

Implementation of high-speed

compressor using field

programmable gate array

Konstantinos Papadopoulos

2

Microprocessor & Hardware Laboratory

Implementation of high-speed compressor using field

programmable gate array

(FPGA)

Konstantinos Papadopoulos

Supervisor: Assistant Professor Ioannis Papaefstathiou

Committee:

 Assistant Professor Ioannis Papaefstathiou

 Associate Professor Dionyssios Pneymatikatos

 Professor Apostolos Dollas

Technical University of Crete, Greece

January 2008

3

Abstract

Although current networks protocols can potentially support many data types (text,

graphics, audio, and video), multimedia computing‟s future is tied to network

bandwidth and quality-of-service issues. For the foreseeable future, network

connections will range from low bandwidth (infrared, cellular modems, and Integrated

Services Digital Network, or ISDN) to high bandwidth (such as gigabit networks).

Advances in data compression will alleviate bandwidth problems in low-bandwidth

networks by packing more data into fewer packets, effectively increasing bandwidth.

Moreover, because network traffic grows ever busier, creating an insatiable demand

for raw bandwidth, compression techniques are also important for high-bandwidth

networks.

Nowadays, using contemporary low-cost reprogrammable field-programmable gate

array (FPGA) technology enables us to implement compressors/decompressors which

are capable of switching packets at speeds up to 10 Gb/sec. The processing in these

switches comprises mainly of table lookups. The actual implementation of the

majority of data compression algorithms consists mainly of table lookups, as well.

Thus, the implementation complexity of a network compressor/decompressor is very

similar to that of a network switch/router. As a result, it is claimed that devices that

can compress network data at speeds up to a few Gb/sec can probably be

implemented. These chips can be connected to the routers/switches and considerably

reduce the bandwidth consumed. They can be applied whenever the bandwidth

needed is more than the bandwidth provided, or whenever the network user is charged

according to the network bandwidth used.

The purpose of this thesis is to implement the Titan-R, a single-chip IPcomp device

for multi-gigabit networks, using field-programmable gate array (FPGA) technology.

This chip compresses streams at speeds of a few Gbps, while introducing very low

compression ratio. Moreover, the Titan-R operates transparently that is, after

compression, the transmitted network packets have the same format as the

unencrypted packets), making it easy to integrate in existing network infrastructures.

Using a sophisticated compression algorithm, the Titan-R increased the effective

bandwidth of tested IP networks from 48% to 250%. The Titan-R supports up to

32,000 different dictionaries, a feature that significantly increases the compression

gain achieved when this device is connected to real networks. In terms of bandwidth

supported, the Titan-R architecture is more efficient than existing approaches (see the

“Related work” chapter) because it‟s the only one that uses a deep pipeline (256

stages) along with massive parallelism at each pipeline stage, and memory repetition

for higher memory throughput.

4

Acknowledgements

First of all, I would like to thank my supervisor, Assistant Professor Papaefstathiou,

for the excellent working atmosphere and the trust and freedom he granted me for my

research. Furthermore, I am grateful to Associate Professor Pneymatikatos and

Professor Dollas who agreed to evaluate this thesis. I am particularly thankful to Mr.

Kimionis who obtained all I needed for my work.

I would also like to mention all my colleagues in Microprocessors and Hardware

Laboratory (MHL) who have greatly helped me to accomplish this work. I am

eternally grateful to PhD student Dimitrios Meintanis for his great help in learning the

tools needed in Linux environment and Georgios Mplemenos for his help during the

working period of this work.

I would like to dedicate this work to my mother, who left us too early, and my family

for their ever-lasting support of my work and ideas and for getting me to the stage

where I could attempt it. Finally, I would also like to express my gratitude to Magda

for putting up with me.

5

Contents

Abstract 3

Acknowledgements 4

Contents 5

List of Figures 7

List of Tables 9

1 Introduction 11

 1.1 Motivation 11

 1.2 Scientific Contribution 12

 1.3 Structure of the Thesis 14

2 Related work 15

 2.1 Introduction 15

2.2 Background 16

2.3 Algorithm Description 19

2.4 System Architecture 20

 2.4.1 Compression Architecture 21

 2.4.2 Decompression Architecture 25

2.5 Hardware Implementation 28

 2.5.1 Register bank description 30

 2.5.2 X-MatchPRO threshold value 31

 2.5.3 X-MatchPRO latency 32

 2.5.4 X-MatchPRO operational modes 32

 2.5.4.1 Compression mode 32

 2.5.4.2 Decompression mode 34

 2.5.5 X-MatchPRO Error conditions 35

2.5.5.1 Output Buffer Coding Overflow and Output Buffer

Decoding Overflow 35

2.5.5.2 CRC Error 35

3 System Architecture 37

 3.1 Compression Algorithm 37

3.1.1 LZ77 Coding 38

 3.2 Implementations Details 40

 3.3 Format of Compressed Data 40

 3.4 System Interconnections 41

3.5 Core Hardware Architecture 42

 3.5.1 Compression Unit 43

 3.5.2 Decompression Unit 46

6

4 Hardware Implementation 49

4.1 Memory bank 49

4.2 Crossbar 50

4.3 Pipeline Stage Comparator 52

4.3.1 16-Byte Comparator 53

 4.3.1.1 Byte Comparator 54

4.3.2 Find Longest Match Circuit 56

4.3.3 Concatenation Circuit 57

4.4 Byte MUX 2-1 x 16 57

4.5 Longest Match Circuit (1 out of 4) 59

4.6 Longest Match (1 out of 2) 61

4.7 Pipeline Registers 61

4.8 Finite State Machine (FSM) 63

4.9 Pipeline Stage 64

4.10 Compressor 66

4.11 Optimizations 69

4.11.1 Optimization 1 – Pipelined FLM (16 pipeline stages) 69

4.11.2 Optimization 2 – Pipelined FLM (8 pipeline stages) 69

5 Performance, Conclusions & Future Work 73

 5.1 Performance 73

 5.1.1 X-MatchPRO Performance 73

 5.1.2 Titan II Performance 76

 5.1.2.1 Performance versus hardware cost 77

 5.1.2.2 Silicon area versus compression gain 77

 5.1.2.3 Silicon area versus throughput 78

 5.1.3 Titan-R Performance 79

 5.2 Conclusions 86

 5.3 Future Work 87

Bibliography 89

7

List of Figures

2.1 X-MatchPRO example 20

2.2 Compression architecture 21

2.3 CAM-Based dictionary architecture 22

2.4 Out of date adaptation (ODA) example 23

2.5 Adaptation logic architecture 24

2.6 Decompression architecture 26

2.7 X-MatchPRO plus PCI interface architecture 29

2.8 Register format 30

2.9 Compression operation 33

2.10 Decompression operation 34

3.1 Pseudo-code for LZ77 39

3.2 A typical run of the LZ77 compressor 39

3.3 A typical run of the LZ77 decompressor 40

3.4 Compressed Cell Format 41

3.5 System Interconnections 41

3.6 Block Diagram of the system 42

3.7 Compression Unit Block Diagram 43

3.8 Block diagram of a Pipeline Stage 44

3.9 Overview of the compression task 45

3.10 Timing diagram of a pipeline stage 46

3.11 Decompression Unit Block Diagram 47

4.1 Memory Bank Interface 49

4.2 Crossbar Interface 50

4.3 Crossbar Architecture 51

4.4 Pipeline Stage Comparator Interface 52

4.5 Pipeline Stage Comparator Architecture 53

4.6 16-Byte Comparator Interface 53

4.7 16-Byte Comparator Architecture 54

4.8 Byte Comparator Interface 55

4.9 Byte Comparator Architecture 55

4.10 Pseudo-code for counting the longest match 56

4.11 Find Longest Match Circuit Interface 57

4.12 Structure of final result 57

4.13 Byte MUX 2-1 x 16 Interface 58

4.14 Byte MUX 2-1 x 16 Architecture 59

4.15 Longest Match Circuit Interface 60

4.16 Longest Match Circuit Architecture 60

4.17 Longest Match Interface 61

4.18 Pipeline Register Interface 62

4.19 Pipeline Stage procedure 63

4.20 FSM scheme 63

4.21 Block diagram of a Pipeline stage 65

4.22 Pipeline Stage Interface 65

8

4.23 Compressor Architecture 67

4.24 Compressor Interface 68

4.25 Compressor Architecture (with device utilization constraint) 69

4.26 FLM Pipeline Stage Architecture 70

4.27 FSM scheme (optimized system) 70

4.28 Pipeline Stage procedure (optimized system) 71

5.1 Compression performance on the memory data set 74

5.2 Compression performance on the disc data set 74

5.3 Results of using a 0.18−μm technology against the worst-case compression

gain: die area in mm
2
 (a) and gate count (b). 78

5.4 Gate and 1-bit SRAM count against device throughput. 79

5.5 Clock Frequency Graph 85

5.6 Throughput Graph 85

9

List of Tables

2.1 Register access description 31

4.1 Memory Bank pinout 50

4.2 Crossbar pinout 50

4.3 Output combinations according the No of comparison 51

4.4 Pipeline Stage Comparator pinout 52

4.5 16-Byte Comparator pinout 54

4.6 Byte Comparator pinout 55

4.7 Find Longest Match Circuit pinout 56

4.8 Byte MUX 2-1 x 16 pinout 58

4.9 Longest Match Circuit pinout 60

4.10 Longest Match pinout 61

4.11 Pipeline Register pinout 62

4.12 Pipeline Registers used in each Pipeline Stage 62

4.13 Signals controlled by FSM 64

4.14 Pipeline Stage pinout 66

4.15 Compressor Interface 68

5.1 X-MatchPROv4 Performance Summary 75

5.2 Adders/Subtractors Logic Cells Utilization 80

5.3 Registers Logic Cells Utilization 80

5.4 Latches Logic Cells Utilization 80

5.5 Comparators Logic Cells Utilization 81

5.6 Multiplexers Logic Cells Utilization 81

5.7 Xors Logic Cells Utilization 81

5.8 Slice Logic Utilization 81

5.9 Slice Logic Distribution 82

5.10 I/O Utilization 82

5.11 Specific Feature Utilization 82

5.12 Timing Summary (Speed Grade: -2) 82

5.13 Titan-R Performance Summary 83

5.14 Devices with less pipeline stages Performance Summary

(default design) 84

5.15 Devices with less pipeline stages Performance Summary

(optimized design) 84

5.16 Clock Frequency and Throughput measurement results 85

10

11

1

Introduction

This initial chapter provides the motivation for conducting research in high

performance data compression, summarizes the scientific contribution of the work,

and describes the structure of this thesis.

1.1 Motivation

Network data compression has been used since the first congestion problems arose

and high bandwidth applications were developed. In particular, the shorter

representations of some data patterns are already an integral part of digital

communications; everything, from the telephone network to the modems used on the

PCs, already uses compression to achieve the speeds the customers are accustomed to.

The majority of the existing general network compression schemes have some

common characteristics. They can compress traffic at speeds of up to 25 Mb/sec using

a combination of hardware and software, the data after compression and

decompression is exactly the same as the original one (lossless compression), they use

a variation of the same basic algorithm and are performed either by a specific piece of

software or by a very simple hardware device. The majority of these schemes are also

applied to data departing to/arriving from the network gateway, and to either circuit

networks or networks that carry packets of a few hundred bytes length. They are also

very effective when applied to text or binary data, but cannot compress real-time data

like video and audio, since these are always compressed at the source by the

application itself. Even though both the current state-of-the-art and the next

generation networks will carry all kinds of data, the text and binary files will always

comprise a large part of the overall traffic.

Nowadays, contemporary low-cost reprogrammable field-programmable gate array

(FPGA) technology enables us to implement compressors/decompressors which are

capable of transmitting packets at speeds up to 10 Gb/sec. The processing in these

switches comprises mainly of table lookups. The actual implementation of the

majority of data compression algorithms consists mainly of table lookups, as well.

Thus, the implementation complexity of a network compressor/decompressor is very

similar to that of a network switch/router. As a result, it is claimed that devices that

can compress network data at speeds up to a few Gb/sec can probably be

implemented. These chips can be connected to the routers/switches and considerably

12

reduce the bandwidth consumed. They can be applied whenever the bandwidth

needed is more than the bandwidth provided, or whenever the network user is charged

according to the network bandwidth used. The motivation of this work was based on

the fact that compression – as mentioned earlier – has been proved very effective

when applied to real network data and numerous devices that compress the data sent

over low-bandwidth links have been designed and are widely used. Nowadays,

congestion problems in high speed networks have started to arise and they will

probably be enhanced in the future. Since compression is a way of reducing the

bandwidth used, it would ease the stress on these congested networks. But in order for

this compression to be effective, a mechanism, that would decide the right number of

connections that a network using compression can carry, should also be deployed.

This mechanism should be aware of the fact that the network uses a certain

compression scheme, so as to increase the number of connections admitted

accordingly.

1.2 Scientific Contribution

Though current network can potentially support many different types of data (i.e. text,

images, audio, video and graphics), the future of multimedia computing is tied to

issues of network bandwidth and Quality of Service (QoS). The outlook is that

potential users of networks will, for the foreseeable future, be diverse: from users with

access to low-bandwidth connections (i.e. infrared, cellular modems, ISDN
(1)

), to

users with access to very high-bandwidth connections (e.g. Gigabit networks).

Advances in data compression will alleviate bandwidth problems in low-bandwidth

networks by effectively increasing bandwidth. Moreover, based on technology‟s

experience with the insatiable demand for raw computing speed (since applications

seem to grow at an astounding rate), compression techniques would be important for

high-bandwidth networks, as well.

In particular, in the case of high bandwidth networks, the application of Moore‟s law

to the network integrated circuits means systems on a chip with the ability to process

tens of millions of packets/second, at even the highest wire speed, would be possible.

Along with Dense Wavelength Division Multiplexing (DWDM), which currently

doubles the amount of fiber capacity available every year, this implies that all the

kinds of network data will eventually go to packets, including backbone trunks,

backbone switches, local voice switches, local data switches, business access lines,

residential access lines, broadcast TV and even consumer electronics. So, even though

“the network bandwidth is becoming cheaper and more readily available, we seem to

find new and innovative ways to chew it up”. As a result, compression desirable for

these next generation high bandwidth networks, as well.

The compression algorithms generally operate by identifying repeating patterns in

data and then replacing repetitive sequences with a token or reference to an earlier

distance of the same sequence. From a simple perspective, compression is designed to

reduce data to its most basic essence for efficient transmission and raise channel

entropy. A major characteristic of the state-of-the-art networks is that they carry data

from applications that have widely varying traffic characteristics –from real time

13

video clips to batch backup files. Thus, in order for a network to accommodate these

applications, it must provide the appropriate Quality of Service (QoS) to each one of

them. The most common approach today to delivering QoS is simply to provide

additional bandwidth, or, in other words, to increase the useful bandwidth. Therefore,

a sophisticated network resource allocation software which ensures that given QoS

criteria are satisfied (even when the network works at or near capacity) will ease the

strain on a modern network.

The thesis of this work is that a suitable compression framework can make certain

types of packet networks more effective.

