	4	150,06	127,	5 5	4	167,41
195	6	4	150,94	132,	5 5	4	176,92
207	6	4	146,32	137,	5 5	4	154,58
213	6	4	114,55	142,	5 5	4	103,43
33	6	5	155,89	147,	5 5	4	141,25
39	6	5	137,12	152,	5 5	4	170,74
45	6	5	172,7	157,	5 5	4	220,21
51	6	5	142,17	162,	5 5	4	198,99
57	6	5	162,56	167,	5 5	4	242,99
63	6	5	183,02	172,	5 5	4	184,74
69	6	5	159,18	177,	5 5	4	165,46
75	6	5	192,02	27,	5 5	5	255,72
81	6	5	165,97	32,	5 5	5	196,38
87	6	5	166,18	37,	5 5	5	254,27
93	6	5	189,85	42,	5 5	5	175,73
99	6	5	195,63	47,	5 5	5	234,41
105	6	5	220,09	52,	5 5	5	159,55
111	6	5	205,63	57,	5 5	5	174,01
117	6	5	148,37	62,	5 5	5	234,4
123	6	5	181,87	67,	5 5	5	170,46
129	6	5	185,42	72,	5 5	5	183,94
135	6	5	196,87	77,	5 5	5	128,3
141	6	5	204,44	82,	5 5	5	176,16
147	6	5	228,95	87,	5 5	5	164,4

153	6	5	238,4	92,5	5	5	191,46
159	6	5	154,05	97,5	5	5	188,82
165	6	5	201,25	102,5	5	5	134,96
171	6	5	182,33	107,5	5	5	164,84
177	6	5	180,3	112,5	5	5	164,43
183	6	5	180,94	117,5	5	5	146,77
189	6	5	163,45	122,5	5	5	153,13
195	6	5	139,31	127,5	5	5	171,06
201	6	5	121,36	132,5	5	5	159,77
207	6	5	132,07	137,5	5	5	161,35
39	6	6	149,14	142,5	5	5	103,85
45	6	6	186,85	147,5	5	5	143,84
51	6	6	143,83	152,5	5	5	177,32
57	6	6	169,34	157,5	5	5	227,05
63	6	6	152,81	162,5	5	5	225,45
69	6	6	166,03	167,5	5	5	250,19
75	6	6	173,09	172,5	5	5	204,84
81	6	6	178,69	32,5	5	6	206,88
87	6	6	170,51	37,5	5	6	248,96
93	6	6	192,6	42,5	5	6	162,44
99	6	6	201,16	47,5	5	6	240,87
105	6	6	201,83	52,5	5	6	156,69
111	6	6	205,84	57,5	5	6	170,78
117	6	6	147	62,5	5	6	216,89
123	6	6	184,5	67,5	5	6	163,91
129	6	6	171,93	72,5	5	6	207,46
135	6	6	181,69	77,5	5	6	127,29
141	6	6	211,6	82,5	5	6	191,88
147	6	6	225,28	87,5	5	6	167,71
153	6	6	241,79	92,5	5	6	192,66
159	6	6	167,66	97,5	5	6	197,53

165	6	6	202,27	102,5	5	6	128,78
171	6	6	182,9	107,5	5	6	180,4
177	6	6	177,92	112,5	5	6	170,77
183	6	6	175,3	117,5	5	6	150,59
189	6	6	162,9	122,5	5	6	147,19
195	6	6	153,23	127,5	5	6	156,45
201	6	6	131,64	132,5	5	6	157,38
45	6	7	193,71	137,5	5	6	147,87
51	6	7	152,98	142,5	5	6	104,24
57	6	7	151,76	147,5	5	6	147,34
63	6	7	181,82	152,5	5	6	184,08
69	6	7	160,5	157,5	5	6	245,15
75	6	7	199,81	162,5	5	6	221,53
81	6	7	171,23	167,5	5	6	276,48
87	6	7	183,56	37,5	5	7	248,65
93	6	7	202,92	42,5	5	7	163,98
99	6	7	199,88	47,5	5	7	233,49
105	6	7	192,82	52,5	5	7	152,88
111	6	7	190,71	57,5	5	7	140,15
117	6	7	156,22	62,5	5	7	214,46
123	6	7	177,16	67,5	5	7	168,1
129	6	7	160,92	72,5	5	7	195,6
135	6	7	172,21	77,5	5	7	132,07
141	6	7	195,42	82,5	5	7	195,76
147	6	7	224,38	87,5	5	7	179,57
153	6	7	256,3	92,5	5	7	200,77
159	6	7	194,59	97,5	5	7	184,82
165	6	7	203,28	102,5	5	7	129,83
171	6	7	190,18	107,5	5	7	179,47
177	6	7	187,91	112,5	5	7	197,64
183	6	7	165,87	122,5	5	7	137,8

