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ΤΜΗΜΑΤΟΠΟΙΗΣΗ ΓΟΝΙ∆ΙΩΝ ΒΑΣΙΣΜΕΝΗ ΣΕ ΒΙΟΛΟΓΙΚΗ ΓΝΩΣΗ 

ΠΕΡΙΛΗΨΗ 

Το θέµα της οµαδοποίησης έχει προσελκύσει το επιστηµονικό ενδιαφέρον τα τελευταία 

χρόνια, καθώς µπορεί να εφαρµοστεί σε πολλούς επιστηµονικούς τοµείς. Αφορά στη δηµιουργία 

διακριτών οµάδων από οντότητες, όπου οντότητες στην ίδια οµάδα έχουν κοινά χαρακτηριστικά, 

ενώ οντότητες που ανήκουν σε διαφορετικές οµάδες είναι καλά διαχωρίσιµες. Αυτός ο 

διαχωρισµός των οντοτήτων επιτυγχάνεται µε τη χρήση ενός κατάλληλου κριτηρίου, και οι 

διαχωρίσιµες οµάδες που τελικά προκύπτουν είναι γνωστές στη βιβλιογραφία ως clusters. 

Σκοπός της παρούσας διπλωµατικής εργασίας είναι να εφαρµόσει τη θεωρία της 

οµαδοποίησης σε βιολογικές και βιοϊατρικές εφαρµογές. Λόγω ύπαρξης µεγάλου αριθµού 

γονιδίων και της πολυπλοκότητας των βιολογικών δικτύων, η οµαδοποίηση αποτελεί χρήσιµη 

τεχνική για την ανάλυση δεδοµένων γονιδιακής έκφρασης. Έτσι λοιπόν, στις τµηµατικές 

µεθόδους οµαδοποίησης που εστιάζουµε, επιλέγονται τα κατάλληλα κριτήρια που θα οδηγήσουν 

σε σωστές προσεγγίσεις οµαδοποίησης. Επιπλέον, καθώς είναι γνωστό πως η οµαδοποίηση είναι 

πρόβληµα NP-hard, γίνεται επιλογή (και διαµόρφωση όταν κριθεί απαραίτητο) κατάλληλης 

βελτιστοποιηµένης προσέγγισης που οδηγεί σε αποτέλεσµα κοντά στο βέλτιστο. Επίσης, επειδή 

πολλοί αλγόριθµοι δέχονται ως παράµετρο το πλήθος των οµάδων, η εκτίµηση του βέλτιστου 

πλήθους αποτελεί κρίσιµο πρόβληµα. ∆ιάφορα κριτήρια εγκυρότητας της προκύπτουσας 

οµαδοποίησης χρησιµοποιούνται για το παραπάνω πρόβληµα. Ένα ακόµα σηµαντικό ζήτηµα 

λόγω ύπαρξης µεγάλου συνόλου δεδοµένων, είναι να εξετάσουµε κατά πόσο µοιάζουν  (ή να 

επαληθεύσουµε αν είναι ισοδύναµοι) δύο αλγόριθµοι (όταν ένας είναι πιο απλός και/ή 

αποτελεσµατικότερος του άλλου). Ένα τέτοιο κριτήριο εγκυρότητας χρησιµοποιείται και για την 

εκτίµηση του κατάλληλου πλήθους των οµάδων. Είναι επίσης σηµαντικό να αναφερθεί πως 

ενσωµατώνοντας την πρότερη βιολογική γνώση στη διαδικασία της οµαδοποίησης, προκύπτουν 

περισσότερο βιολογικής φύσεως οµάδες. Η παραπάνω προσέγγιση θα µπορούσε να υποστηρίξει 

την ανακάλυψη των οµάδων γονιδίων που έχουν παρόµοιες βιολογικές λειτουργίες. Αυτή η 

βιολογική γνώση θα µπορούσε να χρησιµοποιηθεί στον αλγόριθµο της οµαδοποίησης και στο 
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στάδιο της εγκυρότητας της προκύπτουσας οµαδοποίησης. ∆υστυχώς, η πρότερη βιολογική 

γνώση δεν είναι πάντα διαθέσιµη. 

Στην παρούσα διπλωµατική εργασία, έγινε ο σχεδιασµός και η υλοποίηση κατάλληλων 

προσεγγίσεων οµαδοποίησης γονιδίων. Μερικές προσεγγίσεις εφαρµόστηκαν σε στατιστική 

γνώση, δηλαδή σε τρία σύνολα δεδοµένων που αφορούν τον καρκίνο του µαστού (Sorlie, Veer 

και Sotiriou), και άλλες εφαρµόστηκαν σε δύο διαφορετικές µορφές βιολογικής γνώσης, δηλαδή 

στη διαθέσιµη πληροφορία από την Gene Ontology (GO) και από την Kyoto Encyclopedia of 

Genes and Genomes (KEGG). Στο τέλος, οι διάφορες οµαδοποιήσεις γονιδίων που προκύπτουν 

ελέγχονται µε τη βοήθεια διάφορων κριτηρίων εγκυρότητας και έτσι προκύπτουν βιολογικής 

σηµασίας συµπεράσµατα. Σκοπός είναι να ενισχύσουµε τη στατιστική ανάλυση µε τη χρήση 

διαθέσιµης πρότερης βιολογικής γνώσης. Για να επιτευχθεί αυτό, βιολογικές αποστάσεις, 

δηλαδή αποστάσεις που υπολογίζονται µε βάση τη διαθέσιµη βιολογική γνώση, 

χρησιµοποιούνται στον αλγόριθµο της οµαδοποίησης και στο στάδιο της εγκυρότητας της 

προκύπτουσας οµαδοποίησης. Αναφέρουµε πως οι µεθοδολογίες οµαδοποίησης γονιδίων που 

παρουσιάζονται έχουν υλοποιηθεί στο matlab. 

 

Λέξεις Κλειδιά: οµαδοποίηση γονιδίων, κριτήρια εγκυρότητας, κριτήρια οµοιότητας, βιολογική 

γνώση, βιολογικές αποστάσεις 
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CLUSTERING OF GENES BASED ON BIOLOGICAL KNOWLEDGE  

ABSTRACT 

Cluster analysis has attracted considerable attention the last few years, since can be applied in 

many scientific fields. It refers to the formation of distinct blocks of objects, where objects with-

in a block have some common characteristics and objects that belong to different blocks are well 

separated. The separation of the objects is achieved based on an appropriate criterion, while the 

final distinct blocks are well known as clusters.   

The purpose of this thesis, is to accommodate cluster analysis theory to biological and bio-

medical applications. Because of the large number of genes and the complexity of biological 

networks, clustering is an useful technique for analysis of gene expression data. The thesis deals 

with the challenging problem of defining the efficient criteria to guide the selection of the appro-

priate clustering approaches, focusing on partitional clustering methods. Furthermore, since clus-

tering is a known NP-hard problem, a difficult task is to select (and modify when necessary) the 

appropriate optimization schemes, that provide a reliable near optimum solution. Also, since 

many clustering algorithms require the number of clusters as an input parameter, the prediction 

of the correct number of clusters is a critical problem. Different cluster validity indices have been 

suggested to address this problem. Additionally, another important issue with current research, 

where large data sets are so common, is to assess degree of similarity (or verify equivalence) of 

two clustering algorithms (for example one being a simpler and/or more efficient version of the 

other). The behavior of such a similarity index can also be used as an indicator of the proper 

number of clusters in a data set. It is also important to mention that incorporating prior know-

ledge in the clustering process would generate clusters that are more biologically relevant. Also, 

this supports the discovery of clusters of genes sharing similar functions. Such a biological 

knowledge may be used in clustering method and cluster validation. Unfortunately, this sort of 

prior biological knowledge is not always available. 

In this thesis, design and implementation of appropriate gene clustering strategies are 

achieved. Some clustering approaches are applied on available statistical knowledge, i.e. three 

data sets concerning breast cancer (Sorlie’s, Veer’s and Sotiriou’s data set), and other on two 
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types of available biological knowledge, i.e. Gene Ontology (GO) and Kyoto Encyclopedia of 

Genes and Genomes (KEGG) knowledge. We validate and compare the obtained gene partitions 

via several measures to make meaningful biological conclusions. The purpose is to enrich the 

numerical cluster analysis with available prior biological knowledge. To achieve this, biological 

distances, i.e. distances calculated based on available biological knowledge, are used in cluster-

ing method and cluster validation. It is mentioned that the presented gene clustering methodolo-

gies have been implemented in matlab. 

 

Keywords: gene clustering, validity measures, similarity indices, biological knowledge, biologi-

cal distances        
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1.1    Introduction 

Cluster analysis is a basic human mental activity and has an important role in research devel-

oped across a wide variety of communities. Cluster analysis is defined as a way to create groups 

or objects, or clusters, in such a way that objects in one cluster are very similar and objects in 

different clusters are quite distinct. It has many alternative names differing from one discipline to 

another. In biology and ecology, cluster analysis is more often known as numerical taxonomy. 

Researchers in computational intelligence and machine learning are more likely to use the terms 

unsupervised learning or learning without a teacher. In social science, typological analysis is pre-

ferred, while in graph theory, partition is usually employed. This diversity reflects the important 

position of clustering in scientific research. On the other hand, it causes confusion because of the 

differing terminologies and goals. Frequently, similar theories or algorithms are redeveloped 

several times in different disciplines due to the lack of good communication, which causes unne-

cessary burdens and wastes time.  
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In this chapter, we introduce the basic concepts of cluster analysis. The type of data is a ma-

jor factor to consider in choosing an appropriate clustering algorithm. A similarity measure1 or 

distance (dissimilarity measure2) is used to quantitatively describe the similarity or dissimilarity 

of two clusters without which no meaningful cluster analysis is possible. Generally, clustering 

algorithms can be classified to two categories: hard clustering algorithms and fuzzy clustering 

algorithms. Unlike hard clustering algorithms, which require that each data point of the data set 

belong to one and only one cluster, fuzzy clustering algorithms allow a data point to belong to 

two or more clusters with different probabilities. Furthermore, we describe the two most signifi-

cant clustering methods, i.e. hierarchical and partitional. Finally, this chapter introduces the ap-

plication of clustering to gene expression3 data.  

1.2    Cluster Analysis  

 One of the most important of data analysis activities is to classify or group data into a set of 

categories or clusters through clustering algorithms. In particular, clustering algorithms partition 

data objects (patterns, entities, instances, observances, units) into a certain number of clusters 

(groups, subsets, or categories). Data objects that are classified in the same group should display 

similar properties based on some criteria. Unfortunately, there is no universally agreed upon and 

precise definition of the term cluster. In one approach a cluster is defined as a set of entities 

which are alike, and entities from different clusters are not alike. Alternatively, a cluster is an 

aggregate of points in the test space such that the distance between any two points in the cluster 

is less than the distance between any point in the cluster and any point not in it. Also, clusters 

may be described as continuous regions of this space (d-dimensional feature space) containing a 

relatively high density of points, separated from other such regions containing a relatively low 

density of points. Generally, classification systems are either supervised or unsupervised, de-

                         
1  It measures how much two objects resemble each other. 

2  It measures how far away two objects are from each other. 

3
  Gene expression is the process by which the heritable information in a gene, which is the sequence of DNA base 

pairs, is made into a functional gene product, such as protein or RNA. 
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pending on whether they assign new data objects to one of a finite number of discrete supervised 

classes or unsupervised categories. Also, there are some other classification systems which are 

semi-supervised.  

In supervised classification, the mapping from a set of input data vectors, denoted as dR∈x , 

where d  is the input space dimensionality, to a finite set of discrete class labels, represented as    

1, ,y C∈ … , where C  is the total number of class types, is modeled in terms of some mathemati-

cal function ( ),y y= x w , where w  is a vector of adjustable parameters. The values of these pa-

rameters are determined (optimized) by an inductive learning algorithm (also termed inducer), 

whose aim is to minimize an empirical risk functional (related to an inductive principle) on a fi-

nite data set of input - output examples, ( ), , 1, ,i ix y i N= … , where N  is the finite cardinality of 

the available representative data set. When the inducer reaches convergence or terminates, an 

induced classifier is generated. 

 In unsupervised classification, also called clustering or exploratory data analysis, no labeled 

data are available. Cluster analysis or clustering, which is a core task in data mining, is the as-

signment of a set of observations into subsets (called clusters) so that observations in the same 

cluster are similar in some sense. The goal of clustering is to separate a finite, unlabeled data set 

into a finite and discrete set of “natural”, hidden data structures. It is clear that a direct reason for 

unsupervised clustering comes from the requirement of exploring the unknown natures of the 

data that are integrated with little or no prior information. Consider, for example, disease diagno-

sis and treatment in clinics. For a particular type of disease, there may exist several unknown 

subtypes that exhibit similar morphological appearances while responding differently to the same 

therapy. In this context, cluster analysis with gene expression data, provides a promising method 

to uncover the subtypes and thereby determine the corresponding therapies. Sometimes, the 

process of labeling data samples may become extremely expensive and time consuming, which 

also makes clustering a good choice considering the great savings in both cost and time. In addi-

tion, cluster analysis provides a compressed representation of the data and is useful in large - 

scale data analysis. 

Clustering is a well known problem, and there are many algorithms for cluster analysis in the 

literature. Cluster analysis emphasizes both internal homogeneity and external separation. The 
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performance of a clustering algorithm would be improved, if the algorithm could either minimize 

intracluster distance or maximize intercluster distance. Cluster analysis aims to seek a partition 

of the data in which data objects in the same clusters are homogenous while data objects in dif-

ferent groups are well separated. This homogeneity and separation are evaluated through the cri-

terion functions. As pointed out by the authors in [1], in cluster analysis a group of objects is 

split up into a number of more or less homogeneous subgroups based on a subjectively chosen 

measure of similarity, such that the similarity between objects within a subgroup is larger than 

the similarity between objects belonging to different subgroups. Moreover, a different clustering 

criterion or a different clustering algorithm or the same algorithm but with different selection of 

parameters, may cause completely different clustering results. For instance, human beings may 

be classified based on their ethnicity, region, age, socioeconomic status, education, career, hob-

by, weight and height, favorite food, dressing style, and so on. Apparently, different clustering 

criteria may assign a specific individual to very different groups and therefore produce different 

partitions. However, there is absolutely no way to determine which criterion is the best in gener-

al. As a matter of fact, each criterion has its own appropriate use corresponding to particular oc-

casions, although some of them may be applied to wider situations than others.  

Finally, in semi-supervised classification, a small amount of knowledge is available concern-

ing either pairwise (must-link or cannot-link) constraints between data items or class labels for 

some items. Instead of simply using this knowledge for the external validation of the results of 

clustering, one can imagine letting it “guide” or “adjust” the clustering process, i.e. provide a li-

mited form of supervision. The resulting approach is called semi-supervised clustering. We also 

consider that the available knowledge is too far from being representative of a target classifica-

tion of the items, so that supervised learning is not possible. Note that class labels can always be 

translated into pairwise constraints for the labeled data items and, reciprocally, by using consis-

tent pairwise constraints for some items one can obtain groups of items that should belong to a 

same cluster. 

1.3    Methods  of  Clustering 

At first, we mention some criteria that provide significant distinction between clustering me-

thods and can help selecting appropriate candidate methods for one’s problem: 
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Objective of Clustering 

Many methods aim at finding a single partition of the collection of items into clusters. How-

ever, obtaining a hierarchy of clusters can provide more flexibility. A partition of the data can be 

obtained from a hierarchy by cutting the tree of clusters at some level. 

Nature of the Data Items 

Most clustering methods were developed for numerical data, but some can deal with categor-

ical data or with both.  

Nature of the Available Information 

 Many methods rely on rich representations of the data (e.g. vectorial) that let one define pro-

totypes, data distributions, multidimensional intervals, etc., besides computing (dis)similarities. 

Other methods only require the evaluation of pairwise (dis)similarities between data items, while 

imposing fewer restrictions on the data. These methods usually have a higher computational 

complexity. 

Nature of the Clusters  

The degree of membership of a data item to a cluster is either in [0, 1] if the clusters are fuzzy 

or in {0, 1} if the clusters are crisp. For fuzzy clusters, data items can belong to some degree to 

several clusters that don’t have hierarchical relations with each other. This distinction between 

fuzzy and crisp can concern both the clustering mechanisms and their results. Crisp clusters can 

always be obtained from fuzzy clusters. 

Clustering Criterion 

 Clusters can be seen either as distant compact sets or as dense sets separated by low density 

regions. Unlike density, compactness usually has strong implications on the shape of the clusters, 

so methods that focus on compactness should be distinguished from methods that focus on the 

density. 

Several taxonomies of clustering methods were suggested in [2], [3] or [4]. But given the 

high number and the strong diversity of the existing clustering methods, it is probably impossible 

to obtain a categorization that is both meaningful and complete. By focusing on some of the dis-

criminating criteria just mentioned, we put forward the simplified taxonomy shown below, in-

spired by the one suggested in [4]. So, some possible methods of clustering are: 
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Clustering procedures yield a data description in terms of clusters or groups of data points that 

possess strong internal similarities. 

Distance-Based Clustering 

Two or more objects belong to the same cluster if they are “close” according to a given dis-

tance (in this case geometrical distance). An example of such methods is k-medoids. The most 

common realization of k-medoids clustering is the Partitioning Around Medoids (PAM) algo-

rithm [3]. 

Conceptual Clustering 

Two or more objects belong to the same cluster if this one defines a concept common to all 

these objects. In other words, objects are grouped according to their fit to descriptive concepts, 

not according to simple similarity measures. Conceptual clustering builds a structure out of the 

data incrementally by trying to subdivide a group of observations into subclasses. The result is a 

hierarchical structure known as the concept hierarchy. Each node in the hierarchy subsumes all 

the nodes underneath it, with the whole data set at the root of the hierarchy tree. Examples of 

such methods are a conceptual clustering algorithm known as CLUSTER/2 [56] and an improved 

conceptual clustering algorithm known as ITERATE [57]. 

Divisive or Partitional Clustering 

These methods start with each point as part of a random or guessed cluster and iteratively 

move points between clusters until some local minimum is found with respect to some distance 

metric between each point and the center of the cluster it belongs to. Partitional clustering as-

signs a set of data points into k clusters without any hierarchical structure. This process usually 

accompanies the optimization of a criterion function. More specifically, given a set of points 

d
ix R∈ , 1, ,i N= … , partitional clustering algorithms aim to organize them into k  clusters 

{ }1,..., KC C  while maximizing or minimizing a prespecified criterion function J . In principle, 

the optimal partition, based on the criterion function J , can be found by enumerating all possi-

bilities. However, this brute force method is infeasible in practice due to the extremely expensive 

computation. Even for a small-scale clustering problem, simple enumeration is impossible. 

Therefore, heuristic algorithms seek approximate solutions. One of the widely used iterative op-
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timization methods, the k-means algorithm is based on the sum-of-squared-error criterion. In this 

study, different approaches of the k-means algorithm are implemented. 

Hierarchical Clustering 

Hierarchical clustering groups data with a sequence of nested partitions, either from singleton 

clusters to a cluster including all individuals or vice versa. The former is known as agglomerative 

hierarchical clustering, and the latter is called divisive hierarchical clustering. Both agglomera-

tive and divisive clustering methods organize data into the hierarchical structure based on the 

proximity matrix. The results of hierarchical clustering are usually depicted by a binary tree or 

dendrogram, as depicted in Figure 1. 

 
Figure 1 : Example of a dendrogram from hierarchical clustering. The clustering direction for the divisive hierar-

chical clustering is opposite to that of the agglomerative hierarchical clustering. Two clusters are ob-
tained by cutting the dendrogram at an appropriate level. 

These methods start with each point being considered as a cluster and recursively combine 

pairs of clusters (subsequently updating the intercluster distances) until all points are part of one 

hierarchically constructed cluster. Hierarchical clustering groups data with a sequence of nested 

partitions, either from singleton cluster to a cluster including all individuals or vice versa. The 

results of hierarchical clustering are usually depicted by a binary tree or dendrogram, as depicted 

in Figure 1. The root node of the dendrogram represents the whole data set, and each leaf node is 

regarded as a data point. The intermediate nodes thus describe the extent to which the objects are 

proximal to each other and the height of the dendrogram usually expresses the distance between 

each pair of data points or clusters, or a data point and a cluster. The ultimate clustering results 
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can be obtained by cutting the dendrogram at different levels. This representation provides very 

informative descriptions and a visualization of the potential data clustering structures, especially 

when real hierarchical relations exist in the data. 

Compared with agglomerative methods, divisive methods need to consider  12 1N−
−   possible 

two-subset divisions for a cluster with N  data points, which is very computationally intensive 

even for small-scale data sets [11]. Therefore, agglomerative methods are more widely used. The 

major disadvantage of divisive methods is their computational complexity, which is at least 

( )2O N  and cannot meet the requirement for dealing with large-scale data sets in data mining 

and other tasks in recent years [11]. Also, common criticisms of classical hierarchical clustering 

algorithms focus on their lack of robustness and their sensitivity to noise and outliers. Once an 

object is assigned to a cluster, it will not be considered again, which means that hierarchical clus-

tering algorithms are not capable of correcting possible previous misclassification. As a result, 

many new clustering methods with hierarchical cluster results have appeared and have greatly 

improved the clustering performance. 

Graph Theoretic Methods 

The concepts and properties of graph theory make it very convenient to describe clustering 

problems by means of graphs. These methods are partitioning methods that partition the space 

into subgraphs with respect to some geometric properties. The authors in [49] provide a detailed 

description and discussion of hierarchical clustering from the point of view of graph theory. 

More discussion of graph theory in clustering can be found in [50]. Examples of such methods 

are a k-nearest-neighbor graph-based algorithm, Chameleon [51], and the algorithm CLICK 

(Clustering Identification via Connectivity Kernels) [52]. Also, Bayesian networks belong to 

these methods of clustering, since it is a probabilistic graphical model that represents a set of 

random variables and their conditional dependences via a directed acyclic graph (DAG). For ex-

ample, a Bayesian network could represent the probabilistic relationships between diseases and 

symptoms. Given symptoms, the network can be used to compute the probabilities of the pres-

ence of various diseases. More information about Bayesian networks can be found in [58]. 
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Fuzzy Clustering 

So far, the clustering techniques we have discussed are referred, to as hard or crisp clustering, 

which means that each data object is assigned to only one cluster. For fuzzy clustering, this re-

striction is relaxed, and the object can belong to all of the clusters with a certain degree of mem-

bership. This is particularly useful when the boundaries between clusters are ambiguous and not 

well separated. Examples of such methods are Fuzzy C-Means (FCM) [53], the Possibilistic 

Fuzzy C-Means (PFCM) model proposed by the authors in [54] and the Mountain Method (MM) 

[55]. 

1.4    Procedure  of  Cluster Analysis 

The procedure of cluster analysis consists of four basic steps, shown in Figure 2. The red ar-

rows in Figure 2 point to the novel work in this thesis, i.e. incorporating prior knowledge in the 

clustering process, especially in clustering algorithm and in cluster validation. More details about 

this work are discussed in Sections 1.7. In the following, we present these steps. 

Feature Selection or Extraction  

Feature selection chooses distinguishing features from a set of candidates, while feature ex-

traction utilizes some transformations to generate useful and novel features from the original 

ones. Clearly, feature extraction is potentially capable of producing features that could be of bet-

ter use in uncovering the data structure. However, feature extraction may generate features that 

are not physically interpretable. On the contrary, feature selection assures the retention of the 

original physical meaning of the selected features. In the literature, these two terms sometimes 

are used interchangeably without further identifying the difference. Both feature selection and 

feature extraction are very important to the effectiveness of clustering applications. Elegant se-

lection or generation of salient features can greatly decrease the storage requirement and mea-

surement cost, simplify the subsequent design process, and facilitate the understanding of the 

data. Generally, ideal features should be of use in distinguishing patterns belonging to different 

clusters, immune to noise, and easy to obtain and interpret. Feature selection is more often used 

in the context of supervised classification with class labels available. 
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Figure 2 : Clustering procedure. The basic process of cluster analysis consists of four steps with a feedback path-

way. These steps are closely related to each other and determine the derived clusters. The red arrows 

point to the novel work in this thesis. 

Clustering Algorithm Design or Selection 

This step usually consists of determining an appropriate proximity measure and constructing 

a criterion function. Intuitively, data objects are grouped into different clusters according to 

whether they resemble one another or not. The obtained clusters are dependent on the selection 

of the criterion function. The subjectivity of cluster analysis is thus inescapable. There is no uni-

versal clustering algorithm to solve all problems. It is important to carefully investigate the cha-

racteristics of a problem in order to select or design an appropriate clustering strategy. Clustering 

algorithms that are developed to solve a particular problem in a specialized field usually make 

assumptions in favor of the application of interest. For example, the k-means algorithm is based 

on the Euclidean measure and hence tends to generate hyperspherical clusters. However, if the 

real clusters are in other geometric forms, k-means may no longer be effective, and we need to 

resort to other schemes. Similar considerations must be kept in mind for mixture - model cluster-

ing, in which data are assumed to come from some specific models that are already known in ad-

vance [11]. 
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Cluster Validation 

Given a data set, each clustering algorithm can always produce a partition whether or not 

there really exists a particular structure in the data. Moreover, different clustering approaches 

usually lead to different clusters of data, and even for the same algorithm, the selection of a pa-

rameter or the presentation order of input patterns may affect the final results. Therefore, effec-

tive evaluation standards and criteria are critically important to provide users with a degree of       

confidence for the clustering results. An unsupervised learning procedure is usually more diffi-

cult to assess than a supervised one. The procedure for evaluating the results of a clustering algo-

rithm is known as cluster validation. Although a clustering structure resulting from a certain al-

gorithm could be assessed by domain knowledge and expert experience, cluster validity empha-

sizes the evaluation of the clustering result in an objective and quantitative way, which is usually 

statistically based. These assessments should be objective and have no preferences to any algo-

rithm. They should be able to provide meaningful insights in answering questions like how many 

clusters are hidden in the data, whether the clusters obtained are meaningful from a particular 

point of view or just artifacts of the algorithms, or why we choose one algorithm instead of 

another. The first question concerns the cluster tendency of the data and should in principle be 

answered before attempting to perform clustering, using specific statistical tests. Unfortunately, 

such tests are not always very helpful and require the formulation of specific test hypotheses. 