This framework comprises of:

 Hardware devices, software applications or a combination of the two to

perform the actual compression. These devices/applications compress the

traffic in a transparent way so that the intermediate routing devices can still be

regular ones. This can be done in two ways: Either (a) with a

compression/decompression device at each end of the link which would make

the data appearing on the attached routing devices to be the original one or (b)

the data would be compressed and then carried over ordinary packets which

are routed/switched by regular devices all the way to the decompression

device. These devices/applications are also capable of compressing the

network data in an efficient way and at the speed of the network links.

 Interface modules for configuring these devices/applications according to the

network specific characteristics. These are powerful, yet user friendly and fast

for the network manager to configure the compression scheme, based on the

rapidly changing features of the network data.

 A network admission control strategy for deciding how the network resources

are shared between the network users. If this strategy is effective, the network

can carry more data while maintaining the Quality of Service (QoS) promised

to the users. If this control scheme does not take into account the reduction in

the network data caused by the compression devices, the increase in the

amount of traffic carried over the network will be minimal.

This thesis describes a compression framework argued to considerably increase the

useful bandwidth and the number of connections admitted to a high-speed packet

network. Its effectiveness is evaluated by implementation and by detailed simulation

using data taken from real networks. In addition, this dissertation presents a low-

complexity hardware compression device that can be used whenever the cost of the

compression is a critical issue.

(1) ISDN: Integrated Services Digital Network

14

1.3 Structure of the Thesis

The remainder of this thesis is organized as follows:

 Chapter 2 presents the related work in lossless hardware-based data

compression and, more especially, analyzes the X-MatchPRO

compression/decompression architecture.

 Chapter 3 describes the main architecture of the system which leads us to high

performance data compression.

 Chapter 4 points out its hardware implementation using low-cost

reprogrammable field-programmable gate array (FPGA).

 Finally, chapter 5 provides results derived from the measurements,

conclusions and future work on data compression.

15

2

Related work

This chapter presents the past work in high performance data compression.

Especially, it presents the X-MatchPRO high-speed lossless
(2)

 data compression

algorithm and its hardware implementation, which enables data independent

throughputs of 1.6 Gbit/s compression and decompression using contemporary low-

cost reprogrammable field-programmable gate array technology. A full-duplex

implementation is presented that allows a combined compression and decompression

performance of 3.2 Gbit/s. The features of the compression algorithm and architecture

that have enabled the throughputs are described in detail. X-MatchPRO is a fully

synchronous design proven in silicon specially targeted to improve the performance

of Gbit/s storage and communication applications.

(2) The term „lossless‟ means that the original data can be exactly recreated after a decompression operation, and should

not be confused with audio and video compression systems (such as JPEG and MPEG) which are lossy and hence

only recreate an approximation of the original data.

2.1 Introduction

Lossless data compression, where the original data is reconstructed exactly after

decompression, has been accepted as a tool that can bring important benefits to a

computing system. The most obvious benefit of data compression is a reduction in the

volume of data which must be stored. This is important where the storage media itself

is costly (such as memory) or other parameters, such as power consumption, weight

or physical volume, are critical to product feasibility. Using data compression reduces

the total storage requirement, thus effecting a cost saving.

There are also two other positive effects that data compression brings. The first of

these is a reduction in the bandwidth required to transmit a given amount of data. Less

data must be transmitted in compressed form, and hence less band width is required.

This can affect a cost saving in cabling operations, where a lower bandwidth link will

be sufficient to meet demand. The second effect is that given a fixed bandwidth, the

total time required to transmit compressed data is less than for uncompressed one.

This can lead to a performance benefit, as the bandwidth of a link appears greater

when transmitting compressed data and hence more data can be transmitted in a given

amount of time.

Data compression applications have been increasing over the past years according to a

combination of pressure for more bandwidth allied and to the need to improve storage

16

capacity. Lossless data compression has been successfully applied to storage systems

(tapes, hard disk drives, solid state storage, file servers) and communication networks

(LAN, WAN, wireless). One of the common factors for successful integration of

lossless data compression in these applications is a high throughput so the

compression/decompression processes do not slow the original system down. High

performance lossless data compression has been researched as the means to achieve

the high throughput target.

Data compression is not being used to its full advantage in systems that operate at

bandwidths of over 1 Gbit/s due to performance limitations encountered in the data

compression hardware. This chapter describes the X-MatchPRO method and

architecture that uses a CAM-based dictionary where multiple symbols are processed

per cycle to deliver the required performance so as to avoid becoming a bottleneck in

a system operating at a gigabit per second bandwidth.

The remainder of this chapter is organized as follows:

 Sector 2.2 presents a review of the area of lossless hardware-based data

compression.

 Sector 2.3 describes the characteristics of the X-MatchPRO algorithm.

 Sector 2.4 analyzes the system compression/decompression architecture.

 Finally, sector 2.5 points out the hardware implementation.

2.2 Background

A useful classification of lossless data compression systems identifies two main

components: a model and a coder. The purpose of the model is to identify where the

redundancy is located in the input data and signal repetitive data sequences to the

coder. The coder uses the information obtained from the model to reduce the input

data for shorter codewords and to produce a compressed output. Compression is

obtained whenever the ratio of output to input bits is less than 1. Although some

coding methods map better than others depending on the chosen model, many

different combinations between model and coder are possible.

Modeling can be done mainly in two different ways: statistical or dictionary. Both

methods have found their way to hardware and software implementations of lossless

data compression systems.

Statistical Methods: Statistical methods show a cleaner separation between model and

coder than dictionary methods. Statistical modeling is based on assigning values to

events depending on their probability. The higher the value, the higher the probability.

The accuracy with which this frequency distribution reflects reality determines the

efficiency of the model. The best lossless compression figures reported in the

literature correspond to software based statistical methods, like Prediction by Partial

Matching (PPM) and Dynamic Markov Compression (DMC). These methods are

based on variable order Markov modeling, where predictions are done based on the

symbols that precede the current symbol. Statistical methods in hardware are

restricted to simple higher order modeling using binary alphabets that limits speed, or

simple multisymbol alphabets using zeroth-order models that limits compression.

Binary alphabets limit speed because only a few bits (typically a single bit) are

processed in each cycle while zeroth-order models limit compression because they

17

can only provide an inexact representation of the statistical properties of the data

source. Coding is typically performed with methods like Huffman and arithmetic

coding, the latter being preferred because its efficiency can be made arbitrarily close

to the entropy or information content of the model by controlling its precision and

therefore is optimal for any model. A few statistical data compressors have been

reported in the literature. A zeroth-order model associated with an arithmetic coding

is described by Boo et al. for coding of multilevel images. The probabilities in the

model are stored in cumulative format using reference probabilities to simplify the

update process. The arithmetic coding process has been simplified by truncating the

multiplier. An implementation of a parallel binary arithmetic coder is done by Jiang

using an IBM Q-coder as the building block. The Q-coder is a seventh-order binary

Markov model associated with a corresponding binary arithmetic coder. The parallel

implementation processes 4 bits in parallel and since there are only 16 possible input

combinations. Parallel decoding is also possible. The same technique is used to obtain

a parallel implementation of a multi-alphabet arithmetic coder associated with a byte-

based zeroth-order model. The system processes 8 B at a time, but parallel decoding is

in this case unfeasible because the number of possible input combinations is 256
8
,

hence, the complexity of the hardware is too high. The work presented by the same

author in “Novel design of arithmetic coding for data compression” is the

implementation of a byte-based zeroth-order model associated with a multi-alphabet

arithmetic coder. Kuang et al. present another high-order binary model that describes

a tenth-order Markov model with associated binary arithmetic coder. In this case, such

the IBM Q-coder, the high-order binary Markov modeling uses fixed-order models

and not variable-order ones such as PPM, because it is always possible to predict both

symbols in a binary alphabet. The chip has been implemented in a 0.8 um and clocks

at 25 MHz. The compression ratio is in the order of 0.5, while speed is data dependent

but typically around 3 Mbit/s. Hsieh and Wei describe a byte-based zeroth-order

model associated to a multi-alphabet arithmetic coder for video compression. A

similar technique to “A VLSI architecture for arithmetic coding of multilevel images”

is used to store the frequency model using some frequency counts as base and others

as offsets from the base. This technique simplifies model adaptation. The chip

described by Mukherjee et al. does not use arithmetic coding but three-based code,

but others exist. The code is static and it does not adapt with changes in the incoming

data source. Since it is not hardwired but mapped to a memory device, it can be

changed to suit the application. A compression ratio of 0.5 processing 8-bit symbols

results in each symbol to be processed in approximately two memory cycles. They

report a compression performance of 95.2 Mb/s for compression and 60.6 Mb/s for

decompression in a 2-um SCMOS technology with a clocking frequency of 83.3

MHz. An adaptive Huffman code implementation in hardware is presented in “Design

and hardware architectures for dynamic Huffman coding”. This design is based on

content addressable memory (CAM) modules to speed up the tree adaptation process

and achieves a throughput of almost 1 bit/cycle. The model is again a zeroth-order

one but no details are available for the hardware implementation.

Dictionary methods: Dictionary methods try to replace a symbol or group of symbols

by a dictionary location code. The modeling stage is given extra importance while

coding is simplified. Some dictionary-based techniques use simple uniform binary

codes to process the information supplied by the modeler. Both software and

hardware based dictionary models are very popular, achieving good throughput and

competitive compression. Utilities like Pkzip and ARJ in software, or hardware

18

algorithms like ALDC developed by IBM, by STAC/Hifn, illustrate this situation.

These four examples are Lempel-Ziv-1 (LZ1) derivatives. The ALDC chip is

implemented in a 0.8-um CMOS technology and clocks at 40 MHz to obtain a

throughput of 320 Mb/s. The AHA implementation achieves 320 Mb/s at a 40 MHz

operation and it is implemented in a 0.5-um CMOS technology. The STAC/Hifn

device has been implemented in a 0.35-um CMOS technology. It clocks at 80 MHz

with a throughput of 640 Mb/s. The Hifn device is also a full-duplex architecture

meaning that it can compress and decompress simultaneously. Both of these chips use

CAM memory to store the dictionary and enable parallel searching and adaptation.

Surk presents a processing element with (PE)-based architecture for the LZ1

algorithm. Each PE compares the incoming input symbol with the symbol it stores in

one cycle and shifts the symbol to its neighbor. The data input rate is constant. Post-

layout simulation indicates a performance of 700 Mb/s in a 0.5-um CMOS

technology. The basic symbol is 7-bits wide so the compressor is only suitable for the

compression of ASCII coded model. Jung and Burleson describe another LZ1

implementation for the optimization of wireless local area networks. The architecture

includes multichannel support being able to switch between different dictionaries

depending on the communication channel being compressed. This improves

compression since each channel has its own dictionary but there is an overhead

associated with the multiplexing. A throughput of 50 Mb/s is reported based on 1.2-

um CMOS technology using a clock frequency of 100 MHz. Nusinov and Pasco also

present an LZ1 derivative for multichannel compression. The different dictionaries

are stored in RAM memory externally and the appropriate one is uploaded in internal

CAM. The chip clocks at 20 MHz and has a throughput of 80 Mb/s.

Lempel-Liv-2 (LZ2) algorithms have not become as widely used as LZ1 ones. The

UNIX utility „compress‟ uses LZ2 and the data compression Lempel-Ziv (DCLZ)

family of compressors initially invented by Hewlett-Packard and currently being

developed by AHA, also use LZ2 derivatives. The DCLZ family of devices clock at

40 MHz for a throughput of 160 Mb/s based on a 0.5-um CMOS technology. Bunton

and Borriello present another LZ2 implementation that improves the DCLZ. This new

algorithm uses a similar dictionary structure to DCLZ but it offers a more advanced

dictionary maintenance mechanism where a tag is attached to each dictionary location

to identify which node should be eliminated once the dictionary becomes full. The

design has been implemented in a 2-um CMOS technology with a throughput of 160

Mb/s.

Other work that cannot be classified in the range of statistical or dictionary coding

includes the genetic algorithms (GA) developed by the DCP Research Corp. in the

DCP816 chip. This chip is implemented in a 1-um CMOS technology and has a

throughput of 1.68 Mb/s clocking at 40 MHz. It supports multiple channels of

compression/decompression and uses 512 kB of external RAM per channel.

Sakanashi et al. present a device for printer image compression also based on a

genetic algorithm that is able to select the best group of pixels to be used as context to

predict the next input pixel depending on the characteristics of the image being

compressed. The compressing method is lossless. It is associated to reconfigurable

hardware such as a field programmable gate array (FPGA) plus a standard IBM QM-

coder, a derivative from the Q-coder, to perform the compression itself. The X-

MatchPRO family of devices belongs to the category of dictionary-based compressors

but they are not LZ derivatives. X-MatchPRO originates from previous research and

advances in FPGA technology. The flexibility provided by using this technology is of

19

great interest since the chip can be adapted to the requirements of a particular

application easily. The objective is to use programmable hardware able to obtain good

compression ratios and still maintain a high throughput so that the

compression/decompression processes do not slow the original system down.

2.3 Algorithm Description

The X-MatchPRO algorithm uses a fixed-width dictionary of previously seen data and

attempts to match or partially match the current data element with an entry in the

dictionary. Each entry is 4 B (tuple) wide and several types of matches are possible

where all or some of the bytes at different positions within the tuple match. Those

bytes that do not match are transmitted as literals. This partial match concept gives the

name to the procedure –the X referring to “don‟t care”. At least 2 B have to match and

when no valid match is generated a miss is codified adding a single bit to the four-

byte tuple. The dictionary is maintained using a move to front (MTF) strategy

whereby a new tuple is placed at the front of the dictionary while the rest move down

one position. When the dictionary becomes full the tuple placed in the last position is

discarded leaving space for a new one. X-MatchPRO reserves one location in the

dictionary to code internal runs of full matches at location zero. Since the MTF

strategy forces anything that repeats to be stored at location zero (top of dictionary),

this run-length-internal (RLI) technique is used to efficiently code any 32-bit

repeating pattern.

The coding function for a match is required to code several fields as follows.

A zero followed by:

If normal code:

1. Match location: It uses the binary code associated to the matching location.

2. Match type: That indicates which bytes of the incoming tuple have matched.

This is codified using a static Huffman code based on the statistics obtained

through extensive simulation.

3. Any extra characters that did not match transmitted in literal form.

If RLI code:

1. RLI location: The last address in the dictionary is reserved to code RLI events.

2. Run length: 8 bits are used to indicate how many 32-bit repeating patterns

have been observed. The maximum run length that it is possible to process in a

single code is therefore 225.

The coding function for a miss has two fields as follows:

A one followed by:

1. The 4 B in literal form.

A data tuple (4 B) is added to the front of the dictionary while the rest move one

position down if a full match has not occurred. The MTF technique is only applied

when dealing with full matches. In this case, the tuples from the first location until the

location previous to the matching tuple move down one location, while the matching

tuple is placed at the front of the dictionary.

20

Figure 2.1. X-MatchPRO example

The algorithm is illustrated with an example in Figure 2.1. The example is based on a

small dictionary of only four locations, one of which is reserved to code RLI events.

