

«

»

,

(

)

:

,

,

,

«

μ

2012

•

»

μμ μ μ • . . μ μ μ • μ μ μ μ μ μ (μ RPM). μ μ (rotation per minute) , • μ k μ RPM μ μ μ μ. μ μ μ , μ μ . μ μ . μ μ μ μ , μ μ μ , μ μ μ μ μ μμ

•

iii

μ

,

μ

μ

iv

μ

vi

, μ μ . μ , RPM.

	3		k	μ	
	. μ	k	kg/J.	μ	
μ			μ		μ
	(),		μ	%

μ μ.

ΠΕΡΙΕΧΟΜΕΝΑ

ΠΡΟΛΟΓΟΣ	iii
ΕΥΧΑΡΙΣΤΙΕΣ	iv
ПЕРІЛНΨН	vi
ΚΑΤΑΛΟΓΟΣ ΣΧΗΜΑΤΩΝ ΚΑΙ ΠΙΝΑΚΩΝ	1
1.ΕΙΣΑΓΩΓΗ	7
2.ΠΕΡΙΓΡΑΦΗ ΦΥΓΟΚΕΝΤΡΙΚΟΥ ΣΠΑΣΤΗΡΑ	8
2.1 Υπολογισμός φυγόκεντρης ταχύτητας	9
3.ΠΕΡΙΓΡΑΦΗ ΥΛΙΚΩΝ	12
3.1. Γενικά στοιχεία ασβεστόλιθου	12
3.2. Ορυκτολογική Ανάλυση Δειγμάτων	13
3.2.1. Ορυκτολογική Ανάλυση (XRD)	13
3.2.2. Παρατηρήσεις στιλπνών τομών με χρήση μεταλλογραφικού μικροσκοπίου	13
4. ΠΕΙΡΑΜΑΤΙΚΗ ΔΙΑΔΙΚΑΣΙΑ	15
5. ΕΠΕΞΕΡΓΑΣΙΑ ΑΠΟΤΕΛΕΣΜΑΤΩΝ	17
5.1 Ειδική ενέργεια ε (kg/J)	18
5.1.1. Μαργαϊκός Ασβεστόλιθος	18
5.1.2. Κρυσταλλικός Ασβεστόλιθος	27
	viii

5.2. Σχετικό Μέγεθος	35
5.2.1. Μαργαϊκός Ασβεστόλιθος	35
5.2.2. Κρυσταλλικός Ασβεστόλιθος	38
5.3. Σταθερά k (J/kg)	41
5.3.1. Μαργαϊκός Ασβεστόλιθος	43
5.3.2. Κρυσταλλικός Ασβεστόλιθος	48
5.4. Σύγκριση των δύο υλικών	53

6.ΣΥΜΠΕΡΑΣΜΑΤΑ	54
6.1. Συμπεράσματα	54
6.2. Προτάσεις	56

ΒΙΒΛΙΟΓΡΑΦΙΑ	57
--------------	----

ΠΗΓΕΣ ΑΠΟ ΤΟ ΔΙΑΔΙΚΤΥΟ	57
	01

ПАРАРТНМА	58
Ακτινοδιαγράμματα από το περιθλασίμετρο (XRD)	58

μ	

2.1					. 8
2.2					9
3.1	μ				14
3.2	μ	μ			14
4.1					15
5.1	μ	1-1.4 r	μ % nmμ		19
5.2	р н н	μ	μ	μ %)
5.3	μ	1-1.4 mm μ 2-2.8 r	μ % nm μ		20
5.4	h h hh h	ĥ	μ	μ %	21
5.5	μ	2-2.8 mm μ 4-5.6 r	μ % nm μ		21
5.6	h h hh h	μ 4-5.6 mm u	μ	μ %	22
5.7	μ	8-11.2	µ % mm µ		. 23
5.8	h h hh h	μ	μ	μ %	
		8-11.2 mm µ			24