189	6	7	154,42	127,5	5	7	147,16
195	6	7	170,17	132,5	5	7	143,38
51	6	8	170,53	137,5	5	7	145,39
57	6	8	169,87	142,5	5	7	102,63
63	6	8	168,45	152,5	5	7	196,66
69	6	8	183,2	157,5	5	7	246,75
75	6	8	184,54	162,5	5	7	238,35
81	6	8	191,05	42,5	5	8	221,59
87	6	8	192,18	47,5	5	8	177,43
93	6	8	197,41	52,5	5	8	168,3
99	6	8	192,08	57,5	5	8	165,74
105	6	8	191,91	62,5	5	8	178,58
111	6	8	180,49	67,5	5	8	195,8
117	6	8	169,84	72,5	5	8	167,3
123	6	8	168,62	77,5	5	8	171,31
129	6	8	174,72	82,5	5	8	174,82
135	6	8	183,43	87,5	5	8	195,35
141	6	8	195,32	92,5	5	8	195,69
147	6	8	223,89	97,5	5	8	179,77
153	6	8	236,92	102,5	5	8	165,26
159	6	8	213,42	107,5	5	8	166,88
165	6	8	198,04	112,5	5	8	169,6
171	6	8	198,17	117,5	5	8	161,08
177	6	8	184,6	122,5	5	8	140,69
183	6	8	171,19	127,5	5	8	133,84
189	6	8	150,41	132,5	5	8	136,49
57	6	9	173,02	137,5	5	8	121,24
63	6	9	176,27	142,5	5	8	127,57
69	6	9	178,31	147,5	5	8	147,12
75	6	9	188,84	152,5	5	8	198,38
81	6	9	195,73	157,5	5	8	237

87	6	9	190,69	47,5	5	9	169,91
93	6	9	189,26	52,5	5	9	160,83
99	6	9	196,15	57,5	5	9	167,52
105	6	9	190,16	62,5	5	9	169,77
111	6	9	162,51	67,5	5	9	191,77
117	6	9	168,18	72,5	5	9	162,84
123	6	9	159,81	77,5	5	9	176,15
129	6	9	183,94	82,5	5	9	172,14
135	6	9	172,88	87,5	5	9	194,44
141	6	9	198,55	92,5	5	9	199,24
147	6	9	221,81	97,5	5	9	191,14
153	6	9	222,27	102,5	5	9	169,48
159	6	9	237,83	107,5	5	9	161,9
165	6	9	198,5	112,5	5	9	161,12
171	6	9	201,2	117,5	5	9	146,79
183	6	9	157,76	122,5	5	9	144,95
63	6	10	184,46	127,5	5	9	133,74
69	6	10	190,52	132,5	5	9	135,48
75	6	10	189,74	137,5	5	9	121,27
81	6	10	189,09	142,5	5	9	131,41
87	6	10	183,28	147,5	5	9	142,68
93	6	10	189,64	152,5	5	9	200,8
99	6	10	191,26	52,5	5	10	172,43
105	6	10	194,03	57,5	5	10	160,52
111	6	10	152,77	62,5	5	10	171,04
117	6	10	161,52	67,5	5	10	188,48
123	6	10	167,09	72,5	5	10	161,76
129	6	10	152,12	77,5	5	10	173,2
135	6	10	199,93	82,5	5	10	161,43
141	6	10	202,88	87,5	5	10	191,1
147	6	10	219,75	92,5	5	10	201,05

