ITOAYTEXNEIO KPHTHZ

TMHMA HAEKTPONIKQN MHXANIKOQN KAI MHXANIKON YIIOAOTIETQN

TOMEAX THAENIKOINQNIQN

TMHMATOINOIHZH I'ONIAIQN BAXIZMENH XE BIOAOT'IKH I'NQZH

AITIAQMATIKH EPT'AXIA

IOANNA . MIIOYZOY

ENIBAENON: MIXAAHE ZEPBAKHZ
KA®HIHTHE TTOAYTEXNEIOY KPHTHE (I1.K.)

XANIA, OKTQBPIOE 2010



TIOAYTEXNEIO KPHTHX

TMHMA HAEKTPONIKOQN MHXANIKON KAT MHXANIKOQN YITOAOT'IZETOQN

TOMEAX THAENIKOINQNIQN

TMHMATOIIOIHEZH I'ONIAIQON BAXIZMENH XE BIOAOI'IKH I'NQZH

AITIAQMATIKH EPTAXIA

[QANNAT'. MIIOYZOY

ENIBAENON: MIXAAHY ZEPBAKHE
KAOHIHTHE [TOAYTEXNEIOY KPHTHE (IT.K.)

ErKPIOHKE AIO THN TPIMEAH EEETAXTIKH EIMITPOIH THN 25" OKTOBPIOY 2010.

M. ZEPBAKHX M. T'APOOAAAKHE A. AIABAX
KAeHIrHTHE IT.K. KA®HIrHTHE IT.K. KaeHruraz I1.K.

XANIA, OKTQBPIOE 2010



IQANNA I'. MIIOYZOY

AIITAOMATOY XOX HAEKTPONIKOX MHXANIKOX KAI MHXANIKOX YTIOAOT'IETON I1.K.
ibouzou@gmail.com



EYXAPIZTIEX

Oa Mbeho va evyaplotom Oepud tov kabnynti tov Iloivteyveiov Kpftng k. Muydin
ZepPaxm yuo v emifreyn kot T oTAPLEN TG SMAOUATIKNAG Hov epyaciag. Katdmv Oa 0sha va
EVYOPIOTNO® TOV K. LTEMO ZQOKLOVAKT Kot TV K. ['ewpyio Tothikn, 10Tl pe ) cvvepyocio

TOVG GLVEBOAOY GTNV OAOKANPMGT GLTHG THG TPOGTAOELAG LLOV.



TMHMATOIIOIHZH I'ONIAIQON BAXIEMENH XE BIOAOTIKH I'NQXH

IIEPIAHYH

To Bépo ™ opadomoinong €xel TPOGEAKVOEL TO EMIGTILUOVIKO EVIAPEPOV T TEAELTOLN
xPOVIKL, KABDS UTOpEl Vo EQAPLOCTEL G TOAAOVG EMGTNUOVIKOVS TOUELG. AQopd 6T dnpovpyio
SKPITOV OUAS®V AtO OVIOTNTES, OOV OVIOTNTEG GTNV 1010 OUAI0 £YOVV KOWVA YOPOKTNPLOTIKA,
EVD OVIOTNTEG TOL OVNKOLV GE OLPOPETIKEG OpHAdES elvan kadd dwywpioipes. Avtdg o
SY®PIGUAC TOV OVIOTNTMV EMTVYYXAVETOL HE TN YPNoN €VOG KotdAAnlov kpurnpiov, Kot ot

duympiolpes opddeg mov tehkd TpokvmTovy gival Yvootég ot Pipioypagia wg clusters.

YKOMOG TNG TOPOVGOS OWMAMUOTIKNG epyaciag sivalr vo epapuocst  Bewpio ™G
opadomoinong o Poroyikés kot Proiatpikés spappoyéc. Adym vmapéng peydiov apldpov
YOVIOI®V Kol TNG TOALTAOKOTNTOG TMV BLOAOYIKOV SIKTO®V, 1| OHOd0TOINeT 0moTEAEL YpoIUN
TEYVIKN Y TNV avAaivon dedopévev yovidwkng £kepaons. Etol Aowmdv, o1 tunuotucég
pneBdd0vG opadoToinoN G oV £6TIALOVLE, ETAEYOVTOL TO. KOATAAANAO KPLTplo Tov B 0dnyRcovy
o€ 6MOTEG TPoseyyioels opadomoinone. Emmiéov, kabhg ivar yvootd mwg 1 opadonoinor sival
npoPfinua NP-hard,yivetar emhoyn (kor dwwpdpowon étov kpbel amapaitnto) katdAAning
Beltiotomompévng mpocéyyiong mov 0dnyel o amotélespa kovtd 6to Pértioto. Eniong, emeion
ToALOL ahydp1OpoL HEYOovVTaL O TAPAUETPO TO TANOOG TV OpAd®V, N eKTiunon Tov PEATIGTOV
mABovg amotelel kpiowyo mpoPAnpe. Adgopa KPP £YKLPOTNTAS TNG TPOKVTTOVCAG
opadomoinong ¥PNOLOTOHVIOL Y10 TO Tapardve Tpoinua. ‘Eva axdpa onpoavtikd CRmmuo
Loym Vmopéng peydhov cuvolov dedopévav, eivol va gégtdoovpe katd toco potdlovv (1 va
emaAnOgvcovpe av eivar wodvvapor) dvo adydpiBpot (6tav évag eivor Mo amhog Koun
ATOTEAECUATIKOTEPOG TOV AAAOL). 'Eva TETO10 KPITpLlo YKVPOTNTAG YPNGLLOTOLEITOL KO Y10, TV
extipmon tov katdAiniov mAnbovg twv opuddwv. Eivar emiong onpovtikd va avoaeepbel mwg
EVOOUATOVOVTAG TNV TPOTEPT PLOAOYIKT YVAOOT 6T SlodKacio TG OUAd0TOINoNG, TPOKVTTOVY
nePLocdTEPO Proroyikng eHoems opnddes. H mapamdve npocéyyion Oo umopovoe va vrootnpitet
TNV OVOKAALYT TOV OUAd®mV YOVISI®V TTov £xouv TTapopoleg Ploloyikéc Asttovpyieg. Avthi m

Broloywkn yvaoon Ba pmopovse vo ypnoyorombel otov akydpiOpo tng opadomoinong Kot 6To
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O0TAO10 TNG EYKVPOTNTOG TNG TPOKVLITOVGOS OMOOOTOINoNG. AveTuymg, 1 TPOTEPN PloAoyikn

yvon dev gival mhvta dtbéoiun.

2V mapodo SUTAMUATIKY epyacia, £Yve 0 GYEOOGUOG KOL 1) VAOTOINGT KATAAANA®V
npooeyyicewv opadomoinong yovidimv. Mepikéc mPoceYYIGES £QUPUOCTNKAV GE GTOTIOTIKN
yYv@or, OnAadn o€ Tpic cHVOLL SE0UEVMVY TTOV 0POPOVY TOV Kapkivo Tov pactov (Sorlie, Veer
Kot Sotiriou), kot dAreg papudoTNKOV 68 600 SLUPOPETIKEG LOPPES BLOAOYIKNG YVOOTS, ONAadn
ot dbéoun TAnpogopio ard v Gene Ontology (GOkat and v Kyoto Encyclopedia of
Genes and Genomes (KEGG}o t€l0g, 01 61000peg OUOSOTOMGELS YOVISI®V OV TPOKHTTOVV
eléyyovtor pe  Pondela dihpopmv Kpumpiowv eykvupdTNTog Kol £T6L TPOKVTTOVV BLOAOYIKNG
ONUOGIOG CUUTEPACUATA. XKOTOG £IvVOL VO EVIGYVOOVUE TN GTATIOTIKY OVAADGT HE TN XPNom
dwbéoung mpdtepng Proroyukng yvoone. o va emrevybei avtd, Proroyikés amocTAGELS,
oniadn omootdoelg mov vmohoyilovtar pe  Pdon ™ Swbéowun  Poloyikny  yvoon,
YPNOYLOTOOVVTAL GTOV OAYOPLOHO TNG OUAOOTOINONG KOl GTO OTAS0 TG EYKLPOTNTAG TNG
TPOKVTTOVGAS opadomoinone. Avagépovpe nog ol pebodoroyieg opadomoinong yovidiov mwov

napovstalovtal £xovv viorombei gto matlab.

Aéteaic Kheldrd: opadomroinon yovidiov, Kpurnpla £yKupotntag, KpLrinpo opotdtntag, floloykn

YVOON, PLoAoyIKEG amoGTAGELS



CLUSTERING OF GENES BASED ON BIOLOGICAL KNOWLEDGE

ABSTRACT

Cluster analysis has attracted considerable attetitie last few years, since can be applied in
many scientific fields. It refers to the formatiohdistinct blocks of objects, where objects with-
in a block have some common characteristics anectbjhat belong to different blocks are well
separated. The separation of the objects is aathieased on an appropriate criterion, while the

final distinct blocks are well known as clusters.

The purpose of this thesis, is to accommodate exlustalysis theory to biological and bio-
medical applications. Because of the large numibegeoes and the complexity of biological
networks, clustering is an useful technique forysis of gene expression data. The thesis deals
with the challenging problem of defining the eféint criteria to guide the selection of the appro-
priate clustering approaches, focusing on partti@tustering methods. Furthermore, since clus-
tering is a known NP-hard problem, a difficult tasko select (and modify when necessary) the
appropriate optimization schemes, that provide labie near optimum solution. Also, since
many clustering algorithms require the number asigrs as an input parameter, the prediction
of the correct number of clusters is a criticaligpeon. Different cluster validity indices have been
suggested to address this problem. Additionallyptlzer important issue with current research,
where large data sets are so common, is to asegssedof similarity (or verify equivalence) of
two clustering algorithms (for example one beingjrapler and/or more efficient version of the
other). The behavior of such a similarity index @so be used as an indicator of the proper
number of clusters in a data set. It is also imgudrto mention that incorporating prior know-
ledge in the clustering process would generatdenisishat are more biologically relevant. Also,
this supports the discovery of clusters of genearigy similar functions. Such a biological
knowledge may be used in clustering method andesiuslidation. Unfortunately, this sort of

prior biological knowledge is not always available.

In this thesis, design and implementation of appat@ gene clustering strategies are
achieved. Some clustering approaches are applieavaiable statistical knowledge, i.e. three

data sets concerning breast cancer (Sorlie’s, ¥emrt Sotiriou’s data set), and other on two
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types of available biological knowledge, i.e. Géhtology (GO) and Kyoto Encyclopedia of
Genes and Genomes (KEGG) knowledge. We validatecamgpare the obtained gene partitions
via several measures to make meaningful biologioaklusions. The purpose is to enrich the
numerical cluster analysis with available priorlbgcal knowledge. To achieve this, biological
distances, i.e. distances calculated based onaélaibiological knowledge, are used in cluster-
ing method and cluster validation. It is mentionledt the presented gene clustering methodolo-

gies have been implemented in matlab.

Keywords: gene clustering, validity measures, similarity oe$i, biological knowledge, biologi-
cal distances
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CHAPTER 1: STATISTICAL CLUSTER ANALYSIS AND ITS APPLICATIONS

1.1 Introduction

1.2 Cluster Analysis

1.3 Methods of Clustering

1.4 Procedure of Cluster Analysis

1.5 Clustering Applications

1.6 Gene Clustering

1.7 Structure and Contribution of This Thesis

1.8 Summary

1.1 Introduction

Cluster analysis is a basic human mental activity lsas an important role in research devel-
oped across a wide variety of communities. Clustedysis is defined as a way to create groups
or objects, or clusters, in such a way that objettsne cluster are very similar and objects in
different clusters are quite distinct. It has maftgrnative names differing from one discipline to
another. In biology and ecology, cluster analysisnore often known as numerical taxonomy.
Researchers in computational intelligence and maclgiarning are more likely to use the terms
unsupervised learning or learning without a teadmesocial science, typological analysis is pre-
ferred, while in graph theory, partition is usuatiyployed. This diversity reflects the important
position of clustering in scientific research. @e bther hand, it causes confusion because of the
differing terminologies and goals. Frequently, $amitheories or algorithms are redeveloped
several times in different disciplines due to theklof good communication, which causes unne-

cessary burdens and wastes time.
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In this chapter, we introduce the basic conceptudter analysis. The type of data is a ma-
jor factor to consider in choosing an appropridtestering algorithm. A similarity measdrer
distance (dissimilarity measuzbeis used to quantitatively describe the similagtydissimilarity
of two clusters without which no meaningful clusgralysis is possible. Generally, clustering
algorithms can be classified to two categoriesdtdustering algorithms and fuzzy clustering
algorithms. Unlike hard clustering algorithms, whiequire that each data point of the data set
belong to one and only one cluster, fuzzy clusteatgorithms allow a data point to belong to
two or more clusters with different probabiliti€girthermore, we describe the two most signifi-
cant clustering methods, i.e. hierarchical andigp@mtl. Finally, this chapter introduces the ap-

plication of clustering to gene expressiaiata.

1.2 Cluster Analysis

One of the most important of data analysis a@tiwits to classify or group data into a set of
categories or clusters through clustering algor#thin particular, clustering algorithms partition
data objects (patterns, entities, instances, ohesees, units) into a certain number of clusters
(groups, subsets, or categories). Data objectsatieatlassified in the same group should display
similar properties based on some criteria. Unfataly, there is no universally agreed upon and
precise definition of the term cluster. In one a&#wh a cluster is defined as a set of entities
which are alike, and entities from different clustare not alike. Alternatively, a cluster is an
aggregate of points in the test space such thalit@nce between any two points in the cluster
is less than the distance between any point irclingter and any point not in it. Also, clusters
may be described as continuous regions of thisesidhkdimensional feature space) containing a
relatively high density of points, separated frothep such regions containing a relatively low

density of points. Generally, classification systeame either supervised or unsupervised, de-

1 .

It measures how much two objects resemble each.othe
2 .

It measures how far away two objects are from egichr.

3 Gene expression is the process by which thedidgiinformation in a gene, which is the sequerideNA base

pairs, is made into a functional gene product, ascprotein or RNA.
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pending on whether they assign new data objeais¢of a finite number of discrete supervised
classes or unsupervised categories. Also, thersamne other classification systems which are

semi-supervised.

In supervised classification, the mapping from tacdénput data vectors, denoted xas R®,
where d is the input space dimensionality, to a finite @etliscrete class labels, represented as

yel,...,C, whereC is the total number of class types, is modeletims of some mathemati-
cal function y = y(x,w), wherew is a vector of adjustable parameters. The valfiésese pa-

rameters are determined (optimized) by an indudgaening algorithm (also termed inducer),

whose aim is to minimize an empirical risk funcbirelated to an inductive principle) on a fi-
nite data set of input - output examplés,, y),i=1,...,N, where N is the finite cardinality of

the available representative data set. When thecerdreaches convergence or terminates, an

induced classifier is generated.

In unsupervised classification, also called clustgor exploratory data analysis, no labeled
data are available. Cluster analysis or clustenvigch is a core task in data mining, is the as-
signment of a set of observations into subsetsea@lusters) so that observations in the same
cluster are similar in some sense. The goal oftetung is to separate a finite, unlabeled data set
into a finite and discrete set of “natural”, hidd#ata structures. It is clear that a direct redeson
unsupervised clustering comes from the requiremérxploring the unknown natures of the
data that are integrated with little or no pridiormation. Consider, for example, disease diagno-
sis and treatment in clinics. For a particular typelisease, there may exist several unknown
subtypes that exhibit similar morphological appaees while responding differently to the same
therapy. In this context, cluster analysis with@empression data, provides a promising method
to uncover the subtypes and thereby determine éhneesponding therapies. Sometimes, the
process of labeling data samples may become exXiyearpensive and time consuming, which
also makes clustering a good choice consideringtbat savings in both cost and time. In addi-
tion, cluster analysis provides a compressed reptason of the data and is useful in large -

scale data analysis.

Clustering is a well known problem, and there aemynalgorithms for cluster analysis in the

literature. Cluster analysis emphasizes both iatehomogeneity and external separation. The
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performance of a clustering algorithm would be iovad, if the algorithm could either minimize
intracluster distance or maximize interclusteratse. Cluster analysis aims to seek a partition
of the data in which data objects in the same etasire homogenous while data objects in dif-
ferent groups are well separated. This homogemeityseparation are evaluated through the cri-
terion functions. As pointed out by the authordlp in cluster analysis a group of objects is
split up into a number of more or less homogenemlgroups based on a subjectively chosen
measure of similarity, such that the similarityvbe¢n objects within a subgroup is larger than
the similarity between objects belonging to différsubgroups. Moreover, a different clustering
criterion or a different clustering algorithm oeteame algorithm but with different selection of
parameters, may cause completely different clusiemesults. For instance, human beings may
be classified based on their ethnicity, region, @agpeioeconomic status, education, career, hob-
by, weight and height, favorite food, dressingestydnd so on. Apparently, different clustering
criteria may assign a specific individual to verifetent groups and therefore produce different
partitions. However, there is absolutely no wagétermine which criterion is the best in gener-
al. As a matter of fact, each criterion has its @ppropriate use corresponding to particular oc-

casions, although some of them may be applied dengituations than others.

Finally, in semi-supervised classification, a snaafount of knowledge is available concern-
ing either pairwise (must-link or cannot-link) ctrasnts between data items or class labels for
some items. Instead of simply using this knowlettwethe external validation of the results of
clustering, one can imagine letting it “guide” @djust” the clustering process, i.e. provide a li-
mited form of supervision. The resulting approasiecalled semi-supervised clustering. We also
consider that the available knowledge is too fanfibeing representative of a target classifica-
tion of the items, so that supervised learningospossible. Note that class labels can always be
translated into pairwise constraints for the latbedata items and, reciprocally, by using consis-
tent pairwise constraints for some items one cdaiolgroups of items that should belong to a

same cluster.

1.3 Methods of Clustering

At first, we mention some criteria that providersfgcant distinction between clustering me-

thods and can help selecting appropriate candidatbods for one’s problem:
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Objective of Clustering
Many methods aim at finding a single partition lo€ tollection of items into clusters. How-
ever, obtaining a hierarchy of clusters can proviaee flexibility. A partition of the data can be

obtained from a hierarchy by cutting the tree obkttrs at some level.

Nature of the Data Items
Most clustering methods were developed for numedata, but some can deal with categor-

ical data or with both.

Nature of the Available Information

Many methods rely on rich representations of @ de.g. vectorial) that let one define pro-
totypes, data distributions, multidimensional imtds, etc., besides computing (dis)similarities.
Other methods only require the evaluation of paen(dis)similarities between data items, while
imposing fewer restrictions on the data. These auhusually have a higher computational

complexity.

Nature of the Clusters

The degree of membership of a data item to a ¢listgther in [0, 1] if the clusters are fuzzy
or in {0, 1} if the clusters are crisp. For fuzzlusters, data items can belong to some degree to
several clusters that don’t have hierarchical i@hat with each other. This distinction between
fuzzy and crisp can concern both the clusteringhaeisms and their results. Crisp clusters can

always be obtained from fuzzy clusters.

Clustering Criterion

Clusters can be seen either as distant compacboses dense sets separated by low density
regions. Unlike density, compactness usually hamgtimplications on the shape of the clusters,
so methods that focus on compactness should bagilighed from methods that focus on the

density.

Several taxonomies of clustering methods were sigden [2], [3] or [4]. But given the
high number and the strong diversity of the exgtitustering methods, it is probably impossible
to obtain a categorization that is both meaninghd complete. By focusing on some of the dis-
criminating criteria just mentioned, we put forwahe simplified taxonomy shown below, in-

spired by the one suggested in [4]. So, some dessibthods of clustering are:
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Clustering procedures yield a data descriptiorerms of clusters or groups of data points that

possess strong internal similarities.

Distance-Based Clustering

Two or more objects belong to the same clustdray tare “close” according to a given dis-
tance (in this case geometrical distance). An exampsuch methods is k-medoids. The most
common realization of k-medoids clustering is ttetiBoning Around Medoids (PAM) algo-
rithm [3].

Conceptual Clustering

Two or more objects belong to the same clustdnigf bne defines a concept common to all
these objects. In other words, objects are grogoedrding to their fit to descriptive concepts,
not according to simple similarity measures. Cotapclustering builds a structure out of the
data incrementally by trying to subdivide a grodipleservations into subclasses. The result is a
hierarchical structure known as the concept hibsarEach node in the hierarchy subsumes all
the nodes underneath it, with the whole data s#teatoot of the hierarchy tree. Examples of
such methods are a conceptual clustering algotkinoavn as CLUSTER/2 [56] and an improved

conceptual clustering algorithm known as ITERATE][5

Divisive or Partitional Clustering

These methods start with each point as part ohdomm or guessed cluster and iteratively
move points between clusters until some local mimmis found with respect to some distance
metric between each point and the center of thstelut belongs to. Partitional clustering as-
signs a set of data points into k clusters witreout hierarchical structure. This process usually

accompanies the optimization of a criterion functidore specifically, given a set of points

x eR', i=1,...,N, partitional clustering algorithms aim to organiteem into k clusters
{Cl,...,CK} while maximizing or minimizing a prespecified efiion functionJ. In principle,

the optimal partition, based on the criterion fumetJ , can be found by enumerating all possi-
bilities. However, this brute force method is irdide in practice due to the extremely expensive
computation. Even for a small-scale clustering [got) simple enumeration is impossible.

Therefore, heuristic algorithms seek approximataetems. One of the widely used iterative op-
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timization methods, the k-means algorithm is basethe sum-of-squared-error criterion. In this

study, different approaches of the k-means algorine implemented.

Hierarchical Clustering

Hierarchical clustering groups data with a sequericeested partitions, either from singleton
clusters to a cluster including all individualsvice versa. The former is known as agglomerative
hierarchical clustering, and the latter is call@dsive hierarchical clustering. Both agglomera-
tive and divisive clustering methods organize data the hierarchical structure based on the
proximity matrix. The results of hierarchical cleshg are usually depicted by a binary tree or
dendrogram, as depicted in Figure 1.

<

Agglomerative L . Divisive
Hierarchical | | Hierarchical
Clustering Clustering

] O O, O3 Os Os O Oy L

Figure 1 : Example of a dendrogram from hierarchical clustgrifhe clustering direction for the divisive hierar
chical clustering is opposite to that of the aggtoative hierarchical clustering. Two clusters abe o
tained by cutting the dendrogram at an appropléatel.

These methods start with each point being considasea cluster and recursively combine
pairs of clusters (subsequently updating the ihister distances) until all points are part of one
hierarchically constructed cluster. Hierarchicalstéring groups data with a sequence of nested
partitions, either from singleton cluster to a tdwsncluding all individuals or vice versa. The
results of hierarchical clustering are usually degd by a binary tree or dendrogram, as depicted
in Figure 1. The root node of the dendrogram reprssthe whole data set, and each leaf node is
regarded as a data point. The intermediate nodssdscribe the extent to which the objects are
proximal to each other and the height of the degidrm usually expresses the distance between

each pair of data points or clusters, or a datat@od a cluster. The ultimate clustering results
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can be obtained by cutting the dendrogram at @iffelevels. This representation provides very
informative descriptions and a visualization of gwgential data clustering structures, especially

when real hierarchical relations exist in the data.

Compared with agglomerative methods, divisive mashoeed to conside2" ™ -1 possible
two-subset divisions for a cluster witR data points, which is very computationally inteesi
even for small-scale data sets [11]. Thereforelcmgerative methods are more widely used. The

major disadvantage of divisive methods is their potational complexity, which is at least

O(N?) and cannot meet the requirement for dealing vétige-scale data sets in data mining

and other tasks in recent years [11]. Also, comerditisms of classical hierarchical clustering
algorithms focus on their lack of robustness aradr thensitivity to noise and outliers. Once an
object is assigned to a cluster, it will not besidared again, which means that hierarchical clus-
tering algorithms are not capable of correctingsgme previous misclassification. As a result,
many new clustering methods with hierarchical @usesults have appeared and have greatly
improved the clustering performance.

Graph Theoretic Methods

The concepts and properties of graph theory makerit convenient to describe clustering
problems by means of graphs. These methods anéigrang methods that partition the space
into subgraphs with respect to some geometric ptiege The authors in [49] provide a detailed
description and discussion of hierarchical cluagerirom the point of view of graph theory.
More discussion of graph theory in clustering carfdund in [50]. Examples of such methods
are a k-nearest-neighbor graph-based algorithmm@élen [51], and the algorithm CLICK
(Clustering ldentification via Connectivity Kernglgs2]. Also, Bayesian networks belong to
these methods of clustering, since it is a probsigilgraphical model that represents a set of
random variables and their conditional dependenizea directed acyclic graph (DAG). For ex-
ample, a Bayesian network could represent the pilgtac relationships between diseases and
symptoms. Given symptoms, the network can be usewdrmpute the probabilities of the pres-

ence of various diseases. More information aboyeBian networks can be found in [58].
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Fuzzy Clustering

So far, the clustering techniques we have discuasedeferred, to as hard or crisp clustering,
which means that each data object is assignedlyoome cluster. For fuzzy clustering, this re-
striction is relaxed, and the object can belongltof the clusters with a certain degree of mem-
bership. This is particularly useful when the boanes between clusters are ambiguous and not
well separated. Examples of such methods are FGzkleans (FCM) [53], the Possibilistic
Fuzzy C-Means (PFCM) model proposed by the autindé4] and the Mountain Method (MM)
[55].

1.4 Procedure of Cluster Analysis

The procedure of cluster analysis consists of lasic steps, shown in Figure 2. The red ar-
rows in Figure 2 point to the novel work in thigsis, i.e. incorporating prior knowledge in the
clustering process, especially in clustering athomiand in cluster validation. More details about

this work are discussed in Sections 1.7. In thiefohg, we present these steps.

Feature Selection or Extraction

Feature selection chooses distinguishing featumes & set of candidates, while feature ex-
traction utilizes some transformations to genereeful and novel features from the original
ones. Clearly, feature extraction is potentiallpatale of producing features that could be of bet-
ter use in uncovering the data structure. Howedeature extraction may generate features that
are not physically interpretable. On the contrdegture selection assures the retention of the
original physical meaning of the selected featuheghe literature, these two terms sometimes
are used interchangeably without further identifythe difference. Both feature selection and
feature extraction are very important to the effeetess of clustering applications. Elegant se-
lection or generation of salient features can ¢yedtcrease the storage requirement and mea-
surement cost, simplify the subsequent design pspand facilitate the understanding of the
data. Generally, ideal features should be of us#istinguishing patterns belonging to different
clusters, immune to noise, and easy to obtain atedgret. Feature selection is more often used

in the context of supervised classification withsd labels available.
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Figure 2 : Clustering procedure. The basic process of cluamtatysis consists of four steps with a feedback-pat
way. These steps are closely related to each atierdetermine the derived clusters. The red arrows

point to the novel work in this thesis.