The other questions concern the analysis of cluster validity and can only be answered after appli-

cation of clustering method to the data.  

Generally, there are three types of validation procedures: external indices, internal indices, 

and relative indices [11]. External indices are based on some prespecified structure, which is the 

reflection of prior information on the data and is used as a standard to validate the clustering so-

lutions. External validation can only be performed when prior knowledge of the problem is 

available. The prior knowledge may concern general characteristics of the clusters (e.g. expected 

compactness) or relations between specific items (e.g. items A and B should belong to a same 

cluster and item C to a different one). Sometimes this knowledge is confirmatory but not pre-

scriptive. Internal tests are not dependent on external information (prior knowledge). Instead, 

they examine the clustering structure directly from the original data. Internal validation is based 

on an evaluation of the “agreement” between the data and the partition. For fuzzy partitional me-

thods, internal validity indices should take into account both the data items and the membership 



CLUSTERING OF GENES BASED ON BIOLOGICAL KNOWLEDGE  25  

degrees resulting from clustering. Relative criteria emphasize the comparison of different cluster-

ing structures in order to provide a reference to decide which one may best reveal the characteris-

tics of the objects. Relative comparisons are often employed for selecting good values for impor-

tant parameters, such as the number of clusters.  

It is important to mention that in this study, internal indices, for example C-index, Silhouette 

index, Dunn index and Goodman-Kruskal index, have been applied. We discuss in detail about 

them in Chapter 3(Section 3.6). Also, external indices, for example Rand index, Hubert index 

and corrected Rand index, have been applied too. We discuss in detail about them in Chapter 

3(Section 3.11). The above indices are the most common used for estimating the number of clus-

ters in a dataset and evaluating the results of a clustering algorithm in gene expression data anal-

ysis [8], [16], [21], [17], [44] and [45]. 

Result Interpretation  

The ultimate goal of clustering is to provide users with meaningful insights from the original 

data so that they can develop a clear understanding of the data and therefore effectively solve the 

problems encountered. A set of clusters is not itself a finished result but only a possible outline. 

Consequently, further analyses and experiments may be required.  

It is interesting to observe that the flow chart in Figure 2 also includes a feedback pathway. 

Cluster analysis is not an one-shot process. In many circumstances, clustering requires a series of 

trials and repetitions. Moreover, there are no universally effective criteria to guide the selection 

of features and clustering schemes. Validation criteria provide some insights into the quality of 

clustering solutions, but even choosing an appropriate criterion is a demanding problem. Since 

clustering is a known NP-hard problem [11], most approaches use the alternative optimization 

schemes in order to find a local optimum solution of their criterion function. 

Finally, it is also important to mention that incorporating prior knowledge in the clustering 

process would generate clusters that are more biologically relevant. Also, this supports the dis-

covery of clusters of genes sharing similar functions. Such clusters may indicate regulatory 

pathways, which could be significantly relevant to specific phenotypes or physiological condi-

tions. Such a biological knowledge may be used in clustering method and cluster validation. Red 
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arrows in Figure 2 represent this work. Unfortunately, this sort of prior biological knowledge is 

not always available. 

1.5    Clustering  Applications 

Clustering has been applied in a wide variety of fields, as illustrated below with a number of 

typical applications. 

1. Engineering (computational intelligence, machine learning, pattern recognition, mechanical 

engineering, electrical engineering). Typical applications of clustering in engineering range 

from biometric recognition and speech recognition, to radar signal analysis, information 

compression, and noise removal. 

2. Computer sciences. We have seen more and more applications of clustering in web mining, 

spatial database analysis, information retrieval, textual document collection, and image 

segmentation. 

3. Life and medical sciences (genetics, biology, microbiology, paleontology, psychiatry, clin-

ic, phylogeny, pathology). These areas consist of the major applications of clustering in its 

early stage and will continue to be one of the main playing fields for clustering algorithms. 

Important applications include taxonomy definition, gene and protein function identifica-

tion, disease diagnosis and treatment, and so on. 

4. Astronomy and earth sciences (geography, geology, remote sensing). Clustering can be 

used to classify stars and planets, investigate land formations, partition regions and cities, 

and study river and mountain systems. 

5. Social sciences (sociology, psychology, archeology, anthropology, education). Interesting 

applications can be found in behavior pattern analysis, relation identification among differ-

ent cultures, construction of evolutionary history of languages, analysis of social networks, 

archeological finding and artifact classification, and the study of criminal psychology. 
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6. Economics (marketing, business). Applications in customer characteristics and purchasing 

pattern recognition, grouping of firms, and stock trend analysis all benefit from the use of 

cluster analysis. 

1.6     Gene  Clustering 

Over the past few years DNA microarrays4 have become a key tool in functional genomics. 

They allow monitoring the expression of thousands of genes in parallel over many experimental 

conditions (e.g. tissue types, growth environments). This technology enables researchers to col-

lect significant amounts of data, which need to be analyzed to discover functional relationships 

between genes or samples. The results from a single experiment are generally presented in the 

form of a data matrix in which rows represent genes and columns represent conditions. Each en-

try in the data matrix is a measure of the expression level of a particular gene under a specific 

condition. A central step in the analysis of DNA microarray data is the identification of groups of 

genes and/or conditions that exhibit similar expression patterns. Clustering is a fundamental ap-

proach to classifying expression patterns for biological and biomedical applications. The main 

assumption is that genes that are contained in a particular functional pathway5 should be co-

regulated and therefore should exhibit similar patterns of expression [7].  

DNA microarrays offer a global view of the levels of activity of many genes simultaneously. 

In a typical gene expression data set, the number of genes is usually such larger than the number 

of experiments. Even a simple organism like yeast6 has approximately six thousand genes. It is 

estimated that humans have approximately thirty thousand to forty thousand genes. Because of 

                         
4  A DNA microarray is a multiplex technology used in molecular biology. It consists of an arrayed series of thou-

sands of microscopic spots of DNA oligonucleotides, called features, each containing picomoles (10−12 moles) 

of a specific DNA sequence, known as probes (or reporters). Since an array can contain tens of thousands of 

probes, a microarray experiment can accomplish many genetic tests in parallel. 

5  A genetic pathway is the set of interactions occurring between a group of genes who depend on each other's indi-

vidual functions in order to make the aggregate function of the network available to the cell. 

6  Yeasts are eukaryotic micro-organisms. 
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the large number of genes and the complexity of biological networks, clustering is a useful ex-

ploratory technique for analysis of gene expression data. Clustering has been a useful data-

mining tool since early days, for discovering similar expression patterns without prior know-

ledge. Many clustering algorithms have been proposed for the analysis of gene expression data. 

The overflowing clustering techniques can further confuse biologists, due to the lack of adequate 

standards for cluster validity. Clustering algorithms attempt to partition the genes into groups 

exhibiting similar patterns of variation in expression level. In an attempt to understand compli-

cated biological systems, large amounts of gene expression data have been generated by re-

searchers. Given the same data set, different clustering algorithms can potentially generate very 

different clusters: the number of clusters and their constituents.  

Microarray experiments have been widely used to screen biological activities and cellular 

changes under different conditions at molecular level. Its ability to simultaneously monitor ex-

pression changes of thousands of genes has acquired its popularity but, at the same time, posed 

many challenging statistical and computational problems. Gene clustering problem is one of 

them. The purpose of gene clustering is to search for groups of genes with similar expression 

patterns, which likely have related biological functions or interactions. The complex structure of 

microarray data, the local optimization or the right choice of the clustering parameters that influ-

ence the assignment of genes to clusters are some of the fundamental problems in gene expres-

sion clustering. Also, especially in hierarchical clustering approaches it is difficult to identify the 

“borderline” patterns, i.e. genes with expression profiles that lie between two or more clusters.  

A biologist with a gene expression data set is faced with the problem of choosing an appro-

priate clustering algorithm for his or her data set. The success of clustering algorithms is assessed 

by visual inspection using biological knowledge. Also, incorporating prior knowledge in the 

clustering process would help tease out noise and generate clusters that are more refined and bio-

logically relevant. It provides an alternative to avoid all the aforementioned difficulties. So, with 

the utilization of knowledge background (i.e. knowledge about the function of genes) it is also 

possible to solve the “borderline” problem, and make the interpretation of the final clustering 

result more natural. In this study, we presented a novel clustering approach that utilizes informa-

tion about the functional classification of genes in order to achieve a more knowledgeable and 
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more naturally interpretable clustering arrangement of the genes. Unfortunately, this sort of prior 

biological knowledge is not always available. 

There is a variety of available sources of biological knowledge. In this study we take advan-

tage of the Gene Ontology (GO) and the Kyoto Encyclopedia of Genes and Genomes (KEGG) 

based on the Biological Pathways (PWs). More details about the above sources are discussed in 

Chapter 2. So, we incorporate the available prior knowledge from the above sources in the clus-

tering process. Especially we use biological knowledge in the used clustering algorithm and in 

cluster validation. 

 Then the biological meanings of the results are therefore interpreted manually and this work 

can be time-consuming for large-scale data. Intuitively, a clustering has possible biological signi-

ficance if genes in the same cluster tend to have similar expression levels in additional experi-

ments that were not used to form the clusters. Because co-expressed genes are likely to share the 

same biological function, cluster analysis of gene expression profiles has been applied for gene 

function discovery. It has observed that genes with the same function or involved in the same 

biological process are likely to co-express, hence clustering gene expression profiles provides a 

means for gene function prediction. 

Different clustering algorithms optimize different objective functions or criteria based on a 

biological network. Partitional clustering methods such as k-means assign each gene to a single 

cluster. However, these methods do not provide information about the influence of a given gene 

for the overall shape of clusters. On the other hand, fuzzy partitioning method, fuzzy c-means 

(FCM) attributes cluster membership values to genes. Fuzzy clustering is a convenient method to 

select genes exhibiting tight association to given clusters. In addition to the specification of the 

number c  of clusters in the data set, the FCM method requires to choose m, the fuzziness para-

meter. Thus, a major problem in applying the FCM method is the choice of the fuzziness para-

meter m. By setting threshold levels for the membership values, genes which are tightly asso-

ciated to a given cluster can be selected. 

Ideally, we would like to be able to compare proposed clusterings having different numbers 

of clusters. Unfortunately, determining the correct number of clusters in real data is a long-

standing and very difficult problem. The best way to cluster gene expression data is to use more 
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than one clustering algorithms and compare the results so as to choose the best clustering algo-

rithm. Also, clustering algorithms that may give different results based on different initial condi-

tions should be run several times to find the best solution. Gene expression data clustering is a 

powerful tool for arranging genes according to similarity in their expression patterns. Cluster 

analysis is also the first step in analyzing gene expression data. Many traditional clustering algo-

rithms such as k-means can be used to cluster gene expression data. 

To sum up, recent advances in DNA microarray technology, also known as gene chips, allow 

measuring the expression of thousands of genes in parallel and under multiple experimental con-

ditions. This technology is having a significant impact on genomic and post-genomic studies. 

Disease diagnosis, drug discovery and toxicological research benefit from the use of microarray 

technology. A main step in the analysis of gene expression data is the detection of samples or 

genes with similar expression patterns. A number of data mining techniques have been applied to 

the analysis of gene expression data. Clustering is a fundamental approach to gene expression 

knowledge discovery. Solutions for the systematic evaluation of the quality of the clusters have 

been recently proposed. Moreover, the prediction of the correct number of clusters is a critical 

problem in unsupervised classification problems. Many clustering algorithms require the number 

of clusters given as an input parameter. Different cluster validity indices have been suggested to 

address this problem. A cluster validity index indicates the quality of a resulting clustering 

process. Thus, the clustering partition that optimizes the validity index under consideration is 

chosen as the best partition. There are several cluster validity techniques for gene expression data 

analysis. Normalization and validity aggregation strategies are also proposed to improve the    

prediction of the correct number of clusters in a data set. Also, incorporating prior knowledge in 

the clustering process leads to clusters that are more refined and biologically relevant. 

1.7      Structure and Contribution of  This Thesis 

In this thesis, one clustering and four validation algorithms are applied to three breast cancer 

datasets. The combination of these methods may be reliably used for the estimation of the num-

ber of clusters and the validation of clustering results. The results show that this software tool 

can support biomedical knowledge discovery and healthcare applications. We implement the 

clustering of genes using the hard c-means algorithm and several validity measures (C-index, 
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Goodman-Kruskal index, Dunn index and Silhouette index) to estimate the number of clusters. 

Appropriate normalization and weighted voting techniques are used to improve the prediction of 

the number of clusters. The gene expression values of three data sets concerning the breast can-

cer (Sorlie’s data set, Veer’s data set and Sotiriou’s data set) are considered, from which the sta-

tistical clusters are obtained through the clustering procedure. Furthermore, we annotate the 

genes to GO and the biological clusters are obtained through the clustering procedure, which 

now uses only the biological knowledge about the available genes. This knowledge comes from 

the GO hierarchies, discussed in Chapter 2 in detail. Another approach to obtain the biological 

clusters, is through the clustering procedure which uses only the biological knowledge in terms 

of pathways (PWs) from Kyoto Encyclopedia of Genes and Genomes (KEGG). The main idea of 

this approach is that if two genes take part in at least one common pathway, they should both be-

long to the same cluster. The validity of this choice is explained in Section 3.12. 

The purpose of this thesis is to examine to which extent is possible to obtain biological clus-

ters that converge to statistical clusters. As mentioned, the statistical clusters are obtained 

through the use of statistical knowledge, i.e. the three available datasets. Note that the biological 

clusters come from the biological knowledge, i.e. from the GO hierarchies or KEGG. There are 

several measures to compare different partitions (e.g. Rand similarity index, Hubert similarity 

index, Rand index after correction for agreement due to chance), some of which have been im-

plemented. Figure 3 summarizes all applied distance metrics, validity and similarity indices, 

while Figure 4 illustrates the overall contribution presenting the examined gene clustering me-

thodologies in this thesis. The various terms shown in these figures are explained in detail 

throughout the thesis.  

It is worthy noted, that except the statistical cluster analysis using the gene expression values 

from the three data sets, the contribution of this thesis concerns the incorporation of prior biolog-

ical knowledge from the GO in clustering procedure and in cluster validation. The results show 

that the utilization of GO biological knowledge or statistical knowledge leads to clusters that 

converge adequately with the clusters obtained from KEGG knowledge.  Hence, it is possible to 

design different algorithm approaches, able to use multiple alternative resources and provide re-

liable gene partitions. Finally, it is shown to what extend is possible to influent the statistical me-

thods with biological knowledge, to obtain results with biological meaning.   
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Figure 3 : All distance metrics, validity and similarity indices applied. 

To summarize, this work is organized to four chapters covering the following subjects: 

•    available sources of biological knowledge (GO, KEGG) 

•    gene clustering methodologies 

•    cluster validity assessment (validity measures, normalization and weighted voting tech- 
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•    results interpretation 

•    motivation for further research 
 

In Chapter 2 two types of up to date available sources of biological knowledge (the GO and 

the KEGG) are presented. We introduce their structure and the main available tools that use the 

data provided by these sources. 

In Chapter 3 we present the implemented gene clustering methodologies and data- and 

knowledge-driven cluster validity assessment system. Normalization and weighted voting tech-

niques are used to improve the prediction of the number of clusters. Also, we discuss about sev-

Various approaches 

of hard c-means 

clustering method

C-index, Goodman-

Kruskal index, 

Silhouette index and 

Dunn index

Biological distance via

GO-based Wu and Palmer’s 

method, vector distances: 

Euclidean (L2-norm), 

Correlation, 

Manhattan (L1-norm), 

Chebychev and 

counting distance metrics 

Genes’ expression values from 

the 3 data sets,

available GO biological 

knowledge and

available KEGG biological

knowledge  

Classification methods

Validity indices

Distance metrics between 

2 samples in a data set 

Available data

P
re
-p
ro
c
e
s
s
in
g

Classification

Rand index, Hubert index and

corrected Rand index

Similarity indices

Comparison of partitions



CLUSTERING OF GENES BASED ON BIOLOGICAL KNOWLEDGE  33  

eral measures to compare different partitions, some of which have been implemented and eva-

luated in Chapter 4. 

In Chapter 4 we present a comparative experimental evaluation of the implemented gene 

clustering methodologies, aiming at illustrating their advantages and disadvantages. We compare 

and interpret the obtained results and we make meaningful biological conclusions.  

In Chapter 5 we summarize in brief the findings in Chapter 4. We also introduce some novel 

ideas to motivate further research. We suggest some guidelines about the implemented gene clus-

tering methodologies, which might lead to better results and then, to more meaningful biological 

conclusions.   

1.8    Summary 

Cluster analysis aims to provide a partition of the data where data objects in the same clusters 

are homogenous, while data objects in different groups are well separated. The procedure of 

cluster analysis consists of four basic steps: feature selection or extraction, clustering algorithm 

design or selection, cluster validation and result interpretation. There are no universally effective 

criteria to guide the selection of the appropriate clustering method for a specific problem. The 

two most significant clustering methods presented in this chapter, are the hierarchical and the 

partitional clustering method. Cluster analysis is not an one-shot process. Since clustering is a 

known NP-hard problem, most approaches use more efficient optimization schemes to find a lo-

cal optimum solution. In biological and biomedical applications, clustering algorithms attempt to 

partition the genes into groups exhibiting similar patterns of variation in expression level.  It has 

been a useful data-mining tool since early days, for discovering similar expression patterns with-

out prior knowledge. There are several cluster validity techniques for gene expression data anal-

ysis. Normalization and validity aggregation strategies are also proposed to improve the predic-

tion of the correct number of clusters in a data set. Also, incorporating prior knowledge in the 

gene clustering process would lead to a more knowledgeable and more naturally interpretable 

clustering arrangement of the genes. 
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Figure 4 : General structure of the gene clustering methodologies implemented in this thesis. 
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CHAPTER 2: KNOWLEDGE ORGANIZATION : GENE ONTOLOGY (GO) 
AND KEGG 

 
 

2.1   Introduction 

2.2   GO Project and GO Terms 

2.3   GO Ontologies 

2.4   GO Annotation and Tools 

2.5   Mappings of External Databases to GO 

2.6   Biological Pathways (PWs) 

2.7   Kyoto Encyclopedia of Genes and Genomes (KEGG) 

2.8   Summary 

 

2.1    Introduction 

To answer meaningful questions, biologists often need to retrieve and analyze data from dis-

parate sources. Biologists currently waste a lot of time and effort in searching all the available 

information about each small area of research. This is hampered further by the wide variations in 

terminology, which inhibit effective searching by both computers and people. For example, if 

someone was searching new targets for antibiotics, he or she might want to find all the gene 

products7 that are involved in bacterial protein synthesis and have significantly different se-

quences or structures from those in humans. If one database uses the phrase “translation” for 

these molecules, whereas another uses the phrase “protein synthesis”, it will be difficult for 

someone, and even harder for a computer, to find functionally equivalent terms. The Gene On-

tology (GO) project is a collaborative effort to address the need for consistent descriptions of 

gene products in different databases. It provides an ontology of defined terms representing gene 

                         
7  GO uses the term “gene product” to refer collectively to gene and any entities encoded by the gene, e.g. proteins 

and functional RNAs. 
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product properties. The ontology covers three domains: cellular component, molecular function 

and biological process.  

In this chapter, we first present the basic concepts and the purpose of the Gene Ontology 

project. Then, we describe the aforementioned three domains that GO project covers. We also 

discuss the meaning of GO annotation of genes and proteins, and the tools to accomplish this an-

notation. Finally, this chapter presents the mappings of concepts from external database systems 

to equivalent GO terms. Finally, we present another type of available biological knowledge, 

Kyoto Encyclopedia of Genes and Genomes (KEGG) based on Biological Pathways (PWs). 

2.2    GO Project and GO Terms 

The GO project is a major bioinformatics initiative with the aim of standardizing the repre-

sentation of gene and gene product attributes across species and databases. The project provides 

a controlled vocabulary of terms for describing gene product characteristics and gene product 

annotation8 data from GO Consortium9 members, as well as tools to access and process these da-

ta. GO allows us to annotate genes and their products with a limited set of attributes. However, 

GO does not allow us to describe genes in terms of which cells or tissues they're expressed in, 

which developmental stages they're expressed at, or their involvement in disease. It is not neces-

sary for GO to do these things because other ontologies are being developed for these purposes. 

The GO project has developed three structured controlled vocabularies (ontologies) that describe 

gene products in terms of their associated biological processes, cellular components and molecu-

lar functions in a species-independent manner.  

The aims of the Gene Ontology project are threefold: first, the development and maintenance 

of the ontologies themselves, second, the annotation of gene products, which entails making as-

                         
8  Annotation is the process of assigning GO terms to gene products. 

9  The GO Consortium is the set of biological databases and research groups actively involved in the GO project. 

This includes a number of model organism databases and multi-species protein databases, software development 

groups and a dedicated editorial office. 



CLUSTERING OF GENES BASED ON BIOLOGICAL KNOWLEDGE  37 

sociations between the ontologies and the genes and gene products in the collaborating databases 

and third, the development of tools that facilitate the creation, maintenance and use of the ontol-

ogies [5]. Each GO term within the ontology has a term name, which may be a word or string of 

words, a unique alphanumeric identifier, a definition with cited sources and a namespace indicat-

ing the domain to which it belongs. Terms may also have synonyms, which are classed as being 

exactly equivalent or broader or narrower or related to the term name, references to equivalent 

concepts in other databases and comments on term meaning or usage. An example of a GO term 

is shown in Figure 5.  

 
Figure 5 : Example of a GO term [6]. 

The use of GO terms by collaborating databases facilitates uniform queries across the data-

bases. The controlled vocabularies are structured so that they can be queried at different levels. 

For example, someone can use GO to find all the gene products in the mouse genome that are 

involved in signal transduction, or can zoom in all the receptor tyrosine kinases. This structure 

also allows annotators to assign properties to genes or gene products at different levels, depend-

ing on the depth of knowledge about them. The GO ontology is structured as a directed acyclic 

graph: there are no cycles, and “children” can have more than one “parent”, and each term has 

specific relationships to one or more other terms. The GO vocabulary is designed to be species-

neutral, and includes terms applicable to prokaryotes and eukaryotes, as well as to single and 

multicellular organisms. The GO ontology is not static. Therefore, additions, corrections and al-

terations are suggested by members of the research and annotation communities, as well as by 

those directly involved in the GO project. More information about the GO can be found in [59] 

and [62]. 



38                                                                      CHAPTER 2. KNOWLEDGE ORGANIZATION: GENE ONTOLOGY (GO) AND KEGG 

2.3    GO Ontologies 

Ontologies provide a vocabulary for representing knowledge and a set of relationships that 

hold among the terms of the vocabulary. They can be structurally very complex, or relatively 

simple. Most importantly, ontologies capture domain knowledge in a way that can easily be dealt 

with by a computer. Because the terms in an ontology and the relationships between the terms 

are specific, the use of ontologies facilitates to make standard annotations and so the computa-

tional queries are improved. As systems make domain knowledge available, to both humans and 

computers, bio-ontologies such as GO are essential to the process of extracting biological insight 

from enormous sets of data.  

The Gene Ontology is a controlled vocabulary, a set of standard terms, i.e. words or phrases, 

used for indexing and retrieving information. In addition to defining terms, GO also defines the 

relationships between the terms, making it a structured vocabulary. The Gene Ontology project 

provides an ontology of defined terms representing gene product properties. The ontology covers 

three domains: first, cellular component, i.e. the parts of a cell or its extracellular environment, 

second, molecular function, i.e. the elemental activities of a gene product at the molecular level, 

such as binding or catalysis and third, biological process, i.e. operations or sets of molecular 

events with a defined beginning and end10 [5]. These operations or sets of molecular events 

should be pertinent to the functioning of integrated living units: cells, tissues, organs, and organ-

isms. A gene product might be associated with or located in one or more cellular components, it 

is active in one or more biological processes, during it performs one or more molecular func-

tions. For example, the gene product x  can be described by the molecular function term 1x , the 

biological process terms 2x  and 3x , and the cellular component terms 4x  and 5x . So, the gene 

product cytochrome c can be described by the molecular function term oxidoreductase activity, 

the biological process terms oxidative phosphorylation and induction of cell death, and the cellu-

lar component terms mitochondrial matrix and mitochondrial inner membrane [5]. These three 

areas are considered independent of each other. The ontologies are developed to include all terms 

                         
10  Every process should have a discrete beginning and end and these should be clearly stated in the process term 

definition. 
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falling into these domains without consideration of whether the biological attribute is restricted 

to certain taxonomic groups. Therefore, biological processes that occur only in plants (e.g. pho-

tosynthesis) or mammals (e.g. lactation) are included. Figure 6 shows a small set of terms from 

the ontology.     

In the diagram in Figure 6, relations between the terms are represented by the colored arrows 

and the letter in the box midway along each arrow is the relationship type. Note that the terms 

become more specialized going down the graph, with the most general terms, the root nodes: cel-

lular component, biological process and molecular function, at the top of the graph. Terms may 

have more than one parent, and they may be connected to parent terms via different relations. As 

the diagram in Figure 6 suggests, the three GO domains (cellular component, biological process, 

and molecular function) are each represented by an ontology term. All terms in a domain can 

trace their parentage to the root term, although there may be numerous different paths via vary-

ing numbers of intermediary terms to the ontology root. The three root nodes are unrelated and 

do not have a common parent node, and hence GO is referred to as three ontologies, or as a sin-

gle ontology consisting of three sub-ontologies. Some graph-based softwares may require a sin-

gle root node. In these cases, a “fake” term can be added as a parent of the three existing root 

nodes, as shown in Figure 7(b). 

 
Figure 6 : A set of terms under the biological process node pigmentation [5]. 