5.9	μ			μ	%			
				22.4 mm	μ 			25
5.10	нн Ч	μ μ	μ	μ		μ	%	
			16-22.4 mm µ					26
5.11	μ		1-1.	μ 4 mm	%			27
5.12	hh n	µ u	u	u		μ	%	
	F	F	1-1.4 mm	r				28
5.13	μ		2-2.	μ 8 mm	%			20
5.14	uu	ц				 и	%	29
••••	μ	μ	μ 2-2.8 mm	μ		F		29
5.15	μ		4-5.	μ 6 mm	%			
5 16							%	30
00	μ	μ	μ 4-5.6 mm	μ		٣		31
5.17	μ		8-11	μ .2 mm	%			
		•						32
5.18	h h	μ μ	μ 8-11 2 mm	μ		μ	%	32
5.19	μ		16-2	μ 22.4 mm	%			52
				-2.7 11111				33

 $\mathbf{2}$

5.20	hh h hh h		μ		μ	%	
	16-22.4 mm		•				34
5.21	μμ μ μ 285 μ/μ		μ	%		μ	25
	₁ =385 J/K						35
5.22	μμ μ μ		μ	%		μ	
	₂ =685 J/kg						36
5.23	ћ ћ ћћ		μ	%		μ	
	₃ =1541 J/kg						36
5.24	μμ μ μ ⊿=2739 J/ka		μ	%		μ	37
5.25	μμ		μ	%		μ	•
	μ μ ₅ =4279 J/kg						37
5.26	μ μ		μ	%		μ	
	₁ =385 J/kg						38
5.27	h hh		μ	%		μ	
	₂ =685 J/kg						38
5.28	μ μ 2=1541 J/kα		μ	%		μ	39
5.29	μμ 		μ	%		μ	00
	μ ₄ =2739 J/kg						39
5.30	μμ		μ	%		μ	
	₅ =4279 J/kg						40
5.31	k 1-1.4 mm μ	μ	μ		(mm)		43

5.32	k 2-2.8 mm μ	μ	μ	(mm) 	44
5.33	k 4-5.6 mm μ	μ	μ	(mm) 	45
5.34	k 8-11.2 mm μ	μ	μ	(mm) 	46
5.35	k 16-22.4 mm μ	μ	μ	(mm) 	47
5.36	k µ	μ	μ 	(mm)	47
5.37	k 1-1.4 mm	μ	μ	(mm) 	48
5.38	k 2-2.8 mm	μ	μ	(mm) 	49
5.39	k – 4-5.6 mm	μ	μ	(mm) 	50
5.40	k 8-11.2 mm	μ	μ	(mm) 	51
5.41	k 16-22.4 mm	μ	μ	(mm) 	52
5.42	k	μ	μ 	(mm)	52
5.43	k µ	μ	μ	(mm)	
	16-22.4 mm				53

5.1	μ			μ	μ	18
5.2	μ	μ	% 		1-1.4mm	19
5.3	μ	μ	%		2-2.8 mm	20
5.4	μ	μ	%		4-5.6 mm	22
5.5	u	μ	%		8-11.2 mm	23
5.6	u	μ	%		16-22.4 mm	25
5.7	ſ	μ	%		1-1.4 mm	27
5.8		μ	%		2-2.8 mm	27
5.9		μ	%		4-5.6 mm	30
5.10		μ	%		8-11.2 mm	31
5.11		μ	%		16-22.4 mm	33
5.12	μ		μ			35
5.13	μ 1-1.4 mm		k	1mm		42
5.14	k			1-1.4 mm µ		43
5.15	k			2-2.8 mm µ		

•

5.16	k	4-5.6 mm μ	. 44
5.17	k	8-11.2 mm µ	. 45
5.18	k	16-22.4 mm µ	. 46
5.19	k	1.1.4 mm	. 48
5.20	k	2-2.8 mm	. 49
5.21	k	4-5.6 mm	. 49
5.22	k	8-11.2 mm	. 50
5.23	k	16-22.4 mm	. 51
			-

1

μ , μ μ . μ . μ . μ . μ .