Clustering Algorithm Design or Selection

This step usually consists of determining an appatg proximity measure and constructing
a criterion function. Intuitively, data objects ageouped into different clusters according to
whether they resemble one another or not. The rddatlusters are dependent on the selection
of the criterion function. The subjectivity of ctes analysis is thus inescapable. There is no uni-
versal clustering algorithm to solve all problertss important to carefully investigate the cha-
racteristics of a problem in order to select onglean appropriate clustering strategy. Clustering
algorithms that are developed to solve a particptablem in a specialized field usually make
assumptions in favor of the application of interéstr example, the k-means algorithm is based
on the Euclidean measure and hence tends to gereaerspherical clusters. However, if the
real clusters are in other geometric forms, k-meaag no longer be effective, and we need to
resort to other schemes. Similar considerationg teigept in mind for mixture - model cluster-
ing, in which data are assumed to come from soreeifsp models that are already known in ad-

vance [11].
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Cluster Validation

Given a data set, each clustering algorithm caraydwproduce a partition whether or not
there really exists a particular structure in tlzad Moreover, different clustering approaches
usually lead to different clusters of data, andnefae the same algorithm, the selection of a pa-
rameter or the presentation order of input pattenayg affect the final results. Therefore, effec-
tive evaluation standards and criteria are criycethportant to provide users with a degree of
confidence for the clustering results. An unsupsdtilearning procedure is usually more diffi-
cult to assess than a supervised one. The procémheealuating the results of a clustering algo-
rithm is known as cluster validation. Although astkering structure resulting from a certain al-
gorithm could be assessed by domain knowledge &perteexperience, cluster validity empha-
sizes the evaluation of the clustering result imhjective and quantitative way, which is usually
statistically based. These assessments shouldjeetiob and have no preferences to any algo-
rithm. They should be able to provide meaningfsights in answering questions like how many
clusters are hidden in the data, whether the clusibtained are meaningful from a particular
point of view or just artifacts of the algorithms, why we choose one algorithm instead of
another. The first question concerns the clusteddrecy of the data and should in principle be
answered before attempting to perform clusterirsgngispecific statistical tests. Unfortunately,
such tests are not always very helpful and regihieeformulation of specific test hypotheses.
The other questions concern the analysis of clustigity and can only be answered after appli-

cation of clustering method to the data.

Generally, there are three types of validation pdoeces: external indices, internal indices,
and relative indices [11]. External indices aredolgn some prespecified structure, which is the
reflection of prior information on the data andiged as a standard to validate the clustering so-
lutions. External validation can only be performsten prior knowledge of the problem is
available. The prior knowledge may concern gengratacteristics of the clusters (e.g. expected
compactness) or relations between specific itengs (Ems A and B should belong to a same
cluster and item C to a different one). Sometinies knowledge is confirmatory but not pre-
scriptive. Internal tests are not dependent onreatanformation (prior knowledge). Instead,
they examine the clustering structure directly fritv@ original data. Internal validation is based
on an evaluation of the “agreement” between tha dat the partition. For fuzzy partitional me-

thods, internal validity indices should take intza@unt both the data items and the membership
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degrees resulting from clustering. Relative critenmphasize the comparison of different cluster-
ing structures in order to provide a referencedade which one may best reveal the characteris-
tics of the objects. Relative comparisons are oi@ployed for selecting good values for impor-

tant parameters, such as the number of clusters.

It is important to mention that in this study, imtal indices, for example C-index, Silhouette
index, Dunn index and Goodman-Kruskal index, haeenbapplied. We discuss in detail about
them in Chapter 3(Section 3.6). Also, external aedj for example Rand index, Hubert index
and corrected Rand index, have been applied tooddériss in detail about them in Chapter
3(Section 3.11). The above indices are the mostmamused for estimating the number of clus-
ters in a dataset and evaluating the results aistering algorithm in gene expression data anal-
ysis [8], [16], [21], [17], [44] and [45].

Result Interpretation

The ultimate goal of clustering is to provide useith meaningful insights from the original
data so that they can develop a clear understamditige data and therefore effectively solve the
problems encountered. A set of clusters is nolf igsénished result but only a possible outline.

Consequently, further analyses and experimentsheagquired.

It is interesting to observe that the flow charfFigure 2 also includes a feedback pathway.
Cluster analysis is not an one-shot process. Inyramoumstances, clustering requires a series of
trials and repetitions. Moreover, there are no ersally effective criteria to guide the selection
of features and clustering schemes. Validatioregatprovide some insights into the quality of
clustering solutions, but even choosing an appat@reriterion is a demanding problem. Since
clustering is a known NP-hard problem [11], mogprapches use the alternative optimization

schemes in order to find a local optimum solutibtheir criterion function.

Finally, it is also important to mention that inporating prior knowledge in the clustering
process would generate clusters that are moredaality relevant. Also, this supports the dis-
covery of clusters of genes sharing similar funwioSuch clusters may indicate regulatory
pathways, which could be significantly relevantsfeecific phenotypes or physiological condi-

tions. Such a biological knowledge may be usedustering method and cluster validation. Red
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arrows in Figure 2 represent this work. Unfortuhatthis sort of prior biological knowledge is

not always available.

1.5

Clustering Applications

Clustering has been applied in a wide variety eldB, as illustrated below with a number of

typical applications.

1.

Engineering(computational intelligence, machine learningtgrat recognition, mechanical
engineering, electrical engineering). Typical apgiions of clustering in engineering range
from biometric recognition and speech recognitianradar signal analysis, information

compression, and noise removal.

. Computer science$Ve have seen more and more applications of clogten web mining,

spatial database analysis, information retriev@ttual document collection, and image

segmentation.

. Life and medical sciencdgenetics, biology, microbiology, paleontologyygsiatry, clin-

ic, phylogeny, pathology). These areas consish@fmajor applications of clustering in its
early stage and will continue to be one of the nmddrying fields for clustering algorithms.
Important applications include taxonomy definiti@gne and protein function identifica-

tion, disease diagnosis and treatment, and so on.

. Astronomy and earth sciencégeography, geology, remote sensing). Clusteriag loe

used to classify stars and planets, investigate farmations, partition regions and cities,

and study river and mountain systems.

. Social sciencegsociology, psychology, archeology, anthropologgucation). Interesting

applications can be found in behavior pattern as|lyelation identification among differ-
ent cultures, construction of evolutionary histofyanguages, analysis of social networks,

archeological finding and artifact classificatiamd the study of criminal psychology.
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6. Economicgmarketing, business). Applications in customearabteristics and purchasing
pattern recognition, grouping of firms, and stodnt analysis all benefit from the use of

cluster analysis.

1.6 Gene Clustering

Over the past few years DNA microarraysve become a key tool in functional genomics.
They allow monitoring the expression of thousanidgemes in parallel over many experimental
conditions (e.g. tissue types, growth environmenfk)s technology enables researchers to col-
lect significant amounts of data, which need taabalyzed to discover functional relationships
between genes or samples. The results from a saxgleriment are generally presented in the
form of a data matrix in which rows represent gesras columns represent conditions. Each en-
try in the data matrix is a measure of the expoestavel of a particular gene under a specific
condition. A central step in the analysis of DNAcmiarray data is the identification of groups of
genes and/or conditions that exhibit similar exgi@s patterns. Clustering is a fundamental ap-
proach to classifying expression patterns for lgmlal and biomedical applications. The main
assumption is that genes that are contained inrticylar functional pathwayshould be co-

regulated and therefore should exhibit similargyaté of expression [7].

DNA microarrays offer a global view of the levelsaztivity of many genes simultaneously.
In a typical gene expression data set, the numibgerees is usually such larger than the number
of experiments. Even a simple organism like yehas approximately six thousand genes. It is
estimated that humans have approximately thirtyighad to forty thousand genes. Because of

* ADNA microarray is a multiplex technology usedriolecular biology. It consists of an arrayed seagthou-
sands of microscopic spots of DNA oligonucleotides|ed features, each containing picomoles (10mbges)
of a specific DNA sequence, known as probes (oonteps). Since an array can contain tens of thalsan

probes, a microarray experiment can accomplish ngangtic tests in parallel.

> A genetic pathway is the set of interactions odog between a group of genes who depend on ehen'®indi-

vidual functions in order to make the aggregatetiom of the network available to the cell.

6 . . .
Yeasts are eukaryotlc micro-organisms.
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the large number of genes and the complexity ofbgioal networks, clustering is a useful ex-
ploratory technique for analysis of gene expresslata. Clustering has been a useful data-
mining tool since early days, for discovering samikexpression patterns without prior know-
ledge. Many clustering algorithms have been progpdsethe analysis of gene expression data.
The overflowing clustering techniques can furthemfase biologists, due to the lack of adequate
standards for cluster validity. Clustering algamih attempt to partition the genes into groups
exhibiting similar patterns of variation in expresslevel. In an attempt to understand compli-
cated biological systems, large amounts of geneesgpn data have been generated by re-
searchers. Given the same data set, differentecingtalgorithms can potentially generate very

different clusters: the number of clusters andrtbenstituents.

Microarray experiments have been widely used teestibiological activities and cellular
changes under different conditions at moleculaelleks ability to simultaneously monitor ex-
pression changes of thousands of genes has acdpsingopularity but, at the same time, posed
many challenging statistical and computational [@mis. Gene clustering problem is one of
them. The purpose of gene clustering is to seasclgfoups of genes with similar expression
patterns, which likely have related biological ftians or interactions. The complex structure of
microarray data, the local optimization or the tighoice of the clustering parameters that influ-
ence the assignment of genes to clusters are sbthe tundamental problems in gene expres-
sion clustering. Also, especially in hierarchiclkistering approaches it is difficult to identifyeth

“borderline” patterns, i.e. genes with expressioofifes that lie between two or more clusters.

A biologist with a gene expression data set isdagih the problem of choosing an appro-
priate clustering algorithm for his or her data 3éte success of clustering algorithms is assessed
by visual inspection using biological knowledges@\l incorporating prior knowledge in the
clustering process would help tease out noise andrgte clusters that are more refined and bio-
logically relevant. It provides an alternative t@mal all the aforementioned difficulties. So, with
the utilization of knowledge background (i.e. knedde about the function of genes) it is also
possible to solve the “borderline” problem, and make interpretation of the final clustering
result more natural. In this study, we presentad\al clustering approach that utilizes informa-
tion about the functional classification of genesorder to achieve a more knowledgeable and
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more naturally interpretable clustering arrangenaénihe genes. Unfortunately, this sort of prior

biological knowledge is not always available.

There is a variety of available sources of biolagknowledge. In this study we take advan-
tage of the Gene Ontology (GO) and the Kyoto Erapetiia of Genes and Genomes (KEGG)
based on the Biological Pathways (PWs). More detdilout the above sources are discussed in
Chapter 2. So, we incorporate the available pmmvwedge from the above sources in the clus-
tering process. Especially we use biological knolgéein the used clustering algorithm and in

cluster validation.

Then the biological meanings of the results aezefore interpreted manually and this work
can be time-consuming for large-scale data. Ineiyi a clustering has possible biological signi-
ficance if genes in the same cluster tend to handas expression levels in additional experi-
ments that were not used to form the clusters. Bsxrao-expressed genes are likely to share the
same biological function, cluster analysis of gerpression profiles has been applied for gene
function discovery. It has observed that genes Withsame function or involved in the same
biological process are likely to co-express, herlostering gene expression profiles provides a

means for gene function prediction.

Different clustering algorithms optimize differeobjective functions or criteria based on a
biological network. Partitional clustering methalsech as k-means assign each gene to a single
cluster. However, these methods do not providermddion about the influence of a given gene
for the overall shape of clusters. On the otherdh&umzzy partitioning method, fuzzy c-means
(FCM) attributes cluster membership values to geReszy clustering is a convenient method to
select genes exhibiting tight association to giekrsters. In addition to the specification of the
numberc of clusters in the data set, the FCM method reguio choosen, the fuzziness para-
meter. Thus, a major problem in applying the FCMhuod is the choice of the fuzziness para-
meter m. By setting threshold levels for the membershilues, genes which are tightly asso-

ciated to a given cluster can be selected.

Ideally, we would like to be able to compare praabslusterings having different numbers
of clusters. Unfortunately, determining the corraamber of clusters in real data is a long-

standing and very difficult problem. The best wayluster gene expression data is to use more
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than one clustering algorithms and compare thetsesa as to choose the best clustering algo-
rithm. Also, clustering algorithms that may givéfelient results based on different initial condi-
tions should be run several times to find the Isesition. Gene expression data clustering is a
powerful tool for arranging genes according to kEnty in their expression patterns. Cluster
analysis is also the first step in analyzing gexession data. Many traditional clustering algo-

rithms such as k-means can be used to clustereggmession data.

To sum up, recent advances in DNA microarray teldgye also known as gene chips, allow
measuring the expression of thousands of genearail@ and under multiple experimental con-
ditions. This technology is having a significantp@et on genomic and post-genomic studies.
Disease diagnosis, drug discovery and toxicologies¢arch benefit from the use of microarray
technology. A main step in the analysis of generesgion data is the detection of samples or
genes with similar expression patterns. A numbetatd mining techniques have been applied to
the analysis of gene expression data. Clusterirggfimdamental approach to gene expression
knowledge discovery. Solutions for the systemat@lgation of the quality of the clusters have
been recently proposed. Moreover, the predictiothefcorrect number of clusters is a critical
problem in unsupervised classification problemsnivelustering algorithms require the number
of clusters given as an input parameter. Diffecdnster validity indices have been suggested to
address this problem. A cluster validity index tales the quality of a resulting clustering
process. Thus, the clustering partition that oesithe validity index under consideration is
chosen as the best partition. There are seversteclualidity techniques for gene expression data
analysis. Normalization and validity aggregatioratgigies are also proposed to improve the
prediction of the correct number of clusters inagadset. Also, incorporating prior knowledge in

the clustering process leads to clusters that are nefined and biologically relevant.

1.7 Structure and Contribution of This Thesis

In this thesis, one clustering and four validatedgorithms are applied to three breast cancer
datasets. The combination of these methods magliably used for the estimation of the num-
ber of clusters and the validation of clusteringutes. The results show that this software tool
can support biomedical knowledge discovery andtheale applications. We implement the

clustering of genes using the hard c-means algordnd several validity measures (C-index,
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Goodman-Kruskal index, Dunn index and Silhouett#ek) to estimate the number of clusters.
Appropriate normalization and weighted voting taghes are used to improve the prediction of
the number of clusters. The gene expression valifgee data sets concerning the breast can-
cer (Sorlie’s data set, Veer’'s data set and Satsidata set) are considered, from which the sta-
tistical clusters are obtained through the clustemprocedure. Furthermore, we annotate the
genes to GO and the biological clusters are oldatheough the clustering procedure, which
now uses only the biological knowledge about thailaklle genes. This knowledge comes from
the GO hierarchies, discussed in Chapter 2 in ldé&aother approach to obtain the biological
clusters, is through the clustering procedure whisés only the biological knowledge in terms
of pathways (PWs) from Kyoto Encyclopedia of Geard Genomes (KEGG). The main idea of
this approach is that if two genes take part ileast one common pathway, they should both be-
long to the same cluster. The validity of this dois explained in Section 3.12.

The purpose of this thesis is to examine to whidierg is possible to obtain biological clus-
ters that converge to statistical clusters. As maetl, the statistical clusters are obtained
through the use of statistical knowledge, i.e.ttiree available datasets. Note that the biological
clusters come from the biological knowledge, irenf the GO hierarchies or KEGG. There are
several measures to compare different partitiorts @and similarity index, Hubert similarity
index, Rand index after correction for agreemerd ttuchance), some of which have been im-
plemented. Figure 3 summarizes all applied distane&rics, validity and similarity indices,
while Figure 4 illustrates the overall contributipresenting the examined gene clustering me-
thodologies in this thesis. The various terms shawithese figures are explained in detail

throughout the thesis.

It is worthy noted, that except the statisticalstdu analysis using the gene expression values
from the three data sets, the contribution of theésis concerns the incorporation of prior biolog-
ical knowledge from the GO in clustering procedanal in cluster validation. The results show
that the utilization of GO biological knowledge statistical knowledge leads to clusters that
converge adequately with the clusters obtained #&®G knowledge. Hence, it is possible to
design different algorithm approaches, able torna#iple alternative resources and provide re-
liable gene partitions. Finally, it is shown to wieatend is possible to influent the statistical me

thods with biological knowledge, to obtain resuwiith biological meaning.
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Classification
Available data

Genes’ expression values from
the 3 data sets,

available GO biological
knowledge and

available KEGG biological
knowledge

Distance metrics between
2 samples in a data set

Classification methods

Various approaches
of hard c-means
clustering method

Biological distance via
GO-based Wu and Palmer’s
method, vector distances:
Euclidean (L2-norm),

Validity indices CElirIEe)
Manhattan (L1-norm),
C-index, Goodman- Chebychev and
Kruskal index, counting distance metrics

Pre-processing

Silhouette index and
Dunn index

Comparison of partitions

Similarity indices

Rand index, Hubert index and
corrected Rand index

Figure 3 : All distance metrics, validity and similarity indis applied.

To summarize, this work is organized to four cheppt®vering the following subjects:

available sources of biological knowledge (GE&GG)

e gene clustering methodologies

e cluster validity assessment (validity measunesmalization and weighted voting tech-
niques, similarity indices)

e results interpretation

motivation for further research

In Chapter 2 two types of up to date available sources of lgiglal knowledge (the GO and
the KEGG) are presented. We introduce their stracimd the main available tools that use the

data provided by these sources.

In Chapter 3 we present the implemented gene clustering metbges and data- and
knowledge-driven cluster validity assessment systdéonmalization and weighted voting tech-

niques are used to improve the prediction of thmler of clusters. Also, we discuss about sev-
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eral measures to compare different partitions, somghich have been implemented and eva-

luated in Chapter 4.

In Chapter 4 we present a comparative experimental evaluatfotned implemented gene
clustering methodologies, aiming at illustratingitradvantages and disadvantages. We compare

and interpret the obtained results and we make imgéah biological conclusions.

In Chapter 5 we summarize in brief the findings in Chapter 4 ¥so0 introduce some novel
ideas to motivate further research. We suggest gudelines about the implemented gene clus-
tering methodologies, which might lead to bettauhs and then, to more meaningful biological

conclusions.

1.8 Summary

Cluster analysis aims to provide a partition of diaga where data objects in the same clusters
are homogenous, while data objects in differenugsoare well separated. The procedure of
cluster analysis consists of four basic stepsufeaselection or extraction, clustering algorithm
design or selection, cluster validation and reisuiéirpretation There are no universally effective
criteria to guide the selection of the approprictestering method for a specific problem. The
two most significant clustering methods presentedhis chapter, are the hierarchical and the
partitional clustering method. Cluster analysisiadd an one-shot process. Since clustering is a
known NP-hard problem, most approaches use maieeff optimization schemes to find a lo-
cal optimum solution. In biological and biomedieglplications, clustering algorithms attempt to
partition the genes into groups exhibiting simpatterns of variation in expression level. It has
been a useful data-mining tool since early daysdigcovering similar expression patterns with-
out prior knowledge. There are several clusterditglitechniques for gene expression data anal-
ysis. Normalization and validity aggregation stgis are also proposed to improve the predic-
tion of the correct number of clusters in a data Atso, incorporating prior knowledge in the
gene clustering process would lead to a more krogeable and more naturally interpretable

clustering arrangement of the genes.
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index, Dunn index and Goodman-Kruskal index). 1 Dunn index and Goodman-Kruskal index).
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used to improve cluster validation.

are used to improve cluster validation.
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A normalization and a weighted voting strategy are
used to improve cluster validation.
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Comparing partitions via |« —— the above validity measures. Comparing partitions
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Comparing partitions via
various measures (Rand index,
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v

Result
interpretation

based on available KEGG knowledge

Notation: Red bidirectional arrows imply that the clustering method is executed several times with different input parameter,
until the most appropriate partition is obtained. The appropriate partition is estimated via the validity measures.

Figure 4 : General structure of the gene clustering methodedoignplemented in this thesis.



CLUSTERING OFGENESBASED ONBIOLOGICAL KNOWLEDGE 35

CHAPTER 2: KNOWLEDGE ORGANIZATION : GENE ONTOLOGY (GO)
AND KEGG

2.1 Introduction

2.2 GO Project and GO Terms

2.3 GO Ontologies

2.4 GO Annotation and Tools

2.5 Mappings of External Databases to GO

2.6 Biological Pathways (PWSs)

2.7 Kyoto Encyclopedia of Genes and Genomes (KEGG
2.8 Summary

2.1 Introduction

To answer meaningful questions, biologists ofteedni® retrieve and analyze data from dis-
parate sources. Biologists currently waste a Idiroé and effort in searching all the available
information about each small area of research. iBhiampered further by the wide variations in
terminology, which inhibit effective searching bgtb computers and people. For example, if
someone was searching new targets for antibiatiespr she might want to find all the gene
products that are involved in bacterial protein synthesisl &ave significantly different se-
guences or structures from those in humans. If database uses the phrase “translation” for
these molecules, whereas another uses the phraseifpsynthesis”, it will be difficult for
someone, and even harder for a computer, to findtionally equivalent terms. The Gene On-
tology (GO) project is a collaborative effort todaelss the need for consistent descriptions of

gene products in different databases. It provigesrdology of defined terms representing gene

" GO uses the term “gene product” to refer colletyi to gene and any entities encoded by the gege proteins

and functional RNAs.
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product properties. The ontology covers three domaiellular component, molecular function

and biological process.

In this chapter, we first present the basic coreeptd the purpose of the Gene Ontology
project. Then, we describe the aforementioned tmewains that GO project covers. We also
discuss the meaning of GO annotation of genes astdips, and the tools to accomplish this an-
notation. Finally, this chapter presents the maggpiof concepts from external database systems
to equivalent GO terms. Finally, we present anotlgpe of available biological knowledge,

Kyoto Encyclopedia of Genes and Genomes (KEGG)daseiological Pathways (PWSs).

2.2 GO Project and GO Terms

The GO project is a major bioinformatics initiatiweth the aim of standardizing the repre-
sentation of gene and gene product attributes agscies and databases. The project provides
a controlled vocabulary of terms for describing @gmoduct characteristics and gene product
annotatiofi data from GO Consortiuhimembers, as well as tools to access and process tta-
ta. GO allows us to annotate genes and their pteduith a limited set of attributes. However,
GO does not allow us to describe genes in termghodh cells or tissues they're expressed in,
which developmental stages they're expressed #teorinvolvement in disease. It is not neces-
sary for GO to do these things because other ayiedaare being developed for these purposes.
The GO project has developed three structured abedrvocabularies (ontologies) that describe
gene products in terms of their associated bioldgioocesses, cellular components and molecu-

lar functions in a species-independent manner.

The aims of the Gene Ontology project are threefioist, the development and maintenance

of the ontologies themselves, second, the annatafigene products, which entails making as-

8 Annotation is the process of assigning GO terngette products.

® The GO Consortium is the set of biological databem®d research groups actively involved in the Ggjept.

This includes a number of model organism databasdsmulti-species protein databases, software dprent

groups and a dedicated editorial office.
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sociations between the ontologies and the genegemel products in the collaborating databases
and third, the development of tools that facilitdte creation, maintenance and use of the ontol-
ogies [5]. Each GO term within the ontology hasrantname, which may be a word or string of

words, a unique alphanumeric identifier, a defamtwith cited sources and a nhamespace indicat-
ing the domain to which it belongs. Terms may dlave synonyms, which are classed as being
exactly equivalent or broader or narrower or relatethe term name, references to equivalent
concepts in other databases and comments on teamimgeor usage. An example of a GO term

is shown in Figure 5.

id: Go:0000018

nae lactase activity

namespace: molecular function

def: "Catalysig of the reaction: lactose + HZ20 = D-glucose + D-galactose.™ [EC:3.2.1.108]
SYnonym: "lactase—-phlorizin hydrolase activity™ BROAD [EC:3.2.1.1085]

SYnony: Mlactose galactohydrolase activicty®™ EXACT [EC:3.2.1.108]

xref: EC:3.2.1.108

xref: MetaCyo:LACTASE-RIEN

xref: Reactome: 20536

iz_a: F2:0004553 ! hydrolase activity, hydrolyzing O-glycosyl compounds

Figure 5 : Example of a GO term [6].

The use of GO terms by collaborating databasestées uniform queries across the data-
bases. The controlled vocabularies are structusethiat they can be queried at different levels.
For example, someone can use GO to find all the geaducts in the mouse genome that are
involved in signal transduction, or can zoom intak receptor tyrosine kinases. This structure
also allows annotators to assign properties to ggengene products at different levels, depend-
ing on the depth of knowledge about them. The G@Ilogy is structured as a directed acyclic
graph: there are no cycles, and “children” can haeee than one “parent”, and each term has
specific relationships to one or more other teriiee GO vocabulary is designed to be species-
neutral, and includes terms applicable to prok&ya&nd eukaryotes, as well as to single and
multicellular organisms. The GO ontology is nottistal herefore, additions, corrections and al-
terations are suggested by members of the resaactiannotation communities, as well as by
those directly involved in the GO project. Moreamhation about the GO can be found in [59]
and [62].
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2.3 GO Ontologies

Ontologies provide a vocabulary for representingwdedge and a set of relationships that
hold among the terms of the vocabulary. They casthecturally very complex, or relatively
simple. Most importantly, ontologies capture domaiowledge in a way that can easily be dealt
with by a computer. Because the terms in an onyologl the relationships between the terms
are specific, the use of ontologies facilitatesmake standard annotations and so the computa-
tional queries are improved. As systems make dok@viedge available, to both humans and
computers, bio-ontologies such as GO are essé¢atihk process of extracting biological insight

from enormous sets of data.

The Gene Ontology is a controlled vocabulary, eo§standard terms, i.e. words or phrases,
used for indexing and retrieving information. Indaabn to defining terms, GO also defines the
relationships between the terms, making it a stineck vocabulary. The Gene Ontology project
provides an ontology of defined terms represergege product properties. The ontology covers
three domains: first, cellular component, i.e. plaets of a cell or its extracellular environment,
second, molecular function, i.e. the elementalds of a gene product at the molecular level,
such as binding or catalysis and third, biologigedcess, i.e. operations or sets of molecular
events with a defined beginning and ¥hfb]. These operations or sets of molecular events
should be pertinent to the functioning of integdaliging units: cells, tissues, organs, and organ-
isms. A gene product might be associated with catkd in one or more cellular components, it

is active in one or more biological processes,uit performs one or more molecular func-

tions. For example, the gene producttan be described by the molecular function tegmthe

biological process termg, and x;, and the cellular component termtg and x,. So, the gene

product cytochrome ¢ can be described by the mialedunction term oxidoreductase activity,
the biological process terms oxidative phosphoigtaind induction of cell death, and the cellu-
lar component terms mitochondrial matrix and mitmadrial inner membrane [5]. These three

areas are considered independent of each otheoniblgies are developed to include all terms

10 Every process should have a discrete beginnidgead and these should be clearly stated in theepsoterm

definition.
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falling into these domains without considerationndfether the biological attribute is restricted
to certain taxonomic groups. Therefore, biologmalcesses that occur only in plants (e.g. pho-
tosynthesis) or mammals (e.g. lactation) are iredudrigure 6 shows a small set of terms from

the ontology.

In the diagram in Figure 6, relations between #imns are represented by the colored arrows
and the letter in the box midway along each armeuhe relationship type. Note that the terms
become more specialized going down the graph, thélmost general terms, the root nodes: cel-
lular component, biological process and moleculacfion, at the top of the graph. Terms may
have more than one parent, and they may be comhtcparent terms via different relations. As
the diagram in Figure 6 suggests, the three GO ohenfeellular component, biological process,
and molecular function) are each represented bgr@mlogy term. All terms in a domain can
trace their parentage to the root term, althougietimay be numerous different paths via vary-
ing numbers of intermediary terms to the ontologgtr The three root nodes are unrelated and
do not have a common parent node, and hence G&feisad to as three ontologies, or as a sin-
gle ontology consisting of three sub-ontologiesn8araph-based softwares may require a sin-
gle root node. In these cases, a “fake” term caaduked as a parent of the three existing root

nodes, as shown in Figure 7(b).