40                                                                      CHAPTER 2. KNOWLEDGE ORGANIZATION: GENE ONTOLOGY (GO) AND KEGG 

The structure of GO can be described in terms of a directed acyclic graph (DAG), where each 

GO term is a node, and the relationships between the terms are arcs between the nodes. The rela-

tionships used in GO are directed, for example, a mitochondrion is an organelle, but an organelle 

is not a mitochondrion, and the graph is acyclic. The ontologies resemble a hierarchy, as child 

terms are more specialized and parent terms are less specialized, but unlike a hierarchy, a term 

may have more than one parent term. For example, the biological process term hexose biosyn-

thetic process has two parents, hexose metabolic process and monosaccharide biosynthetic 

process. This is because biosynthetic process is a type of metabolic process and a hexose is a 

type of monosaccharide. Just as each term is defined, so the relations between GO terms are also 

categorized and defined.        

A hierarchy in the GO may be seen as a network in which each term may represent a “child 

node” of one or more “parent nodes”. There are two types of child-to-parent relationships in the 

GO: “is a” and “ part of ” types. The first type is defined when a child class is a subclass of a 

parent class. For example, from the BP ontology, “viral infectious cycle” is a child of “viral life 

cycle”. The second type is used when a parent has the child as its part. For instance, from the 

same ontology, “regulation of viral life cycle” is part of “viral life cycle”. Figure 7 illustrates 

these examples and an another partial view of a DAG in the GO. In more detail now, the “is a” 

relation in GO is very simple: if we say A “is a” B, we mean that node A is a subtype of node B. 

For example, mitotic cell cycle “is a” cell cycle, or lyase activity “is a” catalytic activity. It 

should be noted that “is a” does not mean “is an instance of ”. An “ instance”, ontologically 

speaking, is a specific example of something, e.g. a cat “is a” mammal, but Garfield is an in-

stance of a cat, rather than a subtype of cat. The “is a” relation is transitive, which means that if 

A “ is a” B, and B “is a” C, we can infer that A “is a” C. An example is shown in Figure 8. So, 

from this example we can see that mitochondrion “is an” intracellular organelle and intracellular 

organelle “is an” organelle, therefore mitochondrion “is an” organelle. 

The relation “ part of ” is used to represent part-whole relationships in the Gene Ontology. 

This relation has a specific meaning in GO and it would be added between A and B, only if B is 

necessarily “ part of ” A. That means wherever B exists, it is a part of A, and the presence of B 

implies the presence of A. However, given the occurrence of A, we cannot say that B exists, i.e. 

all B are “part of ” A, but some A “have part” B. An example is shown in Figure 9 which 
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presents that replication fork is necessarily “ part of ” chromosome: all replication  are “ part of ” 

some chromosomes, but only some chromosomes “have part” replication fork. Like the “is a” 

relation, the “ part of ” relation is transitive too, as Figure 10 shows : mitochondrion is “ part of ” 

cytoplasm and cytoplasm is “ part of ” cell, therefore mitochondrion is   “ part of ” cell. Also, if a 

“ part of ” relation is followed by an “is a”  relation, it is equivalent to a “ part of ” relation, i.e. if 

A is “ part of ” B, and B “is a”  C, we can infer that A is “ part of ” C. In Figure 11 we see that 

mitochondrial membrane is “ part of ” mitochondrion, and mitochondrion  “is an”  intracellular 

organelle, therefore mitochondrial membrane is “ part of ” intracellular organelle. It should be 

noted that if the order of the relationships is reversed, the result is the same, i.e. mitochondrion 

“ is a” intracellular organelle and intracellular organelle is “ part of ” cell, therefore mitochon-

drion is “ part of ” cell. The logical rules regarding the “ part of ” and “is a” relations hold no 

matter how many intervening “is a” and “ part of ” relations there are. In Figure 12, the nodes 

between mitochondrion and cell are connected by both “is a” and “ part of ” relations, however 

this is equivalent to saying mitochondrion is “ part of ” cell.  
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                                            (b) 
 

 
                                     (c) 

 
Figure 7 : Different views of the GO: (a) Example of a DAG.  (b) GO taxonomies.  (c) Partial view of the first level 

of BP. […] indicates the presence of several terms not included here. 

 

 
Figure 8 : Transitivity of the “is a” relation. 

 

 
     Figure 9 : An example of the “ part of ” relation. 
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Figure 10 : Transitivity of  the “ part of ” relation. 

 

 
Figure 11 : An example that shows a “ part of ” relation to be followed by an “is a”  relation. 

 
Figure 12 : An example of both “is a” and “ part of ” relations. 

 

Another common relationship in the GO is that where one process directly affects the ma-

nifestation of another process or quality, i.e. the former “regulates” the latter. The target of the 

regulation may be another process, for example, regulation of a pathway or an enzymatic reac-

tion, or it may be a quality, such as cell size or pH. Analogously to “ part of ”, this relation is 

used specifically to mean necessarily “regulates”. That means whenever B is present, it always 

“regulates” A, but A may not always be “regulated by” B. In  Figure 13 we see an example of 

this relationship. Whenever a cell cycle checkpoint occurs, it always “regulates” the cell cycle. 

However, the cell cycle is not solely “regulated by” cell cycle checkpoints, as there are also other 
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processes that regulate it. The regulation of a process does not need to be part of the process it-

self. That means that regulation of transcription describes the processes that modulate the activity 

of the transcriptional machinery, but those processes are not an integral part of transcription. 

 
      Figure 13 : An example of the “regulates” relation. 

Cellular Component (CC) 

Cellular component refers to the unique, highly organized substances of which cells, and so 

living organisms, are composed. Examples include membranes, organelles, proteins, and nucleic 

acids. Whilst the majority of cellular components are located within the cell itself, some may ex-

ist in extracellular areas of an organism. The cellular component ontology describes locations, at 

the levels of subcellular structures and macromolecular complexes. Examples of cellular compo-

nents include nuclear inner membrane, with the synonym inner envelope, and the ubiquitin ligase 

complex, with several subtypes of macromolecular complexes. Generally, a gene product is lo-

cated in or is a subcomponent of a particular cellular component. The cellular component ontol-

ogy includes multi-subunit enzymes and other protein complexes, but not individual proteins or 

nucleic acids. Cellular component also does not include multicellular anatomical terms. The cel-

lular component ontology is an “is a”  complete tree, meaning that every term has a path to the 

root node which passes solely through “is a” relationships. 

Molecular Function (MF) 

Molecular function covers the elemental activities of a gene product at the molecular level, 

such as binding or catalysis. GO molecular function terms represent activities rather than the ent-

ities (molecules or complexes) that perform the actions, and do not specify where or when or in 

what context, the action takes place. Molecular functions generally correspond to activities that 

can be performed by individual gene products, but some activities are performed by assembled 

complexes of gene products. Examples of broad functional terms are catalytic activity, transpor-

ter activity or binding. Examples of narrower functional terms are adenylate cyclase activity or 
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Toll receptor binding. It is easy to confuse a gene product name with its molecular function, and 

for that reason many GO molecular functions are appended with the word “activity”.  

Biological Process (BP) 

A biological process is a recognized series of events or molecular functions. In other words, a 

biological process is a process of a living organism. A process is a collection of molecular events 

with a defined beginning and end, as it has been already mentioned. Biological processes are re-

gulated by many means. Some examples include the control of gene expression, protein modifi-

cation or interaction with a protein or substrate molecule. Examples of broad biological process 

terms are cellular physiological process or signal transduction. Examples of more specific terms 

are pyrimidine metabolic process or alpha-glucoside transport. It can be difficult to distinguish 

between a biological process and a molecular function, but the general rule is that a process must 

have more than one distinct steps. A biological process is not equivalent to a pathway. At 

present, GO does not try to represent the dynamics or dependencies that would be required to 

describe fully a pathway. The biological process ontology includes terms that represent collec-

tions of processes, as well as terms that represent a specific, entire process. Generally, the former 

will have mainly “is a” children, and the latter will have “ part of ” children that represent sub-

processes. An example of such relationships is shown in Figure 14. 

 
Figure 14 : The GO vocabularies are sets of defined terms and specifications of the relationships between them. As 

indicated in this diagram, the GO vocabularies are directed acyclic graphs. In this example, germ cell 
migration has two parents, it is a “ part of ” gamete generation and “is a” (is a subtype of) cell migra-
tion. The GO uses these elementary relationships in all vocabularies. 



46                                                                      CHAPTER 2. KNOWLEDGE ORGANIZATION: GENE ONTOLOGY (GO) AND KEGG 

It is important to note that the functions of a gene product are the jobs that it does or the “ab-

ilities” that it has. These may include transporting things around, binding to things, holding 

things together and changing one thing into another. This is different from the biological 

processes the gene product is involved in, which involve more than one activity. One way to un-

derstand this is to consider the analogy of a company or organization [5]. Individuals (gene 

products) have different abilities or tasks (functions) and they work together to achieve different 

goals (processes). It is easy to confuse a job title (gene product name) with a function. For exam-

ple, “secretarial activity” may seem like a valid function because we have a good conceptual idea 

of what a secretary does. However, in different companies, secretaries might do different things. 

One secretary might have the functions “typing”, “answering phone” and “making coffee”, 

whilst another might have these functions and additionally “photocopying”. In the Gene Ontolo-

gy, a function should be unambiguous and it should mean the same thing no matter what species 

we are dealing with. 

2.4     GO Annotation and Tools 

Annotation is the practice of capturing the activities and localization of a gene product with 

GO terms, providing references and indicating what kind of evidence is available to support the 

annotations. In other words, annotation is the process of assigning GO terms to gene products. 

Because a single gene may encode different products with very different attributes, GO recom-

mends associating GO terms with database objects representing gene products rather than genes. 

If identifiers are not available to distinguish individual gene products, GO terms may be asso-

ciated with an identifier for gene and thus, gene is associated with all GO terms applicable to any 

of its products. In addition to the gene product identifier and the relevant GO term, GO annota-

tions have the following data: first, every annotation must be attributed to a source, the reference 

used to make the annotation (e.g. a literature reference, another database or a computational 

analysis), second, the annotation must indicate what kind of evidence is found in the cited source 

to support the association between the gene product and the GO term (i.e. an evidence code11 de-

                         
11  A simple controlled vocabulary is used to record evidence. The evidence codes are simply the three-letter codes 

used to signify the type of evidence cited. The evidence codes come from the Evidence Code Ontology. 
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noting the type of evidence upon which the annotation is based) and finally, the date and the 

creator of the annotation. Full annotation data sets can be downloaded from the GO website. A 

gene product can be annotated to zero or more nodes of each ontology, at any level within each 

ontology. Also, annotation of a gene product to one ontology is independent of its annotation to 

other ontologies. Annotations should reflect the normal function, process, or localization (com-

ponent) of the gene product. An example of a GO annotation is shown in Figure 15. GO is a 

work in progress, so not all genes and proteins have GO terms associated with them yet. 

 
Figure 15 : Example of a GO annotation [6]. 

In addition, the GO consortium has prepared GO slims, which are “slimmed down” versions 

of the ontologies that allow someone to assign GO slims terms to genomes or sets of gene prod-

ucts and thus to gain a high-level view of gene functions. GO slims are cut-down versions of the 

GO ontologies containing a subset of the terms in the whole GO. They give a broad overview of 

the ontology content without the details of the specific fine grained terms. GO slims are created 

by users according to their needs and may be specific to species or to particular areas of the on-

tologies. GO slims are particularly useful for giving a summary of the results of GO annotation 

of a genome, microarray or cDNA collection when broad classification of gene product function 

is required. Using GO slims someone can, for example, work out what proportion of a genome is 

involved in signal transduction, biosynthesis or reproduction.  

There is a large number of tools available both online and to download that use the data pro-

vided by the GO project. The vast majority of these come from third parties, while the GO Con-

sortium develops and supports two tools, AmiGO [60] and OBO-Edit [61]. Members of the GO 

Consortium make their annotation data freely available to the public as part of the data accessed 

by AmiGO, the GO browser and search engine. AmiGO provides an interface to search and 

browse the ontology and annotation data provided by the GO consortium. Users can search for 

gene products and view the terms with which they are associated. Alternatively, users can search 

or browse the ontology for GO terms of interest and see term details and gene product annota-

tions. AmiGO also provides a BLAST search engine, which searches the sequences of genes and 
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gene products that have been annotated to a GO term and submitted to the GO Consortium. 

AmiGO accesses the GO mySQL database. Annotation data sets from individual databases can 

be found on the GO annotations page. 

OBO-Edit is an open source, platform-independent ontology editor developed and maintained 

by the Gene Ontology Consortium. It is implemented in Java, and uses a graph-oriented ap-

proach to display and edit ontologies. Its emphasis on the overall graph structure of an ontology 

provides a friendly interface for biologists and makes OBO-Edit excellent for the rapid genera-

tion of large ontologies. OBO-Edit includes a comprehensive search and filter interface, with the 

option to render subsets of terms to make them visually distinct. The user interface can also be 

customized according to user preferences. OBO-Edit has also a reasoner that can infer links that 

have not been explicitly stated, based on existing relationships and their properties. Although it 

was developed for biomedical ontologies, OBO-Edit can be used to view, search and edit any 

ontology. It is freely available to download. 

2.5    Mappings of  External Databases to GO 

The Gene Ontology is not the only attempt to build structured controlled vocabularies for ge-

nome annotation. Thus, to aid users, the GO Consortium provides mappings of its terms to terms 

in a number of external vocabularies. Each vocabulary has its own nomenclature, for example 

GenBank Accession, Clone Id, Unigene Cluster, EntrezGene are some of the existing nomencla-

tures. Mappings are files that contain classes or entities from external classification systems, 

such as Enzyme Commission numbers, UniProt keywords or ProSite domains, indexed to iden-

tical or similar or related GO terms. Although the GO Consortium endeavours to make mappings 

as accurate as possible, it cannot guarantee that the mappings provided by the GO project are ei-

ther complete or exact. This may be due to the absence of definitions from GO terms or from 

terms in some external systems. Furthermore, the GO ontologies and the external databases may 

have changed since the mappings were made. It is also noted that mapping of any existing voca-

bulary to any existing vocabulary is feasible via a variety of freely available tools, such as 

Clone/Gene ID Converter and SOURCE Batch Search tools. 
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2.6    Biological  Pathways (PWs) 

A biological pathway is a series of actions among molecules in a cell that leads to a certain 

product or a change in a cell. Such a pathway can trigger the assembly of new molecules, such as 

a fat or protein. Pathways can also turn genes on and off, or spur a cell to move. For one’s body 

to develop properly and stay healthy, many things must work together at many different levels, 

from organs to cells. Cells are constantly receiving cues from both inside and outside the body, 

which are prompted by such things as injury, infection, stress or even food. To react and adjust to 

these cues, cells send and receive signals through biological pathways. The molecules that make 

up biological pathways interact with signals, as well as with each other, to carry out their desig-

nated tasks. Biological pathways can act over short or long distances. For example, some cells 

send out signals to nearby cells to repair localized damage, such as a scratch on one’s knee. Oth-

er cells produce substances, such as hormones, that travel through one’s blood to distant target 

cells. Biological pathways can also produce small or large outcomes. For example, some path-

ways subtly affect how the body processes drugs, while others play a major role in how a ferti-

lized egg develops into a baby. There are many other examples of how biological pathways help 

one’s body to work. For example, the pupil in one’s eye opens or closes in response to light, or if 

one’s skin senses that the temperature is rising, the body sweats to cool him or her down. In fact, 

without biological pathways, we and all other living creatures could not exist. Still, it's important 

to keep in mind that biological pathways do not always work properly. When something goes 

wrong in a pathway, the result can be a disease such as cancer or diabetes. 

There are many types of biological pathways. Some of the most common are involved in me-

tabolism, the regulation of genes and the transmission of signals [48]. Metabolic pathways make 

possible the chemical reactions that occur in our bodies. An example of a metabolic pathway is 

the process by which one’s cells break down food into energy molecules that can be stored for 

later use. Other metabolic pathways actually help to build molecules. Gene regulation pathways 

turn genes on and off. Such action is vital because genes produce proteins, which are the key 

components needed to carry out nearly every task in our bodies. Proteins make up our muscles 

and organs, help our bodies move and defend us against germs. Signal transduction pathways 

move a signal from a cell's exterior to its interior. Different cells are able to receive specific sig-

nals through structures on their surface, called receptors. After interacting with a receptor, the 
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signal travels through the cell where its message is transmitted by specialized proteins that trig-

ger a specific action in the cell. For example, a chemical signal from outside the cell might be 

turned into a protein signal inside the cell. In turn, that protein signal may be converted into a 

signal that prompts the cell to move. Figure 16 shows an example of a biological pathway, which 

is the biological pathway for Huntington’s Disease. This pathway governs the movement of in-

formation between genes and proteins, processes and locations in the cell. This one is a relatively 

simple pathway. More complex pathways can have hundreds of elements each directional. 

 
Figure 16 : The biological pathway for Huntington’s Disease. 

Researchers are learning that biological pathways are far more complicated than once 

thought. Most pathways do not start at point A and end at point B. In fact, many pathways have 

no real boundaries, and they often work together to accomplish tasks. When multiple biological 

pathways interact with each other, it is called a biological network. An example of a biological 

network is presented in Figure 17. 

Many important biological pathways have been discovered through laboratory studies of cul-

tured cells, bacteria, fruit flies, mice and other organisms. Many of the pathways identified in 

these model systems are the same or have similar counterparts in humans. Still, many biological 
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pathways remain to be found. It will take years of research to identify and understand the com-

plex connections among all of the molecules in all biological pathways, as well as to understand 

how these pathways work together. 

 
Figure 17 : Biological network analysis of differentially expressed proteins in both pancreatic cancer and chronic 

pancreatitis. 

Researchers are also able to learn a lot about human disease from studying biological path-

ways. Identifying what genes, proteins and other molecules are involved in a biological pathway 

can provide clues about what goes wrong when a disease strikes. For example, researchers may 

compare certain biological pathways in a healthy person to the same pathways in a person with a 

disease to discover the roots of the disorder. Keep in mind that problems in any number of steps 

along a biological pathway can often lead to the same disease. Finding out what pathway is in-

volved in a disease and identifying which step of the pathway is affected in each patient may 

lead to more personalized strategies for diagnosing, treating and preventing disease. Researchers 

currently are using information about biological pathways to develop new and better drugs. It 

likely will take some time before we routinely see drugs that are specifically designed using the 

pathway approach. However, doctors already use pathway information to choose and combine 

existing drugs more effectively. 
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For example, take the case of cancer [48]. Until recently, many had hoped that most types of 

cancers were driven by a single genetic error and could be treated by designing drugs to target 

those specific errors. Much of that hope was based on the success of imatinib (Gleevec), a drug 

that was specifically designed to treat a blood cancer called chronic myeloid leukemia (CML). 

CML occurs because of a single genetic glitch that leads to the production of a defective protein 

that spurs uncontrolled cell growth. Gleevec binds to that protein, stopping its activity and pro-

ducing dramatic results in many CML patients. Unfortunately, the one-target, one-drug approach 

has not held up for most other types of cancer. Recent projects that deciphered the genomes of 

cancer cells have found an array of different genetic mutations that can lead to the same cancer 

in different patients. Then, based on the genetic profile of their particular tumor, patients could 

receive the drug or drug combination that is most likely to work for them. The complexity of the 

findings appears daunting. Instead of attempting to discover ways to attack one well-defined ge-

netic enemy, researchers now faced the prospect of fighting lots of little enemies. Fortunately, 

this complex view can be simplified by looking at biological pathways that are disrupted by the 

genetic mutations. Rather than designing dozens of drugs to target dozens of mutations, drug de-

velopers could focus their attentions on just two or three biological pathways. Patients could then 

receive the one or two drugs most likely to work for them based on the pathways affected in their 

particular tumors. One way to understand this is to imagine a thousand people travelling towards 

the front door of a single building. In order to keep all these people from entering the building 

there are two ways. If you had limitless resources, you could hire workers to go out and stop 

each person. That would be the one-target, one-drug approach. But if you wanted to save a lot of 

time and money, you could just block the door to the building. That is the pathway-based strate-

gy that many researchers are now pursuing to design drugs for cancer and other common diseas-

es. 

2.7    Kyoto Encyclopedia of Genes and Genomes (KEGG) 

Kyoto Encyclopedia of Genes and Genomes (KEGG) is a collection of 16 online databases 

dealing with genomes, enzymatic pathways, and biological chemicals. KEGG connects known 

information on molecular interaction networks, such as pathways and complexes (this is the 

Pathway Database), information about genes and proteins generated by genome projects (this is 
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the Gene Database) and information about biochemical compounds and reactions (these are the 

Compound and the Reaction Databases). These last databases are different networks, known as 

the protein network and the chemical universe respectively.  

KEGG is widely used in biology, biochemistry and medicine to study metabolic and regula-

tory processes. The presentation of these processes as pathway diagrams greatly helps research-

ers in understanding key functions of biological systems. The developers consider KEGG to be a 

“computer representation” of the biological systems. The pathway data can be studied in a visual 

way and is also available as KEGG Markup Language (KGML) files. Thus it can be used as a 

basis for simulation models. KEGG has been widely used as a reference knowledge base for bio-

logical interpretation of large-scale datasets generated by sequencing and other high-throughput 

experimental technologies [10]. However, the graphical presentation of pathway information in 

KEGG is restricted to semi-static visualization and editing KGML files is not simple.  

 KEGG pathway is a collection of manually drawn pathway maps representing our know-

ledge on the molecular interaction and reaction networks for Global Map, Metabolism, Genetic 

Information Processing, Environmental Information Processing, Cellular Processes, Organismal 

Systems, Human Diseases and also on the structure relationships in Drug Development (KEGG 

drug structure maps). KEGG Atlas is an advanced graphical interface to explore the KEGG 

pathway maps with zooming and navigation capabilities [10]. 

2.8    Summary 

The aim of GO project is to standardize the representation of gene and gene product attributes 

across species and databases. The GO project has developed three structured ontologies: biologi-

cal process, cellular component and molecular function. The existence of the ontologies is to 

provide domain knowledge that can be easily processed by a computer. The aims of the GO 

project are threefold: the development and maintenance of the ontologies themselves, the annota-

tion of gene products and the development of tools that facilitate the creation, maintenance and 

use of the ontologies. Annotation is the practice of capturing the activities and localization of a 

gene product with GO terms, providing references and indicating what kind of evidence is avail-

able to support the annotations. The structure of GO can be described in terms of a directed acyc-



54                                                                      CHAPTER 2. KNOWLEDGE ORGANIZATION: GENE ONTOLOGY (GO) AND KEGG 

lic graph (DAG), where each GO term is a node, and the relationships between the terms are di-

rected arcs between the nodes. A hierarchy in the GO may be seen as a network in which each 

term may represent a “child node” of one or more “parent nodes”. The two types of child-to-

parent relationships are the “is a” and “ part of ” types . Another common relationship is the “re-

gulates” type. There is a variety of tools available that use the data provided by the GO project. 

Also, the GO Consortium provides mappings of its terms to a number of external vocabularies. 

Except the GO, another type of available biological knowledge is KEGG. It is noted that in this 

study, we take advantage of both GO and KEGG knowledge. 
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3.1    Introduction 

Several clustering algorithms have been suggested to analyze genome expression data, but 

fewer solutions have been implemented to guide the design of clustering-based experiments and 

assess the quality of their outcomes. Clustering can support the identification of existing underly-

ing relationships among a set of variables such as biological conditions or perturbations [13]. It 

may represent a basic tool not only for the classification of known categories, but also for the 

discovery of relevant classes. In genome expression domain it has provided the basis for novel 
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clinical diagnostic and prognostic studies. One major data analysis step is to integrate the numer-

ical analysis, which is derived from the implementation of clustering algorithms of co-expressed 

genes, with biological function information. Many approaches and tools have been proposed to 

address this problem at different processing levels. Some methods, for example, score whole 

clustering outcomes or specific clusters according to their biological relevance, while other tech-

niques aim to estimate the significance of overrepresented functional annotations, such as those 

encoded in the Gene Ontology (GO), in clusters. Also, some other approaches directly incorpo-

rate biological knowledge into the clustering process to aid in the detection of relevant clusters of 

co-expressed genes involved in common processes. Several tools have been developed for onto-

logical analysis of gene expression data and more tools are likely to be proposed in the future.  

Clustering techniques are designed to uncover existing groups in data, usually with very li-

mited information available. For example, not only the membership of the data points has to be 

determined, but often also the number of groups. The main objective of the research is an appli-

cation of the clustering and cluster validity methods to estimate the number of clusters in data-

sets. The prediction of the correct number of clusters in a data set is a fundamental problem in 

unsupervised learning. Various cluster validity indices have been proposed to measure the quali-

ty of clustering results [8], [9]. Recent studies confirm that there is no universal pattern recogni-

tion and clustering model to predict molecular profiles across different datasets. Thus, it is useful 

not to rely on one single clustering or validation method, but to apply a variety of approaches. 

Therefore, combination of GO-based (knowledge-driven) and microarray data (data-driven) vali-

dation methods may be used for the estimation of the number of clusters. This estimation ap-

proach may perform an useful tool to support biological and biomedical knowledge discovery.  

A normalization and a weighted voting technique are usually used to improve the prediction of 

the number of clusters based on different data mining techniques. More details about these tech-

niques will be discussed in Sections 3.7 and 3.8 respectively. 

The many available procedures are based on various optimality criteria and since different 

criteria can be used, it is important to be able to compare results obtained by different approach-

es. Similarly, one may be interested in assessing degree of similarity (or verifying equivalence) 

of two clustering algorithms (for example one being a simpler and/or more efficient version of 

the other). This is an important issue with current research, where large data sets are so common. 
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The problem of comparing two different partitions of a finite set of objects reappears continually 

in the clustering literature. So, a variety of similarity indices were designed to compare partitions 

(clusterings) of a data set. Furthermore, the behavior of the similarity index can also be used as 

an indicator of the proper number of clusters in a data set.  

In this chapter, we present all the above concepts in detail. We present the implemented data- 

and knowledge-driven clustering approaches and cluster validity assessment system. Normaliza-

tion and weighted voting techniques are used to improve the prediction of the correct number of 

clusters. Also, we discuss about several measures, some of which have been implemented, to 

compare different partitions obtained from different clustering approaches. 

