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Abstract

Embedded systems design is a rapidly growing field of Computer En-
gineering. An embedded device may be built from “common of
the self components”, or use a custom range of hardware, different
from the one found in most desktop computers, or a combination of
the above. This fact has led to a growing demand for device drivers
that will be able to complement the embedded opearating systems
in their task to support the hardware. Very often, existing drivers are
ported to the embedded architecture; other drivers are written from
scratch.

This thesis is an attempt to understand the workings of a device
driver in the Linux operating system, a popular choice among the
embedded operating systems, and to apply this knowledge to write
a driver for the PCI development board of the Philips ISP1160 Em-
bedded USB Host Controller. The device driver is written for the new
2.6 series of the Linux kernel and can handle the Control, Bulk and
Interrupt USB transfer modes, supporting a variety of USB devices, in-
cluding printers, memory sticks, input devices, digital cameras and
modems. The driver demonstrates competitive speed compared to
the popular UHCI USB host controllers found in most modern desktop
computers, using a smaller memory footprint and a simpler driver
model.



Chapter 1

Introduction

1.1 Introduction to Embedded Devices

An embedded device is a special-purpose computer system, which
is completely encapsulated by the device it controls. An embedded
device has specific requirements and performs pre-defined tasks, un-
like a general-purpose personal computer. Examples of embedded
devices include:

• Automatic Teller Machines (ATMs)

• Cellular telephones and telephone switches

• Computer network equipment, including routers, timeservers
and firewalls

• Computer printers

• Handheld calculators

• Household appliances, including microwave ovens, washing ma-
chines, television sets, DVD players/recorders

• Inertial Guidance Systems, flight control hardware/software and
other integrated systems in aircraft and missiles

• Medical equipment

• Measurement equipment such as digital storage oscilloscopes,
logic analyzers, and spectrum analyzers

• Personal digital assistants (PDAs)

• Videogame consoles

1



1.1. INTRODUCTION TO EMBEDDED DEVICES

Figure 1.1: Embedded System Architectures Survey

Programs on an embedded system often must run with real-time
constraints with limited hardware resources; often there is no disk
drive, operating system, keyboard or screen. A flash drive may re-
place rotating media, and a small keypad and LCD screen may be
used instead of a normal keyboard and screen respectively.

1.1.1 Embedded System Platforms

There are many different CPU architectures used in embedded de-
signs. This is in contrast to the desktop computer market, which is
limited to just a few competing architectures, mainly the Intel/AMD
x86, and the Apple/Motorola/IBM PowerPC.

Figure 1.1 shows the embedded market trends in CPU architec-
tures1.

1.1.2 Embedded Operating Systems

Embedded devices may or may not have an operating system (most
modern devices do have one). Firmware is the name for software
that is embedded in hardware devices, e.g. in one or more ROM/Flash
memory IC chips.

Embedded systems are routinely expected to maintain reliabil-
ity while running continuously for long periods of time, sometimes
measured in years. Firmware is usually developed and tested to
much stricter requirements than is general purpose software. In addi-
tion, due to the fact that the embedded system may be outside the
reach of humans, embedded firmware must usually be able to self-
restart even if some sort of catastrophic data corruption has taken

1Source: 2003 Embedded Market Survey, by LinuxDevices.com [1]
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CHAPTER 1. INTRODUCTION

place. This last feature often requires external hardware assistance
such as a watchdog timer that can automatically restart the system
in the event of a software failure.

Many time-critical applications of embedded systems require a
Real Time Operating System to control the device.

Real-Time Operating Systems

A Real Time Operating System (RTOS) is an operating system that has
been developed for real-time applications. A commonly accepted
definition of ”real-time” performance is that real-world events must
be responded to within a defined, predictable, and relatively short
time interval.

Popular RTOSes include:

• BeOS

• OS-9

• OSE

• FreeRTOS

• Nucleus

• Windows CE

• RT Linux

• VxWorks

• LynxOS

1.1.3 The Need for Device Drivers

An operating system is of no value without a complete and frequently
updated list of device drivers to support the hardware. This is also true
for embedded devices.

As mentioned above, an embedded system is designed for a spe-
cific task and has special requirements (as compared to a classic
desktop computer). During the past few years, the hardware indus-
try has made steps to provide the embedded system designers with
tools that fit well with these special needs (e.g., a network interface
for the embedded market might not be as fast as a classic one, but
it will be able to perform well while consuming less energy).

This special hardware, needs of course device drivers. And al-
though the computer industry is moving towards a unified approach
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Figure 1.2: Embedded Linux Distributions

in hardware design by adopting specifications (thus greatly reduc-
ing the number of different drivers required), the embedded market
has its own rules and specifications. As a result, the need for cus-
tom device drivers to support the hardware is always a top priority in
embedded systems design.

1.1.4 Linux for Embedded Devices

The power, reliability, flexibility, and scalability of Linux, combined with
its support for a multitude of microprocessor architectures, hardware
devices, graphics support, and communications protocols have es-
tablished it as an increasingly popular software platform for a vast
array of projects and products.

Given that Linux is openly and freely available in source form,
many variations and configurations of the operating system and its
supporting software components have evolved to meet the diverse
needs of the markets and applications to which Linux is being adapted.
There are small-footprint versions and real-time enhanced versions.
And despite the origins of Linux as a PC architecture operating sys-
tem, there are now ports to numerous non-x86 CPUs, with and with-
out memory management units, including PowerPC, ARM, MIPS, 68K,
and even microcontrollers.

Figure 1.2 shows the Linux distributions that are favored by the
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embedded market2. We can see that there is a shift towards custom-
built Linux (listed under “home grown”). Since Linux is open-source
software, more and more embedded system manufacturers prefer
to download the source of the Linux kernel and modify it to fit their
needs.

1.2 Device Drivers: Basic Principles

No matter the hardware addressed, every device driver should ad-
here to certain basic principles.

1.2.1 The Role of a Device Driver

Most programming problems can be split into two parts: “what ca-
pabilities are to be provided” (the mechanism) and “how those ca-
pabilities can be used” (the policy). If the two issues are addressed
by different parts of the program, or even by different programs alto-
gether, the software package is easier to develop and to adapt to
particular needs.

The role of a device driver is to provide mechanism, not policy.
The driver should deal with making the hardware available, leaving
all the issues about how to use the hardware to the applications.

Policy-free drivers should have a number of typical characteris-
tics:

• Support both synchronous and asynchronous operation

• Ability to be opened multiple times

• Exploit the full capabilities of the hardware

• Lack of software layers to provide policy-related operations

However, user programs are an integral part of a software pack-
age and all drivers should be distributed with configuration files that
apply a default behavior to the underlying mechanism.

1.2.2 Kernel & User Space

A device driver runs in the so-called kernel space, whereas applica-
tions run in user space.

2Source: 2003 Embedded Market Survey, by LinuxDevices.com [1]
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The role of the operating system is to provide programs with a
consistent view of the computer’s hardware. In addition, the oper-
ating system must account for independent operation of programs
and protection against unauthorized access to resources. This is pos-
sible if the CPU enforces protection of system software from the ap-
plications.

All current processors have at least two protection levels (the x86
family have more). The kernel (and its device drivers) executes in the
highest level where everything is allowed, whereas applications exe-
cute in the lowest level where the processor regulates direct access
to hardware and unauthorized access to memory.

1.2.3 Security Issues

Security is an increasingly important concern in modern times. It is a
problem that can be split in two parts. One security problem is the
damage a user can cause through the misuse of existing programs,
or by incidentally exploiting bugs; a different issue is what kind of
misfunctionality a programmer can deliberately implement. It is a
dangerous to run a program received from somebody else from the
administrator account, as it is to give him or her a superuser shell.
And since every device driver runs in kernel space, a kernel module
is just as powerful as a superuser shell.

When possible, a driver should not encode security policy in its
source code. Security is a policy issue that is often best handled at
higher levels within the kernel, under the control of the system ad-
ministrator.

The driver should not include of course security bugs. Many secu-
rity problems are created by buffer overrun errors, when data ends
up written beyond the end of an allocated buffer, thus overwriting
unrelated data. A few other security ideas include:

• Any input received from user processes should be treated with
great suspicion

• Any memory obtained from the kernel should be zeroed or oth-
erwise initialized before being made available to a user process
or device.

• If there are specific operations that could affect the system
(e.g., formatting a disk), those operations should be restricted
to privileged users.
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1.3 Thesis Summary

This thesis is an attempt to understand the workings of a device driver
in the Linux operating system, a popular choice among the em-
bedded operating systems, and to apply this knowledge to write a
driver for the PCI development board of the Philips ISP1160 Embed-
ded USB Host Controller. The PCI board was connected to a typical
PC x86 32 bit system (AMD Duron), running Debian GNU/Linux, Testing
(Sarge).

Although when the project first started, the best choice in Linux
kernels was the 2.4 series, a few months later the 2.6 series appeared,
which among many other changes, incorporates a very different
(and much better) scheme in supporting hotplug devices (such as
a USB device). Thus, even though the documentation for the 2.6 se-
ries was very sparse, it was chosen as the kernel to develop the driver
for.

The PCI development board of the ISP1160 ships with a driver for
the DOS operating system but lacks a Linux device driver (altough
there exists a Linux driver for the ISA version of the board). The drivers
shipped with the board (both PCI and ISA) are far from complete,
as they only intend to demonstrate some of the capabilities of the
host controller. Using the supplied software, the user can monitor
the USB downstream ports for changes (e.g. connection of a USB
device), get information about the connected devices by reading
their descriptors, check the contents of the buffer RAM of the host
controller, and try a USB mouse.

1.3.1 Thesis Goals

This driver is an attempt to illustrate the way that a device driver can
be written (focusing in the API of Linux kernel 2.6). A set of goals was
introduced from the beginning of the development. According to
these goals, the driver should:

1. be written using the new API of Linux kernel 2.6

2. integrate with the operating system, making the USB host con-
troller available and functional, just like any other device driver
present on the system (especially any USB host controller driver)

3. separate all PCI-specific code from the rest of the source, to
ease porting of the driver to non-PCI implementations

4. be fully modular
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5. be as policy-free as possible

6. support at least the Control and Bulk USB transfer modes, and
if possible the Interrupt and Isochronous transfer modes. (see
Section 2.3.1, on page 16)

7. be as secure as possible

8. support the PIO mode of operation, and if possible the DMA
mode as well.

9. Emphasize in aspects of speed, to demonstrate the importance
of a driver in overall system performance

Note however that this driver is not supposed to be a “commercial-
grade” software product. As such, some features of a complete de-
vice driver might be missing.

1.3.2 Thesis Results

The resulting work of the thesis is a functional driver module for the
PCI development board of the IS1160 host controller, which fully inte-
grates with the operating system. Users are able to insert and remove
the module from the running kernel, and the host controller is able to
coexist with other possibly present USB host controllers, providing the
same functionality through standard user-space programs.

The work follows the “separation of policy from mechanism” model
presented in Section 1.2.1. The driver makes the hardware available
by taking advantage of the API provided by the kernel. This way
the kernel registers the host controller with the operating system in
a transparent way, leaving all issues of using the hardware to appli-
cations. This ensures an adequate level of security, since the driver
does not attempt to encode its own security policy, leaving all such
matters to the operating system. The Linux OS already includes a
strict set of security measures related with the insertion and removal
of modules. All input from user space applications is passed to the
USBD kernel driver of the Linux USB subsystem, which forwards the re-
quest to the correct host controller driver. This way, the driver is able
to trust all incoming data, since any user input is first filtered with the
security mechanisms of the USB subsystem.

The supported hardware functionality includes Control, Bulk and
Interrupt transfer modes, leaving only the Isochronous mode out of
the list. This allows the majority of available USB devices to be con-
nected to the host controller. Access to the internal registers and
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buffer RAM of the host controller is accomplished through PIO oper-
ations. DMA access to the buffer RAM was not implemented.

The source code separates the initialization sequence from the
actual programming of the ISP1160 , allowing the driver to be easily
modified to support other implementations of the ISP1160 as well.
Such implemetations need only to alter the way that the hardware
resources are made available, by modifying the files that contain the
PCI initialization code.

This driver has been tested and works with a custom-built 2.6.10
version of the Linux kernel. A detailed explanation of the results can
be found in Section 5.4, on page 93.

1.3.3 Thesis Outline

This document is divided in two parts. The first part (Chapters 2-4)
is dedicated to the theoritical knowledge required to understand to
second part (Chapter 5), where we analyze the task of writing the
actual driver for the ISP1160. The first part begins with an overview of
the USB Bus specifications (Chapter 2), followed by a presentation of
the Linux USB subsystem (Chapter 3) and the way that it implements
the USB standards. Then, we present an architectural and functional
overview of the ISP1160 (Chapter 4), focusing on the parts that are
important to the device driver. At the end of Chapter 4, we exam-
ine the PCI development board that was used. The second part is
the presentation of the device driver. Throughout this chapter we
examine parts of the source code and explain the key elements of
the driver. This is no substitute for the actual source code, and for a
full explanation of the way that this driver works, refer to the manual
of the source code, available in HTML and PDF format. At the end
of the second part, we evaluate the perforance of ther driver and,
based on the goals that were set for the thesis, comment on the re-
sults. The last part (Chapter 6) contains the conclusions and possible
further work on the subject.
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Chapter 2

The Universal Serial Bus

This chapter presents a brief description of the background, archi-
tecture and operation of the Universal Serial Bus (USB). This is not a
full description of the bus specifications. For more information see [5]

2.1 Background

Universal Serial Bus was created when a group of 7 companies: Com-
paq, Digital Equipment, IBM, Intel, Microsoft and Northern Telecom
decided to form a specifications to merge legacy connectivity such
as RS232, Printer port, PS2 port into a single common connector to
the Personal Computer.

USB version 1.1 was released on 15 January 1996 and supported
two speeds, a full speed mode of 12 Mbits/s and a low speed mode
of 1.5 Mbits/s. The 1.5 Mbits/s mode is slower and less susceptible to
EMI, thus reducing the cost of ferrite beads and quality components.
For example, crystals can be replaced by cheaper resonators. USB
2.0, released on 27 April 2000, supports speeds up to 480 Mbits/s.
Table 2.1 summarizes the available speeds.

Table 2.1: USB supported speeds

High Speed 480.0 Mbits/s
Full Speed 12.0 Mbits/s
Low Speed 1.5 Mbits/s
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2.1.1 Goals for the Universal Serial Bus

The USB is specified to be an industry-standard extension to the PC ar-
chitecture with a focus on PC peripherals that enable consumer and
business applications. The following criteria were applied in defining
the architecture for the USB:

1. Ease-of-use for PC peripheral expansion

2. Low-cost solution that supports transfer rates up to 480 Mb/s

3. Full support for real-time data for voice, audio, and video

4. Protocol flexibility for mixed-mode isochronous data transfers
and asynchronous messaging

5. Integration in commodity device technology

6. Comprehension of various PC configurations and form factors

7. Provision of a standard interface capable of quick diffusion into
product

8. Enabling new classes of devices that augment the PC’s capa-
bility

9. Full backward compatibility of USB 2.0 for devices built to previ-
ous versions of the specification

2.1.2 USB Features

The USB Specification provides a selection of attributes that can achi-
eve multiple price/performance integration points and can enable
functions that allow differentiation at the system and component
level.

Features are categorized by the following benefits:

1. Easy to use for end user

• Single model for cabling and connectors

• Electrical details isolated from end user (e.g., bus termina-
tions)

• Self-identifying peripherals, automatic mapping of function
to driver and configuration

• Dynamically attachable and reconfigurable peripherals

2. Wide range of workloads and applications

11



2.1. BACKGROUND

• Suitable for a broad spectrum of bandwidths

• Supports isochronous as well as asynchronous transfer types
over the same set of wires

• Supports concurrent operation of many devices (multiple
connections)

• Supports up to 127 physical devices

• Supports transfer of multiple data and message streams
between the host and devices

• Allows compound devices (i.e., peripherals composed of
many functions)

• Lower protocol overhead, resulting in high bus utilization

3. Isochronous bandwidth

• Guaranteed bandwidth and low latencies appropriate for
telephony, audio, video, etc.

4. Flexibility

• Supports a wide range of packet sizes, which allows a range
of device buffering options

• Allows a wide range of device data rates by accommo-
dating packet buffer size and latencies

• Flow control for buffer handling is built into the protocol

5. Robustness

• Error handling/fault recovery mechanism is built into the
protocol

• Dynamic insertion and removal of devices is identified in
user-perceived real-time

• . Supports identification of faulty devices

6. Synergy with PC industry

• Protocol is simple to implement and integrate

• Consistent with the PC plug-and-play architecture

• Leverages existing operating system interfaces

7. Low-cost implementation

• Low-cost subchannel at 1.5 Mb/s

• Optimized for integration in peripheral and host hardware
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• Suitable for development of low-cost peripherals

• Low-cost cables and connectors

• Uses commodity technologies

8. Upgrade path

• Architecture upgradeable to support multiple USB Host Con-
trollers in a system

2.2 Architectural Overview

USB is a cable bus that supports data exchange between a host
computer and a wide range of simultaneously accessible peripher-
als. The attached peripherals share USB bandwidth through a host-
scheduled, token-based protocol. The bus allows peripherals to be
attached, configured, used, and detached while the host and other
peripherals are in operation.

2.2.1 USB Topology

The USB connects USB devices with the USB host. The USB physical
interconnect is a tiered star topology. A hub is at the center of each
star. Each wire segment is a point-to-point connection between the
host and a hub or function, or a hub connected to another hub
or function (for more inormation on hubs or functions, refer to 2.4.1
and 2.4.2). Figure 2.1 illustrates the topology of the USB.

Due to timing constraints allowed for hub and cable propagation
times, the maximum number of tiers allowed is seven (including the
root tier). In seven tiers, a maximum of five non-root hubs can be sup-
ported in a communication path between the host and any device.
A compound device (see Figure 2.1) occupies two tiers; therefore,
it cannot be enabled if attached at tier level seven. Only functions
can be enabled in tier seven.

2.2.2 USB Hosts

The Universal Serial Bus is host controlled. There can only be one host
per bus. The specification in itself, does not support any form of multi-
master arrangement. However the On-The-Go specification, which
is an addition to USB 2.0, has introduced a Host Negotiation Proto-
col which allows two devices to negotiate for the role of host. This is
aimed at and limited to single point-to-point connections such as a
mobile phone and personal organizer and not multiple hub, multiple
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Figure 2.1: Topology of the USB Bus

device desktop configurations. The USB host is responsible for under-
taking all transactions and scheduling bandwidth. Data can be sent
by various transaction methods using a token-based protocol.

USB Host Specifications

The USB host controllers have their own specifications. With USB 1.1,
there were two Host Controller Interface Specifications, UHCI (Uni-
versal Host Controller Interface) developed by Intel which puts more
of the burden on software and allowing for cheaper hardware and
the OHCI (Open Host Controller Interface) developed by Compaq,
Microsoft and National Semiconductor which places more of the
burden on hardware and makes for simpler software. With the in-
troduction of USB 2.0 a new Host Controller Interface Specification
was needed to describe the register level details specific to USB 2.0.
The EHCI (Enhanced Host Controller Interface) was born. Significant
contributors include Intel, Compaq, NEC, Lucent and Microsoft.

2.2.3 Dynamic Device Attachment

The USB supports USB devices attaching to and detaching from the
USB at any time. Consequently, system software must accommodate
dynamic changes in the physical bus topology.
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Attachment of USB Devices

All USB devices attach to the USB through ports on specialized USB
devices known as hubs (refer to 2.4.1, on page 18). Hubs have sta-
tus bits that are used to report the attachment or removal of a USB
device on one of its ports. The host queries the hub to retrieve these
bits. In the case of an attachment, the host enables the port and
addresses the USB device through the device’s control pipe at the
default address (pipes are explained in 2.4.4, on page 21). The host
assigns a unique USB address to the device and then determines if
the newly attached USB device is a hub or a function. The host estab-
lishes its end of the control pipe for the USB device using the assigned
USB address and endpoint number zero. If the attached USB device
is a hub and USB devices are attached to its ports, then the above
procedure is followed for each of the attached USB devices. If the
attached USB device is a function, then attachment notifications will
be handled by host software that is appropriate for the function.

Removal of USB Devices

When a USB device has been removed from one of a hub’s ports, the
hub disables the port and provides an indication of device removal
to the host. The removal indication is then handled by appropriate
USB System Software. If the removed USB device is a hub, the USB
System Software must handle the removal of both the hub and of
all of the USB devices that were previously attached to the system
through the hub.

Bus Enumeration

Bus enumeration is the activity that identifies and assigns unique ad-
dresses to devices attached to a bus. Because the USB allows USB
devices to attach to or detach from the USB at any time, bus enu-
meration is an on-going activity for the USB System Software. Addi-
tionally, bus enumeration for the USB also includes the detection and
processing of removals (More information on the enumeration pro-
cess can be found in section 2.7.8, on page 32).

2.3 USB Data Flow Modes

The USB supports functional data and control exchange between
the USB host and a USB device as a set of either unidirectional or bidi-
rectional pipes (refer to 2.4.4, on page 21). USB data transfers take
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place between host software and a particular endpoint on a USB
device. Such associations between the host software and a USB de-
vice endpoint are called pipes. In general, data movement though
one pipe is independent from the data flow in any other pipe. A
given USB device may have many pipes.

2.3.1 Transfer Modes

The USB architecture comprehends four basic types of data transfers:

Control Transfers: Used to configure a device at attach time and
can be used for other device-specific purposes, including con-
trol of other pipes on the device.

Bulk Data Transfers: Generated or consumed in relatively large and
bursty quantities and have wide dynamic latitude in transmis-
sion constraints.

Interrupt Data Transfers: Used for timely but reliable delivery of data,
for example, characters or coordinates with human-perceptible
echo or feedback response characteristics.

Isochronous Data Transfers Occupy a prenegotiated amount of USB
bandwidth with a prenegotiated delivery latency.

A pipe supports only one of the types of transfers described above
for any given device configuration.

Control Transfers

Control data is used by the USB System Software to configure devices
when they are first attached. Other driver software can choose to
use control transfers in implementation-specific ways. Data delivery
is lossless.

The USB device framework (refer to Section 2.4) defines standard,
device class, or vendor-specific requests that can be used to ma-
nipulate a device’s state. Descriptors are also defined that can be
used to contain different information on the device. Control transfers
provide the transport mechanism to access device descriptors and
make requests of a device to manipulate its behavior.

Bulk Transfers

Bulk data typically consists of larger amounts of data, such as that
used for printers or scanners. Bulk data is sequential. Reliable ex-
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change of data is ensured at the hardware level by using error de-
tection in hardware and invoking a limited number of retries in hard-
ware. Also, the bandwidth taken up by bulk data can vary, depend-
ing on other bus activities.

Interrupt Transfers

A limited-latency transfer to or from a device is referred to as interrupt
data. Such data may be presented for transfer by a device at any
time and is delivered by the USB at a rate no slower than is specified
by the device.

Interrupt data typically consists of event notification, characters,
or coordinates that are organized as one or more bytes. An example
of interrupt data is the coordinates from a pointing device. Although
an explicit timing rate is not required, interactive data may have re-
sponse time bounds that the USB must support.

Isochronous Transfers

Isochronous data is continuous and real-time in creation, delivery,
and consumption. Timing-related information is implied by the steady
rate at which isochronous data is received and transferred. Isochron-
ous data must be delivered at the rate received to maintain its tim-
ing. In addition to delivery rate, isochronous data may also be sen-
sitive to delivery delays. For isochronous pipes, the bandwidth re-
quired is typically based upon the sampling characteristics of the
associated function. The latency required is related to the buffering
available at each endpoint.

A typical example of isochronous data is voice. If the delivery
rate of these data streams is not maintained, dropouts in the data
stream will occur due to buffer or frame underruns or overruns. Even
if data is delivered at the appropriate rate by USB hardware, delivery
delays introduced by software may degrade applications requiring
real-time turnaround, such as telephony-based audio conferencing.

The timely delivery of isochronous data is ensured at the expense
of potential transient losses in the data stream. In other words, any
error in electrical transmission is not corrected by hardware mech-
anisms such as retries. USB isochronous data streams are allocated
a dedicated portion of USB bandwidth to ensure that data can be
delivered at the desired rate.
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Figure 2.2: A Typical USB Hub

2.4 USB Device Framework

USB devices are divided into device classes such as hub, human in-
terface, printer, imaging, or mass storage device. The hub device
class indicates a specially designated USB device that provides ad-
ditional USB attachment points. USB devices are required to carry in-
formation for self-identification and generic configuration. They are
also required at all times to display behavior consistent with defined
USB device states.

Two major divisions of device classes exist: hubs and functions.
Only hubs have the ability to provide additional USB attachment
points. Functions provide additional capabilities to the host.

2.4.1 USB Hubs

Hubs are a key element in the plug-and-play architecture of the USB.
Figure 2.2 shows a typical hub. Hubs serve to simplify USB connectivity
from the user’s perspective and provide robustness at relatively low
cost and complexity.

Hubs are wiring concentrators and enable the multiple attach-
ment characteristics of the USB. Attachment points are referred to
as ports. Each hub converts a single attachment point into multi-
ple attachment points. The architecture supports concatenation of
multiple hubs (see also 2.7, on page 28, for details on the root hub).

The upstream port of a hub connects the hub towards the host.
Each of the downstream ports of a hub allows connection to another
hub or function. Hubs can detect attach and detach at each down-
stream port and enable the distribution of power to downstream de-
vices. Each downstream port can be individually enabled and at-
tached to either high-, full- or low-speed devices.

Figure 2.3 illustrates how hubs provide connectivity in a typical
desktop computer environment.
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Figure 2.3: Hubs in a Desktop Computer Environment

2.4.2 USB Functions

A function is a USB device that is able to transmit or receive data or
control information over the bus. A function is typically implemented
as a separate peripheral device with a cable that plugs into a port
on a hub. However, a physical package may implement multiple
functions and an embedded hub with a single USB cable. This is
known as a compound device. A compound device appears to
the host as a hub with one or more nonremovable USB devices (see
Figure 2.1, on page 14).