[ cellular_component ] [ biological_process ] (_ molecular_function )

______________________________

----------------- v N
pigment metabolic process pigmentation during H negative regulation of positive regulation of biological H
during pigmentation development H biological process process H

.

h e

pigment metabolic process
during developmental
pigmentation

regulation of pigmentation
during development

eye pigment precursor
transport

-

Al

pigmentation during
development

pigmentation during

negative regulation of
development

negative regulation of cuticle
pigmentation

negative regulation of eye
pigmentation

positive regulation of cuticle
pigmentation

positive regulation of eye
pigmentation

Figure 6 : A set of terms under the biological process nodengintation [5].
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The structure of GO can be described in termsdifeacted acyclic graph (DAG), where each
GO term is a node, and the relationships betweenetims are arcs between the nodes. The rela-
tionships used in GO are directed, for examplejtaamondrion is an organelle, but an organelle
is not a mitochondrion, and the graph is acyclice Dntologies resemble a hierarchy, as child
terms are more specialized and parent terms asesperialized, but unlike a hierarchy, a term
may have more than one parent term. For exampaebitilogical process term hexose biosyn-
thetic process has two parents, hexose metaboticeps and monosaccharide biosynthetic
process. This is because biosynthetic processtypeaof metabolic process and a hexose is a
type of monosaccharide. Just as each term is degfawethe relations between GO terms are also

categorized and defined.

A hierarchy in the GO may be seen as a networkhithveach term may represent a “child
node” of one or more “parent nodes”. There are types of child-to-parent relationships in the
GO: “is & and “ part of” types. The first type is defined when a childsslas a subclass of a
parent class. For example, from the BP ontologiyal\infectious cycle” is a child of “viral life
cycle”. The second type is used when a parentl@a<hild as its part. For instance, from the
same ontology, “regulation of viral life cycle” gart of “viral life cycle”. Figure 7 illustrates
these examples and an another partial view of a DABe GO. In more detail now, thes“a’
relation in GO is very simple: if we say As“d’ B, we mean that node & a subtype ofnode B.
For example, mitotic cell cycleis’ & cell cycle, or lyase activityi$ &' catalytic activity. It
should be noted thats' a8’ does not meani$ an instance of. An “instancé, ontologically
speaking, is a specific example of something, &.gat is & mammal, but Garfields an in-
stance ofa cat, rather than a subtype of cat. Tisea™ relation is transitive, which means that if
A “is & B, and B ‘is & C, we can infer that Ai$ & C. An example is shown in Figure 8. So,
from this example we can see that mitochondrisrafi intracellular organelle and intracellular

organelle fs ar’ organelle, therefore mitochondriois“an’ organelle.

The relation “part of” is used to represent part-whole relationshipthen Gene Ontology.
This relation has a specific meaning in GO andatild be added between A and B, only if B is
necessarily ‘part of” A. That means wherever B exists, it is a parfApand the presence of B
implies the presence of A. However, given the aenge of A, we cannot say that B exists, i.e.

all B are ‘part of” A, but someA “have part B. An example is shown in Figure 9 which
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presents that replication fork is necessaripatt of” chromosomeall replication are part of”
some chromosomes, but ordgme chromosomesHave part replication fork. Like the s &
relation, the ‘part of” relation is transitive too, as Figure 10 showsitochondrion is ‘part of”
cytoplasm and cytoplasm igart of” cell, therefore mitochondrion is part of” cell. Also, if a

“ part of” relation is followed by ani$ &' relation, it is equivalent to apart of” relation, i.e. if
Ais “ part of” B, and B is & C, we can infer that A is part of” C. In Figure 11 we see that
mitochondrial membrane ispart of ” mitochondrion, and mitochondrionis‘ar’ intracellular
organelle, therefore mitochondrial membrane aft of ” intracellular organelle. It should be
noted that if the order of the relationships isersed, the result is the same, i.e. mitochondrion
“is & intracellular organelle and intracellular orgdaek “ part of ” cell, therefore mitochon-
drion is “ part of ” cell. The logical rules regarding thepart of” and ‘is & relations hold no
matter how many intervenings‘a’ and “ part of ” relations there are. In Figure 12, the nodes
between mitochondrion and cell are connected bl lista” and “ part of ” relations, however
this is equivalent to saying mitochondrion igart of” cell.

gene_ontology

biological_process

regulation of
biological_process

viral life cycle

regulation of viral life
cycle

viral infectious cycle

(@)
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Molecular Biological
Function Process

(b)

Cellular
Component

biological_process

(©

Figure 7 : Different views of the GOa) Example of a DAG.(b) GO taxonomies(c) Partial view of the first level
of BP. [...] indicates the presence of several temotsncluded here.

( mitochondrion )7 is a —»| intracellular organella— isa —»C organelle )
4

—————————————————————————— isa oo
Figure 8 : Transitivity of the “is a” relation.

h ALL part of =

( chromosome ) ( replication fork )
L— SOME have part 4?

Figure 9 :An example of the part of” relation.
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( mitochondrion )— part of { cytoplasm } part of { cell )

—————————————————————————— partof -------------
Figure 10 : Transitivity of the “part of” relation.

C el )— partof{ mitochondrion )— %@tracellularorganell}
membrane

— — partof -
Figure 11 : An example that shows gpart of ” relation to be followed by ans & relation.

— —— partof >< cell

( cell part

!

( intracellular

Ml T intracellular
mitochondrion membrane-bounded intracellular part
organelle
organelle

Figure 12 : An example of bothis & and “ part of” relations.

Another common relationship in the GO is that whene process directly affects the ma-
nifestation of another process or quality, i.e. fiiener ‘regulates the latter. The target of the
regulation may be another process, for examplejlaggn of a pathway or an enzymatic reac-
tion, or it may be a quality, such as cell sizgpbl. Analogously to ‘part of”, this relation is
used specifically to mean necessatilggulates. That means whenever B is presenglways
“regulate$ A, but A maynot always be regulated by B. In Figure 13 we see an example of
this relationship. Whenever a cell cycle checkpoietturs, it alwaysrégulates the cell cycle.

However, the cell cycle is not solelseulated by cell cycle checkpoints, as there are also other



44 CHAPTER2. KNOWLEDGE ORGANIZATION: GENE ONTOLOGY (GO) AND KEGG

processes that regulate it. The regulation of @ge® does not need to be part of the process it-
self. That means that regulation of transcriptieaatibes the processes that modulate the activity

of the transcriptional machinery, but those proessse not an integral part of transcription.

ﬁ ALL regulates

C cell cycle ) (cell cycle checkpoint)
—————— SOME regulated by J

Figure 13 : An example of theregulates relation.

Cellular Component (CC)

Cellular component refers to the unique, highlyamiged substances of which cells, and so
living organisms, are composed. Examples includmbnanes, organelles, proteins, and nucleic
acids. Whilst the majority of cellular components bbcated within the cell itself, some may ex-
ist in extracellular areas of an organism. Theutallcomponent ontology describes locations, at
the levels of subcellular structures and macronuéeacomplexes. Examples of cellular compo-
nents include nuclear inner membrane, with the symoinner envelope, and the ubiquitin ligase
complex, with several subtypes of macromoleculanmexes. Generally, a gene product is lo-
cated in or is a subcomponent of a particular tallcomponent. The cellular component ontol-
ogy includes multi-subunit enzymes and other pnoteimplexes, but not individual proteins or
nucleic acids. Cellular component also does ndude multicellular anatomical terms. The cel-
lular component ontology is ams“a’ complete tree, meaning that every term has a pathet
root node which passes solely throughd’ relationships.

Molecular Function (MF)

Molecular function covers the elemental activittésa gene product at the molecular level,
such as binding or catalysis. GO molecular functeyms represent activities rather than the ent-
ities (molecules or complexes) that perform théoast and do not specify where or when or in
what context, the action takes place. Moleculacfiens generally correspond to activities that
can be performed by individual gene products, lbmes activities are performed by assembled
complexes of gene products. Examples of broad iumeltterms are catalytic activity, transpor-

ter activity or binding. Examples of narrower fuoa@l terms are adenylate cyclase activity or
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Toll receptor binding. It is easy to confuse a gpraxluct name with its molecular function, and

for that reason many GO molecular functions areeagpd with the word “activity”.

Biological Process (BP)

A biological process is a recognized series of svenmolecular functions. In other words, a
biological process is a process of a living orgamié process is a collection of molecular events
with a defined beginning and end, as it has bemady mentioned. Biological processes are re-
gulated by many means. Some examples include thteot@f gene expression, protein modifi-
cation or interaction with a protein or substratelanule. Examples of broad biological process
terms are cellular physiological process or sigraisduction. Examples of more specific terms
are pyrimidine metabolic process or alpha-glucosidasport. It can be difficult to distinguish
between a biological process and a molecular fancbut the general rule is that a process must
have more than one distinct steps. A biologicalcess is not equivalent to a pathway. At
present, GO does not try to represent the dynaanicependencies that would be required to
describe fully a pathway. The biological processlmyy includes terms that represent collec-
tions of processes, as well as terms that represgpecific, entire process. Generally, the former
will have mainly ‘is &' children, and the latter will havegart of ” children that represent sub-

processes. An example of such relationships is showigure 14.

[ biclogical process :l

i N
( localization ] { cellular process ] | reproduction |

0, g

[ localization of call ] [ sexual raproduction :]
cell motility ] [ gamete generation

{ cell migration } m

i

germ cell migration

Figure 14 : The GO vocabularies are sets of defined terms padifications of the relationships between them. As
indicated in this diagram, the GO vocabulariesdirected acyclic graphs. In this example, germ cell
migration has two parents, it is a “ part of ” gaengeneration and “is a” (is a subtype of) cell raig
tion. The GO uses these elementary relationshipfl irocabularies.
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It is important to note that the functions of a ggmoduct are the jobs that it does or the “ab-
ilities” that it has. These may include transpartithings around, binding to things, holding
things together and changing one thing into anoth@is is different from the biological
processes the gene product is involved in, whigblie more than one activity. One way to un-
derstand this is to consider the analogy of a compa organization [5]. Individuals (gene
products) have different abilities or tasks (fuoo#) and they work together to achieve different
goals (processes). It is easy to confuse a jab(gene product name) with a function. For exam-
ple, “secretarial activity” may seem like a valichttion because we have a good conceptual idea
of what a secretary does. However, in different ganies, secretaries might do different things.
One secretary might have the functions “typing’nswering phone” and “making coffee”,
whilst another might have these functions and afdtly “photocopying”. In the Gene Ontolo-
gy, a function should be unambiguous and it showddn the same thing no matter what species
we are dealing with.

2.4 GO Annotation and Tools

Annotation is the practice of capturing the acigtand localization of a gene product with
GO terms, providing references and indicating Wiadl of evidence is available to support the
annotations. In other words, annotation is the ggemf assigning GO terms to gene products.
Because a single gene may encode different produitiisvery different attributes, GO recom-
mends associating GO terms with database objgutesenting gene products rather than genes.
If identifiers are not available to distinguish imidual gene products, GO terms may be asso-
ciated with an identifier for gene and thus, genassociated with all GO terms applicable to any
of its products. In addition to the gene produenitfier and the relevant GO term, GO annota-
tions have the following data: first, every annioiatmust be attributed to a source, the reference
used to make the annotation (e.g. a literatureregete, another database or a computational
analysis), second, the annotation must indicate wihd of evidence is found in the cited source

to support the association between the gene prashatcthe GO term (i.e. an evidence codie-

1A simple controlled vocabulary is used to recevitlence. The evidence codes are simply the tltéer-lcodes

used to signify the type of evidence cited. Thelente codes come from the Evidence Code Ontology.
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noting the type of evidence upon which the annatats based) and finally, the date and the
creator of the annotation. Full annotation data sah be downloaded from the GO website. A
gene product can be annotated to zero or more radd=sch ontology, at any level within each
ontology. Also, annotation of a gene product to ontwlogy is independent of its annotation to
other ontologies. Annotations should reflect thenmad function, process, or localization (com-
ponent) of the gene product. An example of a GQottion is shown in Figure 15. GO is a

work in progress, so not all genes and proteing Ia® terms associated with them yet.

Gene product: Actin, alpha cardiac muscle 1, UniProtEEBE:PES03E &

G0 term: heart contraction ; GO:0060047E (biological process)
Evidence code: Inferred from Mutant Phenotype [(IMP)

Feference: FPHID: 17611253 &

Az=zigned by TniProtKE, June 06, 2003

Figure 15 : Example of a GO annotation [6].

In addition, the GO consortium has prepared GOssliwhich are “slimmed down” versions
of the ontologies that allow someone to assign (@@sderms to genomes or sets of gene prod-
ucts and thus to gain a high-level view of genecfioms. GO slims are cut-down versions of the
GO ontologies containing a subset of the term&@whole GO. They give a broad overview of
the ontology content without the details of thecsfefine grained terms. GO slims are created
by users according to their needs and may be spézi§pecies or to particular areas of the on-
tologies. GO slims are particularly useful for gigia summary of the results of GO annotation
of a genome, microarray or cDNA collection whendat@lassification of gene product function
is required. Using GO slims someone can, for exapypbrk out what proportion of a genome is

involved in signal transduction, biosynthesis qrogluction.

There is a large number of tools available botlinenind to download that use the data pro-
vided by the GO project. The vast majority of thesee from third parties, while the GO Con-
sortium develops and supports two tools, AmiGO &0l OBO-Edit [61]. Members of the GO
Consortium make their annotation data freely ab#l#@o the public as part of the data accessed
by AmiGO, the GO browser and search engine. Ami@GQvides an interface to search and
browse the ontology and annotation data providethbyGO consortium. Users can search for
gene products and view the terms with which theyamsociated. Alternatively, users can search
or browse the ontology for GO terms of interest aad term details and gene product annota-

tions. AmiGO also provides a BLAST search enginkeictv searches the sequences of genes and
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gene products that have been annotated to a GOaedrsubmitted to the GO Consortium.
AmiGO accesses the GO mySQL database. Annotatitansgas from individual databases can
be found on the GO annotations page.

OBO-Edit is an open source, platform-independeflogy editor developed and maintained
by the Gene Ontology Consortium. It is implemeniedlava, and uses a graph-oriented ap-
proach to display and edit ontologies. Its emphasishe overall graph structure of an ontology
provides a friendly interface for biologists andkas OBO-Edit excellent for the rapid genera-
tion of large ontologies. OBO-Edit includes a coelmnsive search and filter interface, with the
option to render subsets of terms to make themaihsdistinct. The user interface can also be
customized according to user preferences. OBO+aditalso a reasoner that can infer links that
have not been explicitly stated, based on exigttationships and their properties. Although it
was developed for biomedical ontologies, OBO-Edit e used to view, search and edit any
ontology. It is freely available to download.

2.5 Mappings of External Databases to GO

The Gene Ontology is not the only attempt to batldictured controlled vocabularies for ge-
nome annotation. Thus, to aid users, the GO Cansogrovides mappings of its terms to terms
in a number of external vocabularies. Each vocaplias its own nomenclature, for example
GenBank Accession, Clone Id, Unigene Cluster, E@ene are some of the existing nomencla-
tures. Mappings are files that contain classesntities from external classification systems,
such as Enzyme Commission numbers, UniProt keyward&oSite domains, indexed to iden-
tical or similar or related GO terms. Although tB® Consortium endeavours to make mappings
as accurate as possible, it cannot guaranteehhahappings provided by the GO project are ei-
ther complete or exact. This may be due to theretesef definitions from GO terms or from
terms in some external systems. Furthermore, the@@Q@logies and the external databases may
have changed since the mappings were made. Bosnatted that mapping of any existing voca-
bulary to any existing vocabulary is feasible viavaiety of freely available tools, such as
Clone/Gene ID Converter and SOURCE Batch Seardh.too
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2.6 Biological Pathways (PWSs)

A biological pathway is a series of actions amorgetules in a cell that leads to a certain
product or a change in a cell. Such a pathway riggetr the assembly of new molecules, such as
a fat or protein. Pathways can also turn genesdro#, or spur a cell to move. For one’s body
to develop properly and stay healthy, many thingstmvork together at many different levels,
from organs to cells. Cells are constantly recgj\wenes from both inside and outside the body,
which are prompted by such things as injury, intectstress or even food. To react and adjust to
these cues, cells send and receive signals throiogdgical pathways. The molecules that make
up biological pathways interact with signals, adlae with each other, to carry out their desig-
nated tasks. Biological pathways can act over stiolbng distances. For example, some cells
send out signals to nearby cells to repair locdlda@amage, such as a scratch on one’s knee. Oth-
er cells produce substances, such as hormonedydkat through one’s blood to distant target
cells. Biological pathways can also produce smalaoge outcomes. For example, some path-
ways subtly affect how the body processes drugdewithers play a major role in how a ferti-
lized egg develops into a baby. There are many @xemples of how biological pathways help
one’s body to work. For example, the pupil in oreye opens or closes in response to light, or if
one’s skin senses that the temperature is ridegbbddy sweats to cool him or her down. In fact,
without biological pathways, we and all other ligiareatures could not exist. Still, it's important
to keep in mind that biological pathways do notafs work properly. When something goes

wrong in a pathway, the result can be a diseade @sicancer or diabetes.

There are many types of biological pathways. Sohteeomost common are involved in me-
tabolism, the regulation of genes and the transamss signals [48]. Metabolic pathways make
possible the chemical reactions that occur in adids. An example of a metabolic pathway is
the process by which one’s cells break down foad @nergy molecules that can be stored for
later use. Other metabolic pathways actually helpuild molecules. Gene regulation pathways
turn genes on and off. Such action is vital becayeses produce proteins, which are the key
components needed to carry out nearly every taskiirbodies. Proteins make up our muscles
and organs, help our bodies move and defend ussaiggerms. Signal transduction pathways
move a signal from a cell's exterior to its interiDifferent cells are able to receive specific-sig

nals through structures on their surface, callegptors. After interacting with a receptor, the
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signal travels through the cell where its messageansmitted by specialized proteins that trig-
ger a specific action in the cell. For examplehenaical signal from outside the cell might be
turned into a protein signal inside the cell. Imtuthat protein signal may be converted into a
signal that prompts the cell to move. Figure 16ashan example of a biological pathway, which
is the biological pathway for Huntington’s Disea$ais pathway governs the movement of in-
formation between genes and proteins, processeeaibns in the cell. This one is a relatively

simple pathway. More complex pathways can have aaisdof elements each directional.
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Figure 16 : The biological pathway for Huntington’s Disease.

Researchers are learning that biological pathwags far more complicated than once
thought. Most pathways do not start at point A and at point B. In fact, many pathways have
no real boundaries, and they often work togethexcttmmplish tasks. When multiple biological
pathways interact with each other, it is calleda@dgical network. An example of a biological

network is presented in Figure 17.

Many important biological pathways have been disces through laboratory studies of cul-
tured cells, bacteria, fruit flies, mice and otlseganisms. Many of the pathways identified in

these model systems are the same or have similaterparts in humans. Still, many biological
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pathways remain to be found. It will take yeargedearch to identify and understand the com-
plex connections among all of the molecules irbadlogical pathways, as well as to understand
how these pathways work together.
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Figure 17 : Biological network analysis of differentially exmsed proteins in both pancreatic cancer and chronic
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pancreatitis.

Researchers are also able to learn a lot aboutruisaase from studying biological path-
ways. Identifying what genes, proteins and othelemdes are involved in a biological pathway
can provide clues about what goes wrong when asksstrikes. For example, researchers may
compare certain biological pathways in a healthgq@e to the same pathways in a person with a
disease to discover the roots of the disorder. Kieepind that problems in any number of steps
along a biological pathway can often lead to theesaisease. Finding out what pathway is in-
volved in a disease and identifying which stept@ pathway is affected in each patient may
lead to more personalized strategies for diagnosiegting and preventing disease. Researchers
currently are using information about biologicatip@ays to develop new and better drugs. It
likely will take some time before we routinely sgreigs that are specifically designed using the
pathway approach. However, doctors already usemagtinformation to choose and combine

existing drugs more effectively.
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For example, take the case of cancer [48]. Untéindy, many had hoped that most types of
cancers were driven by a single genetic error andidcbe treated by designing drugs to target
those specific errors. Much of that hope was basethe success of imatinib (Gleevec), a drug
that was specifically designed to treat a bloodcearcalled chronic myeloid leukemia (CML).
CML occurs because of a single genetic glitch kbads to the production of a defective protein
that spurs uncontrolled cell growth. Gleevec bitawghat protein, stopping its activity and pro-
ducing dramatic results in many CML patients. Utfoately, the one-target, one-drug approach
has not held up for most other types of cancereRteprojects that deciphered the genomes of
cancer cells have found an array of different gemattations that can lead to the same cancer
in different patients. Then, based on the genetfilp of their particular tumor, patients could
receive the drug or drug combination that is misdy to work for them. The complexity of the
findings appears daunting. Instead of attemptindisoover ways to attack one well-defined ge-
netic enemy, researchers now faced the prospeigtaing lots of little enemies. Fortunately,
this complex view can be simplified by looking ablbgical pathways that are disrupted by the
genetic mutations. Rather than designing dozemsugfs to target dozens of mutations, drug de-
velopers could focus their attentions on just twthoee biological pathways. Patients could then
receive the one or two drugs most likely to worktftem based on the pathways affected in their
particular tumors. One way to understand this isn@agine a thousand people travelling towards
the front door of a single building. In order toekeall these people from entering the building
there are two ways. If you had limitless resourges, could hire workers to go out and stop
each person. That would be the one-target, oneappgoach. But if you wanted to save a lot of
time and money, you could just block the door ® Itlailding. That is the pathway-based strate-
gy that many researchers are now pursuing to dekigys for cancer and other common diseas-
es.

2.7 Kyoto Encyclopedia of Genes and Genomes (KEG

Kyoto Encyclopedia of Genes and Genomes (KEGG)asllection of 16 online databases
dealing with genomes, enzymatic pathways, and gicéd chemicals. KEGG connects known
information on molecular interaction networks, swash pathways and complexes (this is the

Pathway Database), information about genes aneipsogenerated by genome projects (this is
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the Gene Database) and information about biochémaapounds and reactions (these are the
Compound and the Reaction Databases). These latiadas are different networks, known as

the protein network and the chemical universe retspedy.

KEGG is widely used in biology, biochemistry anddiogne to study metabolic and regula-
tory processes. The presentation of these procasseathway diagrams greatly helps research-
ers in understanding key functions of biologicadteyns. The developers consider KEGG to be a
“computer representation” of the biological systeiftse pathway data can be studied in a visual
way and is also available as KEGG Markup Langu&deML) files. Thus it can be used as a
basis for simulation models. KEGG has been wideiduas a reference knowledge base for bio-
logical interpretation of large-scale datasets ggee by sequencing and other high-throughput
experimental technologies [10]. However, the greghpresentation of pathway information in

KEGG is restricted to semi-static visualization aaliting KGML files is not simple.

KEGG pathway is a collection of manually drawnhpedy maps representing our know-
ledge on the molecular interaction and reactionvagts for Global Map, Metabolism, Genetic
Information Processing, Environmental Informatiaiodessing, Cellular Processes, Organismal
Systems, Human Diseases and also on the struetiateonships in Drug Development (KEGG
drug structure maps). KEGG Atlas is an advanceghycal interface to explore the KEGG

pathway maps with zooming and navigation capabdifiLO].

2.8 Summary

The aim of GO project is to standardize the reprad®n of gene and gene product attributes
across species and databases. The GO project Velsqukd three structured ontologies: biologi-
cal process, cellular component and molecular fanctThe existence of the ontologies is to
provide domain knowledge that can be easily prezkds/ a computer. The aims of the GO
project are threefold: the development and maimeaaf the ontologies themselves, the annota-
tion of gene products and the development of tdwis facilitate the creation, maintenance and
use of the ontologies. Annotation is the practiteapturing the activities and localization of a
gene product with GO terms, providing referenceasiadicating what kind of evidence is avail-

able to support the annotations. The structure®@fc@n be described in terms of a directed acyc-
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lic graph (DAG), where each GO term is a node, thedrelationships between the terms are di-
rected arcs between the nodes. A hierarchy in @enfay be seen as a network in which each
term may represent a “child node” of one or morarémt nodes”. The two types of child-to-
parent relationships are this ‘@’ and “ part of” types . Another common relationship is thre-*
gulates type. There is a variety of tools available thae the data provided by the GO project.
Also, the GO Consortium provides mappings of itenteto a number of external vocabularies.
Except the GO, another type of available biologlcadwledge is KEGG. It is noted that in this
study, we take advantage of both GO and KEGG kriyde
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CHAPTER 3: GENE CLUSTERING BASED ON STATISTICALAND BIO-
LOGICAL KNOWLEDGE

3.1 Introduction
3.2 Genomic Expression Data and Biological Knalgke Databases
3.3 GO-Based Similarity Measurement Techniques
3.4 Clustering Method: Hard C-Means
3.4.1 Hard C-Means
3.4.2 Distance Metrics
3.4.3 Variations of Hard C-Means
3.5 Fuzzy C-Means (FCM)
3.6 Cluster Validity Indices
3.7 A Normalization Technique for Cluster Validihdices
3.8 A Weighted Voting Technique for Cluster Valdndices
3.9 Combination of Cluster Validity Indices
3.10 Implementation of Cluster Validity Indices
3.11 Similarity Indices
3.12 Application in Multiple Data Sets
3.13 Summary

3.1 Introduction

Several clustering algorithms have been suggestethdlyze genome expression data, but
fewer solutions have been implemented to guideddsggn of clustering-based experiments and
assess the quality of their outcomes. Clusterimgscgport the identification of existing underly-
ing relationships among a set of variables suchiasgical conditions or perturbations [13]. It
may represent a basic tool not only for the clasgibn of known categories, but also for the

discovery of relevant classes. In genome expressoomain it has provided the basis for novel
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clinical diagnostic and prognostic studies. Oneamdgta analysis step is to integrate the numer-
ical analysis, which is derived from the impleméiota of clustering algorithms of co-expressed
genes, with biological function information. Mangpoaches and tools have been proposed to
address this problem at different processing lev@tsne methods, for example, score whole
clustering outcomes or specific clusters accordintipeir biological relevance, while other tech-
niques aim to estimate the significance of oveesgnted functional annotations, such as those
encoded in the Gene Ontology (GO), in clustersoAs®me other approaches directly incorpo-
rate biological knowledge into the clustering psxo aid in the detection of relevant clusters of
co-expressed genes involved in common processesrgbéools have been developed for onto-
logical analysis of gene expression data and namis &re likely to be proposed in the future.

Clustering techniques are designed to uncoveriegigfroups in data, usually with very li-
mited information available. For example, not otilg membership of the data points has to be
determined, but often also the number of groupse. Mhain objective of the research is an appli-
cation of the clustering and cluster validity methdo estimate the number of clusters in data-
sets. The prediction of the correct number of elissin a data set is a fundamental problem in
unsupervised learning. Various cluster validityioed have been proposed to measure the quali-
ty of clustering results [8], [9]. Recent studiemfirm that there is no universal pattern recogni-
tion and clustering model to predict molecular pesfacross different datasets. Thus, it is useful
not to rely on one single clustering or validatimethod, but to apply a variety of approaches.
Therefore, combination of GO-based (knowledge-anand microarray data (data-driven) vali-
dation methods may be used for the estimation efrilimber of clusters. This estimation ap-
proach may perform an useful tool to support bimlalgand biomedical knowledge discovery.
A normalization and a weighted voting technique @seally used to improve the prediction of
the number of clusters based on different datangitechniques. More details about these tech-

niques will be discussed in Sections 3.7 and pa¢tively.

The many available procedures are based on vadptisality criteria and since different
criteria can be used, it is important to be abledmpare results obtained by different approach-
es. Similarly, one may be interested in assessaggea of similarity (or verifying equivalence)
of two clustering algorithms (for example one beagimpler and/or more efficient version of

the other). This is an important issue with curr@search, where large data sets are so common.
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The problem of comparing two different partitiorfsadinite set of objects reappears continually
in the clustering literature. So, a variety of $anty indices were designed to compare partitions
(clusterings) of a data set. Furthermore, the bieh@f the similarity index can also be used as

an indicator of the proper number of clusters data set.