3.2     Genomic Expression Data and Biological Knowledge Databases  

The DNA microarray technologies allow to compare the expression of thousands of genes in 

different tissues, cells or physiological conditions. It can be used for diagnosis, therapy, follow-

up of a treatment or even for characterizing physiological states. Indeed, the major interest of 

these technologies is to identify, among multiple candidate genes, which ones are the most likely 

to be involved in a considered trait. So, online biological knowledge databases (KEGG, GO,   

RIKEN), biological repositories for gene expression array-based data (GEO) and bibliographical 

database (PubMed) have recently been developed. However, the size and heterogeneity of such 

databases remain problematic. 

In this thesis, in order to take advantage of the available biological information an enrichment 

cluster analysis using GO terms or KEGG pathways is carried out. The clustering approaches 

implemented in this thesis, carry out both analyses. The Gene Ontology (GO) and Kyoto Encyc-

lopedia of Genes and Genomes (KEGG) databases try to arrange genes to specific informative 

groups. The GO database is divided into three different ontologies called Molecular Function, 

Cellular Component and Biological Process. The structure of the database is an acyclic directed 

graph. To each node (GO term) a set of genes is annotated. The root is the most unspecific GO 

term. Its set of genes consists of every gene in the database. The leaves are the most specific GO 

terms. An illustrating example is the GO term GO:0003713 which stands for transcription co ac- 

tivator activity, containing 392 genes. One child of that term is GO:0008140 (cAMP response 
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element binding protein binding). Indeed, this is a more specific term as the first one, containing 

only 7 genes. The KEGG database provides a sorting of genes, depending to which biological 

pathway they belong. Each KEGG identifier stands for one and has the set of genes from the 

pathway annotated. With the help of the above curated vocabularies the gene lists resulting from 

the experiments can be further analyzed, without being an expert in all fields of molecular biolo-

gy. To do this someone can ask if a specific GO term or KEGG pathway is overrepresented in 

the gene lists. The resulting terms and pathways from the analysis could be used to describe the 

set of differential expressed genes or the found cluster in a meaningful biological way. So, the 

choice of these two types of biological knowledge (i.e. GO and KEGG) is not arbitrary, since in 

some sense GO and KEGG give similar biological knowledge. In this way, the results obtained 

using the available GO knowledge can be compared with the results obtained using the available 

KEGG knowledge, in order to make meaningful biological conclusions. 

It is noted that the genes, which we have at our disposal, are in the Unigene nomenclature. As 

far as biological knowledge is concerned, we annotate the available genes to the GO in order to 

take the available biological knowledge from the GO. This step incorporates also the differentia-

tion of the GO terms that refer to the BP hierarchy from those GO terms that refer to the MF hie-

rarchy. So, we lead to the biological knowledge that refers to the BP hierarchy and the biological 

knowledge that refers to the MF hierarchy respectively. It is noted, that we do not use the CC 

hierarchy at all, as it has “ part of ” relations. Only “is a” relations are allowed in our study, 

which are present to the BP and MF hierarchies. The reason for this restriction is discussed in 

Section 3.3. Furthermore, we map the available genes to the Entrez Gene nomenclature so as to 

take advantage of the available biological information from KEGG, where genes are named in 

the Entrez Gene nomenclature. It is noted that the annotation to the GO and the mapping to the 

Entrez Gene nomenclature are done via the Clone/Gene ID Converter12 and the SOURCE Batch 

Search13 tools respectively. 

                         
12  It is freely available at http://idconverter.bioinfo.cnio.es/IDconverter.php.   

13  It is freely available at http://smd.stanford.edu/cgi-bin/source/sourceBatchSearch. 
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Finally, as far as genomic expression data sets are concerned, this research is based on three 

data sets. The first data set, the Sorlie’s data set, comprises 6832 genes with 59 patients’ samples 

per gene. The second one, the Veer’s data set, includes 79 patients’ samples described by the ex-

pression levels of 14639 genes, while the last data set, the Sotiriou’s data set, has 2941 genes 

with 99 patients’ samples each one. All genes are in the Unigene nomenclature, as it has been 

mentioned before. Before these data sets are ready to be used, we impute the NA (Not Available) 

values and then we select only the common genes among the three data sets. There are various 

methods to impute the NA values. One method is just to ignore the genes that have such values, 

while another method is to take the mean value of the gene, ignoring at the moment the NA val-

ues and as a second step replace all these NA entries with this mean value. The mean value in 

turn is computed taking into account all patients’ samples concerning that gene. A third method 

is to use the k-nearest neighbor (embedded function in matlab) in order to fill these NA values. 

The second method is chosen, since it is not recommended to reduce the number of genes, as 

caused by the first method, as well as it is not recommended to impute the NA values of a gene 

using its neighbor genes’ values, as the third method does.  

It is also important to note that in order to compare the results obtained using the available 

GO knowledge, the available KEGG knowledge or the available three data sets, we finally select 

only the common genes among the three data sets that can be annotated to the GO and can be 

also mapped to the Entrez Gene nomenclature. After the above pre-processing, we finally keep 

946 distinct genes, that means that we keep 32% of the genes from Sotiriou’s data set, 14% of 

the genes from Sorlie’s data set and 6% of the genes from Veer’s data set. The above results are 

acceptable, since we finally keep the most important genes concerning breast cancer. 

3.3 GO-Based Similarity Measurement Techniques 

The automated integration of background knowledge is fundamental to support the genera-

tion and validation of hypotheses about the functionality of gene products. One such source of 

prior knowledge is the Gene Ontology (GO). We will present an approach for gene clustering 

and assessing cluster validity based on similarity knowledge extracted from the Gene Ontology 

(GO) and databases annotated to the GO. One of the main objectives of this research is to use 

knowledge-driven gene clustering approaches and knowledge-driven cluster validity methods to 
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estimate the number of clusters in a data set. Thus, a knowledge-driven cluster validity assess-

ment system for microarray data is implemented. More details can be found in Sections 3.4 and 

3.6. Different methods exist to measure similarity between genes products based on the GO. The 

method implemented in this study, processes overall similarity values, which are calculated by 

taking into account the combined annotations originating from the three GO hierarchies [21]. 

A traditional node-counting method has been implemented to measure knowledge-based si-

milarity between genes products (biological distances). Unlike traditional methods that only use 

(gene expression) data-derived indices, this method consists of validity indices that incorporate 

similarity knowledge originating from the GO and a GO-driven annotation database. A tradition-

al edge-counting method proposed by Wu and Palmer [20] is implemented to measure similarity 

between genes products. Edge-counting approach calculates the distance between the nodes as-

sociated with these terms in a hierarchy. Given a pair of terms, 1c  and 2c , this traditional me-

thod for measuring their similarity, consists of calculating the distance measured by the number 

of edges between the nodes associated with these terms in the ontology. The shorter this distance 

is, the higher the similarity is. The shortest or the average distance may be used when there are 

multiple paths. This type of approaches is commonly known as edge-counting methods. Varia-

tions may define weights for the links according to their position in the taxonomy. One of the 

main limitations shown by these methods is that they assume that nodes and links are uniformly 

distributed in an ontology, e.g. in the GO. This is not an accurate assumption in taxonomies ex-

hibiting variable link densities. Information-theoretic models [23] offer alternative approaches to 

measuring similarity in an ontology. Previous research has shown that this type of approaches 

may be significantly less sensitive to link density variability [22], [24]. These methods tradition-

ally consider only the “is a” links in a taxonomy. However, it has been shown that other types of 

links may also be processed to perform similarity assessment [22]. The majority of the GO links 

are “is a” links [25].  

Topological and statistical information extracted from the GO and databases annotated to the 

GO may be used to measure similarity between gene products. Different GO-driven similarity 

assessment methods may be then implemented to perform clustering or to quantify the quality of 

the resulting clusters. Cluster validity assessment may consist of data- and knowledge-driven 

methods, which aim to estimate the optimal cluster partition from a collection of candidate parti-
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tions. Data-driven methods mainly include statistical tests or validity indices applied to the data 

clustered. 

For a given pair of gene products, 1g and 2g , sets of GO terms 1 iT t=  and 2 jT t=  are used to 

annotate these genes. Before estimating between-gene similarity it is first necessary to under-

stand how to measure between-term similarity. Similarity was defined by Wu and Palmer [20] as 

follows: 

 ( )

2
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2
,

2
if 0

i j

i j

i j
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N N N
sim t t
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where iN  and jN  are the minimum  number of links (edges) from it  and jt  to their closest 

common parent in the GO hierarchy, ijT , and N  is the maximum number of links from ijT  to the 

GO hierarchy root. It is noted that when 0N ≠ , it holds that  
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. Thus, we conclude to equation (3.1). This si-

milarity assessment metric may be transformed into a distance, d , metric: 

 ( ) ( ), 1 ,i j i jd t t sim t t= − . (3.2) 

It has been already stated that the structure of GO can be described in terms of a directed 

acyclic graph (DAG), where each GO term is a node and the relationships between the terms are 

arcs between the nodes. The relationships used in GO are directed. Terms may have more than 

one parent, and they may be connected to parent terms or root via different relations. To calcu-

late the distance between a pair of terms ( ),i jt t , Wu and Palmer method is adopted. One of the 

method’s steps is that it finds the common closest parent from all candidate common parents as-

sociated with ( ),i jt t . In other words, Wu and Palmer method finds the parent with the shortest 
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distance from ( ),i jt t  and if there are more than one such parent, the method selects the one with 

the maximum distance from the root. Thus, the desired minimum distance ( ),i jd t t  is calculated 

from (3.2). So, the reason why we select the minimum iN  and jN  and the maximum N , as it 

has been mentioned before, is to take the shortest distance when there are multiple paths. Some 

special cases for the common closest parent’s selection are shown in the following example in 

Figure 18. Also, Figure 19 presents how the Wu and Palmer’s method works. 

 

 

Pair of Terms Common Closest Parent 

B,B B 

B,C A 

A,C A 

A,A A 

D,B B 

Figure 18 : Special cases for the selection of the common closest parent.   

The minimum  between-term distance aggregation may then be used as an estimate of the 

GO-based similarity between two genes products kg  and mg , which is defined as: 
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. (3.3) 

So, for genes products kg  and mg  that are very close each other, it holds that ( ), 0k md g g → . 

However for genes products kg  and mg  that are far away each other, it holds that ( ), 1k md g g →

. This justifies the assumption in (3.1) when 0N = . The above GO-based similarity between two 
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genes products kg  and mg , i.e. ( ),k md g g , represents their biological distance based on the GO 

knowledge, as calculated via Wu and Palmer’s method described above. 

Another method to measure similarity between genes products based on the GO would be an 

information content technique defined by Resnik [22]. This technique consists of determining the 

amount of information they share in common. This type of methods exploits the assumption that 

the more information two terms share in common, the more similar they are. An alternative in-

formation-theoretic technique was proposed by Lin [26]. 

 
Figure 19 : An example that shows how Wu and Palmer method works.    
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In this research we implement two hierarchy-specific similarity assessment techniques, each 

based on information individually extracted from each GO hierarchy (BP or MF), i.e. these tech-

niques are based on the calculation of similarity values, independently obtained from each of the 

two GO hierarchies. Due to the high computational complexity of Wu and Palmer's method, we 

keep from the BP or MF hierarchy five terms per gene that appear most frequently. It is impor-

tant to note that from the full set of genes’ terms, almost 37% of genes have more than five anno-

tation terms to BP and almost 40% have more than five annotation terms to MF hierarchy. Con-

cerning the BP hierarchy, approximately the mean number of annotation terms per gene is six 

with standard deviation five. Almost the same situation exists for MF hierarchy, where the mean 

is almost five terms per gene with standard deviation almost three. We summarize the above ob-

servations in Figure 20. Thus, we infer that by keeping from the BP or MF hierarchy five terms 

per gene, we lose some of the available biological knowledge and this might affect our results. 

Additionally, we do not use the CC hierarchy at all, because its relationships are of type              

“  part of ” and not of type “is a”, as required in the implementation of Wu and Palmer’s method. 

 
Figure 20 : Some useful statistics about the available genes. 

 Furthermore, we study an approach based on the aggregation of similarity information origi-

nated from both BP and MF hierarchies. These overall GO-based similarity values are calculated 

by taking into account the combined annotations originated from both GO hierarchies. In this 

case, a “fake” term is added as a parent of the two existing root nodes from BP and MF hie-

rarchy. Due to the method’s remarkable computational complexity, we keep for each gene six 

annotation terms to the combined BP and MF hierarchy, i.e. we keep three terms that appear 

most frequently concerning the BP hierarchy and three terms that appear most frequently con-

cerning the MF hierarchy. Thus, according to Figure 20 some of the available biological know-

ledge is lost, which might affect the results. 



CLUSTERING OF GENES BASED ON BIOLOGICAL KNOWLEDGE                                                                       65 

It is important to mention that in this thesis, we focus on a method for gene clustering and 

cluster validity indices, using GO-driven similarity. So, the above GO-based biological distances 

calculated via Wu and Palmer’s method, are used in clustering algorithm and cluster validation. 

As stated in Chapter 1, incorporating prior knowledge in the clustering process leads to clusters 

that are more refined and biologically relevant. 

3.4      Clustering Method: Hard C-Means 

3.4.1 Hard C-Means 

K-Means (or C-Means) methodology is a commonly used clustering technique. This is a me-

thod of cluster analysis which aims to partition n  observations into k  clusters in which each ob-

servation belongs to the cluster with the nearest mean. In this analysis the user starts with a col-

lection of samples and attempts to group them into k  number of clusters based on certain specif-

ic distance measurements. The prominent steps involved in the k-means clustering algorithm are 

given below. 

1. This algorithm is initiated by creating k  different clusters. The given sample set is first 

randomly distributed among these k  different clusters. 

2. The center (centroid) of each cluster is calculated. 

3. As a next step, the distance measurement between each of the sample, within a given clus-

ter, to their respective cluster centroid is calculated. 

4. Samples are then moved to a cluster that records the shortest distance from a sample to the 

cluster centroid. 

5. If clusters have changed then go to step 2. 

The algorithm stops when the clusters become stable (e.g. zero reallocations) or some maxi-

mum number of iterations has been performed. This latter test case is necessary because the clus-

ters may not stabilize in a reasonable amount of time for some sets of points. This issue may be-

come more prevalent when dealing with points in higher dimensional spaces and/or when using 

non-Euclidean distance metrics such as Manhattan distance. Unstable clusters are typically not a 
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significant issue, since usually even these clusters will be distinct and well formed after just a 

few iterations. 

As a first step to the cluster analysis, the user decides the number of clusters k . This parame-

ter could take definite integer values with the lower bound of 1 (in practice, 2  is the smallest 

relevant number of clusters) and an upper bound that equals the total number of samples. The    

k-means algorithm is repeated a number of times to obtain an optimal clustering solution, every 

time starting with a random set of initial clusters. 

In this study, the hard c-means clustering method is applied. In particular, in the classical 

hard c-means model each data point ix , which is a vector, in the given data set 

{ }1, , , p
nX X R= ⊆x x…  is assigned to exactly one cluster. Each cluster iΓ  is thus a subset of the 

given data set, i XΓ ⊂ . The set of clusters { }1, cΓ = Γ Γ…  is required to be an exhaustive parti-

tion of the data set X  into c  non-empty and pairwise disjoint subsets ,1i c nΓ ≺ ≺ . In the hard 

c-means such a data partition is said to be optimal when the sum of the squared distances be-

tween the cluster centers and the data points assigned to them is minimal [27]. This definition 

follows directly from the requirement that clusters should be as homogeneous as possible. Hence 

the objective function of the hard c-means can be written as follows:  

 ( ) 2

1 1

, ,
c n

h h ij ij
i j

J X U C u d
= =

=∑∑ , (3.4)    

where { }1, , cC C C= …  is the set of cluster prototypes, ijd  is the distance between jx  and cluster 

center ic , and U  is a c n×  binary matrix called partition matrix. The individual elements  

 { }0,1iju ∈  (3.5) 

indicate the assignment of data to clusters: 1iju =  if the data point jx  is assigned to prototypeiC , 

i.e. j i∈Γx , and 0iju =  otherwise. To ensure that each data point is assigned exactly to one clus-

ter, it is required that:  

 { }
1

1, 1, ,
c

ij
i

u j n
=

= ∀ ∈∑ … . (3.6) 
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This constraint excludes the trivial solution when minimizing hJ , which is that no data is as-

signed to any cluster: 0, ,iju i j= ∀  [12]. Considering (3.6) and the fact that { }0,1iju ∈  it is im-

possible for data to be assigned to more than one clusters. However, unfortunately there are some 

remaining clusters left empty. Since such a situation is undesirable, one usually requires that 

[12]:  

 { }
1

0, 1, ,
n

ij
j

u i c
=

> ∀ ∈∑ … . (3.7) 

The objective function hJ  depends on two (disjoint) parameter sets, which are the cluster centers 

c  and the assignment of data points to clusters U . The problem of finding parameters that mi-

nimize the c-means objective function is NP-hard [28]. Thus, we implement an approach of the 

hard c-means clustering algorithm that provides the partition by optimizing such a criterion. 

In c-means, the parameters to be optimized are split into two (or even more) groups. Then 

one group of parameters (e.g. the partition matrix) is optimized holding the other group(s) (e.g. 

the current cluster centers) fixed (and vice versa). This iterative updating scheme is then re-

peated. The main advantage of this method is that in each of the steps the optimum can be com-

puted directly. By iterating the two (or more) steps the joint optimum is approached, although it 

cannot be guaranteed that the global optimum will be reached. The algorithm may get stuck in a 

local minimum of the applied objective function J . However, alternating optimization is the 

commonly used parameter optimization method in clustering algorithms.  

In case of hard c-means, the iterative optimization scheme works as follows: at first, initial 

cluster centers are chosen. This can be done randomly, i.e. by picking c  random vectors that lie 

within the smallest (hyper-)box that encloses all data or by initializing cluster centers with ran-

domly chosen data points of the given data set. In this study, initial cluster centers are chosen via 

the second approach. Alternatively, more sophisticated initialization methods can be used as 

well, e.g. Latin hypercube sampling [31]. Then the parameters C  are held fixed and cluster as-

signments U  are determined that minimize the quantity of hJ . In this step each data point is as-

signed to its closest cluster center: 
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Any other assignment of a data point would not minimize hJ  for fixed clusters. Then the data 

partition U  is held fixed and new cluster centers are computed as the mean of all data vectors 

assigned to them, since the mean minimizes the sum of the square distances in hJ . The calcula-

tion of the mean for each cluster (for which the algorithm got its name) is stated more formally: 

 1
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i n
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=

=

∑

∑

x

c . (3.9) 

The two steps (3.8) and (3.9) are iterated until no change in C  or U  can be observed. Then the 

hard c-means terminates, yielding final cluster centers and gene partition that are possibly only 

locally optimal. 

     The hard c-means algorithm is fast, since at each iteration c n⋅  dissimilarities are evaluated 

and c  centroids are updated. This fact makes hard c-means a popular algorithm, allowing it to 

cluster thousands of objects. That is why we applied this clustering method in our research.  

Concluding the presentation of the hard c-means, it is important to mention its expressed ten-

dency to become stuck in local minima, which makes it necessary to conduct several runs of the 

algorithm with randomly different initializations [30]. Then the best result out of many cluster-

ings can be chosen based on the values of hJ . So, in this research we conduct 10 runs of the 

hard c-means with randomly different initializations and we choose as the best result the one 

with the min value of hJ . Stochastic optimal search techniques, such as simulated annealing and 

genetic algorithms, provide a possible way to search the complicated problem space more effec-

tively and find the global or approximately global optimum. 

Another disadvantage of this algorithm is that hard c-means assumes that the number of clus-

ters c  is already known by the users, which unfortunately often is not true in practice. Like the 

situation for cluster initialization mentioned above, there are also no efficient and universal me-

thods for the selection of c . Therefore, identifying c  in advance becomes a very important topic 
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in cluster validity. There are several heuristics that are directly related to hard c-means. An ex-

ample is the ISODATA (Iterative Self - Organizing Data Analysis Technique) algorithm [32] 

which deals with the dynamic estimation of c . Moreover, in order to estimate the number of 

clusters, c , in a data set, a variety of validity measures exists. More details about validity meas-

ures are discussed in Section 3.6.  

Furthermore, c-means is sensitive to outliers and noise. The calculation of the means consid-

ers all the data objects in the cluster, including the outliers. Even if an object is quite far away 

from the cluster centroids, it is still forced into a cluster and used to calculate the prototype re-

presentation, which therefore distorts the cluster shapes. So, there are some methods which han-

dle this lack of robustness. For example ISODATA [32] and PAM (Partitioning Around Medo-

ids) [33] both consider the effect of outliers in clustering procedures. ISODATA discards the 

clusters in which the number of data points is below some threshold. It splits a cluster if the   

within-cluster variability is above a threshold, or combines two clusters if their prototypes are 

close enough (judged by another threshold). The disadvantage of this approach is the need for the 

user to select the parameters. The splitting operation of ISODATA eliminates the possibility of 

elongated clusters typical of c-means. Also, as far as PAM is concerned, rather than utilizing the 

calculated means, PAM utilizes real data points, called medoids, as the cluster prototypes, and it 

avoids the effect of outliers to the resulting prototypes. A medoid is a point that has the minimal 

average distance to all other objects in the same cluster.  

Finally, the definition of means limits the application of c-means only to numerical variables, 

while leaving the categorical variables unhandled. Moreover, even for the numerical variables, 

the obtained means may not have the physical meaning or may be difficult to interpret. The au-

thor in [34] discussed hard c-means in binary data clustering and suggested three variants. It is 

indicated that binary data can also be used to represent categorical data. The authors in [35] and 

[36] defined different dissimilarity measures to extend c-means to categorical variables. 

More recent discussions on hard c-means, its variants, and other squared-error based cluster-

ing algorithms with their applications can be found, for example in [37] and [38]. 
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3.4.2 Distance Metrics 

Distance Types 

The following distance types can be used for clustering [71]. 

• Euclidean distance (L2-norm): This is the most usual, “natural” and intuitive way of com-

puting a distance between two samples. It takes into account the difference between two 

samples directly, based on the magnitude of changes in the sample levels. This distance 

type is usually used for data sets that are suitably normalized or without any special distri-

bution problem. 

• Manhattan distance (L1-norm): Also known as city-block distance, this distance measure-

ment is especially relevant for discrete data sets. While the Euclidean distance corresponds 

to the length of the shortest path between two samples, the Manhattan distance refers to the 

sum of distances along each dimension. 

• Pearson Correlation distance: This distance is based on the Pearson correlation coefficient 

that is calculated from the sample values and their standard deviations. The correlation 

coefficient r  takes values from 1−  (large, negative correlation) to 1+  (large, positive cor-

relation). Effectively, the Pearson distance dp is computed as 1dp r= −  and lies between 

0  (when correlation coefficient is 1+ , i.e. the two samples are most similar) and 2  (when 

correlation coefficient is 1− ). Note that the data are centered by subtracting the mean and 

scaled by dividing by the standard deviation. 

• Absolute Pearson Correlation distance: In this distance, the absolute value of the Pearson 

correlation coefficient is used, hence the corresponding distance lies between 0  and 1, just 

like the correlation coefficient. The Absolute Pearson distance da is given as 

1

21
1

2
da r= − ⋅ . Taking the absolute value gives equal meaning to positive and negative cor-

relations, due to which anti-correlated samples will get clustered together. 

• Un-centered Correlation distance: This is the same as the Pearson correlation, except that 

the sample means are set to zero in the expression for un-centered correlation. The un-
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centered correlation coefficient lies between 1−  and 1+ , hence the distance lies between 0  

and 2 . 

• Absolute Un-centered Correlation distance: This is the same as the Absolute Pearson cor-

relation, except that the sample means are set to zero in the expression for un-centered cor-

relation. The un-centered correlation coefficient lies between 0  and 1+ , hence the distance 

lies between 0  and 1. 

• Kendall’s (tau) distance: This non-parametric distance measurement is more useful in 

identifying samples with a huge deviation in a given data set. 

The standard distance metric used with k-means is Euclidean (L2-norm) distance. However, 

the justification for using L2 distance is not always clear. When points are composed of multiple 

independent (or mostly independent) variables, there is a case for expecting Manhattan (L1-

norm) distance to be a better measure of distance between two points. In this study, Euclidean 

distance (the default distance measure for c-means) has been used in hard c-means method based 

only on gene expression values. The Euclidean distance can sometimes be misleading. So, do-

main knowledge must be used to guide the formulation of a suitable distance measure for each 

particular application. Thus, despite the fact that Euclidean distance is sensitive to high values, 

this distance is widely used in the analysis of gene expression data.  

3.4.3 Variations of Hard C-Means 

Furthermore, as far as clustering methods implemented in this thesis are concerned, in order 

to find the gene clusters based only on KEGG knowledge, three approaches of the hard c-means 

clustering method are implemented. At first, we create the partition vector for each gene based 

on the available KEGG knowledge, i.e. based on a vector whose elements take value 0  if the 

gene does not take part in a specific pathway or 1 if the gene does take part in this specific path-

way. These vectors are the columns of a partition matrix 196 946x , where 196 is the number of 

the discrete pathways and 946 is the number of the discrete genes. Next, we apply the hard c-

means to this partition matrix using the Euclidean and the Correlation distance metrics. It is 

noted that in order the Correlation distance metric to take values from 1−  (large, negative corre-

lation) to 1+  (large, positive correlation), we normalize the data to unit norm. It is also important 



72                                                     CHAPTER 3. GENE CLUSTERING BASED ON STATISTICAL AND BIOLOGICAL KNOWLEDGE 

to note that the approach using the Euclidean distance metric aims to minimize the objective 

function hJ , while the approach using the Correlation distance metric aims to maximize the ob-

jective function hJ . For better results, we conduct 10 runs of the above approaches with ran-

domly different initializations and we choose as the best result the one with the min or max value 

of hJ  respectively. It is noted that the two above distance metrics, i.e. the Euclidean and the Cor-

relation distance metrics are the same with the distance metrics that the classical hard c-means 

clustering method use. The only difference is that the above distance metrics are applied on parti-

tion vectors obtained from the available KEGG knowledge, as it has been presented before. 