Each function contains configuration information that describes
its capabilities and resource requirements. Before a function can be
used, it must be configured by the host. This configuration includes
allocating USB bandwidth and selecting function-specific configura-
tion options. Examples of functions include the following:

• A human interface device such as a mouse, keyboard, tablet,
or game controller

• An imaging device such as a scanner, printer, or camera

• A mass storage device such as a CDROM drive, floppy drive, or
DVD drive

Most functions have a series of buffers, typically 8 bytes long.
Each buffer belongs to an endpoint.
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Figure 2.4: Addressing of Device Endpoints

2.4.3 USB Device Endpoints

An endpoint is a uniquely identifiable portion of a USB device that is
the terminus of a communication flow between the host and device.
Each USB logical device is composed of a collection of independent
endpoints. Each logical device has a unique address assigned by
the system at device attachment time. Each endpoint on a device
is given at design time a unique device-determined identifier called
the endpoint number. Each endpoint has a device-determined di-
rection of data flow. As illustrated in Figure 2.4, the combination of
the device address, endpoint number, and direction allows each
endpoint to be uniquely referenced. Each endpoint is a simplex con-
nection that supports data flow in one direction: either input (from
device to host) or output (from host to device).

An endpoint has characteristics that determine the type of trans-
fer service required between the endpoint and the client software.
An endpoint describes itself by:

• Bus access frequency/latency requirement

• Bandwidth requirement

• Endpoint number

• Error handling behavior requirements
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• Maximum packet size that the endpoint is capable of sending
or receiving

• The transfer type for the endpoint (refer to Section 2.3.1, on
page 16 for details)

• The direction in which data is transferred between the endpoint
and the host

All devices must support endpoint zero. This is the endpoint which
receives all of the devices control and status requests during enumer-
ation and throughout the duration while the device is operational on
the bus. Endpoints other than those with endpoint number zero are
in an unknown state before being configured and may not be ac-
cessed by the host before being configured.

2.4.4 USB Pipes

While the device sends and receives data on a series of endpoints,
the client software transfers data through pipes. A pipe is a logical
connection between the host and endpoint(s). Pipes also have a set
of parameters associated with them such as how much bandwidth
is allocated to it, what transfer type (Control, Bulk, Iso or Interrupt) it
uses, a direction of data flow and maximum packet/buffer sizes. For
example the default pipe is a bidirectional pipe made up of end-
point zero in and endpoint zero out with a control transfer type.

USB defines two types of pipes:

Stream Pipes: have no defined USB format. Data flows sequentially
and has a predefined direction, either in or out. Stream pipes
support bulk, isochronous and interrupt transfer types. Stream
pipes can either be controlled by the host or device.

Message Pipes: have a defined USB format. They are host con-
trolled. Data is transferred in the desired direction, dictated by
the request. Message pipes allow data to flow in both directions
but only support control transfers.

All USB devices respond to requests from the host on the device’s
Default Control Pipe. These requests are made using control transfers.
The USB protocol specifies a standard set of requests that all devices
must support. More information on USB standard requests can be
found in Appendix A.1, on page 110.

21



2.5. USB DESCRIPTORS

Figure 2.5: Hierarchy of the USB Descriptors

2.5 USB Descriptors

All USB devices have a hierarchy of descriptors which describe to
the host information such as what the device is, who makes it, what
version of USB it supports, how many ways it can be configured, the
number of endpoints and their types etc.

The more common USB descriptors are:

• Device Descriptors

• Configuration Descriptors

• Interface Descriptors

• Endpoint Descriptors

• String Descriptors

The hierarchy of the descriptors is illustrated in Figure 2.5.
USB devices can only have one device descriptor. The device

descriptor includes information such as what USB revision the device
complies to, the Product and Vendor IDs used to load the appro-
priate drivers and the number of possible configurations the device
can have. The number of configurations (bNumConfigurations in Fig-
ure 2.5) indicates how many configuration descriptors branches are
to follow.

The configuration descriptor specifies values such as the amount
of power this particular configuration uses, if the device is self- or bus-
powered and the number of interfaces it has (bNumInterfaces in Fig-
ure 2.5). When a device is enumerated, the host reads the device
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descriptors and can make a decision of which configuration to en-
able. It can only enable one configuration at a time.

The configuration settings are not limited to power differences.
Each configuration could be powered in the same way and draw
the same current, yet have different interface or endpoint combina-
tions. However it should be noted that changing the configuration
requires all activity on each endpoint to stop. While USB offers this
flexibility, very few devices have more than 1 configuration.

The interface descriptor can be seen as a header or grouping of
the endpoints into a functional group performing a single feature of
a multi-function device. Unlike the configuration descriptor, there is
no limitation as to having only one interface enabled at a time.

Each endpoint descriptor is used to specify the type of transfer,
direction, polling interval and maximum packet size for each end-
point. Endpoint zero, the default control endpoint is always assumed
to be a control endpoint and as such never has a descriptor.

2.5.1 Composition of USB Descriptors

All descriptors are made up of a common format. The first byte spec-
ifies the length of the descriptor, while the second byte indicates the
descriptor type. If the length of a descriptor is smaller than what the
specification defines, then the host shall ignore it. However if the size
is greater than expected the host will ignore the extra bytes and start
looking for the next descriptor at the end of actual length returned.

For more information on the composition of USB Descriptors, refer
to Appendix B, on page 121.

2.6 USB Host: Hardware & Software

The USB interconnect supports data traffic between a host and a
USB device. The specifications of the bus, describe the host inter-
faces necessary to facilitate USB communication between a soft-
ware client, resident on the host, and a function implemented on
a device.

2.6.1 Host Controller Requirements

In all implementations, Host Controllers perform the same basic du-
ties with regard to the USB and its attached devices.The Host Con-
troller has requirements from both the host and the USB. The following
is a brief overview of the functionality provided:

23



2.6. USB HOST: HARDWARE & SOFTWARE

State Handling As a component of the host, the Host Controller re-
ports and manages its states.

Serializer/Deserializer For data transmitted from the host, the Host
Controller converts protocol and data information from its na-
tive format to a bit stream transmitted on the USB. For data be-
ing received into the host, the reverse operation is performed.

(micro)Frame Generation The HC produces “Start of Frame” (SOF)
tokens at a period of 1 ms when operating with full-speed de-
vices, and at a period of 125 µs when operating with high-
speed devices.

Data Processing The Host Controller processes requests for data trans-
mission to and from the host.

Protocol Engine The Host Controller supports the protocol specified
by the USB.

Transmission Error Handling All Host Controllers exhibit the same be-
havior when detecting and reacting to the defined error cate-
gories.

Remote Wakeup All Host Controllers must have the ability to place
the bus into the Suspended state and to respond to bus wakeup
events.

Root Hub The root hub provides standard hub function to link the
Host Controller to one or more USB ports.

Host System Interface Provides a high-speed data path between
the Host Controller and host system.

2.6.2 Overview of the USB Host

The host and the device are divided into the distinct layers depicted
in Figure 2.6. Vertical arrows indicate the actual communication
on the host. All communications between the host and device ul-
timately occur on the physical USB wire. However, there are logical
host-device interfaces between each horizontal layer. These com-
munications, between client software resident on the host and the
function provided by the device, are typified by a contract based
on the needs of the application currently using the device and the
capabilities provided by the device. This client-function interaction
creates the requirements for all of the underlying layers and their in-
terfaces.

In summary, the host layers provide the following capabilities:
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Figure 2.6: USB Interlayer Communication Model

• Detecting the attachment and removal of USB devices

• Managing USB standard control flow between the host and USB
devices

• Managing data flow between the host and USB devices

• Collecting status and activity statistics

• Controlling the electrical interface between the Host Controller
and USB devices, including the provision of a limited amount of
power.

Figure 2.7 illustrates the host’s view of its communication with the
device. There is only one host for each USB. The major layers of a host
consist of the following:

• USB bus interface

• USB System

• Client

2.6.3 USB Bus Interface

The USB bus interface handles interactions for the electrical and pro-
tocol layers. From the interconnect point of view, a similar USB bus
interface is provided by both the USB device and the host, as ex-
emplified by the Serial Interface Engine (SIE). On the host, however,
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Figure 2.7: USB Host Communications
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the USB bus interface has additional responsibilities due to the unique
role of the host on the USB and is implemented as the Host Controller.
The Host Controller has an integrated root hub providing attachment
points to the USB wire.

2.6.4 USB System

The USB System uses the Host Controller to manage data transfers
between the host and USB devices. The interface between the USB
System and the Host Controller is dependent on the hardware def-
inition of the Host Controller. The USB System, along with the Host
Controller, performs the translation between the client’s view of data
transfers and the USB transactions appearing on the interconnect.
This includes the addition of any USB feature support such as proto-
col wrappers. The USB System is also responsible for managing USB
resources, such as bandwidth and bus power, so that client access
to the USB is possible.

The USB System has three basic components:

• Host Controller Driver

• USB Driver

• Host Software

2.6.5 Host Controller Driver

The Host Controller Driver (HCD) is an abstraction of Host Controller
hardware and the Host Controller’s view of data transmission over
the USB. The HCD meets the following requirements:

• Provides an abstraction of the Host Controller hardware.

• Provides an abstraction for data transfers by the Host Controller
across the USB interconnect.

• Provides an abstraction for the allocation (and de-allocation)
of Host Controller resources to support guaranteed service to
USB devices.

• Presents the root hub and its behavior according to the hub
class definition. This includes supporting the root hub such that
the hub driver interacts with the root hub exactly as it would for
any hub.
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The HCD provides a software interface (HCDI) that implements the
required abstractions. The function of the HCD is to provide an ab-
straction, which hides the details of the Host Controller hardware.
Below the Host Controller hardware is the physical USB and all the
attached USB devices.

The HCD is the lowest tier in the USB software stack. The HCD
has only one client: the Universal Serial Bus Driver (USBD). The USBD
maps requests from many clients to the appropriate HCD. A given
HCD may manage many Host Controllers. The HCDI is not directly
accessible from a client.

2.6.6 USB Driver

The USBD provides a collection of mechanisms that operating system
components, typically device drivers, use to access USB devices.
The only access to a USB device is that provided by the USBD. The
USBD implementations are operating system-specific. The mecha-
nisms provided by the USBD are implemented, using as appropriate
and augmenting as necessary, the mechanisms provided by the op-
erating system. For specifics of the USBD operation in the Linux oper-
ating system, see Chapter 3.

USBD directs accesses to one or more HCDs that in turn connect
to one or more Host Controllers. If allowed, how USBD instancing
is managed is dependent upon the operating system environment.
However, from the client’s point of view, the USBD with which the
client communicates manages all of the attached USB devices. Fig-
ure 2.8 presents an overview of the USBD structure.

Clients of USBD direct commands to devices or move streams of
data to or from pipes. The USBD presents two groups of software
mechanisms to clients:

Command mechanisms allow clients to configure and control USBD
operation as well as to configure and generically control a USB
device. In particular, command mechanisms provide all access
to the device’s default pipe.

Pipe mechanisms allow a USBD client to manage device specific
data and control transfers. Pipe mechanisms do not allow a
client to directly address the device’s default pipe.

2.7 The Root Hub

Hubs provide the electrical interface between USB devices and the
host. Hubs are directly responsible for supporting many of the at-
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Figure 2.8: USB Driver Structure

tributes that make USB user friendly and hide its complexity from the
user. Listed below are the major aspects of USB functionality that
hubs must support:

• Connectivity behavior

• Power management

• Device connect/disconnect detection

• Bus fault detection and recovery

• High, full, and lowspeed device support

2.7.1 Hub Requests & Descriptors

Hubs respond to standard device commands as defined in A.3.1, on
page 118. In addition, the hub class defines a set of hub-specific
requests, listed in Section A.3.2, on page 118.

Likewise, hub descriptors are derived from the general USB frame-
work (refer to Appendix B, on page 121). Hub descriptors define a
hub device and the ports on that hub. The hub class defines a hub-
specific descriptor, listed in Section B.6, on page 128.
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2.7.2 Hub Architecture & Supported Speeds

A hub consists of a Hub Repeater section, a Hub Controller section,
and a Transaction Translator section. The hub must operate at high-
speed when its upstream facing port is connected at high-speed.
The hub must operate at full-speed when its upstream facing port is
connected at full-speed. The Hub Repeater is responsible for man-
aging connectivity between upstream and downstream facing ports
which are operating at the same speed. The Hub Repeater supports
full-/low-speed connectivity and high-speed connectivity. The Hub
Controller provides status and control and permits host access to the
hub. The Transaction Translator takes high-speed split transactions
and translates them to full-/low-speed transactions when the hub is
operating at high-speed and has full-/low-speed devices attached.
The operating speed of a device attached on a downstream facing
port determines whether the Routing Logic connects a port to the
Transaction Translator or hub repeater sections (see also Table 2.1,
on page 10).

2.7.3 Hub Connectivity

Hubs exhibit different connectivity behavior depending on whether
they are propagating packet traffic, or resume signaling, or are in the
Idle state.

The Hub Repeater contains one port that must always connect
in the upstream direction (referred to as the upstream facing port)
and one or more downstream facing ports. Upstream connectivity is
defined as being towards the host, and downstream connectivity is
defined as being towards a device (see also Figure 2.2, on page 18).

If a downstream facing port is enabled (i.e., in a state where it
can propagate signaling through the hub), and the hub detects the
start of a packet on that port, connectivity is established in an up-
stream direction to the upstream facing port of that hub, but not
to any other downstream facing ports. This means that when a de-
vice or a hub transmits a packet upstream, only those hubs in line
between the transmitting device and the host will see the packet.

In the downstream direction, hubs operate in a broadcast mode.
When a hub detects the start of a packet on its upstream facing
port, it establishes connectivity to all enabled downstream facing
ports. If a port is not enabled, it does not propagate packet signaling
downstream.
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2.7.4 Endpoint Organization

The Hub Class defines one additional endpoint beyond Default Con-
trol Pipe, which is required for all hubs: the Status Change endpoint.
The host system receives port and hub status change notifications
through the Status Change endpoint. The Status Change endpoint
is an interrupt endpoint. If no hub or port status change bits are set,
then the hub returns an NAK when the Status Change endpoint is
polled. When a status change bit is set, the hub responds with data,
as shown in 2.7.6, indicating the entity (hub or port) with a change bit
set. The USB System Software can use this data to determine which
status registers to access in order to determine the exact cause of
the status change interrupt.

2.7.5 Port Change Information Processing

Hubs report a port’s status through port commands on a per-port ba-
sis. The USB System Software acknowledges a port change by clear-
ing the change state corresponding to the status change reported
by the hub. The acknowledgment clears the change state for that
port so future data transfers to the Status Change endpoint do not
report the previous event. This allows the process to repeat for further
changes.

2.7.6 Hub and Port Status Change Bitmap

The Hub and Port Status Change Bitmap indicates whether the hub
or a port has experienced a status change. This bitmap also indi-
cates which port(s) has had a change in status. The hub returns this
value on the Status Change endpoint. Hubs report this value in byte-
increments. That is, if a hub has six ports, it returns a byte quantity,
and reports a zero in the invalid port number field locations.

The USB System Software is aware of the number of ports on a hub
(this is reported in the hub descriptor) and decodes the Hub and Port
Status Change Bitmap accordingly. The hub reports any changes in
hub status in bit zero of the Hub and Port Status Change Bitmap.

The Hub and Port Status Change Bitmap size varies from a min-
imum size of one byte. Hubs report only as many bits as there are
ports on the hub, subject to the byte-granularity requirement (i.e.,
round up to the nearest byte).

Any time the Status Change endpoint is polled by the host con-
troller and any of the Status Changed bits are non-zero, the Hub and
Port Status Change Bitmap is returned.

31



2.7. THE ROOT HUB

2.7.7 Over-current Reporting and Recovery

USB devices must be designed to meet applicable safety standards.
Usually, this will mean that a self-powered hub implements current
limiting on its downstream facing ports. If an over-current condition
occurs, it causes a status and state change in one or more ports.
This change is reported to the USB System Software so that it can
take corrective action.

A hub may be designed to report over-current as either a port
or a hub event. The hub descriptor field wHubCharacteristics (refer
to B.6.1, on page 129) is used to indicate the reporting capabilities
of a particular hub. The over-current status bit in the hub or port
status field indicates the state of the over-current detection when
the status is returned. The over-current status change bit in the Hub
or Port Change field indicates if the overcurrent status has changed.

When a hub experiences an over-current condition, it must place
all affected ports in the Powered-off state. If a hub has per-port
power switching and per-port current limiting, an over-current on one
port may still cause the power on another port to fall below specified
minimums. In this case, the affected port is placed in the Powered-
off state. If the hub has over-current detection on a hub basis, then
an over-current condition on the hub will cause all ports to enter the
Powered-off state.

2.7.8 Enumeration Handling

The hub device class commands (refer to Appedix A.3.2, on page 118)
are used to manipulate its downstream facing port state. When a
device is attached, the device attach event is detected by the hub
and reported on the status change interrupt. The host will accept
the status change report and request a SetPortFeature(PORT RESET)
on the port. As part of the bus reset sequence, a speed detect is
performed by the hub’s port hardware.

When the device is detached from the port, the port reports the
status change through the status change endpoint and the port will
be reconnected to the high-speed repeater. Then the process is
ready to be repeated on the next device attach detect.
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Chapter 3

The Linux USB Subsystem

The development of the Linux USB subsystem started in 1997 and in
the meantime it was redesigned many times. This implied various
changes of its internal structure and its API too. So it is hard for device
driver developers to keep up to date with all ongoing discussions and
current changes.

Inside the Linux kernel, there exists a subsystem called “The USB
Core” with a specific API to support USB devices and host controllers.
Its purpose is to abstract all hardware or device dependent parts
by defining a set of data structures, macros and functions. In fact,
the USB core is the implementation of the USBD component of a
USB system, as described in the USB specifications (refer to 2.6.6, on
page 28).

The USB core contains routines common to all USB device drivers
and host controller drivers. These functions can be grouped into an
upper (Host-Side) and a lower (Host Controller) API layer. As shown in
Figure 3.1 there exists an API for USB device drivers and another one
for host controllers.

This Chapter begins by introducing some of the standard data

Figure 3.1: Linux USB Core API Layers
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types provided by the USB subsystem that conform to the USB specifi-
cations. Then the API model of the upper layer is examined, in terms
of data structures and functions. The description of the lower layer
forms the last part of this chapter. The lower layer is the most impor-
tant aspect of the USB subsystem in the scope of this work.

3.1 USB-Standard Types

This section describes USB structures that are needed for USB device
APIs. These are used by the USB device model, which is defined in
chapter 9 of the USB 2.0 specification. Linux has several APIs in C that
need these.

Note that the naming scheme followed inside these data struc-
tures does not conform to the standard Linux kernel scheme, but
matches the one found in the USB specifications.

3.1.1 Control Request Support

struct usb ctrlrequest

This structure is used to send control requests on a USB device. It
matches the different fields of the USB 2.0 Spec. Refer to Table A.1 for
a description of the different fields, and what they are used for.

struct usb_ctrlrequest {
__u8 bRequestType;
__u8 bRequest;
__le16 wValue;
__le16 wIndex;
__le16 wLength;

} __attribute__ ((packed));

3.1.2 Standard Descriptors

These are the standard USB Descriptors, defined in 2.5, as returned
by the “GET DESCRIPTOR” command.

Two fields inside these data structures, “bLength” and “bDescrip-
torType”, are common to all descriptors. The other fields are specific
to each descriptor.

All multi-byte values here are encoded in little endian byte or-
der on the physical bus. But when exposed through Linux-USB APIs,
they’ve been converted to cpu byte order.
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struct usb device descriptor

This structure is used to hold a USB device descriptor.

struct usb_device_descriptor {
__u8 bLength;
__u8 bDescriptorType;

__u16 bcdUSB;
__u8 bDeviceClass;
__u8 bDeviceSubClass;
__u8 bDeviceProtocol;
__u8 bMaxPacketSize0;
__u16 idVendor;
__u16 idProduct;
__u16 bcdDevice;
__u8 iManufacturer;
__u8 iProduct;
__u8 iSerialNumber;
__u8 bNumConfigurations;

} __attribute__ ((packed));

For more information on the fields inside this structure, see Ap-
pendix B.1, on page 121, particularly Table B.1.

struct usb config descriptor

This structure is used to hold a USB configuration descriptor.

struct usb_config_descriptor {
__u8 bLength;
__u8 bDescriptorType;

__u16 wTotalLength;
__u8 bNumInterfaces;
__u8 bConfigurationValue;
__u8 iConfiguration;
__u8 bmAttributes;
__u8 bMaxPower;

} __attribute__ ((packed));

For more information on the fields inside this structure, see Ap-
pendix B.2, on page 122, particularly Table B.2.
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struct usb string descriptor

This structure is used to hold a USB string descriptor.

struct usb_string_descriptor {
__u8 bLength;
__u8 bDescriptorType;

__le16 wData[1];
} __attribute__ ((packed));

Field wData[1] of the data structure, is encoded in Unicode for-
mat (UTF-16, Little Endian). For more information on the fields of this
structure, see Appendix B.5, on page 126, particularly Table B.5.

struct usb interface descriptor

This structure is used to hold a USB interface descriptor.

struct usb_interface_descriptor {
__u8 bLength;
__u8 bDescriptorType;

__u8 bInterfaceNumber;
__u8 bAlternateSetting;
__u8 bNumEndpoints;
__u8 bInterfaceClass;
__u8 bInterfaceSubClass;
__u8 bInterfaceProtocol;
__u8 iInterface;

} __attribute__ ((packed));

For more information on the fields of this structure, see Appendix B.3,
on page 125, particularly Table B.3.

struct usb endpoint descriptor

This structure is used to hold a USB endpoint descriptor.

struct usb_endpoint_descriptor {
__u8 bLength;
__u8 bDescriptorType;

36



CHAPTER 3. THE LINUX USB SUBSYSTEM

__u8 bEndpointAddress;
__u8 bmAttributes;
__u16 wMaxPacketSize;
__u8 bInterval;

} __attribute__ ((packed));

For more information on the fields of this structure, see Appendix B.4,
on page 126, particularly Table B.4.

3.2 Upper (Host-Side) API Model

Within the kernel, host-side drivers for USB devices talk to the USB core
APIs. There are two types of public USB core APIs, targetted at two
different layers of USB driver. Those are general purpose drivers, ex-
posed through driver frameworks such as block, character, or net-
work devices; and drivers that are part of the core, which are in-
volved in managing a USB bus. Such core drivers include the hub
driver, which manages trees of USB devices, and several different
kinds of host controller driver (HCD), which control individual busses.

The device model seen by USB drivers is described in detail in
Chapter 2, on page 10 (particularly Sections 2.3–2.5). What follows,
is a quick description of this device model:

• USB supports four kinds of data transfer (control, bulk, interrupt,
and isochronous). Two transfer types use bandwidth as it’s avail-
able (control and bulk), while the other two types of transfer (in-
terrupt and isochronous) are scheduled to provide guaranteed
bandwidth.

• The device description model includes one or more configura-
tions per device, only one of which is active at a time. Devices
that are capable of high-speed operation must also support
full-speed configurations, along with a way to ask about the
“other speed” configurations that might be used.

• Configurations have one or more interface, each of which may
have alternate settings. Interfaces may be standardized by USB
“Class” specifications, or may be specific to a vendor or device.

• USB device drivers actually bind to interfaces, not devices (see
Figure 3.2). Most USB devices are simple, with only one configu-
ration, one interface, and one alternate setting.

• Interfaces have one or more endpoints, each of which supports
one type and direction of data transfer such as “bulk out” or
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Figure 3.2: Linux USB Driver Attachment to a USB Device

“interrupt in”. The entire configuration may have up to sixteen
endpoints in each direction, allocated as needed among all
the interfaces.

• Data transfer on USB is packetized; each endpoint has a max-
imum packet size. Drivers must often be aware of conventions
such as flagging the end of bulk transfers using “short” (includ-
ing zero length) packets.

The Linux USB API supports synchronous calls for control and bulk
messaging. It also supports asynchnous calls for all kinds of data
transfer, using request structures called USB Request Blocks (URBs).
URBs are covered in Section 3.3.1.

The only drivers that actually touch hardware (reading/writing
registers, handling IRQs, and so on) are the HCDs. In theory, all HCDs
provide the same functionality through the same API. In practice,
that’s becoming more true with 2.6 Linux kernels, but there are still
differences that crop up, especially with fault handling. Different
controllers don’t necessarily report the same aspects of failures, and
recovery from faults (including software-induced ones like unlinking
an URB) isn’t yet fully consistent.

3.2.1 Host-Side Data Types

The host-side API exposes several layers to drivers, some of which are
more necessary than others. These support lifecycle models for host-
side drivers and devices, and support passing buffers through USB
core to some HCD that performs the I/O for the device driver.
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These data types will not be covered in this document, since our
focus is on the Host Controller API, needed for Host Controller Drivers.
Further information can be found in the documentation of the kernel
sources.

3.3 USB Core APIs

There are two basic I/O models in the USB API. The most elemen-
tal one is asynchronous: drivers submit requests in the form of an
URB, and the URB’s completion callback handle the next step. All
USB transfer types support that model, although there are special
cases for control URBs (which always have setup and status stages,
but may not have a data stage) and isochronous URBs (which allow
large packets and include per-packet fault reports). Built on top of
that is synchronous API support, where a driver calls a routine that
allocates one or more URBs, submits them, and waits until they com-
plete. There are synchronous wrappers for single-buffer control and
bulk transfers.

USB drivers need to provide buffers that can be used for DMA,
although they don’t necessarily need to provide the DMA mapping
themselves. There are APIs to use used when allocating DMA buffers,
which can prevent use of bounce buffers on some systems.

3.3.1 The Structure of USB Request Blocks (URBs)

This structure identifies USB transfer requests.

Data Transfer Buffers

Normally drivers provide I/O buffers allocated with kmalloc() or oth-
erwise taken from the general page pool. That is provided by trans-
fer buffer (control requests also use setup packet), and host con-
troller drivers perform a dma mapping (and unmapping) for each
buffer transferred. Those mapping operations can be expensive on
some platforms, although they’re cheap on commodity x86 and ppc
hardware.

Alternatively, drivers may pass the URB NO xxx DMA MAP transfer
flags, which tell the host controller driver that no such mapping is
needed since the device driver is DMA-aware. For example, a de-
vice driver might allocate a DMA buffer with usb buffer alloc() or call
usb buffer map(). When these transfer flags are provided, host con-
troller drivers will attempt to use the dma addresses found in the trans-
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fer dma and/or setup dma fields rather than determining a dma ad-
dress themselves.