In this chapter, we present all the above condepdetail. We present the implemented data-
and knowledge-driven clustering approaches anderlwglidity assessment systeNormaliza-
tion and weighted voting techniques are used toorgthe prediction of the correct number of
clusters. Also, we discuss about several meassoese of which have been implemented, to

compare different partitions obtained from diffarelustering approaches.

3.2 Genomic Expression Data and Biological KnowlerlDatabases

The DNA microarray technologies allow to compare éxpression of thousands of genes in
different tissues, cells or physiological condigoit can be used for diagnosis, therapy, follow-
up of a treatment or even for characterizing pHgsgical states. Indeed, the major interest of
these technologies is to identify, among multiedidate genes, which ones are the most likely
to be involved in a considered trait. So, onlineldgical knowledge databases (KEGG, GO,
RIKEN), biological repositories for gene expressamy-based data (GEO) and bibliographical
database (PubMed) have recently been developedeVvsmnthe size and heterogeneity of such

databases remain problematic.

In this thesis, in order to take advantage of theélable biological information an enrichment
cluster analysis using GO terms or KEGG pathwaysaisied out. The clustering approaches
implemented in this thesis, carry out both analy$és Gene Ontology (GO) and Kyoto Encyc-
lopedia of Genes and Genomes (KEGG) databases ayrange genes to specific informative
groups. The GO database is divided into three réiffeontologies called Molecular Function,
Cellular Component and Biological Process. Thecsiing of the database is an acyclic directed
graph. To each node (GO term) a set of genes istai@d. The root is the most unspecific GO
term. Its set of genes consists of every genedrd#iabase. The leaves are the most specific GO
terms. An illustrating example is the GO term G@ADL3 which stands for transcription co ac-
tivator activity, containing 392 genes. One chifdtlzat term is GO:0008140 (cCAMP response
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element binding protein binding). Indeed, this imare specific term as the first one, containing
only 7 genes. The KEGG database provides a soofinggenes, depending to which biological
pathway they belong. Each KEGG identifier standsdioee and has the set of genes from the
pathway annotated. With the help of the above edrabcabularies the gene lists resulting from
the experiments can be further analyzed, withourtgoan expert in all fields of molecular biolo-
gy. To do this someone can ask if a specific G@ter KEGG pathway is overrepresented in
the gene lists. The resulting terms and pathways the analysis could be used to describe the
set of differential expressed genes or the foundtef in a meaningful biological way. So, the
choice of these two types of biological knowledge. (GO and KEGG) is not arbitrary, since in
some sense GO and KEGG give similar biological Kedge. In this way, the results obtained
using the available GO knowledge can be comparédtive results obtained using the available

KEGG knowledge, in order to make meaningful biobtadiconclusions.

It is noted that the genes, which we have at apasial, are in the Unigene nomenclature. As
far as biological knowledge is concerned, we artadtse available genes to the GO in order to
take the available biological knowledge from the.Q@is step incorporates also the differentia-
tion of the GO terms that refer to the BP hierarfthyn those GO terms that refer to the MF hie-
rarchy. So, we lead to the biological knowledgd tkeéers to the BP hierarchy and the biological
knowledge that refers to the MF hierarchy respedttivit is noted, that we do not use the CC
hierarchy at all, as it haspart of ” relations. Only fs & relations are allowed in our study,
which are present to the BP and MF hierarchies. réason for this restriction is discussed in
Section 3.3. Furthermore, we map the available géméhe Entrez Gene nomenclature so as to
take advantage of the available biological infoiorafrom KEGG, where genes are named in
the Entrez Gene nomenclature. It is noted thaatim®tation to the GO and the mapping to the
Entrez Gene nomenclature are done via the Clone/@2iConverte¥ and the SOURCE Batch

Search® tools respectively.

12 1tis freely available at http://idconverter.biocinénio.es/IDconverter.php.

Btis freely available at http://smd.stanford.&mirbin/source/sourceBatchSearch.
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Finally, as far as genomic expression data setsareerned, this research is based on three
data sets. The first data set, the Sorlie’s ddtacemprises 6832 genes with 59 patients’ samples
per gene. The second one, the Veer's data seudesl79 patients’ samples described by the ex-
pression levels of 14639 genes, while the last datathe Sotiriou’s data set, has 2941 genes
with 99 patients’ samples each one. All genes aréné Unigene nomenclature, as it has been
mentioned before. Before these data sets are tedmyused, we impute the NA (Not Available)
values and then we select only the common genes@the three data sets. There are various
methods to impute the NA values. One method istpugynore the genes that have such values,
while another method is to take the mean valud®fene, ignoring at the moment the NA val-
ues and as a second step replace all these NA®mtiih this mean value. The mean value in
turn is computed taking into account all patiessmples concerning that gene. A third method
is to use the k-nearest neighbor (embedded funationatlab) in order to fill these NA values.
The second method is chosen, since it is not rearded to reduce the number of genes, as
caused by the first method, as well as it is nobm@mended to impute the NA values of a gene

using its neighbor genes’ values, as the third otktloes.

It is also important to note that in order to congptne results obtained using the available
GO knowledge, the available KEGG knowledge or tralable three data sets, we finally select
only the common genes among the three data sdtsghabe annotated to the GO and can be
also mapped to the Entrez Gene nomenclature. &feembove pre-processing, we finally keep
946 distinct genes, that means that we keep 32#eofienes from Sotiriou’s data set, 14% of
the genes from Sorlie’s data set and 6% of thegg&onen Veer’'s data set. The above results are

acceptable, since we finally keep the most impoigenes concerning breast cancer.

3.3 GO-Based Similarity Measurement Techniques

The automated integration of background knowledgRindamental to support the genera-
tion and validation of hypotheses about the fumetity of gene products. One such source of
prior knowledge is the Gene Ontology (GO). We ilesent an approach for gene clustering
and assessing cluster validity based on simil&miywledge extracted from the Gene Ontology
(GO) and databases annotated to the GO. One oh#e objectives of this research is to use

knowledge-driven gene clustering approaches andleaige-driven cluster validity methods to
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estimate the number of clusters in a data set. , Tdaksiowledge-driven cluster validity assess-
ment system for microarray data is implemented.dvidetails can be found in Sections 3.4 and
3.6. Different methods exist to measure similagyween genes products based on the GO. The
method implemented in this study, processes ovsmallarity values, which are calculated by

taking into account the combined annotations oaiyy from the three GO hierarchies [21].

A traditional node-counting method has been implaed to measure knowledge-based si-
milarity between genes products (biological disem)cUnlike traditional methods that only use
(gene expression) data-derived indices, this metlwogists of validity indices that incorporate
similarity knowledge originating from the GO an&®-driven annotation database. A tradition-
al edge-counting method proposed by Wu and Palg®gri$ implemented to measure similarity

between genes products. Edge-counting approachlatds the distance between the nodes as-

sociated with these terms in a hierarchy. Giveaiagf terms,c, and c, , this traditional me-

thod for measuring their similarity, consists ofccdating the distance measured by the number
of edges between the nodes associated with these i the ontology. The shorter this distance
is, the higher the similarity is. The shortest loe iverage distance may be used when there are
multiple paths. This type of approaches is commdmigwn as edge-counting methods. Varia-
tions may define weights for the links accordinghieir position in the taxonomy. One of the
main limitations shown by these methods is thay #esume that nodes and links are uniformly
distributed in an ontology, e.g. in the GO. Thisiag an accurate assumption in taxonomies ex-
hibiting variable link densities. Information-thetic models [23] offer alternative approaches to
measuring similarity in an ontology. Previous reskéhas shown that this type of approaches
may be significantly less sensitive to link densigyiability [22], [24]. These methods tradition-
ally consider only thei$ &' links in a taxonomy. However, it has been shohat bther types of
links may also be processed to perform similargyessment [22]. The majority of the GO links

are ‘is &' links [25].

Topological and statistical information extracteohf the GO and databases annotated to the
GO may be used to measure similarity between gem@upts. Different GO-driven similarity
assessment methods may be then implemented tampesfostering or to quantify the quality of
the resulting clusters. Cluster validity assessnmeay consist of data- and knowledge-driven

methods, which aim to estimate the optimal cluggatition from a collection of candidate parti-
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tions. Data-driven methods mainly include statadtiests or validity indices applied to the data
clustered.

For a given pair of gene productg,andg,, sets of GO term3, =t andT, =t, are used to

annotate these genes. Before estimatiatyveen-gensimilarity it is first necessary to under-
stand how to measubetween-ternsimilarity. Similarity was defined by Wu and Painj20] as

follows:

_ N, +N,+2-N
sim({,t )= ) f : (3.1)
if N=0

N. + N.

i j
where N, and N, are theminimum number of links (edges) froy andt; to their closest
common parent in the GO hierarchly, and N is themaximum number of links fromr, to the

GO hierarchy root. It is noted that whé&h= 0, it holds that

sim(1, 4 )= o+ B . i :
’ N +N;+2-N (N+ N+2 N2 1-(N.+N-)+N
2 i J

and so, whenN =0, it

holds thatsim(t, 1 )= ! 2 Thus, we conclude to equation (3.1). This si-

;(Ni oN) (NN

milarity assessment metric may be transformedandestanced , metric:

d(t.t)=1-sim(1,1). (3.2)

It has been already stated that the structure ofc@&®be described in terms of a directed
acyclic graph (DAG), where each GO term is a naukthe relationships between the terms are
arcs between the nodes. The relationships use®irai® directed. Terms may have more than

one parent, and they may be connected to parenster root via different relations. To calcu-

late the distance between a pair of ter(m&tj ) Wu and Palmer method is adopted. One of the

method’s steps is that it finds the common clopasént from all candidate common parents as-

sociated with(t. t. ) In other words, Wu and Palmer method finds themawith the shortest

(!
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distance frorn(ti e ) and if there are more than one such parent, theateselects the one with
the maximum distance from the root. Thus, the ddsminimum distance:l(p ,t].) is calculated

from (3.2). So, the reason why we select the mininfd, and N, and the maximunN , as it

has been mentioned before, is to take the shdligtsince when there are multiple paths. Some
special cases for the common closest parent’stagieare shown in the following example in

Figure 18. Also, Figure 19 presents how the WuRadher's method works.

root
Pair of Terms | Common Closest Parent
(& i
B,C A
OO e
AA A
ONO  —

Figure 18 : Special cases for the selection of the common stqeent.

The minimum between-terndistance aggregation may then be used as an &stohahe

GO-based similarity between two genes produgtsind g,,, which is defined as:

avg| 1- 2N if N=0
i Nki+ij+2- N
d( G Gn) = . (3.3)
avg 1—L if N=0
i N, + ij

So, for genes productg, and g,, that are very close each other, it holds tdégk, gm) — 0.

However for genes producty, and g,, that are far away each other, it holds ttég,, g,,) > 1

. This justifies the assumption in (3.1) whidh=0. The above GO-based similarity between two
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genes productg, andg,,, i.e. d(gk, g.) . represents their biological distance based orGibe

knowledge, as calculated via Wu and Palmer’s mettesdribed above.

Another method to measure similarity between gemeducts based on the GO would be an
information content technique defined by Resnil{.[Zhis technique consists of determining the
amount of information they share in common. Thgetpf methods exploits the assumption that
the more information two terms share in common,rtiege similar they are. An alternative in-

formation-theoretic technique was proposed by P

take the
maximum
distance N
from the
closest
common
parent C
to the root

Common
Parent
C

take the
closest
distance
N2 from
term B to
the
closest
common
parent C

take the
closest
distance
N1 from |
termAto |
the
closest
common
parent C

Figure 19 : An example that shows how Wu and Palmer method svork
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In this research we implement two hierarchy-speaimilarity assessment techniques, each
based on information individually extracted froncle&O hierarchy (BP or MF), i.e. these tech-
niques are based on the calculation of similarétjugs, independently obtained from each of the
two GO hierarchies. Due to the high computatiomahglexity of Wu and Palmer's method, we
keep from the BP or MF hierarchy five terms peregémat appear most frequently. It is impor-
tant to note that from the full set of genes’ teralmost 37% of genes have more than five anno-
tation terms to BP and almost 40% have more thandnnotation terms to MF hierarchy. Con-
cerning the BP hierarchy, approximately the meamber of annotation terms per gene is six
with standard deviation five. Almost the same gituraexists for MF hierarchy, where the mean
is almost five terms per gene with standard demmagiimost three. We summarize the above ob-
servations in Figure 20. Thus, we infer that bypkeg from the BP or MF hierarchy five terms
per gene, we lose some of the available biolodinawledge and this might affect our results.
Additionally, we do not use the CC hierarchy at &lécause its relationships are of type

“ part of” and not of type s &', as required in the implementation of Wu and Ralexmethod.

BP hierarchy MF hierarchy
¢ Almost 37% of 946 genes have more o Almost 40% of 946 genes have more
than 5 annotation terms to BP than 5 annotation terms to BP
» Almost 6 terms/gene ¢ Almost 5 terms/gene
¢ Almost std=5 ¢ Almost std=3

Figure 20 : Some useful statistics about the available genes.

Furthermore, we study an approach based on thegafgpn of similarity information origi-
nated from both BP and MF hierarchies. These ov&@tbased similarity values are calculated
by taking into account the combined annotationgioated from both GO hierarchies. In this
case, a “fake” term is added as a parent of theewsting root nodes from BP and MF hie-
rarchy. Due to the method’s remarkable computaticoenplexity, we keep for each gene six
annotation terms to the combined BP and MF hiesarck. we keep three terms that appear
most frequently concerning the BP hierarchy anddherms that appear most frequently con-
cerning the MF hierarchy. Thus, according to Figelesome of the available biological know-

ledge is lost, which might affect the results.



CLUSTERING OFGENESBASED ONBIOLOGICAL KNOWLEDGE 65

It is important to mention that in this thesis, feeus on a method for gene clustering and
cluster validity indices, using GO-driven similgriSo, the above GO-based biological distances
calculated via Wu and Palmer’s method, are usedustering algorithm and cluster validation.
As stated in Chapter 1, incorporating prior knowgedn the clustering process leads to clusters

that are more refined and biologically relevant.

3.4 Clustering Method: Hard C-Means

3.4.1 Hard C-Means

K-Means (or C-Means) methodology is a commonly udadtering technique. This is a me-
thod of cluster analysis which aims to partitiorobservations intk clusters in which each ob-
servation belongs to the cluster with the nearestrmin this analysis the user starts with a col-
lection of samples and attempts to group them knttumber of clusters based on certain specif-
ic distance measurements. The prominent stepsvedoh the k-means clustering algorithm are

given below.

1. This algorithm is initiated by creating different clusters. The given sample set is first

randomly distributed among theg&edifferent clusters.
2. The center (centroid) of each cluster is calculated

3. As a next step, the distance measurement betwebnoéghe sample, within a given clus-

ter, to their respective cluster centroid is calted.

4. Samples are then moved to a cluster that recoalshbrtest distance from a sample to the

cluster centroid.
5. If clusters have changed then go to step 2.

The algorithm stops when the clusters become s{abde zero reallocations) or some maxi-
mum number of iterations has been performed. Etisrltest case is necessary because the clus-
ters may not stabilize in a reasonable amouninoé fior some sets of points. This issue may be-
come more prevalent when dealing with points irhbBrgdimensional spaces and/or when using

non-Euclidean distance metrics such as Manhatstarntie. Unstable clusters are typically not a



66 CHAPTER3. GENE CLUSTERINGBASED ONSTATISTICAL AND BIOLOGICAL KNOWLEDGE

significant issue, since usually even these clastell be distinct and well formed after just a

few iterations.

As a first step to the cluster analysis, the useides the number of clusteks This parame-
ter could take definite integer values with the éovbound ofl (in practice,2 is the smallest
relevant number of clusters) and an upper bountdetaals the total number of samples. The
k-means algorithm is repeated a number of timesbtain an optimal clustering solution, every

time starting with a random set of initial clusters

In this study, the hard c-means clustering mettsodpplied. In particular, in the classical

hard c-means model each data poixt which is a vector, in the given data set
X ={x,,....X,}, X = R is assigned to exactly one cluster. Each cluBtes thus a subset of the
given data set]; « X . The set of cluster§ ={I';,...I';} is required to be an exhaustive parti-

tion of the data seX into ¢ non-empty and pairwise disjoint subsétsl<c= n. In the hard

c-means such a data partition is said to be optwian the sum of the squared distances be-
tween the cluster centers and the data pointsress$itp them is minimal [27]. This definition
follows directly from the requirement that cluster®uld be as homogeneous as possible. Hence

the objective function of the hard c-means can bienm as follows:

(X,U,,C)= ZZ y . (3.4)

i=1 j=1

whereC={C,...,G

C

} is the set of cluster prototyped, is the distance betweeq) and cluster
centerc,, andU is acx n binary matrix called partition matrix. The indivdl elements

u; {0, (3.5)
indicate the assignment of data to clusteys=1 if the data pointx; is assigned to prototyiz,
i.e. x; eI';, andu; =0 otherwise. To ensure that each data point is @sdigxactly to one clus-

ter, it is required that:

chuu =1Vje{l... n}. (3.6)
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This constraint excludes the trivial solution whamimizing J,,, which is that no data is as-
signed to any clustem, =0,Vi,j [12]. Considering (3.6) and the fact thgte {0,1 it is im-

possible for data to be assigned to more than loiséecs. However, unfortunately there are some
remaining clusters left empty. Since such a siuats undesirable, one usually requires that
[12]:

>u, >0vic (.. d. 3.7)

The objective functionJ, depends on two (disjoint) parameter sets, whieftlae cluster centers

¢ and the assignment of data points to clustersThe problem of finding parameters that mi-
nimize the c-means objective function is NP-hat@l.[Z hus, we implement an approach of the

hard c-means clustering algorithm that providegpmition by optimizing such a criterion.

In c-means, the parameters to be optimized aré igphi two (or even more) groups. Then
one group of parameters (e.g. the partition matsxyptimized holding the other group(s) (e.g.
the current cluster centers) fixed (and vice ver3ay)s iterative updating scheme is then re-
peated. The main advantage of this method is thaach of the steps the optimum can be com-
puted directly. By iterating the two (or more) stegpe joint optimum is approached, although it
cannot be guaranteed that the global optimum wilidached. The algorithm may get stuck in a
local minimum of the applied objective functioh. However, alternating optimization is the

commonly used parameter optimization method intetusg algorithms.

In case of hard c-means, the iterative optimizationeme works as follows: at first, initial
cluster centers are chosen. This can be done rdpdioen by pickingc random vectors that lie
within the smallest (hyper-)box that encloses aliador by initializing cluster centers with ran-
domly chosen data points of the given data sdhitstudy, initial cluster centers are chosen via
the second approach. Alternatively, more sophisetanitialization methods can be used as
well, e.g. Latin hypercube sampling [31]. Then ga@ametersC are held fixed and cluster as-

signmentsJ are determined that minimize the quantitylf In this step each data point is as-

signed to its closest cluster center:



68 CHAPTER3. GENE CLUSTERINGBASED ONSTATISTICAL AND BIOLOGICAL KNOWLEDGE

1, if i=argmind,
u = I=L.c (3.8)
0, otherwise

Any other assignment of a data point would not mire J, for fixed clusters. Then the data

partition U is held fixed and new cluster centers are compatethe mean of all data vectors

assigned to them, since the mean minimizes thedfutre square distances i) . The calcula-

tion of the mean for each cluster (for which thgoaithm got its name) is stated more formally:

c =1 | '. (3.9)

The two steps (3.8) and (3.9) are iterated untithange inC or U can be observed. Then the
hard c-means terminates, yielding final clusterteenand gene partition that are possibly only

locally optimal.

The hard c-means algorithm is fast, sinceaahaterationc- n dissimilarities are evaluated
and c centroids are updated. This fact makes hard c-snagwopular algorithm, allowing it to

cluster thousands of objects. That is why we apphés clustering method in our research.

Concluding the presentation of the hard c-means,imhportant to mention its expressed ten-
dency to become stuck in local minima, which makegcessary to conduct several runs of the
algorithm with randomly different initialization8(0]. Then the best result out of many cluster-

ings can be chosen based on the valued, ofSo, in this research we condud runs of the

hard c-means with randomly different initializattoand we choose as the best result the one

with the min value ofJ, . Stochastic optimal search techniques, such aslaied annealing and

genetic algorithms, provide a possible way to deéne complicated problem space more effec-

tively and find the global or approximately glologtimum.

Another disadvantage of this algorithm is that hardeans assumes that the number of clus-
ters c is already known by the users, which unfortunatdtgn is not true in practice. Like the
situation for cluster initialization mentioned alegihere are also no efficient and universal me-

thods for the selection af. Therefore, identifyingc in advance becomes a very important topic
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in cluster validity. There are several heuristitattare directly related to hard c-means. An ex-
ample is the ISODATA (Iterative Self - Organizingafa Analysis Technique) algorithm [32]
which deals with the dynamic estimation of Moreover, in order to estimate the number of
clusters,c, in a data set, a variety of validity measurestsxiMore details about validity meas-

ures are discussed in Section 3.6.

Furthermore, c-means is sensitive to outliers ariden The calculation of the means consid-
ers all the data objects in the cluster, includimg outliers. Even if an object is quite far away
from the cluster centroids, it is still forced indocluster and used to calculate the prototype re-
presentation, which therefore distorts the clustepes. So, there are some methods which han-
dle this lack of robustness. For example ISODATZ2][8nd PAM (Partitioning Around Medo-
ids) [33] both consider the effect of outliers ilustering procedures. ISODATA discards the
clusters in which the number of data points is Wwetmme threshold. It splits a cluster if the
within-cluster variability is above a threshold, @mbines two clusters if their prototypes are
close enough (judged by another threshold). Thedad@ntage of this approach is the need for the
user to select the parameters. The splitting ojperatf ISODATA eliminates the possibility of
elongated clusters typical of c-means. Also, aa$aPAM is concerned, rather than utilizing the
calculated means, PAM utilizes real data pointdedanedoids, as the cluster prototypes, and it
avoids the effect of outliers to the resulting ptgpes. A medoid is a point that has the minimal

average distance to all other objects in the sduster.

Finally, the definition of means limits the applica of c-means only to numerical variables,
while leaving the categorical variables unhandMdreover, even for the numerical variables,
the obtained means may not have the physical mgamimay be difficult to interpret. The au-
thor in [34] discussed hard c-means in binary déiatering and suggested three variants. It is
indicated that binary data can also be used tesept categorical data. The authors in [35] and

[36] defined different dissimilarity measures tdend c-means to categorical variables.

More recent discussions on hard c-means, its wariand other squared-error based cluster-
ing algorithms with their applications can be foufat example in [37] and [38].
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3.4.2 Distance Metrics

Distance Types
The following distance types can be used for clusgg71].

e Euclidean distance (L2-normThis is the most usual, “natural” and intuitivayvof com-
puting a distance between two samples. It takes aotount the difference between two
samples directly, based on the magnitude of chamgése sample levels. This distance
type is usually used for data sets that are syitabtmalized or without any special distri-

bution problem.

e Manhattan distance (L1-normAlso known as city-block distance, this distanceasuze-
ment is especially relevant for discrete data 3&ftsle the Euclidean distance corresponds
to the length of the shortest path between two $ssnfhe Manhattan distance refers to the

sum of distances along each dimension.

e Pearson Correlation distanc& his distance is based on the Pearson correlatefficient
that is calculated from the sample values and thi@indard deviations. The correlation
coefficientr takes values from-1 (large, negative correlation) tel (large, positive cor-
relation). Effectively, the Pearson distandp is computed aslp=1-r and lies between
0 (when correlation coefficient is1, i.e. the two samples are most similar) éhdwhen
correlation coefficient is-1). Note that the data are centered by subtractiagriean and

scaled by dividing by the standard deviation.

e Absolute Pearson Correlation distanda this distance, the absolute value of the Rears
correlation coefficient is used, hence the corredpay distance lies betwedh andl, just

like the correlation coefficient. The Absolute Psar distance da is given as

1
da=1—%- r2 . Taking the absolute value gives equal meanirgpsitive and negative cor-

relations, due to which anti-correlated sample$ gat clustered together.

e Un-centered Correlation distanc&his is the same as the Pearson correlation péxoat

the sample means are set to zero in the expressiamn-centered correlation. The un-
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centered correlation coefficient lies betweehand +1, hence the distance lies betwdgn
and2.

e Absolute Un-centered Correlation distandénis is the same as the Absolute Pearson cor-
relation, except that the sample means are se&rtoiz the expression for un-centered cor-
relation. The un-centered correlation coefficieées betweerD and +1, hence the distance

lies betweer) and1.

e Kendall's (tau) distanceThis non-parametric distance measurement is meedul in

identifying samples with a huge deviation in a givata set.

The standard distance metric used with k-meansigidean (L2-norm) distance. However,
the justification for using L2 distance is not al@aclear. When points are composed of multiple
independent (or mostly independent) variables,ethera case for expecting Manhattan (L1-
norm) distance to be a better measure of distapteelen two points. In this study, Euclidean
distance (the default distance measure for c-mdasspeen used in hard c-means method based
only on gene expression values. The Euclideanrdist@an sometimes be misleading. So, do-
main knowledge must be used to guide the formulatiba suitable distance measure for each
particular application. Thus, despite the fact tBatlidean distance is sensitive to high values,

this distance is widely used in the analysis ofegexpression data.

3.4.3 Variations of Hard C-Means

Furthermore, as far as clustering methods impleeakeint this thesis are concerned, in order
to find the gene clusters based only on KEGG kndgée three approaches of the hard c-means
clustering method are implemented. At first, weateethe partition vector for each gene based
on the available KEGG knowledge, i.e. based ondovevhose elements take val@eif the
gene does not take part in a specific pathway ibthe gene does take part in this specific path-
way. These vectors are the columns of a partitiatrimi196x 94€, where196 is the number of
the discrete pathways arfil6 is the number of the discrete genes. Next, weyaiy@ hard c-
means to this partition matrix using the Euclideard the Correlation distance metrics. It is
noted that in order the Correlation distance metritake values from-1 (large, negative corre-

lation) to +1 (large, positive correlation), we normalize théad® unit norm. It is also important
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to note that the approach using the Euclidean ristanetric aims to minimize the objective

function J,,, while the approach using the Correlation distamegric aims to maximize the ob-
jective function J,. For better results, we condub® runs of the above approaches with ran-

domly different initializations and we choose as liest result the one with the min or max value
of J, respectively. It is noted that the two above distametrics, i.e. the Euclidean and the Cor-

relation distance metrics are the same with th&ig® metrics that the classical hard c-means
clustering method use. The only difference is thatabove distance metrics are applied on parti-

tion vectors obtained from the available KEGG krexge, as it has been presented before.

In addition, we implement another approach of hardeans clustering method in order to
find the biological clusters based only on KEGG Wilexige, i.e. based only on the aforemen-
tioned partition matrix. The basic idea in this eggzh of hard c-means clustering algorithm is
similar to the previous implementations, but withme differences. Firstly, initial cluster centers
are chosen. This is done randomly, i.e. by in#ialy cluster centers with randomly chosen genes
of the given data set. Then the parametérare held fixed and cluster assignmeldtsare de-
termined that maximize the quantity of,, where now the objective function is the

I (X,U,,C)=>>uq, whered, indicates the number of common pathways between th

C

J
i=1l j=1
gene j and the cluster centér In this step each gene is assigned to a clustas she gene to
have the maximum number of common pathways withc¢hester center. Any other assignment
of a gene would not maximiz&, for fixed clusters. Then the gene partitidnis held fixed and

new cluster centers are computed as follows: tgtipa vector of the cluster center takes the
value O if the number of genes in this cluster that h@ven the corresponding position of their
partition vectors is greater than the number ofegdhat havé or vice versa. An illustrative ex-
ample of a cluster with three genes is shown indabThe above two steps are again iterated
until no change inC or U can be observed. Also, in each iteration excepthe last, when a
cluster becomes empty then we force a random gereelong to that cluster. When this ap-
proach of hard c-means terminates, it yields fetaster centers and gene partition that are pos-
sibly only locally optimal. For better results, vagain conductlO runs of this approach with

randomly different initializations and we choosetlas best result the one with the max value of
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J, . The performance of this algorithm is satisfactdtyis will be also justified in the next chap-

ter which presents the performance of all impleméralgorithms in detail. Furthermore, as far

as the third approach is concerned, we can seehiisadpproach is similar to c-means, but now

the approach does not use the mean butd[ﬂedistance metric in order to distribute the genes

among the clusters.