Each dictionary location has a different address. The adaptation vector column defines

how the dictionary adapts for the next cycle so that a 1 means load data from north

neighboring location, while a 0 means keep current data. Each cycle in the figure

corresponds to a different clock cycle. The search data in cycle 1 of Figure 2.1

generates a full match at location 1 and the corresponding output is generated together

with a new adaptation vector that will shift the dictionary for cycle 2. The search data

in cycle 2 cannot be found in the dictionary so a miss is generated with the four

missing bytes being added to the output in literal form. The cycle 3 search generates a

partial match where the two first bytes of the search tuple are found in location two.

The match type 3 signals this matching condition and the two missing bytes are added

to the output in literal form. Cycle 4 generates a new full match this time at location 2.

An RLI coding event is inactive in cycles 5, 6 and 7. The RLI output is generated at

cycle 8 when the run stops with a length of 3. The RLI counter only increments when

the search data is present at location 0. The code generated at cycle 5 is removed from

the output when the RLI counter exceeds 1 because cycle 5 would be coded as part of

the run length. This output code would have been needed if the RLI counter had

remained with a count of 1 indicating a single full match at location 0 and not a valid

run length.

2.4 System Architecture

X-MatchPRO uses a simple coprocessor style interface to communicate with the rest

of the system. Compression and decompression commands are issued through a

common 16-bit control data port. A 3-bit address is used to access the internal

21

registers that store the commands plus information related to compressed and

uncompressed block sizes for reading or writing. A total of six registers form the

register bank. Three registers are used to control the compression channel and the

other three for the decompression one. The first bit. In the address line indicates if the

read/write operation accesses compression or decompression registers. The chip is

designed to compress any block size ranging from 8 B to 32 kB. A decompression

operation can be requested in the middle of a compression operation and vice versa.

2.4.1 Compression Architecture

The compression architecture is based around a block of CAM to realize the

dictionary. This is necessary since the search operation must be done in parallel in all

the entries in the dictionary to allow high- and data-independent throughput. The

length of the CAM varies with three possible values of 16, 32, or 64 tuples trading

complexity for compression. Dictionary size is variable so as to adapt algorithm

complexity to the resources available in the selected FPGA. The number of tuples

present in the dictionary has an important effect on compression. In principle, the

larger the dictionary the higher the probability of having a match and improving

compression. On the other hand, a bigger dictionary uses more bits to code its

locations degrading compression when processing small data blocks that only use a

fraction of the dictionary length available. The width of the CAM is fixed with 4

B/word and its columns can be configured as selectable shift-registers to implement

the move to front adaptation policy.

Figure 2.2 shows the compression architecture. There are three major components in

the compression architecture corresponding to compression model, coder and packer.

It also shows the location of the pipeline registers used to reduce the clock period of

the design. There are a total of five levels of registers from input to output and the

design supports incremental transmission, which means that transmission of

compressed data present in the output buffers can start before the whole data block is

compressed. These two features help to maintain the latency of the design to a

minimum.

Figure 2.2. Compression architecture

22

Figure 2.3. CAM-Based dictionary architecture

1. The Compression Model Comprises:

a. Dictionary: CAM-based dictionary with 16, 32 or 64 tuples. The n-

tuple dictionary is formed by a total of n x 32 CAM cells. Each cell

stores one bit of a data tuple and it can maintain its current data, or

load the data present in the dictionary using one XOR gate to do the

comparison of each input bit plus (log2(dictionary width)) 2-input

AND gates tree to obtain a single comparison bit per dictionary

position. The delay of the search operation, although in principle is

independent of dictionary length, in practice the high fanouts and long

wires of large dictionaries degrade its speed considerably. An

adaptation vector named „move‟ in Figure 2.3 and whose length equals

the dictionary length defines which cells keep its current data and

which cells load data from its north-neighboring cell.

b. Move generation logic: The adaptation vector „move‟ is generated by

the movement generation logic using the results of the search operation

present in the „match‟ vector of Figure 2.3. The movement generation

logic function is to propagate up a match position so all the dictionary

cells located over the match position and the match position itself load

the data of their north neighboring cells, while all the dictionary cells

located down the match position keep the current data. New data is

always inserted at the top of the dictionary so when a data element is

found in the dictionary it is promoted from its current position to the

top of the dictionary in a single cycle. The propagation delay of the

movement generation logic is O(log2(dictionary length)) 2-input OR

gates. Data flows toward the bottom of the dictionary as it grows older.

The oldest data element is always located at the bottom of the

dictionary and this is the one evicted from the list when room is

required for a data element new to a full dictionary.

c. Out of Date Adaptation (ODA) logic: ODA logic forces the dictionary

to adapt with previous match information and breaks the critical path

in compression improving speed. In principle, the adaptation vector

„move‟ must be generated using the results of the current search

operation available in the „match‟ vector before the next cycle can

23

start. This search and adaptation operation forms a critical feedback

loop specially with large dictionaries because it depends on dictionary

size with O(1 + log2(dictionary width + log2(dictionary length))) levels

of logic. The search operation becomes critical since the fanout of the

search register is directly proportional to dictionary length. It is not

possible to add a pipeline register in the feedback loop without

affecting algorithm functionality so to further increase the speed of the

circuit the algorithm is modified introducing the ODA mechanism.

ODA implies that adaptation at time t + 2 takes place using the patch

results generated by the previously process data at time t and not the

one at time t + 1. This technique breaks the fundamental feedback loop

by adding a register between the search and adaptation circuitry. The

danger is that dictionary efficiency could be lost if the ODA technique

duplicates the same data in different positions in the dictionary. Prior

to adding a register between the search and adaptation operations, the

adaptation vector at time t provides information to reorder the

dictionary at time t + 1 and makes sure that data words are unique in

the dictionary. In ODA the adaptation vector at time t is not effective

until time t + 2 so adaptation at time t + 1 could insert a data element at

the top of the dictionary that already exists in some other dictionary

location. After a few cycles the same data could be stored in multiple

dictionary positions and dictionary efficiency would be lost degrading

compression. The way to avoid this is by forcing the current adaptation

vector to adapt not only the dictionary as before but also the next

adaptation vector.

Figure 2.4. Out of date adaptation (ODA) example

24

Figure 2.5. Adaptation logic architecture

Figure 2.4 illustrates this process using a small dictionary of only four

positions in length and 4 B (tuple) in width. Every cycle of Figure 2.4

corresponds to a different cycle. The multiple full-match events in

cycles 2 and 5 show how the search data could be found

simultaneously at position 0 and at position higher than zero, but in

this case the match at position 0 is selected as valid. The next

adaptation vector depicted at the right of the dictionary depends

exclusively on this match information. Figure 2.4 shows how ODA

adapts the dictionary at time t + 2 using a modified adaptation vector

originally generated at time t and how data duplication is restricted to

position 0 maintaining dictionary efficiency. For example, the current

adaptation vector depicted at the left of the dictionary for cycle 3 is

generated shifting down the next adaptation vector of cycle 2, as

indicated by the current adaptation vector of cycle 2. The current

adaptation vector at cycle 3 adapts the dictionary of cycle 4. By using

this simple technique, the effect of ODA in dictionary efficiency is

negligible because in the worst case only one dictionary position

contains repeated information and in the best case all the dictionary

positions contain different data. The logic cost of ODA is very small

since the basic ODA cell only contains a flip-flop and a multiplexor.

Figure 2.5 shows the ODA logic plus the movement generation logic

for a dictionary of four positions.

25

d. Priority logic: This logic assigns a different priority to each of the

possible matches. A full match has the highest priority while partial

matches are assigned priorities according to the number of matching

bytes. The higher the number, the higher the priority.

e. Best match decision logic: Logic that selects one of the matches as the

best for compression using the priority information.

2. The Coder Comprises of:

f. Main coder: Main X-MatchPRO coder whose function is as follows:

when a match is detected, it assigns a uniform binary code of size

log2(dictionary size) to the match location preceded by a single bit set

to 0, a static Huffman code to the match type and concatenates any

necessary bytes that were not found part of a match in literal form.

There are 11 possible different match type combinations of 2, 3 or 4 B

matching in the tuple. The Huffman tree, obtained after extensive

simulation, has only different code lengths 2, 3, 4 and 5 bits. The full

match is the most probable match type and its Huffman code is only 2-

bits long. Matches of three nonconsecutive bytes are the least probable

and they are assigned 5-bit long Huffman codes. If, instead of a match,

a miss is detected, the first single bit is set to 1 and the 4 B in literal

form follow.

g. RLI coder: The RLI coder detects the existence of multiple full

matches at location zero, using a counter. If the counter exceeds the

count of 1, then a RLI event becomes active, the pipeline is empty

from the previous code and the output of the chip is frozen while the

run length is taking place. A maximum of 255 full matches at location

0 can be coded in a single RLI codeword. The code corresponding to

the last location in the dictionary is reserved to signal RLI events.

3. The Packer Comprises of:

h. Bit assembly logic: Logic that assembles the variable-length

codewords produced by the coder into 64-bit fixed length codes which

are then output to the width adaptation logic.

i. Width adaptation logic: This logic reads in 64-bit compressed words

from the bit assemply logic and writes out 32-bit compressed words to

the compressed output bus. It performs a buffering function smoothing

the data flow out of the chip to the compressed port and it also

transforms the data width from 64-bit to a more manageable 32-bit. It

contains a total of 2 kB of fully synchronous dual-port RAM organized

in two blocks of 256 x 32 bits to buffer compressed data before it is

output to the compressed data out bus.

2.4.2 Decompression Architecture

Figure 2.6 shows the decompressor architecture. The decompressor channel is also

formed by three major components: the decompression model, decoder and unpacker.

The number of registers in Figure 2.6 from input to output is again five, so the latency

of the compressor and decompressor channels is comparable. The design supports

incremental reception so decompression of the compress block can start before the

whole data block has been received.

26

Figure 2.6. Decompression architecture

1. The Decompression Model Comprises of:

j. Dictionary: Fully synchronous RAM-based dictionary that stores the

history data during a decompression operation. The contents of the

RAM dictionary during decompression must be the same as the

contents of the CAM dictionary during compression in each cycle.

Adaptation must take place in exactly the same way to enable correct

decompression of the compressed block. The initialization of the

compression CAM sets all words to zero. This means that a possible

input word formed by zeros will generate multiple full matches in

different locations. The algorithm simply selects the full match closest

to the top. This operational mode, in effect, initializes the dictionary to

a state where all the words with location address higher than zero are

declared invalid without the need for extra logic. The reason is that

location x – 1 is different from 0 because locations closer to the top

have higher priority generating matches. The MTF adaptation

mechanism shifts down the dictionary when full matches are not

detected and, therefore, ensures that the last word from this initial state

to be deleted from the dictionary is always the word located at location

0 at time 0. This operational mode in compression enables the

decompression RAM dictionary to have only location 0 loaded with

value 0 during the initialization phase because references to RAM

locations higher than zero are not possible before their contents are

updated. This technique avoids having a long overhead equal to

dictionary size cycles to initialize each position in the RAM to a

predefined value before each decompression operation. The read and

write addresses are also monitored for possible collisions. If both

addresses are the same, the algorithm needs to read the data that is

going to be written in that common address. This data is not present in

the memory yet, but it is present in the RAM data in bus. The RAM

data is written in the memory normally but it is also latched

temporarily in a register. Multiplexing logic selects the output coming

from this register instead of the output coming from the memory when

27

the same address is being read and written. The read address is also

modified to an unused address to make it different from the write one

and avoid corrupting the RAM contents.

k. Pointer array: The pointer array logic performs an indirection function

over the read and write addresses that accessed the RAM dictionary. It

models the MTF maintenance policy of the CAM dictionary moving

pointers instead of data. The pointer array enables mapping the CAM

dictionary to RAM for decompression. Since the pointer array is much

smaller than the CAM dictionary the savings in complexity allow

having the full-duplex architecture in a single device. This is true

because the basic pointer word width is 4, 5 or 6 bits depending on the

length of the dictionary. On the other hand, the basic data word width

is 32 bit. Each position in the pointer array is reset to a value the as its

physical location in the array before each decompression operation.

l. Move generation logic: This logic generates the adaptation vector

depending on the match type and match location. The adaptation

vector moves the CAM dictionary in compression and the pointer array

in decompression.

m. ODA logic: This component forces the pointer array to adapt with

previous match information. The ODA logic in decompression is used

to replicate the adaptation process in the compression dictionary. They

have exactly the same functionality so both dictionaries are maintained

in synchrony, although its use to improve the timing characteristics of

the design is restricted to the compression channel.

n. Output tuple assembler: Module that assembles a decompressed tuple

using dictionary information and any literal characters present in the

code.

2. The Decoder Comprises of:

o. Main decoder: The main decoder obtains a match type and a match

location from the codeword supply by the bit unpacker. The first bit

defines if a match or a miss follows. If a match is detected the next

log2(dictionary size) following bits in the codeword define the match

location. The Huffman code for the match type follows the match

location code. If the match is partial the missing bytes follow the

match type. If instead of a full or a partial match a miss is detected the

next 32 bits following the first bit correspond to the four missing bytes.

p. RLI decoder: RLI decoder that when the match location in the code

word corresponds to the last position of the dictionary output match

location 0 and match type 0 as many times as the number of the

repetitions indicated in the next 8 bits that defined the run length. A

counter is loaded with the run length and then it counts up until this

value is reached.

3. The Unpacker Comprises of:

q. Bit disassembly logic: This logic unpacks 64 bits of compressed data

read from the internal buffers into variable-length codewords. To be

able to shift out old data and concatenated new data, the codeword

length must be supplied by the decoder logic. This feedback loop

between the decoder logic and the unpacker one is illustrated in Figure

28

2.6 with the signal “match width” extending from the main decoder

module to the code concatenate and shift module. The architecture of

this module has been parallelized so concatenation of new data is done

in parallel to the decoding operation and only the shifting of old data

out must wait for the decoding operation to complete. This feedback

loop remains, though, as the critical path of the design and limits the

maximum clock frequency.

r. Width adaptation logic: The logic performs the equivalent but opposite

function as its counterpart in the compression channel. It reads in 32-

bit of compressed data from the input compressed bus and it writes out

64-bit of compressed data to the bit disassembly logic when it requires

more data. It performs a buffering function smoothing the data flow in

the chip from the compressed port. It contains 2 kB of fully-

synchronous dual-port RAM organized in two blocks of 256 x 32 bits

each as in the packer.

2.5 Hardware Implementation

The X-MatchPRO compressor/decompressor processor is a fully contained unit

having a simple architecture and uncomplicated interface – Figure 2.7 shows the

global architecture together with the PCI interface.

The X-MatchPRO design is a dictionary style compressor based around a dictionary

implemented in the form of a content addressable memory (CAM). The length of the

CAM varies with values ranging from 16 to 1024 tuples (4-byte locations) trading

complexity for compression. Typically, the device complexity increases by a factor of

1.5 each time the dictionary doubles. Dictionary size is variable to be able to adapt

algorithm complexity to the resources available in the selected FPGA. Each dictionary

entry contains exactly 4 bytes. The dictionary adaptively stores the most recent

phrases that have occurred in the data stream. Compression is achieved by replacing

repeated phrases with references to the dictionary (these are codewords which are

shorter than the phrase itself).