Initialization

All URBs submitted must initialize the dev, pipe, transfer flags (may be
zero), and complete fields. The URB ASYNC UNLINK transfer flag af-
fects later invocations of the usb unlink urb() routine. All URBs must
also initialize transfer buffer and transfer buffer length. They may pro-
vide the URB SHORT NOT OK transfer flag, indicating that short reads
are to be treated as errors; that flag is invalid for write requests.

Control URBs must provide a setup packet. The setup packet and
transfer buffer may each be mapped for DMA or not, independently
of the other. The transfer flags URB NO TRANSFER DMA MAP and URB -
NO SETUP DMA MAP indicate which buffers have already been map-
ped. URB NO SETUP DMA MAP is ignored for non-control URBs.

Bulk URBs may use the URB ZERO PACKET transfer flag, indicating
that bulk OUT transfers should always terminate with a short packet,
even if it means adding an extra zero length packet.

Interrupt URBs must provide an interval, saying how often (in mil-
liseconds or, for high-speed devices, 125 microsecond units) to poll
for transfers. After the URB has been submitted, the interval field re-
flects how the transfer was actually scheduled. The polling interval
may be more frequent than requested.

Isochronous URBs normally use the URB ISO ASAP transfer flag, tel-
ling the host controller to schedule the transfer as soon as bandwidth
utilization allows, and then set start frame to reflect the actual frame
selected during submission. Otherwise drivers must specify the start -
frame and handle the case where the transfer can’t begin then. Iso-
chronous URBs have a different data transfer model, in part because
the quality of service is only “best effort”. Callers provide specially al-
located URBs, with number of packets worth of iso frame desc struc-
tures at the end. Each such packet is an individual ISO transfer. Iso-
chronous URBs are normally queued, submitted by drivers to arrange
that transfers are at least double buffered, and then explicitly resub-
mitted in completion handlers, so that data (such as audio or video)
streams are as constant a rate as the host controller scheduler can
support.

Completion Callbacks

The completion callback is made in interrupt(), and one of the first
things that a completion handler should do is check the status field.
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The status field is provided for all URBs. It is used to report unlinked
URBs, and status for all non-ISO transfers. It should not be examined
before the URB is returned to the completion handler. The context
field is normally used to link URBs back to the relevant driver or request
state.

When the completion callback is invoked for non-isochronous URBs,
the actual length field tells how many bytes were transferred. This
field is updated even when the URB terminated with an error or was
unlinked.

ISO transfer status is reported in the status and actual length fields
of the iso frame desc array, and the number of errors is reported
in error count. Completion callbacks for ISO transfers will normally
(re)submit URBs to ensure a constant transfer rate.

struct urb
{

/* private, usb core and HC only fields in the urb */
struct kref kref;
spinlock_t lock;
void *hcpriv;
struct list_head urb_list;
int bandwidth;
atomic_t use_count;
u8 reject;

/* public, fields that can be used by drivers */
struct usb_device *dev;
unsigned int pipe;
int status;
unsigned int transfer_flags;
void *transfer_buffer;
dma_addr_t transfer_dma;
int transfer_buffer_length;
int actual_length;
unsigned char *setup_packet;
dma_addr_t setup_dma;
int start_frame;
int number_of_packets;
int interval;
int error_count;
void *context;
usb_complete_t complete;
struct usb_iso_packet_descriptor iso_frame_desc[0];

};

URB Data Fields Description

urb list : For use by current owner of the URB.

dev : Identifies the USB device to perform the request.
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pipe: Holds endpoint number, direction, type, and more. These val-
ues are created with the eight macros available:
usb {snd,rcv}TYPEpipe(dev,endpoint), where the TYPE is “ctrl”
(control), “bulk”, “int” (interrupt), or “iso” (isochronous). For ex-
ample usb sndbulkpipe() or usb rcvintpipe(). Endpoint numbers
range from zero to fifteen. Note that “in” endpoint two is a dif-
ferent endpoint (and pipe) from “out” endpoint two. The cur-
rent configuration controls the existence, type, and maximum
packet size of any given endpoint.

status: This is read in non-iso completion functions to get the status
of the particular request. ISO requests only use it to tell whether
the URB was unlinked; detailed status for each frame is in the
fields of the iso frame desc.

transfer flags: A variety of flags may be used to affect how URB sub-
mission, unlinking, or operation are handled. Different kinds of
URB can use different flags.

transfer buffer : This identifies the buffer to (or from) which the I/O
request will be performed (unless URB NO TRANSFER DMA MAP
is set). This buffer must be suitable for DMA; it must be allocated
with kmalloc() or equivalent. For transfers to “in” endpoints,
contents of this buffer will be modified. This buffer is used for
the data stage of control transfers.

transfer dma: If transfer flags include URB NO TRANSFER DMA MAP,
the device driver is saying that it provided this DMA address,
which the host controller driver should use in preference to the
transfer buffer.

transfer buffer length: How big is transfer buffer. The transfer may
be broken up into chunks according to the current maximum
packet size for the endpoint, which is a function of the config-
uration and is encoded in the pipe. When the length is zero,
neither transfer buffer nor transfer dma is used.

actual length: This is read in non-iso completion functions, and it
tells how many bytes (out of transfer buffer length) were trans-
ferred. It will normally be the same as requested, unless ei-
ther an error was reported or a short read was performed. The
URB SHORT NOT OK transfer flag may be used to make such
short reads be reported as errors.

setup packet : Only used for control transfers, this points to eight
bytes of setup data. Control transfers always start by sending
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this data to the dvice. Then transfer buffer is read or written, if
needed.

setup dma: For control transfers with URB NO SETUP DMA MAP set,
the device driver has provided this DMA address for the setup
packet. The host controller driver should use this in preference
to setup packet.

start frame: Returns the initial frame for isochronous transfers.

number of packets: Lists the number of ISO transfer buffers.

interval: Specifies the polling interval for interrupt or isochronous
transfers. The units are frames (milliseconds) for full- and low-
speed devices, and microframes (1/8 millisecond) for high-speed
ones.

error count : Returns the number of ISO transfers that reported errors.

context : For use in completion functions. This normally points to
request-specific driver context.

complete: Completion handler. This URB is passed as the parameter
to the completion function. The completion function may then
do what it likes with the URB, including resubmitting or freeing it.

iso frame desc: Used to provide arrays of ISO transfer buffers and to
collect the transfer status for each buffer.

3.3.2 URB Manipulation Functions

Here’s a short overview of the functions provided by the USB core API
to manipulate URBs:

usb alloc urb(): Creates a URB for the USB driver to use, initializes
a few internal structures, incrementes the usage counter, and
returns a pointer to URB.

usb free urb(): Must be called when a user of a URB is finished with
it. When the last user of the URB calls this function, the memory
of the URB is freed.

usb submit urb(): This submits a transfer request, and transfers con-
trol of the URB describing that request to the USB subsystem.
Request completion will be indicated later, asynchronously, by
calling the completion handler. The three types of comple-
tion are success, error, and unlink (a software-induced fault,
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also called ”request cancelation”). The caller must have cor-
rectly initialized the URB before submitting it. Functions such as
usb fill bulk urb() and usb fill control urb() are available to en-
sure that most fields are correctly initialized, for the particular
kind of transfer, although they will not initialize any transfer flags.

usb unlink urb(): This routine cancels an in-progress request. URBs
complete only once per submission, and may be canceled
only once per submission. Successful cancelation means the
requests’s completion handler will be called with a status code
indicating that the request has been canceled (rather than any
other code) and will quickly be removed from host controller
data structures.

usb kill urb(): This routine cancels an in-progress request. It is guar-
anteed that upon return all completion handlers will have fin-
ished and the URB will be totally idle and available for reuse.
These features make this an ideal way to stop I/O in a discon-
nect callback or close function. If the request has not already
finished or been unlinked the completion handler will see:
“urb→status == -ENOENT”.

usb control msg(): This function builds a control urb, sends it off and
waits for completion or timeout.

usb bulk msg(): This function builds a bulk urb, sends it off and waits
for completion or timeout.

3.4 Host Controller APIs

These APIs are only for use by host controller drivers, most of which
implement standard register interfaces such as EHCI, OHCI, or UHCI
(refer to Section 2.2.2, on page 13). There exist other host controllers.
Not all host controllers use DMA; some use PIO. The same basic APIs
are available to drivers for all those controllers.

3.4.1 Host Controller Data Types

For historical reasons, the data types available to HCDs are splitted
in two layers: struct usb bus is a rather thin layer that became avail-
able in the 2.2 kernels, while struct usb hcd is a more featureful layer
(available in later 2.4 kernels and in 2.6) that lets HCDs share com-
mon code, to shrink driver size and significantly reduce HCD-specific
behaviors.
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struct hc driver

This structure holds the hardware-specific hooks for the host con-
troller. While every host controller must ensure compatibility with the
USB specifications, the actual implementation varies among the man-
ufacturers. Thus, every host controller requires different handling in
terms of initialization, memory allocation, connection of the root hub
etc. All these functions are implemented by the HCD and then hooked
within this structure. For example, if the kernel needs to reset the host
controller, this will be done by a call to hc driver→reset, without any
knowledge of the actual steps required to reset the host controller.
This reduces the need for HCD-specific code inside the kernel.

struct hc_driver {
const char *description;

irqreturn_t (*irq) (struct usb_hcd *hcd,
struct pt_regs *regs);

int flags;
#define HCD_MEMORY 0x0001
#define HCD_USB11 0x0010
#define HCD_USB2 0x0020

int (*reset) (struct usb_hcd *hcd);
int (*start) (struct usb_hcd *hcd);
int (*suspend) (struct usb_hcd *hcd, u32 state);
int (*resume) (struct usb_hcd *hcd);
void (*stop) (struct usb_hcd *hcd);
int (*get_frame_number) (struct usb_hcd *hcd);
int (*urb_enqueue) (struct usb_hcd *hcd, struct urb *urb,

int mem_flags);
int (*urb_dequeue) (struct usb_hcd *hcd, struct urb *urb);
void (*endpoint_disable)(struct usb_hcd *hcd,

struct hcd_dev *dev,
int bEndpointAddress);

int (*hub_status_data) (struct usb_hcd *hcd, char *buf);
int (*hub_control) (struct usb_hcd *hcd,

u16 typeReq, u16 wValue,
u16 wIndex, char *buf, u16 wLength);

int (*hub_suspend)(struct usb_hcd *);
int (*hub_resume)(struct usb_hcd *);

};

description: Name of the hcd to use across the operating system.

flags: Flags that describe various aspects of the hardware:

HCD MEMORY : HC regs use memory (else I/O)

HCD USB11: HC is compliant with USB 1.1
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HCD USB2: HC is compliant with USB 2.0

*irq: Hook to the Interrupt Service Routine (see 5.3.1, on page 87).

*reset : Called to reset the HCD.

*start : Called to initialize the HCD and the Root Hub.

*suspend: Called after all devices were suspended.

*resume: Called before any devices get resumed.

*stop: Cleanly make HCD stop writing memory and doing I/O.

*get frame number : Returns the current frame number.

*hcd alloc: Allocates all memory data structures required by the
HCD.

*urb enqueue: Enqueues a URB to the list of pending I/O requests.

*urb dequeue: Dequeues a URB from the list of pending I/O re-
quests.

*endpoint disable: Disables an endpoint.

*hub status data: Reports changes in the root hub (refer to 2.7.5, on
page 31. See also 5.3.2, on page 88).

*hub control: Performs standard device requests on the root hub.

*hub suspend: Suspends the root hub.

*hub resume: Resumes the root hub.

struct usb bus

This structure holds information about the USB bus that is managed
by the host controller. In 2.6 kernels, few functions of the HCD need
to access directly this structure, as “struct usb hcd” has largely sub-
stitued this one. The most common use for this structure is to keep the
link to the “struct device” (every device registered in the Linux kernel
has one), in the “controller” field.

struct usb_bus {
struct device *controller;
int busnum;
char *bus_name;
int devnum_next;
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struct usb_devmap devmap;
struct usb_operations *op;
struct usb_device *root_hub;
struct list_head bus_list;
void *hcpriv;
int bandwidth_allocated;
int bandwidth_int_reqs;
int bandwidth_isoc_reqs;
struct class_device class_dev;
void (*release)(struct usb_bus *bus);

};

controller : Host/master side hardware.

busnum: Bus number (assigned in order of registration).

bus name: Stable ID (PCI slot name etc).

devnum next : Next open device number in “Round-Robin” alloca-
tion.

devmap: Device address allocation map.

op: File Operations (specific to the HC).

root hub: The Root hub is a USB device (refer to 2.4, on page 18).

bus list : List of registered busses in the kernel.

hcpriv : Host Controller private data.

bandwidth allocated: How much of the time reserved for periodic
(intr/iso) requests is used, on average.

bandwidth int reqs: Number of Interrupt requests.

bandwidth isoc reqs: Number of Isochronous requests.

class dev : The USB class device for this bus.

*release: Function hook to destroy this bus’s memory.

struct usb hcd

This structure is the “USB Host Controller Driver framework”. It’s pur-
pose is to hold all the information specific to the host controller, such
as information about the hardware and it’s current state, locations
of allocated memory and devices attached to the host.
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struct usb_hcd {
struct usb_bus self;
const char *product_desc;
const char *description;
struct timer_list rh_timer;
struct list_head dev_list;
struct hc_driver *driver;
unsigned saw_irq : 1;
unsigned can_wakeup:1;
unsigned remote_wakeup:1;
int irq;
void __iomem *regs;

#ifdef CONFIG_PCI
int region;
#endif

#define HCD_BUFFER_POOLS 4
struct dma_pool *pool [HCD_BUFFER_POOLS];
int state;

};

• Housekeeping

self : usb hcd is a wrapper around usb bus.

product desc:Product/Vendor string.

description: Name of the hcd to use across the operating sys-
tem.

rh timer : Kernel timer [9, Chapter 6, page 200] that polls the
root hub for changes.

dev list : List of devices attached on this bus.

• Hardware Info/State

driver : Hardware-specific hooks.

irq: Number of reserved IRQ channel.

regs: Device’s base memory/IO region address.

region: If the device is located on the PCI bus, this is the ad-
dress of the region for access to the internal device regis-
ters.

HCD BUFFER POOLS: Number of DMA pools.
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pool [HCD BUFFER POOLS]: Array of memory-mapped loca-
tions of the DMA pools.

state: The functional state of the HCD (USBOperational, USB-
Suspend, USBResume and USBReset).

3.4.2 Host Controller Functions

In order to facilitate and ensure correct behaviour of HCDs, a num-
ber of functions have been implemented inside the kernel that help
in the creation and maintainance of the data structures defined in
Section 3.4.1. This is a short (and by no means complete) overview
of these functions:

usb bus init(): Used to initialize a usb bus structure, memory for which
is separately managed.

usb register bus(): Assigns a bus number, and links the controller into
the “USB core” data structures so that it can be seen by scan-
ning the bus list.

usb deregister bus(): Recycles the bus number, and unlinks the con-
troller from the “USB core” data structures so that it won’t be
seen by scanning the bus list.

usb register root hub(): The USB host controller calls this function to
register the root hub with the USB subsystem. It sets up the de-
vice properly in the device tree and stores the root hub pointer
in the bus structure, then calls usb new device() to register the
usb device. It also assigns the root hub’s USB address (always
1).

usb calc bus time(): Returns approximate bus time in nanoseconds
for a periodic transaction. Only periodic transfers need to be
scheduled in software, and this function is only used for such
scheduling.

usb hcd giveback urb(): This hands the URB from HCD to its USB de-
vice driver, using its completion function. The HCD has freed all
per-urb resources (and is done using urb→hcpriv). It has also
released all HCD locks; the device driver won’t cause problems
if it frees, modifies, or resubmits this URB.

usb hcd irq(): When registering a USB bus through the HCD frame-
work code, this function is used to handle interrupts.
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hcd buffer create(): This function is called as part of initializing a
host controller that uses the dma memory allocators. It initializes
some pools of dma-coherent memory that will be shared by all
drivers using that controller.

hcd buffer destroy(): This function frees the buffer pools created by
hcd buffer create.
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Chapter 4

Philips ISP1160 Embedded
USB Host Controller

The ISP1160 is an embedded Universal Serial Bus (USB) Host Controller
(HC) that complies with Universal Serial Bus Specification, supporting
data transfer at full-speed (12 Mbit/s) and low-speed (1.5 Mbit/s). The
ISP1160 provides two downstream ports. The downstream ports for
the HC can be connected with any USB compliant USB devices and
USB hubs that have USB upstream ports.

The ISP1160 is suited for embedded systems and portable devices
that require a USB host. Popular applications of the ISP1160 include:

• Personal Digital Assistants (PDA)

• Digital Cameras

• Third-generaration (3G) Mobile Phones

• Photo Printers

• MP3 Jukeboxes

• Game Consoles

Features

• Complies with Universal Serial Bus Specification Rev 2.0 [5]

• Supports data transfer at full-speed (12 Mbit/s) and low-speed
(1.5 Mbit/s)

• Adapted from Open Host Controller Interface Specification for
USB [2]

• Selectable one or two downstream ports for HC
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• High-speed parallel interface to most of the generic micropro-
cessors and Reduced Instruction Set Computer (RISC) proces-
sors

• Maximum 15 MByte/s data transfer rate between the micropro-
cessor and the HC

• Supports single-cycle and burst mode DMA operations

• Built-in FIFO buffer RAM for the HC (4 KBytes)

• Endpoints with double buffering to increase throughput and ease
real-time data transfer for isochronous (ISO) transactions

• 6 MHz crystal oscillator with integrated PLL for low EMI

• Built-in software selectable internal 15 KΩ pull-down resistors for
HC downstream ports

• Dedicated pins for suspend sensing output and wake-up con-
trol input for flexible applications

• Operation at either +5 V or +3.3 V power supply voltage

• Operating temperature range from -40oC to +85oC

4.1 Host Controller Internal Registers

The Host Controller (HC) contains a set of on-chip control registers.
These registers can be read or written by the Host Controller Driver
(HCD). The Control and Status register sets (C.1, page 131), Frame
Counter register sets (C.2, page 135), and Root Hub register sets (C.3,
page 137) are grouped under the category of HC Operational reg-
isters. These operational registers are made compatible to Open-
HCI [2] operational registers. This allows the OpenHCI HCD to be
easily ported to the ISP1160.

Reserved bits may be defined in future releases of the chip spec-
ification. To ensure interoperability, the HCD must not assume that
a reserved field contains logic 0. Furthermore, the HCD must always
preserve the values of the reserved field. When a R/W register is mod-
ified, the HCD must first read the register, modify the bits desired, and
then write the register with the reserved bits still containing the orig-
inal value. Alternatively, the HCD can maintain an in-memory copy
of previously written values that can be modified and then written
to the HC register. When a “write to set” or “clear the register” is
performed, bits written to reserved fields must be logic 0.
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As shown in Table 4.1, the addresses (the commands for reading
registers) are similar to the offsets defined in the OHCI specification [2,
chapter 7] with the addresses being equal to offset divided by 4.

Table 4.1: HC Registers Summary

Read Write Register Width Reference
00 N/A HcRevision 32 C.1.1, page 131

01 81 HcControl 32 C.1.2, page 131

02 82 HcCommandStatus 32 C.1.3, page 132

03 83 HcInterruptStatus 32 C.1.4, page 133

04 84 HcInterruptEnable 32 C.1.5, page 134

05 85 HcInterruptDisable 32 C.1.6, page 135

0D 8D HcFmInterval 32 C.2.1, page 135

0E N/A HcFmRemaining 32 C.2.2, page 136

0F N/A HcFmNumber 32 C.2.3, page 137

11 91 HcLSThreshold 32 C.2.4, page 137

12 92 HcRhDescriptorA 32 C.3.1, page 137

13 93 HcRhDescriptorB 32 C.3.2, page 139

14 94 HcRhStatus 32 C.3.3, page 140

15 95 HcRhPortStatus[1] 32 C.3.4, page 142

16 96 HcRhPortStatus[2] 32 C.3.4, page 142

20 A0 HcHardwareConfiguration 16 C.4.1, page 147

21 A1 HcDMAConfiguration 16 C.4.2, page 149

22 A2 HcTransferCounter 16 C.4.3, page 150

24 A4 HcµPInterrupt 16 C.4.4, page 150

25 A5 HcµPInterruptEnable 16 C.4.5, page 152

27 N/A HcChipID 16 C.5.1, page 153

28 A8 HcScratch 16 C.5.2, page 154

N/A A9 HcSoftwareReset 16 C.5.3, page 154

2A AA HcITLBufferLength 16 C.6.1, page 154

2B AB HcATLBufferLength 16 C.6.2, page 154

2C N/A HcBufferStatus 16 C.6.3, page 155

2D N/A HcReadBackITL0Length 16 C.6.4, page 155

2E N/A HcReadBackITL1Length 16 C.6.5, page 156

40 C0 HcITLBufferPort 16 C.6.6, page 156

41 C1 HcATLBufferPort 16 C.6.7, page 156

4.1.1 Root Hub Registers

These registers are dedicated to the USB Root Hub, which is an in-
tegral part of the HC although it is functionally a separate entity.
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The Host Controller Driver (HCD) emulates USBD accesses to the Root
Hub via a register interface. The HCD maintains many USB-defined
hub features that are not required to be supported in hardware. For
example, the Hub’s Device, Configuration, Interface, and Endpoint
Descriptors (refer to Appendix B), as well as some static fields of the
Class Descriptor (refer to B.6, on page 128), are maintained only in
the HCD. The HCD also maintains and decodes the Root Hub’s de-
vice address as well as other minor operations more suited for soft-
ware than hardware.

Four 32 bit registers have been defined:

1. HcRhDescriptorA

2. HcRhDescriptorB

3. HcRhStatus

4. HcRhPortStatus[1:Number of Downstream Ports (NDP)]

Each register is read and written as a DWORD. These registers are
only written during initialization to correspond with the system imple-
mentation. The HcRhDescriptorA and HcRhDescriptorB registers are
writeable regardless of the HC’s USB states. HcRhStatus and HcRh-
PortStatus are writeable during the USBOperational state only.

More information on the use of the root hub registers can be
found in Appendix C.3, on page 137.

4.2 Microprocessor Bus Interface

Figure 4.1 shows the block diagram of the ISP1160. The microproces-
sor bus interface is a high-speed parallel interface that connects the
ISP1160 to an external microprocessor. Both a Programmed I/O and
a DMA interface are defined.

4.2.1 Programmed I/O (PIO) Addressing Mode

A generic PIO interface is defined for speed and ease-of-use. It also
allows direct interfacing to most microcontrollers. To a microcon-
troller, the ISP1160 appears as a memory device with a 16 bit data
bus and uses the A0 address line to access internal control registers
and FIFO buffer RAM. Therefore, the ISP1160 occupies only two I/O
ports or two memory locations of a microprocessor. External micro-
processors can read from or write to the ISP1160’s internal control
registers and FIFO buffer RAM through the Programmed I/O (PIO) op-
erating mode. Figure 4.2 shows the Programmed I/O interface be-
tween a microprocessor and the ISP1160.
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Figure 4.1: Block Diagram
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Figure 4.2: ISP1160 Programmed I/O interface

Figure 4.3: ISP1160 DMA interface

4.2.2 DMA Mode

The ISP1160 also provides the DMA mode for external microproces-
sors to access its internal FIFO buffer RAM. Data can be transferred
by the DMA operation between a microprocessor’s system memory
and the ISP1160’s internal FIFO buffer RAM.

Figure 4.3 shows the DMA interface between a microprocessor
system and the ISP1160. The ISP1160 provides a DMA channel con-
trolled by DREQ for DACK N signals for the DMA transfer between a
microprocessor’s system memory and the ISP1160 HC’s internal FIFO
buffer RAM.

The EOT signal is an external end-of-transfer signal used to termi-
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Figure 4.4: Access to ISP1160’s Internal Registers

nate the DMA transfer. Some microprocessors may not have this sig-
nal. In this case, the ISP1160 provides an internal EOT signal to termi-
nate the DMA transfer as well. Setting the HcDMAConfiguration regis-
ter (C.4.2, page 149) enables the ISP1160’s HC internal DMA counter
for the DMA transfer. When the DMA counter reaches the value set
in the HcTransferCounter register (C.4.3, page 150), an internal EOT
signal will be generated to terminate the DMA transfer.

4.2.3 Control Registers Access by PIO Mode

The ISP1160’s register structure is a command-data register pair struc-
ture. A complete register access cycle comprises a command phase
followed by a data phase. The command (also known as the index
of a register) points the ISP1160 to the next register to be accessed.
A command is 8 bits long. On a microprocessor’s 16 bit data bus, a
command occupies the lower byte, with the upper byte filled with
zeros.

Figure 4.4 illustrates how an external microprocessor accesses the
ISP1160’s internal control registers. In a complete 16 bit register ac-
cess cycle, the microprocessor writes a command code to the com-
mand port, and then reads from or writes the data word to the data
port.

Most of the ISP1160’s internal control registers are 16 bit wide.
Some of the internal control registers, however, are 32 bit wide (con-
sult Table 4.1, on page 53). The complete cycle of accessing a 32 bit
register consists of a command phase followed by two data phases.
In the two data phases, the microprocessor first reads or writes the
lower 16 bit data, followed by the upper 16 bit data.
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4.2.4 FIFO Buffer RAM Access by PIO Mode

Since the ISP1160’s internal memory is structured as a FIFO buffer
RAM, the FIFO buffer RAM is mapped to dedicated register fields.
Therefore, accessing the internal FIFO buffer RAM is similar to access-
ing the internal control registers in multiple data phases.

For a write cycle, the microprocessor first writes the FIFO buffer
RAM’s command code to the command port, and then writes the
data words one by one to the data port until half of the transfer’s
byte count is reached. The HcTransferCounter register is used to
specify the byte count of a FIFO buffer RAM’s read cycle or write
cycle. Every access cycle must be in the same access direction. The
read cycle procedure is similar to the write cycle.

4.2.5 FIFO Buffer RAM Access by DMA Mode

When doing a DMA transfer, at the beginning of every burst the
ISP1160 outputs a DMA request to the microprocessor via pin DREQ.
After receiving this signal, the microprocessor will reply with a DMA
acknowledge to the ISP1160 via pin DACK N, and at the same time,
execute the DMA transfer through the data bus. In the DMA mode,
the microprocessor must issue a read or write signal to the ISP1160’s
pins RD N or WR N. The ISP1160 will repeat the DMA cycles until it
receives an EOT signal to terminate the DMA transfer.