. , μ k μ . .

, μ , μ μ μ μ , μ μ ,

.

, µ µµ µµ.

 $\overline{7}$

,

.

2

μ μ μ μ , . , [μ .,2012]. μ (RPM)

μ μ 2.1). μ (μ μ μ μ μ .

μ μμ μ μ μ μ

μ

μ 2.2

.

μ	D=0.5 m.
μ	750 RPM
2500 RPM.	

2.1 Y

		μ
[μ	.,2012].

μ

 $\mu \quad \mu \quad \mu \quad \mu \quad m \quad r$ $. \quad \mu$ $1: \quad v_{p} = 2 \cdot f \cdot r \cdot N \quad (1)$ $\mu \quad \mu \quad \mu \quad F_{c}$ $\mu \quad \mu \quad 2.$ $F_{c} = \frac{m \cdot v_{p}^{2}}{r} \quad (2)$ $\mu \quad \mu \quad \mu \quad \mu \quad \mu \quad \mu$ 3.

6.

 $\frac{dv_c}{dt} = x_c \quad (5)$ $\frac{dr}{dt} = v_c \quad (6)$ $dt \quad (5) \quad (6)$

7.

$$\frac{dv_c}{x_c} = \frac{dr}{v_c} \qquad v_c \cdot dv_c = x_c \cdot dr \qquad (7)$$
(4)
(7)
$$\mu \qquad ,$$
8

9.

$$v_c \cdot dv_c = (2 \cdot f \cdot N)^2 \cdot r \cdot dr \qquad (8)$$

(8)

.

μ

,

 $v_c = 2 \cdot f \cdot N \cdot r + C \tag{9}$ C=0 *r*=0 *v*_c=0 Τ μ r=R μ 10. $V_c = 2 \cdot f \cdot R \cdot N \qquad (10)$ μ 11 , . $V_p = 2 \cdot f \cdot R \cdot N \qquad (11)$ μ μ V 12. μ $V^{2} = V_{c}^{2} + V_{p}^{2}$ (12) (10) (11) μ 45 μ μ 13 μ •

$$V = 2 \cdot \sqrt{2} \cdot f \cdot R \cdot N \qquad V = \sqrt{2} \cdot f \cdot D \cdot N \qquad (13)$$

$$D \qquad \mu \qquad D = 2R$$

 $\mu \qquad \mu \qquad V \qquad 14.$ $E = \frac{1}{2} \cdot m \cdot V^2 \qquad (14)$

15.

μ

μ

$$E = m \cdot (2 \cdot f \cdot R \cdot N)^2 \qquad E = m \cdot (f \cdot D \cdot N)^2 \quad (15)$$
$$= E/m \qquad \qquad 16$$
$$\mu \qquad \mu \qquad , \qquad \mu$$
$$\mu \qquad .$$

 $\mathbf{v} = (2 \cdot f \cdot R \cdot N)^2 \qquad \mathbf{v} = (f \cdot D \cdot N)^2 \qquad (16)$

3

3.1.

μ μ, (CaCO₃). μ , μ μ μ μ . μ μ μ μ . μ ,), μ (μμ μ μ μ μ μ μ μ • μ μ, , μ μ μ , μ μ, , μ (). μ . , , μ μ μ . 2.600μ 2700 kg/m³ 0-1 %. μ μ μ (.) ,μ μ μ . 200 MPa. μ 80 μ μ , μ μ , μ μ , μ μ

μ . μ μ 10 60 Pa.

3.2.			μ			
			μ			
				μ		μ
	(XRD:	X-Ray-Difracti	on Analysis)		μ	
	μ.					
		μ		μ	μ	μ XRD
	D-500 Sie	emens.	μ		μμ	
		IBM µ				
μ		μ.	μ	,		Co, =1.7889
Α,	Ni,	35 kV,	35 mA	μ		1 /min.
		μ			ICPDS.	