The coding section is active during compression. This generates the required

codewords and forms successive codewords into fixed 32-bit width words for writing

to external medium. The decoding section is responsible for the reverse process – data

is read from the external medium and generates the required dictionary references to

allow the decompressed data to be recreated.

29

Figure 2.7. X-MatchPRO plus PCI interface architecture

30

2.5.1 Register bank description

A total of 10 registers form the register bank that controls the

compression/decompression engines and coding/decoding buffers. These registers are

accessed by using the address bus and the control bus and can be read or written.

Figure 2.8 shows the format of these registers.

Figure 2.8. Register format

31

Address Channel Register Function

1000 Decompression R0D Command register Activates or stops the

decompression channel

1001 Decompression R1D Uncompressed

block size register

Sets the number of bytes of

the uncompressed block

before decompression

1010 Decompression R2D Compressed block

size register

Reserved

1011 Decompression R3D Decompression

CRC

CRC code is stored here

after completion of a

decompression operation

0001 Decompression R4D Decompression

Status

Status information of the

decompression channel

1100 Compression R0C Command register Activates or stops the

compression channel

1101 Compression R1C Uncompressed

block size register

Sets the number of bytes of

the uncompressed block

before compression

1110 Compression R2C Compressed block

size register

Sets the number of bytes of

the compressed block before

compression

1111 Compression R3C Compression CRC CRC code is stored here

after completion of a

compression operation

0000 Compression R4C Compression

Status

Status information of the

compression channel

Table 2.1. Register access description

2.5.2 X-MatchPRO threshold value

The threshold value is input with the command and written in the command register.

It defines a programmable latency. A small value means a low latency but it is more

probable that underflows in the output buffers will take place. A bigger value

introduces more latency but these conditions are not so frequent. After an underflow

in the output buffers the threshold value also defines the distance between write and

read addresses before more compressed or uncompressed data is output or requested

respectively.

Underflow conditions are not error conditions but they will generate bubbles where

valid data is not present in the compressed or uncompressed data out streams during

compression or decompression respectively.

The threshold can have any value between 1 and 128. A threshold of 1 implies

minimum latency => 1*64 bits of data are written in the buffer before the bus is

requested during compression to output compressed data or 1*32 bits of data are

written in the output buffers before the bus is requested during decompression.

A threshold of 128 implies maximum latency or blocked operational mode => 128 *

64 bits of data are written in the buffer before the bus is requested during compression

to output compressed data or 128*32 bits of data are written in the output buffer

before the bus is requested during decompression.

32

2.5.3 X-MatchPRO latency

In compression latency is defined as the number of cycles found between the moment

the compression engine stops inputting data and the output buffers finish emptying the

buffers (=> chip ready to start a new operation). The compression latency has two

components one fix and one variable. The fixed component of 4 cycles is defined by

the levels of registers located between the input search register and the output buffers

(5 levels). The variable component is defined by how much data is in the buffers

when the compression engine finishes its operation (flushing operation). The

probability of having a long flushing operation is small when the threshold value

setting is small. This variable component depends, however, in the input data. If the

data expands, the latency will grow because more data will be left in the buffers to be

output during the flushing operation.

In decompression, latency is also controlled by the threshold value. Latency can be

defined as the number of cycles that elapse between the first tuple of compressed data

enters the chip and the first tuple of uncompressed data leaves the chip. There are

again two components. The levels of registers (5 levels) between the decoding buffers

and the output register in the device introduced a fixed component of 4 cycles. The

output buffer introduces the other component and it depends on the threshold value. A

threshold value of 8 introduces a latency of 8 because 8 32-bit tuples must be written

in the buffer before the number of 32-bit words exceeds the threshold value and the

bus is requested to output uncompressed data.

2.5.4 X-MatchPRO operational modes

The device organizes the data block to be processed during compression and

decompression operations in records of 512 bytes. This means that it will request the

input data bus until one record has accessed the input buffers and then it will release

the data bus and rearbitrate for new data if required until the whole block has accessed

the input buffers. The compression and decompression engines are engaged shortly

after the first input record has started accessing the bus and data will be available in

the output buffers after a short latency. It is the responsibility of the system to service

the requests originating in the output buffers to avoid having overflow errors in these

buffers.

2.5.4.1 Compression mode

To start a compression operation the CPU must write two registers: The

uncompressed block size register (UBSR) must be written first and the command

register (CR) must be written second. The UBSR tells the compression engine when it

must stop after processing all the bytes of data present in the block. The UBSR

specifies the number of bytes present in the block and can be any value between 8 and

65536. The CR puts the device in compression mode and it also contains the threshold

value to control the output buffer. It also sets the test bit that sets the device to self-

checking test mode when 0 or to full-duplex mode when 1. The device requests the

uncompressed data in bus after the command register has been set using the signal bus

request cu. The system will grant the bus using bus acknowledge cu when data is

ready for compression.

Data must be available in the uncompressed data in bus one cycle after the bus has

been granted. If data is not ready for the device the wait cu signal in the

33

uncompressed data in bus can be asserted. The chip requests the compressed bus

when the number of 64-bit words available in the output buffer is bigger than the

threshold value using the bus request cc signal and waits for the acknowledgement

bus acknowledge cc.

If data cannot be collected from the compressed data out bus the corresponding wait

cc signal can be used to hold the outputting of data by the device. When the device

produces compressed data in the compressed bus it asserts the compressed data valid

signal active. The engine is known to be active because the compressing signal is

active. The chip stops processing data when the value stored in UBSR is reached.

Then a flushing c signal is activated to indicate that any remaining compressed data in

the output buffers is being flushed out. When the buffers are emptied of their contents

the device asserts the signal finished c active for one cycle and the interrupt request

signal. The system can read the compressed block size register (CBSR) at the end of a

compression operation to obtain the resulting compressed block size in bytes. This

value could be compared with the original uncompressed block size to evaluate the

compression efficiency. The system can also read the status register to monitor that an

abnormal termination did not take place. After this cycle the device is ready to start a

new compression operation. Figure 2.9 corresponds to a typical compression

operation.

Figure 2.9. Compression operation

34

2.5.4.2 Decompression mode

To start a decompression operation the system must write 2 registers. The UBSR and

the CR have the same function as in compression. The UBSR is used to indicate the

device how much data must be decompressed before finishing the decompressed

operation. Then, the system requests the compressed data in bus with the bus request

dc signal and the bus is granted with the bus acknowledge dc signal. The bus request

dc during decompression is equivalent to a compressed data request. Once the bus is

granted the system is responsible to make available 32 bits of compressed data per

cycle as long as the bus request signal is maintained active. The system can use the

wait dc signal to insert wait cycles in the bus. The engine writes uncompressed data in

the output buffers. Once the amount of data is larger than the threshold value the

device asserts the bus request du signal requesting the uncompressed data out bus.

The bus is granted with the bus acknowledge du signal. . When the device produces

uncompressed data in the uncompressed data out bus it asserts the uncompressed data

valid signal active. The engine is known to be active because the decompressing

signal is active. When the output buffers are emptied of their contents the device

asserts the signal finished d active for one cycle and the interrupt request signal. . The

system can read the status register to monitor that an abnormal termination did not

take place. After this cycle the device is ready to start a new decompression operation.

Figure 2.10 shows a typical decompression cycle.

Figure 2.10. Decompression operation

35

2.5.5 X-MatchPRO Error conditions

2.5.5.1 Output Buffer Coding Overflow and Output Buffer Decoding Overflow

Overflow errors should never be encountered under normal operation conditions. To

avoid overflow errors the output bus that holds compressed data during compression

and uncompressed data during decompression should be granted if it is being

requested when the inputting of one data record has finished and before the inputting

of a new data record starts.

2.5.5.2 CRC Error

A CRC error should never be encountered under normal operation conditions. The

CRC error signal is used during compression in test mode. Both channels are active

and a CRC code is calculated using all the data input to the compression channel and

output by the decompression channel. A CRC error indicates a hardware failure

because either the compression or the decompression channels failed to successfully

perform its operation and there has been a mismatch in the calculated CRC‟s by each

channel.

36

37

3

System Architecture

This chapter describes the device which implements the LZ77 algorithm since

it is the optimal for this end-to-end compression scheme. In the next sections the

hardware architecture and the implementation of this device are outlined. But before

moving to the actual implementation, it is essential to point out more details about the

specific algorithm.

3.1 Compression Algorithm

There are mainly four different compression classes. Each one is suitable for

particular applications. The problem with the network streams is that they consist of

different kinds of data and so a flexible algorithm should be used.

The basic idea behind a substitutional compressor is to replace an occurrence of a

particular phrase or group of bytes in a piece of data, with a reference to a previous

occurrence of that phrase (dictionary-based compression algorithm). There are two

main classes of schemes, named after Jakob Ziv and Abraham Lempel, who first

proposed them in 1977 and 1978: the LZ77 and the LZ78.

It is widely supported that the LZ78 based algorithms produce better results by

increasing the complexity of the matching circuit and thus making the compression

procedure either slower or more expensive, in terms of hardware resources needed.

However, this is not the case for the very irregular real network traces.

38

The main reasons the LZ77 based algorithms achieve a higher compression gain than

the LZ78-based ones are as follows:

 The LZ78 ones “adapt slowly to their input data” and so in the case of the

“non-stationary” network traffic, they cannot achieve the expected high

compression gain.

 The major deficiency of the LZ77 is the limited size of the look-ahead buffer

since it can go up to 32 bytes, in order to be effective. In the case where a 48-

byte network packet is compressed at each run of the algorithm, the size of

this buffer should, by nature, be much less than 48 bytes and so this deficiency

does not affect the compression ratio.

 Another deficiency of the LZ77 is that the size of the search buffer is also

limited. Since the larger the buffer, the better the compression, large buffers

are preferred. However, this deficiency does not affect the compression ratio a

network compression device can achieve since the traffic is “non-stationary”

and thus a buffer even in the order of tens of kilobytes cannot achieve better

results than a 4 KB one.

In addition to the better compression ratio achieved by the LZ77-based algorithms,

there are some other reasons that make it more attractive for a network compression

scheme:

 The decoding process is much faster, due to the intrinsic latency

characteristics of the algorithm.

 It has a pre-defined longest delay in making the best possible matches and this

delay is in the order of a few tens of character cycles.

 It is much easier to implement in hardware.

 There are no patents for the basic algorithm.

This thesis concentrates on the LZ77 Coding, which is implemented by this device.

3.1.1 LZ77 Coding

The main idea of LZ77 Coding is to use part of the previously seen input stream as a

dictionary. Whenever an LZ-77 compressor processes a phrase that has already been

seen, it outputs a pair of values corresponding to the position of the phrase in the

previously-seen buffer of data and the length of the phrase. In particular, a compressor

maintains a window to the input stream and shifts the input in that window from right

to left, as strings and symbols are being compressed. This window is divided into two

parts: the dictionary, which includes the symbols that have been input and

compressed, and the lookahead buffer, containing the text it tries to find a match in

the dictionary. In practical implementations the dictionary is some thousands of byte

long, while the lookahead buffer is only tens of bytes long. In Figure 3.1 is the

pseudo-code for the compression.

39

Figure 3.1. Pseudo-code for LZ77

Decompression is simple and fast: Whenever a (position, length) pair is encountered,

go to that (position) in the window and copy (length) bytes to the output.

In Figure 3.2 a run of the compressor is shown and in Figure 3.3, a run of the

decompressor.

Sliding-window-based schemes can be simplified by numbering the input text

characters mod N, in effect creating a circular buffer. The sliding window approach

automatically creates the LRU effect which must be done explicitly in LZ78 schemes.

Variants of this method, like the gzip and the winzip software tools, apply additional

compression to the output of the LZ77 compressor, such as dynamic Huffman coding

and Arithmetic Coding, that result in a degree of improvement over the basic scheme.

This increase is achieved whenever the data is rather random and the LZ77

compressor has little effect.

Figure 3.2. A typical run of the LZ77 compressor

40

Figure 3.3. A typical run of the LZ77 decompressor

3.2 Implementation Details

The device was designed using the VHSIC
(3)

 hardware description language (VHDL).

The results of the initial high-level design were compared with the theoretical results

so as to ensure the functionality of these devices is correct. Then, the VHDL code was

synthesized, was placed and routed using the Xilinx ISE 9.1i and simulated using

Modelsim 6.0a.

(3) VHSIC: Very-High-Speed Integrated Circuits

3.3 Format of Compressed Data

According to the end-to-end scheme, the network traffic is compressed at a source

site, encapsulated over ordinary network packets and then decompressed at the

destination site. In particular in the source node all the cells that have the same header

are collected, all the headers removed and thus a long data-stream formed. Then and

before the transmission if this datastream, the compression algorithm is applied to it

and the compressed stream is encapsulated into ATM
(4)

 cells. So, each compressed

packet consists of a 48-byte compressed stream as the payload and the original

header. Therefore, all the data coming on a certain VC
(5)

/VP
(6)

 into the compression,

leave the device on the same VC/VP, after being processed. In other words, the flows

are not altered in any way except of the number of cells they consist of.

http://en.wikipedia.org/wiki/VHSIC
http://en.wikipedia.org/wiki/Hardware_description_language

41

Figure 3.4. Compressed Cell Format

As it has already been described, the compressed streams comprise of 2-byte tokens

and 1 byte uncompressed bytes, together with some bit flags for distinguishing the

two. These flags should also be transmitted for the decompressor to make the same

distinction. These bits cannot be efficiently sent together with their corresponding

items. Instead eight outputs items (bytes or tokens) are collected together and, then,

one byte consisting of the 8 flags is transmitted followed by the eight items. Figure

3.4 shows the format of a compressed cell. Recall that the last three bytes of the

shown cell carry a portion of a 9-byte compressed quantity. This is not a problem

since the decompressor can form data-streams comprising of more than one cell and

then perform the actual decompression.

(4) ATM: Asynchronous Transfer Mode
(5) VC: Virtual Circuit/Virtual Channel

(6) VP: Virtual Path

3.4 System Interconnections

The System Chips are interconnected to each other and to the existing network

terminals as shown in Figure 3.5. In this figure it is clear that both the compressed and

the uncompressed data is carried by ATM cells.

Figure 3.5. System Interconnections

42

3.5 Core Hardware Architecture

In Figure 3.6, the block diagram of the system chip is shown.

Figure 3.6. Block Diagram of the system

As in every dictionary based compression device, the core comprises of the dictionary

and the comparison circuits around it. Therefore, the speed of the device depends

heavily on the memory throughput and the comparisons‟ latency. In the architecture

proposed in this chapter the speedup implementation techniques of pipelining,

parallelism and repetition of information have all been used in order to accelerate this

core. In particular, the main characteristics of the architecture are:

 256-stage pipeline.

 16 comparisons in parallel at each pipeline stage.

 Memory repetition (100% more memory used) for higher memory throughput.

This architecture was implemented using the VHDL and the Synthesiser previously

mentioned.