The ISP1160 supports both external and internal EOT signals. The
external EOT signal is received as input on pin EOT, and generally
comes from the external microprocessor. The internal EOT signal is
generated inside the ISP1160. The ISP1160 supports either single-cycle
DMA operation or burst mode DMA operation.

4.2.6 Interrupts

The ISP1160 has an interrupt request pin INT. As shown as in Figure 4.5,
there are many interrupt events associated with the INT pin.

There are two groups of interrupts represented by group 1 and
group 2 in Figure 4.5. A pair of registers control each group:

Group 2 contains six possible interrupt events, recorded in the HcIn-
terruptStatus register (C.1.4, page 133). On occurrence of any
of these events, the corresponding bit would be set to logic
1; and if the corresponding bit in the HcInterruptEnable regis-
ter (C.1.5, page 134) is also logic 1, the 6-input OR gate would
output a logic 1. This output is AND-ed with the value of MIE (bit
31 of HcInterruptEnable). Logic 1 at the AND gate will cause
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Figure 4.5: ISP1160 Interrupt Logic

the OPR bit in the HcµPInterrupt register (C.4.4, page 150) to be
set to logic 1.

Group 1 contains six possible interrupt events, one of which is the
output of group 2 interrupt sources. The HcµPInterrupt and HcµP-
InterruptEnable registers work in the same way as the HcInter-
ruptStatus and HcInterruptEnable registers in the interrupt group
2. The output from the 6-input OR gate is connected to a latch,
which is controlled by bit 0 (InterruptPinEnable) of the HcHard-
wareConfiguration register (C.4.1, page 147).

Pin Configuration

The interrupt output signals have four configuration modes, as shown
in Table 4.2. They are programmable through the HcHardwareCon-
figuration register.
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Table 4.2: ISP1160 INT pin configuration

Mode 0 level trigger active LOW
Mode 1 level trigger active HIGH
Mode 2 edge trigger active LOW
Mode 3 edge trigger active HIGH

Figure 4.6: ISP1160 USB States

4.3 Host Controller (HC) Functionality

4.3.1 HC’s USB States

The ISP1160’s USB HC has four USB states: USBOperational, USBReset,
USBSuspend and USBResume. These states define the HC’s USB sig-
nalling and bus states responsibilities. The signals are visible to the
Host Controller Driver (HCD) via the ISP1160 USB HC’s control regis-
ters.

The USB states are reflected in the HostControllerFunctionalState
field of the HcControl register (C.1.2, page 131). The HCD can per-
form only the USB state transitions shown in Figure 4.6.

4.3.2 USB Traffic Generation

USB traffic can be generated only when the ISP1160 USB HC is in
the USBOperational state. Therefore, the HCD must set the HostCon-
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Figure 4.7: ISP1160 HC Transaction Loop

trollerFunctionalState field of the HcControl register before generat-
ing USB traffic.

A simplistic flow diagram showing when and how to generate USB
traffic is shown in Figure 4.7. For greater accuracy, refer to the Uni-
versal Serial Bus Specification [5] and the ISP1160 USB HC’s product
data [8].

Description of Figure 4.7:

1. Reset. This includes hardware reset by pin RESET N and software
reset by the HcSoftwareReset command (C.5.3, page 154). The
reset function will clear all the HC’s internal control registers to
their reset status. After reset, the HCD must initialize the ISP1160
USB HC by setting some registers.

2. Initialize HC:

(a) Set the physical size for the HC’s internal FIFO buffer RAM
by setting the HcITLBufferLength register (C.6.1, page 154)
and the HcATLBufferLength register (C.6.2, page 154).

(b) Set the HcHardwareConfiguration register according to re-
quirements.

(c) Clear interrupt events, if required.
(d) Enable interrupt events, if required.
(e) Set the HcFmInterval register (C.2.1, page 135).
(f) Set the HC’s Root Hub registers.

(g) Set the HcControl register to move the HC into the USBOp-
erational state.

3. Entry. The normal entry point. The microprocessor returns to this
point when there are HC requests.

4. Need USB traffic. USB devices need the HC to generate USB
traffic when they have USB traffic requests such as:
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(a) Connecting to or disconnecting from downstream ports

(b) Issuing the Resume signal to the HC.

To generate USB traffic, the HCD must enter the USB transaction
loop.

5. Prepare PTD data in system RAM. The communication between
the HCD and the ISP1160 HC is in the form of Philips Transfer De-
scriptor (PTD) data. The PTD data provides USB traffic informa-
tion about the commands, status and USB data packets. The
physical storage media of PTD data for the HCD is the micropro-
cessor’s system RAM. For the ISP1160’s HC, the storage media is
the internal FIFO buffer RAM. The HCD prepares PTD data in the
microprocessor’s system RAM for transfer to the ISP1160’s HC in-
ternal FIFO buffer RAM.

6. Transfer PTD data into HC’s FIFO buffer RAM.When PTD data is
ready in the microprocessor’s system RAM, the HCD must trans-
fer the PTD data from the microprocessor’s system RAM into the
ISP1160’s internal FIFO buffer RAM.

7. HC interprets PTD data. The HC determines what USB transac-
tions are required based on the PTD data that has been trans-
ferred into the internal FIFO buffer RAM.

8. HC performs USB transactions via the USB bus interface. The
HC performs the USB transactions with the specified USB device
endpoint through the USB bus interface.

9. HC informs HCD of the USB traffic results. The USB transaction sta-
tus and the feedback from the specified USB device endpoint
will be put back into the ISP1160’s HC internal FIFO buffer RAM
in PTD data format. The HCD can read back the PTD data from
the internal FIFO buffer RAM.

4.3.3 The Structure of Philips Transfer Descriptors

The Philips Transfer Descriptor (PTD) data structure provides commu-
nication between the HCD and the ISP1160’s USB HC. The PTD data
contains information required by the USB traffic. PTD data consists of
a PTD followed by its payload data, as shown in Figure 4.8.

The PTD data structure is used by the HC to define a buffer of
data that will be moved to or from an endpoint in the USB device.
This data buffer is set up for the current frame (1 ms frame) by the
HCD. The payload data for every transfer in the frame must have a
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Table 4.3: PTD Bit Allocation

Bit 7 6 5 4 3 2 1 0

Byte 0 ActualBytes[7:0]

Byte 1 CompletionCode[3:0] Active Toggle ActualBytes[9:8]

Byte 2 MaxPacketSize[7:0]

Byte 3 EndpointNumber[3:0] Last Speed MaxPacketSize[9:8]

Byte 4 TotalBytes[7:0]

Byte 5 reserved B5 5 reserved DirectionPID[1:0] TotalBytes[9:8]

Byte 6 Format FunctionAddress[6:0]

Byte 7 reserved

Figure 4.8: PTD Data in FIFO Buffer RAM
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PTD as the header to describe the characteristic of the transfer. The
PTD data is DWORD (double-word or 4 byte) aligned.

The PTD forms the header of the PTD data. It tells the HC the
transfer type, where the payload data should go, and the actual
size of the payload data. A PTD is an 8 byte data structure that is
very important for HCD programming. Table 4.3 shows the PTD bit
allocation, while Table 4.4 summarizes the role of each bit.

Table 4.4: PTD Bit Description

Symbol Access Description

ActualBytes[9:0] R/W
Contains the number of bytes that were trans-
ferred for this PTD

CompletionCode[3:0] R/W

0000 NoError Data packet process-
ing completed with no
detected errors.

0001 CRC Last data packet from end-
point contained a CRC er-
ror.

0010 Bit Stuffing Last data packet from end-
point contained a bit stuff-
ing violation.

0011 DataToggle
Mismatch

Last packet from end-
point had data toggle PID
that did not match the
expected value.

0100 Stall TD was moved to the Done
queue because the end-
point returned a STALL PID.

0101 Device Not
Responding

Device did not respond to
token (IN) or did not provide
a handshake (OUT).

0110 PIDCheck Fail-
ure

Check bits on PID from end-
point failed on data PID (IN)
or handshake (OUT).

table continued on next page. . .
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Table 4.4: PTD Bit Description (continued)

Symbol Access Description

CompletionCode[3:0] R/W

0111 Unexpected
PID

Received PID was not valid
when encountered or PID
value is not defined.

1000 Data Overrun The amount of data re-
turned exceeded either the
size of the maximum data
packet allowed from the
endpoint or the remaining
buffer size.

1001 Data Underrun The amount of data was not
sufficient to fill the specified
buffer.

1010 reserved –
1011 reserved –
1100 BufferOverrun During an IN, the HC re-

ceived data from an end-
point faster than it could be
written to system memory.

1101 BufferUnderrun During an OUT, the HC
could not retrieve data from
the system memory fast
enough to keep up with the
data rate.

Active R/W

Set to logic 1 by firmware to enable the execu-
tion of transactions by the HC. When the trans-
action is completed, the HC sets this bit to logic
0.

Toggle R/W

Used to generate or compare the data PID
value (DATA0 or DATA1). It is updated after each
successful transmission or reception of a data
packet.

MaxPacketSize[9:0] R
The maximum number of bytes that can be sent
to or received from the endpoint in a single data
packet.

EndpointNumber[3:0] R USB address of the endpoint within the function.

Last R
Last PTD of a list (ITL or ATL). Logic 1 indicates that
the PTD is the last PTD.

Speed R

Speed of the endpoint:

• 0 – full speed

• 1 – low speed

TotalBytes[9:0] R

Specifies the total number of bytes to be trans-
ferred with this data structure. For Bulk and
Control only, this can be greater than Maxi-
mumPacketSize.

table continued on next page. . .
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Table 4.4: PTD Bit Description (continued)

Symbol Access Description

DirectionPID[1:0] R

00 SETUP
01 OUT
10 IN
11 reserved

B5 5 R/W

This bit is logic 0 at power-on reset. When this
feature is not used, software used for the ISP1160
is the same for the ISP1161 and the ISP1161A.
When this bit is set to logic 1 in this PTD for inter-
rupt endpoint transfer, only one PTD USB transac-
tion will be sent out in 1 ms.

Format R
The format of this data structure. If this is a Con-
trol, Bulk or Interrupt endpoint, then Format = 0. If
this is an Isochronous endpoint, then Format = 1.

FunctionAddress[6:0] R
This is the USB address of the function containing
the endpoint that this PTD refers to.

4.3.4 Internal FIFO Buffer RAM Data Organization

The HC’s internal FIFO buffer RAM has a physical size of 4 KBytes. This
internal FIFO buffer RAM is used for transferring data between the
microprocessor and USB peripheral devices. This on-chip buffer RAM
can be partitioned into two areas: Acknowledged Transfer List (ATL)
buffer and Isochronous (ISO) Transfer List (ITL) buffer. The ITL buffer
is a Ping-Pong structured FIFO buffer RAM that is used to keep the
payload data and their PTD header for Isochronous transfers. The
ATL buffer is a non Ping-Pong structured FIFO buffer RAM that is used
for the other three types of transfers.

The ITL buffer can be further partitioned into ITL0 and ITL1 for the
Ping-Pong structure. The ITL0 and ITL1 buffers always have the same
size. The microprocessor can put ISO data into either the ITL0 buffer
or the ITL1 buffer. When the microprocessor accesses an ITL buffer,
the HC can take over the other ITL buffer at the same time. This ar-
chitecture improves the ISO transfer performance.

The HCD can assign the logical size for the ATL buffer and ITL
buffers at any time, but normally at initialization after power-on reset.
This is done by setting the HcATLBufferLength register and the HcITL-
BufferLength register, respectively. The total length (ATL buffer + ITL
buffer) should not exceed the maximum RAM size of 4 KBytes. Fig-
ure 4.9 shows the partitions of the internal FIFO buffer RAM.

When the embedded system wants to initiate a transfer to the
USB bus, the data needed for one frame is transferred to the ATL
buffer or the ITL buffer. The microprocessor detects the buffer status
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Figure 4.9: HC Internal FIFO RAM Partitions

through interrupt routines. When the HcBufferStatus register (C.6.3,
page 155) indicates that the buffer is empty, then the microproces-
sor writes data into the buffer. When the HcBufferStatus register indi-
cates that the buffer is full, the data is ready on the buffer, and the
microprocessor needs to read data from the buffer.

The data transfer can be done via the PIO mode or the DMA
mode. The data transfer rate can go up to 15 MByte/s. In the DMA
operation, the single-cycle or multi-cycle burst modes are supported.
Multi-cycle burst modes of 1, 4 or 8 cycles per burst are supported for
the ISP1160.

Data Organization

PTD data is used for every data transfer between a microprocessor
and the USB bus, and the PTD data resides in the buffer RAM. For an
OUT or SETUP transfer, the payload data is placed just after the PTD,
after which the next PTD is placed. For an IN transfer, RAM space
is reserved for receiving a number of bytes that is equal to the total
bytes of the transfer. After this, the next PTD and its payload data are
placed (see Figure 4.10).

The PTD data (PTD header and its payload data) is a structure of
DWORD alignment. This means that the memory address is organized
in blocks of 4 bytes. Therefore, the first byte of every PTD and the
first byte of every payload data are located at an address that is a
multiple of 4.
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Figure 4.10: HC FIFO RAM Data Organization

4.3.5 HC Operational Model

Upon power-up, the HCD sets up all operational registers (32 bit). The
FSLargestDataPacket field (bits 30 to 16) of the HcFmInterval register
and the HcLSThreshold register (C.6.3, page 155) determine the end
of the frame for full-speed and low-speed packets. By programming
these fields, the effective USB bus usage can be changed. Further-
more, the size of the ITL and ATL buffers is programmed.

If a USB frame contains both ISO and AT packets, two interrupts
will be generated per frame. One interrupt is issued concurrently
with the SOF. This interrupt (ITLInt is set in the HcµPInterrupt register)
triggers reading and writing of the ITL buffer by the microprocessor,
after which the interrupt is cleared by the microprocessor. Next the
programmable ATL Interrupt (bit ATLInt is set in the HcµPInterrupt reg-
ister) is issued, which triggers reading and writing of the ATL buffer
by the microprocessor, after which the interrupt is cleared by the mi-
croprocessor. If the microprocessor cannot handle the ISO interrupt
before the next ISO interrupt, disrupted ISO traffic can result.

To be able to send more than one packet to the same Control
or Bulk endpoint in the same frame, the Active bit and the TotalBytes
field are introduced. Bit Active is cleared only if all data of the Philips
Transfer Descriptor (PTD) have been transferred or if a transaction at
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Figure 4.11: ISP1160 PCI Development Board

that endpoint contained a fatal error. If all PTDs of the ATL are ser-
viced once and the frame is not over yet, the HC starts looking for
a PTD with bit Active still set. If such a PTD is found and there is still
enough time in this frame, another transaction is started on the USB
bus for this endpoint.

For ISO processing, the HCD also has to take care of the Buffer-
Status register for the ITL buffer RAM operations. After the HCD writes
ISO data into ITL buffer RAM, the ITL0BufferFull or ITL1BufferFull bit (de-
pending on whether it is ITL0 or ITL1) will be set to logic 1. After the
HC processes the ISO data in the ITL buffer RAM, the correspond-
ing ITL0BufferDone or ITL1BufferDone bit will automatically be set to
logic 1. The HCD can clear the buffer status bits by a read of the
ITL buffer RAM. This must be done within the 1 ms frame from which
ITL0BufferDone or ITL1BufferDone was set. Failure to do so will cause
the ISO processing to stop and a power-on reset or software reset will
have to be applied to the HC, a USB reset to the USB bus must not be
made.

4.4 The ISP1160 PCI Development Board

This work was done using the ISP1160 PCI development board. This
board incorporates the ISP1160 in a PCI device.

As shown in Figure 4.11, the development board includes:

• The ISP1160 HC
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• The PLX9054 PCI I/O Accelerator

• An Altera CPLD

• 2 Downstream Ports

In order to understand the functionality of this board, an overview
of the PCI bus is required. For a full description of the PCI specifica-
tion, see [7].

4.4.1 PCI Bus Overview

The PCI architecture was designed as a replacement for the ISA stan-
dard, with three main goals:

1. Better performance

2. Platform independency

3. Simple insertion/removal of peripherals

PCI is currently used extensively on IA-32, Alpha, PowerPC, SPARC64,
and IA-64 systems, and some other platforms as well.

What is more relevant to the driver writer, however, is the support
for autodetection of interface boards. PCI devices are jumperless
and are automatically configured at boot time. Every PCI mother-
board is equipped with PCI-aware firmware.

The device driver must be able to access configuration informa-
tion in the device, in order to complete initialization. This information
is stored in a 256 byte location, called the “PCI configuration space”.

PCI Configuration Space

The layout of the configuration registers is device independent. PCI
devices feature a 256 byte address space. The first 64 bytes are stan-
darized, while the rest are device dependent. Figure 4.12 shows the
layout of the registers.

As the figure shows, some of the registers are required and some
are optional. All registers are always little-endian.

Hardware Resources on the PCI Bus

Devices on the PCI bus use the PCI configuration space to report the
location of their hardware resources. These resources include:

• I/O Ports
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Figure 4.12: PCI Configuration Registers

• I/O Memory

• Interrupt Lines

I/O and Memory Spaces A PCI device implements up to six I/O
address regions. Each region consists of either memory or I/O loca-
tions. The interface reports the size and current location (as assigned
by firmware at boot time) of its regions, using configuration registers–
the six 32 bit registers shown in Figure 4.12, Base Address 0 through
Base Address 5.

PCI Interrupts By the time the operating system boots, the firmware
has already assigned a unique interrupt number to the device. The
interrupt number is stored in the configuration space. The register
holding the interrupt number is one byte wide. This allows for as many
as 256 interrupt lines, but the actual limit depends on the CPU being
used. All PCI interrupts are “level-triggered”, “active-low” and must
be shared.

4.4.2 The PLX9054 PCI I/O Accelerator

As shown in Section 4.2, on page 54, the ISP1160 offers a PIO or DMA
interface to access its internal registers and buffer RAM. In the case of
the PCI development board, these ports must be mapped to the PCI
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I/O space. Furthermore, the INT pin of the ISP1160 must be mapped
to one of the INT pins of the PCI interface.

This is the role of the PLX9054 PCI I/O accelerator. As shown in Fig-
ure 4.11, the PLX9054’s physical location on the board is just above
the connector to the PCI slot. This chip is able to connect an arbi-
trary bus (named “local bus”) to the PCI bus. This versatility comes
at a cost: the configuration of the PLX9054 is very complicated and
needs updating for almost every event on the “local bus” side.

The setup of the PLX9054 can be accomplished from both sides
(local & PCI). This is the role of the Altera CPLD, shown in Figure 4.11.
From the “local bus” side, the CPLD configures the PLX9054. The ex-
act behaviour of the CPLD is not known, but it can be summarized in
two functions:

1. During a hardware reset, the CPLD sets the PLX9054 to its initial
values.

2. During normal operation, the CPLD monitors the ISP1160 and
configures accordingly the PLX9054

Note: Under normal circumstances this would mean that the de-
velopment board is ready for use. However, there is one single regis-
ter of the PLX9054 that is not configured from the CPLD. The register in
question is the Interrupt Control/Status register, bit 11 (Local Interrupt
Input Enable). This bit defaults to 0, thus not allowing a local interrupt
to assert a PCI interrupt. To complete the setup of the PLX9054 we
need to set this bit to 1, using the PCI side configuration.

For more information on the role, functionality and registers of the
PLX9054, see [3].
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ISP1160 PCI Driver
Implementation

This chapter presents the actual work done to create the Host Con-
troller Driver. Several parts of the source code will be exposed here,
in order to understand the functionality of the driver. The full source
code is available with this document, along with a manual created
with the “doxygen” tool and presented in both HTML and PDF for-
mat.

This work is based on the book “Linux Device Drivers” [9]. The
second edition of this book is available for free on the Internet, by
request of the authors. This book covers all the basic knowledge
needed to write a device driver for the Linux operating system. How-
ever, device drivers for host controllers (for IDE, SCSI, USB etc.) are
considered a special case and require handling that is not covered
in the scope of the book “Linux Device Drivers”.

The main difference between a normal device driver and a host
controller driver is that the latter needs to manage all the devices
that lay on the controller’s bus, as well as itself (the host controller
device). This expands to:

1. Enumerating any new device

2. Keeping track of the state of connected devices

3. Frame scheduling of any device that needs communication

As always, the best place to look for information when writing a
Linux device driver, is the Linux kernel. This is because the kernel is fre-
quently updated/modified and any attempt to document the kernel
internals is bound to be outdated.

This work is also heavily based on the OHCI driver code, standard
part of the Linux kernel, written by Roman Weissgaerber and David
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Brownell. The reason is that the OHCI driver is known to be created
“by the book” and thus is considered the best example to follow
when writing a new HCD. Another reason is the similarity between
the design of the ISP1160 and the OpenHCI [2].

Philips, the designer of the ISP1160, has also published a program-
ming guide [6], that describes a typical hardware initialization se-
quence and presents a method to accomplish basic data flow on
the USB bus. However, most of the methods presented are just a sim-
plified version of the OpenHCI specification.

5.1 Important Data Structures

Before proceeding further in the analysis of the HCD, we must present
a set of very important data structures to the driver. These structures
are the basis of the driver development.

In Section 3.4.1, on page 44, we presented struct usb hcd. As
mentioned there, this structure is very important to the HCD. In or-
der to enhance its functionality, we present struct isp116x, a structure
that wraps around usb hcd.

struct isp116x {
struct usb_hcd hcd;
spinlock_t lock;
atomic_t atl_finishing;

struct plx9054_regs __iomem *plxbase;

u16 addr_reg;
u16 data_reg;

u32 intenb;
u16 irqenb;
u32 rhdesca;
u32 rhdescb;
u32 rhstatus;
u32 rhport[2];

struct list_head async;

u16 load[PERIODIC_SIZE];
struct isp116x_ep *periodic[PERIODIC_SIZE];
unsigned periodic_count;
u16 fmindex;
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struct isp116x_ep *atl_active;
int atl_buflen;
int atl_bufshrt;
int atl_last_dir;

};

hcd: isp116x is a wrapper around usb hcd.

lock: Spinlock variable to hold, in order to avoid race conditions.

atl finishing: This variable is of type “atomic t”, defined in the Linux
kernel. It is used to share the integer value between the in-
terrupt handler and other functions. If atl finishing is non-zero
then the HCD is still busy finishing previous ATL transfers. Vari-
ables of type “atomic t” must be handled using the functions
defined in ‘asm/atomic.h’, such as atomic set(), atomic read(),
atomic inc() and atomic dec().

plxbase: Memory-mapped location of the PLX9054 registers (refer
to 4.4.2, on page 71).

addr reg: Location of the ISP1160 command port.

data reg: Location of the ISP1160 data port.

intenb, irqenb, rhdesca, rhdescb, rhstatus, rhport[2]: To avoid fre-
quent access to the registers of the ISP1160, the driver keeps
an in-memory copy of the interrupt enable registers (HcInter-
ruptEnable (C.1.5, page 134) and HcµPInterruptEnable (C.4.5,
page 152)) and the Root Hub registers (C.3, page 137). These
variables are updated every time the driver writes a new value
to these registers.

async: List containing pending Control/Bulk (asynchronous )trans-
fers.

load[PERIODIC SIZE]: Current data load of a list with pending Inter-
rupt Transfers. This is used to calculate if a new Interrupt transfer
request can be added to the list without exceeding the maxi-
mum periodic load.

periodic[PERIODIC SIZE]: Array of lists containing pending Interrupt
transfers. The position inside the array of a specific transfer re-
quest, marks its polling interval (see 5.3.5,on page 90).
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periodic count: This is used to count the number of periodic trans-
fers pending. Apart from that, the HCD uses this counter to
switch from SOFint to ATLint interrupt when there are no periodic
transfers left (see HcµPInterrupt register C.4.4, on page 150). This
helps in minimizing the number of interrupts per frame.

fmindex: The current frame. This is used for marking the starting
frame of an ous transfer.

atl active: List containg the ATL transfers that are active and due for
the current frame.

atl buflen: Size of data in ATL buffer.

atl bufshrt: This is used instead of “atl buflen” when the last PTD in a
transfer is of “IN” direction. This helps to minimize chip access by
not copying the data of the last PTD in a frame unnecessarily.

atl last dir: Direction (IN/OUT) of the last PTD in an ATL transfer.

Another important structure of the ISP1160 HCD, useful in schedul-
ing the transfers, is “struct isp116x ep”. This data structure holds infor-
mation about the data pending for transfer from/to a specific device
endpoint (refer to 2.4.3, on page 20). More information about data
scheduling and transfer can be found in Section 5.3.

struct isp116x_ep {
struct list_head queue;
struct usb_device *udev;
struct ptd ptd;

u8 maxpacket;
u8 epnum;
u8 nextpid;
u16 error_count;
u16 length;
unsigned char *data;

struct isp116x_ep *active;

u16 period;
u16 branch;
u16 load;
struct isp116x_ep *next;
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struct list_head schedule;
};

queue: This is the queue where new URBs (refer to 3.3.1, on page 39)
are submitted.

udev: Pointer to the USB device that owns this endpoint.

ptd: Philips Transfer Descriptor header (refer to 4.3.3, on page 62) for
the current endpoint transfer.

maxpacket: Maximum packet size for this endpoint.

epnum: The endpoint number.

nextpid: Direction and type of data transfer to be executed (IN/OUT/
SETUP/ACK).

error count: Counter to keep track of transaction errors.

length: Length of data for the current frame. If the data size is
greater that the maximum packet size, the length is set to the
maximum packet size.

data: Pointer to the memory location where the transfer data is to
be read/written.

active: Pointer to the next endpoint in the list of active endpoints for
the current frame.

period: In case of an Interrupt endpoint, this variable holds the in-
terrupt polling interval (see 5.3.5,on page 90).

branch: In case of an Interrupt endpoint, this variable holds the se-
lected schedule branch.

load: Approximate time needed for the transfer. This is calculated
with the help of the USB core kernel function usb calc bus time().

next: Pointer to the next endpoint in the list of all registered end-
points.

schedule: This is the list where scheduled transactions are placed.
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5.2 PCI Module Initialization

The first thing the driver must do is to probe for the device and initial-
ize it. This includes the allocation of I/O resources and interrupt line.
Since our device is located on the PCI bus, we should take advan-
tage of the PCI architecture that simplifies the task of probing. For
more information regarding the PCI bus, refer to 4.4.1, on page 70.
For a full description of the PCI bus, see [7].