Cluster
Genel Gene2 Gene3|
Center
0 1 0 0
»
S
3 0 0 0 0
>
IS 1 1 0 1
5
o 1 1 1 1

Table 1 : An illustrative example that shows the calculatidra cluster center’s partition vector.

Finally, in order to find the gene clusters basaty @n GO knowledge another approach of
hard c-means clustering method has been impleméntids thesis too. The basic idea in this
approach of hard c-means clustering algorithm nsilar to the previous implementations, but
with some differences. Firstly, initial cluster texrs are chosen. This is done randomly, i.e. by
initializing cluster centers with randomly choseangs of the given data set. Then the parameters
C are held fixed and cluster assignmedtsare determined that minimize the quantity Jf,
where now the objective function is the ( X,U,,C) = Zzn: u d ,whered; indicates the bio-

c
i=1 j=1
logical distanc¥ between the geng and the cluster centér In this step each gene is assigned
to its closest cluster so as the gene to have thienoim biological distance with the cluster cen-

ter. Any other assignment of a gene would not mizénJ,~ for fixed clusters. Then the gene

partition U is held fixed and new cluster centers are compagetbllows: for each cluster, its

14 Biological distances, which are based on the G@ahibies, are calculated via the Wu and Palmer'thodg

described in Section 3.3.
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center becomes the gene that has the minimum sweguaired biological distances with all the
genes belong to that cluster. It is important ttertbat this criterion of choosing the appropriate
cluster center is the same criterion with that uisethe classical hard c-means model, i.e. the
calculation of the mean for each cluster. It i€ ltkking the nearest neighbor to mean, which ob-
tained in classical hard c-means from equation)(3®e only difference now is that the solution
is one of the available vectors (genes) for eaahtet. So, from all above the choice of this GO-
based approach’s criterion is not arbitrary. Thevaltwo steps are again iterated until no change
in C or U can be observed. Then this approach of hard c-sneaminates, yielding final clus-
ter centers and gene partition that are possibly locally optimal. For better results, we again
conduct10 runs of this approach with randomly different imlizations and we choose as the

best result the one with the min value f . The performance of this algorithm is satisfactory

This will be also justified in the next chapter wehipresents the performance of all implemented
algorithms in detail.

Figure 21 presents the different approaches of bamgtans clustering method implemented

in this thesis, as they have been mentioned above.

The appropriate hard c-means

Input clustering approach Output: Gene partition
Genes’ expression values Le o B Tdeem dleikiss Based on statistical knowledge.
from the 3 data sets. One metric and e L ;
. A statistical partition is obtained
used data set each time. take as cluster center the o1 crh 1ees cke sl
(statistical knowledge) mean ’

Based on KEGG biological
knowledge.
A biological partition is
obtained for each approach
(1), (2) or (3).

Use of Euclidean (1) or Correlation (2)
Partition matrix based on \ or counting (3) distance metric and
KEGG knowledge take as cluster center the mean
(biological knowledge) ‘

Y

in cases (1) and (2) or an appropriate
partition vector in case (3)

Biological distances (BD)
calculated via GO-based Wu
and Palmer’s method. One
used hierarchy each time.
(biological knowledge)

or combined BP and MF (6) hierarchy A biological partition is
and take as cluster center the nearest obtained for each used
neighbor (gene) to the mean hierarchy (4), (5) or (6).

Y

Based on GO biological
Use of BD based on BP (4) or MF (5) knowledge.

Figure 21 : The different approaches of hard c-means clusteriaethod implemented.
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3.5 Fuzzy C-Means (FCM)

Another approach of cluster analysis is fuzzy @usinalysis. This approach allows gradual
memberships of data points to clusters measureegees in [0,1]. Thus, it gives the flexibility
to express that data points can belong to more ¢hancluster. Furthermore, these membership
degrees offer a much finer degree of detail ofdat model. Aside from assigning a data point
to clusters in shares, membership degrees caregsess how ambiguously or definitely a data
point should belong to a cluster. The concept e§¢hmembership degrees is substantiated by the

definition and interpretation of fuzzy sets [63huB, fuzzy clustering allows fine grained solu-

tion spaces in the form of fuzzy partitions of #et of given exampleX = {xl,...,xn} . Whereas

the clustersl’, of data partitions have been classical subsefarsthey are represented by the

fuzzy setsy, of the data-seX in the following. Complying with fuzzy set theohe cluster
assignmentu, is now the membership degree of a datwm to cluster [, such that:
u; = 4 (%;)€[0,1]. Since memberships to clusters are fuzzy, thermisa single label that is

indicating to which cluster a data point belongsstéad, fuzzy clustering methods associate a
fuzzy label vector to each data point that states its memberships to thelusters:
T

u; =(u1].,...,LLj) (3.10)

The cxn matrix U :(uij):(ul,...,un) is then called a fuzzy partition matrix. Based tha

fuzzy set notion we are now better suited to haaddiguity of cluster assignments when clus-

ters are badly delineated or overlapping.

So far, the general definition of fuzzy partitioraimces leaves open how assignments of data
to more than one cluster should be expressed m @rmembership values. Furthermore, it is
still unclear what degrees of belonging to clusees allowed, i.e. the solution space (set of al-
lowed fuzzy partitions) for fuzzy clustering algtins is not yet specified. In the field of fuzzy
clustering two types of fuzzy cluster partitionw@avolved. They differ in the constraints they
place on the membership degrees and how the memibeeues should be interpreted. In this
Section we discuss about the most widely used tyygeprobabilistic partitions, since they have

been proposed first. Notice, that in literatureytlae sometimes just called fuzzy partitions
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(dropping the word “probabilistic”). We use the sabpt f for the probabilistic approaches.

The second type of fuzzy partitions is the possiiel models. The subscrigs is used for these

methods. More details about the possibilistic meaéll be discussed in the end of this Section.
As far as the first type of fuzzy partitions is cemed, letX = {xl,...,xn} be the set of given

examples and let be the number of clustel(i<c< n) represented by the fuzzy sets ,

i=1...,c). Thenwe calU, =(u. )=z (X)) aprobabilistic cluster partitiorof X if
( ) o= ()= (e (%))

Zn:u”. >0,Vie{l...c}, and (3.11)
Su, =1 Vie{l.. nl (3.12)

i=1
hold. Theu; e [0]] are interpreted as the membership degree of datuta clusterl’; relative

to all other clusters.

Constraint (3.11) guarantees that no cluster istgnmjhis corresponds to the requirement in
classical cluster analysis that no cluster, reprieskas (classical) subset &f, is empty (see
Equation (3.7) in Subsection 3.4.1). Condition 23.&nsures that the sum of the membership
degrees for each datum equals 1. This means tbatdsdum receives the same weight in com-
parison to all other data and, therefore, thatlath are (equally) included into the cluster parti-
tion. This is related to the requirement in clasismustering that partitions are formed exhaus-
tively (see Equation (3.6) in Subsection 3.4.1).8Asonsequence of both constraints no cluster
can contain the full membership of all data poifisithermore, condition (3.12) corresponds to
a normalization of the memberships per datum. Thesnembership degrees for a given datum

formally resemble the probabilities of its beinghamber of the corresponding cluster.

After defining probabilistic partitions we can tutm developing an objective function for the
fuzzy clustering task. Certainly, the closer a datant lies to the center of a cluster, the higher
its degree of membership should be to this clusteltowing this rationale, one can say that the
distances between the cluster centers and thepdatts should be minimal. Hence the problem
to divide a given data set into clusters can be stated as the task to minimizedbared dis-

tances of the data points to their cluster cengnge, of course, we want to maximize the de-



CLUSTERING OFGENESBASED ONBIOLOGICAL KNOWLEDGE 77
grees of membership. The probabilistic fuzzy obyectunction J, is thus based on the least

sum of squared distances, just §sof the hard c-means, presented in Subsection.3bie

formally, a fuzzy cluster model of a given data-3etinto c clusters is defined to be optimal

when it minimizes the objective function:

J,(X,U,,0)= ZZ (3.13)

i=1 j=1
under the constraints (3.11) and (3.12) that hausetsatisfied for probabilistic membership de-
grees inU,. The condition (3.11) avoids the trivial soluti@f minimization problem, i.e.

u; =0, Vi,j. The normalization constraint (3.12) leads to mtttbution” of the weight of each

data point over the different clusters. Since atiadooints have the same fixed amount of mem-
bership to share between clusters, the normalizatomdition implements the known partition-
ing property of any probabilistic fuzzy clusteriafgorithm. The parameten, m>1, is called

thefuzzifieror weighting exponenihe exponentiation of the memberships within J, can be

seen as a functiog of the membership degreeg(qj)= y", that leads to a generalization of

the well-known least squared error functional agas applied in the hard c-means (see Equation
(3.4) in Subsection 3.4.1). The actual valuarothen determines the “fuzziness” of the classifi-
cation. It has been shown for the case-1 (when J,, and J, become identical), that cluster
assignments remain hard when minimizing the tafigattion, even though they are allowed to

be fuzzy, i.e. even though they are not constraine{d),]} [64]. For achieving the desired fuzzi-
fication of the resulting probabilistic data paeit the functiong(y, )=y has been proposed

first [64]. The generalization for exponems>1 that lead to fuzzy memberships has been pro-
posed in [65]. With higher values fan the boundaries between clusters become soften, wit

lower values they get harder. Usualty= 2 is chosen. Aside from the standard weighting ef th

memberships withy" other functionsg that can serve as fuzzifiers, have been explored.

The objective functiond, is alternately optimized, i.e. first the membepstegrees are op-

timized for fixed cluster parameters, then the teluprototypes are optimized for fixed member-

ship degrees:
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U.=j,(C.,), r>0 and (3.14)
C. =ij.(U,). (3.15)
In each of the two steps the optimum can be condpditectly using the parameter update equa-
tions j, and j. for the membership degrees and the cluster cemspectively. The update
formulae are derived by simply setting the derivabf the objective functiod, with regard to

the parameters to optimize equal to zero (taking &account the constraint (3.12)). The resulting

equations for the two iterative steps form the juzaneans algorithm.

The membership degrees have to be chosen accdadihg following update formula that is

independent of the chosen distance measure [64], [6

2

dm1
R A (3.16)

ij 1

c 2
c (g2 \m1 d.m1
I

1=1

In this case there exists a clustewith zero distance to a datum, u, =1 andu, =0 for all

other clusterd =i . The above equation clearly shows the relativeadtar of the probabilistic

membership degree. It depends not only on thertistaf the datunx; to clusteri, but also on

the distances between this data point and othsterku

The update formulag, for the cluster parameters depend, of coursehemparameters used

to describe a cluster (location, shape, size) anthe chosen distance measure. Therefore a gen-
eral update formula cannot be given. In the casth@fbasic fuzzy c-means model the cluster
center vectors serve as prototypes, while an ipr@fuct norm induced metric is applied as dis-

tance measure. Consequently the derivation, ofvith regard to the centers yield [66]:

c =12 : (3.17)
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The choice of the optimal cluster center pointsfioed memberships of the data to the clusters
has the form of a generalized mean value computdto which the fuzzy c-means algorithm

has its name.

The general form of the optimized scheme of couplguations (3.14) and (3.15) starts with
an update of the membership matrix in the firsatien of the algorithm£ =1). The first calcu-

lation of memberships is based on an initial sgtrototypesC,. Even though the optimization

of an objective function could mathematically adsart with an initial but valid membership ma-
trix (i.e. fulfilling constraints (3.11) and (3.1)2)a C, initialization is easier and therefore com-

mon practice in all fuzzy clustering methods. Balycthe fuzzy c-means can be initialized with
cluster centers that have been randomly placedannput space. The repetitive updating in the
optimized scheme can be stopped, if the numbetedtionsz exceeds some predefined num-

ber of maximal iterationg,__ , or when the changes in the prototypes are smalégr some ter-

max !
mination accuracy. The (probabilistic) fuzzy c-meahgorithm is known as a stable and robust
classification method. Compared with the hard cimsearesented in Subsection 3.4.1, it is quite
insensitive to its initialization and it is not éky to get stuck in an undesired local minimum of
its objective function in practice [68]. Due to gsnplicity and low computational demands, the
probabilistic fuzzy c-means is a widely used itiiiex for other more sophisticated clustering
methods. On the theoretical side it has been prthegreither the iteration sequence itself or any
convergent subsequence of the probabilistic FCM/exges in a saddle point or a minimum —

but not in a maximum — of the objective functioB][6

Although often desirable, the “relative” charactdrthe probabilistic membership degrees
can be misleading [69]. Fairly high values for thembership of datum in more than one cluster
can lead to the impression that the data pointpgeal for the clusters, but this is not always the
case. For a correct interpretation of these merhipgone has to keep in mind that they are ra-
ther degrees of sharing than of typicality, sirfee¢onstant weight of 1 given to a datum must be

distributed over the clusters. A better readinghaf memberships, avoiding misinterpretations,

would be [70]: “If the datumx; has to be assigned to a cluster, then with thbatmidity u;, to

the cluster .
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The normalization of memberships can further leadindesired effects in the presence of
noise and outliers. The fixed data point weight mesult in high membership of these points to
clusters, even though they are a large distance the bulk of data. Their membership values
consequently affect the clustering results, sira goint weight attracts cluster prototypes. By
dropping the normalization constraint (3.12), tlsgbilistic models try to achieve a more intui-
tive assignment of degrees of membership and talavwdesirable normalization effects. More

information about the possibilistic models can dwend in [12].

3.6 Cluster Validity Indices

The prediction of the correct number of clustersa iindamental problem in unsupervised
classification problems. Many clustering algorithreguire the definition of the number of clus-
ters beforehand. To overcome this problem, varmuster validity indices have been proposed
to assess the quality of a clustering partitions ®pproach requires the execution of a clustering
algorithm several times to obtain different paotis. The clustering partition that optimizes a
validity index is selected as the best partitionug, the main goal of a cluster validity technique

is to identify the partition of clusters for whiehmeasure of quality is optimal.

Cluster validity measures are used to comparerdiftepartitions created by different cluster-
ing algorithms, or by the same algorithm usingedé#ht parameter values. Cluster validation is
very important issue in clustering analysis becahbseresult of clustering needs to be validated
in most applications. In most clustering algorithtiie number of clusters is set as user parame-
ter. There are a lot of approaches to find the bestber of clusters. A variety of validity meas-
ures are available and so it is possible to fint brst, how well clustering algorithms have
worked and how altering parameters effects the@lungy and second, the similarity between the

validity measures.

In this study, cluster validation is performedngsfour validity measures: the C-index, the
Goodman-Kruskal index, the Dunn index and the Siétte index. These validity methods have
been shown to be efficient cluster validity estionatfor different types of clustering applica-

tions. Furthermore, they have been chosen to stufgpoinvestigation of cluster validation tech-
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niques for genome expression data classificati@velheless, each of the implemented valida-

tion methods has its advantages and limitations.

Basic Distance Metrics

The distance between two sampbesand y, which are vectors, in the data set for interval
type of the datg, d(x,y), in all validity measures was calculated usingwe#-known Eucli-

dean ManhattanandChebychewnetrics [2]:
* Euclidean Distanced (x,y) = Z(X—)’)2
e Manhattan Distanced (x,y) = Z|X—y|
e Chebychev Distanced (x,y) = maxx —y|
The C-index [14], C, is defined as follows:

_ S- $nin
- Smax_ Snin ’ (318)

where S, S, S,,, are calculated as follows. Lgt be the number of all pairs of samples

(conditions) from the same cluster. Th&nis the sum of distances between samples in tipose
pairs. LetP be a number of all possible pairs of samples endataset. Ordering thoge pairs

by distances we can selept pairs with the smallest angd pairs with the largest distances be-
tween samples. The sum of the smallest distances is equalSg,, whilst the sum of thep
largest is equal t8 _, . From this formula it follows that the nominatoilivibe small if pairs of

samples with small distances are in the same clustais, small values o€ correspond to
good clusters. We calculate distances using tha-diaten (using Euclidean, Manhattan and
Chebychewmetrics) and knowledge-driven (using biologicaltaliices calculated via GO-based
Wu and Palmer’'s method) methods. The number otersighat minimize C-index is taken as
the optimal number of clusters, We implement two approaches of C-index. Fronabdive, it

is noted that for each cluster in a partition, an@ex is calculated according to the aforemen-

15 Interval data (also sometimes called integer) éasnred along a scale in which each position iglesgant from
one another. This allows for the distance betweengairs to be equivalent in some way. Intervahdztnnot be

multiplied or divided. For example: temperaturelégrees Fahrenheit.
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tioned strategy. Thus, the first approach seldwsninimal C-index from a set of candidate C-
indices. These candidates obtain by keeping in aaatber of clusters (i.e. in each partition) the
maximum C-index (the worst case) from all its cédoed clusters’ C-indices. As far as the
second approach is concerned, this approach séhectsinimal C-index from a set of candidate
C-indices. These candidates obtain by keeping ¢ch eamber of clusters (i.e. in each partition)
the sum of all its calculated clusters’ C-indicEle C-index is an effective cluster validity esti-

mator for different types of clustering applicaton

The Goodman-Kruskal index [15], GK, is another validity measure. For a given dataset,

X;,j=1... k,wherek is the total number of samples (gene productiigapplication) in the
dataset, this method assigns all possible quadsp®. Letd be the distance between any two
samples W and x, ory and z, wherew, x, y andz are all vectors) inX ;. A quadruple is
called concordant if one of the following two cotnals is true:

e d(w,x)<d(y,z), w andx are in the same cluster agdandz are in different clusters.

e d(w,x)>d(y,z), w andx are in different clusters angl and z are in the same cluster.

By contrast, a quadruple is called disconcordaohé of following two conditions is true:

e d(w,x)<d(y,z), w andx are in different clusters angl and z are in the same cluster.
e d(w,x)>d(y,z), w andx are in the same cluster agdand z are in different clusters.
A good partition is one with many concordant and tisconcordant quadruples. L&t and
N,s denote the number of concordant and disconcordaatruples, respectively. Then the

Goodman-Kruskal indexGK , is defined as:
Neon = Ndis

GK = —<on .
Ncon + Ndis

(3.19)
Large values ofGK are associated with good partitions. We calculisg&ances using the data-
driven (using Euclidean, Manhattan and Chebyainetrics) and knowledge-driven (using bio-
logical distances calculated via GO-based Wu amch&& method) methods. Thus, the number
of clusters that maximize the Goodman-Kruskal indetaken as the optimal number of clusters,

c. Goodman-Kruskal index is expected to be robuatreg) outliers because quadruples of pat-
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terns are used for its computation. However, issmback is its high computational complexity in

comparison, for example, with the C-index.

TheSilhouette index[17] is another method for validation of clustembsis. For a given
cluster, Xj(j=1,...,c), the silhouette technique assigns to tite sample of X, a quality
measure,s(i) (i=1...,m), known as theilhouette widthThis value is a confidence indicator
on the membership of thieh sample in clusteX; and it is defined as:

s() - 090)
max{d(l) . (|)}

where a(i) is the average distance between ittte sample and all of the samples included in

(3.20)

X, and d.i, (1) is the minimum average distance betweeni thesample and all of the samples

clustered inX, (k=1,...,c; k= j). From this formula it follows that-1<s(i)<1. For a con-
crete illustration, see Figure 22. When a clustertains only a single object it is unclear how

d(i) should be defined, and then we simply s(eu) equal to zero. This choice is of course arbi-

trary, but a value of zero appears to be most akpitr]. Whens(i) is close to 1, one may infer

B

Figure 22 : An illustration of the elements involved in the gqmutation ofs(i), where the object belongs to

cluster A.

that thei th sample has been “well-clustered”, i.e. it hasrbassigned to an appropriate cluster.

When s(i) is close to zero, it suggests that tlile sample could also be assigned to the nearest
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neighbouring® cluster, i.e. thd th sample lies equally far away from both clustsmsijt can be
considered as an “intermediate case’s(f) is close to -1 (the worst case), one may argue tha
such a sample has been “misclassified” [22]. Toctaie, s(i) measures how well objegt
matches the clustering at hand (that is, how wélas been classified). So, for each cluster, we
can define the average Silhouette width as theageeof thes(i) for all objects belonging to
that cluster. This allows us to distinguish “cleat” clusters with large values dof, from
“weak” clusters with min values of, . Thus, for a given clusteX , it is possible to calculate a
cluster silhouetteS;, which characterizes the heterogeneity and ismiagiroperties of such a

cluster:

s =13 K0, (3.21)

Cia
where m is number of samples i§,. Moreover, for any partitiot <> X: X, U... XjU... X,

aglobal silhouette valuer silhouette indexG Su, can be used as an effective validity index for

a partitionU :
GSu=lz S. (3.22)
c

Furthermore, it has been demonstrated that equédi@2) can be applied to estimate the most
appropriate number of clusters for partition We calculate distances using the data-driven (us-
ing Euclidean, Manhattan and Chebyctmestrics) and knowledge-driven (using biological-dis
tances calculated via GO-based Wu and Palmer’sadgtimethods. In this case the partition

with the maximum silhouette indefg Su, is taken as the optimal partition.

Silhouette index offers the advantage that it afépends on the actual partition of the ob-
jects and not on the clustering algorithm that wssd to obtain it [17]. As a consequence, sil-

houettes could be used to improve the resultsustet analysis (for instance by moving an ob-

18 This is like the second best choice for objectif it could not be accommodated into clustdy;, it will be as-

signed to clusteB, which is the closest competitor #.
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ject with negatives(i) to its neighbor), or to compare the output of etéint clustering algo-

rithms applied to the same data.

TheDunn index [18] is the last validity measure we apply. The Bumdex defines the ratio

between the minimal intercluster distance to makimi@acluster distance. The index is given

by:
D =—mn (3.23)

where ¢,,,, denotes the smallest distance between two objents different clusters and

denotes the largest distance of two objects froenstime cluster. We calculate distances using
the data-driven (using Euclidean, Manhattan ando@tteevmetrics) and knowledge-driven (us-

ing biological distances calculated via GO-basedaiid Palmer’'s method) methods. The Dunn

index is limited to the interv:{lo,oo] and should be maximized.

The Dunn’s validity index requires the defiom of at least two clusters. The same situation
applies to the Silhouette method, since to comghgeminimum average distance between the
sample in one cluster and all of the samples frdfardnt clusters, the Silhouette width formula

(3.20) requires at least two clusters. Thus, catas for null-case are not considered here.

Furthermore, the Dunn index has the disadvantage/ef-sensitivity to noise, for which a
family of 18 cluster validation indices is propodesed on the different definitions of interclus-

ter and intracluster distance.

Intercluster Distances
Now, we will present the internal measuresdus the implementation of the Dunn’s validity
index. As far as intercluster distances are comzkrthere are six intercluster distances are used

for the calculation of the Dunn’s validity index9jL

¢ Single Linkagelt is the closest distance between two samplesnbeig to two different

clusters.

o Complete Linkagelt represents the distance between the most resaotgles belonging

to two different clusters.
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e Average Linkagelt defines the average distance between all ostmaples belonging to

two different clusters.

e Centroid Linkagelt is used only for Euclidean distance. It is theckdean distance be-

tween the centres of two clusters, as calculatearitlymetic mean.

e Average of Centroids Linkagé reflects the distance between the centre oluatet and

all of samples belonging to a different cluster.

e Hansdorff MetricsThey are based on the discovery of a maximal distéom samples of

one cluster to the nearest sample of another cluste

In this study, we implement for intercluster distas the single linkage and the complete lin-
kage.

Intracluster Distances
Alsqg as far as intracluster distances are concernerk Hre three intracluster distances are

used to calculate the Dunn’s validity index [19%h€Ee are:

¢ Complete Diameteit defines the distance between the most remot@lesnbelonging to
the same cluster.

e Average Diametent represents the average distance between dileodamples belonging
to the same cluster.

e Centroid Diameterlt reflects the double average distance betweeafdhe samples and
the cluster's centre.

In this study, we implement for intracluster disteas the complete diameter and the average di-
ameter.

Based on an external cluster validation the validieasures were evaluated and compared
on the basis of various sets of t-invariants ofedént types of Petri nets (i.e. metabolic, gene
regulatory and signal transduction nets). With eesgo the percentage of correct predictions
best results were obtained using the SilhouettetW\(ith%) and the C-index (75%), followed by
the Dunn-index (50%). Although offering good resuthe C-index is hampered by the fact of



CLUSTERING OFGENESBASED ONBIOLOGICAL KNOWLEDGE 87

showing optimal index values for different numbefslusters, thus impeding a robust automatic
determination of the optimal number of clusterstgbithe noisy nature of biological data, robust
measures like the Silhouette Width are preferabledise-sensitive measures like the Dunn in-
dex, which is instable against outliers due todbasideration of only two distances. An inap-

propriate choice of method for cluster center deieation might have been one of the reasons

for the insufficient clustering results obtainedthis validity measure.

The approaches described in this section are &lai&s part of the Machaon CVE (Cluster-
ing and Validation Environment) [9]. This softwaskatform has been designed to support clus-
tering-based analyses of expression patterns imguskveral data- and knowledge-driven clus-
ter validity indices. The program and additionalformation may be found at
http://www.cs.tcd.ie/ Nadia.Bolshakova/GOtool.html.

Furthermore, to determine the optimal number o$telts to be used in clustering data that
contains some labeled samples, the authors inf#egent another measure of cluster structure
compatibility with a given label assignment. Théuition is simple: on the one hand, clusters
should be uniformly labeled and therefore penatiags of samples that are within the same
cluster but have different labels. On the otherdhars not acceptable to create unnecessary par-
titions and therefore penalize pairs of samples laze the same label, but are not within the

same cluster. Formallyhe compatibility scor®f a cluster structure with the training set is de

fined as the sum of two terms. The first is the hamof tissue pairg§v,u) such thatv andu

have the same label and are assigned to the sasterciThe second term is the number of

(v,u) pairs that have different labels and are assignetifferent clusters. This score is also

calledthe matching coefficient the literature [2]. To handle label assignmeteined only on

a subset of the data, the comparison is restricteunt pairs of examples for which labels are
assigned (the matching coefficient for a submasigkomputed). Based on this notion, using a
binary search, the choice of clustering parametansbe optimized to find the most compatible
clustering. It is also emphasized that this gended can be applied to any parameter dependent

clustering method and is not restricted to a paldicchoice.
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3.7 A Normalization Technique for Cluster Validitindices

The combined application of different interclustaracluster distances and different dis-
tances between two samples may produce validatiings of different scale ranges. Hence, the
indices with higher values may have a strongercefém the calculation of the average index
values. This may result in a biased predictionhef optimal number of clusters. To overcome

this problem the following normalization techniqgugs been applied. Given a cluster configura-

tion consisting ofc clusters, for any partitiotd, : X <> X u...u X_, the normalized Dunn’s

indicesD;" (vectors) are calculated as:

Dij*(Uc)=(Di,- (UC)—Eu)/o-Dij, (3.24)
5ij=%2 D, (Uy), (3.25)
k
wherei reflects the selection of the intercluster diseanalculation methO(ﬂi =1,... ,6), j is

the selection of the intracluster distance calémtamethod(j =1,...,3), D; (U, ) is the value of

a Dunn’s validity index,n is the number of partitionsgD; is the standard deviation of

D, (U,) across all values of. The normalized values of the eighteen Dunn’sdgliindices

and their average indices at each number of ckisterfor c=2 to c=6 are shown in Table 2.
An examination of these results indicates that2 represents the most appropriate partition for

the data under analysis.