Using these speedup techniques and after some optimisations of the device, the

network data can be compressed at speeds up to 2.5 Gb/sec and the latency introduced

is within the acceptable limits for network traffic (5 cell times). The latency can be

further reduced if greater hardware resources are to be used, as it will be described in

the next section.

43

3.5.1 Compression Unit

The compression unit implements the LZ77 algorithm which is applied only to the

payloads of the ATM cells. Its block diagram is shown in Figure 3.7. In general, the

compressibility table determines if a flow should be compressed or if it should bypass

circuits ensure the main unit and the header memory, and the merge and bypass

circuits ensure the cells will be formed and sent over the transmission link correctly.

Moving to the exact functionality of the device, at first the header bits described by a

certain register are used as an index to the compressibility table so as to determine

whether this particular cell should be compressed or not. If the cell should not be

compressed it is sent through the bypass path to the merge circuit. If it is a

compressible cell the compressibility table points to the dictionary to be used for

compressing the cell. In each entry of the table the 15 last bytes of the payload of the

last cell on this flow are also stored. These bytes together with the first byte of the

new cell form a 16-byte look-ahead buffer which is sent to the compression unit. In

the next clock cycle, the second byte of the cell will arrive. These two first bytes of

the cell together with the 14 last bytes of the previous cell will form the new look-

ahead buffer and so on. In this manner the 48 bytes of the payload are processed by

the compression unit in 48 byte-clock cycles.

As stated above, the core circuit is organised in a 256-stage pipeline. In Figure 3.8 a

pipeline stage is demonstrated. It consists of a memory bank of 31 bytes for each

dictionary
(7)

, a “crossbar” so as to route each 16-byte quantity to a specific comparator

and 64 comparators that are used 4 times each at every clock cycle. The inputs of each

stage are:

a) the 16-byte long look-ahead buffer,

b) the 15-bit address of the dictionary that should be used,

c) register LONMA which specifies what is the longest match up to the last point

of the pipeline and what is the dictionary address of the first byte of this match

and

d) the four PRENA1-PRENA4 registers which specify the 4 longest matches

found in the last pipeline stage and the addresses of these matches.

Figure 3.7. Compression Unit Block Diagram

44

Figure 3.8. Block diagram of a Pipeline stage. Wire widths are in Bytes.

The outputs of each stage are:

a) the unchanged 16-byte look-ahead buffer,

b) the also uncharged 15-bit address fields,

c) the possibly altered LONMA register and

d) the new PRENA registers which specify the 4 longest matches found on this

stage.

The reasoning behind the size of the memory is as follows: The algorithm

implemented has a longest possible match of 16. Thus, taking 16 subsequent bytes, all

their possible matches are included in these 16 bytes and the next 15 subsequent ones.

So, it is guaranteed that all the matches of the first 16 bytes are included in the 31

bytes stored in the memory. This concept is illustrated in Figure 3.9. Note that the last

15 bytes should also be included in another memory bank together with the 16 bytes

next to them in the incoming stream, for all the possible matches to be examined.

Thus, this technique requires 93.75% of memory overhead.

45

Figure 3.9. Overview of the compression task

Since the main objective has been to minimize the time for the comparisons of the 16

byte look-ahead buffer with every single byte in the dictionary, parallelism is also

used. In every pipeline stage, there are 64 byte-comparators each used 4 times in each

major cycle. Therefore, 256 comparisons are done in each major cycle. Since the 16,

16-byte long strings should be compared with the 16-byte long look-ahead buffer 16 *

16 = 256 comparisons are needed. As a result, in each clock cycle, all the possible

matches of the look-ahead buffer with a particular 16-byte stream are identified.

The exact timing of a pipeline stage is shown in Figure 3.10. The memory is accessed

and at the same time the register LONMA is compared with the four PRENA

registers. The longest of these 5 matches is stored in register LONMA, together with

the corresponding address in the dictionary. After the memory is read the first 4 16-

byte comparisons are executed and their results stored in the corresponding registers.

After the results are stored, the second set of comparisons starts and at the same time

the 4 comparison results are compared with one another and the longest match is

stored in register PRENA1. Similarly, all the four PRENA registers are loaded with

the 4 longest matches produced by the 4 sets of comparisons.

46

Figure 3.10. Timing diagram of a pipeline stage

As shown in the circuit diagram of Figure 3.8, in each one of the pipeline stages, there

is a 31 byte per dictionary SRAM memory bank, 64 byte-comparators, 4 longest

match circuits and a 15-byte pipeline register. Since there are 256 pipeline stages, the

total hardware-cell count is 15872 8 bit-SRAM cells –all registers are also included-,

16K 8 bit-comparators and 1K longest match circuits, per dictionary.

By using all the above speedup factors, the compressor can process data at a constant

speed of 622 Mb/sec introducing a latency of 256 clock cycles or 5 cell times. This is

a significant improvement over the current network compressors since, as it is

described in Chapter 2, the processing speed of the fastest such compressor is 100

Mb/sec and its latency is up to 2 cell times.

In order for this design to be used in an even faster network (e.g. a 1044 Mb/sec one),

the only alternation needed is the following: Instead of having 64 comparators in each

pipeline stage, 256 are needed, so as all the necessary comparisons can be done at the

same time. By following the same calculations as in the last paragraphs, the latency of

each pipeline stage will be 5 ns and, thus, a clock rate of 200 MHz can be used. As a

result, the compressor would be able to process data at a rate up to 1.4 Gb/sec.

(7) Since the address is 15-bit wide up to 32K dictionaries can be supported. However the number of the actual

dictionaries will depend on the cost requirements the device should satisfy.

3.5.2 Decompression Unit

The decompression unit is much simpler than the compression one, since there is no

need for comparisons between the input data and the one stored in the dictionary. It

just maintains the compressibility table and a 4 KB dictionary for each compressible

flow. Its block diagram is shown in Figure 3.11. Using the compressibility table it

first determines if a cell comprises of compressed or not. If the header corresponds to

an uncompressible flow, the cell is sent over the bypass path. If it is a compressed

cell, the compressibility table entry points to the dictionary that should be used for the

decompression of it. Then, for each byte the decompressor determines, if it is a part of

an (address, length) token or an uncompressed byte. In the latter case, it sends the byte

to the merge circuit and stores it in the next free entry of the corresponding dictionary.

In the former one, the memory item, at the corresponding address, is fetched and the

first length bytes of it are written to the output buffer. The new string is written in the

next free position of the dictionary.

47

Figure 3.11. Decompression Unit Block Diagram

Since the decompression unit needs at most two memory accesses per input byte and

assuming the same delay parameters as in the compression unit, its latency is 7 ns if a

standard non-pipelined architecture is used. If the two accesses are performed into

two different pipeline stages, in which case a dual port SRAM is also needed, the

latency of the device will be 4 ns. Therefore, even when a non-pipelined architecture

is used the unit can decompress data at speeds up to 1066 Mb/sec.

48

49

4

Hardware Implementation

This chapter describes the way implemented each component of the whole

system. The following sectors present the implementation of every component in

details and shows figures and tables about the architecture and the pinout used. The

last ones provide the FSM
(8)

 used for the successful operation of each pipeline stage

and some optimizations made for improving the performance which is our main

scope.

(8) FSM: Finite State Machine

4.1 Memory bank

As required, instead of LZ77 algorithm, a memory is used for saving dictionaries plus

data duplicated for the reasons described in the section 3.5.1. This module is a

ROM
(9)

, generated by Xilinx CORE Generator, which contains a dictionary in every

odd address and duplicated data in every even one. Its size is chosen to be 8 Kbytes

(64 Kbits), 4 KB for the dictionary and 4 KB for the memory overhead. Previous

research has showed that the optimal width for this memory is 16 Bytes (128 bits), so

a memory bank, the size of which is 31 Bytes, will be resulted from reading two

addresses. Subsequently, the depth of the memory is 512 words so as the address

length is 9 bits.

Figure 4.1 shows the interface of this component while Table 4.1 describes the

functionality of signals.

MEMORY BANK

9

1

128addra

clka

douta

Figure 4.1. Memory Bank Interface

50

Signal Width (bits) Type Description

clka 1 Input Clock signal

addra 9 Input Read address

douta 128 Output Output Data

Table 4.1. Memory Bank pinout

The use of ROM proves that dictionary must not be written from the system; it is only

initialized externally; it is initialized by a .COE
(10)

 file which is loaded from the user

to specify the values of the memory.

(9) ROM: Read Only Memory
(10) COE: COEfficient

4.2 Crossbar

“Crossbar” is not used with the strict sense of the term. It is a component that gets a

16-byte long input (output data from memory), creates the 31-byte long memory

bank, saves it in a latch and uses it for further processing.

Crossbar Interface is showed in Figure 4.2 and more details about signal functionality

are referred in Table 4.2.

Signal Width (bits) Type Description

input 128 Input Input data

wrbuffer 1 Input Buffer write signal (if „1‟ write)

dsit 1 Input Situation of written data

(in buffer)

compNo 2 Input No of comparison

output1 128 Output 1
st
 output

output2 128 Output 2
nd

 output

output3 128 Output 3
rd

 output

output4 128 Output 4
th

 output

Table 4.2. Crossbar pinout

CROSSBAR

128

2

128input

wrbuffer

output1

1

1

dsit

compNo

128 output2

128 output3

128 output4

Figure 4.2. Crossbar Interface

51

MUX

16

output2

MUX

16

output1

MUX

16

output3

128128

deMUX dsit

128

input

wrbuffer Buffer (31 x 8 = 248 bits)

0 127 128 247
248

MUX

16

output4

1

-

16

5

-

20

9

-

24

13

-

28

2

-

17

6

-

21

10

-

25

14

-

29

3

-

18

7

-

22

11

-

26

15

-

30

16

-

31

12

-

27

8

-

23

4

-

19

2compNo

Figure 4.3. Crossbar Architecture

This component is implemented by using a 31-Byte (248-bits) long latch –as stated

before- for saving the memory bank, a demultiplexer 1-2 (16 byte input – outputs),

which decides where the input data are going to be saved in the latch and four

multiplexers 4-1 (16 byte inputs – output) that decide which 16 bytes are going to be

sent to the four outputs for further processing. The architecture of this module is

showed in Figure 4.3.

As presented in figure above, according to the “dsit” signal, which controls the

demultiplexer, the input data are saved either in bytes 1-16 (if „0‟) or in bytes 17-31

(if „1‟) of the latch. Furthermore, according to the “compNo” signal, multiplexers

choose the desirable bytes to be sent to the outputs. All the possible combinations are

presented in Table 4.3.

compNo outputs Output1

(bytes)

Output2

(bytes)

Output3

(bytes)

Output4

(bytes)

00 1-16 2-17 3-18 4-19

01 5-20 6-21 7-22 8-23

10 9-24 10-25 11-26 12-27

11 13-28 14-29 15-30 16-31

Table 4.3. Output combinations according the No of comparison

52

4.3 Pipeline Stage Comparator

Pipeline Stage Comparator is a circuit which compares two 16 byte (128 bit) long

vectors, which are its inputs. The first one is the unchanged Look-ahead buffer and

the second one is 16 bytes from the memory bank derived from the Crossbar using the

method described in the previous section. Its output is the longest match (the largest

number of common bytes in row) between these vectors concatenated with the

address of the first byte of the second vector in memory bank.

The interface of this component is showed in Figure 4.4 and described in Table 4.4,

which is presented above.

Signal Width (bits) Type Description

input1 128 Input 1
st
 input of comparator (Look-

ahead buffer)

input2 128 Input 2
nd

 input of comparator (output of

Crossbar)

memoryaddress 9 Input Memory address of the dictionary

in BRAM

firstbyte 4 Input Address of the first byte in

memory bank

longestMatch 16 Output Output of comparator (longest

match between input1 & input2)

Table 4.4. Pipeline Stage Comparator pinout

PIPELINE STAGE

COMPARATOR

128

128

16

input1

input2

longestMatch

9

memoryaddress

4

firstbyte

Figure 4.4. Pipeline Stage Comparator Interface

53

BYTE16COMPARATOR

128

128

16

input1

input2

longestMatch
FINDLONGESTMATCH 4

isequal
CONCATENATION 16

longestmatch

9

memoryaddress

4

firstbyte

Figure 4.5. Pipeline Stage Comparator Architecture

The procedure, which is followed for leading us to the result, is divided in three

stages. At the first stage, the two vectors are compared and a new vector (16 bit long)

is created, which shows which bytes are the same in the leading vectors. At the

second stage, the longest match is counted using the new 16 bit long vector and,

finally, in the third stage, the longest match created is concatenated with the address

of the first byte as described before.

Each one stage is processed by a specific subcircuit, so the three subcircuits used are a

16-Byte Comparator, a Find Longest Match Circuit and a Concatenation Circuit. The

connection between these components, which leads us to the architecture of Pipeline

Stage Comparator, is showed in Figure 4.5.

The implementation of these three components, presented in Figure 4.5, is described

in details at the following subsectors.

4.3.1 16-Byte Comparator

The first part of a Pipeline Stage Comparator compares the two inputs (16 bytes long)

and exports, as a result, a 16 bit long vector, in which the „1‟ shows that the specific

bytes are equal and the „0‟ shows that are not. The interface of 16-Byte Comparator,

as this structure is called, is showed in Figure 4.6 and more information is given in

Table 4.5.

BYTE16COMPARATOR

128

128

16

input1

input2

isequal

Figure 4.6. 16-Byte Comparator Interface

54

BYTE

COMPARA

TOR

8

8

input1(7 downto 0)

isequal(0)

input2(7 downto 0)

BYTE

COMPARA

TOR

8

8

input1(15 downto 8)

isequal(1)

input2(15 downto 8)

BYTE

COMPARA

TOR

8

8

input1(23 downto 16)

isequal(2)

input2(23 downto 16)

BYTE

COMPARA

TOR

8

8

input1(127 downto 120)

isequal(15)

input2(127 downto 120)

...

Figure 4.7. 16-Byte Comparator Architecture

Signal Width (bits) Type Description

input1 128 Input 1
st
 input of comparator

input2 128 Input 2
nd

 input of comparator

isequal 16 Output Output of comparator (shows

which bytes between input1 &

input2 are equal)

Table 4.5. 16-Byte Comparator pinout

The 16-Byte Comparator unit is implemented using 16 Byte comparators. The

architecture used is presented in Figure 4.7.

The structure of Byte Comparator is described in details above.

4.3.1.1 Byte Comparator

Each Byte Comparator gets, as input, two vectors (one byte long each one), compares

them and exports, as output, a bit, which shows if the two bytes (vectors) are equal

(„1‟) or not („0‟). Figure 4.8 shows the interface of this structure and Table 4.6 gives

more information about the functionality of every signal.

55

BYTE

COMPARATOR

8

8

input1

isequal

input2

Figure 4.8. Byte Comparator Interface

Signal Width (bits) Type Description

input1 8 Input 1
st
 input of comparator

input2 8 Input 2
nd

 input of comparator

Isequal 1 Output Output of comparator (shows if

bytes -input1 & input2- are equal)

Table 4.6. Byte Comparator pinout

This structure is implemented using eight XNOR gates, each of which checks if two

bits –each one from the specific input byte– are equal. The outputs of these gates are

sent to an AND gate which “decides” if all bits are equal. In other words, it examines

whether the input bytes are equal or not. So, an AND gate of eight inputs has to be

used, which is not so common because of the fanin constraints. As a result, the

implementation uses two AND gates of four inputs and one AND gate of two inputs

for the results which are the first ones.