5.2.1 PCI Device Probing

A new way of probing for PCI devices has been introduced in Linux
kernel 2.6. This “new-style PCI driver framework” tries to unify all hot-
plug devices (PCI, USB, Firewire etc.) under the same mechanism.

In the center of this mechanism lies a data structure called struct
pci driver. This structure points to the functions that the kernel should
use to probe, remove, suspend or resume the PCI hardware and it is
passed to the kernel from the entry point of the driver.

static struct pci_driver isp116x_driver = {
.name = (char *)hcd_name,
.id_table = isp116x_table,

.probe = isp116x_pci_probe,

.remove = isp116x_pci_remove,

.suspend = isp116x_pci_suspend,

.resume = isp116x_pci_resume,
};

More important to the probing task, this structure holds the “PCI
device ID table” of the driver. This table describes the device that is
being probed, by using known information such as the ID of the ven-
dor, the product or even the device class. Fields can be left empty
to match any device. This way, a driver can state that it can handle
for example any device of a specific class or vendor. Every PCI driver
should provide such a table.

The ISP1160 HCD uses its vendor (0x10b5) and product ID (0x5406)
to probe for the host controller. If the kernel finds a PCI device that
matches the given criteria, it bounds the driver to that device and
proceeds to call the probing function.

The purpose of the probing function is largely left to the driver
author to decide. When this function returns, the hardware should
be initialized and ready for operation.

78



CHAPTER 5. ISP1160 PCI DRIVER IMPLEMENTATION

5.2.2 PCI I/O Resource Allocation

The first thing the driver must do, is to establish communication with
the ISP1160 Host Controller. In order to be able to access the inter-
nal registers of the ISP1160, the driver should locate and request two
16 bit-wide I/O ports, the command and the data port (refer to Sec-
tion 4.2.3, on page 57). These two ports are made available on the
PCI bus through the PLX9054 chip (refer to Section 4.4.2, on page 71).

By the time the operating system has booted, all PCI I/O resources
are uniquely assigned by the firmware. The driver needs only to read
the assigned values from the PCI configuration space and then re-
quest the resources from the operating system.

Here’s a snapshot of the PCI bus, as reported by the “lspci” com-
mand, running on the system that was used for the development of
the driver:

0000:00:00.0 Host bridge: VIA Technologies, Inc.
VT8363/8365 [KT133/KM133] (rev 02)

0000:00:01.0 PCI bridge: VIA Technologies, Inc.
VT8363/8365 [KT133/KM133 AGP]

0000:00:07.0 ISA bridge: VIA Technologies, Inc.
VT82C686 [Apollo Super South] (rev 22)

0000:00:07.1 IDE interface: VIA Technologies, Inc.
VT82C586A/B/VT82C686/A/B/VT823x/A/C
PIPC Bus Master IDE (rev 10)

0000:00:07.2 USB Controller: VIA Technologies, Inc.
VT82xxxxx UHCI USB 1.1 Controller (rev 10)

0000:00:07.3 USB Controller: VIA Technologies, Inc.
VT82xxxxx UHCI USB 1.1 Controller (rev 10)

0000:00:07.4 Bridge: VIA Technologies, Inc.
VT82C686 [Apollo Super ACPI] (rev 30)

0000:00:0b.0 Ethernet controller: Linksys NC100
Network Everywhere Fast Ethernet 10/100 (rev 11)

0000:00:0c.0 Bridge: PLX Technology, Inc.:
Unknown device 5406 (rev 0b)
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0000:00:0e.0 Multimedia audio controller:
Ensoniq 5880 AudioPCI (rev 02)

0000:01:00.0 VGA compatible controller:
nVidia Corporation NV11
[GeForce2 MX/MX 400] (rev a1)

The hardware we’re interested is located in address “0000:00:0c.0”.
At this point, we already know this information, since the probing that
took place returned a pointer to this device. Note that we located
the device using the PCI vendor and device ID, without explicitly stat-
ing its address on the PCI bus. This way, we can be sure that even
if the firmware decides to assign a different address to the device
(something that usually doesn’t happen unless a device is added or
removed), the driver will be able to locate the device.

Every PCI device must be enabled before requesting its I/O re-
sources. This is done with a call to the “pci enable device()” func-
tion, with a single argument pointing the the PCI device data struc-
ture. After this is done, the device is ready for use.

A closer look to the ISP1160 PCI evaluation board can be ac-
quired using a more verbose version of the “lspci” command:

0000:00:0c.0 Bridge: PLX Technology, Inc.:
Unknown device 5406 (rev 0b)

Subsystem: PLX Technology, Inc.:
Unknown device 9054

Flags: bus master, medium devsel,
latency 32, IRQ 9

- Memory at df100000
(32-bit, non-prefetchable) [size=256]

- I/O ports at e000 [size=256]
- I/O ports at e400 [size=256]
- Memory at df000000

(32-bit, non-prefetchable) [size=1M]
Capabilities: [40] Power Management v1
Capabilities: [48] #06 [0000]
Capabilities: [4c] Vital Product Data

As we can see, the PCI configuration space of the device reports
the interrupt channel (IRQ 9) and four I/O locations:

1. I/O memory at df100000. These are the memory-mapped reg-
isters of the PLX9054. They are used for the configuration of the
chip.
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2. I/O ports at e000. This is an alternative way to access the regis-
ters of the PLX9054, if memory-mapping is not possible.

3. I/O ports at e400. This is the most important I/O location for the
Host Controller Driver. Address e400 is connected to the “data
port” of the ISP1160. 2 bytes further, address e402 is connected
to the “command port” of the ISP1160.

4. I/O memory at df000000. The purpose of this location is not
known. However, since the evaluation board contains an CPLD,
we can speculate that this is the way to program the CPLD.

I/O Ports and Memory

In order to initialize and use our hardware, we need to allocate the
memory-mapped registers of the PLX9054, and the I/O ports of the
ISP1160. The Linux kernel presents a complete set of functions to ac-
complish this task. These functions take an argument to the PCI Base
Address that is requested (i.e. BASE ADDRESS 0,1 etc). This way we
can request the I/O regions without using their actual address. This
is the right thing to do, since the firmware can change the assigned
numbers. Thus, a simple allocation of the above resources, will look
like this (with no error checking):

mem_region = 0;
mem_resource = pci_resource_start (dev, mem_region);
mem_len = pci_resource_len (dev, mem_region);
request_mem_region (mem_resource, mem_len);
plxbase = ioremap_nocache (mem_resource, mem_len);

port_region = 2;
port_resource = pci_resource_start (dev, port_region);
port_len = pci_resource_len (dev, port_region);
request_region (port_resource, port_len);
base = (void *) port_resource;

isp116x->data_reg = (int) base;
isp116x->addr_reg = isp116x->data_reg + 2;
isp116x->plxbase = (struct plx9054_regs *)plxbase;

After the allocation is done, we can see that the resources are
bound to the driver, by checking the “ioports” and “iomem” entries
of the “proc” filesystem:
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/proc/ioports
e000-e0ff : 0000:00:0c.0
e400-e4ff : 0000:00:0c.0

e400-e4ff : isp116x-hcd

/proc/iomem
df000000-df0fffff : 0000:00:0c.0
df100000-df1000ff : 0000:00:0c.0

df100000-df1000ff : isp116x-hcd

Interrupt Channel

The driver needs to be bound to an interrupt channel. The number
of the channel can be retrieved from the PCI configuration space.
Again, we will not explicitly request a number, but rather allocate
the number assigned to the device by the firmware. the function
that requests the interrupt, takes as an argument a pointer to the
routine to be executed when this interrupt occurs. This routine is the
“Interrupt Handler” (see 5.3.1, on page 87).

After the request is complete, we can watch the interrupt chan-
nel at the “interrupts” entry of the “proc” filesystem:

/proc/interrupts
CPU0

0: 553043 XT-PIC timer
1: 1473 XT-PIC i8042
2: 0 XT-PIC cascade
5: 0 XT-PIC Ensoniq AudioPCI
7: 0 XT-PIC parport0
8: 4 XT-PIC rtc

10: 32557 XT-PIC uhci_hcd, uhci_hcd,
nvidia, isp116x-hcd

11: 0 XT-PIC acpi
12: 17362 XT-PIC i8042
14: 10854 XT-PIC ide0
15: 13 XT-PIC ide1

NMI: 0
LOC: 0
ERR: 0
MIS: 0

As mentioned in Section 4.4.1, all PCI interrupts must be shared.
The above snapshot of the system shows that the ISP1160 HCD is able
to share its interrupt line (IRQ 10) with the UHCI HCD of the system and
the graphics accelerator.
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Before proceeding to the initialization of the ISP1160, the driver
sets the PLX9054, using the memory-mapped registers. As noted in
Section 4.4.2, the driver needs to enable the local interrupts of the
board.

5.2.3 ISP1160 Initialization

The initialization of the ISP1160 requires a sequence of events that
can be found inside the “ISP1160 Embedded Programming Guide”
(see [6, section 5.4]). The order of events presented in [6] is not the
only possible. Our driver uses a different one (only to the order of
events), that fits better with the Linux device driver model for PCI de-
vices1.

Device Reset

The initialization of the ISP1160 begins with a reset of the device. This
is done in two steps:

1. A value of 0xF6 is written in the HcSoftwareReset register (C.5.3,
page 154)

2. Bit 0 (HCR) of the HcCommandStatus register (C.1.3, page 132),
is set to initiate a software reset.

After that, the driver waits 20 msec for the reset operation to com-
plete (upon completion, the HC will clear the HCR bit), before the
function returns.

Wait for Clock

With the reset operation done, the HCD must wait for the clock to be
ready. This is done by waiting for Bit 6 (ClkReady) of the HcµPInterrupt
register (C.4.4, page 150) to be set.

HC Detection

To ensure that the device is indeed an ISP1160 HC, the driver uses the
following three-step procedure:

1. HcChipID register (C.5.1, page 153) is read. The register’s high
byte must read 0x61 (in the case of the evaluation board, the
whole register reads 0x6123).

1The example followed in the guide refers to an ISP1160 chip connected on the
ISA bus
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2. The driver writes an arbitrary value to the HcScratch register
(C.5.2, page 154), and then reads the contents of the register,
expecting to read the value that was written.

3. The previous step is repeated with the same value inverted.

If all three steps succeed, the function returns with no error and
the driver continues to set the HC to the USBOperational state.

Root Hub Timer Initialization

The root hub is monitored for events by the kernel, through “KHUBD”
(see 5.3.2, on page 88). This process uses a kernel timer, that needs
to be initialized, using the kernel-provided function “init timer()”.

Device Start

In order to generate USB traffic, the HC must move to USBOpera-
tional. This is accomplished with the following steps:

1. Clear all interrupts (HcInterruptStatus and HcµPInterrupt)

2. Partition the internal buffer RAM (HcITLBufferLength and HcATL-
BufferLength):

• ITL size = 0

• ATL size = 4096

3. Set the HcHardwareConfiguration register (C.4.1, page 147) to
enable interrupts, as level-triggered, active-low (as required for
PCI interrupt lines

4. Set the HcFmInterval register (C.2.1, page 135). The recom-
mended values are:

• FrameInterval = 0x2edf

• FSLargestDataPacket = 0x2778

5. Root Hub configuration by means of the root hub registers (refer
to Appendix C.3, on page 137). This includes:

• Setting POTPGT to 25, resulting in 50 ms of wait for the root
hub ports to become operational.

• Setting the number of downstream ports (NDP) to 2.
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• The driver accepts a single boolean argument, which con-
trols the way that the downstream ports are powered (al-
ways on, or individually powered when there is a device
connected). Depending on the value of the module argu-
ment (passed during module loading), the driver sets the
power switching mode (bit PSM) and overcurrent protec-
tion mode (OCPM) of the HcRhDescriptorA, and the port
power control mask (bits PPCM[2:0]) of the HcRhDescrip-
torB.

• After the ports are configured, the driver enables port power,
by setting bit LPSC of the HcRhStatus

6. Connect the virtual Root Hub. The kernel requires the root hub
to be reported as a USB device, so the driver calls the func-
tion “usb alloc dev()” (using a special argument which denotes
that the new device is a root hub) to allocate and initialize
the device data structure. Next function “hcd register root()”
is called to register the newly allocated device as a root hub,
and pass the device’s control to the kernel.

7. The last thing to do before entering USBOperational, is to en-
able the interrupt events that are needed for normal operation.
These include:

• Master Interrupt Enable

• Root Hub Status Change

• Unrecoverable Error

• ATL interrupt

• OPR interrupts

If any other interrupts are needed, they can be enabled later.

With the above steps completed, the driver moves the host con-
troller to USBOperational, by writing a value of 2 to the field HCFS[2:0]
of the HcControl Register (C.1.2, page 131). Upon entering this state,
the Host Controller will begin generating Start of Frame signals and
will be able to handle USB traffic.

5.2.4 PCI Module Cleanup

The most important step in the modularization of a driver, is its re-
moval from the system. A “clean” removal allows the driver to be
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reloaded many times without compromising the stability of the op-
erating system. All steps performed during initialization must be re-
versed.

The ISP1160 HCD registers its removal function from the “pci driver”
data structure (refer to Section 5.2.1). This function is called from a
thread context, normally “rmmod”, “apmd”, or something similar.

When this function is called, it goes through the following steps:

1. Disconnect the Root Hub (The root hub is considered a normal
USB device, embedded in the host controller, so we call the
“usb disconnect()” function).

2. Disable all interrupts on the board

3. Power down all downstream ports

4. Software reset the chip (see also 5.2.3)

5. Detach the driver from the allocated interrupt line

6. Unmap and deallocate all I/O resources (both memory and
ports)

7. Unregister the USB bus from the system

8. Deallocate the data structures used by the HCD

Note that this sequence of events is applicable only if the driver
has been correctly initialized prior to its removal. In case of abnor-
mal initialization, this function is not called. It is the responsibility of
the probing function to clean all the steps that were completed be-
fore the error. This is accomplished in the ISP1160 HCD with the help
of “goto” commands. For more information, refer to [9, Chapter 2,
pages 30-32] and the source code.

5.3 Data Transfer Management

After the driver has been successfully initialized and registered with
the operating system, the driver module sits in the background and
waits for transfer requests on the USB bus. As mentioned in Chap-
ter 3, the Linux USB subsystem uses the USB Core for communication
between the USB devices and the USB host controllers (see also Fig-
ure 3.1, on page 33). This communication is in the form of URBs. Dur-
ing module initialization, the driver informs the kernel of its methods
for accepting URBs. When an application needs to communicate
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with a USB device, it submits a request to the USB Core, which in turn
delivers the URB to the HCD, using the declared functions.

These transfer requests are stored in linked lists, managed by the
HCD. When the host controller is ready to process new requests, an
interrupt is asserted (either a SOFint or ATLint, depending on the con-
figuration). As soon as an interrupt appears, the Interrupt Handler
(also known as the Interrupt Service Routine) is called to service the
interrupt. Through the interrupt handler, the driver translates the pend-
ing URBs to data accepted by the ISP1160 host controller (i.e. PTDs)
and moves the data to the host controller’s internal FIFO buffer RAM.
When the host controller is done with the processing, a new interrupt
is asserted to mark the arrival of new data. Again, the interrupt han-
dler is called and the data are read back in system memory. After
the new data are translated back to URBs, they are delivered to USB
Core and in turn to the application that requested the transaction.

Before proceeding in the analysis of traffic scheduling and man-
agement, an introduction to the ISP1160 HCD interrupt handler is in
order.

5.3.1 The Interrupt Handler

The interrupt handler is the center of interest for the ISP1160 HCD.
Apart from initialization and cleanup, almost every function that gets
called is connected to the interrupt handler. This is because the
ISP1160 host controller is based on interrupt driven I/O. The HC uses
interrupts to communicate with the driver and synchronize the trans-
mission of data.

The interrupt handler of the ISP1160 HCD is a rather simple func-
tion on its own. Upon entering the function, the first thing the driver
does is to get a hold of the spinlock. This is crucial to avoid race
conditions, since we don’t know the context of the module that was
interrupted to call the handler. Next, the driver checks the status of
the HcµPInterrupt register to see if this group of interrupts has any
events pending (see also Section 4.2.6, on page 58). If the “OPR” bit
is set, the driver checks the status of the HcInterruptStatus register as
well, for the second group of interrupts.

Since our device is a PCI one, we must make sure that the inter-
rupt handler can share its interrupt channel with other devices. This
is accomplished with a simple method: upon entering the interrupt
handler, the driver reads the contents of the HcµPInterrupt register. If
there is no interrupt event (i.e. there was an interrupt on the line but
it is not for this device), the handler returns immediately with a value
of IRQ NONE.
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5.3.2 Root Hub Status Change and the “KHUBD”

Changes to the Root Hub include connection of new devices, port
powering, detection of over-current situations, etc. On occurrence
of any of these events an interrupt is asserted and the RHSC bit of the
HcInterruptStatus register is set. This marks a change in the Root Hub
registers (refer to C.3, on page 137). The interrupt handler clears the
interrupt and updates the in-memory copies of the root hub registers.
This way, it is assured that the copies of the registers in system memory
will always reflect the correct values.

The real work that needs to be done for a status change in the
Root Hub is left to a kernel thread called “KHUBD”. As illustrated in
Section 3.4.1, on page 44, a data structure named “hc driver” regis-
ters several functions of the driver with the Linux kernel. Among these
functions, the ones that are of interest for the manipulation of the
Root Hub, are hub status data() and hub control().

The basic idea behind “KHUBD” is that all root hubs are compliant
with the USB specifications and as such, they provide the same func-
tionality. If we can describe the way that our hardware implements
this functionality, we can leave the rest to an automated process
that can manage all root hubs on the system.

isp116x hub status data()

This function reports any changes in the root hub. It does so by look-
ing into the in-memory copies of the internal root hub registers of the
host controller. One of the arguments for this function is a pointer to
a buffer. This must be filled, as dictated by KHUBD, and reflects any
changes in the root hub. The function returns 1 if a status change
was found, negative number on error, 0 otherwise.

This function is called by KHUBD. For this mechanism to work, the
driver must use the “struct usb hcd” HCD device framework. Inside
this data structure lies a kernel timer (see [9, Chapter 6, page 200])
that the driver must initialize. Using this timer, the kernel polls the root
hub for changes, by calling this function. If a change is reported,
KHUBD proceeds to call the “hub control” function of the driver.

Note: Obviously it is important to make sure that the in-memory
copies of the root hub registers are always up to date. But it is worth
the extra code, since otherwise every invocation of the timer of KHUBD
would require I/O with the host controller. This way, we can take full
advantage of the RHSC interrupt and read the registers only when
there is a change in their values.
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isp116x hub control()

This function implements the standard commands that the root hub
must support according to the USB specifications. Upon entering this
function, KHUBD already knows the reason for the status change on
the hub and the course of action (a series of standard commands)
that should be taken.

For example, upon connecting a new USB device to the second
downstream port, the HC will change the CSC bit of the HcRhPort-
Status[2] register, to reflect this change, and will also set the RHSC
bit of the HcInterruptStatus register, asserting an interrupt. The kernel
acknowledges the interrupt and invokes the interrupt handler that
is connected to this interrupt line. The interrupt handler clears the
RHSC bit and updates the values of the in-memory copies of the
root hub registers. Later, KHUBD will poll the hub for changes by
reading the copies of the root hub registers and will find out that
there is a new device connected on downstream port 2. KHUBD
will clear the change from the root hub registers and will update
the in-memory copies to reflect this change (this is instructed by the
isp116x hub control() function). The course of action from this point
is irrelevant to the driver since all the transactions to register the new
device are the responsibility of KHUBD and the USB Core (but they will
both use the HCD to communicate with the new USB device, using
control transfers).

5.3.3 Data Transfer Interrupts: ATLint & SOFint

If the interrupt handler finds out that the cause of the interrupt was
either ATLint or SOFint bit, it proceeds to transmit/receive data to/the
host controller. The course of action is determined by a read of the
HcBufferStatus register. If the bit ATLBufferDone is set, the HC has fin-
ished processing the data and the HCD may read them back. If
ATLBufferFull is not set, the the buffer is empty and the HCD can send
new data to the HC.

The driver uses the ATLint when there are no INT transfers pending,
otherwise it switches to SOFint to be able to poll the INT endpoints
periodically.

The whole process of managing, scheduling and transmitting USB
data is examined in the next sections.

5.3.4 Arrival of new URBs

In this section we examine the action that is taken by the driver when
a new URB arrives, in order to schedule it. This is done asynchronously
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and does not require the invocation of the interrupt handler, but it
should prepare the data for transmission when the interrupt handler
is called.

Once again, the “hc driver” data structure is the key to the or-
ganization of the process. The “urb enqueue” hook, is the function
responsible for accepting newly-arrived URBs. ISP1160 HCD declares
the “isp116x urb enqueue()” function. Its purpose is to receive the
URBs from the USB Core and schedule them for transmission.

Since the driver doesn’t support isochronous transfers, if the URB is
an isochronous one the HCD signals an error and drops the packet.
Otherwise, if this is the first request to the given USB device endpoint,
the driver initializes a new “struct isp116x ep” to keep track of the
events specific to the endpoint.

After the correct endpoint is found, the driver checks the type of
the request (CONTROL, BULK or INTERRUPT). If this the first bulk trans-
fer pending in the “schedule” list of the endpoint, the whole list is
added to the “async” list of the “isp116x” data structure. Otherwise,
the request is added to the end of the “schedule” list. If this is an
interrupt transfer, the correct branch for the interrupt polling interval
(see Section 5.3.5) is determined. If there is no other interrupt trans-
fer (meaning that the driver until now was using ATLint interrupts), the
driver switches to SOFint to be able to service periodically the inter-
rupt endpoint. Finally, the request is added to the queue of pending
requests.

5.3.5 Interrupt Polling Rate

With interrupt URBs submitted, the driver works with SOF interrupt en-
abled and ATL interrupt disabled. After the PTDs are written to FIFO
RAM, the chip starts FIFO processing and USB transfers after the next
SOF and continues until the transfers are finished (succeeded or failed)
or the frame ends. Therefore, the transfers occur only in every sec-
ond frame, while FIFO reading/writing and data processing occur in
every other second frame. With the frame duration set to 1 ms, this
results in a minimum 2 ms polling interval.

The driver keeps a 32-entry array. Each entry (branch) represents
a list of interrupt endpoints. Every second frame, the driver services
one list of endpoints. Therefore we can schedule an interrupt end-
point to be serviced with an interval ranging from 2 ms to 64 ms. This
is accomplished by submitting the endpoint to multiple lists. For ex-
ample, if the URB requests a polling interval of 8 ms, the driver will
submit the request to every 4th list in the array. This is illustrated in
Figure 5.1.
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Figure 5.1: Interrupt Polling Intervals

5.3.6 Data Transfer to HC’s Memory

When the host controller is ready to accept new data, an interrupt is
asserted and the interrupt handler starts any pending transfers.

Transfer List Management

The first thing to check is whether the FIFO memory is empty. This is ac-
complished by checking the status of ATLBufferFull bit of the HcBuffer-
Status register. If the memory is empty the driver proceeds to initialize
the list of active transfers for the current frame, and the counters for
the length of the transfers.

Next all INT transfers that are due for this frame are brought to
the “active” queue. After all INT transfers are scheduled, the drivers
scans the list of asynchronous transfers (Bulk and Control). If a pend-
ing transfer is found and there is enough time in the current frame,
the transfer is added to the end of the “active” list.

If no transfer is brought to the “active” queue, the function returns
and no further processing occurs for the current frame.

Data Organization in PTDs

All the members of the “active” queue are due for transfer in the
current frame. However, the communication between the HC and
the HCD must be in the form of Philips Transfer Descriptors (PTDs). All

91



5.3. DATA TRANSFER MANAGEMENT

the transfer requests must be translated to PTDs before the actual
transaction occurs.

To accomplish this, the drivers scans the “active” queue and fills
a PTD for each entry. The values for the various fields of the PTD are
extracted from the URB structure, with the help of the functions pro-
vided by the USB Core.

PTD Transfer to Host Controller

After all pending transfers have their own PTD, the driver rescans the
list and begins transmission of data. This is accomplished in the fol-
lowing sequence, for each entry in the list:

1. The driver writes the size of the transfer to HcTransferCounter
register (see C.4.3,on page 150).

2. The driver writes the address of the ATL port (0xC1 for write) to
the command port of the host controller.

3. The driver sends the header of the PTD followed by its payload
data to the ATL port (see C.6.7,on page 156).

When all data have been sent, the function returns and the HC is
left to analyze the newly-arrived data and perform the actual trans-
mission on the USB Bus.

5.3.7 Data Transfer from HC’s Memory

When the host controller has finished the pending transfers, an inter-
rupt is asserted and the interrupt handler gets the results from the
HC’s memory.

The first thing to check is whether the FIFO memory is done. This
is accomplished by checking the status of ATLBufferDone bit of the
HcBufferStatus register. If indeed the HC has finished all transfer re-
quests, the driver proceeds to load the results to system RAM. This is
accomplished in the following steps:

1. The driver writes the size of the transfer to HcTransferCounter
register.

2. The driver writes the address of the ATL port (0x41 for read) to
the command port of the host controller.

3. The driver receives the header of the PTD followed by its pay-
load data from the ATL port.
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Next, the driver reads back the information contained inside the
PTDs and reforms a URB for each transfer completed. The driver also
reads the “completion code” of each PTD and keeps track of errors
and transfers needing retransmission.

After the URBs are recreated, containing the results for each trans-
fer request, the driver calls usb hcd giveback urb() (refer to 3.4.2, on
page 49) to deliver the URB to the USB Core.

5.4 Results

The resulting device driver was tested and works with a custom-built
2.6.10 version of the Linux kernel, for x86 architectures.

5.4.1 Insertion & Removal of the Driver

The driver is written as a module for the Linux 2.6 kernel. The new
way of writing modules allows the same code to be compiled ei-
ther as part of the kernel, or as module. If the source code is added
to the kernel source tree (under the drivers/usb/host directory), and
the respective Makefile and Kconfig files are modified to include the
module, the driver can be loaded using the “modprobe” interface,
or even by an automatic hardware detection system, such as the
“discover” application. Otherwise, the driver can be loaded and un-
loaded with the standard “insmod” and “rmmod” commands. There
is a module parameter that controls they way that the downstream
ports of the host controller are powered. This is passed as an argu-
ment to the command that will load the module.