In addition, we implement another approach of hard c-means clustering method in order to 

find the biological clusters based only on KEGG knowledge, i.e. based only on the aforemen-

tioned partition matrix. The basic idea in this approach of hard c-means clustering algorithm is 

similar to the previous implementations, but with some differences. Firstly, initial cluster centers 

are chosen. This is done randomly, i.e. by initializing cluster centers with randomly chosen genes 

of the given data set. Then the parameters C  are held fixed and cluster assignments U  are de-

termined that maximize the quantity of '
hJ , where now the objective function is the 

( )' '

1 1

, ,
c n

h h ij ij
i j

J X U C u d
= =

=∑∑ , where '
ijd  indicates the number of common pathways between the 

gene j  and the cluster center i . In this step each gene is assigned to a cluster so as the gene to 

have the maximum number of common pathways with that cluster center. Any other assignment 

of a gene would not maximize 'hJ  for fixed clusters. Then the gene partition U  is held fixed and 

new cluster centers are computed as follows: the partition vector of the cluster center takes the 

value 0  if the number of genes in this cluster that have 0  in the corresponding position of their 

partition vectors is greater than the number of genes that have 1 or vice versa. An illustrative ex-

ample of a cluster with three genes is shown in Table 1. The above two steps are again iterated 

until no change in C  or U  can be observed. Also, in each iteration except for the last, when a 

cluster becomes empty then we force a random gene to belong to that cluster. When this ap-

proach of hard c-means terminates, it yields final cluster centers and gene partition that are pos-

sibly only locally optimal. For better results, we again conduct 10 runs of this approach with 

randomly different initializations and we choose as the best result the one with the max value of 
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'
hJ . The performance of this algorithm is satisfactory. This will be also justified in the next chap-

ter which presents the performance of all implemented algorithms in detail. Furthermore, as far 

as the third approach is concerned, we can see that this approach is similar to c-means, but now 

the approach does not use the mean but the  '
ijd  distance metric in order to distribute the genes 

among the clusters.  

Gene1 Gene2 Gene3 
Cluster 

Center 

 P
ar

tit
io

n 
 V

ec
to

rs
 

0 1 0 0 

0 0 0 0 

1 1 0 1 

1 1 1 1 

Table 1 : An illustrative example that shows the calculation of a cluster center’s partition vector. 

Finally, in order to find the gene clusters based only on GO knowledge another approach of 

hard c-means clustering method has been implemented in this thesis too. The basic idea in this 

approach of hard c-means clustering algorithm is similar to the previous implementations, but 

with some differences. Firstly, initial cluster centers are chosen. This is done randomly, i.e. by 

initializing cluster centers with randomly chosen genes of the given data set. Then the parameters 

C  are held fixed and cluster assignments U  are determined that minimize the quantity of ' 'hJ , 

where now the objective function is the ( )'' ''

1 1

, ,
c n

h h ij ij
i j

J X U C u d
= =

=∑∑ , where ''
ijd  indicates the bio-

logical distance14 between  the gene j  and the cluster center i . In this step each gene is assigned 

to its closest cluster so as the gene to have the minimum biological distance with the cluster cen-

ter. Any other assignment of a gene would not minimize ' '
hJ  for fixed clusters. Then the gene 

partition U  is held fixed and new cluster centers are computed as follows: for each cluster, its 

                         
14  Biological distances, which are based on the GO hierarchies, are calculated via the Wu and Palmer’s method, 

described in Section 3.3. 
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center becomes the gene that has the minimum sum of squared biological distances with all the 

genes belong to that cluster. It is important to note that this criterion of choosing the appropriate 

cluster center is the same criterion with that used in the classical hard c-means model, i.e. the 

calculation of the mean for each cluster. It is like taking the nearest neighbor to mean, which ob-

tained in classical hard c-means from equation (3.9). The only difference now is that the solution 

is one of the available vectors (genes) for each cluster. So, from all above the choice of this GO-

based approach’s criterion is not arbitrary. The above two steps are again iterated until no change 

in C  or U  can be observed. Then this approach of hard c-means terminates, yielding final clus-

ter centers and gene partition that are possibly only locally optimal. For better results, we again 

conduct 10 runs of this approach with randomly different initializations and we choose as the 

best result the one with the min value of ' 'hJ . The performance of this algorithm is satisfactory. 

This will be also justified in the next chapter which presents the performance of all implemented 

algorithms in detail.  

Figure 21 presents the different approaches of hard c-means clustering method implemented 

in this thesis, as they have been mentioned above. 

 
Figure 21 :  The different approaches of hard c-means clustering method implemented. 

Input
The appropriate hard c-means 

clustering approach

Genes’ expression values 
from the 3 data sets. One 

used data set each time. 
(statistical knowledge)

Partition matrix based on 
KEGG knowledge 

(biological knowledge)

Biological distances (BD) 
calculated via GO-based Wu 

and Palmer’s method. One 
used hierarchy each time.  
(biological knowledge)

Use of Euclidean distance
metric and

take as cluster center the
mean

Use of Euclidean (1) or Correlation (2)
or counting (3) distance metric and
take as cluster center the mean

in cases (1) and (2) or an appropriate 
partition vector in case (3)

Use of BD based on BP (4) or MF (5)

or combined BP and MF (6) hierarchy
and take as cluster center the nearest 
neighbor (gene) to the mean

Output: Gene partition

Based on statistical knowledge.
A statistical partition is obtained 

for each used data set.

Based on KEGG biological 

knowledge.
A biological partition is 

obtained for each approach 

(1), (2) or (3).

Based on GO biological 
knowledge. 

A biological partition is 
obtained for each used 
hierarchy (4), (5) or (6).
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3.5      Fuzzy C-Means (FCM)  

Another approach of cluster analysis is fuzzy cluster analysis. This approach allows gradual 

memberships of data points to clusters measured as degrees in [0,1]. Thus, it gives the flexibility 

to express that data points can belong to more than one cluster. Furthermore, these membership 

degrees offer a much finer degree of detail of the data model. Aside from assigning a data point 

to clusters in shares, membership degrees can also express how ambiguously or definitely a data 

point should belong to a cluster. The concept of these membership degrees is substantiated by the 

definition and interpretation of fuzzy sets [63]. Thus, fuzzy clustering allows fine grained solu-

tion spaces in the form of fuzzy partitions of the set of given examples { }1, , nX = x x… . Whereas 

the clusters iΓ  of data partitions have been classical subsets so far, they are represented by the 

fuzzy sets 
i
µ
Γ

 of the data-set X  in the following. Complying with fuzzy set theory, the cluster 

assignment iju  is now the membership degree of a datum jx  to cluster iΓ , such that: 

( ) [ ]0,1
iij ju µ
Γ

= ∈x . Since memberships to clusters are fuzzy, there is not a single label that is 

indicating to which cluster a data point belongs. Instead, fuzzy clustering methods associate a 

fuzzy label vector to each data point jx  that states its memberships to the c  clusters: 

 ( )1 , ,
T

j j cju u=u … . (3.10) 

The c n×  matrix ( ) ( )1, ,ij nU u= = u u…  is then called a fuzzy partition matrix. Based on the 

fuzzy set notion we are now better suited to handle ambiguity of cluster assignments when clus-

ters are badly delineated or overlapping. 

So far, the general definition of fuzzy partition matrices leaves open how assignments of data 

to more than one cluster should be expressed in form of membership values. Furthermore, it is 

still unclear what degrees of belonging to clusters are allowed, i.e. the solution space (set of al-

lowed fuzzy partitions) for fuzzy clustering algorithms is not yet specified. In the field of fuzzy 

clustering two types of fuzzy cluster partitions have evolved. They differ in the constraints they 

place on the membership degrees and how the membership values should be interpreted. In this 

Section we discuss about the most widely used type, the probabilistic partitions, since they have 

been proposed first. Notice, that in literature they are sometimes just called fuzzy partitions 
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(dropping the word “probabilistic”). We use the subscript f  for the probabilistic approaches. 

The second type of fuzzy partitions is the possibilistic models. The subscript p  is used for these 

methods. More details about the possibilistic models will be discussed in the end of this Section. 

As far as the first type of fuzzy partitions is concerned, let { }1, , nX = x x…  be the set of given 

examples and let c  be the number of clusters ( )1 c n< <  represented by the fuzzy sets 
i
µ
Γ

, 

( )1, ,i c= … . Then we call ( ) ( )( )
if ij jU u µ
Γ

= = x  a probabilistic cluster partition of X  if 

 { }
1

0, 1, ,
n

ij
j

u i c
=

> ∀ ∈∑ … ,     and (3.11) 

                                               { }
1

1, 1, ,
c

ij
i

u i n
=

= ∀ ∈∑ …         (3.12) 

hold. The [ ]0,1iju ∈  are interpreted as the membership degree of datum jx  to cluster iΓ  relative 

to all other clusters. 

Constraint (3.11) guarantees that no cluster is empty. This corresponds to the requirement in 

classical cluster analysis that no cluster, represented as (classical) subset of X , is empty (see 

Equation (3.7) in Subsection 3.4.1). Condition (3.12) ensures that the sum of the membership 

degrees for each datum equals 1. This means that each datum receives the same weight in com-

parison to all other data and, therefore, that all data are (equally) included into the cluster parti-

tion. This is related to the requirement in classical clustering that partitions are formed exhaus-

tively (see Equation (3.6) in Subsection 3.4.1). As a consequence of both constraints no cluster 

can contain the full membership of all data points. Furthermore, condition (3.12) corresponds to 

a normalization of the memberships per datum. Thus the membership degrees for a given datum 

formally resemble the probabilities of its being a member of the corresponding cluster. 

After defining probabilistic partitions we can turn to developing an objective function for the 

fuzzy clustering task. Certainly, the closer a data point lies to the center of a cluster, the higher 

its degree of membership should be to this cluster. Following this rationale, one can say that the 

distances between the cluster centers and the data points should be minimal. Hence the problem 

to divide a given data set into c  clusters can be stated as the task to minimize the squared dis-

tances of the data points to their cluster centers, since, of course, we want to maximize the de-
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grees of membership. The probabilistic fuzzy objective function fJ  is thus based on the least 

sum of squared distances, just as hJ  of the hard c-means, presented in Subsection 3.4.1. More 

formally, a fuzzy cluster model of a given data-set X  into c  clusters is defined to be optimal 

when it minimizes the objective function: 

 ( ) 2

1 1

, ,
c n

m
f f ij ij

i j

J X U C u d
= =

=∑∑ , (3.13) 

under the constraints (3.11) and (3.12) that have to be satisfied for probabilistic membership de-

grees in fU . The condition (3.11) avoids the trivial solution of minimization problem, i.e. 

0,  ,iju i j= ∀ . The normalization constraint (3.12) leads to a “distribution” of the weight of each 

data point over the different clusters. Since all data points have the same fixed amount of mem-

bership to share between clusters, the normalization condition implements the known partition-

ing property of any probabilistic fuzzy clustering algorithm. The parameter m, 1m> , is called 

the fuzzifier or weighting exponent. The exponentiation of the memberships with m in fJ  can be 

seen as a function g  of the membership degrees, ( ) m
ij ijg u u= , that leads to a generalization of 

the well-known least squared error functional as it was applied in the hard c-means (see Equation 

(3.4) in Subsection 3.4.1). The actual value of m  then determines the “fuzziness” of the classifi-

cation. It has been shown for the case 1m=  (when hJ  and fJ  become identical), that cluster 

assignments remain hard when minimizing the target function, even though they are allowed to 

be fuzzy, i.e. even though they are not constrained in { }0,1  [64]. For achieving the desired fuzzi-

fication of the resulting probabilistic data partition the function ( ) 2
ij ijg u u=  has been proposed 

first [64]. The generalization for exponents 1m>  that lead to fuzzy memberships has been pro-

posed in [65]. With higher values for m the boundaries between clusters become softer, with 

lower values they get harder. Usually 2m=  is chosen. Aside from the standard weighting of the 

memberships with miju  other functions g  that can serve as fuzzifiers, have been explored.  

The objective function fJ  is alternately optimized, i.e. first the membership degrees are op-

timized for fixed cluster parameters, then the cluster prototypes are optimized for fixed member-

ship degrees: 
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 ( )1 ,  0UU j C
τ τ

τ
−

= >     and (3.14) 

                                                 ( )CC j U
τ τ
= .                                                                     (3.15) 

In each of the two steps the optimum can be computed directly using the parameter update equa-

tions Uj  and Cj  for the membership degrees and the cluster centers, respectively. The update 

formulae are derived by simply setting the derivative of the objective function fJ  with regard to 

the parameters to optimize equal to zero (taking into account the constraint (3.12)). The resulting 

equations for the two iterative steps form the fuzzy c-means algorithm. 

The membership degrees have to be chosen according to the following update formula that is 

independent of the chosen distance measure [66], [67]: 

 

2

1

1 2
2 1 1

12
1

1 m
ij

ij c
m mc

ij lj
l

l lj

d
u

d d

d

−

− −

=

=

= =

 
  
 

∑
∑

. (3.16) 

In this case there exists a cluster i  with zero distance to a datum jx , 1iju =  and 0lju =  for all 

other clusters l i≠ . The above equation clearly shows the relative character of the probabilistic 

membership degree. It depends not only on the distance of the datum jx  to cluster i , but also on 

the distances between this data point and other clusters. 

The update formulae Cj  for the cluster parameters depend, of course, on the parameters used 

to describe a cluster (location, shape, size) and on the chosen distance measure. Therefore a gen-

eral update formula cannot be given. In the case of the basic fuzzy c-means model the cluster 

center vectors serve as prototypes, while an inner product norm induced metric is applied as dis-

tance measure. Consequently the derivations of fJ  with regard to the centers yield [66]: 

 1

1

n
m
ij j

j
i n

m
ij

j

u

u

=

=

=

∑

∑

x

c . (3.17) 
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The choice of the optimal cluster center points for fixed memberships of the data to the clusters 

has the form of a generalized mean value computation for which the fuzzy c-means algorithm 

has its name. 

The general form of the optimized scheme of coupled equations (3.14) and (3.15) starts with 

an update of the membership matrix in the first iteration of the algorithm ( 1τ = ). The first calcu-

lation of memberships is based on an initial set of prototypes 0C . Even though the optimization 

of an objective function could mathematically also start with an initial but valid membership ma-

trix (i.e. fulfilling constraints (3.11) and (3.12)), a 0C  initialization is easier and therefore com-

mon practice in all fuzzy clustering methods. Basically the fuzzy c-means can be initialized with 

cluster centers that have been randomly placed in the input space. The repetitive updating in the 

optimized scheme can be stopped, if the number of iterations τ  exceeds some predefined num-

ber of maximal iterations maxτ , or when the changes in the prototypes are smaller than some ter-

mination accuracy. The (probabilistic) fuzzy c-means algorithm is known as a stable and robust 

classification method. Compared with the hard c-means, presented in Subsection 3.4.1, it is quite 

insensitive to its initialization and it is not likely to get stuck in an undesired local minimum of 

its objective function in practice [68]. Due to its simplicity and low computational demands, the 

probabilistic fuzzy c-means is a widely used initializer for other more sophisticated clustering 

methods. On the theoretical side it has been proven that either the iteration sequence itself or any 

convergent subsequence of the probabilistic FCM converges in a saddle point or a minimum – 

but not in a maximum – of the objective function [66]. 

Although often desirable, the “relative” character of the probabilistic membership degrees 

can be misleading [69]. Fairly high values for the membership of datum in more than one cluster 

can lead to the impression that the data point is typical for the clusters, but this is not always the 

case. For a correct interpretation of these memberships one has to keep in mind that they are ra-

ther degrees of sharing than of typicality, since the constant weight of 1 given to a datum must be 

distributed over the clusters. A better reading of the memberships, avoiding misinterpretations, 

would be [70]: “If the datum ix  has to be assigned to a cluster, then with the probability iju  to 

the cluster i ”. 
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The normalization of memberships can further lead to undesired effects in the presence of 

noise and outliers. The fixed data point weight may result in high membership of these points to 

clusters, even though they are a large distance from the bulk of data. Their membership values 

consequently affect the clustering results, since data point weight attracts cluster prototypes. By 

dropping the normalization constraint (3.12), the possibilistic models try to achieve a more intui-

tive assignment of degrees of membership and to avoid undesirable normalization effects. More 

information about the possibilistic models can be found in [12]. 

3.6 Cluster Validity Indices 

The prediction of the correct number of clusters is a fundamental problem in unsupervised 

classification problems. Many clustering algorithms require the definition of the number of clus-

ters beforehand. To overcome this problem, various cluster validity indices have been proposed 

to assess the quality of a clustering partition. This approach requires the execution of a clustering 

algorithm several times to obtain different partitions. The clustering partition that optimizes a 

validity index is selected as the best partition. Thus, the main goal of a cluster validity technique 

is to identify the partition of clusters for which a measure of quality is optimal. 

Cluster validity measures are used to compare different partitions created by different cluster-

ing algorithms, or by the same algorithm using different parameter values. Cluster validation is 

very important issue in clustering analysis because the result of clustering needs to be validated 

in most applications. In most clustering algorithms, the number of clusters is set as user parame-

ter. There are a lot of approaches to find the best number of clusters. A variety of validity meas-

ures are available and so it is possible to find out: first, how well clustering algorithms have 

worked and how altering parameters effects the clustering and second, the similarity between the 

validity measures. 

 In this study, cluster validation is performed using four validity measures: the C-index, the 

Goodman-Kruskal index, the Dunn index and the Silhouette index. These validity methods have 

been shown to be efficient cluster validity estimators for different types of clustering applica-

tions. Furthermore, they have been chosen to support the investigation of cluster validation tech-
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niques for genome expression data classification. Nevertheless, each of the implemented valida-

tion methods has its advantages and limitations. 

Basic Distance Metrics 

The distance between two samples x  and y , which are vectors, in the data set for interval 

type of the data15, ( ),d x y , in all validity measures was calculated using the well-known Eucli-

dean, Manhattan and Chebychev metrics [2]: 

• Euclidean Distance: ( ) ( )
2

,d = −∑x y x y  

• Manhattan Distance: ( ),d = −∑x y x y  

• Chebychev Distance: ( ), maxd = −x y x y  

The C-index [14], C , is defined as follows: 

 min

max min

S S
C

S S

−

=

−

, (3.18) 

where S, minS , maxS  are calculated as follows. Let p  be the number of all pairs of samples 

(conditions) from the same cluster. Then S is the sum of distances between samples in those p  

pairs. Let P  be a number of all possible pairs of samples in the dataset. Ordering those P  pairs 

by distances we can select p  pairs with the smallest and p  pairs with the largest distances be-

tween samples. The sum of the p  smallest distances is equal tominS , whilst the sum of the p  

largest is equal tomaxS . From this formula it follows that the nominator will be small if pairs of 

samples with small distances are in the same cluster. Thus, small values of C  correspond to 

good clusters. We calculate distances using the data-driven (using Euclidean, Manhattan and 

Chebychev metrics) and knowledge-driven (using biological distances calculated via GO-based 

Wu and Palmer’s method) methods. The number of clusters that minimize C-index is taken as 

the optimal number of clusters, c . We implement two approaches of C-index. From all above, it 

is noted that for each cluster in a partition, a C-index is calculated according to the aforemen-

                         
15  Interval data (also sometimes called integer) is measured along a scale in which each position is equidistant from 

one another. This allows for the distance between two pairs to be equivalent in some way. Interval data cannot be 

multiplied or divided. For example: temperature in degrees Fahrenheit. 
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tioned strategy. Thus, the first approach selects the minimal C-index from a set of candidate C-

indices. These candidates obtain by keeping in each number of clusters (i.e. in each partition) the 

maximum C-index (the worst case) from all its calculated clusters’ C-indices. As far as the 

second approach is concerned, this approach selects the minimal C-index from a set of candidate 

C-indices. These candidates obtain by keeping in each number of clusters (i.e. in each partition) 

the sum of all its calculated clusters’ C-indices. The C-index is an effective cluster validity esti-

mator for different types of clustering applications. 

The Goodman-Kruskal index [15], GK , is another validity measure. For a given dataset, 

, 1, ,j j k=X … , where k  is the total number of samples (gene products in this application) in the 

dataset, this method assigns all possible quadruples [20]. Let d  be the distance between any two 

samples (w  and x , or y  and z , where w , x , y  and z  are all vectors) in jX . A quadruple is 

called concordant if one of the following two conditions is true: 

• ( ) ( ), ,d d<w x y z , w  and x  are in the same cluster and y  and z  are in different clusters. 

• ( ) ( ), ,d d>w x y z , w  and x  are in different clusters and y  and z  are in the same cluster. 

By contrast, a quadruple is called disconcordant if one of following two conditions is true: 

• ( ) ( ), ,d d<w x y z , w  and x  are in different clusters and y  and z  are in the same cluster. 

• ( ) ( ), ,d d>w x y z , w  and x  are in the same cluster and y  and z are in different clusters. 

A good partition is one with many concordant and few disconcordant quadruples. Let conN  and 

disN  denote the number of concordant and disconcordant quadruples, respectively. Then the 

Goodman-Kruskal index, GK , is defined as:  

 con dis

con dis

N N
GK

N N

−
=

+

. (3.19) 

Large values of GK  are associated with good partitions. We calculate distances using the data-

driven (using Euclidean, Manhattan and Chebychev metrics) and knowledge-driven (using bio-

logical distances calculated via GO-based Wu and Palmer’s method) methods. Thus, the number 

of clusters that maximize the Goodman-Kruskal index is taken as the optimal number of clusters, 

c . Goodman-Kruskal index is expected to be robust against outliers because quadruples of pat-
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terns are used for its computation. However, its drawback is its high computational complexity in 

comparison, for example, with the C-index. 

     The Silhouette index [17] is another method for validation of cluster analysis. For a given 

cluster, ( )1, ,jX j c= … , the silhouette technique assigns to the i th sample of jX  a quality 

measure, ( ) ( ) 1, ,s i i m= … , known as the silhouette width. This value is a confidence indicator 

on the membership of the i th sample in cluster jX  and it is defined as: 

 ( )
( ) ( )( )
( ) ( ){ }

min

minmax ,

d i d i
s i

d i d i

−

= ,  (3.20) 

where ( )d i  is the average distance between the i th sample and all of the samples included in 

jX  and ( )mind i  is the minimum average distance between the i th sample and all of the samples 

clustered in ( )1, , ;  k jkX k c= ≠… . From this formula it follows that ( )1 1s i− ≤ ≤ . For a con-

crete illustration, see Figure 22. When a cluster contains only a single object it is unclear how 

( )d i  should be defined, and then we simply set ( )s i  equal to zero. This choice is of course arbi-

trary, but a value of zero appears to be most neutral [17]. When ( )s i  is close to 1, one may infer  

 
Figure 22 : An illustration of the elements involved in the computation of ( )s i , where the object i  belongs to 

cluster A .       

that the i th sample has been “well-clustered”, i.e. it has been assigned to an appropriate cluster. 

When ( )s i  is close to zero, it suggests that the i th sample could also be assigned to the nearest 
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neighbouring16 cluster, i.e. the i th sample lies equally far away from both clusters, so it can be 

considered as an “intermediate case”. If ( )s i  is close to −1 (the worst case), one may argue that 

such a sample has been “misclassified” [22]. To conclude, ( )s i  measures how well object i  

matches the clustering at hand (that is, how well it has been classified). So, for each cluster, we 

can define the average Silhouette width as the average of the ( )s i  for all objects belonging to 

that cluster. This allows us to distinguish “clear-cut” clusters with large values of jS  from 

“weak” clusters with min values of jS . Thus, for a given cluster jX , it is possible to calculate a 

cluster silhouette jS , which characterizes the heterogeneity and isolation properties of such a 

cluster: 

 
1

1
( )

m

j
i

S s i
c
=

= ∑ , (3.21) 

where m  is number of samples in jS . Moreover, for any partition 1:  X i cU X X X↔ ∪ ∪… … , 

a global silhouette value or silhouette index, GSu, can be used as an effective validity index for 

a partition U : 

 
1

1 c

j
j

GSu S
c
=

= ∑ . (3.22) 

Furthermore, it has been demonstrated that equation (3.22) can be applied to estimate the most 

appropriate number of clusters for partition U . We calculate distances using the data-driven (us-

ing Euclidean, Manhattan and Chebychev metrics) and knowledge-driven (using biological dis-

tances calculated via GO-based Wu and Palmer’s method) methods. In this case the partition 

with the maximum silhouette index, GSu, is taken as the optimal partition. 

 Silhouette index offers the advantage that it only depends on the actual partition of the ob-

jects and not on the clustering algorithm that was used to obtain it [17]. As a consequence, sil-

houettes could be used to improve the results of cluster analysis (for instance by moving an ob-

                         
16  This is like the second best choice for object i :  if it could not be accommodated into cluster A , it will be as-

signed to cluster B ,  which is the closest competitor to A . 
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ject with negative ( )s i  to its neighbor), or to compare the output of different clustering algo-

rithms applied to the same data. 

     The Dunn index [18] is the last validity measure we apply. The Dunn index defines the ratio 

between the minimal intercluster distance to maximal intracluster distance. The index is given 

by: 

 min

max

D
δ

=
∆

, (3.23) 

where minδ  denotes the smallest distance between two objects from different clusters and max∆  

denotes the largest distance of two objects from the same cluster. We calculate distances using 

the data-driven (using Euclidean, Manhattan and Chebychev metrics) and knowledge-driven (us-

ing biological distances calculated via GO-based Wu and Palmer’s method) methods. The Dunn 

index is limited to the interval [ ]0,∞  and should be maximized.  

      The Dunn’s validity index requires the definition of at least two clusters. The same situation 

applies to the Silhouette method, since to compute the minimum average distance between the 

sample in one cluster and all of the samples from different clusters, the Silhouette width formula 

(3.20) requires at least two clusters. Thus, calculations for null-case are not considered here. 

Furthermore, the Dunn index has the disadvantage of over-sensitivity to noise, for which a 

family of 18 cluster validation indices is proposed based on the different definitions of interclus-

ter and intracluster distance. 