The architecture, which is described before, is showed in Figure 4.9.

Input1(0)
Input2(0)

Input1(1)
Input2(1)

Input1(2)
Input2(2)

Input1(3)
Input2(3)

isequal

Input1(4)
Input2(4)

Input1(5)
Input2(5)

Input1(6)
Input2(6)

Input1(7)
Input2(7)

Figure 4.9. Byte Comparator Architecture

56

4.3.2 Find Longest Match Circuit

After the comparison, previously described, a 4-bit counter is placed for counting the

„1‟ in row in the 16 bit long vector derived from the 16-Byte Comparator. Its output is

the longest match counted, the largest number of the „1‟ in row.

Find Longest Match Circuit Interface is showed in Figure 4.11 and the functionality

of the signals is described in Table 4.7.

Signal Width (bits) Type Description

Isequal 16 Input Input (shows which bytes are

equal)

longestMatch 4 Output Output (the calculated longest

match)

Table 4.7. Find Longest Match Circuit pinout

Find Longest Match Circuit is implemented in behavioral VHDL. Firstly, the counter

is initialized to 0. Every time, the iterator meets a „1‟, the counter is increased by 1

and, when it meets a „0‟, the counter is initialized to 0. Each time, the circuit checks if

the new value of the counter is greater than the previous maximum value, and if so, it

stores the value. Finally, after the whole procedure finishes, the maximum value is

sent as output.

Figure 4.10 shows the pseudo-code used for implementing this component.

sum := 0 ;

maxSum := 0 ;

for i :=0 to 15 then

 if isequal(i) = '1' then

 sum := sum + 1 ;

 else

 sum := 0 ;

 end if ;

 if sum > maxSum then

 maxSum := sum ;

 end if ;

end loop ;

longestMatch := maxSum ;

Figure 4.10. Pseudo-code for counting the longest match

57

FINDLONGEST

MATCH
16 4isequal longestMatch

Figure 4.11. Find Longest Match Circuit Interface

4.3.3 Concatenation Circuit

Concatenation Circuit is the final part of a Pipeline Stage Comparator where the final

result is created. Except for the longest match, it is important to know where the

longest match is found, so an address must be stored in the final result, which is

created by the concatenation of the longest match and the address of the first byte of

the second input (derived from the crossbar) in BRAM. This address has two parts;

the first one is the memory address of the memory bank (8 bits) and the second one is

the position of the first byte in the memory bank (4 bits). If these parts are

summarized with the longest match derived from the counter of Find Longest Match

Circuit (4 bits), the size of the final result will be resulted, which is 16 bits long. The

procedure, which is followed for the creation of the result, is simple and the structure

of the vector derived is showed in Figure 4.12.

LONGEST

MATCH

FIRST

BYTE

MEMORY

ADDRESS

8 bits 4 bits 4 bits

15 8 7 4 3 0

Figure 4.12. Structure of final result

4.4 Byte MUX 2-1 x 16

This module gets as inputs, four PRENA1-PRENA4, which are the results of the four

comparisons of the previous pipeline stage, and four results of the Pipeline Stage

Comparators of the current Pipeline Stage and chooses which of them will be further

processed. The Interface of Byte MUX 2-1 x 16 is showed in Figure 4.13 and more

details for the functionality of the signals are given in Table 4.8.

58

16

16

16

16

16

16

16

16

PRENA1

PRENA2

PRENA3

PRENA4

comparator1out

comparator2out

comparator3out

comparator4out

16

16

16

16

output1

output2

output3

output4

Byte MUX

2-1 x 16

4controlSignal

Figure 4.13. Byte MUX 2-1 x 16 Interface

Signal Width (bits) Type Description

PRENA1 16 Input Result of 1
st
 comparison in

previous pipeline stage

PRENA2 16 Input Result of 2
nd

 comparison in

previous pipeline stage

PRENA3 16 Input Result of 3
rd

 comparison in

previous pipeline stage

PRENA4 16 Input Result of 4
th

 comparison in

previous pipeline stage

comparator1out 16 Input Output of 1
st
 comparator

comparator2out 16 Input Output of 2
nd

 comparator

comparator3out 16 Input Output of 3
rd

 comparator

comparator4out 16 Input Output of 4
th

 comparator

control 4 Input Control signal

output1 16 Output First output stream

output2 16 Output Second output stream

output3 16 Output Third output stream

output4 16 Output Fourth output stream

Table 4.8. Byte MUX 2-1 x 16 pinout

Byte MUX 2-1 x 16 is implemented using four multiplexers. Every multiplexer

chooses the value of output, which might be either the value of PRENAx or the value

of comparisonxout. So every multiplexer is a 2-1 multiplexer with 16 bit long inputs –

output. The structure of this implementation is presented in Figure 4.14.

59

16

16PRENA3

MUX

controlSignal(2)

comparator3out

16 output3

16

16PRENA4

MUX

controlSignal(3)

comparator4out

16 output4

16

16PRENA2

MUX

controlSignal(1)

comparator2out

16 output2

16

16PRENA1

MUX

controlSignal(0)

comparator1out

16 output1

Figure 4.14. Byte MUX 2-1 x 16 Architecture

4.5 Longest Match Circuit (1 out of 4)

Longest Match Circuit is a simple structure of Comparator 4-1. It gets, as input, four

16 bits long vectors (the outputs of Byte MUX 2-1 x 16) and exports a 16 bits long

vector, which is the largest one of the inputs. Figure 4.15 shows the interface of

Longest Match Circuit and Table 4.9 describes the functionality of the signals.

60

COMPARATOR 4–1

16

16

16

input1

input2

output (max of inputs)

16

16

input3

input4

Figure 4.15. Longest Match Circuit Interface

Signal Width (bits) Type Description

input1 16 Input 1
st
 input of comparator

input2 16 Input 2
nd

 input of comparator

input3 16 Input 3
rd

 input of comparator

input4 16 Input 4
th

 input of comparator

output 16 Output Output of comparator (max of

input1, input2, input3 & input4)

Table 4.9. Longest Match Circuit pinout

This module is implemented using three Comparators 2-1. The first one compares the

first two inputs, the second one compares the other two and the third one compares

the results of the other two comparators. It must be pointed out that every comparator

compares only the 4 LSBs, which are the longest match and the remaining 12 bits are

the memory address. At last, the final output is the concatenation of the largest

“longest match” (4 bits) with the memory address (12 bits) chosen from the specific

input. Figure 4.16 shows Longest Match Circuit Architecture.

COMPARATOR 2–1

16

16

input1

input2

max(input1, input2)

COMPARATOR 2–1

16

16

input3

input4

max(input3, input4)

COMPARATOR 2–1 16
output

(max of inputs)

Figure 4.16. Longest Match Circuit Architecture

61

4.6 Longest Match (1 out of 2)

This part is the last one of the whole procedure of a pipeline stage. It is a Comparator

2-1 with 16 bits long inputs – output. It compares the two inputs and exports the

greater one. As Longest Match Circuit does, it only compares the four LSBs of the

input vectors and, finally, creates the final result using the procedure of concatenation,

just as described in the previous section. Furthermore, the first input is the longest

match calculated by the current pipeline stage and the second one is the longest match

calculated by all the previous pipeline stages.

Table 4.10 shows the pinout of this comparator and Figure 4.17 presents Longest

Match Interface.

Signal Width (bits) Type Description

input1 16 Input 1
st
 input of comparator

input2 16 Input 2
nd

 input of comparator

output 16 Output Output of comparator (max of

input1 & input2)

Table 4.10. Longest Match pinout

COMPARATOR 2–1

16

16

16

input1

input2

output

Figure 4.17. Longest Match Interface

4.7 Pipeline Registers

There are some pipeline registers used for separating each pipeline stage from the

next one and storing the results which are derived from the whole procedure of the

current pipeline stage. These results will be used for further processing to the next

pipeline stages. A general interface of a pipeline register is presented in Figure 4.18

and Table 4.11 describes the functionality of the signals.

62

Q

Q
SET

CLR

D

reset

clock

D Q

Figure 4.18. Pipeline Register Interface

Signal Width (bits) Type Description

clock 1 Input Clock signal

reset 1 Input Register reset signal

enable 1 Input Register enable signal

D N Input Register input stream

Q N Output Register output stream

Table 4.11. Pipeline Register pinout

The pipeline registers used are one for storing the unchanged memory address (N =

15), one for the unchanged look-ahead buffer (N = 128), one for the possibly altered

LONMA (N = 16) and four for the new PRENAs (N = 16) which specify the four

longest matches found on this stage. Table 4.12 points out all the registers used.

Pipeline Register Input – output length

(bits)

Description

ADDR 15 Memory Address

Look-ahead buffer 128 Look-ahead buffer

PRENA1 16 Result of 1
st
 comparison

PRENA2 16 Result of 2
nd

 comparison

PRENA3 16 Result of 3
rd

 comparison

PRENA4 16 Result of 4
th

 comparison

LONMA 16 Total Longest match

Table 4.12. Pipeline Registers used in each Pipeline Stage

63

4.8 Finite State Machine (FSM)

The use of a FSM is thought indispensable for securing the right operation of the

procedure of each pipeline stage. According to the timing diagram described in

chapter 3, the procedure of a pipeline stage is divided in five parts and it finishes after

five cycles. First of all, during the first cycle, memory is accessed for gaining the first

set of data, which is the first half of memory bank and, simultaneously, it is chosen to

compare the four PRENAs (results from the previous pipeline stage). A second

memory access takes place at the second cycle. The output data is the second half of

memory bank and, as it is fully regained, the first comparison can take place, so it is

implemented and the result is stored in PRENA1 pipeline register. Finally, the other

three comparisons take place at the following three cycles and their results are stored

in PRENA2 – PRENA4, similarly. Every of the cycles described above corresponds a

state of the FSM created. All this information is summarized in Figure 4.19, which

shows the loop of this procedure, and Figure 4.20, which shows the FSM scheme that

presents the state sequence.

The first thought about the FSM needed is to create a FSM, which operates in four

cycles; the first state is only used one time at system start (reset) and the fifth one

does the first memory access again and goes back to the second one. This solution is

chosen for improving the system performance, but it has a main drawback, because

these four states are used for the four comparisons and PRENAs are compared only

once, which is not desirable. So the FSM described is the only solution.

More details about the comparisons and which are the parts of memory bank

compared are presented in sector 4.2, which describes the implementation of

“Crossbar”.

while

(1) 1st memory access (bytes 1 - 16) & PRENAs comparison

(2) 2nd memory access (bytes 17 - 31) & 1st comparison

(3) 2nd comparison

(4) 3rd comparison

(5) 4th comparison

back to while

Figure 4.19. Pipeline Stage procedure

1 2 3 4 5

Figure 4.20. FSM scheme

64

The signals controlled by this FSM are summarized in Table 4.13.

Signal Component Description

wrbuffer Crossbar Write enable of latch

dsit Crossbar Control signal of deMUX

compNo Crossbar Control signal of MUXs

control Byte MUX 2-1 x 16 Control signal of MUXs

prena1RegLdEn PRENA1 Register Enable of Register

prena2RegLdEn PRENA2 Register Enable of Register

prena3RegLdEn PRENA3 Register Enable of Register

prena4RegLdEn PRENA4 Register Enable of Register

firstbyte1 Pipeline Stage Comparator 1 Situation of first byte in memory

bank (used in concatenation circuit

for creating the final result)

Firstbyte2 Pipeline Stage Comparator 2 Situation of first byte in memory

bank (used in concatenation circuit

for creating the final result)

Firstbyte3 Pipeline Stage Comparator 3 Situation of first byte in memory

bank (used in concatenation circuit

for creating the final result)

Firstbyte4 Pipeline Stage Comparator 4 Situation of first byte in memory

bank (used in concatenation circuit

for creating the final result)

Table 4.13. Signals controlled by FSM

4.9 Pipeline Stage

Pipeline Stage is a component of a higher level than those previously described.

Especially, it contains all the components described above; a memory (two BRAMs),

a Crossbar, four Pipeline Stage Comparators, a Byte MUX 2-1 x 16, a Longest Match

Circuit (Comparator 4-1), a Longest Match (Comparator 2-1) and some Pipeline

Registers presented in sector 4.7. The connections between these components are

described in the specific sectors and summarized in the Figure 4.21.

Moreover, this figure does not show the FSM which is placed for controlling the

procedure of each Pipeline Stage. The FSM used is described in details in sector 4.8.

65

Figure 4.21. Block diagram of a Pipeline stage. Wire widths are in Bytes.

Pipeline Stage Interface is presented in Figure 4.22 and more details about signal

functionality are presented in Table 4.14.

PIPELINE STAGE

addrin (15)

bufferin (128)

prena1in (16)

prena2in (16)

prena3in (16)

prena4in (16)

lonmain (16)

addrout (15)

bufferout (128)

prena2out (16)

prena1out (16)

prena3out (16)

prena4out (16)

lonmaout (16)

clk reset

Figure 4.22. Pipeline Stage Interface

66

Signal Width (bits) Type Description

clk 1 Input Clock signal of system

reset 1 Input System reset

addrin 15 Input Memory address input

bufferin 128 Input Look-ahead buffer input

prena1in 16 Input PRENA1 input

prena2in 16 Input PRENA2 input

prena3in 16 Input PRENA3 input

prena4in 16 Input PRENA4 input

lonmain 16 Input LONMA input

addrout 15 Output Memory address output

bufferout 128 Output Look-ahead buffer output

prena1out 16 Output PRENA1 output

prena2out 16 Output PRENA2 output

prena3out 16 Output PRENA3 output

prena4out 16 Output PRENA4 output

lonmaout 16 Output LONMA output

Table 4.14. Pipeline Stage pinout

4.10 Compressor

Compressor is the top level of this system. The main characteristics of the architecture

used are:

 256 pipeline stages placed in row (the outputs of pipeline stage n are

connected to the inputs of pipeline stage n+1)

 16 comparisons in parallel in every pipeline stage (increasing the

comparisons‟ latency help us to improve the speed of the device).

 Memory repetition (100% memory overhead) for higher memory throughput

and, consequently, higher speed.

This architecture is showed in Figure 4.23.

The interface of the device is similar to the one of the lower level (Pipeline Stage),

because the inputs of the device are connected to the inputs of the first pipeline stage

and the outputs of 256
th

 pipeline stage to the outputs of compressor. Figure 4.24

shows the interface described above. In addition, more details about the signals of this

figure are given in Table 4.15.