3.2.1	(XRD)		
	μμ	μ	μ
	μ		
		:	(CaC ₃)

μ [CaMg(CO₃)₂].

3.2.2.		μ	μ		μ		
	μ		μ	μ			
	μ				(μ	3.1)
	μ.			μ		μ	,
μ			μ				

μ 3.2 μ μ

. μ 16-22.4 mm, 8-11.2 mm, 4-5.6 mm, 2-2.8 mm 1-1.4 mm μ μ μ μ μ .

RPM. RPM μ μ μ 750,1000,1500,2000 2500 RPM. 25 5 RPM) μ (5 , 16-22.4 mm μ 16,8,4,2,1,0.5,0.25,0.063 mm, 8-11.2 mm 4-5.6 mm 8,4,2,1,0.5,0.25,0.063 mm, 4,2,1,0.5,0.25,0.063 mm, 2-2.8 mm 2,1,0.5,0.25,0.063 mm 1-1.4 mm μ 1,0.5,0.25,0.063 mm. μ μ μ

μμ

•

μ%μ.

μ

5

,

.

μ μ μ μ μ μ [.,2012]. μ μ μ 5.1 μ • μ μ . μ 5.12. μ μ μ μ μ μ μ μ μ μ . μ μ μ k μ k μ μ . μ [Stamboliadis E.,2006]. µ μ k kg/J, μ μ . k μ μ μ 5.13.

> μ μ , μ

> > 17

μ

.

,

5.1

	5.1.	μ	μ	μ	
RPM	$\frac{V\alpha K_{1}}{N} = \frac{RPM}{60}$	$Vc = (f \cdot D \cdot N)$	$V = \sqrt{2} \cdot f \cdot D \cdot N$	$E = m \cdot (f \cdot D \cdot N)^2$	$V = \left(f \cdot D \cdot N\right)^2$
750	12.5	19.6	27.75	385.14	385
1000	16.7	26.2	37.01	684.69	685
1500	25.0	39.3	55.51	1540.56	1541
2000	33.3	52.3	74.01	2738.78	2739
2500	41.7	65.4	92.51	4279.34	4279
	Hertz	m/s	m/s	Joule	J/kg
D. 0.5m					

D=0.5m

5.1.1

•

		μ						μμ	
		μ	%						
		μ			,			μμ	
μ				μ	%	μ	μ		μ
	μ							μ	

5.2.		μ	%	1-1.4mr	nμ	
RPM	0	750	1000	1500	2000	2500
(J/kg)	0	385	685	1541	2739	4279
(mm)				μ	%	
1.4	100	100	100	100	100	100
1	0	21.05	29.49	50.94	66.95	75.11
0.5	0	7.69	9.94	17.09	23.62	29.45
0.25	0	4.05	5.02	7.02	8.05	9.22
0.125	0	0.61	0.64	0.73	0.74	1.17
0.063	0	0	0	0	0	0

2 – 2	2.8 mm
-------	--------

5.3.		μ	%	2-2.8 m	mμ	
RPM	0	750	1000	1500	2000	2500
(J/kg)	0	385	685	1541	2739	4279
(mm)				μ	%	
2.8	100	100	100	100	100	100
2	0	26.50	41.26	65.59	80.94	87.30
1	0	11.18	16.90	30.04	43.66	52.99
0.5	0	6.00	8.74	14.24	21.88	26.02
0.25	0	3.73	5.06	7.17	8.90	11.23
0.125	0	0.93	0.46	0.73	1.05	1.26
0.063	0	0	0	0	0	0

μ μ

4 – 5.6 mm

5.4.		μ	%	4-5.6 m	mμ	
RPM	0	750	1000	1500	2000	2500
(J/kg)	0	385	685	1541	2739	4279
(mm)				μ	%	
5.6	100	100	100	100	100	100
4	0	43.41	64.96	80.42	88.07	92.23
2	0	15.27	26.69	41.77	56.07	65.55
1	0	7.53	13.24	22.60	33.47	41.81
0.5	0	4.08	6.99	12.08	18.69	24.58
0.25	0	2.20	3.86	6.46	9.93	12.71
0.125	0	0	0.21	0.83	2.64	3.26
0.063	0	0	0	0	0	0