Intercluster Distances 

      Now, we will present the internal measures used in the implementation of the Dunn’s validity 

index. As far as intercluster distances are concerned, there are six intercluster distances are used 

for the calculation of the Dunn’s validity index [19]: 

• Single Linkage: It is the closest distance between two samples belonging to two different 

clusters. 

• Complete Linkage: It represents the distance between the most remote samples belonging 

to two different clusters. 
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• Average Linkage: It defines the average distance between all of the samples belonging to 

two different clusters. 

• Centroid Linkage: It is used only for Euclidean distance. It is the Euclidean distance be-

tween the centres of two clusters, as calculated by arithmetic mean. 

• Average of Centroids Linkage: It reflects the distance between the centre of a cluster and 

all of samples belonging to a different cluster. 

• Hansdorff Metrics: They are based on the discovery of a maximal distance from samples of 

one cluster to the nearest sample of another cluster. 

In this study, we implement for intercluster distances the single linkage and the complete lin-

kage. 

Intracluster Distances 

      Also, as far as intracluster distances are concerned, there are three intracluster distances are 

used to calculate the Dunn’s validity index [19]. These are:  

• Complete Diameter: It defines the distance between the most remote samples belonging to 

the same cluster. 

• Average Diameter: It represents the average distance between all of the samples belonging 

to the same cluster. 

• Centroid Diameter: It reflects the double average distance between all of the samples and 

the cluster's centre. 

In this study, we implement for intracluster distances the complete diameter and the average di-

ameter.       

Based on an external cluster validation the validity measures were evaluated and compared 

on the basis of various sets of t-invariants of different types of Petri nets (i.e. metabolic, gene 

regulatory and signal transduction nets). With respect to the percentage of correct predictions 

best results were obtained using the Silhouette Width (75%) and the C-index (75%), followed by 

the Dunn-index (50%). Although offering good results, the C-index is hampered by the fact of 
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showing optimal index values for different numbers of clusters, thus impeding a robust automatic 

determination of the optimal number of clusters. Given the noisy nature of biological data, robust 

measures like the Silhouette Width are preferable to noise-sensitive measures like the Dunn in-

dex, which is instable against outliers due to the consideration of only two distances. An inap-

propriate choice of method for cluster center determination might have been one of the reasons 

for the insufficient clustering results obtained by this validity measure. 

The approaches described in this section are available as part of the Machaon CVE (Cluster-

ing and Validation Environment) [9]. This software platform has been designed to support clus-

tering-based analyses of expression patterns including several data- and knowledge-driven clus-

ter validity indices. The program and additional information may be found at 

http://www.cs.tcd.ie/ Nadia.Bolshakova/GOtool.html. 

Furthermore, to determine the optimal number of clusters to be used in clustering data that 

contains some labeled samples, the authors in [47] present another measure of cluster structure 

compatibility with a given label assignment. The intuition is simple: on the one hand, clusters 

should be uniformly labeled and therefore penalize pairs of samples that are within the same 

cluster but have different labels. On the other hand, it is not acceptable to create unnecessary par-

titions and therefore penalize pairs of samples that have the same label, but are not within the 

same cluster. Formally, the compatibility score of a cluster structure with the training set is de-

fined as the sum of two terms. The first is the number of tissue pairs ( ),v u  such that v  and u  

have the same label and are assigned to the same cluster. The second term is the number of 

( ),v u  pairs that have different labels and are assigned to different clusters. This score is also 

called the matching coefficient in the literature [2]. To handle label assignments defined only on 

a subset of the data, the comparison is restricted to count pairs of examples for which labels are 

assigned (the matching coefficient for a submatrix is computed). Based on this notion, using a 

binary search, the choice of clustering parameters can be optimized to find the most compatible 

clustering. It is also emphasized that this general idea can be applied to any parameter dependent 

clustering method and is not restricted to a particular choice. 



88                                                     CHAPTER 3. GENE CLUSTERING BASED ON STATISTICAL AND BIOLOGICAL KNOWLEDGE 

3.7      A Normalization Technique for Cluster Validity Indices 

The combined application of different intercluster/intracluster distances and different dis-

tances between two samples may produce validation indices of different scale ranges. Hence, the 

indices with higher values may have a stronger effect on the calculation of the average index 

values. This may result in a biased prediction of the optimal number of clusters. To overcome 

this problem the following normalization technique has been applied. Given a cluster configura-

tion consisting of c  clusters, for any partition 1:c cU X X X↔ ∪ ∪… , the normalized Dunn’s 

indices ij
∗D  (vectors) are calculated as:   

 ( ) ( )( )ijij c ij c ijD U D U D Dσ∗

= − , (3.24) 

 ( )1
ij ij kn

k

D D U= ∑ , (3.25) 

where i  reflects the selection of the intercluster distance calculation method ( )1, ,6i = … , j  is  

the selection of the intracluster distance calculation method ( )1, ,3j = … , ( )ij cD U  is the value of 

a Dunn’s validity index, n  is the number of partitions, ijDσ  is  the  standard deviation of  

( )ij cD U  across all values of c . The normalized values of the eighteen Dunn’s validity indices 

and their average indices at each number of clusters, c , for 2c =  to 6c =  are shown in Table 2. 

An examination of these results indicates that 2c =  represents the most appropriate partition for 

the data under analysis.  

Furthermore, as far as the other validity indices are concerned, as we have already mentioned, 

different approaches of the used validity indices have been implemented. These appraches de-

pend on the choice of the distance metric (Euclidean, Manhattan or Chebychev), and as far as C-

index is concerned, its approaches also depend on the choice of the minimal C-index (two ap-

proaches implemented, discussed in Section 3.6). It has been observed that all these approaches 

may produce validation indices of different scale ranges. Hence, the indices with higher values 

may have a stronger effect on the calculation of the average index values. This may result in a 

biased prediction of the optimal number of clusters. To overcome this problem the above norma-

lization technique used for Dunn index, is applied to all used validity measures, too. Thus, when-
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ever it is necessary, the normalized Silhouette, C-index and Goodman-Kruskal indices may be 

calculated by equation (3.24) using the Silhouette, C-index and Goodman-Kruskal indices re-

spectively instead of the Dunn’s index. 

Validity 

Index 
c=2 c=3 c=4 c=5 c=6 

D11 1.17 0.37 -1.50 0.32 -0.36 

D21 1.71 -0.07 -0.22 -0.64 -0.78 

D31 1.70 0.03 -0.30 -0.67 -0.76 

D41 1.62 0.17 -0.23 -0.59 -0.97 

D51 1.70 0.05 -0.34 -0.76 -0.65 

D61 1.77 -0.57 -0.21 -0.59 -0.40 

D12 1.37 0.46 -1.18 0.05 -0.71 

D22 1.69 -0.02 -0.19 -0.64 -0.84 

D32 1.66 0.11 -0.24 -0.66 -0.86 

D42 1.60 0.20 -0.20 -0.60 -1.00 

D52 1.66 0.12 -0.27 -0.73 -0.78 

D62 1.76 -0.42 -0.17 -0.60 -0.57 

D13 1.25 0.20 -1.50 0.31 -0.27 

D23 1.72 -0.15 -0.17 -0.65 -0.75 

D33 1.72 -0.08 -0.24 -0.69 -0.71 

D43 1.65 0.08 -0.18 -0.61 -0.94 

D53 1.72 -0.07 -0.28 -0.78 -0.60 

D63 1.75 -0.64 -0.16 -0.60 -0.35 

Average 1.62 -0.01 -0.42 -0.51 -0.68 

Table 2 : Normalized Dunn’s values using 3 types of intracluster measures and 6 types of intercluster measures 
[16]. 

3.8      A Weighted Voting Technique  for Cluster Validity Indices 

      Another approach to estimate the optimal partition consists of the implementation of an ag-

gregation method based on a weighted voting strategy. An example is shown in Table 3, based 

on the Dunn’s indices from Table 2 by replacing the index values by weighted votes, whose val-

ues range from 1 to 5.  Thus, for example, D11 represents the highest index value and suggests 

the partition 2c =  as the optimal partition, hence its weighted vote is equal to 5. On the other 

hand, D11 represents the smallest index value for partition 4c = , hence its weighted vote is equal 
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to 1. The average weighted vote for each cluster partition confirms that 2c =  represents the most 

appropriate prediction. This weighted voting strategy is applied to any validity index used in this 

thesis (i.e. Dunn, Silhouette, C-index and Goodman-Kruskal index). 

Validity 

Index 
c=2 c=3 c=4 c=5 c=6 

D11 5 4 1 3 2 

D21 5 4 3 2 1 

D31 5 4 3 2 1 

D41 5 4 3 2 1 

D51 5 4 3 1 2 

D61 5 2 4 1 3 

D12 5 4 1 3 2 

D22 5 4 3 2 1 

D32 5 4 3 2 1 

D42 5 4 3 2 1 

D52 5 4 3 2 1 

D62 5 3 4 1 2 

D13 5 3 1 4 2 

D23 5 4 3 2 1 

D33 5 4 3 2 1 

D43 5 4 3 2 1 

D53 5 4 3 1 2 

D63 5 1 4 2 3 

Average 5.00 3.61 2.83 2.00 1.56 

Table 3 : Predicting the correct number of clusters by weighted voting technique. The entries represent vote values 
based on Dunn’s validation index using 3 types of intracluster measures and 6 types of intercluster meas-
ures [16]. 

3.9      Combination of Cluster Validity Indices 

The above weighted voting technique (Section 3.8) may also be applied to fuse the results 

originating from different validation methods. Table 4, depicts the global silhouette values, GSu

, for each partition, and the silhouette values, S, for each number of clusters, c , for 2c =  to 

6c = . In this case 2c =  is suggested as the best clustering configuration for the examined data 

set. So, an example of using combination of various validity indices in order to estimate the cor-
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rect number of clusters in a data set, is depicted in Table 5 for three validation techniques. This 

table was obtained from Table 3 and Table 4 by calculating the average weighted vote for each 

technique. Thus, after computing all validity indices, the average weighted vote for each cluster 

partition has been calculated, and 2c =  is suggested as the optimal partition. The applied valida-

tion techniques confirm that the partition consisting of two clusters represents the most appropri-

ate representation for the data set under consideration. 

c GSu S1 S2 S3 S4 S5 S6 

2 0.31 0.42 0.16     

3 0.25 0.25 0.13 0.36    

4 0.26 0.18 0.23 0.38 0.23   

5 0.29 0.31 0.21 0.37 0.22 0.27  

6 0.19 0.22 0.60 0.01 0.56 0.14 0.33 

Table 4 : Global silhouette values for each partition, GSu, and the silhouette values, S, for each cluster defining a      

partition [16].  

Validation  

Technique 
c=2 c =3 c=4 c=5 c=6 

Silhouette 5.00 2.00 3.00 4.00 1.00 

Dunn’s 5.00 3.61 2.83 2.00 1.56 

Average 5.00 2.81 2.92 3.00 1.28 

Table 5 : Predicting the correct number of clusters for medulloblastomas data by aggregation of multiple validation 
methods [16]. 

Finally, it is important to note that the above results in Tables 2-5 were obtained when 

( ),d x y  was calculated using the well-known Euclidean distance between samples. Table 6, 

summarizes the effects of three measures, ( ),d x y  described before in Section 3.6 (i.e. Eucli-

dean, Manhattan and Chebychev distance metrics). It suggests that the estimation of the optimal 
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partition by normalized and non-normalized indices is not sensitive to the implemented type of 

metrics, ( ),d x y .  

Validity Index 

Based on Distances 
c=2 c=3 c=4 c=5 c=6 

Euclidean 0.93 (1.47) 0.48 (-0.46) 0.45 (-0.08) 0.39 (-0.55) 0.40 (-0.38) 

Manhattan 1.70 (1.63) 0.86 (-0.42) 0.79 (-0.09) 0.65 (-0.73) 0.66 (-0.40) 

Chebychev 0.90 (1.29) 0.48 (0.10) 0.49 (-0.20) 0.39 (-0.61) 0.40 (-0.58) 

Table 6 : Dunn’s validity indices for expression clusters originating from leukaemia data. The entries  represent the 

average Dunn’s values based on the distances shown in Table 2 and using three measures for ( ),d x y . 

Normalized Dunn’s validity indexes are given between brackets. Bold entries represent the optimal num-
ber of clusters, c , predicted by each method [19]. 

3.10 Implementation of Cluster Validity Indices 

In this study, we apply the validity indices presented in Section 3.6 using knowledge-driven 

methods (GO-based Wu and Palmer similarity measure) to estimate the number and the quality 

of the clusters. These validity indices could be used to support the discovery of clusters of genes 

sharing similar functions. Such clusters may indicate regulatory pathways, which could be signi-

ficantly relevant to specific phenotypes or physiological conditions. Also, we apply the same va-

lidity indices using data-driven methods (Euclidean, Manhattan and Chebychev metrics) to esti-

mate the number and the quality of the clusters, too. The normalization of index values (men-

tioned in Section 3.7) and the weighted voting strategy (mentioned Section 3.8) have also been 

implemented to improve the prediction procedure. We examine the comparison and combination 

of different data- and knowledge-driven cluster validity indices. 

To sum up, several clustering techniques have been proposed to support the analysis of gene 

expression data. Determining the appropriate number of clusters in experimental data is a com-

plex and time-consuming process. Cluster validity indices represent useful tools to guide unsu-

pervised data analysis. They are particularly relevant for the estimation of clustering partitions in 

different applications, which may require the definition of the number of clusters beforehand. 

The combination of these methods may be used for cluster evaluation tasks. It has been shown 
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how these methods may support the prediction of the optimal cluster partition. The results also 

suggest that the normalization of index values and a weighted voting strategy may improve the 

prediction procedure. The normalization scheme may represent a more robust mechanism to pre-

dict the correct number of clusters. It allows smoothing the effect of the highest values on the 

calculation of the average index values. Moreover, it highlights subtle differences between index 

values originating from different clustering configurations. The advantage of a weighted voting 

approach lies in an aggregation of multiple validation methods in order to improve the estimation 

of the most adequate clustering partition for interpretation purposes. A systematic validation ap-

proach may significantly support genome expression analyses for knowledge discovery applica-

tions.  

Finally, Figures 20-23 present in detail the data- and knowledge-driven cluster validity as-

sessment system implemented in this thesis. Figure 23 shows the data- and knowledge-driven 

cluster validity assessment system implemented, while Figure 24, Figure 25 and Figure 26 

present how Silhouette index or Goodman-Kruskal index, C-index and Dunn index work in de-

tail at stage A in Figure 23. 
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Figure 23 : The implemented data- and knowledge-driven cluster validity assessment system, presented as red bidirectional arrows in Figure 4. 
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Figure 24 : How Silhouette index or Goodman-Kruskal index works in detail at stage A in Figure 23. 
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Figure 25 : How C-index works in detail at stage A in Figure 23. 
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Figure 26 : How Dunn index works in detail at stage A in Figure 23. 
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3.11 Similarity Indices 

The problem of measuring the correspondence between two partitions of an object set has at-

tracted substantial interest in the literature of classification. One may be interested in assessing 

degree of similarity (or verifying equivalence) of two clustering algorithms (for example one be-

ing a simpler and/or more efficient version of the other). This is an important issue with current 

research, where large data sets are so common. Similarity indices can be used to compare parti-

tions (clusterings) of a data set. Many such indices were introduced in the literature over the 

years. Indicatively, Table 7 shows some useful similarity indices. For further information the 

reader is encouraged to refer to [45]. Even though their values differ for the same clusterings that 

they compare, after correcting for agreement attributed to chance only, their values become simi-

lar and some of them even become equivalent. Consequently, the problem of choice of the index 

to be used for comparing different clusterings becomes less important. 

We begin by reviewing a well-known measure of partition correspondence often attributed to 

the author in [39], the Rand index (R). The Rand index appears to be one of the most popular 

alternatives for comparing partitions and has a rather interesting history of being rediscovered 

and/or modified by different authors. Given an n  object set { }1, , nS O O= … , suppose 

{ }1, , RU u u= …  and { }1, , cV v v= …  represent two different partitions of S, i.e. the entries in U  

and V  are subsets of S, 
1 1

R C

i j
i j

u S vU U
= =

= = , ' '
i i j ju u v v∩ =∅ = ∩ , for '1 i i R≤ ≠ ≤  and 

'1 j j C≤ ≠ ≤ . Letting ijn  denotes the number of objects that are common to classes iu  and jv , 

the information on class overlap between the two partitions U  and V  can be written in the form 

of a contingency table (using standard “dot” notation for row and column sums) with in
⋅

 and jn
⋅

 

referring respectively to the number of objects in classes iu  (row i ) and jv  (column j ), as in 

Table 8. 
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No. Introduced by Symbol 

1 Sokal and Michener (1958), Rand(1971) R 

2 Hamann (1961), Hubert (1977) H 

3 Czekanowski (1932), Dice (1945), Gower and Legendre (1986) CZ 

4 Kulczynski (1927) K 

5 McConnaughey (1964) MC 

6 Peirce (1884) PE 

7 Fowlkes and Mallows (1983), Ochiai (1957) FM 

8 Wallace (1) (1983) W1 

9 Wallace (2) (1983) W2 

10 Russel and Rao (1940) RR 

11 Goodman and Kruskal (1954), Yule (1927) GK 

Table 7 : Similarity Indices – References and Symbols. 

Partition V 

P
ar

tit
io

n 
U

 

Class v1 v2 … vC Sums 

u1 n11 n12 … n1C n1. 

u2 n21 n22  n2C n2. 

. 

. 
    . 

  . 
. 
. 

. 

. 

. 
 

. 

. 

. 

. 

. 

. 

uR nR1 nR2 … nRC nR. 

Sums n.1 n.2 … n.C n... = n 

                                              Table 8 : Notation for Comparing Two Partitions. 
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The author in [39], as well as others, bases measures of correspondence between U  and V  

on how object pairs are classified in the RxC contingency table. Specifically, there are four dif-

ferent types among the 
2

n 
 
 

 distinct pairs that could be found: 

• type (i): objects in the pair are placed in the same class in U  and in the same class  in V  

• type (ii): objects in the pair are placed in different classes in U  and in different classes in 

V  

• type (iii): objects in the pair are placed in different classes in U  and in the same class in V  

• type (iv): objects in the pair are placed in the same class in U  and in different classes in V  

Types (i) and (ii) are typically interpreted as agreements in the classification of the objects 

from a pair. Types (iii) and (iv) represent disagreements. Obviously, if A  represents the total 

number of agreements and D  the total number of disagreements, then 
2

n
A D

 
+ =  

 
. Moreover, 

we can show [40] that  

 2 2 2

1 1 1 1 1 1 1 1

1
2

2 2 2 2 22

R C R C R C R C
ij i

ij i j
i j i j i j i j

n n n n n j
A n n n ⋅

⋅ ⋅

= = = = = = = =

 ⋅           
= + − ⋅ + = + ⋅ − +           
            
∑∑ ∑ ∑ ∑∑ ∑ ∑ , (3.26) 

where a binomial coefficient 
2

m 
 
 

 is defined as 0  when 0m=  or 1. In fact, as given in Table 9, 

explicit formulae can be obtained to express the number of object pairs of each type as a function 

of n , in
⋅

, jn
⋅

 and ijn . If we assume that the marginal sums are fixed in the RxC contingency ta-

ble, then all of the formulae in Table 9, including those given for the sums A  and D , are con-

stant linear transformations of 2

,
ij

i j

n∑  and thus, of each other. 
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Type Formula 

(i) ( )
1 1

1
1

2

R C

ij ij
i j

n n
= =

⋅ ⋅ −∑∑  

(ii) 2 2 2 2

1 1 1 1

1

2

R C R C

ij i j
i j i j

n n n n
⋅ ⋅

= = = =

  
⋅ + − +   

  
∑∑ ∑ ∑  

(iii) 2 2

1 1 1

1

2

C R C

j ij
j i j

n n
⋅

= = =

 
⋅ − 
 
∑ ∑∑  

(iv) 2 2

1 1 1

1

2

R R C

i ij
i i j

n n
⋅

= = =

 
⋅ − 
 
∑ ∑∑  

(i) + (ii) = A  = 
2 2 2

1 1 1 1

1

2 2

R C R C

ij i j
i j i j

n
n n n

⋅ ⋅

= = = =

  
+ − ⋅ +  

   
∑∑ ∑ ∑  

(iii) + (iv) = D  = 
2 2 2

1 1 1 1

1

2

R C R C

i j ij
i j i j

n n n
⋅ ⋅

= = = =

 
⋅ + − 
 
∑ ∑ ∑∑  

Table 9 : Formulae for the Number of (Unordered) Object Pairs of the Four Types [44]. 

Intuitively, two partitions that are similar produce relatively large values of A  and small val-

ues of D . Thus, depending on how A  and D  are normalized, different raw measures of agree-

ment are possible, e.g. the author in [39] uses the Rand similarity index (R): 
2

n
R A

 
=  

 
, the au-

thors in [42], [43] adopt 
2

n
D
 
 
 

 and the author in [41] suggests the Hubert similarity index (H): 

( )
2

n
H A D

 
= −  

 
. In all these cases, the raw measures have straightforward probabilistic inter-

pretations with respect to picking a pair of objects at random, i.e., 
2

n
R A

 
=  

 
 (i.e. the Rand si-
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milarity index) is the probability of agreement, 
2

n
D
 
 
 

 is the (complementary) probability of a 

disagreement and ( )
2

n
H A D

 
= −  

 
 (i.e. the Hubert similarity index) is the difference between 

the probability of an agreement and a disagreement. From the above it follows that 0 1R≤ ≤ , 

0 1
2

n
D

 
≤ ≤ 

 
 and 1 1H− ≤ ≤  respectively. 

With so many similarity indices available, some of them shown in Table 7, the choice of the 

index and subsequent interpretation of its value is not obvious. As an example, in Table 10 we 

conclude mean values and the upper and lower bound of the values for six selected similarity in-

dices from Table 7 (FM, R, H, RR, CZ and W). The number of clusters requested was the same 

for both clusterings and equal 2, 3 and then 6 clusters. Clusterings were obtained at random and 

independently so the differences affecting each index must be caused by the agreement due to 

chance in a different way, that depends on its index formula. To eliminate the effect of agree-

ment due to chance, a correction for the Rand (R) similarity index has been suggested. Any simi-  

    

Index FM R H RR CZ W # Clusters 

Mean 0.678 0.499 -0.001 0.462 0.645 0.926 2 

L 0.511 0.499 -0.002 0.261 0.511 0.524  

U 0.705 0.500 0.000 0.497 0.665 0.996  

Mean 0.494 0.417 -0.167 0.248 0.453 0.748 3 

L 0.389 0.335 -0.331 0.151 0.384 0.455  

U 0.573 0.515 0.030 0.328 0.497 0.988  

Mean 0.265 0.547 0.094 0.071 0.236 0.430 6 

L 0.208 0.374 -0.252 0.044 0.202 0.265  

U 0.335 0.656 0.312 0.113 0.265 0.683  

Table 10 : Six selected similarity indices [45]. 
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larity index SI  after such correction has a form  

 
( )

( )1

SI E SI
CSI

E SI

−

=

−

, (3.27) 

where expectation ( )E SI  is conditional upon fixed sets of marginal counts in the matrix N      

Table 8. Consequently the corrected value of the index should be close to 0 if the agreement is 

due to chance only and will be equal 1 when the uncorrected index equals 1. 

Table 11 contains mean values and upper and lower bounds of the values for six similarity 

indices from Table 7 after they were corrected for chance agreement (CFM, CR, CH, CRR, CCZ 

and CW). Clusterings being compared were independent and there was no actual similarity. It 

can be seen that mean values in Table 11 are all either equal to zero or very close to zero. Addi-

tionally, results for indices CR, CH and CCZ are equal. As authors in [45] state that some of the 

indices become equivalent after correction for chance agreement (3.27) is applied. For example, 

Rand (R), Hubert (H), and Czekanowski (CZ) similarity indices are equivalent after correction 

for agreement due to chance. 

Index CFM CR CH CRR CCZ CW # Clusters 

Mean 0.000 0.000 0.000 0.000 0.000 0.000 2 

L 0.000 0.000 0.000 0.000 0.000 0.000  

U 0.002 0.002 0.002 0.001 0.002 0.003  

Mean 0.001 0.001 0.001 0.000 0.001 0.001 3 

L 0.000 0.000 0.000 0.000 0.000 0.000  

U 0.007 0.006 0.006 0.002 0.006 0.004  

Mean 0.005 0.004 0.004 0.001 0.004 0.003 6 

L 0.001 0.001 0.001 0.000 0.001 0.001  

U 0.011 0.010 0.010 0.002 0.010 0.007  

Table 11 : Six corrected similarity indices [45]. 
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From all above, we can conclude that after such correction all similarity indices are either 

equal to zero or very close to zero. Even though their values differ for the same clusterings that 

they compare, after correcting for agreement attributed to chance only, their values become simi-

lar and some of them even become equivalent. Consequently, with so many similarity indices 

available, the problem of the choice of an appropriate similarity index to be used for comparing 

different clusterings, becomes less important. 

We also note that similarity indices can be used to evaluate a single clustering procedure and 

also to compare two clustering methods (or two algorithms of the same method). Furthermore, 

the behavior of the similarity index can also be used as an indicator of the proper number of clus-

ters in a data set. Interesting results can be found in [46]. 

3.12  Application in Multiple Data Sets 

The gene clustering methodologies implemented in this thesis, are shown in detail in Figure 

28. Two different types of biological knowledge are available: GO hierarchies, which are distin-

guished to BP, MF and combined BP-MF hierarchy, and KEGG PWs. It is noted that from GO 

hierarchies we compute the biological distances via Wu and Palmer’s method. A statistical 

knowledge consisting of three data sets on breast cancer (Sotiriou’s, Veer’s and Sorlie’s data set) 

is also available. To apply gene clustering methodologies in a single or multiple data sets a pre-

processing is required. More information about this necessary pre-processing is given in Section 

3.2. It is important to note that after pre-processing, the genes among the three data sets are 

common and the clustering procedures are applied independently to each data set. 

The three data sets can be used after an appropriate pre-processing, as shown in Figure 28. 