Furthermore, as far as the other validity indicesancerned, as we have already mentioned,
different approaches of the used validity indicesenbeen implemented. These appraches de-
pend on the choice of the distance metric (Euchd&tanhattan or Chebychev), and as far as C-
index is concerned, its approaches also depentherhoice of the minimal C-index (two ap-
proaches implemented, discussed in Section 3.6adtbeen observed that all these approaches
may produce validation indices of different scalages. Hence, the indices with higher values
may have a stronger effect on the calculation efaherage index values. This may result in a
biased prediction of the optimal number of clust&is overcome this problem the above norma-

lization technique used for Dunn index, is applieall used validity measures, too. Thus, when-
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ever it is necessary, the normalized Silhouettédeéx and Goodman-Kruskal indices may be

calculated by equation (3.24) using the Silhoueftendex and Goodman-Kruskal indices re-

spectively instead of the Dunn’s index.

Validity
Index
Dy 1.17| 0.37| -1.50 0.32 -0.3
Dy 1.71| -0.07| -0.22 -0.64 -0.7
Da; 1.70| 0.03| -0.30 -0.67 -0.7
Dy 1.62| 0.17| -0.23 -0.59 -0.9
Ds; 1.70| 0.05| -0.34 -0.76 -0.6
De: 1.77| -0.57| -0.21 -0.59 -0.4
Dy, 1.37| 0.46| -1.18§ 0.05 -0.7
Dy 1.69| -0.02| -0.19 -0.64 -0.8
D3, 1.66| 0.11| -0.24 -0.66 -0.8
Dy, 1.60| 0.20| -0.20 -0.60 -1.0
Ds» 1.66| 0.12| -0.27 -0.73 -0.7
De> 1.76| -0.42| -0.17 -0.60 -0.5
D13 1.25| 0.20| -1.50 0.31 -0.2
Dy3 1.72| -0.15| -0.17 -0.65 -0.7
D33 1.72| -0.08/ -0.24 -0.69 -0.7
Dys 1.65| 0.08| -0.18§ -0.61 -0.9
Ds3 1.72| -0.07| -0.28§ -0.78 -0.6
De3 1.75| -0.64| -0.1 -0.60 -0.3
Average | 1.62| -0.01| -0.42 -0.51 -0.68

Table 2 : Normalized Dunn’s values using 3 types of intraidusneasures and 6 types of intercluster measures
[16].

c=2 | c=3 c=4 c=5 c=6

o o b P O N N 0 O OO0 P O 0O N O 0 O

3.8 A Weighted Voting Technique for Cluster Vallig Indices

Another approach to estimate the optimalifpant consists of the implementation of an ag-
gregation method based on a weighted voting styaig example is shown in Table 3, based
on the Dunn’s indices from Table 2 by replacing itieex values by weighted votes, whose val-
ues range from 1 to 5. Thus, for examjde; represents the highest index value and suggests
the partitionc=2 as the optimal partition, hence its weighted vistequal to 5. On the other

hand,D1; represents the smallest index value for partiterd, hence its weighted vote is equal
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to 1. The average weighted vote for each clustditipa confirms thatc = 2 represents the most

appropriate prediction. This weighted voting stggtes applied to any validity index used in this

thesis (i.e. Dunn, Silhouette, C-index and Goodrkdarskal index).

Validity
Index

c=2
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Average

5.00

3.61

2.83

2.0

D

15
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Table 3 : Predicting the correct number of clusters by weightoting technique. The entries represent voteegl
based on Dunn’s validation index using 3 typestfacluster measures and 6 types of interclustersme

ures [16].

3.9 Combination of Cluster Validity Indices

The above weighted voting technique (Section 3.8y miso be applied to fuse the results

originating from different validation methods. Tald, depicts the global silhouette valu€Su

, for each partition, and the silhouette valu8s,for each number of clusters, for c=2 to

c=06. In this casec=2 is suggested as the best clustering configurddothe examined data

set. So, an example of using combination of varialglity indices in order to estimate the cor-
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rect number of clusters in a data set, is depitteable 5 for three validation techniques. This
table was obtained from Table 3 and Table 4 byualing the average weighted vote for each
technique. Thus, after computing all validity inelic the average weighted vote for each cluster
partition has been calculated, aod 2 is suggested as the optimal partition. The appladitia-

tion techniques confirm that the partition consigtof two clusters represents the most appropri-

ate representation for the data set under consioera

cIGy | & | & S| S S| S

210.31| 042 0.14

3/0.25| 0.25 0.13 0.36

4| 0.26| 0.18 0.23 0.38 0.23

5(10.29| 0.31] 0.23 0.37 0.22 0.27

6|0.19| 0.22| 0.60 0.01 056 0.14 0.33

Table 4 : Global silhouette values for each partiti€d@Su, and the silhouette value§, for each cluster defining a
partition [16].

Validation
c=2 | ¢=3| c=4| c=5 c=6
Technique

Silhouette  5.00| 2.00, 3.00 4.00 1.00

Dunn’s 5.00| 3.61] 2.83 2.00 1.56

Average | 5.00| 2.81] 292 3.00 1.28

Table 5 : Predicting the correct number of clusters for miedilhstomas data by aggregation of multiple valatat
methods [16].

Finally, it is important to note that the aboveules in Tables 2-5 were obtained when
d(x,y) was calculated using the well-known Euclideanatiseé between samples. Table 6,

summarizes the effects of three measudk,y) described before in Section 3.6 (i.e. Eucli-

dean, Manhattan and Chebychev distance metricsjigijests that the estimation of the optimal
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partition by normalized and non-normalized indice®ot sensitive to the implemented type of

metrics,d(X,y).

Validity Index
c=2 c=3 c=4 c=5 c=6
Based on Distances
Euclidean 0.93 (1.47) 0.48 (-0.46)| 0.45(-0.08) 0.39(-0.55) 0.40 (-0.38)
Manhattan 1.70 (1.63)| 0.86 (-0.42)| 0.79 (-0.09) 0.65 (-0.73) 0.66 (-0.40)
Chebychev 0.90 (1.29) 0.48 (0.10)| 0.49(-0.20) 0.39(-0.61) 0.40 (-0.58)

Table 6 : Dunn’s validity indices for expression clustersgorating from leukaemia data. The entries repreten
average Dunn’s values based on the distances simoWable 2 and using three measures (‘.&(rx,y) .

Normalized Dunn’s validity indexes are given betwdeackets. Bold entries represent the optimal num-
ber of clustersC, predicted by each method [19].

3.10 Implementation of Cluster Validity Indices

In this study, we apply the validity indices pret®ehin Section 3.6 using knowledge-driven
methods (GO-based Wu and Palmer similarity meagareytimate the number and the quality
of the clusters. These validity indices could bedu support the discovery of clusters of genes
sharing similar functions. Such clusters may indigagulatory pathways, which could be signi-
ficantly relevant to specific phenotypes or physgtal conditions. Also, we apply the same va-
lidity indices using data-driven methods (Euclidelianhattan and Chebychev metrics) to esti-
mate the number and the quality of the clusters, Tlhve normalization of index values (men-
tioned in Section 3.7) and the weighted votingtstzg (mentioned Section 3.8) have also been
implemented to improve the prediction procedure.ak@mine the comparison and combination

of different data- and knowledge-driven clusteidif indices.

To sum up, several clustering techniques have pegrosed to support the analysis of gene
expression data. Determining the appropriate nurabetusters in experimental data is a com-
plex and time-consuming process. Cluster validityices represent useful tools to guide unsu-
pervised data analysis. They are particularly @vor the estimation of clustering partitions in
different applications, which may require the deiam of the number of clusters beforehand.

The combination of these methods may be used tmtaal evaluation tasks. It has been shown
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how these methods may support the prediction obgitamal cluster partition. The results also

suggest that the normalization of index values aneeighted voting strategy may improve the

prediction procedure. The normalization scheme reayesent a more robust mechanism to pre-
dict the correct number of clusters. It allows sthowy the effect of the highest values on the
calculation of the average index values. Moreowdrghlights subtle differences between index

values originating from different clustering configtions. The advantage of a weighted voting
approach lies in an aggregation of multiple valmamethods in order to improve the estimation

of the most adequate clustering partition for iptetation purposes. A systematic validation ap-
proach may significantly support genome expresaimayses for knowledge discovery applica-

tions.

Finally, Figures 20-23 present in detail the datad knowledge-driven cluster validity as-
sessment system implemented in this thesis. Fig@rshows the data- and knowledge-driven
cluster validity assessment system implemented/ewlfigure 24, Figure 25 and Figure 26
present how Silhouette index or Goodman-KruskaéxpdC-index and Dunn index work in de-
tail at stage A in Figure 23.
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Stage A

Input

For each validity measure

Validity measure

(i.e. C-index, Goodman-
Kruskal index, Silhouette

index or Dunn index)

Statistical knowledge (i.e. the
3 data sets - genes’
expression values) and

obtained statistical gene
partitions from hard c-means.
One used data set each time.

KEGG biological knowledge
(i.e. the genes’ partition
vectors created based on the
available KEGG knowledge)

and obtained KEGG-based
biological gene partitions
from various hard c-means
approaches.

GO biological knowledge (i.e.
the biological distances (BD)
calculated via GO-based Wu
and Palmer’s method) and
obtained statistical or GO-based
biological gene partitions from
various hard c-means
approaches. One used data set
or hierarchy each time.

Figure 23

Use of Euclidean, Manhattan

and Chebychev distance
metrics

Use of Euclidean, Manhattan
and Chebychev distance

\4

metrics

Use of BD based on BP or
MF or combined BP and MF

\

hierarchy
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:The implemented data- and knowledge-driven clusiédity assessment system, presented as red ¢tidimal arrows in Figure 4.
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Validity measures:
Silhouette index (SI) or

Input Goodman-Kruskal index (GKI)
SI1 or GKI1
: _ Obtain Sl or GKI using: Average Sl of SI1, SI2 and SI3

Available statistical Euclidean distance (SI1 or GKI1) SI2 or GKI2 or
knowledge and p-| and Manhattan distance (SI2 or —SI£ OTDORIZ 4, __ Average GKI of GK1, GK2 and GK3
obtained statistical gene GKI2) and Chebychev distance Normalization
partitions from hard c-means (SI3 or GKI3) SI3 or GKI3  strategy and

then take the

average value
Available KEGG biological Sl4 or GKl4 of Sl or GKI

: . >

knowledge and Obtain S| or Gg: US'"%-KI for each Average Sl of SI4, SI5 and SI6
obtained KEGG-based Euclidean distance (Sl4 or 4) partition or
biological gene partitions and Manhattan distance (SI5 or ~ —SIS0rGKIS Average GKI of GK4, GK5 and GK6
from various hard c-means GKI5) and Chebychev distance
approaches (S|6 or GK|6) SI6 or GKI6 >

Available GO biological

knowledge and Obtain Sl or GKI using:

obtained statistical or Biological distances based on BP or Slor GKI
GO-based biological gene MF or combined BP and MF

partitions from various hard hierarchy. One used hierarchy each

c-means approaches time.

Figure 24 :How Silhouette index or Goodman-Kruskal index warksetail at stage A in Figure 23.
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Input

Available statistical
knowledge and

obtained statistical gene
partitions from hard c-means

Available KEGG biological
knowledge and

obtained KEGG-based
biological gene partitions
from various hard c-means
approaches

Available GO biological
knowledge and

obtained statistical or
GO-based biological gene
partitions from various hard
c-means approaches
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C-Index (ClI) selects:

A. The minimal of the candidate worst C-indices and
B. The minimal of the candidate sums of C-indices
(Validity measure)
CIA1 -
Obtain: CIA2 -
Cl using Euclidean distance and selecting A (CIA1) and
Cl using Manhattan distance and selecting A (CIA2) and CIA3 - 3\;‘?88?8?' %flgzlm dCICAI\I§3
Cl using Chebychev distance and selecting A (CIA3) and CIB1 ’ ’ an
Cl using Euclidean distance and selecting B (CIB1) and |
Cl using Manhattan distance and selecting B (CIB2) and CIB2 -
Cl using Chebychev distance and selecting B (CIB3)
CIB3 -
CIA4 -
o1 using Evclidean dist Obtaino:I ecting A (CIA) and CIAS _py,| Normalization strategy
using Euclidean distance and selecting an and then take the
Cl using Manhattan distance and selecting A (CIA5) and CIA6 pp| average value of Cl for 3;%38?8? 8‘“(33IA4, dCICITSG
Cl using Chebychev distance and selecting A (CIA6) and CIB4 each partition ’ ; CIBS an
Cl using Euclidean distance and selecting B (CIB4) and |
Cl using Manhattan distance and selecting B (CIB5) and CIB5 -
Cl using Chebychev distance and selecting B (CIB6)
CIB6 -
CIA
Obtain: |
P> Cl selecting B (CIB).
One used hierarchy each time. CiB -

Figure 25 : How C-index works in detail at stage A in Figure 23
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Dunn Index (DI) uses:
The intracluster distances: average (d1) and complete (d2)
diameter and the intercluster distances: single (d3) and
complete (d4) linkage

(Validity measure)

Available statistical
knowledge and

obtained statistical gene
partitions from hard c-means

Available KEGG biological
knowledge and

obtained KEGG-based
biological gene partitions
from various hard c-means
approaches

Available GO biological
knowledge and

obtained statistical or
GO-based biological gene
partitions from various hard
c-means approaches

DI1 -
DI2 - A
. verage DI of DI1, DI2, DI3,
, o Gl DI3 DI4, DI5, DI6, DI7, DI8, D9,
DI using Euclidean distance and d1 and d3 (DI1) and | DI10. DI11 and DI12
DI using Manhattan distance and d1 and d3 (DI2) and Dl4 -
DI using Chebychev distance and d1 and d3 (DI3) and >
DI using Euclidean distance and d1 and d4 (DI4) and DI5
DI using Manhattan distance and d1 and d4 (DI5) and DI6
— P DI using Chebychev distance and d1 and d4 (DI6) and > =
DI using Euclidean distance and d2 and d3 (DI7) and DI7 - 3
DI using Manhattan distance and d2 and d3 (DI8) and DI8 %
DI using Chebychev distance and d2 and d3 (DI9) and > o
DI using Euclidean distance and d2 and d4 (DI110) and DI9 - o
DI using Manhattan distance and d2 and d4 (DI11) and o
DI using Chebychev distance and d2 and d4 (DI12) DI10 - g.
DI11 - &
Q
DI12 g, a
§
DI13 =
- g
D14 g, z
Obtain: 3
DI using Euclidean distance and d1 and d3 (DI13) and DI1S_ py, )
DI using Manhattan distance and d1 and d3 (DI14) and DI16 3
DI using Chebychev distance and d1 and d3 (DI15) and > <
DI using Euclidean distance and d1 and d4 (DI16) and DI17 - 5
DI using Manhattan distance and d1 and d4 (DI17) and c
—P| DI using Chebychev distance and d1 and d4 (DI18) and DI18 - > Average DI of DI13, DI14, DI15,
DI using Euclidean distance and d2 and d3 (DI19) and DI19 5 DI16, DI17, DI18, DI19, DI20,
DI using Manhattan distance and d2 and d3 (DI20) and > = Di21, DI22, DI23 and DI24
DI using Chebychev distance and d2 and d3 (DI21) and DI20 - %
DI using Euclidean distance and d2 and d4 (DI122) and DI21 o
DI using Manhattan distance and d2 and d4 (DI23) and > =
DI using Chebychev distance and d2 and d4 (DI24) DI22 - -§
Di23 | g
DI24 -
Obtain: D125 4,
B: using 31 ancdj cdis 28:25; ang DI26 - Average DI of DI25, DI26,
| p»| Dlusing d1 and d4 (DI26) an DI27 DI27 and DI28
DI using d2 and d3 (DI27) and DI2s > >
DI using d2 and d4 (DI28) . -
One used hierarchy each time.

Figure 26 : How Dunn index works in detail at stage A in Fig@&
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3.11 Similarity Indices

The problem of measuring the correspondence bettveepartitions of an object set has at-
tracted substantial interest in the literature leksification. One may be interested in assessing
degree of similarity (or verifying equivalence)tefo clustering algorithms (for example one be-
ing a simpler and/or more efficient version of titeer). This is an important issue with current
research, where large data sets are so commoriaiynindices can be used to compare parti-
tions (clusterings) of a data set. Many such irglieere introduced in the literature over the
years. Indicatively, Table 7 shows some useful lanity indices. For further information the
reader is encouraged to refer to [45]. Even thabglr values differ for the same clusterings that
they compare, after correcting for agreement aiteith to chance only, their values become simi-
lar and some of them even become equivalent. Coesdg, the problem of choice of the index

to be used for comparing different clusterings loee® less important.

We begin by reviewing a well-known measure of piarti correspondence often attributed to
the author in [39], the Rand index (R). The Rardkinappears to be one of the most popular

alternatives for comparing partitions and has hematnteresting history of being rediscovered

and/or modified by different authors. Given am object setS={q,...,Q}, suppose

U={u,...,us} andV ={v,...,v} represent two different partitions &, i.e. the entries it/
R C ) . )

and V are subsets ofS, Ju=S=Jvy, uny=I=vny, for 1<izi <R and
i=1 j=1

1<j=j <C. Letting n, denotes the number of objects that are commorassesy, andyv,,

the information on class overlap between the twititpns U andV can be written in the form

of a contingency table (using standard “dot” notatior row and column sums) withy and n

referring respectively to the number of objectlassesu, (row i) andv, (column j), as in

Table 8.



CLUSTERING OFGENESBASED ONBIOLOGICAL KNOWLEDGE

No. Introduced by Symbol
1 Sokal and Michener (1958), Rand(1971) R
2 Hamann (1961), Hubert (1977) H
3 | Czekanowski (1932), Dice (1945), Gower and Lege!(tl986) cz
4 Kulczynski (1927) K
5 McConnaughey (1964) MC
6 Peirce (1884) PE
7 Fowlkes and Mallows (1983), Ochiai (1957) FM
8 Wallace (1) (1983) W1
9 Wallace (2) (1983) W2
10 Russel and Rao (1940) RR
11 Goodman and Kruskal (1954), Yule (1927) GK

Table 7 : Similarity Indices — References and Symbols.

Partition V
Class| ¥ Vv, ... V¢ Sums
Uq Ny1 N12 s Mc .
) uz M1 Mo e M.
c
ie)
=
=
©
o
Ur Nr1 NRr2o NkRc NRr.
Sums | n; N, ... N¢c | Nn..=n

Tal8e Notation for Comparing Two Partitions.
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The author in [39], as well as others, bases measufr correspondence betwednandV

on how object pairs are classified in tRxC contingency table. Specifically, there are four di

n
ferent types among tl—(ez) distinct pairs that could be found:

o type (i): objects in the pair are placed in the satass inJ and in the same class Vh

e type (ii): objects in the pair are placed in diffiet classes ity and in different classes in
Vv

o type (iii): objects in the pair are placed in diffat classes i and in the same classVh
o type (iv): objects in the pair are placed in thenealass iJ and in different classes M

Types (i) and (ii) are typically interpreted as egments in the classification of the objects

from a pair. Types (iii) and (iv) represent disagrents. Obviously, ifA represents the total

. n
number of agreements ardl the total number of disagreements, th&m D:(ZJ. Moreover,

we can show [40] that

S oS (Y e

i=1j=1 =1 j=1
m
where a binomial coefficierftzj is defined a) whenm=0 or 1. In fact, as given in Table 9,

explicit formulae can be obtained to express thalar of object pairs of each type as a function

of n, n, n, andn, . If we assume that the marginal sums are fixettienRxC contingency ta-

ble, then all of the formulae in Table 9, includithgpse given for the sum& and D, are con-

stant linear transformations (Z n; and thus, of each other.
i
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Type

Formula

(i)

(ii)

(iii)

(v)

@)+ @)= A=

iy + (iv) = D =

Table 9 : Formulae for the Number of (Unordered) Object Pafrthe Four Types [44].

101

Intuitively, two partitions that are similar prodicelatively large values oA and small val-

ues of D. Thus, depending on how and D are normalized, different raw measures of agree-

n
ment are possible, e.g. the author in [39] use&dred similarity index (R)R= %(Zj the au-

thors in [42], [43] adopD/(gJ and the author in [41] suggests the Hubert simylamdex (H):

n
H =(A— D)/(Zj. In all these cases, the raw measures have sfaiwghrd probabilistic inter-

pretations with respect to picking a pair of olgeat random, i.e.R= 7/(3 (i.e. the Rand si-
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milarity index) is the probability of agreemerﬂ)/(g is the (complementary) probability of a

n
disagreement andi =(A— D)/(ZJ (i.e. the Hubert similarity index) is the diffe@nbetween

the probability of an agreement and a disagreententn the above it follows thd?<R<1,

n
0< D/(Z) <land-1<H <1respectively.

With so many similarity indices available, somelem shown in Table 7, the choice of the
index and subsequent interpretation of its valueoisobvious. As an example, in Table 10 we
conclude mean values and the upper and lower boltige values for six selected similarity in-
dices from Table 7 (FM, R, H, RR, CZ and W). Thenter of clusters requested was the same
for both clusterings and equal 2, 3 and then 6tetasClusterings were obtained at random and
independently so the differences affecting eaclexnehust be caused by the agreement due to
chance in a different way, that depends on its»rfdemula. To eliminate the effect of agree-

ment due to chance, a correction for the Rand i(R)asity index has been suggested. Any simi-

Index | FM R H RR cz W # Clusters

Mean | 0.678| 0.499 -0.001 0.462 0.645 0.926 2

L 0.511| 0.499 -0.002 0.261 0.5]11 0.524

U 0.705| 0.500 0.000 0.497 0.665 0.996

Mean | 0.494| 0.417] -0.167 0.248 0.4%3 0.748 3

L 0.389| 0.335 -0.331 0.151 0.384 0.455

U 0.573| 0.515 0.030 0.328 0.497 0.988

Mean | 0.265| 0.547| 0.094 0.071 0.236 0.430 6

L 0.208| 0.374 -0.252 0.044 0.202 0.265

U 0.335| 0.656/ 0.317 0.113 0.265 0.683

Table 10 : Six selected similarity indices [45].
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larity index S| after such correction has a form

_SI-E(S)

es1= 1-E(SI)

, (3.27)

where expectatiorE(SI) is conditional upon fixed sets of marginal couimsthe matrix N

Table 8. Consequently the corrected value of tdexrshould be close to O if the agreement is

due to chance only and will be equal 1 when thewected index equals 1.

Table 11 contains mean values and upper and loaands of the values for six similarity
indices from Table 7 after they were correctedctmnce agreement (CFM, CR, CH, CRR, CCZ
and CW). Clusterings being compared were indepdnaiesh there was no actual similarity. It
can be seen that mean values in Table 11 aretladiretqual to zero or very close to zero. Addi-
tionally, results for indices CR, CH and CCZ arei@gAs authors in [45] state that some of the
indices become equivalent after correction for ceaamgreement (3.27) is applied. For example,
Rand (R), Hubert (H), and Czekanowski (CZ) similaindices are equivalent after correction

for agreement due to chance.

Index | CFM | CR CH |CRR | CCZ | CW | # Clusters

Mean | 0.000| 0.000 0.000| 0.000 0.000 0.000 2

L 0.000| 0.000 0.000| 0.000 0.000 0.000

U 0.002| 0.002 0.002| 0.001 0.002 0.003

Mean | 0.001| 0.001f 0.001| 0.000 0.001 0.001 3

L 0.000( 0.000 0.000| 0.0000 0.00p 0.000

U 0.007| 0.006 0.006| 0.002 0.006 0.004

Mean | 0.005| 0.004 0.004| 0.001 0.004 0.003 6

L 0.001| 0.001 0.001| 0.000 0.001 0.001

U 0.011| 0.010 0.010| 0.002 0.010 0.007

Table 11 :Six corrected similarity indices [45].
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From all above, we can conclude that after suchection all similarity indices are either
equal to zero or very close to zero. Even thougir tralues differ for the same clusterings that
they compare, after correcting for agreement aiteith to chance only, their values become simi-
lar and some of them even become equivalent. Caesdly, with so many similarity indices
available, the problem of the choice of an appadprsimilarity index to be used for comparing

different clusterings, becomes less important.

We also note that similarity indices can be useevi@muate a single clustering procedure and
also to compare two clustering methods (or two ritlgms of the same method). Furthermore,
the behavior of the similarity index can also bedias an indicator of the proper number of clus-

ters in a data set. Interesting results can bedfau46].

3.12 Application in Multiple Data Sets

The gene clustering methodologies implemented istttesis, are shown in detail in Figure
28. Two different types of biological knowledge anailable: GO hierarchies, which are distin-
guished to BP, MF and combined BP-MF hierarchy, BB6GG PWs. It is noted that from GO
hierarchies we compute the biological distances Wia and Palmer’'s method. A statistical
knowledge consisting of three data sets on breaster (Sotiriou’s, Veer’s and Sorlie’s data set)
is also available. To apply gene clustering methagles in a single or multiple data sets a pre-
processing is required. More information about tlesessary pre-processing is given in Section
3.2. It is important to note that after pre-proaegsthe genes among the three data sets are

common and the clustering procedures are applaEbiendently to each data set.

The three data sets can be used after an appepr@iprocessing, as shown in Figure 28.
Then, the hard c-means clustering method is applisthg Euclidean distance metric on gene
expression values. We express this procedustatistical clustering. Another approach of ex-
ecuting hard c-means clustering is based on tHedial distances calculated before, using one

GO hierarchy each time. We express this procedu@abiological clustering

In order to validate the statistical partition egest from statistical clustering, a statistical and
a GO biological cluster validation are requiredeShatistical cluster validation applies several

validity methods (i.e. C-index, Silhouette indexyrid index and Goodman-Kruskal index) that
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use three types of distance metrics on gene expregalues: Euclidean, Manhattan and Cheby-
chev. Except the gene expression values, as shoWwigure 28, the cluster validation methods
use also the calculated biological distances, usiggGO hierarchy each time. This is expressed
asGO biological cluster validation To validate the biological partition emerged fr@® bio-
logical clustering approach, a GO biological clustalidation is required. It is noted that a nor-
malization and a weighted voting strategy are a&gjplo improve the statistical or GO biological
cluster validation. As the red arrows imply, thastering method and the validity measures are
executed multiple times with different input paraemesalues, i.e. number of clusters, until some

candidate optimal statistical or biological paatits are obtained.

Another approach to obtain biological partitiorssyia KEGG knowledge, that also requires
some pre-processing, i.e. mapping genes to theeE@ene nomenclature and construction of
genes’ partition vectors. Then, the clusters artinbd using three methods, expressed as
KEGG1, KEGG2 and KEGG3 biological clustering. Tirstfmethod KEGGL1 biological clus-
tering) is based on the idea that genes that take pattleastm common PWs must belong to
the same cluster. After many trials we conclude tina best choice imm=1. As we can see from
the Figure 27, whem=1 the obtained clusters are characterized more brottn internal homo-
geneity and external separation than whern1. From Table 12 we also see that whes-1
fewer clusters share the same information, i.eentfoain 1 cluster have genes belong to common
KEGG PWs, than whem>1. Also, whenm=1 the obtained clusters that have at most 2 genes,
are fewer than whem>1 and the mean number of the genes per clustemiifs whenm= 2

it is 4 genes per cluster. Thus, apparemtly 1 is the best choice.