PIPELINE

STAGE

1

PIPELINE

STAGE

2

PIPELINE

STAGE

255

PIPELINE

STAGE

3

PIPELINE

STAGE

256

clk reset

addrin (15)

bufferin (128)

prena1in (16)

prena2in (16)

prena3in (16)

prena4in (16)

lonmain (16)

addrout1 (15)

bufferout1 (128)

prena2out1 (16)

prena1out1 (16)

prena3out1 (16)

prena4out1 (16)

lonmaout1 (16)

clk reset

addrout2 (15)

bufferout2 (128)

prena2out2 (16)

prena1out2 (16)

prena3out2 (16)

prena4out2 (16)

lonmaout2 (16)

addrout3 (15)

bufferout3 (128)

prena2out3 (16)

prena1out3 (16)

prena3out3 (16)

prena4out3 (16)

lonmaout3 (16)

clk reset

addrout254 (15)

bufferout254 (128)

prena2out254 (16)

prena1out254 (16)

prena3out254 (16)

prena4out254 (16)

lonmaout254 (16)

addrout255 (15)

bufferout255 (128)

prena2out255 (16)

prena1out255 (16)

prena3out255 (16)

prena4out255 (16)

lonmaout255 (16)

addrout (15)

bufferout (128)

prena2out (16)

prena1out (16)

prena3out (16)

prena4out (16)

lonmaout (16)

clk reset clk reset

Figure 4.23. Compressor Architecture

COMPRESSOR

addrin (15)

bufferin (128)

prena1in (16)

prena2in (16)

prena3in (16)

prena4in (16)

lonmain (16)

addrout (15)

bufferout (128)

prena2out (16)

prena1out (16)

prena3out (16)

prena4out (16)

lonmaout (16)

clk reset

Figure 4.24. Compressor Interface

Signal Width (bits) Type Description

clk 1 Input Clock signal of system

reset 1 Input System reset

addrin 15 Input Memory address input

bufferin 128 Input Look-ahead buffer input

prena1in 16 Input PRENA1 input

prena2in 16 Input PRENA2 input

prena3in 16 Input PRENA3 input

prena4in 16 Input PRENA4 input

lonmain 16 Input LONMA input

addrout 15 Output Memory address output

bufferout 128 Output Look-ahead buffer output

prena1out 16 Output PRENA1 output

prena2out 16 Output PRENA2 output

prena3out 16 Output PRENA3 output

prena4out 16 Output PRENA4 output

lonmaout 16 Output LONMA output

Table 4.15. Compressor Interface

The architecture described before and showed in Figure 4.23 is the optimal, but, in

practice, it cannot be implemented because of the device utilization constraint.

According to the measurements, 512 BRAMs must be used, but the largest FPGA

today has only 336 and 20% more logic cells than the same FPGA has. So it is

essential to find an alternative solution for implementing the compressor with 256

pipeline stages. The solution found is to implement the compressor on two FPGAs

(half of the compressor on each one). The connection between them is implemented

using an external interface. This architecture can be created because of the low system

frequency (around 50 MHz) and it will be easy to create the external interface needed.

This final architecture for the compressor is showed in Figure 4.25.

69

½ of COMPRESSOR

(128 PIPELINE STAGES)

½ of COMPRESSOR

(128 PIPELINE STAGES)

EXTERNAL

INTERFACE

clk reset

addrin (15)

bufferin (128)

prena1in (16)

prena2in (16)

prena3in (16)

prena4in (16)

lonmain (16)

clk reset

addrout (15)

bufferout (128)

prena1out (16)

prena2out (16)

prena3out (16)

prena4out (16)

lonmaout (16)

2
nd

FPGA

1
st

FPGA

Figure 4.25. Compressor Architecture (with device utilization constraint)

4.11 Optimizations

Regardless the throughput derived from the main design described above is

satisfactory, some experiments conclude that the performance can be improved. So it

is essential to make some improvements – optimizations. The experiments show that

the critical path of this device is the FLM
(11)

 Circuit, the counter placed in Pipeline

Stage Comparator for counting the number of equal bytes in row, which is

predictable, because includes 16 steps, each one for every byte. Each step includes an

adder, a comparator and some multipliers and all steps must be serial, because

everyone needs the result derived from the previous one. Consequently, the work is

concentrated in this component to improve the performance of the device. The

remainder of this sector describes the optimizations chosen to be done in FLM Circuit

for higher speed of the device.

(11) FLM: Find Longest Match

4.11.1 Optimization 1 – Pipelined FLM (16 pipeline stages)

The first thought is to make a fully pipelined FLM Circuit with 16 pipeline stages,

each of which will be used for the calculation of a byte, but this is not potential,

because this implementation leads us to a design, which needs 40 – 45 % more logic

cells than the largest FPGA has available. This constraint leads us to characterize this

attempt a failure and go on finding a different approach.

4.11.2 Optimization 2 – Pipelined FLM (8 pipeline stages)

After the previous futile attempt, it is decided to decrease the number of pipeline

stages of this component. So 8-stage pipelined FLM Circuit is tested and the results

show that it can be implemented using the available logic cells. Every stage must be

responsible for calculating two bytes and designed for this purpose. It concludes an

70

adder, a comparator and two multiplexers for the calculation of every byte. The

architecture used for implementing a FLM pipeline stage is showed in Figure 4.26.

ADDER

(input + 1)

COMPARATOR

2-1

4 4

40

MUX

2-1
4

4

MUX

16-1

16

ADDER

(input + 1)

COMPARATOR

2-1

4

40

MUX

2-1
4

MUX

16-1

4 4

selector1 selector2

maxSumIn

sumIn

bitstreamIn

REGIST

ER

REGIST

ER

REGIST

ER

REGIST

ER

16
addressin

16

4

4

16
addressout

maxSumOut

sumOut

bitstreamout

Figure 4.26. FLM Pipeline Stage Architecture

The adders increase the previously calculated match by 1 and create the new match,

which is chosen if the specific bytes are equal. Otherwise, the new match is initialized

to 0. This procedure is implemented with the use of two multipliers (one for each byte

calculation). The first one selects the specific bit (refers to the specific bytes) from the

bitstream (output of 16-Byte Comparator), which shows if the bytes are equal („1‟) or

not („0‟). The second one gets as inputs the increased match and the constant “0000”

and chooses the new match according to the result of the previous multiplier (if „1‟,

output is the increased match, else the constant “0000”). Furthermore, the new match

is compared with the longest one calculated at the previous pipeline stages. Finally,

bitstream and memory address go through the next pipeline stages; the bitstream for

the selectors of multipliers in following pipeline stages and the memory address for

the creation of final result in concatenation circuit.

Apart from the changes in the architecture, the procedure followed by each pipeline

stage must be changed. So the FSM of the system is changed. The procedure still lasts

five cycles, but there are 8 cycles needed for the initialization of every pipeline stage

because of the 8-stage pipelined FLM circuit and, consequently, the increased latency

of the device. Figure 4.27 shows the state sequence of the new FSM and Figure 4.28

presents more information about the procedure followed.

1 2 3 4 5

13 12 11 10 9

6 7

8

Figure 4.27. FSM scheme (optimized system)

71

(1) 1st memory access (bytes 1-16) & PRENAs Comparison (MUX)

(2) 2nd memory access (bytes 17-31), 1st comparison (Crossbar) &

PRENAs Comparison (MUX)

(3) 2nd comparison (Crossbar) & PRENAs Comparison (MUX)

(4) 3rd comparison (Crossbar) & PRENAs Comparison (MUX)

(5) 4th comparison (Crossbar) & PRENAs Comparison (MUX)

(6) 1st memory access (bytes 1-16) & PRENAs Comparison (MUX)

(7) 2nd memory access (bytes 17-31), 1st comparison (Crossbar) &

PRENAs Comparison (MUX)

(8) 2nd comparison (Crossbar) & PRENAs Comparison (MUX)

while

(9) 3rd comparison (Crossbar) & PRENAs Comparison (MUX)

(10) 4th comparison (Crossbar) & 1st comparison (MUX)

(11) 1st memory access (bytes 1-16) & 2nd comparison (MUX)

(12) 2nd memory access (bytes 17-31), 1st comparison (Crossbar) &

3rd comparison (MUX)

(13) 2nd comparison (Crossbar) & 4th comparison (MUX)

back to while

Figure 4.28. Pipeline Stage procedure (optimized system)

This time, the procedure is divided in three parts, in contrast to the procedure

previously described which is divided in the two parts. The first part is referred to the

memory use, the second one to the part before the FLM circuit (as refer to the choice

of crossbar which leads Pipeline Stage Comparators) and the third one to the part after

it (as refer to the selection of Byte MUX 2-1 x 16).

72

73

5

Performance, Conclusions

& Future Work

In this chapter, a performance comparison will be made between FPGA

implementation of Titan-R and the results published by X-MatchPRO implementation

in [8]. Furthermore, this chapter summarizes the work and the conclusions and

suggests areas for further study.

5.1 Performance

This section is divided in two parts; the first one presents the results published by X-

MatchPRO implementation and the second one provides the performance of this

implementation plus the utilization of the device used.

5.1.1 X-MatchPRO Performance

As refer to X-MatchPRO implementation, two data sets have been chosen as

representatives of network and computer-originated traffic: the memory data set is

formed by data captured directly from main memory in a UNIX workstation used in

an engineering environment. The disc data set is formed by typical data found in the

hard disk of the same workstation.

Figures 5.1 and 5.2 show the compression performance comparison. It is common in

networking and storage applications that data is present in small packets so the

performance of these algorithms is evaluated in function of four different block sizes

plus file-based compression. The “Y” axis is the compression ratio defined as the ratio

output bits / input bits so the smaller the figure the better the compression. The “X”

axis is the block size defined as the number of bytes in a block data to be compressed

independently. This means that the dictionary is cleared each time a data block is

processed. Memory data exhibits a strong 32-bit granularity because it is based on a

32-bit operating system so it suits well the X-MatchPRO algorithm. Compression

improves with block size until a 4-Kbyte block size is used. This is a natural block

size for memory pages and further increases in block size do not improve compression

significantly.

74

Figure 5.1. Compression performance on the memory data set

Figure 5.2. Compression performance on the disc data set

75

The disc data set of Figure 5.2 is more textually bias with a lot of database

information so byte-oriented methods such as LZ derivatives have an advantage. It

shows that compression improves with packet size until around 16 kB for the LZ-

derivatives and 4 kB for X-MatchPRO. The smaller X-MatchPRO dictionaries tend to

saturate earlier than their LZ equivalents.

Table 5.1 shows a summary of the features of lossless data compression devices. X-

MatchPRO results are based on three different dictionary sizes: 16, 32 and 64

locations. A dictionary larger than 64 locations improves compression but the flip-

flop rich architecture of the dictionary demands larger FPGAs. It is also necessary to

replace the uniform binary coding of the match locations by a more complex coding

technique. Otherwise, the extra number of bits required to code the match locations in

a large dictionary damages the compression ratio specially when compressing small

packets. These three implementations trade complexity for compression while speed

remains invariant. Table 5.1 summarizes the characteristics of the X-MatchPRO

algorithm as implemented in Xilinx, Altera and Actel technologies. The complexity

figures correspond to the dictionary with 16 entries. Doubling the dictionary size

increases chip complexity by a factor of 1.5 approximately.

DEVELOPERS System Design

Group

Loughborough

University

CHIP X-MatchPROv4 (16-word dictionary)

PROCESS 0.18 micron

SRAM-CMOS

FPGA

Xilinx

VIRTEX-E

0.18 micron

SRAM-CMOS

FPGA

Altera

APEX20KE

0.25 micron

FLASH-CMOS

FPGA

Actel

A500K

ProASIC

COMPLEXITY 5367 LUT‟s

55% of a

XCV400EBG

432-8

5040 LC‟s

60% of a

EP20K200EFC

484-1

9039 TILE‟s

70% of a

A500K130-

BG456

CLOCK

SPEED

50 MHz 50 MHz 25 MHz

THROUGHPUT 200 Mbytes/s 200 Mbytes/s 100 Mbytes/s

FULL-DUPLEX

PERFORMANCE

400 Mbytes/s 400 Mbytes/s 200 Mbytes/s

ALGORITHM X-MatchPRO X-MatchPRO X-MatchPRO

EXTERNAL RAM

REQUIRED

NO NO NO

COMPRESSION

RATION

0.58 16 word

0.53 32 word

0.51 64 word

0.58 16 word

0.53 32 word

0.51 64 word

0.58 16 word

0.53 32 word

0.51 64 word

Table 5.1. X-MatchPROv4 Performance Summary

76

The X-MatchPRO chips use a lower-clock frequency than the ASIC implementations,

but it can achieve higher throughput thanks to its internal parallel architecture able to

process 4 B of input information in a single cycle while all the other solutions only

process a single byte. All these chips use CAM circuits to implement the dictionaries

and in the case of the fastest X-MatchPRO chips, each input symbol can be processed

in a single cycle. Adaptation in the fast LZ1 implementations is based on keeping a

window with the most recently seen symbols in the dictionary. Symbols enter and

leave the dictionary in a FIFO
(12)

 style, so model adaptation is simplified if compared

with X-MatchPRO, where the best match must be resolved before the model is ready

for a new cycle. X-MatchPRO solves the adaptation feedback loop that exists in its

model with the use of the out-of-date adaptation mechanism that delays the arrival of

match information to the dictionary by one cycle without affecting its efficiency. The

packing and unpacking of compressed data is also simple in ASIC devices because

they map variable-length streams of symbols to fixed length codewords so the

boundaries between codewords are easily identifiable. On the other hand, X-

MatchPRO codewords are variable in length and their unpacking is a more complex

process and indeed, a performance limitation factor in the chip. The complexity and

performance of the Altera Apex and Xilinx Virtex chips is comparable because both

use a hierarchical architecture with SRAM switches based on logic cells (Altera) or

logic elements (Virtex) with similar complexity and identical feature size. Actel

ProASIC devices, on the other hand, use a flat architecture with fine-grained logic

cells that increases routing complexity and negatively affects performance. ProASIC

feature size is also larger than the Xilinx and Altera feature size and this is also a

reason for lower performance.

To sum up, X-MatchPRO offers an unprecedented level of

compression/decompression throughput in a FPGA implementation of a lossless data-

compression algorithm for general applications. The hardware architectures have been

verified in three different FPGA technologies. The fine granularity of the Actel

ProASIC devices has proven very efficient to implement the flip-flop rich X-

MatchPRO architecture. The higher granularity of the Altera and Xilinx technologies

combined with a more advanced process has enabled throughputs well over the Gbit/s

mark. The full-duplex implementation effectively uses the memory resources

available in these FPGAs to simultaneously handle a compressed and uncompressed

data stream. The architecture is easily scalable so it can be adapted to newer FPGAs

with higher gate counts with little effort. The aim is to improve compression for the

disk data set by increasing dictionary length and introducing more efficient coding

techniques than simple uniform binary coding for the match locations. It is also

expected that an ASIC implementation of this algorithm will be able to improve

throughput by a typical factor of 3, if compared with a similar feature size FPGA.

(12) FIFO: first-in/ first-out

5.1.2 Titan II Performance

This section presents Titan II, which is the second version of an ASIC implementation

of a high-speed compressor. Titan II developed by Y. Papaefstathiou and has the same

architecture with Titan-R described in previous chapters. This implementation

performance is only presented for reference, because any comparison between ASIC

and FPGA implementation has no sense.