8-11.2 mm

5.5.		μ	%	8-11.2 r	nm µ	
RPM	0	750	1000	1500	2000	2500
(J/kg)	0	385	685	1541	2739	4279
(mm)				μ	%	
11.2	100	58.38	71.49	81.66	88.00	91.82
8	0	21.12	31.95	47.34	60.70	69.78
4	0	11.68	18.50	29.92	41.05	49.11
2	0	7.21	11.43	18.65	26.58	32.63
1	0	4.47	7.08	11.07	16.13	20.15
0.5	0	2.74	4.35	6.35	9.41	11.44
0.25	0	1.12	1.11	2.15	2.28	2.73
0.125	0	0.00	0.00	0.00	0.00	0.00
0.063	0	58.38	71.49	81.66	88.00	91.82

. 8-11.2 mm μ

μ. μ 5.8 μ μ μ μ μ μ μ μ

1	6-	·22	.4	mı	m
---	----	-----	----	----	---

5.6.		μ %		16-22.4 m	mμ	
RPM	0	750	1000	1500	2000	2500
(J/kg)	0	385	685	1541	2739	4279
(mm)				μ	%	
22.4	100	100	100	100	100	100
16	0	70.19	77.89	84.25	93.18	90.59
8	0	22.62	33.06	51.63	63.84	65.06
4	0	12.58	18.97	33.74	44.73	47.70
2	0	8.67	12.98	24.59	33.68	36.61
1	0	6.13	8.32	15.96	22.73	25.63
0.5	0	4.33	5.17	9.96	14.46	16.63
0.25	0	3.38	3.25	6.10	8.99	10.36
0.125	0	0.53	0.91	2.24	4.44	5.23
0.063	0	0.11	0.30	0.51	1.45	1.67

5.1.2.

1-1.4	mm
-------	----

5.7.		μ	%	1-1.4 m	m	
RPM	0	750	1000	1500	2000	2500
(J/kg)	0	385	685	1541	2739	4279
(mm)				μ	%	
1.4	100	100	100	100	100	100
1	0	20.04	36.64	59.92	75.33	76.62
0.5	0	7.66	13.91	25.58	38.59	39.43
0.25	0	4.83	8.44	14.63	23.98	24.29
0.125	0	3.25	5.32	7.76	14.73	16.03
0.063	0	1.05	1.42	1.69	4.07	4.38

2-2.8 mm

5.8.		μ %		2-2.8 mm		
RPM	0	750	1000	1500	2000	2500
(J/kg)	0	385	685	1541	2739	4279
(mm)				μ	%	
2.8	100	100	100	100	100	100
2	0	35.04	47.86	67.57	77.35	83.05
1	0	11.75	17.45	31.56	43.42	52.15
0.5	0	6.21	9.24	17.27	25.54	32.28
0.25	0	4.06	6.00	11.21	16.81	22.24
0.125	0	2.65	3.87	7.29	11.13	14.94
0.063	0	1.39	1.92	3.18	5.95	7.65

4-5.6 mm

5.9.		μ	%	4-5.6 m	m	
RPM	0	750	1000	1500	2000	2500
(J/kg)	0	385	685	1541	2739	4279
(mm)				μ	%	
5.6	100	100	100	100	100	100
4	0	41.37	59.54	81.05	88.04	89.90
2	0	13.95	23.57	42.59	57.45	64.54
1	0	6.93	11.99	23.80	36.07	42.57
0.5	0	4.06	7.14	14.36	22.97	27.90
0.25	0	2.82	4.87	9.75	15.89	19.10
0.125	0	1.87	3.20	5.98	9.42	11.81
0.063	0	0.92	1.39	1.95	3.01	3.84