153	6	10	232,13	97,5	5	10	193,87
159	6	10	219,64	102,5	5	10	174,64
165	6	10	200,86	107,5	5	10	149,78
171	6	10	195,32	112,5	5	10	153,3
177	6	10	147,82	117,5	5	10	142,32
69	6	11	198,21	122,5	5	10	136,45
75	6	11	194,34	127,5	5	10	142,69
81	6	11	163,55	137,5	5	10	124,1
87	6	11	187,72	142,5	5	10	124,07
93	6	11	186,78	147,5	5	10	147,29
99	6	11	193,05	57,5	5	11	168,07
105	6	11	191,45	62,5	5	11	167,8
111	6	11	170,73	67,5	5	11	184,7
117	6	11	166,28	72,5	5	11	157,99
123	6	11	145,03	77,5	5	11	167,9
129	6	11	185,44	82,5	5	11	170
135	6	11	172,99	87,5	5	11	192,88
141	6	11	207,82	92,5	5	11	195,48
147	6	11	229,13	97,5	5	11	188,8
153	6	11	224,93	102,5	5	11	168,34
159	6	11	207,13	107,5	5	11	149,72
165	6	11	195,89	112,5	5	11	145,82
171	6	11	146,2	117,5	5	11	142,81
75	6	12	191,35	122,5	5	11	140,5
81	6	12	196,6	127,5	5	11	138,93
87	6	12	176,33	132,5	5	11	150,69
93	6	12	181,78	142,5	5	11	129,46
99	6	12	185,46	62,5	5	12	177,17
105	6	12	194,43	67,5	5	12	180,96
111	6	12	172,39	72,5	5	12	152,44
117	6	12	153,67	77,5	5	12	167,45

123	6	12	162,29	82,5	5	12	159,75
129	6	12	154,51	87,5	5	12	196,38
135	6	12	184,45	92,5	5	12	195,79
141	6	12	198,79	97,5	5	12	175,55
147	6	12	253,69	102,5	5	12	151,99
153	6	12	218	107,5	5	12	143,69
159	6	12	221,26	112,5	5	12	148,81
165	6	12	186,33	117,5	5	12	140,43
81	6	13	178,83	122,5	5	12	139,89
87	6	13	180,84	127,5	5	12	143,65
93	6	13	192,73	132,5	5	12	142,89
99	6	13	187,5	137,5	5	12	135,44
105	6	13	192,14	67,5	5	13	174,27
111	6	13	131,79	72,5	5	13	148,3
117	6	13	170,95	77,5	5	13	167,9
123	6	13	158,11	82,5	5	13	156,7
129	6	13	158,31	87,5	5	13	195,46
135	6	13	178,08	92,5	5	13	191,38
141	6	13	207,25	97,5	5	13	169,63
147	6	13	211,85	102,5	5	13	141,49
153	6	13	246,55	107,5	5	13	138,57
159	6	13	282,79	112,5	5	13	149,02
87	6	14	193,31	117,5	5	13	150,28
99	6	14	189,32	122,5	5	13	142,21
105	6	14	170,75	127,5	5	13	140,71
111	6	14	177,98	132,5	5	13	148,92
117	6	14	157,18	72,5	5	14	160,82
123	6	14	150,82	77,5	5	14	165,7
129	6	14	184,33	82,5	5	14	162,54
135	6	14	182,33	87,5	5	14	184,51
141	6	14	193,93	92,5	5	14	181,08