The second methoKEGG2 biological clustering) is the hard c-means clustering method,
applied using Euclidean or Correlation distancerim@n genes’ partition vectors. The last me-
thod (KEGG3 biological clustering)is originated in this thesis. Its basic concephé&t the gene
with the most common PWs to a cluster’s centeassgned to that cluster. The biological clus-
ters from the two last methods are validated v \thlidity measures defined earlier, i.e. C-
index, Silhouette index, Dunn index and GoodmansKal index. All validity measures use
Euclidean, Manhattan and Chebychev distance metricgenes’ partition vectors. This is re-
ferred to aKEGG biological cluster validation. It is noted that a normalization and a weighted

voting strategy are also applied to improve the KE@ological cluster validation. As shown in
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Figure 28, the two last methods require the nunabetfusters as an input parameter and are ex-
ecuted repeatedly until some candidate optimalitmens are obtained. Thus, from KEGG2 and
KEGGS3 biological clustering we obtain some candidattimal biological partitions. Next, these
partitions are compared with the one obtained ftioenfirst method (KEGGL1 biological cluster-
ing). For this purpose several methods are availald. Rand index, Hubert index and corrected
Rand index. The final selected partition is the tire¢ converges most to that of the first method

and is characterized as optimal.

1%t Approach: 2 genes that have 2" Approach: 2 genes that have
at least 1 common PW belong to at least 2 common PWs belong to
the same cluster the same cluster

217 clusters

108 clusters

37% of the 217 clusters have genes
that belong to one or the other of the

7% of the 108 clusters have genes
that belong to one or the other of the

2 KEGG PWs 2 KEGG PWs
KEGG PW with KEGG PW with
the largest number the second largest
of genes number of genes
Figure 27 : An useful observation that justifies the choite=1.
At Least Common # Obtained Clus- % of Obtained Clusters that have at most 2 | Genes/Cluster
PWs ters genes
1 108 40 9
2 217 51 4

Table 12 :Useful statistics about the obtained partitionsnfldEGG knowledge using thé'inethod.

In a similar way, we compare independently the dgaal partitions obtained from GO

knowledge and the statistical partitions obtaimedfthe statistical knowledge, i.e. the three data
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sets, with the biological partition obtained fronE&G knowledge through the first method.
Thus, we estimate the optimal biological and diat partition that converges most to the bio-
logical partition obtained from KEGG knowledge thgh the first method.

It is noted that a more detailed explanation ongémee clustering methodologies results and
the comparisons of all possible results is givetha next chapter, which deals with the results

interpretation.

More details about the gene clustering methodotoigplemented in this thesis are provided

throughout the previous Sections.

3.13 Summary

In this chapter we present in detail all implemédngene clustering methodologies. The main
objective of the research is to design clusterimg) @uster validity methods to estimate the num-
ber of clusters in gene expression datasets. Csmaathodology is a commonly used clustering
technique, which aims to partitiom observations intk clusters in a way that each observation
belongs to the cluster with the nearest mean. Maratuster validity indices have been proposed
to measure the quality of clustering results. Tlm&OnNtology (GO) and Kyoto Encyclopedia
of Genes and Genomes (KEGG) databases represanp thedate biological knowledge. A tra-
ditional node-counting method (i.e. the GO-based &dd Palmer’s method) has been imple-
mented to measure knowledge-based similarity betvgemes products (biological distances),
calculating the distance between the nodes asedciwith these terms in a hierarchy. To take
advantage of the available biological informationemrichment cluster analysis using GO terms
or KEGG pathways is also carried out. Furthermamnbination of GO-based (knowledge-
driven) and microarray data (data-driven) validatroethods may be used for the estimation of
the number of clusters. A normalization and a wigdtvoting technique are usually used to im-
prove the prediction of the number of clusters dasedifferent data mining techniques. Also, a
variety of similarity indices exist to compare p@ohs (clusterings) of a data set. Finally, the
behavior of the similarity indices can also be uaedn indicator of the proper number of clus-

ters in a data set.
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Knowledge bases

——— GO hierarchies (BP or MF
.J hierarchy: biological

knowledge)

Population data sets

3 data sets
(Sorlie’s, Sotiriou’s or Veer's data
set: genes' expression values - statistical
knowledge)

' Impute Nas and take the common
Pre-processing [«— genes among the 3 data sets
Partition n genes into k clusters,
where each gene belongs to the
cluster with the nearest center.

The number of clusters is set as
input parameter.

A

KEGG PWs
(biological knowledge)

Map genes to Entrez Gene
nomenclature

and create genes’ partition Pre-process ng
vectors

Partition n genes into k clusters. The
gene with the most common PWs
with a cluster's center, is assigned to
that cluster. The number of clusters
is set as input parameter.

Annotate genes to GO,

) Differentiate BP terms from MF terms.
Pre-processing |«—

dAd f:ké term ks Calculate biological
added as a paren . .

of the 2 exmf’ng root o| distances via GO-based
nodes from BP and Create the (o) Wu and Palmer’s
combined BP&MF —» method

Partition n genes into k clusters,
where each gene belongs to the
cluster with the nearest center.
The number of clusters is set as
input parameter.

Hard c-means clustering method
using Euclidean distance metric on

MF hierarchies

Y _ v hierarchy ¢ genes’ expression values.
Hard c-means clustering method L Clustering method Partion n genes info k
using Euclidean (1) or OR originated in this clusters, where each gene An approach of hard c-means

Correlation (2) distance metric Thesis (3) belongs to the cluster with clustering method using only
on genes’ partition vectors (KEGG3) number of clusters is set as | biological distances based on one Cluster validation methods (C-index, Silhouette index,
(KEGG2) A L EEE R GO hierarchy each time. Dunn index and Goodman-Kruskal index) using

& Use only the biological | Euclidean, Manhattan and Chebychev distance metrics
. ] . A J U‘s: biological Z\ust:r knowledge of GO o on genes’ expression values (statistical cluster
_C:‘USteIFDVa|'d?Z°n me(t‘hgds((‘c-lndix, Sk"hlt?ustte) R validation) and using biological distances (biological
index, Dunn index and Goodman-Kruskal index biological clust F Combined idati
using Euclidean, Manhattan and Chebychey | Use biological cluster ) Ogmf o & . lBF’&MF izati R L
ing Ll : g Y, validation to predict the OR ¥ OR A4 A normalization and a weighted voting strategy are used
CISEIES SIS O GRS (PN Yo Sorect number of Cluster validation methods (C-index, Silhouette index, to improve cluster validation.
(biological cluster validation). A normalization | Piological clusters. : : ;
d ighted voti " t- dt Dunn index and Goodman-Kruskal index) using ¢
and a weighted voting strategy are used to biological distances (biological cluster validation). Use statistical cluster validation - -
improve cluster validation. and biological cluster validation | Select some candidate optimal

A normalization and a weighted voting strategy are
used to improve cluster validation.

to predict the correct number of
statistical clusters

statistical partitions, using the

A
Select some candidate optimal Obtain biological above validity measures.
biological partitions from (1), partition via
@) er @) ueliy iz elboe KEGG PWs (4) Select some candidate optimal i “1235;;‘21;‘;:{;12°1‘;2§?
validity measures. (K/E/GG']) biological partitions (based on BP, Comparing partitions via on the c\ass;;crasuon of gene
. - _— w MF or combined BP and MF _ | various measures (Rand
Comparing partitions " Genes thattake partin hierarchy), using the above validity index, Hubert index and
via various measures | afr‘:js‘f;;gg"zgmw measures. corrected Rand index)

(Rand index, Hubert 4
index and corrected —
Rand index)

same cluster

- — — between 2 partitions, based
Comparing partitions via | on the classiication of gene

various measures (Rand | . pairs

Measure the correspondence i

Measure the correspondence

Estimate the optimal

between 2 partitions, based on
the classification of gene pairs

index, Hubert index and
corrected Rand index)

statistical partition
based on one data

set each time

Estimate the optimal #
biological partition

based on (1), (2) or Es'tlrlnat'e tlhe 0'5_:_'”‘3' outout
A n utputs :
(3) clustering Outputs : iologica’ partiiion Outplitsl: Optimal statistical it rtition for each data set
* Optimal biological gene partitions (one partition « Optimal biological gene partitions (one partition « Optimal statistical gene partitions (one partition for each data set)
approach for each of (1)-4) methods) based on available Eeeed on 2, Ul @ ,o':each o,gg ,,ie,i,c,,i:s :BP, M,(: o P based on available statistical knowledge
KEGG knowledge Combl'ned BP&MF ined BP&MF hi y) based on
hierarchy GO knowledge
|
Measure the correspondence between 2 (A) (B)
partitions from (A) or between 2 partitions

from (B) or between a pair of partitions
from (A) and (B)
The above measure is based on the
classification of gene pairs

Notation: Red bidirectional arrows imply that the clustering method is executed several times with different input parameter,
until some candidate optimal partitions are obtained. The optimal partitions are estimated via the validity measures.

Comparing partitions via

various measures (Rand
index, Hubert index and ) Result_

L, corrected Rand index) interpretation

Y

Figure 28 : The gene clustering methodologies implementetigmthesis in detail.
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CHAPTER 4: RESULTS INTERPRETATION AND CONCLUSION

4.1 Introduction

4.2 KEGG-Based Biological Gene Clustering

4.3 Data Sets -Based Statistical Gene Clustering
4.3.1 Sorlie’s Data Set -Based Statistical Gelustering
4.3.2 Sotiriou’s Data Set -Based Statistical Gene Clusger
4.3.3 Veer's Data Set -Based Statistical Gelnst€ring
4.3.4 Comparison of Obtained Statistical Rartg

4.4 GO-Based Biological Gene Clustering
4.4.1 BP-Based Biological Gene Clustering
4.4.2 MF-Based Biological Gene Clustering
4.4.3 Combined BP and MF -Based Biological Geéhestering
4.4.4 Comparison of Obtained Biological Pastis

4.5 Comparison between Gene Clustering Basedeo® and Based on Statistical Know-

ledge
4.6 Summary

4.1 Introduction

In previous chapter the implemented gene clustanathodologies, shown in Figure 28 are
analyzed in detail. In this chapter the resultshefse methodologies are presented and inter-
preted. A variety of comparisons between differebtained partitions take place, leading to
meaningful biological conclusions. The purposehis thesis, is to obtain gene clusters with bio-
logical meaning via various procedures, using trelable statistical (i.e. the three data sets) or
biological (i.e. the GO hierarchies) knowledge. Him®ve gene clusters have biological mean-
ing, if they converge to the gene clusters obtalnethking advantage of another type of biolog-
ical knowledge, i.e. the available KEGG PWs knowtkedn this chapter we will present a com-

parative experimental evaluation of the implemerdede clustering methodologies, aiming at
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illustrating their advantages and disadvantagekth&l above methods are applied to the com-
mon genes among the three data sets that can b&atathto the GO and can be also mapped to

the Entrez Gene nomenclature, i.e. finally to 9#8intt genes (see Section 3.2).

4.2 KEGG-Based Biological Gene Clustering

As stated in the previous chapter, an approachbtairo biological partitions is via KEGG
knowledge after some pre-processing, i.e. mappergeg to the Entrez Gene nomenclature and
the construction of the genes’ partition vectotisdscussed in Section 3.2. Here we do not use
none of the available data sets with genes’ exmesslues. We take advantage only of the
KEGG knowledge concerning the pathways each genleeo®46 genes takes part in. The clus-
ters are obtained using three methddEGG1, KEGG2 and KEGG3 biological cluster)nyVe
have presented these methods in detail in Sectiith 8 is noted that the number of biological
clusters obtained from the first method, i.e. KEG&dlogical clustering, are 108. More details
about the first method have been discussed in@e8tiLl2. The biological clusters from the two
last methods, i.e. KEGG2 and KEGG3 biological @ugsg, are validated via the validity meas-
ures, i.e. C-index, Silhouette index and Dunn indesing Euclidean, Manhattan and Chebychev
distance metrics on genes’ partition vectdfEGG biological cluster validation It is men-
tioned that although Goodman-Kruskal index has beglemented, due to its high computa-
tional complexity it has been excluded from the hndblogy to estimate the correct number of
clusters. It is noted that a normalization and #glted voting strategy are also applied to im-

prove the KEGG biological cluster validation.

As shown in Figure 28, the two last methods regthe number of clusters as an input pa-
rameter and are executed repeatedly until somedatedoptimal partitions are obtained. Thus,
from KEGG2 and KEGG3 biological clustering we ohtgiome candidate optimal biological
partitions. Since a large number of clusters ang small clusters are not desired, we focus on a
specific area of candidate optimal numbers of lgigial clusters, i.e. candidate optimal biologi-
cal partitions, and we finally select the candidatéth the highest votes. Then, Rand index (see
Section 3.11), which is a similarity measure betw&&GG2 or KEGG3 candidate biological
partitions and KEGG1 biological partition, is usedestimate the optimal KEGG2 or KEGG3

biological partition. The results obtained are shdwlow.
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From KEGG biological cluster validation concernikgGG2 biological clustering which
uses Correlation distance metric, the candidatebeusnof biological clusters (biological parti-
tions) with the highest votes are shown in Table\W2 finally select as the optimal number of
biological clusters the number 130, because the txaneans clustering method gives less empty
clusters than when is executed with 100 biologakters as input. Furthermore, Table 14
shows that the above partition with 130 clusterghtbe a good choice of optimal partition,
since it corresponds to large value of Goodman-kausdex. Also, in Figure 29 the behavior of
votes and Rand index as a function of a large rasigeartition values, concerning KEGG2
which uses Correlation distance metric is illugidatThe figure indicates that the partition with

130 clusters is a good choice as optimal partiviball candidates.

# Clusters| Votes

100 8.0000

130 8.0000

Table 13 : KEGG biological cluster validation concerning KEG®®logical clustering which uses Correlation

distance metric.

# Clusters GK Index
20 -0.6829
50 0.0845
100 0.4548
150 0.8201
200 0.9902

Table 14 :Goodman-Kruskal (GK) index values for some pamtiiconcerning KEGG2 which uses Correlation

distance metric.

Table 15 shows the candidate numbers of biologikadters (biological partitions) with the
highest votes. These results are obtained via KE@®bgical cluster validation, concerning

KEGG?2 biological clustering which uses Euclideastaiice metric. We finally select as the
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Figure 29 : Behavior of votes and Rand index for differenttitians concerning KEGG2 which uses Correlation

distance metric.

optimal number of biological clusters the numbe®,1decause the hard c-means clustering me-
thod gives less empty clusters than the case withtiparameter 80 biological clusters. Further-
more, from Table 16 we see that the above partititim 110 clusters could be considered as op-
timal partition, since it corresponds to large eabf Goodman-Kruskal index. Also, Figure 30
shows the behavior of votes and Rand index as eifumof a large range of partition values,
concerning KEGG2 which uses Euclidean distance icnetpparently, the partition with 110
clusters is a good choice as optimal partitionlloédandidates.

# Clusters| Votes

80 10.6667

110 7.6667

Table 15 : KEGG biological cluster validation concerning KEGG®logical clustering which uses Euclidean dis-

tance metric.

In case of KEGG biological cluster validation comieg KEGG3 biological clustering, the
candidate numbers of biological clusters (biologp=titions) with the highest votes are shown
in Table 17. Thus, the optimal number of biologichisters is 100. Furthermore, as Table 18
shows, the above partition with 100 clusters maggisidered as optimal, since it corresponds to
large value of Goodman-Kruskal index. Also, thededr of votes and Rand index as a function

of a large range of partition values, concerningd3, is shown in Figure 31 and indicates that
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the partition with 100 clusters can be thought jpigntal. The figure indicates that the partition
with 100 clusters is a good choice as optimal partiof all candidates.

# Clusters GK Index
20 -0.5837
50 -0.1159
100 0.5149
150 0.9357
200 0.9157

Table 16 : Goodman-Kruskal (GK) index values for some pantisi@oncerning KEGG2 which uses Euclidean dis-
tance metric.

1
12
110 clusters 08
10 %
D 506
§ 8 -_g 110 clusters
s 0.4
6 o
0.2
% 100 200 300 400 500 0 100 200 300 400 500

# clusters # clusters

Figure 30 : Behavior of votes and Rand index for different iiarts concerning KEGG2 which uses Euclidean
distance metric.

# Clusters| Votes

100 8.0000

Table 17 :KEGG biological cluster validation concerning KEG@i8logical clustering.

From all the above figures we see that there iargety of candidate optimal KEGG-based
biological partitions with the highest votes. Howevwe select as optimal the partition which

has a number of clusters close to that one of btaieed KEGG1 biological partition. We also
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justify our choice with the behavior of Rand indes,shown in the above figures, where we ob-
serve that Rand index has achieved its highesevaluthis estimated optimal biological parti-

tion. That means that the above choice seems tioebeptimal that converges mostly to KEGGL1
biological partition.

# Clusters GK Index
20 1.0962
50 0.6159
100 0.6064
150 -0.6194
200 -0.0323

Table 18 :Goodman-Kruskal (GK) index values for some pantisiconcerning KEGG3.

11 ' ' ' ' 1
10 0.9
9 100 clusters %0.8
x
[72]) (5}
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7 5 0.6
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6 0.5
5 : : : : 0.4 : : : :
0 100 200 300 400 500 0 100 200 300 400 500
# clusters # clusters

Figure 31 : Behavior of votes and Rand index for different piarts concerning KEGG3.

Next, the above optimal biological partitions, KEGG2 and KEGG3 biological partitions,
are compared with the one obtained from the firsthod, i.e. with KEGG1 biological partition.
For this purpose several similarity measures aadable, i.e. Rand index, Hubert index and cor-
rected Rand index. We finally conclude that thermat KEGG2 and KEGG3 biological parti-
tions converge strongly to the biological partitiobtained from the first method, i.e. from
KEGGL1 biological clustering. This fact justifiesrothoice for the optimal KEGG2 and KEGG3
biological partitions, we made before. The resalitained are shown below. It is important to
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note that as it has been already mentioned in@e8tiL1, the Rand (R) and Hubert (H) similari-
ty indices are equivalent after correction for agnent due to chance.

o KEGG1 biological partition compared with estimatgatimal KEGG2 biological partition
obtained using Correlation distance metric
Rand index = 0.9430
Hubert index = 0.8860
Corrected Rand index = 0.2136

o KEGG1 biological partition compared with estimatgatimal KEGG2 biological partition
obtained using Euclidean distance metric
Rand index = 0.9305
Hubert index = 0.8609
Corrected Rand index = 0.2551

e KEGGI1 biological partition compared with estimatgatimal KEGG3 biological partition
Rand index = 0.9422
Hubert index = 0.8843
Corrected Rand index = 0.2391

Overall, the three methods (KEGG1, KEGG2 and KEG@&Bogical clustering) obtain bio-
logical partitions very similar to the biologicahmition obtained from the first method (KEGG1
biological clustering). That means that we can iobsaiccessfully the optimal biological parti-
tion from the available KEGG PWs knowledge via fdifferent methods. The final selected bi-
ological partitions obtained from the three methfas KEGG2 biological clustering using Cor-
relation distance metric, KEGG2 biological clustgriusing Euclidean distance metric and
KEGGS3 biological clustering) are those that coneampst to the one obtained from the first me-
thod, and they are characterized as optimal. Sophitained optimal biological partitions based
on KEGG PWs knowledge are: the biological partitwith 108 clusters obtained from the
KEGGL1 method, the biological partition with 130 stiers obtained from the KEGG2 biological
clustering method using Correlation distance methie biological partition with 80 clusters ob-
tained from the KEGG2 biological clustering metheging Euclidean distance metric and the
biological partition with 100 clusters obtained frahe KEGG3 biological clustering method.
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Figure 32 is based on our results and illustrabed genes are finally “well-clustered” via
KEGG1, KEGG2 or KEGG3 method.
Clusters obtained from

KEGG1 or KEGG2
or KEGG3 method

QOO---000

Each cluster has common
genes with at most one of the
two KEGG PWs each time

KEGG PW with
the largest number
of genes

KEGG PW with
the second largest
number of genes

Figure 32 :An illustrative example that shows the obtaine@éactcut” clusters.

4.3 Data Sets —Based Statistical Gene Clustering

As Figure 28 shows, the three available data sdié’s, Sotiriou’'s and Veer's data set)
should be pre-processed before they can be usest. gke-processing, we finally keep only the
14% of genes from Sorlie’s data set, the 32% ofegdnom Sotiriou’s data set and the 6% of
genes from Veer’s data set. This will not resuléibiased results interpretation, since we finally
keep the most important genes concerning breasecahhis issue is further analyzed in Section
3.2.

The hard c-means clustering method is applied,guSirclidean distance metric on gene ex-
pression values, i.e. on each data set with theg@46s independentlgtéatistical clusterinyy To
validate the statistical partition emerged from #tve statistical clustering approach, a statis-
tical and a GO biological cluster validation argueed. Several validity methods (i.e. C-index,
Silhouette index and Dunn index) are appliesing three types of distance metrics, i.e. Eucli-
dean, Manhattan and Chebychev, on gene expresaloasvétatistical cluster validation It is

mentioned that Goodman-Kruskal index has been mmgiteed in this thesis, but due to its high
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computational complexity it has not been applieth ibur methodology to estimate the correct
number of clusters. Except the gene expressioresahs shown in Figure 28, the cluster valida-
tion methods use also the calculated GO-baseddwalodistancesGO biological cluster vali-
dation), using one hierarchy (BP or MF or combined BP Bitthierarchy) each time. It is noted
that a normalization and a weighted voting stratagg/also applied to improve the statistical or
GO biological cluster validation. As the red arrawsly, the clustering method and the validity
measures are executed multiple times with differeptit parameter values, i.e. number of clus-
ters, until some candidate optimal statisticaliparts are obtained. Since a large number of clus-
ters and very small clusters should be avoidedfoses on a specific area of candidate optimal
numbers of statistical clusters, i.e. candidatenagdt statistical partitions, and we finally select
the candidates with the highest votes. Then, Radex (see Section 3.11), which is a similarity
measure between candidate statistical partitiodsk&#GG1 biological partition, is used to esti-
mate the optimal statistical partitions. The resolttained are shown below, for the three availa-
ble data sets.

4.3.1 Sorlie’'s Data Set -Based Statistical Gene Clusterin

As far as Sorlie’s data set is concerned:

e From statistical cluster validation concerningistatal clustering, the candidate numbers
of statistical clusters (statistical partitions}thvihe highest votes are shown in Table 19.

e From BP biological cluster validation concerningtistical clustering, the candidate num-
bers of statistical clusters (statistical partispwith the highest votes are shown in Table
20.

¢ From MF biological cluster validation concerningtstical clustering, the candidate num-
bers of statistical clusters (statistical partifpwith the highest votes are shown in Table
21.

e From combined BP and MF biological cluster validatconcerning statistical clustering,
the candidate numbers of statistical clustersigsiadl| partitions) with the highest votes are
shown in Table 22.

It is noted that each partition does not contaiptynelusters. Next, we compare independently
the candidate optimal statistical partitions oledirirom Sorlie’s data set (shown in Tables 19-

22), with the biological partition obtained from K& knowledge through the first method, i.e.
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# Clusters | Votes # Clusters | Votes # Clusters| Votes # Clusters | Votes

50 8.6667 50 9.0000 50 10.3333 50 9.0000

60 9.3333 70 8.6667 60 9.0000 60 9.3333

70 9.0000 90 8.0000 70 8.0000 70 8.0000

Table 19 :Sorlie’s data Table 20 :Sorlie’s data Table 21 :Sorlie’s data 90 7.6667
set statistical cluster va-  set BP biological cluster set MF biological cluster

Table 22 :Sorlie’'s data

set combined BP and

lidation concerning sta-  validation concerning validation concerning

tistical clustering. statistical clustering. statistical clustering.

MF biological cluster
validation concerning

statistical clustering.

through KEGGL1 biological clustering. For this puspowve use the Rand index. Thus, we esti-
mate the optimal statistical partition that conesrgnost to the biological partition obtained from
KEGG knowledge through the first method. The resaoltained are shown in Table 23. From
the results in Table 23, we estimate as the optBodie’s data set-based statistical partition, the
one with the maximum Rand index (R), i.e. the partiwith 90 clusters. Furthermore, from Ta-
ble 24 we see that the above partition with 90telgsmight be a good choice as optimal parti-
tion, since it corresponds to large value of Goadhideuskal index. We do not examine Good-
man-Kruskal index using biological distances (bgptal cluster validation) even for few parti-
tions, due to higher computational complexity themg statistical distances (statistical cluster
validation), shown before. Also, in Figure 33 thehavior of votes and Rand index as a function
of a large range of partition values, concernindi€s data set is shown, indicating that the par-
tition with 90 clusters is a good choice as optipettition of all candidates. As far as all imple-
mented similarity indices are concerned, for tisneated optimal statistical partition compared
with the KEGG1 biological partition it holds:

Rand index = 0.9207
Hubert index = 0.8413
Corrected Rand index = 0.0032
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So, the optimal Sorlie’s data set-based statispeatition converges strongly to the biological
partition obtained from the first method, i.e. frddEGGL1 biological clustering. These results

confirm our decision for the optimal Sorlie’s datt-based statistical partition, made before.

# Clusters R
50 0.9085
60 0.9112
70 0.9143
90 0.9207

Table 23 :Sorlie’s data set-based candidate optimal stadigtiartitions.

# Clusters GK Index
20 -1.4478
50 -0.4491
100 0.1618
150 0.6031
200 1.1319

Table 24 :Goodman-Kruskal (GK) index values for some pamtisi based on statistical cluster validation concern
ing statistical clustering on Sorlie’s data set.
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Figure 33 : Behavior of votes and Rand index for different piaris concerning Sorlie’s data set.
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4.3.2 Sotiriou’s Data Set -Based Statistical Gene Cluster

As far as Sotiriou’s data set is concerned:

e From statistical cluster validation concerningistatal clustering, the candidate numbers
of statistical clusters (statistical partitions}thvihe highest votes are shown in Table 25.

e From BP biological cluster validation concerningtistical clustering, the candidate num-
bers of statistical clusters (statistical partispwith the highest votes are shown in Table
26.

e From MF biological cluster validation concerningtsdtical clustering, the candidate num-
bers of statistical clusters (statistical partispwith the highest votes are shown in Table
27.

e From combined BP and MF biological cluster validatconcerning statistical clustering,
the candidate numbers of statistical clustersi¢si@dl partitions) with the highest votes are
shown in Table 28.

It is noted that in each partition there are nabimted empty clusters. Next, we compare inde-
pendently the candidate optimal statistical partii obtained from Sotiriou’s data set (shown in
Tables 25-28), with the biological partition ob&ihfrom KEGG knowledge through the first

method, i.e. through KEGGL1 biological clusteringr Ehis purpose we use Rand index. Thus,
we estimate the optimal statistical partition thatverges most to the biological partition ob-
tained from KEGG knowledge through the first meth®lde results obtained are shown in Table
29. From the results in Table 29, we estimate aofitimal Sotiriou’s data set-based statistical
partition, the one with the maximum Rand index (R, the partition with 110 clusters. Fur-

thermore, from Table 30 we see that the abovetjpartivith 110 clusters is a good choice as op-
timal partition, since it corresponds to large wati Goodman-Kruskal index. It is noted that we
do not examine Goodman-Kruskal index using biolalgitistances (biological cluster valida-

tion), even for few partitions, due to its highengutational complexity as compared with that
of using statistical distances (statistical clustgidation), shown before. Also, in Figure 34 the
behavior of votes and Rand index as a function lafrge range of partition values, concerning
Sotiriou’s data set is depicted. It is shown tinat partition with 110 clusters is a good choice as

optimal partition of all candidates. As far asialplemented similarity indices are concerned, for
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# Clusters | Votes # Clusters| Votes # Clusters| Votes # Clusters| Votes
50 8.6667 50 9.6667 50 10.3333| 50 9.3333
60 7.0000 70 8.0000 60 10.6667| 60 8.3333
70 7.6667 80 8.3333 80 7.0000 70 9.0000
100 7.3333 90 8.0000 Table 27 :Sotiriou’s da- 100 6.6667
ta set MF biological
110 7.0000 100 7.3333 o Table 28 :Sotiriou’s
cluster validation con-
data set combined BP

Table 25 :Sofiriou's da-  Table 26 :Sotiriou’s da-  Cerning statistical clus-

. and MF biological clus-
ta set statistical cluster  ta set BP biological clus- t€ng-

ter validation concern-

validation concerning ter validation concerning . - .
ing statistical clustering.

statistical clustering. statistical clustering.