Here’s what happens when the driver module is inserted to the
running kernel:

driver isp116x-hcd, Apr 4 2005
ACPI: PCI interrupt 0000:00:0a.0[A] ->

GSI 5 (level, low) -> IRQ 5
isp116x-hcd: PCI region 0 (start: df101000, length: 256),

successfully requested
isp116x-hcd: PCI region 2 (start: e000, length: 256),

successfully requested
isp116x-hcd: PCI device 10b5:5406

(PLX Technology, Inc.), irq 5
isp116x-hcd: new USB bus registered,

assigned bus number 3
isp116x-hcd: Power root hub - Waiting 50 msec...
isp116x-hcd: Root hub operational
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isp116x-hcd: Root hub power: global switching
usb.agent[3404]: usbcore: already loaded
hub 3-0:1.0: USB hub found
hub 3-0:1.0: 2 ports detected

Notice that if the module parameter is omitted, the driver defaults
to global power switching.

Here’s the output of the “lsmod” command, showing the loaded
modules (only the USB-specific modules are shown):

Module Size Used by
usb_storage 32384 1
isp1160_hcd 21508 0
uhci_hcd 33808 0
usbcore 121208 4 usb_storage,isp1160_hcd,uhci_hcd
sd_mod 16912 2
scsi_mod 129408 2 usb_storage,sd_mod

As shown, the “usbcore” module is used by both host controllers,
while the “usb storage” and SCSI modules are loaded to support a
USB flash disk. Notice the smaller size of the ISP1160 driver (21508 Bytes,
vs. 33808 Bytes for the UHCI driver).

Here’s what happens when the driver module is removed from
the kernel, while a device is attached on the root hub:

usb 3-1: USB disconnect, address 2
isp116x-hcd 0000:00:0a.0: remove, state 1
usb usb3: USB disconnect, address 1
isp116x-hcd 0000:00:0a.0: USB bus 3 deregistered

5.4.2 Hardware Functionality

The driver supports three USB transfer modes:

Control transfers are required, to be able to communicate with the
USB devices.

Bulk transfers are used to communicate with USB devices such as
printers and memory sticks.

Interrupt transfers are used for synchronous communication with USB
devices such as HID devices (keyboards, mice etc.)

The driver does not support the Isochronous transfer mode,which
is used for streaming media USB devices (e.g. USB speakers). If such
a device is connected to the host controller, the driver will display an
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error message, and all further communication with the device will be
silently dropped.

The HCD performs accesses to the internal registers of the ISP1160
HC by means of PIO. The same is true for the HC’s memory. DMA
access to the memory was not implemented.

5.4.3 Driver Policy

As explained in Section 1.2.1, on page 5, the driver tries not to im-
plement any “mechanism”. In other words, the driver just makes
the hardware available, without imposing restrictions to the way the
hardware will be used. This was accomplished by using only the func-
tions provided by the kernel to register the driver as an HCD. This
is also the way that the other HCDs of Linux work (EHCI, UHCI and
OHCI).

Another important point is the implementation of the Root Hub.
By choosing to use the supplied kernel functions, we surrender the
control of the root hub to the kernel. This way, any event in the root
hub triggers a standard response from the operating system.

5.4.4 OS Integration

The host controller driver integrates very well with the operating sys-
tem. When the module is loaded, the kernel automatically adds the
driver to the “sysfs” pseudo-filesystem. The sysfs is the successor of the
proc filesystem. It is mounted under /sys and provides a snapshot of
the system, including loaded drivers and the hardware they control,
reserved resources and information on the hardware present. In the
case of the ISP1160 USB Host Controller, we can also read the con-
tents of the various descriptors, either directly or use an application
that takes advantage of the sysfs.

In Figure 5.2, we can see the “USBView” application running: on
the left side of the screen are listed the USB devices present in the
system (two UHCI host controllers, plus the ISP1160 with a USB flash
disk attached), and on the right side we can read information about
the selected device (the ISP1160 PCI development board).

When a new device is attached to the host controller, the ker-
nel automatically enumerates the device without any effort from the
part of the HCD, thanks to the KHUBD daemon (refer to Section 5.3.2,
on page 88). The kernel detects the class of the attached device
(e.g. a USB printer) and automatically loads (if not already loaded)
the appropriate driver to handle the new device. Furthermore, the
new device is added to the sysfs, as connected under the ISP1160
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Figure 5.2: “USBView” Application Running

host controller. Upon detection of a device removal, if the driver is
no longer needed (e.g. by another device of the same class), the
operating system unloads the driver and removes the sysfs entry of
the device.

Here’s what happens when a USB device is attached to the host
controller:

usb 3-1: new full speed USB device using isp116x-hcd
and address 2

Initializing USB Mass Storage driver...
usb.agent[3590]: usb-storage: loaded successfully
scsi0 : SCSI emulation for USB Mass Storage devices
usbcore: registered new driver usb-storage
USB Mass Storage support registered.
usb-storage: device found at 2
usb-storage: waiting for device to settle before scan

Vendor: WinFast Model: Disk 128MB Rev:
Type: Direct-Access ANSI SCSI revision: 02

SCSI device sda: 253952 512-byte hdwr sectors (130 MB)
sda: Write Protect is off
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sda: Mode Sense: 03 00 00 00
sda: assuming drive cache: write through
sda: sda1
Attached scsi removable disk sda at

scsi0, channel 0, id 0, lun 0
usb-storage: device scan complete
scsi.agent[3710]: disk at /devices/pci0000:00/

0000:00:0a.0/usb3/
3-1/3-1:1.0/host0/
target0:0:0/0:0:0:0

Notice the way that the operating system is able to understand
the “class” of the device (USB Mass Storage) and load the appro-
priate driver (usb-storage). The USB flash disk is managed by “SCSI”
emulation. It is interesting to note that although the ISP1160 is used
to communicate with the USB device, none of the above is part of
the ISP1160 driver, thanks to the way this driver is written (i.e. to take
advantage of the Linux USB subsystem).

5.4.5 Security

Since the driver is created as a standard module of the Linux kernel,
we don’t need any special security precautions for loading and un-
loading the driver. The tools used for that purpose (“insmod” and
“modprobe”), if configured in the proper way2, provide the required
security mechanisms.

The way that the driver registers itself with the kernel us allows to
trust input from user space programs. This is due to the fact that the
Linux USB subsystem (refer to Chapter 3, on page 33) sits in between
the HCD and the applications, functioning as a filter for the trans-
mitted data. This system already contains security mechanisms that
check the received data before propagating them to the HCD, elim-
inating the need for security mechanisms inside the HCD.

Furthermore, the driver strives to make sure that all new data
structures are initialised before being used, and that all data written
to buffers will not exceed the allocated buffer sizes.

5.4.6 Driver Porting

The source code file “isp1160 hcd-pci.c” contains all PCI-specific code
that is needed for the initialisation of the PCI development board. All

2most Linux distributions come with these tools already configured
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the other files refer to the ISP1160 HC and can be reused in other im-
plementations of the host controller. In order to successfully port the
driver, one needs only modify the initialisation code to fit his hard-
ware, and make sure that after the initialisation, the same resources
will be available to the driver (i.e. I/O ports and interrupt channel).

There are some implementations of the ISP1160 that use memory-
mapped regions insted of I/O ports. In this case, the driver writer
must also alter the contents of the “isp1160 hcd-pio.c” file, where the
functions that access the hardware are declared using the naming
scheme isp116x [read,write] reg[16,32].

5.5 Testing & Performance

5.5.1 Testing

The driver’s stability was tested using a variety of devices. All sup-
ported transfer modes were tested as follows:

• Control transfers were guaranteed since the host controller is
always able to detect the attachment of a new USB device
and enumerate it. They are also used in all the subsequent tests.

• To test the stability of Interrupt transfers, we connected a USB
mouse and used it as the system’s mouse (in a graphical user
interface), for about 40 hours.

• Two USB printers3 were connected simultaneously to the ISP1160
to test Bulk transfers. Files were sent to both printers at once(both
text and graphics), and they were successfully printed. Further-
more, a USB flash disk4 was attached and it was used to transfer
more than 3 GBytes of data.

Due to the fact that the above tests were performed during a 2
month period, we cannot state the exact number of times or hours
we performed them. A very good sign though is that during this pe-
riod, all transfers were always successful. There is still however, a sta-
bility problem, related to the unregistration of the driver when the
module is removed from a running kernel, especially if this happens
due to a loading error. If this happens, all subsequent attempts to
reload the module to the kernel will fail, and a reset of the operating
system will be required. This is a typical situation when a driver fails

3Hewlett Packard 840C and 930C
4Leadtek Winfast 128MB
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to free the allocated resources (I/O ports, interrupts and memory),
since they will still be in use when the module is reloaded.

A variety of USB devices were used to test the driver. These are
included in the following list:

• Flash Disk : Leadtek WinFast 128MB, USB 2.0

• Mouse: Logitech, N48/M-BB48 [FirstMouse Plus]

• Printer : Hewlett-Packard DeskJet 840C

• Printer : Hewlett-Packard DeskJet 930C

• Digital Camera: Olympus Camedia C-40 Zoom

5.5.2 Performance Evaluation

The performance of the driver is hard to measure, since the only
means is through the use of a USB flash disk. But, while performing
timed read or write on the flash disk, we also evaluate the perfor-
mance of the operating system, memory and caches, the USB host
controller and of course the USB flash disk. We can disable the op-
erating system’s role by making sure that we always synchronise the
data between the system’s memory and the storage location. Fur-
thermore, we have no official performance statistics from the manu-
facturer of the ISP1160 (apart from the typical 12 Mbits/sec) to com-
pare our results. Thus, the best solution was to use the same system
to compare the performance of the ISP1160 and the system’s USB
controller, using the same USB flash disk. This way, the only parts that
are different between the tests, are the host controller and its driver.

For this purpose we wrote a script, which measures the time re-
quired to write/read a 2 MB file to the USB flash disk, using record sizes
ranging from 4 KB, up to 2000 KB. The same procedure is repeated
for a 4 MB file, and then for 8, 16, 32 and 64 MB files (each time with
the record size limit set to the file’s size).

The above test script was performed on the following USB con-
trollers:

• VIA VT82xxxxx UHCI USB 1.1 Controller, using the “uhci-hcd” linux
driver

• PHILIPS ISP1160 PCI development board, using the “isp116x-hcd”
driver.

The results of the performance evaluation are summarised in the
following charts.
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Write Operation Performance
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As shown in the above charts, the performance of the ISP1160 is
lower than that of the UHCI host controller. Some reasons behind
this fact might be:

• The UHCI host controller is directly connected to the southbridge

101



5.5. TESTING & PERFORMANCE

of the motherboard’s chipset, while every external PCI device
(including our host controller) must first pass through a PCI bridge.

• The driver makes no use of the DMA capabilities provided. If
DMA was used, the transfer of data from/to the host controller
would be faster.

• The UHCI driver has been in the Linux kernel for many years
(written by Linus Torvalds in 1999), and it has undergone many
changes that improved the performance of the initial source
code, while the ISP1160 driver can be still considered “under
development”.

• This is just an assumption: The ISP1160 is a USB host controller tar-
geting the embedded market. As such, it might not perform as
fast as other USB host controllers. However, the ISP1160 offers en-
ergy saving, a very important factor in the design of embedded
systems.

Read Operation Performance
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As shown in the above charts, the overall reading performance of
the ISP1160 is similar to the one observed in the writing tests, so we
can assume that the same reasons apply also here. As a result, we
can say that the ISP1160 HCD performs well, and a future addition of
DMA support promises better performance.

105



Chapter 6

Conclusions

The purpose behind this thesis was to understand and demonstrate
the right way of writing a device driver under the Linux operating
system. It is very important to explain not only what should be done,
but what should NOT be done as well, when undertaking such a task.

The choice of implementing a host controller driver, was not a
simple one. The programmer needs to focus on multiple subjects
(e.g. device probing, handling of attached devices, scheduling of
data transfers). A big mistake that I made from the early steps of
the development was that, as soon as I had understood the basics,
I tried to solve the whole problem at once. After many months of
hard work, I found myself again right in the beginning, since I had
created a full non-working driver and I was not sure what part of it
was causing me the trouble. I had not taken the time to test whether
the hardware was fully functional (I had only tested the I/O ports), so
I was not even sure whether I had faulty hardware or not.

The correct attitude would have been (and eventually was. . . ) to
read and understand the basics, then begin testing the hardware,
combining step by step all conquered knowledge and facts into
more functional units. For example, after testing the I/O ports, we
are ready to send the first commands to the host controller. With the
correct sequence of commands, we can bring the controller to the
USB Operational mode, thus triggering the transmission of interrupt
signals to mark the beginning of every new frame. This is the cor-
rect time to test whether the controller is indeed generating pulses
through the INT pin. This last action was considered as a possibility
after several months of work, and I was shocked to realize that the
operating system was not acknowledging any interrupts from the PCI
board. Using a logical analyser on the development board, I moni-
tored the interrupt pin and concluded that the ISP1160 was indeed
generating interrupts (i.e. it had successfully entered the operational
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mode), but these signals were blocked somewhere on the board,
thus never reaching the system’s interrupt controller. The research
that followed uncovered all the information about the PLX9054 chip
that is present in Section 4.4, and of course, the fact that the asser-
tion of local interrupts was disabled on the development board.

While in the beginning of my work, one of the first problems that
I encountered was to find the location of the command and data
ports of the ISP1160. The solution came one day, when I took a closer
look at the DOS driver that came along with the host controller. It
had not occurred to me before that the specifications of the PCI bus
are independent of the system’s architecture and operating system.
Inside the DOS driver, I found the part where the resources were allo-
cated, and it was just a matter of translating it.

Note however that both this problem and the previous one, are
tightly connected to the fact that the development board was not
accompanied by any manual at all. The absence of the manual
led me to read the PCI bus specifications and the PLX9054 manual,
and I was overwhelmed by the size of the new field that I was forced
to enter. So, another advice is to be sure you have access to all
available manuals and support, before you begin working.

As a last piece of advice, two personal thoughts on the subject,
fruit of countless hours of despair:

1. When in doubt whether the problem is caused by faulty hard-
ware or not, it is usually your fault.

2. When in doubt whether it is the kernel’s fault or not (after all,
open source comes with “absolutely no warranty”, right?), it is
always your fault. . .

6.1 Further Work

As mentioned before, the driver implemented for the PCI develop-
ment board can easily be converted to serve another device that is
based on the ISP1160, covering the basic functionality of the hard-
ware. There is however a list of tasks that still remain to be done, if this
driver is to be considered “fully working”:

• All stability issues related to module loading/unloading should
be solved. This needs closer examination from an experienced
driver programmer. The problem is that this issue is related to
the PCI initialisation and cleanup code, and I was not able to
find anyone else working with the same device (i.e. the PCI de-
velopment board). However, when the driver was tested under
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the Linux kernel 2.6.8, it didn’t show any of the above signs, so
we might say that this is a minor incompatibility issue of the PCI
development board and the Linux kernel 2.6.10. Thus, as a first
step, it is advised to wait for the next kernel release and reeval-
uate the situation.

• The driver needs to support Isochronous transfers. This requires
a good deal of work and a lot of testing. The problem lies in
the fact that there exist few USB devices that support this kind
of data transfer, and it is unlikely that you will be having one at
hand (as opposed to USB mice, flash disks and printers).

• The ISP1160 is an embedded USB host controller, focusing on
low-power consumption. This driver should support this feature
by implementing the suspend and resume features.

• Direct Memory Access to the internal RAM of the host controller,
if implemented, will increase the performance of the device,
and at the same time demand less time from the system’s CPU.

• All data transfers to and from the host controller, are triggered
by an interrupt and served by the Interrupt Service Routine. I
suspect that we can boost the driver’s performance if the ISR is
rewritten with the help of tasklets. This will split the ISR into the
“upper” and “bottom” halves. The first half of the ISR will be ex-
ecuted “in interrupt” and will just acknowledge the reason of
the interrupt, scheduling the real work as a tasklet to be latter
executed. This way we can minimize the time spent on running
the ISR, thus reducing the time that all the other driver’s func-
tions are blocked waiting for the ISR to release the spinlock.

• The Linux kernel already maintains a set of memory pools of ob-
jects that are all the same size (named “Lookaside Caches”).
The kernel allows us to create our own memory pools. It would
probably be a good idea to create this sort of pool for the PTDs
and minimize the time required to allocate them, every time
they are needed (i.e. for every data transfer on the USB bus). A
side benefit to using lookaside caches, is that the kernel main-
tains statistics on cache usage.

• The actual driver for the ISP1160 is only half the work of this thesis.
The other half was about understanding and learning the gen-
eral method of writing Linux device drivers. The gained knowl-
edge can be applied to many other kernel-related issues. This
thesis presents the opportunity to create a group of undergrad-
uate students, supervised by postgraduates and professors of
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the E.C.E. department, that will contribute on the evolution of
open source kernels (like Linux, BSD and GNU Hurd). This initia-
tive can offer invaluable knowledge to the students in the fields
of hardware and system software, strengthen the bonds be-
tween the hardware and software laboratories of the depart-
ment, and promote the image of the university in the scientific
community.
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Appendix A

USB Requests

A.1 USB Device Requests

All USB devices respond to requests from the host on the device’s
Default Control Pipe. These requests are made using control transfers.
The request and the request’s parameters are sent to the device in
the Setup packet. The host is responsible for establishing the values
passed in the fields listed in Table A.1. Every Setup packet has eight
bytes.

bmRequestType This bitmapped field identifies the characteristics
of the specific request. In particular, this field identifies the direc-
tion of data transfer. The state of the Direction bit is ignored if the
wLength field is zero, signifying there is no Data stage. The USB spec-
ification defines a series of standard requests that all devices must
support. These are enumerated in Table A.2. In addition, a device
class may define additional requests. A device vendor may also de-
fine requests supported by the device. Requests may be directed to
the device, an interface on the device, or a specific endpoint on a
device. This field also specifies the intended recipient of the request.
When an interface or endpoint is specified, the wIndex field identifies
the interface or endpoint.

bRequest This field specifies the particular request. The Type bits in
the bmRequestType field modify the meaning of this field. This spec-
ification defines values for the bRequest field only when the bits are
reset to zero, indicating a standard request (refer to Table A.2).
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Table A.1: Format of Setup Data

Offset Field Size Value Description

0 bmRequestType 1 Bitmap

Characteristics of
request:

D7: Data transfer
direction
0 = Host to
device
1 = Device to
host

D6. . . 5: Type
0 = Standard
1 = Class
2 = Vendor
3 = Reserved

D4. . . 0: Recipient
0 = Device
1 = Interface
2 = Endpoint
3 = Other
4. . . 31 =
Reserved

1 bRequest 1 Value
Specific request
(refer to Table A.2)

2 wValue 2 Value

Word-sized field
that varies
according to
request

4 wIndex 2 Index or Offset

Word-sized field
that varies
according to
request; typically
used to pass an
index or offset

6 wLength 2 Count
Number of bytes to
transfer if there is
a Data stage
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wValue & wIndex The contents of these fields vary according to
the request. They are used to pass parameters to the device, specific
to the request.

wLength This field specifies the length of the data transferred. The
direction of data transfer (host-to-device or device-to-host) is indi-
cated by the Direction bit of the bmRequestType field. If this field is
zero, there is no data transfer phase. On an input request, a device
must never return more data than is indicated by the wLength value;
it may return less. On an output request, wLength will always indicate
the exact amount of data to be sent by the host. Device behavior
is undefined if the host should send more data than is specified in
wLength.

A.2 Standard Device Requests

This section describes the standard device requests defined for all
USB devices. Table A.2 outlines the standard device requests, while
Table A.3 and Table A.4 give the standard request codes and de-
scriptor types, respectively.

USB devices must respond to standard device requests, even if
the device has not yet been assigned an address or has not been
configured.

A.2.1 Request Descriptions

Clear Feature

This request is used to clear or disable a specific feature. Feature
selector values in wValue must be appropriate to the recipient. A
ClearFeature() request that references a feature that cannot be clear-
ed, that does not exist, or that references an interface or endpoint
that does not exist, will cause the device to respond with a Request
Error. If wLength is non-zero, then the device behavior is not speci-
fied.

Get Configuration

This request returns the current device configuration value. If the re-
turned value is zero, the device is not configured. If wValue, wIndex,
or wLength are not as specified above, then the device behavior is
not specified.
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Table A.2: Standard Device Requests

bmRequest
Type bRequest wValue wIndex wLength Data

00000000B
00000001B
00000010B

CLEAR FEATURE
Feature
Selector

Zero
Interface
Endpoint

Zero None

10000000B GET CONFIGURATION Zero Zero One
Config-
uration
Value

10000000B GET DESCRIPTOR

Descriptor
Type and
Descrip-
tor
Index

Zero or
Language
ID

Descriptor
Length Descriptor

10000001B GET INTERFACE Zero Interface One Alternate
Interface

10000000B
10000001B
10000010B

GET STATUS Zero
Zero
Interface
Endpoint

Two

Device,
Interface,
or
Endpoint
Status

00000000B SET ADDRESS
Device
Address Zero Zero None

00000000B SET CONFIGURATION
Config-
uration
Value

Zero Zero None

00000000B SET DESCRIPTOR

Descriptor
Type and
Descrip-
tor
Index

Zero or
Language
ID

Descriptor
Length Descriptor

00000000B
00000001B
00000010B

SET FEATURE
Feature
Selector

Zero
Interface
Endpoint

Zero None

00000001B SET INTERFACE
Alternate
Setting Interface Zero None

10000010B SYNCH FRAME Zero Endpoint Two Frame
Number
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Table A.3: Standard Request Codes

bRequest Value
GET STATUS 0

CLEAR FEATURE 1
SET FEATURE 3
SET ADDRESS 5

GET DESCRIPTOR 6
SET DESCRIPTOR 7

GET CONFIGURATION 8
SET CONFIGURATION 9

GET INTERFACE 10
SET INTERFACE 11
SYNCH FRAME 12

Table A.4: Descriptor Types

Descriptor Types Value
DEVICE 1

CONFIGURATION 2
STRING 3

INTERFACE 4
ENDPOINT 5

DEVICE QUALIFIER 6
OTHER SPEED CONF 7
INTERFACE POWER 8
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Get Descriptor

This request returns the specified descriptor if the descriptor exists.
The wValue field specifies the descriptor type in the high byte (re-

fer to Table A.4) and the descriptor index in the low byte. The de-
scriptor index is used to select a specific descriptor (only for config-
uration and string descriptors) when several descriptors of the same
type are implemented in a device. For other standard descriptors
that can be retrieved via a GetDescriptor() request, a descriptor in-
dex of zero must be used. The range of values used for a descriptor
index is from 0 to one less than the number of descriptors of that type
implemented by the device.

The wIndex field specifies the Language ID for string descriptors
or is reset to zero for other descriptors. The wLength field specifies
the number of bytes to return. If the descriptor is longer than the
wLength field, only the initial bytes of the descriptor are returned. If
the descriptor is shorter than the wLength field, the device indicates
the end of the control transfer by sending a short packet when fur-
ther data is requested. A short packet is defined as a packet shorter
than the maximum payload size or a zero length data packet.

All devices must provide a device descriptor and at least one
configuration descriptor. If a device does not support a requested
descriptor, it responds with a Request Error.

Get Interface

This request returns the selected alternate setting for the specified
interface.

Some USB devices have configurations with interfaces that have
mutually exclusive settings. This request allows the host to determine
the currently selected alternate setting. If wValue or wLength are not
as specified above, then the device behavior is not specified. If the
interface specified does not exist, then the device responds with a
Request Error.

Get Status

This request returns status for the specified recipient. The Recipient
bits of the bmRequestType field specify the desired recipient. The
data returned is the current status of the specified recipient. If wValue
or wLength are not as specified above, or if wIndex is non-zero for a
device status request, then the behavior of the device is not spec-
ified. If an interface or an endpoint is specified that does not exist,
then the device responds with a Request Error.

115



A.2. STANDARD DEVICE REQUESTS

Set Address

This request sets the device address for all future device accesses.
The wValue field specifies the device address to use for all subse-
quent accesses. If the specified device address is greater than 127,
or if wIndex or wLength are non-zero, then the behavior of the de-
vice is not specified.

Set Configuration

This request sets the device configuration. The lower byte of the
wValue field specifies the desired configuration. This configuration
value must be zero or match a configuration value from a configura-
tion descriptor. If the configuration value is zero, the device is placed
in its Address state. The upper byte of the wValue field is reserved. If
wIndex, wLength, or the upper byte of wValue is non-zero, then the
behavior of this request is not specified.

If the specified configuration value matches the configuration
value from a configuration descriptor, then that configuration is se-
lected and the device remains in the Configured state. Otherwise,
the device responds with a Request Error.

Set Descriptor

This request is optional and may be used to update existing descrip-
tors or new descriptors may be added. The wValue field specifies the
descriptor type in the high byte (refer to Table A.4) and the descriptor
index in the low byte. The descriptor index is used to select a specific
descriptor (only for configuration and string descriptors) when sev-
eral descriptors of the same type are implemented in a device. For
other standard descriptors that can be set via a SetDescriptor() re-
quest, a descriptor index of zero must be used. The range of values
used for a descriptor index is from 0 to one less than the number of
descriptors of that type implemented by the device.

The wIndex field specifies the Language ID for string descriptors or
is reset to zero for other descriptors. The wLength field specifies the
number of bytes to transfer from the host to the device. The only
allowed values for descriptor type are device, configuration, and
string descriptor types. If this request is not supported, the device
will respond with a Request Error.
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Set Feature

This request is used to set or enable a specific feature. Feature se-
lector values in wValue must be appropriate to the recipient. Only
device feature selector values may be used when the recipient is a
device; only interface feature selector values may be used when the
recipient is an interface, and only endpoint feature selector values
may be used when the recipient is an endpoint.

A SetFeature() request that references a feature that cannot be
set or that does not exist causes a STALL to be returned in the Status
stage of the request. If wLength is non-zero, then the behavior of the
device is not specified. If an endpoint or interface is specified that
does not exist, then the device responds with a Request Error.

Set Interface

This request allows the host to select an alternate setting for the spec-
ified interface.

Some USB devices have configurations with interfaces that have
mutually exclusive settings. This request allows the host to select the
desired alternate setting. If a device only supports a default setting
for the specified interface, then a STALL may be returned in the Status
stage of the request. This request cannot be used to change the
set of configured interfaces (the SetConfiguration() request must be
used instead).