147	6	14	241,98	97,5	5	14	171,37
153	6	14	323,91	102,5	5	14	144,37
93	6	15	187,88	107,5	5	14	133,98
99	6	15	169,17	112,5	5	14	145,03
105	6	15	188,75	117,5	5	14	161,77
111	6	15	130,68	122,5	5	14	145,3
117	6	15	156,57	127,5	5	14	145,74
123	6	15	171,62	77,5	5	15	169,52
129	6	15	176,47	82,5	5	15	142,88
135	6	15	180,2	87,5	5	15	185,24
141	6	15	195,45	92,5	5	15	175,7
147	6	15	259,49	97,5	5	15	171,25
99	6	16	200,13	102,5	5	15	148,6
105	6	16	180,48	107,5	5	15	130,57
111	6	16	134,15	112,5	5	15	144,19
117	6	16	165,02	117,5	5	15	148,28
123	6	16	167,27	122,5	5	15	150,92
129	6	16	166,39	82,5	5	16	157,91
135	6	16	175,81	87,5	5	16	184,7
141	6	16	219,97	92,5	5	16	184,79
105	6	17	191,17	97,5	5	16	165,52
111	6	17	172,25	102,5	5	16	137,94
117	6	17	165,39	107,5	5	16	137,07
123	6	17	149,29	112,5	5	16	139,8
129	6	17	171,21	117,5	5	16	150,48
135	6	17	197,18	87,5	5	17	201,68
111	6	18	184,85	92,5	5	17	181,79
117	6	18	155,59	97,5	5	17	166
123	6	18	153,21	102,5	5	17	132,91
129	6	18	178,27	107,5	5	17	126,73
117	6	19	172,07	112,5	5	17	145,13

123	6	19	169,97	92,5	5	18	197,35
				97,5	5	18	163,32
				102,5	5	18	127,95
				107,5	5	18	122,79
				97,5	5	19	175,21
				102,5	5	19	123,27

ГРАММН 12									
θεση ηλ.(m)	αποσταση (m)	επιπεδο	p(Ωm)	θεση ηλ.(m)	αποσταση (m)	επιπεδο	p(Ωm)		
15	10	1	668,71997	275	10	6	226,14		
25	10	1	599,41998	285	10	6	278,88		
35	10	1	608,03998	295	10	6	306,73001		
45	10	1	611,98999	305	10	6	268,41		
55	10	1	679,78003	315	10	6	264,42001		
65	10	1	504,04001	325	10	6	222,10001		
75	10	1	346,39001	335	10	6	251,50999		
85	10	1	279,39001	75	10	7	203,03		
95	10	1	254,92999	95	10	7	202,28		
105	10	1	261,89001	105	10	7	184,66		
115	10	1	247,50999	115	10	7	229,23		
125	10	1	188,89999	125	10	7	244,60001		
135	10	1	190,8	135	10	7	328,76001		
145	10	1	201,96001	145	10	7	358,48001		
155	10	1	105,89	155	10	7	172,52		
165	10	1	130,35001	165	10	7	232,28		
175	10	1	133,10001	175	10	7	280,12		
185	10	1	93,065	185	10	7	211,53		
195	10	1	102,85	195	10	7	243,03		
205	10	1	123,12	205	10	7	347,91		
215	10	1	96,228	215	10	7	285,78		
225	10	1	91,994	225	10	7	240,73		
235	10	1	87,164	235	10	7	232,57001		
245	10	1	82,452	245	10	7	214,82001		
255	10	1	93,491	255	10	7	278,17999		
265	10	1	84,427	265	10	7	243,73		
275	10	1	81,739	275	10	7	223,07001		
285	10	1	93,275	285	10	7	287,85999		