Then, the hard c-means clustering method is applied, using Euclidean distance metric on gene 

expression values. We express this procedure as statistical clustering. Another approach of ex-

ecuting hard c-means clustering is based on the biological distances calculated before, using one 

GO hierarchy each time. We express this procedure as GO biological clustering.  

In order to validate the statistical partition emerged from statistical clustering, a statistical and 

a GO biological cluster validation are required. The statistical cluster validation applies several 

validity methods (i.e. C-index, Silhouette index, Dunn index and Goodman-Kruskal index) that 



CLUSTERING OF GENES BASED ON BIOLOGICAL KNOWLEDGE                                                                     105 

use three types of distance metrics on gene expression values: Euclidean, Manhattan and Cheby-

chev. Except the gene expression values, as shown in Figure 28, the cluster validation methods 

use also the calculated biological distances, using one GO hierarchy each time. This is expressed 

as GO biological cluster validation. To validate the biological partition emerged from GO bio-

logical clustering approach, a GO biological cluster validation is required. It is noted that a nor-

malization and a weighted voting strategy are applied to improve the statistical or GO biological 

cluster validation. As the red arrows imply, the clustering method and the validity measures are 

executed multiple times with different input parameter values, i.e. number of clusters, until some 

candidate optimal statistical or biological partitions are obtained.  

Another approach to obtain biological partitions, is via KEGG knowledge, that also requires 

some pre-processing, i.e. mapping genes to the Entrez Gene nomenclature and construction of 

genes’ partition vectors. Then, the clusters are obtained using three methods, expressed as 

KEGG1, KEGG2 and KEGG3 biological clustering. The first method (KEGG1 biological clus-

tering) is based on the idea that genes that take part in at least m  common PWs must belong to 

the same cluster. After many trials we conclude that the best choice is 1m= . As we can see from 

the Figure 27, when 1m=  the obtained clusters are characterized more from both internal homo-

geneity and external separation than when 1m> . From Table 12 we also see that when 1m=  

fewer clusters share the same information, i.e. more than 1 cluster have genes belong to common 

KEGG PWs, than when 1m> . Also, when 1m=  the obtained clusters that have at most 2 genes, 

are fewer than when 1m>  and the mean number of the genes per cluster is 9, while when 2m=  

it is 4 genes per cluster. Thus, apparently 1m=  is the best choice.  

The second method (KEGG2 biological clustering) is the hard c-means clustering method, 

applied using Euclidean or Correlation distance metric on genes’ partition vectors. The last me-

thod (KEGG3 biological clustering) is originated in this thesis. Its basic concept is that the gene 

with the most common PWs to a cluster’s center, is assigned to that cluster. The biological clus-

ters from the two last methods are validated via the validity measures defined earlier, i.e. C-

index, Silhouette index, Dunn index and Goodman-Kruskal index. All validity measures use 

Euclidean, Manhattan and Chebychev distance metrics on genes’ partition vectors. This is re-

ferred to as KEGG biological cluster validation. It is noted that a normalization and a weighted 

voting strategy are also applied to improve the KEGG biological cluster validation. As shown in 
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Figure 28, the two last methods require the number of clusters as an input parameter and are ex-

ecuted repeatedly until some candidate optimal partitions are obtained. Thus, from KEGG2 and 

KEGG3 biological clustering we obtain some candidate optimal biological partitions. Next, these 

partitions are compared with the one obtained from the first method (KEGG1 biological cluster-

ing). For this purpose several methods are available, i.e. Rand index, Hubert index and corrected 

Rand index. The final selected partition is the one that converges most to that of the first method 

and is characterized as optimal. 

 
Figure 27 : An useful observation that justifies the choice 1m= . 

At Least Common 

PWs 

# Obtained Clus-

ters 

% of Obtained Clusters that have at most 2 

genes 

Genes/Cluster 

1 108 40 9 

2 217 51 4 

Table 12 : Useful statistics about the obtained partitions from KEGG knowledge using the 1st method. 

In a similar way, we compare independently the biological partitions obtained from GO 

knowledge and the statistical partitions obtained from the statistical knowledge, i.e. the three data 
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sets, with the biological partition obtained from KEGG knowledge through the first method. 

Thus, we estimate the optimal biological and statistical partition that converges most to the bio-

logical partition obtained from KEGG knowledge through the first method.  

It is noted that a more detailed explanation on the gene clustering methodologies results and 

the comparisons of all possible results is given in the next chapter, which deals with the results 

interpretation. 

More details about the gene clustering methodologies implemented in this thesis are provided 

throughout the previous Sections. 

3.13  Summary 

In this chapter we present in detail all implemented gene clustering methodologies. The main 

objective of the research is to design clustering and cluster validity methods to estimate the num-

ber of clusters in gene expression datasets. C-means methodology is a commonly used clustering 

technique, which aims to partition n  observations into k  clusters in a way that each observation 

belongs to the cluster with the nearest mean. Various cluster validity indices have been proposed 

to measure the quality of clustering results. The Gene Ontology (GO) and Kyoto Encyclopedia 

of Genes and Genomes (KEGG) databases represent the up to date biological knowledge. A tra-

ditional node-counting method (i.e. the GO-based Wu and Palmer’s method) has been imple-

mented to measure knowledge-based similarity between genes products (biological distances), 

calculating the distance between the nodes associated with these terms in a hierarchy. To take 

advantage of the available biological information an enrichment cluster analysis using GO terms 

or KEGG pathways is also carried out. Furthermore, combination of GO-based (knowledge-

driven) and microarray data (data-driven) validation methods may be used for the estimation of 

the number of clusters. A normalization and a weighted voting technique are usually used to im-

prove the prediction of the number of clusters based on different data mining techniques. Also, a 

variety of similarity indices exist to compare partitions (clusterings) of a data set. Finally, the 

behavior of the similarity indices can also be used as an indicator of the proper number of clus-

ters in a data set. 
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Figure 28 : The gene clustering methodologies implemented in this thesis in detail. 
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4.1    Introduction 

In previous chapter the implemented gene clustering methodologies, shown in Figure 28 are 

analyzed in detail. In this chapter the results of these methodologies are presented and inter-

preted. A variety of comparisons between different obtained partitions take place, leading to 

meaningful biological conclusions. The purpose of this thesis, is to obtain gene clusters with bio-

logical meaning via various procedures, using the available statistical (i.e. the three data sets) or 

biological (i.e. the GO hierarchies) knowledge. The above gene clusters have biological mean-

ing, if they converge to the gene clusters obtained by taking advantage of another type of biolog-

ical knowledge, i.e. the available KEGG PWs knowledge. In this chapter we will present a com-

parative experimental evaluation of the implemented gene clustering methodologies, aiming at 
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illustrating their advantages and disadvantages. All the above methods are applied to the com-

mon genes among the three data sets that can be annotated to the GO and can be also mapped to 

the Entrez Gene nomenclature, i.e. finally to 946 distinct genes (see Section 3.2). 

4.2    KEGG-Based Biological Gene Clustering 

As stated in the previous chapter, an approach to obtain biological partitions is via KEGG 

knowledge after some pre-processing, i.e. mapping genes to the Entrez Gene nomenclature and 

the construction of the genes’ partition vectors, all discussed in Section 3.2. Here we do not use 

none of the available data sets with genes’ expression values. We take advantage only of the 

KEGG knowledge concerning the pathways each gene of the 946 genes takes part in. The clus-

ters are obtained using three methods (KEGG1, KEGG2 and KEGG3 biological clustering). We 

have presented these methods in detail in Section 3.12. It is noted that the number of biological 

clusters obtained from the first method, i.e. KEGG1 biological clustering, are 108. More details 

about the first method have been discussed in Section 3.12. The biological clusters from the two 

last methods, i.e. KEGG2 and KEGG3 biological clustering, are validated via the validity meas-

ures, i.e. C-index, Silhouette index and Dunn index, using Euclidean, Manhattan and Chebychev 

distance metrics on genes’ partition vectors (KEGG biological cluster validation). It is men-

tioned that although Goodman-Kruskal index has been implemented, due to its high computa-

tional complexity it has been excluded from the methodology to estimate the correct number of 

clusters. It is noted that a normalization and a weighted voting strategy are also applied to im-

prove the KEGG biological cluster validation. 

 As shown in Figure 28, the two last methods require the number of clusters as an input pa-

rameter and are executed repeatedly until some candidate optimal partitions are obtained. Thus, 

from KEGG2 and KEGG3 biological clustering we obtain some candidate optimal biological 

partitions. Since a large number of clusters and very small clusters are not desired, we focus on a 

specific area of candidate optimal numbers of biological clusters, i.e. candidate optimal biologi-

cal partitions, and we finally select the candidates with the highest votes. Then, Rand index (see 

Section 3.11), which is a similarity measure between KEGG2 or KEGG3 candidate biological 

partitions and KEGG1 biological partition, is used to estimate the optimal KEGG2 or KEGG3 

biological partition. The results obtained are shown below. 
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From KEGG biological cluster validation concerning KEGG2 biological clustering which 

uses Correlation distance metric, the candidate numbers of biological clusters (biological parti-

tions) with the highest votes are shown in Table 13. We finally select as the optimal number of 

biological clusters the number 130, because the hard c-means clustering method gives less empty 

clusters than when is executed with 100 biological clusters as input. Furthermore, Table 14 

shows that the above partition with 130 clusters might be a good choice of optimal partition, 

since it corresponds to large value of Goodman-Kruskal index. Also, in Figure 29 the behavior of 

votes and Rand index as a function of a large range of partition values, concerning KEGG2 

which uses Correlation distance metric is illustrated. The figure indicates that the partition with 

130 clusters is a good choice as optimal partition of all candidates. 

# Clusters Votes 

100 8.0000 

130 8.0000 

Table 13 : KEGG biological cluster validation concerning KEGG2 biological clustering which uses Correlation 

distance metric. 

# Clusters GK Index 

20 -0.6829 

50 0.0845 

100 0.4548 

150 0.8201 

200 0.9902 

Table 14 : Goodman-Kruskal (GK) index values for some partitions concerning KEGG2 which uses Correlation 

distance metric. 

Table 15 shows the candidate numbers of biological clusters (biological partitions) with the 

highest votes. These results are obtained via KEGG biological cluster validation, concerning 

KEGG2 biological clustering which uses Euclidean distance metric. We finally select as the  
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Figure 29 : Behavior of votes and Rand index for different partitions concerning KEGG2 which uses Correlation 

distance metric.  

optimal number of biological clusters the number 110, because the hard c-means clustering me-

thod gives less empty clusters than the case with input parameter 80 biological clusters. Further-

more, from Table 16 we see that the above partition with 110 clusters could be considered as op-

timal partition, since it corresponds to large value of Goodman-Kruskal index. Also, Figure 30 

shows the behavior of votes and Rand index as a function of a large range of partition values, 

concerning KEGG2 which uses Euclidean distance metric. Apparently, the partition with 110 

clusters is a good choice as optimal partition of all candidates. 

# Clusters Votes 

80 10.6667 

110 7.6667 

Table 15 : KEGG biological cluster validation concerning KEGG2 biological clustering which uses Euclidean dis-

tance metric. 

In case of KEGG biological cluster validation concerning KEGG3 biological clustering, the 

candidate numbers of biological clusters (biological partitions) with the highest votes are shown 

in Table 17. Thus, the optimal number of biological clusters is 100. Furthermore, as Table 18 

shows, the above partition with 100 clusters might considered as optimal, since it corresponds to 

large value of Goodman-Kruskal index. Also, the behavior of votes and Rand index as a function 

of a large range of partition values, concerning KEGG3, is shown in Figure 31 and indicates that 



                 CLUSTERING OF GENES BASED ON BIOLOGICAL KNOWLEDGE                                                                      113 

the partition with 100 clusters can be thought as optimal. The figure indicates that the partition 

with 100 clusters is a good choice as optimal partition of all candidates. 

# Clusters GK Index 

20 -0.5837 

50 -0.1159 

100 0.5149 

150 0.9357 

200 0.9157 

Table 16 : Goodman-Kruskal (GK) index values for some partitions concerning KEGG2 which uses Euclidean dis-

tance metric. 

  

Figure 30 : Behavior of votes and Rand index for different partitions concerning KEGG2 which uses Euclidean 

distance metric. 

# Clusters Votes 

100 8.0000 

Table 17 : KEGG biological cluster validation concerning KEGG3 biological clustering. 

From all the above figures we see that there is a variety of candidate optimal KEGG-based 

biological partitions with the highest votes. However, we select as optimal the partition which 

has a number of clusters close to that one of the obtained KEGG1 biological partition. We also 
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justify our choice with the behavior of Rand index, as shown in the above figures, where we ob-

serve that Rand index has achieved its highest value for this estimated optimal biological parti-

tion. That means that the above choice seems to be the optimal that converges mostly to KEGG1 

biological partition. 

# Clusters GK Index 

20 1.0962 

50 0.6159 

100 0.6064 

150 -0.6194 

200 -0.0323 

Table 18 : Goodman-Kruskal (GK) index values for some partitions concerning KEGG3. 

  

Figure 31 : Behavior of votes and Rand index for different partitions concerning KEGG3. 

Next, the above optimal biological partitions, i.e. KEGG2 and KEGG3 biological partitions, 

are compared with the one obtained from the first method, i.e. with KEGG1 biological partition. 

For this purpose several similarity measures are available, i.e. Rand index, Hubert index and cor-

rected Rand index. We finally conclude that the optimal KEGG2 and KEGG3 biological parti-

tions converge strongly to the biological partition obtained from the first method, i.e. from 

KEGG1 biological clustering. This fact justifies our choice for the optimal KEGG2 and KEGG3 

biological partitions, we made before. The results obtained are shown below. It is important to 
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note that as it has been already mentioned in Section 3.11, the Rand (R) and Hubert (H) similari-

ty indices are equivalent after correction for agreement due to chance. 

• KEGG1 biological partition compared with estimated optimal KEGG2 biological partition 

obtained using Correlation distance metric 

         Rand index = 0.9430 

         Hubert index = 0.8860 

        Corrected Rand index = 0.2136 

• KEGG1 biological partition compared with estimated optimal KEGG2 biological partition 

obtained using Euclidean distance metric 

         Rand index = 0.9305 

         Hubert index = 0.8609 

         Corrected Rand index = 0.2551 

• KEGG1 biological partition compared with estimated optimal KEGG3 biological partition  

         Rand index = 0.9422 

         Hubert index = 0.8843 

         Corrected Rand index = 0.2391 

Overall, the three methods (KEGG1, KEGG2 and KEGG3 biological clustering) obtain bio-

logical partitions very similar to the biological partition obtained from the first method (KEGG1 

biological clustering). That means that we can obtain successfully the optimal biological parti-

tion from the available KEGG PWs knowledge via four different methods. The final selected bi-

ological partitions obtained from the three methods (i.e. KEGG2 biological clustering using Cor-

relation distance metric, KEGG2 biological clustering using Euclidean distance metric and  

KEGG3 biological clustering) are those that converge most to the one obtained from the first me-

thod, and they are characterized as optimal. So, the obtained optimal biological partitions based 

on KEGG PWs knowledge are: the biological partition with 108 clusters obtained from the 

KEGG1 method, the biological partition with 130 clusters obtained from the KEGG2 biological 

clustering method using Correlation distance metric, the biological partition with 80 clusters ob-

tained from the KEGG2 biological clustering method using Euclidean distance metric and the 

biological partition with 100 clusters obtained from the KEGG3 biological clustering method.          
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Figure 32 is based on our results and illustrates that genes are finally “well-clustered” via 

KEGG1, KEGG2 or KEGG3 method. 

 
         Figure 32 : An illustrative example that shows the obtained “clear-cut” clusters. 

4.3       Data Sets –Based Statistical Gene Clustering 

As Figure 28 shows, the three available data sets (Sorlie’s, Sotiriou’s and Veer’s data set) 

should be pre-processed before they can be used. After pre-processing, we finally keep only the 

14% of genes from Sorlie’s data set, the 32% of genes from Sotiriou’s data set and the 6% of 

genes from Veer’s data set. This will not result in a biased results interpretation, since we finally 

keep the most important genes concerning breast cancer. This issue is further analyzed in Section 

3.2.  

The hard c-means clustering method is applied, using Euclidean distance metric on gene ex-

pression values, i.e. on each data set with the 946 genes independently (statistical clustering). To 

validate the statistical partition emerged from the above statistical clustering approach, a statis-

tical and a GO biological cluster validation are required. Several validity methods (i.e. C-index, 

Silhouette index and Dunn index) are applied, using three types of distance metrics, i.e. Eucli-

dean, Manhattan and Chebychev, on gene expression values (statistical cluster validation). It is 

mentioned that Goodman-Kruskal index has been implemented in this thesis, but due to its high 

KEGG PW with 
the largest number 

of genes

KEGG PW with 
the second largest 
number of genes

Clusters obtained from 
KEGG1 or KEGG2
or KEGG3 method

Each cluster has common 
genes with at most one of the 
two KEGG PWs each time
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computational complexity it has not been applied it in our methodology to estimate the correct 

number of clusters. Except the gene expression values, as shown in Figure 28, the cluster valida-

tion methods use also the calculated GO-based biological distances (GO biological cluster vali-

dation), using one hierarchy (BP or MF or combined BP and MF hierarchy) each time. It is noted 

that a normalization and a weighted voting strategy are also applied to improve the statistical or 

GO biological cluster validation. As the red arrows imply, the clustering method and the validity 

measures are executed multiple times with different input parameter values, i.e. number of clus-

ters, until some candidate optimal statistical partitions are obtained. Since a large number of clus-

ters and very small clusters should be avoided, we focus on a specific area of candidate optimal 

numbers of statistical clusters, i.e. candidate optimal statistical partitions, and we finally select 

the candidates with the highest votes. Then, Rand index (see Section 3.11), which is a similarity 

measure between candidate statistical partitions and KEGG1 biological partition, is used to esti-

mate the optimal statistical partitions. The results obtained are shown below, for the three availa-

ble data sets. 

4.3.1 Sorlie’s Data Set -Based Statistical Gene Clustering 

As far as Sorlie’s data set is concerned:  

• From statistical cluster validation concerning statistical clustering, the candidate numbers 

of statistical clusters (statistical partitions) with the highest votes are shown in Table 19.  

• From BP biological cluster validation concerning statistical clustering, the candidate num-

bers of statistical clusters (statistical partitions) with the highest votes are shown in Table 

20. 

• From MF biological cluster validation concerning statistical clustering, the candidate num-

bers of statistical clusters (statistical partitions) with the highest votes are shown in Table 

21. 

• From combined BP and MF biological cluster validation concerning statistical clustering, 

the candidate numbers of statistical clusters (statistical partitions) with the highest votes are 

shown in Table 22. 

It is noted that each partition does not contain empty clusters. Next, we compare independently 

the candidate optimal statistical partitions obtained from Sorlie’s data set (shown in Tables 19-

22), with the biological partition obtained from KEGG knowledge through the first method, i.e.  
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# Clusters Votes 

50 8.6667 

60 9.3333 

70 9.0000 

Table 19 : Sorlie’s data 

set statistical cluster va-

lidation concerning sta-

tistical clustering. 

 

# Clusters Votes 

50 9.0000 

70 8.6667 

90 8.0000 

Table 20 : Sorlie’s data 

set BP biological cluster 

validation concerning 

statistical clustering. 

 

# Clusters Votes 

50 10.3333 

60 9.0000 

70 8.0000 

Table 21 : Sorlie’s data 

set MF biological cluster 

validation concerning 

statistical clustering. 

 

# Clusters Votes 

50 9.0000 

60 9.3333 

70 8.0000 

90 7.6667 

Table 22 : Sorlie’s data 

set combined BP and 

MF biological cluster 

validation concerning 

statistical clustering. 

through KEGG1 biological clustering. For this purpose we use the Rand index. Thus, we esti-

mate the optimal statistical partition that converges most to the biological partition obtained from 

KEGG knowledge through the first method. The results obtained are shown in Table 23. From 

the results in Table 23, we estimate as the optimal Sorlie’s data set-based statistical partition, the 

one with the maximum Rand index (R), i.e. the partition with 90 clusters. Furthermore, from Ta-

ble 24 we see that the above partition with 90 clusters might be a good choice as optimal parti-

tion, since it corresponds to large value of Goodman-Kruskal index. We do not examine Good-

man-Kruskal index using biological distances (biological cluster validation) even for few parti-

tions, due to higher computational complexity than using statistical distances (statistical cluster 

validation), shown before. Also, in Figure 33 the behavior of votes and Rand index as a function 

of a large range of partition values, concerning Sorlie’s data set is shown, indicating that the par-

tition with 90 clusters is a good choice as optimal partition of all candidates. As far as all imple-

mented similarity indices are concerned, for this estimated optimal statistical partition compared 

with the KEGG1 biological partition it holds: 

Rand index = 0.9207 

Hubert index = 0.8413 

Corrected Rand index = 0.0032 
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So, the optimal Sorlie’s data set-based statistical partition converges strongly to the biological 

partition obtained from the first method, i.e. from KEGG1 biological clustering. These results 

confirm our decision for the optimal Sorlie’s data set-based statistical partition, made before. 

# Clusters R 

50 0.9085 

60 0.9112 

70 0.9143 

90 0.9207 

Table 23 : Sorlie’s data set-based candidate optimal statistical partitions. 

# Clusters GK Index 

20 -1.4478 

50 -0.4491 

100 0.1618 

150 0.6031 

200 1.1319 

Table 24 : Goodman-Kruskal (GK) index values for some partitions based on statistical cluster validation concern-

ing statistical clustering on Sorlie’s data set. 

  

Figure 33 : Behavior of votes and Rand index for different partitions concerning Sorlie’s data set. 
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4.3.2 Sotiriou’s Data Set -Based Statistical Gene Clustering 

As far as Sotiriou’s data set is concerned:  

• From statistical cluster validation concerning statistical clustering, the candidate numbers 

of statistical clusters (statistical partitions) with the highest votes are shown in Table 25. 

• From BP biological cluster validation concerning statistical clustering, the candidate num-

bers of statistical clusters (statistical partitions) with the highest votes are shown in Table 

26. 

• From MF biological cluster validation concerning statistical clustering, the candidate num-

bers of statistical clusters (statistical partitions) with the highest votes are shown in Table 

27. 

• From combined BP and MF biological cluster validation concerning statistical clustering, 

the candidate numbers of statistical clusters (statistical partitions) with the highest votes are 

shown in Table 28. 

It is noted that in each partition there are not obtained empty clusters. Next, we compare inde-

pendently the candidate optimal statistical partitions obtained from Sotiriou’s data set (shown in 

Tables 25-28), with the biological partition obtained from KEGG knowledge through the first 

method, i.e. through KEGG1 biological clustering. For this purpose we use Rand index. Thus, 

we estimate the optimal statistical partition that converges most to the biological partition ob-

tained from KEGG knowledge through the first method. The results obtained are shown in Table 

29. From the results in Table 29, we estimate as the optimal Sotiriou’s data set-based statistical 

partition, the one with the maximum Rand index (R), i.e. the partition with 110 clusters. Fur-

thermore, from Table 30 we see that the above partition with 110 clusters is a good choice as op-

timal partition, since it corresponds to large value of Goodman-Kruskal index. It is noted that we 

do not examine Goodman-Kruskal index using biological distances (biological cluster valida-

tion), even for few partitions, due to its higher computational complexity as compared with that 

of using statistical distances (statistical cluster validation), shown before. Also, in Figure 34 the 

behavior of votes and Rand index as a function of a large range of partition values, concerning 

Sotiriou’s data set is depicted. It is shown that the partition with 110 clusters is a good choice as 

optimal partition of all candidates. As far as all implemented similarity indices are concerned, for  
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# Clusters Votes 

50 8.6667 

60 7.0000 

70 7.6667 

100 7.3333 

110 7.0000 

Table 25 : Sotiriou’s da-

ta set statistical cluster 

validation concerning 

statistical clustering. 

# Clusters Votes 

50 9.6667 

70 8.0000 

80 8.3333 

90 8.0000 

100 7.3333 

Table 26 : Sotiriou’s da-

ta set BP biological clus-

ter validation concerning 

statistical clustering. 

# Clusters Votes 

50 10.3333 

60 10.6667 

80 7.0000 

Table 27 : Sotiriou’s da-

ta set MF biological 

cluster validation con-

cerning statistical clus-

tering. 

 

# Clusters Votes 

50 9.3333 

60 8.3333 

70 9.0000 

100 6.6667 

Table 28 : Sotiriou’s 

data set combined BP 

and MF biological clus-

ter validation concern-

ing statistical clustering. 

 

# Clusters R 

50 0.8986 

60 0.9013 

70 0.9068 

80 0.9089 

90 0.9117 

100 0.9148 

110 0.9159 

Table 29 : Sotiriou’s data set-based candidate optimal statistical partitions. 

this estimated optimal statistical partition compared with the KEGG1 biological partition it 

holds: 

Rand index = 0.9159 

Hubert index = 0.8318 

Corrected Rand index = 8.0816e-004 
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So, the optimal statistical partition based on Sotiriou’s data set converges strongly to the biologi-

cal partition obtained from the first method, i.e. from KEGG1 biological clustering. These results 

confirm our previous choice for the optimal Sotiriou’s data set-based statistical partition. 

# Clusters GK Index 

20 -1.0253 

50 -0.6788 

100 0.0486 

150 0.1471 

200 1.5084 

Table 30 : Goodman-Kruskal (GK) index values for some partitions based on statistical cluster validation concern-

ing statistical clustering on Sotiriou’s data set. 

  

Figure 34 : Behavior of votes and Rand index for different partitions concerning Sotiriou’s data set. 

4.3.3 Veer’s Data Set -Based Statistical Gene Clustering 

As far as Veer’s data set is concerned:  

• From statistical cluster validation concerning statistical clustering, the candidate numbers 

of statistical clusters (statistical partitions) with the highest votes are shown in Table 31. 
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• From BP biological cluster validation concerning statistical clustering, the candidate num-

bers of statistical clusters (statistical partitions) with the highest votes are shown in Table 

32. 

• From MF biological cluster validation concerning statistical clustering, the candidate num-

bers of statistical clusters (statistical partitions) with the highest votes are shown in Table 

33. 