If the interface or the alternate setting does not exist, then the
device responds with a Request Error. If wLength is nonzero, then the
behavior of the device is not specified.

Synch Frame

This request is used to set and then report an endpoint’s synchroniza-
tion frame. When an endpoint supports isochronous transfers, the
endpoint may also require per-frame transfers to vary in size accord-
ing to a specific pattern. The host and the endpoint must agree on
which frame the repeating pattern begins. The number of the frame
in which the pattern began is returned to the host. If a high-speed
device supports the Synch Frame request, it must internally synchro-
nize itself to the zeroth microframe and have a time notion of classic
frame. Only the frame number is used to synchronize and reported
by the device endpoint (i.e., no microframe number). The endpoint
must synchronize to the zeroth microframe.

This value is only used for isochronous data transfers using implicit
pattern synchronization. If wValue is non-zero or wLength is not two,
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Table A.5: Hub Responces to Standard Device Requests

bRequest Hub Response
CLEAR FEATURE Standard

GET CONFIGURATION Standard
GET DESCRIPTOR Standard

GET INTERFACE
Undefined. Hubs are allowed
to support only one interface.

GET STATUS Standard
SET ADDRESS Standard

SET CONFIGURATION Standard
SET DESCRIPTOR Optional

SET FEATURE Standard

SET INTERFACE
Undefined. Hubs are allowed
to support only one interface.

SYNCH FRAME
Undefined. Hubs are not
allowed to have isochronous
endpoints.

then the behavior of the device is not specified. If the specified end-
point does not support this request, then the device will respond with
a Request Error.

A.3 Hub Requests

A.3.1 Standard Requests

All hubs respond to standard usb requests (see A.2) as outlined in
Table A.5.

A.3.2 Class-Specific Requests

The hub class defines requests to which hubs respond, as outlined in
Table A.6. Table A.7 defines the hub class request codes. All requests
in Table A.6 except SetHubDescriptor() are mandatory.

Table A.6: Hub Class Requests

Request bmRequestType bRequest wValue wIndex wLength Data

ClearHubFeature 00100000B CLEAR FEATURE Feature
Selector Zero Zero None

ClearPortFeature 00100011B CLEAR FEATURE Feature
Selector

Selector,
Port Zero None

table continued on next page. . .
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Table A.6: Hub Class Requests (continued)

Request bmRequestType bRequest wValue wIndex wLength Data

ClearTTBuffer 00100011B CLEAR TT BUFFER Dev Addr,
EP Num TT port Zero None

GetHubDescriptor 10100000B GET DESCRIPTOR

Descriptor
Type and
Descriptor

Index

Zero or
Language

ID

Descriptor
Length Descriptor

GetHubStatus 10100000B GET STATUS Zero Zero Four

Hub Status
and

Change
Status

GetPortStatus 10100011B GET STATUS Zero Port Four

Port Status
and

Change
Status

ResetTT 00100011B RESET TT Zero Port Zero None

SetHubDescriptor 00100000B SET DESCRIPTOR

Descriptor
Type and
Descriptor

Index

Zero or
Language

ID

Descriptor
Length Descriptor

SetHubFeature 00100000B SET FEATURE Feature
Selector Zero Zero None

SetPortFeature 00100011B SET FEATURE Feature
Selector

Selector,
Port Zero None

GetTTState 10100011B GET TT STATE TT Flags Port TT State
Length TT State

StopTT 00100011B STOP TT Zero Port Zero None
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Table A.7: Hub Class Request Codes

Request Value
GET STATUS 0

CLEAR FEATURE 1
RESERVED 2

SET FEATURE 3
Reserved for future use 4-5

GET DESCRIPTOR 6
SET DESCRIPTOR 7
CLEAR TT BUFFER 8

RESET TT 9
GET TT STATE 10

STOP TT 11
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USB Descriptors

USB devices report their attributes using descriptors. A descriptor is a
data structure with a defined format. Each descriptor begins with a
byte-wide field that contains the total number of bytes in the descrip-
tor followed by a byte-wide field that identifies the descriptor type.
Using descriptors allows concise storage of the attributes of individual
configurations because each configuration may reuse descriptors or
portions of descriptors from other configurations that have the same
characteristics. In this manner, the descriptors resemble individual
data records in a relational database.

Where appropriate, descriptors contain references to string de-
scriptors that provide displayable information describing a descrip-
tor in human-readable form. The inclusion of string descriptors is op-
tional. However, the reference fields within descriptors are manda-
tory. If a device does not support string descriptors, string reference
fields must be reset to zero to indicate no string descriptor is avail-
able. If a descriptor returns with a value in its length field that is less
than defined by this specification, the descriptor is invalid and should
be rejected by the host. If the descriptor returns with a value in its
length field that is greater than defined by this specification, the ex-
tra bytes are ignored by the host, but the next descriptor is located
using the length returned rather than the length expected.

B.1 Device Descriptor

The device descriptor of a USB device represents the entire device.
As a result a USB device can only have one device descriptor. It
specifies some basic, yet important information about the device
such as the supported USB version, maximum packet size, vendor
and product IDs and the number of possible configurations the de-
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vice can have. The format of the device descriptor is shown in Ta-
ble B.1.

• The bcdUSB field reports the highest version of USB the device
supports. The value is in binary coded decimal with a format
of 0xJJMN where JJ is the major version number, M is the minor
version number and N is the sub minor version number. e.g.
USB 2.0 is reported as 0x0200, USB 1.1 as 0x0110 and USB 1.0 as
0x0100.

• The bDeviceClass, bDeviceSubClass and bDeviceProtocol are
used by the operating system to find a class driver for the de-
vice. Typically only the bDeviceClass is set at the device level.
Most class specifications choose to identify itself at the interface
level and as a result set the bDeviceClass as 0x00. This allows for
the one device to support multiple classes.

• The bMaxPacketSize field reports the maximum packet size for
endpoint zero. All devices must support endpoint zero.

• The idVendor and idProduct are used by the operating system
to find a driver for your device. The Vendor ID is assigned by the
USB.org.

• The bcdDevice has the same format as the bcdUSB and is used
to provide a device version number. This value is assigned by
the developer.

• Three string descriptors exist to provide details of the manufac-
turer, product and serial number. There is no requirement to
have string descriptors. If no string descriptor is present, a index
of zero should be used.

• bNumConfigurations defines the number of configurations the
device supports at its current speed.

B.2 Configuration Descriptor

A USB device can have several different configurations although the
majority of devices are simple and only have one. The configuration
descriptor specifies how the device is powered, what the maximum
power consumption is, the number of interfaces it has. Therefore it
is possible to have two configurations, one for when the device is
bus powered and another when it is mains powered. As this is a
“header” to the Interface descriptors, its also feasible to have one
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Table B.1: Device Descriptor Format

Offset Field Size Value Description

0 bLength 1 Number
Size of the Descriptor in
Bytes (18 bytes)

1 bDescriptorType 1 Constant Device Descriptor (0x01)

2 bcdUSB 2 BCD
USB Specification
Number which device
complies too

4 bDeviceClass 1 Class

Class Code. If equal to
Zero, each interface
specifies it’s own class
code. If equal to 0xFF, the
class code is vendor
specified. Otherwise field
is valid Class Code

5 bDeviceSubClass 1 SubClass
Subclass Code (Assigned
by USB.org)

6 bDeviceProtocol 1 Protocol
Protocol Code (Assigned
by USB.org)

7 bMaxPacketSize 1 Number
Maximum Packet Size for
Zero Endpoint. Valid Sizes
are 8, 16, 32, 64

8 idVendor 2 ID
Vendor ID (Assigned by
USB.org)

10 idProduct 2 ID
Product ID (Assigned by
Manufacturer)

12 bcdDevice 2 BCD Device Release Number

14 iManufacturer 1 Index
Index of Manufacturer
String Descriptor

15 iProduct 1 Index
Index of Product String
Descriptor

16 iSerialNumber 1 Index
Index of Serial Number
String Descriptor

17 bNumConfigurations 1 Integer
Number of Possible
Configurations
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Table B.2: Configuration Descriptor Format

Offset Field Size Value Description
0 bLength 1 Number Size of Descriptor in Bytes

1 bDescriptorType 1 Constant
Configuration Descriptor
(0x02)

2 wTotalLenght 2 Number
Total Length of Data
Returned

4 bNumInterfaces 1 Number Number of Interfaces

5 bConfigurationValue 1 Number
Value to use as an
argument to select this
configuration

6 iConfiguration 1 Index
Index of String Descriptor
Describing this
configuration

7 bmAttributes 1 Bitmap

D7 Bus Powered
D6 Self Powered
D5 Remote Wakeup
D4. . . 0 Reserved (0)

8 bMaxPower 1 mA
Maximum Power
Consumption

configuration using a different transfer mode to that of another con-
figuration. Once all the configurations have been examined by the
host, the host will send a SetConfiguration command with a non-zero
value which matches the bConfigurationValue of one of the config-
urations. This is used to select the desired configuration. The format
of the configuration descriptor is shown in Table B.2.

• When the configuration descriptor is read, it returns the entire
configuration hierarchy which includes all related interface and
endpoint descriptors. The wTotalLength field reflects the num-
ber of bytes in the hierarchy.

• bNumInterfaces specifies the number of interfaces present for
this configuration.

• bConfigurationValue is used by the SetConfiguration request to
select this configuration.

• iConfiguration is a index to a string descriptor describing the
configuration in human readable form.

• bmAttributes specify power parameters for the configuration.
If a device is self powered, it sets D6. Bit D7 was used in USB
1.0 to indicate a bus powered device, but this is now done by
bMaxPower. If a device uses any power from the bus, whether
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Table B.3: Interface Descriptor Format

Offset Field Size Value Description
0 bLength 1 Number Size of Descriptor in Bytes
1 bDescriptorType 1 Constant Interface Descriptor (0x04)
2 bInterfaceNumber 1 Number Number of Interface

3 bAlternateSetting 1 Number
Value used to select
alternative setting

4 bNumEndpoints 1 Number
Number of Endpoints used
for this interface

5 bInterfaceClass 1 Class
Class Code (Assigned by
USB.org)

6 bInterfaceSubClass 1 SubClass
Subclass Code (Assigned by
USB.org)

7 bInterfaceProtocol 1 Protocol Protocol Code

8 iInterface 1 Index
Index of String Descriptor
Describing this interface

it be as a bus powered device or as a self powered device, it
must report its power consumption in bMaxPower. Devices can
also support remote wakeup which allows the device to wake
up the host when the host is in suspend.

• bMaxPower defines the maximum power the device will drain
from the bus. This is in 2 mA units, thus a maximum of ap-
proximately 500 mA can be specified. The specification allows
a high powered bus powered device to drain no more than
500 mA from Vbus. If a device loses external power, then it must
not drain more than indicated in bMaxPower. It should fail any
operation it cannot perform without external power.

B.3 Interface Descriptor

The interface descriptor could be seen as a header or grouping of
the endpoints into a functional group performing a single feature of
the device. The interface descriptor conforms to the format shown in
Table B.3.

• bInterfaceNumber indicates the index of the interface descrip-
tor. This should be zero based, and incremented once for each
new interface descriptor.

• bAlternativeSetting can be used to specify alternative interfaces.
These alternative interfaces can be selected with the SetInter-
face request.
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• bNumEndpoints indicates the number of endpoints used by the
interface. This value should exclude endpoint zero and is used
to indicate the number of endpoint descriptors to follow.

• bInterfaceClass, bInterfaceSubClass and bInterfaceProtocol can
be used to specify supported classes (e.g. HID, communica-
tions, mass storage etc.) This allows many devices to use class
drivers, preventing the need to write individual drivers for every
device.

• iInterface allows for a string description of the interface.

B.4 Endpoint Descriptor

Endpoint descriptors are used to describe endpoints other than end-
point zero. Endpoint zero is always assumed to be a control endpoint
and is configured before any descriptors are even requested. The
host will use the information returned from these descriptors to de-
termine the bandwidth requirements of the bus. The format of the
configuration descriptor is shown in Table B.4.

• bEndpointAddress indicates what endpoint this descriptor is de-
scribing.

• bmAttributes specifies the transfer type. This can either be Con-
trol, Interrupt, Isochronous or Bulk Transfer. If an Isochronous end-
point is specified, additional attributes can be selected such as
the Synchronisation and usage types.

• wMaxPacketSize indicates the maximum payload size for this
endpoint.

• bInterval is used to specify the polling interval of certain trans-
fers. The units are expressed in frames, thus this equates to ei-
ther 1 ms for low/full speed devices and 125 µs for high speed
devices.

B.5 String Descriptor

String descriptors provide human readable information and are op-
tional. If they are not used, any string index fields of descriptors must
be set to zero indicating there is no string descriptor available. The
strings are encoded in the Unicode format and products can be
made to support multiple languages. String Index 0 should return a
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Table B.4: Endpoint Descriptor Format

Offset Field Size Value Description

0 bLength 1 Number
Size of Descriptor in Bytes (7
bytes)

1 bDescriptionType 1 Constant Endpoint Descriptor (0x05)

2 bEndpointAddress 1 Endpoint

Endpoint Address
0..3b Endpoint Number
4..6b Reserved

7b Direction
0 = Out , 1 = In

3 bmAttributes 1 Bitmap

• Bits 0..1 Transfer Type

– 00 = Control

– 01 = Isochronous

– 10 = Bulk

– 11 = Interrupt

• Bits 3..2 =
Synchronisation Type
(Iso Mode)

– 00 = No
Synchonisation

– 01 = Asynchronous

– 10 = Adaptive

– 11 = Synchronous

• Bits 5..4 = Usage Type
(Iso Mode)

– 00 = Data
Endpoint

– 01 = Feedback
Endpoint

– 10 = Explicit
Feedback Data
Endpoint

– 11 = Reserved

4 wMaxPacketSize 2 Number
Maximum Packet Size this
endpoint is capable of
sending or receiving

6 bInterval 1 Number

Interval for polling endpoint
data transfers. Value in
frame counts. Ignored for
Bulk & Control Endpoints.
Iso must equal 1 and field
may range from 1 to 255 for
interrupt endpoints.
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Table B.5: String Descriptor Zero Format

Offset Field Size Value Description
0 bLength 1 Number Size of Descriptor in Bytes
1 bDescriptorType 1 Constant String Descriptor (0x03)

2 wLANGID[0] 2 Number
Supported Language Code
Zero

3 wLANGID[1] 2 Number Supported Language Code One
4 wLANGID[2] 2 Number Supported Language Code x

Table B.6: Subsequent String Descriptors Format

Offset Field Size Value Description
0 bLength 1 Number Size of Descriptor in Bytes
1 bDescriptorType 1 Constant String Descriptor (0x03)
2 bString n Unicode Unicode Encoded String

list of supported languages. A list of USB Language IDs can be found
in [4].

The String Descriptor shown in Table B.5 shows the format of String
Descriptor Zero. The host should read this descriptor to determine
what languages are available. If a language is supported, it can
then be referenced by sending the language ID in the wIndex field
of a GetDescriptor(String) request. All subsequent strings take on the
format shown in Table B.6.

B.6 Class- & Vendor-specific Descriptors

A device may return class- or vendor-specific descriptors in two ways:

1. If the class or vendor specific descriptors use the same format
as standard descriptors, they must be returned interleaved with
standard descriptors in the configuration information returned
by a GetDescriptor(Configuration) request. In this case, the
class- or vendor-specific descriptors must follow a related stan-
dard descriptor they modify or extend.

2. If the class- or vendor-specific descriptors are independent of
configuration information or use a non-standard format, a Get-
Descriptor() request specifying the class or vendor specific de-
scriptor type and index may be used to retrieve the descriptor
from the device. A class or vendor specification will define the
appropriate way to retrieve these descriptors.
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B.6.1 Hub Descriptor

Table B.7 outlines the various fields contained by the hub descriptor.

Table B.7: Hub Descriptor Format

Offset Field Size Description

0 bDescLength 1 Number of bytes in this descriptor, including
this byte

1 bDescriptorType 1 Descriptor Type, value: 29H for hub descrip-
tor

2 bNbrPorts 1 Number of downstream facing ports that this
hub supports

3 wHubCharacteristics 2

• D1. . . D0: Logical Power Switching
Mode

– 00: Ganged Power

– 01: Individual Port

– 1X: No power switching

• D2: Identifies a Compound Device

– 0: Hub is not a compound de-
vice.

– 1: Hub is a compound device.

• D4. . . D3: Over-current Protection
Mode

– 00: Global

– 01: Individual Port

– 1X: No protection.

• D6...D5: TT Think Time

– 00: at most 8 FS bit times.

– 01: at most 16 FS bit times.

– 10: at most 24 FS bit times.

– 11: at most 32 FS bit times.

• D7: Port Indicators Supported

– 0: Port Indicators are not sup-
ported

– 1: Port Indicators are sup-
ported

• D15. . . D8: Reserved

5 bPwrOn2PwrGood 1
Time (in 2 ms intervals) from the time the
poweron sequence begins on a port until
power is good on that port.

table continued on next page. . .
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Table B.7: Hub Descriptor Format (continued)

Offset Field Size Description

6 bHubContrCurrent 1 Maximum current requirements of the Hub
Controller electronics in mA.

7 DeviceRemovable Variable

This is a bitmap corresponding to the individ-
ual ports on the hub:

• Bit 0: Reserved for future use.

• Bit 1: Port 1

• Bit 2: Port 2

• Bit n: Port n (implementation-
dependent, up to a maximum of 255
ports).

Bit value definition:

• 0B - Device is removable.

• 1B - Device is non-removable

Variable PortPwrCtrlMask Variable
This field exists for reasons of compatibility
with software written for 1.0 compliant de-
vices. All bits in this field should be set to 1B.
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ISP1160 Internal Registers

C.1 HC Control and Status Registers

C.1.1 HcRevision

Table C.1: HcRevision Register

Bit Symbol Description
31. . . 8 – reserved

7. . . 0 REV[7:0]
This read-only field contains the BCD repre-
sentation of the version of the HCI spefication
(equal to 10H) that is implemented by the HC.

C.1.2 HcControl

The HcControl register defines the operating modes of the HC.

Table C.2: HcControl Register

Bit Symbol Description
31. . . 11 – reserved

10 RWE

RemoteWakeupEnable: This bit is used by the HCD
to enable or disable the remote wake-up feature
upon the detection of upstream resume signaling.
When this bit is set and the ResumeDetected bit
in HcInterruptStatus is set, a remote wake-up is sig-
naled to the host system. Setting this bit has no
impact on the generation of hardware interrupt.

table continued on next page. . .
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Table C.2: HcControl Register (continued)

Bit Symbol Description

9 RWC

RemoteWakeupConnected: This bit indicates
whether the HC supports remote wake-up signal-
ing. If remote wake-up is supported and used by
the system, it is the responsibility of system firmware
to set this bit. The HC clears the bit upon a hard-
ware reset but does not alter it upon a software
reset.

8 – reserved

7. . . 6 HCFS

HostControllerFunctionalState for USB:

00B — USBReset

01B — USBResume

10B — USBOperational

11B — USBSuspend

A transition to USBOperational from another state
causes start-of-frame (SOF) generation to begin
1 ms later. The HCD may determine whether
the HC has begun sending SOFs by reading the
StartofFrame field of HcInterruptStatus.
This field can be changed by the HC only when
in the USBSuspend state. The HC can move from
the USBSuspend state to the USBResume state af-
ter detecting the resume signaling from a down-
stream port.
The HC enters USBReset after a software reset
and a hardware reset. The latter also resets the
Root Hub and asserts subsequent reset signaling to
downstream ports.

5. . . 0 – reserved

C.1.3 HcCommandStatus

The HcCommandStatus register is used by the HC to receive com-
mands issued by the HCD, and it also reflects the HC’s current status.
To the HCD, it appears to be a “write to set” register. The HC must
ensure that bits written as logic 1 become set in the register while
bits written as logic 0 remain unchanged in the register. The HCD
may issue multiple distinct commands to the HC without concern for
corrupting previously issued commands. The HCD has normal read
access to all bits.
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Table C.3: HcCommandStatus Register

Bit Symbol Description
31. . . 18 – reserved

17. . . 16 SOC[1:0]

SchedulingOverrunCount: The field is incre-
mented on each scheduling overrun error. It is
initialized to 00B and wraps around at 11B. It will
be incremented when a scheduling overrun is
detected even if SchedulingOverrun in HcInter-
ruptStatus has already been set. This is used by
the HCD to monitor any persistent scheduling
problems.

15. . . 1 – reserved

0 HCR

HostControllerReset: This bit is set by the HCD to
initiate a software reset of the HC. Regardless of
the functional state of the HC, it moves to the
USBSuspend state in which most of the opera-
tional registers are reset, except those stated
otherwise, and no Host bus accesses are al-
lowed. This bit is cleared by the HC upon the
completion of the reset operation. The reset
operation must be completed within 10 µs. This
bit, when set, does not cause a reset to the
Root Hub and no subsequent reset signaling
should be asserted to its downstream ports.

C.1.4 HcInterruptStatus

This register provides the status of the events that cause hardware
interrupts. When an event occurs, the HC sets the corresponding bit
in this register. When a bit is set, a hardware interrupt is generated if
the interrupt is enabled in the HcInterruptEnable register (C.1.5) and
bit MasterInterruptEnable is set. The HCD can clear individual bits in
this register by writing logic 1 to the bit positions to be cleared, but
cannot set any of these bits. Conversely, the HC can set bits in this
register, but cannot clear these bits.

Table C.4: HcInterruptStatus Register

Bit Symbol Description
31. . . 7 – reserved

6 RHSC
RootHubStatusChange: This bit is set when the
content of HcRhStatus or the content of any of
HcRhPortStatus[1:2] has changed.

table continued on next page. . .
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Table C.4: HcInterruptStatus Register (continued)

Bit Symbol Description

5 FNO FrameNumberOverflow: This bit is set when the
MSB of HcFmNumber (bit 15) changes value.

4 UE

UnrecoverableError: This bit is set when the HC
detects a system error not related to USB. The
HC does not proceed with any processing nor
signaling before the system error has been cor-
rected. The HCD clears this bit after the HC has
been reset.

3 RD

ResumeDetected: This bit is set when the HC de-
tects that a device on the USB is asserting re-
sume signaling from a state of no resume sig-
naling. This bit is not set when the HCD enters
USBResume state.

2 SF StartOfFrame: At the start of each frame, this bit
is set by the HC and a SOF is generated.

1 - reserved

0 SO

SchedulingOverrun: This bit is set when USB
schedules for current frame overrun. A schedul-
ing overrun will also cause the SchedulingOver-
runCount of HcCommandStatus to be incre-
mented.

C.1.5 HcInterruptEnable

Each enable bit in the HcInterruptEnable register corresponds to an
associated interrupt bit in the HcInterruptStatus register (C.1.4). The
HcInterruptEnable register is used to control which events generate
a hardware interrupt. A hardware interrupt is requested on the host
bus when three conditions occur:

1. A bit is set in the HcInterruptStatus register

2. The corresponding bit in the HcInterruptEnable register is set

3. Bit MasterInterruptEnable is set.

Writing a logic 1 to a bit in this register sets the corresponding
bit, whereas writing a logic 0 to a bit in this register leaves the corre-
sponding bit unchanged. On a read, the current value of this register
is returned.

134



APPENDIX C. ISP1160 INTERNAL REGISTERS

Table C.5: HcInterruptEnable Register

Bit Symbol Description

31 MIE
MasterInterruptEnable: A logic 0 is ignored by
the HC. A logic 1 enables interrupt generation
by events specified in other bits of this register.

30. . . 7 – reserved

6 RHSC Enable interrupt generation due to Root Hub
Status Change

5 FNO Enable interrupt generation due to Frame Num-
ber Overflow

4 UE Enable interrupt generation due to Unrecover-
able Error

3 RD Enable interrupt generation due to Resume De-
tect

2 SF Enable interrupt generation due to Start of
Frame

1 - reserved

0 SO Enable interrupt generation due to Scheduling
Overrun

C.1.6 HcInterruptDisable

Each disable bit in the HcInterruptDisable register corresponds to
an associated interrupt bit in the HcInterruptStatus register (C.1.4).
The HcInterruptDisable register is coupled with the HcInterruptEnable
register (C.1.5). Thus, writing a logic 1 to a bit in this register clears the
corresponding bit in the HcInterruptEnable register, whereas writing
a logic 0 to a bit in this register leaves the corresponding bit in the
HcInterruptEnable register unchanged. On a read, the current value
of the HcInterruptEnable register is returned.

C.2 HC Frame Counter Registers

C.2.1 HcFmInterval

The HcFmInterval register contains a 14 bit value which indicates the
bit time interval in a frame (that is, between two consecutive SOFs),
and a 15 bit value indicating the full-speed maximum packet size
that the HC may transmit or receive without causing a scheduling
overrun.
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Table C.6: HcFmInterval Register

Bit Symbol Description

31 FIT FrameIntervalToggle: The HCD toggles this bit
whenever it loads a new value to FrameInterval.

30. . . 16 FSMPS[14:0]

FSLargestDataPacket: Specifies a value which is
loaded into the Largest Data Packet Counter
at the beginning of each frame. The counter
value represents the largest amount of data in
bits which can be sent or received by the HC in
a single transaction at any given time without
causing a scheduling overrun. The field value is
calculated by the HCD.

15. . . 14 - reserved

13. . . 0 FI[13:0]

FrameInterval: Specifies the interval between
two consecutive SOFs in bit times. The default
value is 11999. The HCD must save the current
value of this field before resetting the HC. Set-
ting the HostControllerReset field of the HcCom-
mandStatus register will cause the HC to reset
this field to its default value. HCD may choose
to restore the saved value upon completing the
reset sequence.

C.2.2 HcFmRemaining

The HcFmRemaining register is a 14 bit down counter showing the bit
time remaining in the current frame.

Table C.7: HcFmRemaining Register

Bit Symbol Description

31 FRT

FrameRemainingToggle: This bit is loaded from
the FrameIntervalToggle field of the HcFmInter-
val register whenever FrameRemaining reaches
0. This bit is used by the HCD for synchronization
between FrameInterval and FrameRemaining.

30. . . 14 - reserved

13. . . 0 FR[13:0]

FrameRemaining: This counter is decremented
at each bit time. When it reaches zero, it is reset
by loading the FrameInterval value specified in
the HcFmInterval register at the next bit time
boundary. When entering the USBOperational
state, the HC reloads it with the content of the
FrameInterval part of the HcFmInterval register
and uses the updated value from the next SOF.
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C.2.3 HcFmNumber

The HcFmNumber register is a 16 bit counter. It provides a timing
reference for events happening in the HC and the HCD. The HCD
may use the 16 bit value specified in this register and generate a
32 bit frame number without requiring frequent access to the register.