295	10	1	98,569	295	10	7	310,76999
305	10	1	90,919	305	10	7	278,10999
315	10	1	107,56	315	10	7	274,82001
325	10	1	87,288	325	10	7	195,28
335	10	1	134,64999	85	10	8	192,89
345	10	1	113,99	95	10	8	179,35001
355	10	1	141,78999	105	10	8	196,89
365	10	1	159,91	115	10	8	213,28999
375	10	1	197,03999	125	10	8	241,47
385	10	1	201,61	135	10	8	278,98001
25	10	2	526,57001	145	10	8	283,56
35	10	2	446,88	155	10	8	251
45	10	2	464,73999	165	10	8	241,47
55	10	2	585,71002	175	10	8	242,32001
65	10	2	542,46997	185	10	8	242,69
75	10	2	371,85999	195	10	8	270,39001
85	10	2	333,92001	205	10	8	284,82001
95	10	2	350,98999	215	10	8	277,39001
105	10	2	346,42999	225	10	8	248,98
115	10	2	331,10001	235	10	8	242,78
125	10	2	214,03999	245	10	8	243,31
135	10	2	284,89999	255	10	8	251,14999
145	10	2	299,41	265	10	8	254,75999
155	10	2	137,88	275	10	8	250,19
165	10	2	206,35001	285	10	8	262,26001
175	10	2	231,2	295	10	8	284,51001
185	10	2	142,99001	305	10	8	283,29001
195	10	2	151,08	315	10	8	234,8
205	10	2	213,78999	95	10	9	174,17
215	10	2	156,81	105	10	9	198,11
225	10	2	139,2	115	10	9	199,17
	1	1		1	I	I	1

	1						
224,88	9	10	125	143,10001	2	10	235
272,94	9	10	135	133,32001	2	10	245
256,97	9	10	145	158,89	2	10	255
262,44	9	10	155	140,64	2	10	265
239,97	9	10	165	123,51	2	10	275
244,89999	9	10	175	158,72	2	10	295
248,53999	9	10	185	145,59	2	10	305
264,23999	9	10	195	159,55	2	10	315
273,32999	9	10	205	140,81	2	10	325
271,78	9	10	215	190,23	2	10	335
239,59	9	10	225	178,48	2	10	345
228,22	9	10	235	182,66	2	10	355
248,96001	9	10	245	232,91	2	10	365
244,17	9	10	255	228,72	2	10	375
250,53999	9	10	265	324,76001	3	10	35
252,87	9	10	275	406,48001	3	10	45
260,16	9	10	285	532,97998	3	10	55
260,95999	9	10	295	464,54001	3	10	65
257,26001	9	10	305	313,09	3	10	75
182,62	10	10	105	266,34	3	10	85
197,00999	10	10	115	368,63	3	10	95
229,75999	10	10	125	378,64999	3	10	105
268,70001	10	10	135	331,14999	3	10	115
254,89	10	10	145	266,42001	3	10	125
235,39999	10	10	155	318,92001	3	10	135
231,96001	10	10	165	316,10999	3	10	145
249,58	10	10	175	166,89999	3	10	155
247,60001	10	10	185	230,59	3	10	165
259,82001	10	10	195	270,57001	3	10	175
272,72	10	10	205	193,74001	3	10	185
265,81	10	10	215	194,31	3	10	195
1						1	
205	10	3	267,66	225	10	10	230,5
-----	----	---	-----------	-----	----	----	-----------
215	10	3	210,75	235	10	10	214,33
225	10	3	178,19	245	10	10	236,14999
235	10	3	174,39	255	10	10	252,64
245	10	3	180,10001	265	10	10	245,83
255	10	3	211,81	275	10	10	244,36
265	10	3	186,92999	285	10	10	252,60001
275	10	3	169,85001	295	10	10	234,69
285	10	3	192,89	115	10	11	187,45
295	10	3	215,55	125	10	11	224,19
305	10	3	189,33	135	10	11	279,98999
315	10	3	201,12	145	10	11	246,71001
325	10	3	175,97	155	10	11	225,67
335	10	3	245,13	165	10	11	208,3
345	10	3	205,10001	175	10	11	235,84
355	10	3	217,33	185	10	11	235,21001
365	10	3	215,71001	195	10	11	261,73999
45	10	4	382,48001	205	10	11	270,95999
55	10	4	477,04999	215	10	11	268,82001
65	10	4	389,79999	225	10	11	225,67
75	10	4	248,07001	235	10	11	212,67
85	10	4	235,19	245	10	11	225,03
95	10	4	278,69	255	10	11	244,92999
105	10	4	327,14999	265	10	11	247
115	10	4	363,87	275	10	11	231,28
125	10	4	279,14999	285	10	11	222,42
135	10	4	328,17001	125	10	12	231,05
145	10	4	339,88	135	10	12	281,57001
155	10	4	176	145	10	12	244,91
165	10	4	235,56	155	10	12	214,03999
175	10	4	271,14999	165	10	12	199,05
1					•		