• From combined BP and MF biological cluster validation concerning statistical clustering, 

the candidate numbers of statistical clusters (statistical partitions) with the highest votes are 

shown in Table 34. 

It is noted that each partition does not contain empty clusters. Next, we compare independently 

the candidate optimal statistical partitions obtained from Veer’s data set (shown in Tables 31-

34), with the biological partition obtained from KEGG knowledge through the first method, i.e. 

through KEGG1 biological clustering. For this purpose we use Rand index. Thus, we estimate 

the optimal statistical partition that converges most to the biological partition obtained from 

KEGG knowledge through the first method. The obtained results are summarized in Table 35.  

From the results in Table 35, we estimate as the optimal Veer’s data set-based statistical parti-

tion, the one with the maximum Rand index (R), i.e. the partition with 150 clusters. Furthermore, 

from Table 36 we see that the above partition with 150 clusters is a good choice as optimal parti-

tion, since it corresponds to large value of Goodman-Kruskal index. We do not examine Good-

man-Kruskal index using biological distances (biological cluster validation), even for few parti-

tions, due to its higher computational complexity as compared with that of using statistical dis-

tances (statistical cluster validation) shown before. Also, in Figure 35 the behavior of votes and 

Rand index as a function of a large range of partition values, concerning Veer’s data set is dem-

onstrated, indicating that the partition with 150 clusters is a good choice as optimal partition of 

all candidates. As far as all implemented similarity indices are concerned, for this optimal statis-

tical partition compared with the KEGG1 biological partition it holds: 

Rand index = 0.9186 

Hubert index = 0.8371 

Corrected Rand index = 0.0065 
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# Clusters Votes 

50 6.6667 

60 10.000 

130 6.3333 

150 7.6667 

Table 31 : Veer’s data 

set statistical cluster 

validation concerning 

statistical clustering. 

# Clusters Votes 

50 7.6667 

60 9.6667 

90 7.3333 

100 8.6667 

Table 32 : Veer’s data 

set BP biological clus-

ter validation concern-

ing statistical cluster-

ing. 

# Clusters Votes 

50 11.0000 

80 8.3333 

90 7.0000 

110 7.0000 

Table 33 : Veer’s data 

set MF biological clus-

ter validation concern-

ing statistical cluster-

ing. 

# Clusters Votes 

50 11.0000 

60 8.3333 

80 7.6667 

110 6.3333 

Table 34 : Veer’s data 

set combined BP and 

MF biological cluster 

validation concerning 

statistical clustering. 

 

# Clusters R 

50 0.8874 

60 0.9010 

80 0.9068 

90 0.9096 

100 0.9154 

110 0.9163 

130 0.9173 

150 0.9186 

Table 35 : Veer’s data set-based candidate optimal statistical partitions. 

So, the optimal Veer’s data set-based statistical partition converges strongly to the biological par-

tition obtained from the first method, i.e. from KEGG1 biological clustering. These results vali-

date our choice for the optimal Veer’s data set-based statistical partition, made before.  
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# Clusters GK Index 

20 -1.2710 

50 -0.0399 

100 -0.6355 

150 1.0893 

200 0.8571 

Table 36 : Goodman-Kruskal (GK) index values for some partitions based on statistical cluster validation concern-

ing statistical clustering on Veer’s data set. 

  

Figure 35 : Behavior of votes and Rand index for different partitions concerning Veer’s data set. 

Overall, we conclude that the optimal statistical partitions, obtained regardless from each of 

the three available data sets, converge strongly to the biological partition obtained from the first 

method (KEGG1 biological clustering). That means that data sets –based statistical clustering 

leads to gene clusters which are biologically meaningful. 

From all the above figures we see that there is a variety of candidate optimal statistical parti-

tions with the highest votes. However, we select as optimal the partition which has a number of 

clusters close to that one of the obtained KEGG1 biological partition. We also justify our choice 

with the behavior of Rand index, as shown in the above figures, where we observe that Rand in-

dex has achieved its highest value for this estimated optimal statistical partition. That means that 

the above choice seems to be the optimal that converges mostly to KEGG1 biological partition. It 
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is also important to note that as far as votes are concerned, the optimal number of clusters with 

the highest vote seems to be much smaller than the selected one. The reason might be that after 

the necessary pre-processing (see Section 3.2), the genes that remain to be clustered might be-

long to much fewer clusters than all the genes in the available data sets before the pre-

processing. Furthermore, we notice that the used similarity indices (i.e. Rand index, Hubert in-

dex, corrected Rand index) have a major drawback for our data sets. As we have discussed in 

Section 3.11, they focus on the correspondence on how gene pairs are classified between two 

partitions. In our data sets after applying clustering methodology, the gene pairs that belong to 

the same clusters are much less than those that belong to different clusters. As a result, the more 

clusters we have the larger similarity indices’ value we achieve, since more gene pairs that be-

long to different clusters appear. 

4.3.4 Comparison of Obtained Statistical Partitions 

Afterwards, we compare the estimated optimal statistical partitions obtained from the availa-

ble three data sets among them. The results obtained are shown below. 

• Veer’s data set-based optimal statistical partition compared with Sorlie’s data set-based op-

timal statistical partition 

         Rand index = 0.9553 

         Hubert index = 0.9106 

         Corrected Rand index = 0.0163 

• Veer’s data set-based optimal statistical partition compared with Sotiriou’s data set-based 

optimal statistical partition 

         Rand index = 0.9530 

         Hubert index = 0.9060 

         Corrected Rand index = 0.0089 

• Sotiriou’s data set-based optimal statistical partition compared with Sorlie’s data set-based 

optimal statistical partition 

         Rand index = 0.9556 

         Hubert index = 0.9112 



                 CLUSTERING OF GENES BASED ON BIOLOGICAL KNOWLEDGE                                                                      127 

         Corrected Rand index = 0.0108 

It is also important to note that, as it has been already mentioned, the Rand (R) and Hubert (H) 

similarity indices are equivalent after correction for agreement due to chance. From the above 

results, we conclude that the optimal statistical partitions, obtained regardless from each of the 

three available data sets, are very similar. That means that regardless the data set, the optimal 

statistical partition of certain genes remains almost the same. 

4.4     GO–Based Biological Gene Clustering 

Another approach of executing hard c-means clustering is based on the calculated biological 

distances, using one GO hierarchy each time (GO biological clustering). Here we do not use 

none of the available data sets with genes’ expression values. We take advantage only of the cal-

culated biological distances based on ontologies organization. The genes of our interest are the 

946 genes that are obtained after the necessary pre-processing (see Section 3.2). To validate the 

biological partition emerged from GO biological clustering approach, a GO biological cluster 

validation is required, as discussed previously. It is noted that a normalization and a weighted 

voting strategy are also applied to improve the GO biological cluster validation. As the red ar-

rows in Figure 28 imply, the clustering method and the validity measures are executed multiple 

times with different input parameter values, i.e. number of clusters, until some candidate optimal 

biological partitions are obtained. Since a large number of clusters and very small clusters should 

be avoided, we focus on a specific area of candidate optimal numbers of biological clusters, i.e. 

candidate optimal biological partitions, and we finally select the candidates with the highest 

votes. Then, Rand index (see Section 3.11), which is a similarity measure between GO candidate 

biological partitions and KEGG1 biological partition, is used to estimate the optimal GO biologi-

cal partitions. 

It is also important to note, as it has been also mentioned in Section 3.3, that due to Wu and 

Palmer method’s high computational complexity, we keep for each gene only few BP, MF or 

combined BP and MF terms to calculate the BP, MF or combined BP and MF biological dis-

tances respectively. This may result in a biased results interpretation. In this section we do not 

examine Goodman-Kruskal index using biological distances (biological cluster validation), even 
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for few partitions, due to its higher computational complexity as compared with that of using sta-

tistical distances (statistical cluster validation), shown in Section 4.3. 

4.4.1 BP-Based Biological Gene Clustering 

From BP biological cluster validation concerning BP biological clustering, the candidate 

numbers of biological clusters (biological partitions) with the highest votes are shown in Table 

37. It is noted that in each partition there are not empty clusters. Next, we compare the biological 

partitions obtained from BP hierarchy with the biological partition obtained from KEGG know-

ledge via the first method. Thus, we estimate the optimal BP hierarchy-based biological partition 

that converges most to the biological partition obtained from KEGG knowledge via the first me-

thod. The results obtained are shown in Table 38. From the results in Table 38, we estimate as 

the optimal BP hierarchy-based biological partition, the one with the maximum Rand index (R), 

i.e. the partition with 100 clusters. Furthermore, in Figure 36 the behavior of votes and Rand in-

dex as a function of a large range of partition values, concerning BP hierarchy, indicates that the 

partition with 100 clusters is a good choice as optimal partition of all candidates. As far as all 

implemented similarity indices are concerned, for this estimated optimal biological partition 

compared with the KEGG1 biological partition it holds: 

Rand index = 0.7087 

Hubert index = 0.4173 

Corrected Rand index = -0.0156 

Hence, the optimal BP hierarchy-based biological partition is not similar enough to the biological 

partition obtained from the first method, i.e. from KEGG1 biological clustering. Thus, we con-

clude that using BP hierarchy is not a good alternative way to obtain biological clusters.  

# Clusters Votes 

50 8.6667 

70 9.0000 

80 7.0000 

100 7.3333 

Table 37 : BP biological cluster validation concerning BP biological clustering. 
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# Clusters R 

50 0.6570 

70 0.6966 

80 0.6973 

100 0.7087 

Table 38 : BP hierarchy-based candidate optimal biological partitions. 

  

Figure 36 : Behavior of votes and Rand index for different partitions concerning BP hierarchy. 

4.4.2 MF-Based Biological Gene Clustering 

From MF biological cluster validation concerning MF biological clustering, the candidate 

number of biological clusters (biological partitions) with the highest votes are shown in Table 

39. It is noted that each partition does not contains empty clusters. Next, we compare the biolog-

ical partitions obtained from MF hierarchy with the biological partition obtained from KEGG 

knowledge via the first method. Thus, we estimate the optimal MF hierarchy-based biological 

partition that converges most to the biological partition obtained from KEGG knowledge via the 

first method. The results are shown in Table 40. From the results in Table 40, we estimate as the 

optimal MF hierarchy-based biological partition, the one with the maximum Rand index (R), i.e. 

the partition with 130 clusters. Furthermore, in Figure 37 the behavior of votes and Rand index 

as a function of a large range of partition values, concerning MF hierarchy, indicates that the par-

tition with 130 clusters is a good choice as optimal partition of all candidates. As far as all im-
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plemented similarity indices are concerned, for this estimated optimal biological partition com-

pared with the KEGG1 biological partition it holds: 

Rand index = 0.5803 

Hubert index = 0.1605 

Corrected Rand index = -0.0047 

Hence, the optimal MF-based biological partition is not similar at all to the biological partition 

obtained from the first method, i.e. from KEGG1 biological clustering. Thus, we conclude that 

using MF hierarchy is not a good alternative way to obtain biological clusters.  

# Clusters Votes 

50 6.6667 

60 6.6667 

70 8.0000 

80 8.3333 

110 8.0000 

130 6.0000 

Table 39 : MF biological cluster validation concerning MF biological clustering. 

# Clusters R 

70 0.4957 

80 0.5305 

110 0.5536 

130 0.5803 

Table 40 : MF hierarchy-based candidate optimal biological partitions. 
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Figure 37 : Behavior of votes and Rand index for different partitions concerning MF hierarchy. 

4.4.3 Combined BP and MF -Based Biological Gene Clustering 

From the combined BP and MF biological cluster validation concerning combined BP and 

MF biological clustering, the candidate numbers of biological clusters (biological partitions) with 

the highest votes are shown in Table 41. It is noted that each partition does not contain empty 

clusters. Next, we compare the biological partitions obtained from combined BP and MF hie-

rarchy with the biological partition obtained from KEGG knowledge via the first method. Thus, 

we estimate the optimal combined BP and MF-based biological partition that converges most to 

the biological partition obtained from KEGG knowledge via the first method. The results ob-

tained are shown in Table 42. From the results in Table 42, we estimate as the optimal combined 

BP and MF hierarchy -based biological partition, the one with the maximum Rand index (R), i.e. 

the partition with 100 clusters. Furthermore, in Figure 38 the behavior of votes and Rand index 

as a function of a large range of partition values, concerning combined BP and MF hierarchy, 

indicating that the partition with 100 clusters is a good choice as optimal partition of all candi-

dates. As far as all implemented similarity indices are concerned, for this estimated optimal bio-

logical partition compared with the KEGG1 biological partition it holds: 

Rand index = 0.8704 

Hubert index = 0.7407 

Corrected Rand index = 0.0282 

Hence, the optimal combined BP and MF hierarchy-based biological partition converges enough 

to the biological partition obtained from the first method, i.e. from KEGG1 biological clustering. 
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These results validate our previous choice for the optimal combined BP and MF -based biologi- 

cal partition. Also, we conclude that using combined BP and MF hierarchy is a good alternative 

way to obtain biological clusters. Furthermore, Figure 39 presents all the obtained results of 

Rand index. As we can see 1 4 1 3 1 3 4+ < + < + + , which implies that better results can be ob-

tained using the combined BP and MF hierarchy, rather than using the other two hierarchies. 

# Clusters Votes 

50 6.3333 

60 8.0000 

70 8.3333 

80 6.6667 

100 6.6667 

Table 41 : Combined BP and MF biological cluster validation concerning combined BP and MF biological cluster-

ing. 

# Clusters R 

60 0.8658 

70 0.8593 

80 0.8597 

100 0.8704 

Table 42 : Combined BP and MF hierarchy-based candidate optimal biological partitions. 

From all the above figures we see that there is a variety of candidate optimal GO-based bio-

logical partitions with the highest votes. However, we select as optimal the biological partition 

which has a number of clusters close to that one of the obtained KEGG1 biological partition. It is 

also important to note that as far as votes are concerned, the optimal number of clusters with the 

highest vote seems to be much smaller than the selected one. The reason might be that after the 

necessary pre-processing (see Section 3.2), the genes that remain to be clustered might belong to 

much fewer clusters than all the genes in the available data sets before the pre-processing.  
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Figure 38 : Behavior of votes and Rand index for different partitions concerning combined BP and MF hierarchy. 

4.4.4 Comparison of Obtained Biological Partitions 

Next, we compare the optimal biological partitions obtained from the available GO know-

ledge, using one GO hierarchy each time, among them. The results obtained are shown below. 

• BP-based optimal biological partition compared with MF-based optimal biological parti-

tion 

         Rand index = 0.5422 

         Hubert index = 0.0843 

         Corrected Rand index = 0.0096 

• BP-based optimal biological partition compared with combined BP and MF -based optimal 

biological partition 

         Rand index = 0.7477 

         Hubert index = 0.4954 

         Corrected Rand index = 0.1042 

          It is noted that BP hierarchy is a subset of combined BP and MF hierarchy. Thus, we ex-

pect that Rand index < 1 and Hubert index < 1. We can also support this from Figure 39, 

since 1 2 3 1 2 3 4+ + < + + + . 

• MF-based optimal biological partition compared with combined BP and MF -based optim-

al biological partition 

         Rand index = 0.5786 
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         Hubert index = 0.1571 

         Corrected Rand index = 0.0371 

          It is noted that MF hierarchy is a subset of combined BP and MF hierarchy. Thus, we ex-

pect that Rand index < 1 and Hubert index < 1. We can also crosscheck this from Figure 

39, since 1 2 4 1 2 3 4+ + < + + + . 

From the above results, we can conclude that the obtained optimal GO-based biological parti-

tions do not resemble at all each other. Figure 39 also presents all the obtained results of Rand 

index. It is noted that 1 2 1 2 4 1 2 3+ < + + < + + , according to our results. 

 

                            Figure 39 : An illustrative example of all obtained results of Rand index. 

4.5   Comparison between Gene Clustering Based on the GO and Based on Sta-

tistical Knowledge  

Finally, we compare the optimal statistical partitions obtained from the three data sets, pre-

sented in Section 4.3, with the optimal biological partitions obtained from the GO, i.e. the three 

GO hierarchies, presented in Section 4.4. The results obtained are shown below. 
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• Sorlie’s data set-based optimal statistical partition compared with BP-based optimal bio-

logical partition 

         Rand index = 0.7314 

         Hubert index = 0.4628 

         Corrected Rand index = -0.0020 

• Veer’s data set-based optimal statistical partition compared with BP-based optimal biolog-

ical partition 

         Rand index = 0.7347 

         Hubert index = 0.4694 

    Corrected Rand index = -0.0048 

• Sotiriou’s data set-based optimal statistical partition compared with BP-based optimal bio-

logical partition 

         Rand index = 0.7142 

         Hubert index = 0.4285 

         Corrected Rand index = 0.0027 

• Sorlie’s data set-based optimal statistical partition compared with MF-based optimal bio-

logical partition 

         Rand index = 0.5835 

         Hubert index = 0.1671 

         Corrected Rand index = 0.0055 

• Veer’s data set-based optimal statistical partition compared with MF-based optimal biolog-

ical partition 

         Rand index = 0.5802 

         Hubert index = 0.1605 

         Corrected Rand index = 7.1032e-004 

• Sotiriou’s data set-based optimal statistical partition compared with MF-based optimal bio-

logical partition 

         Rand index = 0.5806 
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         Hubert index = 0.1612 

         Corrected Rand index = 0.0031 

• Sorlie’s data set-based optimal statistical partition compared with combined BP and MF -

based optimal biological partition 

         Rand index = 0.8941 

         Hubert index = 0.7882 

         Corrected Rand index = 0.0012 

• Veer’s data set-based optimal statistical partition compared with combined BP and MF -

based optimal biological partition 

         Rand index = 0.9030 

         Hubert index = 0.8060 

         Corrected Rand index = -7.8115e-004 

• Sotiriou’s data set-based optimal statistical partition compared with combined BP and MF 

-based optimal biological partition 

         Rand index = 0.8969 

         Hubert index = 0.7939 

         Corrected Rand index = 0.0019 

From the above results, we conclude that the obtained optimal GO-based biological partition us-

ing the combined BP and MF hierarchy is very similar with the optimal statistical partitions ob-

tained from the three data sets. However, using the BP or MF hierarchy doesn’t lead to desired 

results. Thus, we confirm again that using only combined BP and MF hierarchy is a good alter-

native way to obtain a gene partition. 

4.6   Summary 

In this chapter, we present the obtained results from the gene clustering methodologies im-

plemented in this thesis (see Figure 28). We also compare and interpret the results and we finally 

make meaningful biological conclusions. We conclude that there are four different clustering ap-

proaches to obtain biological partitions from the available KEGG PWs knowledge. Also, statis-
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tical partitions based on data sets converge strongly to the biological partition obtained from the 

first clustering method based on KEGG PWs knowledge. These statistical partitions obtained 

from the data sets are very similar each other. Furthermore, one major conclusion is that using 

the GO hierarchies does not lead to biological meaningful partitions, except using the combined 

BP and MF hierarchy, which takes into consideration both BP and MF hierarchy knowledge. Fi-

nally, these biological partitions based on the GO hierarchies don’t resemble each other. 
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CHAPTER 5: DISCUSSION AND OPEN PROBLEMS  

 

5.1   Introduction 

5.2   Main Conclusions 

5.3   Further Research 

5.4   Summary 

 

5.1    Introduction 

In this chapter, we summarize the main meaningful biological conclusions obtained in        

Chapter 4. We also introduce some ideas for further research. Furthermore, we suggest some 

guidelines about the implemented gene clustering methodologies, which might lead to better re-

sults and then, to more meaningful biological conclusions. 

5.2   Main Conclusions  

In this section we summarize in brief the findings in Chapter 4. It has been illustrated that it is 

feasible to obtain biological partitions from the available KEGG PWs knowledge via four differ-

ent methods. In particular, the obtained optimal biological partitions based on KEGG PWs 

knowledge are the following:  

• the biological partition with 108 clusters obtained from the KEGG1 method  

• the biological partition with 130 clusters obtained from the KEGG2 biological clustering 

method using Correlation distance metric 

• the biological partition with 80 clusters obtained from the KEGG2 biological clustering 

method using Euclidean distance metric 

• the biological partition with 100 clusters obtained from the KEGG3 biological clustering 

method  

It has been also shown that using the preceding methods, genes are eventually characterized as 

“well-clustered”. 
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 It is also observed that the optimal statistical partitions, obtained independently from each of 

the three available data sets, converge strongly to the biological partition obtained from the first 

method (KEGG1 biological clustering). This reveals that data sets –based statistical clustering 

leads to gene clusters which are biologically meaningful. In particular, the obtained optimal sta-

tistical partitions are: 

• the statistical partition with 90 clusters based on Sorlie’s data set 

• the statistical partition with 110 clusters based on Sotiriou’s data set 

• the statistical partition with 150 clusters based on Veer’s data set 

Furthermore, the optimal statistical partitions obtained independently from each of the three 

available data sets are very similar each other, implying that regardless the data set, the optimal 

statistical partition of certain genes remains almost the same. However, as we have discussed in 

the previous Chapter in Section 4.3.3, it is important to mention that the used validity measures 

focus on the correspondence on how gene pairs are classified between two partitions. In our data 

sets after applying clustering methodology, the gene pairs that belong to the same clusters are 

much less than those that belong to different clusters. As a result, the more clusters we have the 

larger similarity indices’ value we achieve, since more gene pairs that belong to different clusters 

appear. The above similarity indices’ drawback might confuse us to choose the optimal statistical 

partition. 

As far as using GO hierarchies, the obtained optimal biological partitions based on GO hie-

rarchies knowledge are the following: 

• the biological partition with 100 clusters based on the BP hierarchy 

• the biological partition with 130 clusters based on the MF hierarchy 

• the biological partition with 100 clusters based on the combined BP and MF hierarchy 

We have shown that better results can be obtained using the combined BP and MF hierarchy, 

rather than using the BP or MF hierarchy. It has been also observed that the obtained optimal 

GO-based biological partitions do not resemble at all each other. Finally, we conclude that the 

obtained optimal GO-based biological partition using the combined BP and MF hierarchy is very 

similar with the obtained optimal statistical partitions from the three data sets. However, using 

the BP or MF hierarchy doesn’t lead to such desired results. Thus, it is demonstrated again that 

using only combined BP and MF hierarchy a reliable gene partition can be obtained. 
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In addition, it is important to note that as far as the applied weighed voting strategy is con-

cerned, the optimal number of statistical or GO-based biological clusters with the highest vote 

seems to be much smaller than the selected one. The reason might be that after the necessary pre-

processing (see Section 3.2), the genes that remain to be clustered might belong to much fewer 

clusters than all the genes in the available data sets before the pre-processing.  

We finally conclude that it is feasible to obtain gene partition with biological significance via 

the available data sets (i.e. Sorlie’s, Sotiriou’s and Veer’s data set) with genes’ expression val-

ues. On the other hand, using available GO knowledge doesn’t lead to meaningful conclusions. 

Except using the combined BP and MF hierarchy that leads to successful gene clusters, using BP 

or MF hierarchy doesn’t lead to such desired results. In the next section we introduce a variety of 

ideas that might improve the implemented gene clustering methodologies. 

5.3   Further Research  

Taking advantage of the implemented gene clustering methodology, future research efforts 

might focus on supporting statistical clustering of a data set. In particular, it is interesting to ex-

amine how statistical clustering of a data set can be influenced by the biologically and statistical-

ly relevant clusters of another data set with common genes. This can be done by incorporating 

the biologically and statistically relevant clusters of a data set, which are obtained by the imple-

mented methodology, in the clustering algorithm of another data set with common genes.  

 Also, another idea for further research could be to improve the Wu and Palmer’s method, 

discussed in Section 3.3. In current study, only a maximum number of five terms per gene were 

used to calculate the gene distances. It would be interesting to optimize this algorithm and in-

clude more terms in order to calculate more accurate biological distances. This will provide more 

reliable biological conclusions. It will be also interesting to select the five most biologically 

meaningful terms per gene to calculate the gene distances. This might lead to more accurate bio-

logical distances too. 

Furthermore, it is common that the protein products of genes are involved in multiple biolog-

ical processes and thus the gene producing these proteins can be co-regulated in different ways 

under different conditions. When a gene experiences differential co-regulation in different sam-
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ples of the same dataset as a result of being involved in differing functional relationships, tradi-

tional clustering approaches are not flexible to represent this behavior. Hence, fuzzy c-means, 

presented in Section 3.5, would be a suggested approach of gene clustering method, since it is 

capable to assign genes to multiple clusters, which is a more appropriate representation of the 

behavior of genes.  

In addition as we have said in the previous Chapter, as far as validity assessment system is 

concerned, the optimal number of statistical or GO-based biological clusters with the highest 

vote seems to be much smaller than the selected one. One idea is to examine if these few clus-

ters, which are shown as optimal, have biological significance and then, to make some important 

conclusions about this case. 

Another idea would be to implement some other similarity measures with different basic idea 

than those already applied, in order to justify or not our choice of the optimal statistical or bio-

logical partition (KEGG or GO –based biological partition) each time. Thus, we will examine the 

influence of the aforementioned drawback that the used similarity measures have. 

Finally, to aid the interpretation of GO, a set of general GO terms called GOSlim terms (see 

Section 2.4) is defined for various organisms as well as generic use. The use of GOSlim terms 

can be seen as a way to determine the similarity of genes. Thus, considering more terms, since 

GO slims are cut-down versions of the GO ontologies containing a subset of the terms in the 

whole GO, the performance of Wu and Palmer’s method can be improved. 

5.4    Summary 

In this chapter, we summarize in brief the conclusions in Chapter 4. Furthermore, we intro-

duce some novel ideas to motivate further research on how statistical clustering of data sets can 

be influenced by the biologically and statistically relevant clusters of another data set with com-

mon genes, which is obtained by the implemented methodology. We also suggest some guide-

lines about the implemented gene clustering methodologies, which might lead to better results 

and then, to more meaningful biological conclusions. Implementing fuzzy c-means instead of 

hard c-means, taking advantage of GOSlim terms or giving more GO terms as input parameter in 

Wu and Palmer’s method, are some of the proposed guidelines.   
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