5.10.		μ	%	8-11.	2mm	
RPM	0	750	1000	1500	2000	2500
(J/kg)	0	385	685	1541	2739	4279
(mm)				μ	%	
11.2	100	100	100	100	100	100
8	0	64.47	66.82	81.14	88.19	90.55
4	0	23.31	31.48	51.87	64.81	70.60
2	0	10.95	16.40	30.79	42.73	49.46
1	0	6.23	9.48	18.89	28.04	33.62
0.5	0	3.98	5.94	12.16	18.61	22.94
0.25	0	2.81	4.14	8.52	13.14	16.28
0.125	0	1.86	2.64	5.36	7.48	8.85
0.063	0	0.94	1.12	2.05	2.96	3.40

16-22.4 mm

5.11.		μ	%	16-22.4	1 mm	
RPM	0	750	1000	1500	2000	2500
(J/kg)	0	385	685	1541	2739	4279
(mm)				μ	%	
22.4	100	100	100	100	100	100
16	0	71.89	74.80	84.89	91.26	90.35
8	0	25.82	34.63	51.52	63.88	72.83
4	0	12.71	18.89	31.85	44.62	53.02
2	0	7.16	10.69	20.01	29.93	35.98
1	0	4.39	6.47	12.94	20.13	24.19
0.5	0	2.88	4.26	8.76	13.60	16.43
0.25	0	2.04	3.07	6.29	9.63	11.85
0.125	0	1.29	2.03	3.81	5.51	8.07
0.063	0	0.54	0.70	1.66	2.00	3.55

μ μ

, μ

μ

μ

μ

μ

μ

.

...

5.12.

5.12.	μ				
μ	16-22.4 mm	8-11.2 mm	4-5.6 mm	2-2.8 mm	1-1.4 mm
1	22.4	11.2	5.6	2.8	1.4
0.71429	16	8	4	2	1
0.35714	8	4	2	1	0.5
0.17857	4	2	1	0.5	0.25
0.08929	2	1	0.5	0.25	0.125
0.04464	1	0.5	0.25	0.125	0.063
0.02232	0.5	0.25	0.125	0.063	
0.01116	0.25	0.125	0.063		
0.00558	0.125	0.063			
0.00281	0.063				

5.2.1.

μμ

%

μ

:

μ κ μ .

μ μ μ [Stamboliadis E.,2006].

μ R μ μ P μ

 $R + P = 100 \quad R + P = 1 \tag{17}$

ς και τα ύο μέλη της σωσ ;:
$$\int \frac{dR}{R} = -k \cdot \int dε \Rightarrow \ln R = -k \cdot ε + c \quad (19)$$

 $\mu \qquad c = Ro (20) \leftarrow Ro \qquad \mu$ $o = 0. E \pi o \mu \epsilon v \omega, \qquad (19),$ $(20), \qquad \sigma \chi \epsilon \sigma \eta (21):$ $R = Ro \cdot e^{-k \cdot \epsilon} \qquad (21)$

γόμενου υλικα Ρ μ

ην υχευη:
$$P = Ro - R$$
 (22). Αρα αντικασι

(22), (21) προκύπτει η σχέση (23):

$$P = Ro - Ro \cdot e^{-k \cdot \varepsilon} \implies P = Ro \cdot (1 - e^{-k \cdot \varepsilon})$$
(23)

,

Ro = 100μ μ μ , (100%) µ μ . μ , $_{0} = 0,$. **Ρ**_μ% μ μ (produced µ Ρ% (23), μ), μ (produced μ) μ μ μ k . μ μ (23) , $(P_{\mu} - P)^{2}$ μ 1, 2, 3, 4 5. k (P_µ - P)² μ μ μ μ μ μ Microsoft Excel µ μμ . μ k, μ μ μ μ ($(P_{\mu} - P)^2$). μ

5.13 µ µ k 1-1.4 mm

1 mm.