185	10	4	207,41	175	10	12	204,89
195	10	4	236,44	185	10	12	234,92
205	10	4	315,01001	195	10	12	256,03
215	10	4	241,61	205	10	12	268,23001
225	10	4	216,47	215	10	12	265,95999
235	10	4	203,64	225	10	12	224,58
245	10	4	193,10001	235	10	12	209,00999
255	10	4	246,47	245	10	12	221,25999
265	10	4	224,96001	255	10	12	223,14999
275	10	4	198,92999	265	10	12	235,89
285	10	4	234,95	275	10	12	217,98
295	10	4	239,37	135	10	13	264,12
305	10	4	222,60001	145	10	13	243,97
315	10	4	239,00999	155	10	13	222,95
325	10	4	202,67	165	10	13	183,17
335	10	4	263,76001	175	10	13	201,7
345	10	4	231,64999	185	10	13	203,11
355	10	4	202,42	195	10	13	242,45
55	10	5	415,42001	205	10	13	267,10001
65	10	5	336,51001	215	10	13	267,10001
75	10	5	233,11	225	10	13	226,72
85	10	5	193,17	235	10	13	201,60001
95	10	5	221,25	245	10	13	210,56
105	10	5	260,39999	255	10	13	214,83
115	10	5	320,34	265	10	13	198,77
125	10	5	280,82999	145	10	14	260,53
135	10	5	343,45001	155	10	14	195,21001
145	10	5	359,35999	165	10	14	191,56
155	10	5	172,32001	175	10	14	193,64999
165	10	5	232,39	185	10	14	185,05
175	10	5	278,54999	195	10	14	212,88

185	10	5	210,39	205	10	14	265
195	10	5	252,98	215	10	14	276,56
205	10	5	354,32999	225	10	14	228,84
215	10	5	262,51001	235	10	14	204,05
225	10	5	229,34	245	10	14	200,81
235	10	5	228,71001	255	10	14	188,02
245	10	5	199,64	155	10	15	228,47
255	10	5	253,53999	165	10	15	188,47
265	10	5	240,56	175	10	15	184,53
275	10	5	218,45	185	10	15	177,14999
285	10	5	256,67001	195	10	15	209,47
295	10	5	283,06	205	10	15	232,17
305	10	5	241,75	215	10	15	255,89999
315	10	5	259,20001	225	10	15	227,16
325	10	5	215,58	235	10	15	202,22
335	10	5	277,88	245	10	15	182,69
345	10	5	211,39999	165	10	16	173,83
65	10	6	323,95999	175	10	16	188,27
75	10	6	215,02	185	10	16	186,86
85	10	6	170,41	195	10	16	203,2
95	10	6	206,52	205	10	16	217,33
105	10	6	216,41	215	10	16	224,75999
115	10	6	254,86	225	10	16	211,49001
135	10	6	354,09	235	10	16	176,25
145	10	6	345,53	175	10	17	186,58
155	10	6	172,82001	185	10	17	195,55
165	10	6	231,44	195	10	17	203,28999
175	10	6	277,28	205	10	17	209,3
185	10	6	218,14	215	10	17	204,84
195	10	6	245,62	225	10	17	163,88
205	10	6	355,01999	185	10	18	183,21001

215	10	6	290,42999	195	10	18	208,8
225	10	6	233,34	205	10	18	206,06
235	10	6	222,81	215	10	18	174,27
245	10	6	220,19	195	10	19	184,64999
255	10	6	265,73999	205	10	19	183,05
265	10	6	240,92				