Table C.8: HcFmNumber Register

Bit Symbol Description
31. . . 16 – reserved

15. . . 0 FN[15:0]

FrameNumber: This is incremented when HcFm-
Remaining is reloaded. It rolls over to 0000H af-
ter FFFFH. When the USBOperational state is en-
tered, this will be incremented automatically.
The HC will set bit StartofFrame in the HcInter-
ruptStatus register.

C.2.4 HcLSThreshold

The HcLSThreshold register contains an 11 bit value used by the HC
to determine whether to commit to the transfer of a maximum of
8 byte LS packet before EOF. Neither the HC nor the HCD is allowed
to change this value.

Table C.9: HcLSThreshold Register

Bit Symbol Description
31. . . 11 – reserved

10. . . 0 LST[10:0]

LSThreshold: Contains a value that is com-
pared to the FrameRemaining field before a
low-speed transaction is initiated. The transac-
tion is started only if FrameRemaining is greater
or equal to this field. The value is calculated by
the HCD, which considers transmission and set-
up overhead.

C.3 HC Root Hub Registers

C.3.1 HcRhDescriptorA

The HcRhDescriptorA register is the first register of two describing the
characteristics of the Root Hub. Reset values are implementation-
specific. The descriptor length, descriptor type and hub controller
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current fields of the hub Class Descriptor(refer to B.6.1, on page 129)
are emulated by the HCD. All other fields are located in registers
HcRhDescriptorA and HcRhDescriptorB (C.3.2).

Table C.10: HcRhDescriptorA Register

Bit Symbol Description

31. . . 24 POTPGT[7:0]

PowerOnToPowerGoodTime: This byte specifies
the duration HCD has to wait before accessing
a powered-on port of the Root Hub. The unit of
time is 2 ms.

23. . . 13 - reserved

12 NOCP

NoOverCurrentProtection: This bit describes
how the overcurrent status for the Root Hub
ports are reported. When this bit is cleared,
the OverCurrentProtectionMode field specifies
global or per-port reporting.

0 — overcurrent status is reported collectively
for all downstream ports

1 — no overcurrent reporting supported

11 OCPM

OverCurrentProtectionMode: This bit describes
how the overcurrent status for the Root Hub
ports is reported. At reset, this field reflects the
same mode as PowerSwitchingMode. This field
is valid only if the NoOverCurrentProtection field
is cleared.

0 — overcurrent status is reported collectively
for all downstream ports

1 — overcurrent status is reported on a per-
port basis.

10 DT
DeviceType: This bit specifies that the Root Hub
is not a compound device. This field should al-
ways read/write 0.

table continued on next page. . .
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Table C.10: HcRhDescriptorA Register (continued)

Bit Symbol Description

9 NPS

NoPowerSwitching: This bit is used to spec-
ify whether power switching is supported or
ports are always powered. When this bit
is cleared, bit PowerSwitchingMode specifies
global or per-port switching.

0 — ports are power switched

1 — ports are always powered on when the
HC is powered on

8 PSM

PowerSwitchingMode: This bit is used to specify
how the power switching of the Root Hub ports
is controlled. This field is valid only if the NoPow-
erSwitching field is cleared.

0 — all ports are powered at the same time

1 — each port is powered individually. This
mode allows port power to be controlled
by either the global switch or per-port
switching. If bit PortPowerControlMask is
set, the port responds to only port power
commands (Set/ClearPortPower). If the
port mask is cleared, then the port is con-
trolled only by the global power switch
(Set/ClearGlobalPower).

7. . . 2 - reserved

1. . . 0 NDP[1:0]

NumberDownstreamPorts: These bits specify the
number of downstream ports supported by the
Root Hub. The maximum number of ports sup-
ported by the ISP1160 is 2.

C.3.2 HcRhDescriptorB

The HcRhDescriptorB register is the second register of two describing
the characteristics of the Root Hub. These fields are written during
initialization to correspond with the system implementation. Reset
values are implementation-specific.

Table C.11: HcRhDescriptorB Register

Bit Symbol Description
31. . . 19 - reserved

table continued on next page. . .
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Table C.11: HcRhDescriptorB Register (continued)

Bit Symbol Description

18. . . 16 PPCM[2:0]

PortPowerControlMask: Each bit indicates
whether a port is affected by a global power
control command when PowerSwitchingMode
is set. When set, the port’s power state
is only affected by per-port power control
(Set/ClearPortPower). When cleared, the
port is controlled by the global power switch
(Set/ClearGlobalPower). If the device is con-
figured to global switching mode (PowerSwitch-
ingMode = 0), this field is not valid.

Bit 0 — reserved

Bit 1 — Ganged-power mask on Port #1

Bit 2 — Ganged-power mask on Port #2

15. . . 3 - reserved

2. . . 0 DR[2:0]

DeviceRemovable: Each bit is dedicated to a
port of the Root Hub. When cleared, the at-
tached device is removable. When set, the at-
tached device is not removable.

Bit 0 — reserved

Bit 1 — Device attached to Port #1

Bit 2 — Device attached to Port #2

C.3.3 HcRhStatus

The HcRhStatus register is divided into two parts. The lower word of
a DWORD represents the Hub Status field and the upper word repre-
sents the Hub Status Change field. Reserved bits should always be
written as logic 0.

Table C.12: HcRhStatus Register

Bit Symbol Description

31 CRWE
On write, ClearRemoteWakeupEnable: Writing
a logic 1 clears DeviceRemoveWakeupEnable.
Writing a logic 0 has no effect.

30. . . 18 - reserved
table continued on next page. . .
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Table C.12: HcRhStatus Register (continued)

Bit Symbol Description

17 OCIC

OverCurrentIndicatorChange: This bit is set by
hardware when a change has occurred to the
OCI field of this register. The HCD clears this bit
by writing a logic 1. Writing a logic 0 has no
effect.

16 LPSC

On read, LocalPowerStatusChange: The Root
Hub does not support the local power status
feature. Therefore, this bit is always read as
logic 0.
On write, SetGlobalPower: In global power
mode (PowerSwitchingMode = 0), this bit is writ-
ten to logic 1 to turn on power to all ports
(set PortPowerStatus). In per-port power mode,
it sets PortPowerStatus only on ports whose bit
PortPowerControlMask is not set. Writing a logic
0 has no effect.

15 DRWE

On read, DeviceRemoteWakeupEnable: This bit
enables the bit ConnectStatusChange as a re-
sume event, causing a state transition from
USBSuspend to USBResume and setting the Re-
sumeDetected interrupt.

0 — ConnectStatusChange is not a remote
wake-up event

1 — ConnectStatusChange is a remote wake-
up event

On write, SetRemoteWakeupEnable: Writing
a logic 1 sets DeviceRemoveWakeupEnable.
Writing a logic 0 has no effect.

14. . . 2 - reserved

1 OCI

OverCurrentIndicator: This bit reports overcur-
rent conditions when global reporting is imple-
mented. When set, an overcurrent condition
exists. When clear, all power operations are nor-
mal. If per-port overcurrent protection is imple-
mented this bit is always logic 0.

table continued on next page. . .
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Table C.12: HcRhStatus Register (continued)

Bit Symbol Description

0 LPS

On read, LocalPowerStatus: The Root Hub does
not support the local power status feature.
Therefore, this bit is always read as logic 0.
On write, ClearGlobalPower: In global power
mode (PowerSwitchingMode = 0), this bit is writ-
ten to logic 1 to turn off power to all ports (clear
PortPowerStatus). In per-port power mode, it
clears PortPowerStatus only on ports whose bit
PortPowerControlMask is not set. Writing a logic
0 has no effect.

C.3.4 HcRhPortStatus[1:2]

The HcRhPortStatus[1:2] register is used to control and report port
events on a per-port basis. NumberDownstreamPorts represents the
number of HcRhPortStatus registers that are implemented in hard-
ware. The lower word is used to reflect the port status, whereas the
upper word reflects the status change bits.

Table C.13: HcRhPortStatus[1:2] Register

Bit Symbol Description
31. . . 21 - reserved

20 PRSC

PortResetStatusChange: This bit is set at the end
of the 10 ms port reset signal. The HCD writes a
logic 1 to clear this bit. Writing a logic 0 has no
effect.

0 — port reset is not complete

1 — port reset is complete

19 OCIC

PortOverCurrentIndicatorChange: This bit is
valid only if overcurrent conditions are reported
on a per-port basis. This bit is set when Root Hub
changes the PortOverCurrentIndicator bit. The
HCD writes a logic 1 to clear this bit. Writing a
logic 0 has no effect.

0 — no change in PortOverCurrentIndicator

1 — PortOverCurrentIndicator has changed

table continued on next page. . .
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Table C.13: HcRhPortStatus[1:2] Register (continued)

Bit Symbol Description

18 PSSC

PortSuspendStatusChange: This bit is set when
the full resume sequence has been completed.
The HCD writes a logic 1 to clear this bit. Writing
a logic 0 has no effect. This bit is also cleared
when ResetStatusChange is set.

0 — resume is not completed

1 — resume is completed

17 PESC

PortEnableStatusChange: This bit is set when
hardware events cause the PortEnableStatus
bit to be cleared. Changes from HCD writes do
not set this bit. The HCD writes a logic 1 to clear
this bit. Writing a logic 0 has no effect.

0 — no change in PortEnableStatus

1 — change in PortEnableStatus

16 CSC

ConnectStatusChange: This bit is set whenever
a connect or disconnect event occurs. The
HCD writes a logic 1 to clear this bit. Writing a
logic 0 has no effect. If CurrentConnectStatus
is cleared when a SetPortReset, SetPortEnable,
or SetPortSuspend write occurs, this bit is set to
force the driver to reevaluate the connection
status since these writes should not occur if the
port is disconnected.

0 — no change in CurrentConnectStatus

1 — change in CurrentConnectStatus

Remark: If bit DeviceRemovable[NDP] is set, this
bit is set only after a Root Hub reset to inform the
system that the device is attached.

15. . . 10 - reserved
table continued on next page. . .
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Table C.13: HcRhPortStatus[1:2] Register (continued)

Bit Symbol Description

9 LSDA

On read, LowSpeedDeviceAttached: This bit in-
dicates the speed of the device connected to
this port. When set, a low-speed device is con-
nected to this port. When clear, a full-speed
device is connected to this port. This field is
valid only when the CurrentConnectStatus is
set.

0 — full-speed device attached

1 — low-speed device attached

On write, ClearPortPower: The HCD clears bit
PortPowerStatus by writing a logic 1 to this bit.
Writing a logic 0 has no effect.

8 PPS

On read, PortPowerStatus: This bit reflects the
port power status, regardless of the type of
power switching implemented. This bit is
cleared if an overcurrent condition is detected.
The HCD sets this bit by writing SetPortPower
or SetGlobalPower. The HCD clears this bit
by writing ClearPortPower or ClearGlobalPower.
Which power control switches are enabled is
determined by PowerSwitchingMode.
In the global switching mode (PowerSwitching-
Mode = 0), only Set/ClearGlobalPower con-
trols this bit. In per-port power switching
(PowerSwitchingMode = 1), if bit PortPower-
ControlMask[NDP] for the port is set, only
Set/ClearPortPower commands are enabled. If
the mask is not set, only Set/ClearGlobalPower
commands are enabled. When port power
is disabled, CurrentConnectStatus, PortEn-
ableStatus, PortSuspendStatus, and PortReset-
Status should be reset.

0 — port power is off

1 — port power is on

On write SetPortPower: The HCD writes a logic 1
to set bit PortPowerStatus. Writing a logic 0 has
no effect.

7. . . 5 - reserved
table continued on next page. . .
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Table C.13: HcRhPortStatus[1:2] Register (continued)

Bit Symbol Description

4 PRS

On read, PortResetStatus: When this bit is set,
port reset signaling is asserted. When reset is
completed, this bit is cleared when PortReset-
StatusChange is set. This bit cannot be set if
CurrentConnectStatus is cleared.

0 — port reset signal is not active

1 — port reset signal is active

On write, SetPortReset: The HCD sets the port
reset signaling by writing a logic 1 to this bit.
Writing a logic 0 has no effect. If Current-
ConnectStatus is cleared, this write does not
set PortResetStatus but instead sets Connect-
StatusChange. This informs the driver that it at-
tempted to reset a disconnected port.

3 POCI

On read, PortOverCurrentIndicator: This bit is
valid only when the Root Hub is configured in
such a way that overcurrent conditions are re-
ported on a per-port basis. If cleared, all power
operations are normal for this port. If set, an
overcurrent condition exists on this port.

0 — no overcurrent condition

1 — overcurrent condition detected

On write, ClearSuspendStatus: The HCD writes
a logic 1 to initiate a resume. Writing a logic 0
has no effect. A resume is initiated only if Port-
SuspendStatus is set.

table continued on next page. . .
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Table C.13: HcRhPortStatus[1:2] Register (continued)

Bit Symbol Description

2 PSS

On read, PortSuspendStatus: This bit indicates
whether the port is suspended or in the resume
sequence. It is cleared when PortSuspendSta-
tusChange is set at the end of the resume inter-
val.

0 — port is not suspended

1 — port is suspended

On write, SetPortSuspend: The HCD sets bit Port-
SuspendStatus by writing a logic 1 to this bit.
Writing a logic 0 has no effect. If CurrentCon-
nectStatus is cleared, this write does not set
PortSuspendStatus; instead it sets ConnectSta-
tusChange. This informs the driver that it at-
tempted to suspend a disconnected port.

1 PES

On read,PortEnableStatus: This bit indicates
whether the port is enabled or disabled. The
Root Hub may clear this bit when an overcur-
rent condition, disconnect event, switched-off
power, or operational bus error is detected. This
change also causes PortEnabledStatusChange
to be set. The HCD sets this bit by writing Set-
PortEnable and clears it by writing ClearPortEn-
able.
This bit cannot be set when CurrentConnect-
Status is cleared. This bit is also set at the
completion of a port reset when ResetSta-
tusChange is set or port is suspended when Sus-
pendStatusChange is set.

0 — port is disabled

1 — port is enabled

On write, SetPortEnable: The HCD sets PortEn-
ableStatus by writing a logic 1. Writing a logic
0 has no effect. If CurrentConnectStatus is
cleared, this write does not set PortEnableSta-
tus, but instead sets ConnectStatusChange.
This informs the driver that it attempted to en-
able a disconnected port.

table continued on next page. . .
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Table C.13: HcRhPortStatus[1:2] Register (continued)

Bit Symbol Description

0 CCS

On read, CurrentConnectStatus: This bit reflects
the current state of the downstream port.

0 — no device connected

1 — device connected

On write, ClearPortEnable: The HCD writes a
logic 1 to this bit to clear bit PortEnableStatus.
Writing a logic 0 has no effect. CurrentCon-
nectStatus is not affected by any write.
Remark: This bit always reads logic 1 when the
attached device is non-removable (DeviceRe-
moveable[NDP]).

C.4 HC DMA and Interrupt Control Registers

C.4.1 HcHardwareConfiguration

Table C.14: HcHardwareConfiguration Register

Bit Symbol Description
15. . . 13 - reserved

12
2 Downstream
Port 15K resis-
torsel

0 — use external 15 KΩ resistors for down-
stream ports

1 — use built-in resistors for downstream
ports

11 Suspend Clk
NotStop

0 — clock can be stopped

1 — clock can not be stopped

10 Analog OC
Enable

0 — use external OC detection; digital input

1 — use on-chip OC detection; analog in-
put

9 - reserved
table continued on next page. . .
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Table C.14: HcHardwareConfiguration Register (contin-
ued)

Bit Symbol Description

8 DACK Mode
0 — normal operation; pin DACK N is used

with read and write signals

1 — reserved

7 EOTInput
Polarity

0 — active LOW

1 — active HIGH

6 DACKInput Po-
larity

0 — active LOW

1 — reserved

5 DREQOutput
Polarity

0 — active LOW

1 — active HIGH

4. . . 3 DataBus
Width[1:0]

These bits are fixed at logic 0 and logic 1 for
the ISP1160.

01 — 16 bits

Others — reserved

2 Interrupt Out-
put Polarity

0 — active LOW

1 — active HIGH

1 Interrupt Pin
Trigger

0 — interrupt is level-triggered

1 — interrupt is edge-triggered

table continued on next page. . .

148



APPENDIX C. ISP1160 INTERNAL REGISTERS

Table C.14: HcHardwareConfiguration Register (contin-
ued)

Bit Symbol Description

0 Interrupt Pin
Enable

This bit is used as pin INT’s master interrupt en-
able and should be used together with regis-
ter HcµPInterruptEnable to enable pin INT.

0 — pin INT is disabled

1 — pin INT is enabled

C.4.2 HcDMAConfiguration

Table C.15: HcDMAConfiguration Register

Bit Symbol Description
15. . . 7 - reserved

6. . . 5 BurstLen[1:0]

00 — single-cycle burst DMA

01 — 4-cycle burst DMA

10 — 8-cycle burst DMA

11 — reserved

4 DMAEnable

This bit will be reset to logic 0 when DMA transfer
is completed.

0 — DMA is terminated

1 — DMA is enabled

3 - reserved

2
DMA
Counter
Select

HcTransferCounter register must be filled with
non-zero values for DREQ to be raised after bit
DMA Enable is set.

0 — DMA counter not used. External EOT must
be used

1 — enables the DMA counter for DMA trans-
fer.

table continued on next page. . .
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Table C.15: HcDMAConfiguration Register (continued)

Bit Symbol Description

1 ITL ATL Data
Select

0 — ITL buffer RAM selected for ITL data

1 — ATL buffer RAM selected for ATL data

0 DMA Read-
Write Select

0 — read from the HC FIFO buffer RAM

1 — write to the HC FIFO buffer RAM

C.4.3 HcTransferCounter

This register holds the number of bytes of a PIO or DMA transfer. For
a PIO transfer, the number of bytes being read or written to the Iso-
chronous Transfer List (ITL) or Acknowledged Transfer List (ATL) buffer
RAM must be written into this register. For a DMA transfer, the num-
ber of bytes must be written into this register as well. However, for
this counter to be read into the DMA counter, the HCD must set bit
2 (DMACounterSelect) of the HcDMAConfiguration register (C.4.2).
The counter value for ATL must not be greater than 1000H, and for ITL
it must not be greater than 800H. When the byte count of the data
transfer reaches this value, the HC will generate an internal EOT sig-
nal to set bit 2 (AllEOTInterrupt) of the HcµPInterrupt register (C.4.4),
and also update the HcBufferStatus register (C.6.3).

Table C.16: HcTransferCounter Register

Bit Symbol Description

15. . . 0 Counter value The number of data bytes to be read to or
written from RAM.

C.4.4 HcµPInterrupt

All the bits in this register will be active on power-on reset. However,
none of the active bits will cause an interrupt on the interrupt pin (INT)
unless they are set by the respective bits in the HcµPInterruptEnable
register (C.4.5), and together with bit 0 of the HcHardwareConfigu-
ration register (C.4.1).

After this register is read, the bits that are active will not be reset,
until logic 1 is written to the bits in this register to clear it. To clear all
the enabled bits in this register, the HCD must write FFH to this register.
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Table C.17: HcµPInterrupt Register

Bit Symbol Description
15. . . 7 - reserved

6 ClkReady

0 — no event

1 — clock is ready. After a wakeup is sent, there
is a wait for clock ready. Maximum is 1 ms,
and typical is 160 µs.

5 HCSuspend

0 — no event

1 — the HC has been suspended and no
USB activity is sent from the microproces-
sor for each ms. When the microproces-
sor wants to suspend the HC, the micropro-
cessor must write to the HcControl register.
And when all downstream devices are sus-
pended, then the HC stops sending SOF;
the HC is suspended by having the HcCon-
trol register written into.

4 OPR Reg

0 — no event

1 — there are interrupts from HC side. Need to
read HcControl and HcInterrupt registers to
detect type of interrupt on the HC.

3 - reserved

2 AllEOTInt

0 — no event

1 — implies that data transfer has been com-
pleted via PIO transfer or DMA transfer. Oc-
currence of internal or external EOT will set
this bit.

table continued on next page. . .
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Table C.17: HcµPInterrupt Register (continued)

Bit Symbol Description

1 ATLInt

0 — no event

1 — implies that the microprocessor must read
ATL data from the HC. This requires that the
HcBufferStatus register must first be read.
The time for this interrupt depends on the
number of clocks bit set for USB activities in
each ms.

0 SOFITLInt

0 — no event

1 — implies that SOF indicates the 1 ms mark.
The ITL buffer that the HC has handled must
be read. To know the ITL buffer status, the
HcBufferStatus register must first be read.
This is for the microprocessor to get ISO
data to or from the HC.

C.4.5 HcµPInterruptEnable

The bits 6:0 in this register are the same as those in the HcµPInterrupt
register (C.4.4). They are used together with bit 0 of the HcHard-
wareConfiguration register (C.4.1) to enable or disable the bits in the
HcµPInterrupt register.

On power-on, all bits in this register are masked with logic 0. This
means no interrupt request output on the interrupt pin INT can be
generated. When the bit is set to logic 1, the interrupt for the bit is
not masked but enabled.

Table C.18: HcµPInterruptEnable Register

Bit Symbol Description
15. . . 7 - reserved

6 ClkReady 0 — power-up value

1 — enables ClkReady interrupt

table continued on next page. . .
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Table C.18: HcµPInterruptEnable Register (continued)

Bit Symbol Description

5
HC Sus-
pended
Enable

0 — power-up value

1 — enables HC suspended interrupt.

4 OPR Interrupt
Enable

0 — power-up value

1 — enables the 32 bit operational register’s
interrupt.

3 - reserved

2 EOT Interrupt
Enable

0 — power-up value

1 — enables the EOT interrupt which indi-
cates an end of a read/write transfer

1 ATL Interrupt
Enable

0 — power-up value

1 — enables ATL interrupt. The time for this in-
terrupt depends on the number of clock
bits set for USB activities in each ms.

0 SOF Interrupt
Enable

0 — power-up value

1 — enables the interrupt bit due to SOF
(for the microprocessor DMA to get ISO
data from the HC by first accessing the
HcDMAConfiguration register)

C.5 HC Miscellaneous Registers

C.5.1 HcChipID

This register contains the ID of the ISP1160 silicon chip. The higher byte
stands for the product name. The lower byte indicates the revision
number of the product.

153



C.6. HC BUFFER RAM CONTROL REGISTERS

Table C.19: HcChipID Register

Bit Symbol Description
15. . . 0 ChipID[15:0] ISP1160’s chip ID

C.5.2 HcScratch

This register is for the HCD to save and restore values when required.

Table C.20: HcScratch Register

Bit Symbol Description
15. . . 0 Scratch[15:0] Scratch register value

C.5.3 HcSoftwareReset

This register provides a means for software reset of the HC. To reset
the HC, the HCD must write a reset value of F6H to this register. Upon
receiving the reset value, the HC resets all the registers except its
buffer memory.

Table C.21: HcSoftwareReset Register

Bit Symbol Description

15. . . 0 Reset[15:0] Writing a reset value of F6H will cause the HC to
reset all the registers except its buffer memory.

C.6 HC Buffer RAM Control Registers

C.6.1 HcITLBufferLength

This register is written to assign the ITL buffer size in bytes: ITL0 and ITL1
are assigned the same value.

Table C.22: HcITLBufferLength Register

Bit Symbol Description
15. . . 0 ITLBufferLength[15:0] Assigns ITL buffer length

C.6.2 HcATLBufferLength

This register is written to assign the ATL buffer size in bytes.
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Table C.23: HcATLBufferLength Register

Bit Symbol Description
15. . . 0 ATLBufferLength[15:0] Assigns ATL buffer length

C.6.3 HcBufferStatus

Table C.24: HcBufferStatus Register

Bit Symbol Description
15. . . 6 - reserved

5 ATLBufferDone 0 — ATL Buffer not read by HC yet

1 — ATL Buffer read by HC

4 ITL1BufferDone 0 — ITL1 Buffer not read by HC yet

1 — ITL1 Buffer read by HC

3 ITL0BufferDone 0 — ITL0 Buffer not read by HC yet

1 — ITL0 Buffer read by HC

2 ATLBufferFull 0 — ATL Buffer is empty

1 — ATL Buffer is full

1 ITL1BufferFull 0 — ITL1 Buffer is empty

1 — ITL1 Buffer is full

0 ITL0BufferFull 0 — ITL0 Buffer is empty

1 — ITL0 Buffer is full

C.6.4 HcReadBackITL0Length

This register’s value stands for the current number of data bytes in-
side the ITL0 buffer to be read back by the microprocessor. The HCD
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must set the HcTransferCounter (C.4.3) equivalent to this value before
reading back the ITL0 buffer RAM.

Table C.25: HcReadBackITL0Length Register

Bit Symbol Description

15. . . 0 RdITL0BufferLength[15:0] The number of bytes for ITL0 data to
be read back by the microprocessor

C.6.5 HcReadBackITL1Length

This register’s value stands for the current number of data bytes in-
side the ITL1 buffer to be read back by the microprocessor. The HCD
must set the HcTransferCounter (C.4.3) equivalent to this value before
reading back the ITL1 buffer RAM.

Table C.26: HcReadBackITL1Length Register

Bit Symbol Description

15. . . 0 RdITL1BufferLength[15:0] The number of bytes for ITL1 data to
be read back by the microprocessor

C.6.6 HcITLBufferPort

This is the ITL buffer RAM read/write port. The bits 15:8 contain the
data byte that comes from the ITL buffer RAM’s even address. The
bits 7:0 contain the data byte that comes from the ITL buffer RAM’s
odd address.

Table C.27: HcITLBufferPort Register

Bit Symbol Description
15. . . 0 DataWord[15:0] Read/Write ITL buffer RAM’s two data bytes

C.6.7 HcATLBufferPort

This is the ATL buffer RAM read/write port. The bits 15:8 contain the
data byte that comes from the ATL buffer RAM’s odd address. The
bits 7:0 contain the data byte that comes from the ATL buffer RAM’s
even address.

156



APPENDIX C. ISP1160 INTERNAL REGISTERS

Table C.28: HcATLBufferPort Register

Bit Symbol Description
15. . . 0 DataWord[15:0] Read/Write ATL buffer RAM’s two data bytes
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