5.13. µ k o 1 mm 1-1.4 mm

1mm				k=	5.3E-4
	J/kg	Ρ _μ % (μ	μ)	P_{0} % (υπολογιζόμενο) $Pv = Ro \cdot (1 - e^{-k \cdot \varepsilon})$ (β	$(P_{\mu} - P)^2$
1	385		20.04	18.47	2.48
2	685		36.64	30.44	38.39
3	1541		59.92	55.81	16.92
4	2739		75.33	76.58	1.57
5	4279		76.62	89.65	169.83
					229.18

5.3.1.

μ

μμ

1-1.4 mm µ

μ μ

k

1-1.4 mm

•

5.14.	k
(mm)	k (kg/J)
1	4,14E-4
0.5	1,10E-4
0.25	2,90E-5
0.125	3,60E-6
0	0

2-2.8 mm

5.15.	k
(mm)	k (kg/J)
2	6,80E-4
1	2,03E-4
0.5	8,07E-5
0.25	3,27E-5
0.125	3,46E-6
0	0

2-2.8 mm µ

4-5.6 mm

5.16.	k
(mm)	k (kg/J)
4	1,41E-3
2	3,07E-4
1	1,42E-4
0.5	7,12E-5
0.25	3,53E-5
0.125	7,72E-6
0	0

4-5.6 mm µ

μ

8-11.2 mm

k
k (kg/J)
2,01E-3
3,56E-4
1,88E-4
1,00E-4
5,98E-5
3,30E-5
7,92E-6
0

8-11.2 mm µ

16-22.4 mm

5.18. k (mm) k (kg/J) 16 3,16E-3 3,99E-4 8 1,97E-4 4 1,37E-4 2 1 7,67E-5 0.5 4,74E-5 0.25 3,07E-5 0.125 1,38E-5 0 0

16-22.4 mm µ

k

μ

μ

1-1.4 mm

5.19.	k
(mm)	k (kg/J)
1	5,30E-4
0.5	1,50E-4
0.25	7,76E-5
0.125	4,84E-5
0	0

.

μμ

2-2.8 mm

5.20.	k
(mm)	k (kg/J)
2	7,48E-4
1	2,03E-4
0.5	1,02E-4
0.25	6,40E-5
0.125	4,10E-5
0	0

2-2.8 mm

4-5.6 mm

5.21.	k
(mm)	k (kg/J)
4	1,24E-3
2	3,05E-4
1	1,50E-4
0.5	8,58E-5
0.25	5,58E-5
0.125	3,17E-5
0	0

4-5.6 mm

8-11.2 mm

5.22.	k
(mm)	k (kg/J)
8	1,88E-3
4	4,06E-4
2	1,92E-4
1	1,10E-4
0.5	6,88E-5
0.25	4,65E-5
0.125	2,72E-5
0	0

8-11.2 mm

16-22.4 mm

16-22.4 mm

5.23.	k
(mm)	k (kg/J)
16	2,55E-3
8	4,24E-4
4	2,11E-4
2	1,20E-4
1	7,37E-5
0.5	4,76E-5
0.25	3,32E-5
0.125	2,08E-5
0	0

6

μμ

μ μ μ μ , κ μ . μ, μ .

6.1. μ μ

μ μ μ • μ μ μ μ μ μ μ . , μ μ , μ х μ .

. μμ μ % μ μ μ , μ μ

μ μ μ .

	μ	μ	,			μ			μ		
μ										ł	J
		μ			,		μ				μ
				μ					μ		.μ
				μ							
		μ			μ						μ
						μ					
	μ		μ		μ			μ		μ	μ
		μ									

6.2.

,

•

[Stamboliadis. E.,2006]: Stamboliadis Elias, 2006, A Breakage Function For Batch Grinding, Canadian Metallurgical Quarterly, Vol 45, No 3 pp 359-364

[a] http://www.resources.nsw.gov.au/__data/assets

[b] http://www.mineralszone.com/minerals/limestone.html

,

μ (XRD)

μ1. XRD μ

μ 2. XRD