# Clusters R

50 0.8986
60 0.9013
70 0.9068
80 0.9089
90 0.9117

100 0.9148

110 0.9159

Table 29 :Sotiriou’s data set-based candidate optimal sidigpartitions.

this estimated optimal statistical partition congohiwith the KEGG1 biological partition it
holds:

Rand index = 0.9159
Hubert index = 0.8318
Corrected Rand index = 8.0816e-004
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So, the optimal statistical partition based onr8ntis data set converges strongly to the biologi-
cal partition obtained from the first method, frem KEGG1 biological clustering. These results

confirm our previous choice for the optimal Sotirdata set-based statistical partition.

# Clusters GK Index
20 -1.0253
50 -0.6788
100 0.0486
150 0.1471
200 1.5084

Table 30: Goodman-Kruskal (GK) index values for some pantisithased on statistical cluster validation concern-
ing statistical clustering on Sotiriou’s data set.
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Figure 34 : Behavior of votes and Rand index for different piars concerning Sotiriou’s data set.

4.3.3 Veer's Data Set -Based Statistical Gene Clustering

As far as Veer's data set is concerned:

e From statistical cluster validation concerningistatal clustering, the candidate numbers

of statistical clusters (statistical partitions}thvihe highest votes are shown in Table 31.
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e From BP biological cluster validation concerningtistical clustering, the candidate num-
bers of statistical clusters (statistical partispwith the highest votes are shown in Table
32.

e From MF biological cluster validation concerningtsdtical clustering, the candidate num-
bers of statistical clusters (statistical partispwith the highest votes are shown in Table
33.

e From combined BP and MF biological cluster validatconcerning statistical clustering,
the candidate numbers of statistical clustersi¢sil partitions) with the highest votes are
shown in Table 34.

It is noted that each partition does not contaiptynclusters. Next, we compare independently
the candidate optimal statistical partitions oledifirom Veer’'s data set (shown in Tables 31-
34), with the biological partition obtained from K& knowledge through the first method, i.e.
through KEGG1 biological clustering. For this pusponve use Rand index. Thus, we estimate
the optimal statistical partition that convergessmt the biological partition obtained from
KEGG knowledge through the first method. The ol#tdimesults are summarized in Table 35.
From the results in Table 35, we estimate as thignapVeer's data set-based statistical parti-
tion, the one with the maximum Rand index (R), the. partition with 150 clusters. Furthermore,
from Table 36 we see that the above partition W80 clusters is a good choice as optimal parti-
tion, since it corresponds to large value of Goaghideuskal index. We do not examine Good-
man-Kruskal index using biological distances (bgidal cluster validation), even for few parti-
tions, due to its higher computational complexisycampared with that of using statistical dis-
tances (statistical cluster validation) shown bef@xlso, in Figure 35 the behavior of votes and
Rand index as a function of a large range of pamntivalues, concerning Veer’s data set is dem-
onstrated, indicating that the partition with 190sters is a good choice as optimal partition of
all candidates. As far as all implemented simyaiitdices are concerned, for this optimal statis-

tical partition compared with the KEGG1 biologigalrtition it holds:

Rand index = 0.9186
Hubert index = 0.8371
Corrected Rand index = 0.0065
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# Clusters | Votes # Clusters | Votes # Clusters | Votes # Clusters| Votes
50 6.6667 50 7.6667 50 11.0000 50 11.0000
60 10.000 60 9.6667 80 8.3333 60 8.3333
130 6.3333 90 7.3333 90 7.0000 80 7.6667
150 7.6667, 100 8.6667 110 7.0000 110 6.3333

Table 31 :Veer'sdata  Table 32 :Veer's data Table 33 :Veer'sdata  Table 34 :Veer's data
set statistical cluster set BP biological clus- set MF biological clus- set combined BP and
validation concerning ter validation concern- ter validation concern-  MF biological cluster

statistical clustering. ing statistical cluster- ing statistical cluster- validation concerning

ing. ing. statistical clustering.

# Clusters R
50 0.8874
60 0.9010
80 0.9068
90 0.9096
100 0.9154
110 0.9163
130 0.9173
150 0.9186

Table 35 :Veer's data set-based candidate optimal statigh@asitions.

So, the optimal Veer's data set-based statisti@dltipn converges strongly to the biological par-
tition obtained from the first method, i.e. from &EB1 biological clustering. These results vali-

date our choice for the optimal Veer’'s data seetdastatistical partition, made before.
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# Clusters | GK Index
20 -1.2710
50 -0.0399
100 -0.6355
150 1.0893
200 0.8571

Table 36 : Goodman-Kruskal (GK) index values for some pantisidbased on statistical cluster validation concern-
ing statistical clustering on Veer's data set.
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Figure 35 : Behavior of votes and Rand index for different itiaris concerning Veer's data set.

Overall, we conclude that the optimal statisticaitpions, obtained regardless from each of
the three available data sets, converge strongdliyediological partition obtained from the first
method (KEGG1 biological clustering). That meanat thata sets —based statistical clustering
leads to gene clusters which are biologically megiiil.

From all the above figures we see that there iareety of candidate optimal statistical parti-
tions with the highest votes. However, we selea@sgnal the partition which has a number of
clusters close to that one of the obtained KEG@®@Ilofical partition. We also justify our choice
with the behavior of Rand index, as shown in thevalfigures, where we observe that Rand in-
dex has achieved its highest value for this esecthaptimal statistical partition. That means that

the above choice seems to be the optimal that cgasenostly to KEGGL1 biological partition. It
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is also important to note that as far as votescaneerned, the optimal number of clusters with
the highest vote seems to be much smaller thasaleeted one. The reason might be that after
the necessary pre-processing (see Section 3.2jethes that remain to be clustered might be-
long to much fewer clusters than all the geneshe available data sets before the pre-
processing. Furthermore, we notice that the usadasity indices (i.e. Rand index, Hubert in-

dex, corrected Rand index) have a major drawbackdo data sets. As we have discussed in
Section 3.11, they focus on the correspondenceowmndene pairs are classified between two
partitions. In our data sets after applying cluastgmethodology, the gene pairs that belong to
the same clusters are much less than those traight different clusters. As a result, the more

clusters we have the larger similarity indices’uealve achieve, since more gene pairs that be

long to different clusters appear.

4.3.4 Comparison of Obtained Statistical Partitions

Afterwards, we compare the estimated optimal siegispartitions obtained from the availa-
ble three data sets among them. The results obtameeshown below.
e Veer’'s data set-based optimal statistical partiitompared with Sorlie’s data set-based op-

timal statistical partition

Rand index = 0.9553
Hubert index = 0.9106
Corrected Rand index = 0.0163

e Veer’'s data set-based optimal statistical partitompared with Sotiriou’s data set-based

optimal statistical partition

Rand index = 0.9530
Hubert index = 0.9060
Corrected Rand index = 0.0089

e Sotiriou’s data set-based optimal statistical farticompared with Sorlie’s data set-based
optimal statistical partition

Rand index = 0.9556
Hubert index = 0.9112
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Corrected Rand index = 0.0108

It is also important to note that, as it has bdesady mentioned, the Rand (R) and Hubert (H)
similarity indices are equivalent after correctiimn agreement due to chance. From the above
results, we conclude that the optimal statistiatipons, obtained regardless from each of the
three available data sets, are very similar. Theama that regardless the data set, the optimal

statistical partition of certain genes remains antbe same.

4.4 GO-Based Biological Gene Clustering

Another approach of executing hard c-means clugges based on the calculated biological
distances, using one GO hierarchy each ti® (iological clusteriny Here we do not use
none of the available data sets with genes’ exess&lues. We take advantage only of the cal-
culated biological distances based on ontologigaroration. The genes of our interest are the
946 genes that are obtained after the necessafyr@cessing (see Section 3.2). To validate the
biological partition emerged from GO biological sfering approach, a GO biological cluster
validation is required, as discussed previouslys Ihoted that a normalization and a weighted
voting strategy are also applied to improve the l3@ogical cluster validation. As the red ar-
rows in Figure 28 imply, the clustering method dinel validity measures are executed multiple
times with different input parameter values, i.ember of clusters, until some candidate optimal
biological partitions are obtained. Since a largeher of clusters and very small clusters should
be avoided, we focus on a specific area of canglidptimal numbers of biological clusters, i.e.
candidate optimal biological partitions, and weafip select the candidates with the highest
votes. Then, Rand index (see Section 3.11), wisehsimilarity measure between GO candidate
biological partitions and KEGG1 biological partitios used to estimate the optimal GO biologi-

cal partitions.

It is also important to note, as it has been alsatianed in Section 3.3, that due to Wu and
Palmer method’s high computational complexity, veek for each gene only few BP, MF or
combined BP and MF terms to calculate the BP, MiEmnbined BP and MF biological dis-
tances respectively. This may result in a biasedlt® interpretation. In this section we do not

examine Goodman-Kruskal index using biologicalatises (biological cluster validation), even
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for few partitions, due to its higher computationamplexity as compared with that of using sta-

tistical distances (statistical cluster validatiost)own in Section 4.3.

4.4.1 BP-Based Biological Gene Clustering

From BP biological cluster validation concerning B®logical clustering, the candidate
numbers of biological clusters (biological partit®) with the highest votes are shown in Table
37. It is noted that in each partition there areeropty clusters. Next, we compare the biological
partitions obtained from BP hierarchy with the bmital partition obtained from KEGG know-
ledge via the first method. Thus, we estimate fbttnal BP hierarchy-based biological partition
that converges most to the biological partitionagied from KEGG knowledge via the first me-
thod. The results obtained are shown in Table 88mRhe results in Table 38, we estimate as
the optimal BP hierarchy-based biological partititre one with the maximum Rand index (R),
i.e. the partition with 100 clusters. FurthermoreFigure 36 the behavior of votes and Rand in-
dex as a function of a large range of partitiorugalconcerning BP hierarchy, indicates that the
partition with 100 clusters is a good choice asmoai partition of all candidates. As far as all
implemented similarity indices are concerned, fas testimated optimal biological partition
compared with the KEGGL1 biological partition it st

Rand index = 0.7087
Hubert index = 0.4173
Corrected Rand index = -0.0156

Hence, the optimal BP hierarchy-based biologicdiiggen is not similar enough to the biological
partition obtained from the first method, i.e. fra€BGG1 biological clustering. Thus, we con-

clude that using BP hierarchy is not a good alt&reavay to obtain biological clusters.

# Clusters | Votes
50 8.6667
70 9.0000
80 7.0000
100 7.3333

Table 37 :BP biological cluster validation concerning BP bigical clustering.
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# Clusters R
50 0.6570
70 0.6966
80 0.6973
100 0.7087,

Table 38 :BP hierarchy-based candidate optimal biologicalifians.
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Figure 36 : Behavior of votes and Rand index for different piars concerning BP hierarchy.

4.4.2 MF-Based Biological Gene Clustering

From MF biological cluster validation concerning Nbkological clustering, the candidate
number of biological clusters (biological partitg)rwith the highest votes are shown in Table
39. It is noted that each partition does not coist@mpty clusters. Next, we compare the biolog-
ical partitions obtained from MF hierarchy with thelogical partition obtained from KEGG
knowledge via the first method. Thus, we estimage dptimal MF hierarchy-based biological
partition that converges most to the biologicatifian obtained from KEGG knowledge via the
first method. The results are shown in Table 40nfthe results in Table 40, we estimate as the
optimal MF hierarchy-based biological partitione thne with the maximum Rand index (R), i.e.
the partition with 130 clusters. Furthermore, igufe 37 the behavior of votes and Rand index
as a function of a large range of partition valwescerning MF hierarchy, indicates that the par-

tition with 130 clusters is a good choice as oplip=atition of all candidates. As far as all im-
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plemented similarity indices are concerned, fos #stimated optimal biological partition com-
pared with the KEGGL1 biological partition it holds:

Rand index = 0.5803
Hubert index = 0.1605
Corrected Rand index = -0.0047

Hence, the optimal MF-based biological partitioma similar at all to the biological partition
obtained from the first method, i.e. from KEGG1lb@cal clustering. Thus, we conclude that

using MF hierarchy is not a good alternative waghtain biological clusters.

# Clusters | Votes
50 6.6667
60 6.6667
70 8.0000
80 8.3333
110 8.0000
130 6.0000

Table 39 :MF biological cluster validation concerning MF logical clustering.

# Clusters R

70 0.4957
80 0.5305
110 0.5536
130 0.5803

Table 40 :MF hierarchy-based candidate optimal biologicatipans.
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Figure 37 : Behavior of votes and Rand index for different piarts concerning MF hierarchy.

4.4.3 Combined BP and MF -Based Biological Gene Clustegin

From the combined BP and MF biological cluster detiion concerning combined BP and
MF biological clustering, the candidate numberbiofogical clusters (biological partitions) with
the highest votes are shown in Table 41. It is chdibat each partition does not contain empty
clusters. Next, we compare the biological partgiabtained from combined BP and MF hie-
rarchy with the biological partition obtained fraREGG knowledge via the first method. Thus,
we estimate the optimal combined BP and MF-baselddical partition that converges most to
the biological partition obtained from KEGG knowtgdvia the first method. The results ob-
tained are shown in Table 42. From the resultsabld 42, we estimate as the optimal combined
BP and MF hierarchy -based biological partitiorg tme with the maximum Rand index (R), i.e.
the partition with 100 clusters. Furthermore, igufe 38 the behavior of votes and Rand index
as a function of a large range of partition valuEsjcerning combined BP and MF hierarchy,
indicating that the partition with 100 clustersaigjood choice as optimal partition of all candi-
dates. As far as all implemented similarity indie@s concerned, for this estimated optimal bio-
logical partition compared with the KEGG1 biolodipartition it holds:

Rand index = 0.8704
Hubert index = 0.7407
Corrected Rand index = 0.0282

Hence, the optimal combined BP and MF hierarchyfdsological partition converges enough

to the biological partition obtained from the firaethod, i.e. from KEGGL1 biological clustering.
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These results validate our previous choice forapigmal combined BP and MF -based biologi-
cal partition. Also, we conclude that using comhbifi8® and MF hierarchy is a good alternative
way to obtain biological clusters. Furthermore, ufeg 39 presents all the obtained results of
Rand index. As we can sde-4< 1+ 3< I+ 3+ £ which implies that better results can be ob-

tained using the combined BP and MF hierarchyardtan using the other two hierarchies.

# Clusters | Votes
50 6.3333
60 8.0000
70 8.3333
80 6.6667
100 6.6667,

Table 41 :Combined BP and MF biological cluster validatiomcerning combined BP and MF biological cluster-

ing.
# Clusters R
60 0.8658
70 0.8593
80 0.8597
100 0.8704

Table 42 :Combined BP and MF hierarchy-based candidate opbinkgical partitions.

From all the above figures we see that there iargety of candidate optimal GO-based bio-
logical partitions with the highest votes. Howewse select as optimal the biological partition
which has a number of clusters close to that ortkeobbtained KEGG1 biological partition. It is
also important to note that as far as votes areeroed, the optimal number of clusters with the
highest vote seems to be much smaller than thetedlene. The reason might be that after the
necessary pre-processing (see Section 3.2), thesdkat remain to be clustered might belong to

much fewer clusters than all the genes in the ablgldata sets before the pre-processing.
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Figure 38 : Behavior of votes and Rand index for different piaris concerning combined BP and MF hierarchy.

4.4.4 Comparison of Obtained Biological Partitions

Next, we compare the optimal biological partitiaristained from the available GO know-

ledge, using one GO hierarchy each time, among.tiiéeresults obtained are shown below.

BP-based optimal biological partition compared wWilr-based optimal biological parti-
tion

Rand index = 0.5422

Hubert index = 0.0843

Corrected Rand index = 0.0096

BP-based optimal biological partition compared vatmbined BP and MF -based optimal
biological partition

Rand index = 0.7477

Hubert index = 0.4954

Corrected Rand index = 0.1042
It is noted that BP hierarchy is a sulsdetombined BP and MF hierarchy. Thus, we ex-

pect that Rand index < 1 and Hubert index < 1. \Afe @lso support this from Figure 39,

sincel+ 2+ 3< I+ 2+ 3+ 4

MF-based optimal biological partition compared wsttmbined BP and MF -based optim-
al biological partition
Rand index = 0.5786
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Hubert index = 0.1571

Corrected Rand index = 0.0371

It is noted that MF hierarchy is a subsfetombined BP and MF hierarchy. Thus, we ex-
pect that Rand index < 1 and Hubert index < 1. \We @lso crosscheck this from Figure
39, sincel+ 2+ 4< 14+ 2+ 3+ <4

From the above results, we can conclude that tharedd optimal GO-based biological parti-
tions do not resemble at all each other. Figur@al86 presents all the obtained results of Rand

index. Itis noted that+ 2< 1+ 2+ 4< 1+ 2 {, according to our results.

100 clusters 130 clusters

108 clusters

Similarity of BP and KEGG: 1+ 3
Similarity of MF and KEGG : 1 +4
Similarity of combined BP&MF and KEGG: 1+3 +4

Similarity of BP and MF : 1 +2
Similarity of combined BP&MF and BP: 1+2+3
Similarity of combined BP&MF and MF: 1 +2 +4

Figure 39An illustrative example of all obtained resultsRdnd index.

4.5 Comparison between Gene Clustering Basedlen®O and Based on Sta-
tistical Knowledge

Finally, we compare the optimal statistical pastis obtained from the three data sets, pre-
sented in Section 4.3, with the optimal biologipattitions obtained from the GO, i.e. the three

GO hierarchies, presented in Section 4.4. Thetsesbtained are shown below.
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Sorlie’s data set-based optimal statistical partittompared with BP-based optimal bio-
logical partition

Rand index = 0.7314

Hubert index = 0.4628

Corrected Rand index = -0.0020

Veer’'s data set-based optimal statistical partitompared with BP-based optimal biolog-
ical partition

Rand index = 0.7347

Hubert index = 0.4694

Corrected Rand index = -0.0048

Sotiriou’s data set-based optimal statistical particompared with BP-based optimal bio-
logical partition

Rand index = 0.7142

Hubert index = 0.4285

Corrected Rand index = 0.0027

Sorlie’s data set-based optimal statistical partittompared with MF-based optimal bio-
logical partition

Rand index = 0.5835

Hubert index = 0.1671

Corrected Rand index = 0.0055

Veer’'s data set-based optimal statistical partitompared with MF-based optimal biolog-
ical partition

Rand index = 0.5802

Hubert index = 0.1605

Corrected Rand index = 7.1032e-004

Sotiriou’s data set-based optimal statistical garticompared with MF-based optimal bio-
logical partition
Rand index = 0.5806
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Hubert index = 0.1612
Corrected Rand index = 0.0031

e Sorlie’s data set-based optimal statistical parittompared with combined BP and MF -
based optimal biological partition
Rand index = 0.8941
Hubert index = 0.7882
Corrected Rand index = 0.0012

e Veer's data set-based optimal statistical partitompared with combined BP and MF -
based optimal biological partition
Rand index = 0.9030
Hubert index = 0.8060
Corrected Rand index = -7.8115e-004

e Sotiriou’s data set-based optimal statistical garticompared with combined BP and MF
-based optimal biological partition
Rand index = 0.8969
Hubert index = 0.7939
Corrected Rand index = 0.0019

From the above results, we conclude that the ofdaoptimal GO-based biological partition us-
ing the combined BP and MF hierarchy is very simi@h the optimal statistical partitions ob-
tained from the three data sets. However, usin@3ther MF hierarchy doesn’t lead to desired
results. Thus, we confirm again that using only bmad BP and MF hierarchy is a good alter-

native way to obtain a gene patrtition.

4.6 Summary

In this chapter, we present the obtained resutis fthe gene clustering methodologies im-
plemented in this thesis (see Figure 28). We atsopare and interpret the results and we finally
make meaningful biological conclusions. We concltidd there are four different clustering ap-
proaches to obtain biological partitions from thvailable KEGG PWs knowledge. Also, statis-
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tical partitions based on data sets converge diydonghe biological partition obtained from the
first clustering method based on KEGG PWs knowleddesse statistical partitions obtained
from the data sets are very similar each otherthBumore, one major conclusion is that using
the GO hierarchies does not lead to biological nmeginl partitions, except using the combined
BP and MF hierarchy, which takes into consideraboth BP and MF hierarchy knowledge. Fi-
nally, these biological partitions based on the l@éarchies don’t resemble each other.
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CHAPTER 5: DISCUSSION AND OPEN PROBLEMS

5.1 Introduction

5.2 Main Conclusions
5.3 Further Research
5.4 Summary

5.1 Introduction

In this chapter, we summarize the main meaningfological conclusions obtained in
Chapter 4. We also introduce some ideas for furtksearch. Furthermore, we suggest some
guidelines about the implemented gene clusterinthod®logies, which might lead to better re-

sults and then, to more meaningful biological casidns.

5.2 Main Conclusions

In this section we summarize in brief the findimg<hapter 4. It has been illustrated that it is
feasible to obtain biological partitions from theadable KEGG PWs knowledge via four differ-
ent methods. In particular, the obtained optimalldgical partitions based on KEGG PWs
knowledge are the following:

¢ the biological partition with 108 clusters obtairfeain the KEGG1 method

o the biological partition with 130 clusters obtainkedm the KEGG2 biological clustering

method using Correlation distance metric

¢ the biological partition with 80 clusters obtainffdm the KEGG2 biological clustering

method using Euclidean distance metric

o the biological partition with 100 clusters obtainkedm the KEGG3 biological clustering

method
It has been also shown that using the precedingodst genes are eventually characterized as

“well-clustered”.
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It is also observed that the optimal statisticatifions, obtained independently from each of
the three available data sets, converge strongdlyediological partition obtained from the first
method (KEGGL1 biological clustering). This revetilat data sets —based statistical clustering
leads to gene clusters which are biologically megfai. In particular, the obtained optimal sta-
tistical partitions are:

o the statistical partition with 90 clusters basedSanlie’s data set

o the statistical partition with 110 clusters basadsetiriou’s data set

¢ the statistical partition with 150 clusters basad/eer’s data set
Furthermore, the optimal statistical partitions aaed independently from each of the three
available data sets are very similar each otheplyimg that regardless the data set, the optimal
statistical partition of certain genes remains attbe same. However, as we have discussed in
the previous Chapter in Section 4.3.3, it is im@ottto mention that the used validity measures
focus on the correspondence on how gene pairdassifeed between two partitions. In our data
sets after applying clustering methodology, theegpairs that belong to the same clusters are
much less than those that belong to different elgstAs a result, the more clusters we have the
larger similarity indices’ value we achieve, simaere gene pairs that belong to different clusters
appear. The above similarity indices’ drawback rhiginfuse us to choose the optimal statistical

partition.

As far as using GO hierarchies, the obtained optbiwogical partitions based on GO hie-
rarchies knowledge are the following:

¢ the biological partition with 100 clusters basedtlo@ BP hierarchy

¢ the biological partition with 130 clusters basedloam MF hierarchy

¢ the biological partition with 100 clusters basedilo& combined BP and MF hierarchy
We have shown that better results can be obtaisedy uhe combined BP and MF hierarchy,
rather than using the BP or MF hierarchy. It hasnbalso observed that the obtained optimal
GO-based biological partitions do not resemblellagach other. Finally, we conclude that the
obtained optimal GO-based biological partition gsine combined BP and MF hierarchy is very
similar with the obtained optimal statistical paois from the three data sets. However, using
the BP or MF hierarchy doesn’t lead to such desiesdilts. Thus, it is demonstrated again that

using only combined BP and MF hierarchy a religg@ae partition can be obtained.
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In addition, it is important to note that as farths applied weighed voting strategy is con-
cerned, the optimal number of statistical or GOeblaBiological clusters with the highest vote
seems to be much smaller than the selected onee@ken might be that after the necessary pre-
processing (see Section 3.2), the genes that retmdia clustered might belong to much fewer

clusters than all the genes in the available dattalsefore the pre-processing.

We finally conclude that it is feasible to obtaeng partition with biological significance via
the available data sets (i.e. Sorlie’s, Sotiricargl Veer's data set) with genes’ expression val-
ues. On the other hand, using available GO knowdetigesn’t lead to meaningful conclusions.
Except using the combined BP and MF hierarchy lgrads to successful gene clusters, using BP
or MF hierarchy doesn’t lead to such desired restitthe next section we introduce a variety of

ideas that might improve the implemented gene etirsy methodologies.

5.3 Further Research

Taking advantage of the implemented gene clustenethodology, future research efforts
might focus on supporting statistical clusteringaafiata set. In particular, it is interesting te ex
amine how statistical clustering of a data setlmamfluenced by the biologically and statistical-
ly relevant clusters of another data set with comrgenes. This can be done by incorporating
the biologically and statistically relevant clust@f a data set, which are obtained by the imple-
mented methodology, in the clustering algorithnawdther data set with common genes.

Also, another idea for further research could déntprove the Wu and Palmer’'s method,
discussed in Section 3.3. In current study, onfigaximum number of five terms per gene were
used to calculate the gene distances. It wouldchtexasting to optimize this algorithm and in-
clude more terms in order to calculate more aceuatiogical distances. This will provide more
reliable biological conclusions. It will be alsotenesting to select the five most biologically
meaningful terms per gene to calculate the gertaraiss. This might lead to more accurate bio-
logical distances too.

Furthermore, it is common that the protein produétgenes are involved in multiple biolog-
ical processes and thus the gene producing theseins can be co-regulated in different ways

under different conditions. When a gene experiend@srential co-regulation in different sam-
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ples of the same dataset as a result of beingvadah differing functional relationships, tradi-

tional clustering approaches are not flexible toresent this behavior. Hence, fuzzy c-means,
presented in Section 3.5, would be a suggestedagiprof gene clustering method, since it is
capable to assign genes to multiple clusters, wisich more appropriate representation of the

behavior of genes.

In addition as we have said in the previous Chapterfar as validity assessment system is
concerned, the optimal number of statistical or 3ed biological clusters with the highest
vote seems to be much smaller than the selectedQmeidea is to examine if these few clus-
ters, which are shown as optimal, have biologigiBcance and then, to make some important

conclusions about this case.

Another idea would be to implement some other sintyf measures with different basic idea
than those already applied, in order to justifynot our choice of the optimal statistical or bio-
logical partition (KEGG or GO —based biological ftéyn) each time. Thus, we will examine the

influence of the aforementioned drawback that tedsimilarity measures have.

Finally, to aid the interpretation of GO, a setgeheral GO terms called GOSIlim terms (see
Section 2.4) is defined for various organisms alf agegeneric use. The use of GOSIlim terms
can be seen as a way to determine the similarityeaks. Thus, considering more terms, since
GO slims are cut-down versions of the GO ontologiestaining a subset of the terms in the

whole GO, the performance of Wu and Palmer’'s mettaodbe improved.

5.4 Summary

In this chapter, we summarize in brief the condnsiin Chapter 4. Furthermore, we intro-
duce some novel ideas to motivate further reseanchow statistical clustering of data sets can
be influenced by the biologically and statistical®yevant clusters of another data set with com-
mon genes, which is obtained by the implementedhogetiogy. We also suggest some guide-
lines about the implemented gene clustering metlogés, which might lead to better results
and then, to more meaningful biological conclusidngplementing fuzzy c-means instead of
hard c-means, taking advantage of GOSIlim termsvamggymore GO terms as input parameter in

Wu and Palmer’s method, are some of the proposielnes.
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