77

5.1.2.1 Performance versus hardware cost

To calculate the silicon area and the timing characteristics, the design was synthesized

(using Synopsys Design Compiler V, http://www.synopsys.com), and placed and

routed (using Silicon Ensemble-PKS, http://www.cadence.com) for UMC‟s 0.18-μm-

CMOS technology, with a worst-case 2-input NAND gate delay of 0.25 ns, and a

worst-case memory latency of 2.45 ns. The Titan II was initially designed for 1-Gbps

networks. By using all the speedup factors described earlier, the compressor can

indeed process data at a constant speed of more than 1 Gbps (1.17 Gbps), introducing

a latency of 256 clock cycles or a few mean packet times. For this design to be usable

in multigigabit networks (for example, 2.5 Gbps to 10 Gbps), the only alteration

needed is to use 256 comparators in each pipeline stage instead of 64, letting the

device perform all the necessary comparisons simultaneously. When using 256

comparators in each pipeline stage, the latency is slightly less than 3 ns, allowing

Titan II to work with a clock rate of 333 MHz. As a result, every compressor can

process data at a rate of more than 2.5 Gbps (2.63 Gbps). By plugging four of these

compressors in parallel (and using the compressibility table to load-balance flows to

compression units), the system developer can achieve a 10-Gbps total throughput.

Obviously, in this case, the system administrator should take care to initialize the

compressibility table such that it optimizes the load balancing. The far simpler

decompression unit can process data at 2.7 Gbps without any alterations to its

architecture. Consequently, to process data at a full-duplex rate of 10 Gbps, a

compression or decompression system requires four pairs of compression and

decompression units.

5.1.2.2 Silicon area versus compression gain

Using the network data presented earlier and altering the Titan II‟s hardware modules

produced the results in Figure 5.3. A full-featured, single-dictionary device that can

simultaneously compress data at 2.5 Gbps and decompress packets at 2.7 Gbps

requires 230-Kbyte gates and 96-Kbyte, 1-bit SRAM cells. Consequently, using the

0.18-μm technology, this device is about 5.5 mm2. Moreover, a 10-Gbps device (with

four cores operating in parallel) can easily fit in a 25-mm2 die (5 mm Χ 5 mm). If less

die area is available, the chip‟s dimensions can be reduced, by reducing memory

repetition (so that not all possible matches will be examined) and the sizes of the

supported dictionaries. Reducing the die area results in lower compression gains, as

Figure 9 clearly demonstrates. In particular, reducing the device‟s dimensions by a

factor of four reduces the compression gain by about 30%; thus, if 2 mm2 are

available, the worst HTTP traffic compression gain decreases from 48% to 35%.

http://www.synopsys.com/
http://www.cadence.com/

78

Figure 5.3. Results of using a 0.18−μm technology against the worst-case

compression gain: die area in mm2 (a) and gate count (b).

5.1.2.3 Silicon area versus throughput

If the device is to be used on a lower-bandwidth IP network, the required silicon area

would be reduced proportionally to the requested throughput. Because this increases

the number of clock cycles for each major cycle, the device should perform fewer

comparisons in parallel, and therefore requires fewer comparators. In fact, the number

of comparators decreases proportionally to the decrease in bandwidth. Figure 10

shows this trade-off. Therefore, on a 2.5-Gbps network, the device requires 230-Kbyte

gates and 96-Kbyte 1-bit SRAM cells. If the bandwidth serviced is 1.25 Gbps, the

device needs 180-Kbyte gates and 102-Kbyte 1-bit SRAM cells. In general, reducing

the gate count by 25% halves the device‟s bandwidth. For lower than 250-Mbps

speeds, a slightly different architecture is used, and thus its silicon area estimations

are not included in Figure 5.4.

79

Figure 5.4. Gate and 1-bit SRAM count against device throughput.

Because the proposed compression system is highly flexible, it can also be used in

lower-end networking systems, such as office gateways, to reduce contention on the

link connected to the third-party network provider, thus making those gateway

systems more effective. I am currently extending the proposed design approach to

lower-speed access networks, especially wireless, where I expect to see similar

benefits. When creating an efficient compression device in a wireless environment,

special care should be taken to reduce the device‟s power consumption. I am therefore

fine-tuning the overall architecture as well as the micro-organization of the various

submodules to consume the least power possible.

5.1.3 Titan-R Performance

In previous chapters, the Titan-R architecture is presented. We present the idea on

which the architecture is based and then we describe the design process and the

implementation of it. Also, we propose an idea in order to improve the throughput of

it. Now, we have to evaluate it and present the area cost as well as the performance

and the throughput. These values will give us a clear view of the quality of our design.

Furthermore, we will compare our design with X-MatchPRO architecture.

First of all, Xilinx ISE 9.1i was used in order to develop, synthesize and implement

our design and ModelSim 6.0a in order to verify its correct functionality. The device

family used is Virtex5, the device is “XC5VLX330T” and the device speed is -2.

After completing the implementation we measure the area cost and the performance

using the synthesis and place and route tools of ISE.

Before starting the evaluation of our design and presenting the results, we will give

some information to the readers about the metrics we use in order to evaluate our

system. The metric we used to measure the area cost is the number of Slice LUT‟s and

Logic Cells (LC‟s). The number of Slice LUTs is the number of the Reported Slices

multiplied by a factor of 4. Moreover, the number of BRAMs used is another metric

measured for evaluating the memory cost.

80

Furthermore, some metrics are used in order to measure the speed of our design.

Using Xilinx ISE synthesis tools, the Performance (Operating Frequency) of the

system is measured. Multiplying this Frequency with the input bits of the system per

cycle, the Throughput is calculated. Throughput is used widely by most researchers in

order to evaluate their research. Another metric which shows the compression quality

is the compression ratio which is defined as the ratio output bits / input bits, so the

smaller the figure the better the compression.

This section contains, at first, area and memory evaluation and utilization. Then we

evaluate the Performance of our system. At paragraph 5.1.1, X-MatchPRO

Architecture is evaluated by combining Area, Memory and Performance results.

Finally, our implementation is compared with related work.

First of all, the area cost for every structure of the Titan-R Architecture is shown in

Tables 5.2 – 5.7.

Structure No of Logic Cells

Default design Optimized design

1-bit adder carry out: 512 -

2-bit adder: 512 -

2-bit adder carry out: 512 -

3-bit adder: 1536 -

3-bit adder carry out: 512 -

4-bit adder: 3584 8192

4-bit adder carry out: 512 -

Total (Adders/Subtractors): 7680 8192

Table 5.2. Adders/Subtractors Logic Cells Utilization

Structure No of Logic Cells

Default design Optimized design

128-bit register: 128 128

15-bit register: 128 128

16-bit register: 640 4224

4-bit register: - 7680

8-bit register: - 4096

Total (# Registers): 896 16256

Table 5.3. Registers Logic Cells Utilization

Structure No of Logic Cells

Default design Optimized design

1-bit latch 31744 31744

Total (# Latches): 31744 31744

Table 5.4. Latches Logic Cells Utilization

81

Structure No of Logic Cells

Default design Optimized design

2-bit comparator greater 1024 -

3-bit comparator greater 2048 -

4-bit comparator greater 4608 8704

5-bit comparator greater 512 -

Total (# Comparators): 8192 8704

Table 5.5. Comparators Logic Cells Utilization

Structure No of Logic Cells

Default design Optimized design

1-bit 16-to-1 multiplexer - 8192

Total (# Multiplexers): - 8192

Table 5.6. Multiplexers Logic Cells Utilization

Structure No of Logic Cells

Default design Optimized design

1-bit xor2 65536 65536

Total (# Xors): 65536 65536

Table 5.7. Xors Logic Cells Utilization

After “Synthesize XST” and “Place & Route” processes, some measurements for the

device utilization of Titan-R implementations are derived. The results of these

measurements of both implementations are presented in Tables 5.8 – 5.11. Especially,

Tables 5.8, 5.9, 5.10 and 5.11 show Slice Logic Utilization, Slice Logic Distribution,

I/O Utilization and Specific Feature Utilization of the device, respectively.

 Default design Optimized design

Number of Slice Registers

(out of 207360)

60672

(28%)

124304

(56%)

Number of Slice LUTs

(out of 207360)

126938

(60%)

116440

(56%)

Number used as Logic

(out of 207360)

126938

(60%)

116440

(56%)

Table 5.8. Slice Logic Utilization

82

 Default design Optimized design

Number of Bit Slices used 181546 199632

Number with an unused Flip

Flop

120874

(66%)

75328

(37%)

Number with an unused LUT 54608

(30%)

83192

(41%)

Number of fully used Bit Slices 6064

(3%)

41112

(20%)

Table 5.9. Slice Logic Distribution

 Default design Optimized design

Number of IOs 448 448

Number of bonded IOBs

(out of 960)

448

(46%)

448

(46%)

IOB Flip Flops/Latches - -

Table 5.10. I/O Utilization

 Default design Optimized design

Number of Block RAM/FIFO

(out of 324)

256

(79%)

256

(79%)

Number of

BUFG/BUFGCTRLs

(out of 32)

16

(50%)

3

(9%)

Table 5.11. Specific Feature Utilization

Except for the device utilization measurements, some measurements referred to the

performance of the device are carried out. Table 5.12 shows the timing summary

derived from these measurements.

 Default design Optimized design

Minimum period (ns) 20.274 5.976

Maximum Frequency (MHz) 49.323 167.343

Minimum input arrival time

before clock (ns)

18.643 6.274

Maximum output required time

after clock (ns)

2.799 2.799

Maximum combinational path

delay (ns)

0.962 0.957

Table 5.12. Timing Summary (Speed Grade: -2)

83

Regardless of the low clock frequency of this device for both implementations

(around 49 MHz for the default implementation and 167 MHz for the optimized one),

a great throughput value is achieved thanks to the architecture used which achieves a

high level of parallelism. The throughput achieved is 2.525 Gb/s for the default design

and 8.566 Gb/s for the optimized one.

Furthermore, the compression ratio is calculated by the division of the compressed

size and the raw size. In this device, the values of compression ratio are derived from

the Titan II hardware simulator according to the trace size.

Finally, the performance summary of Titan-R implementations (including the values

of compression ratio) is presented in Table 5.13.

DEVELOPERS Microprocessor & Hardware Laboratory

Technical University of Crete

CHIP Titan-R

Default design Optimized design

PROCESS FPGA

Xilinx

VIRTEX5

FPGA

Xilinx

VIRTEX5

COMPLEXITY 126938 LUT‟s

60% of a

XC5VLX330T

116440 LUT‟s

56% of a

XC5VLX330T

CLOCK

SPEED

49.323 MHz 167.343 MHz

THROUGHPUT 2.525 Gb/s 8.566 Gb/s

ALGORITHM LZ77 LZ77

EXTERNAL RAM

REQUIRED

NO NO

COMPRESSION

RATION

0.3253 (Trace size: 2.965)

0.4377 (Trace size: 1.714)

0.4398 (Trace size: 3.339)

0.3452 (Trace size: 1.846)

0.4629 (Trace size: 1.582)

0.3253 (Trace size: 2.965)

0.4377 (Trace size: 1.714)

0.4398 (Trace size: 3.339)

0.3452 (Trace size: 1.846)

0.4629 (Trace size: 1.582)

Table 5.13. Titan-R Performance Summary

Except for the measurements carried out on the whole system, some other

measurements were done using devices with less pipeline stages for computing the

performance achieved. The main advantage of these devices is that they need

decreased area cost and can be implemented in smaller (and cheaper) FPGA devices.

These implementations have much lower throughputs, but they may be useful

according to the application. So, we chose to measure four implementations of 16, 32,

64 and 128 pipeline stages implemented in Spartan3, Virtex2P, Virtex4 and Virtex5

families, respectively. Tables 5.14 and 5.15 show the performance summary of these

devices as refer to the default and optimized design, respectively.

84

DEVELOPERS Microprocessor & Hardware Laboratory

Technical University of Crete

CHIP Titan-R (default design)

PIPELINE

STAGES

16 32 64 128

PROCESS FPGA

Xilinx

SPARTAN3

FPGA

Xilinx

VIRTEX2P

FPGA

Xilinx

VIRTEX4

FPGA

Xilinx

VIRTEX5

COMPLEXITY 28592 LUT‟s

69% of a

XC3S2000

54759 LUT‟s

82% of a

XC2VP70

113640 LUT‟s

84% of a

XC4VLX160

126938 LUT‟s

60% of a

XC5VLX330T

CLOCK

SPEED

20.641 MHz

(Speed grade:

-5)

35.525 MHz

(Speed grade:

-7)

43.424 MHz

(Speed grade:

-12)

49.323 MHz

(Speed grade:

-2)

THROUGHPUT 66.051 Mb/s 227.36 Mb/s 555.827 Mb/s 1.263 Gb/s

Table 5.14. Devices with less pipeline stages Performance Summary

(default design)

DEVELOPERS Microprocessor & Hardware Laboratory

Technical University of Crete

CHIP Titan-R (optimized design)

PIPELINE

STAGES

16 32 64 128

PROCESS FPGA

Xilinx

SPARTAN3

FPGA

Xilinx

VIRTEX2P

FPGA

Xilinx

VIRTEX4

FPGA

Xilinx

VIRTEX5

COMPLEXITY 24359 LUT‟s

59% of a

XC3S2000

51991 LUT‟s

78% of a

XC2VP70

88972 LUT‟s

65% of a

XC4VLX160

116440 LUT‟s

56% of a

XC5VLX330T

CLOCK

SPEED

70.889 MHz

(Speed grade:

-5)

145.427 MHz

(Speed grade:

-7)

150.095 MHz

(Speed grade:

-12)

167.343 MHz

(Speed grade:

-2)

THROUGHPUT 226.845 Mb/s 930.733 Mb/s 1.921 Gb/s 4.283 Gb/s

Table 5.15. Devices with less pipeline stages Performance Summary

(optimized design)

The final measurements were carried out in designs with less pipeline stages, but this

time, we used the same FPGA device (XC5VLX330T of Xilinx Virtex5 family). The

only purpose of these measurements was to compare the performance achieved in all

these designs. Table 5.16 presents the results for the clock frequency and the

throughput of these systems. Moreover, Figures 5.5 and 5.6 show the graphs of these

results.

85

Pipeline

stages

Clock Frequency

(MHz)

Throughput

(Mbps)

Default

design

Optimized

design

Default

design

Optimized

design

8 52,877 175,108 84,6032 280,1728

16 49,277 171,174 157,6864 547,7568

32 47,732 167,343 305,4848 1070,9952

64 49,323 167,343 631,3344 2141,9904

96 48,51 167,343 931,392 3212,9856

128 49,323 167,343 1262,6688 4283,9808

Table 5.16. Clock Frequency and Throughput measurement results

Figure 5.5. Clock Frequency Graph

Figure 5.6. Throughput Graph

86

The final step of the procedure of system development was the simulation in order to

verify the correct functionality of the system. The simulator used was Modelsim 6.0a.

The system is simulated by using many different testbenches, which are divided in

three main categories. The first category included testbenches chosen for having no

match (longest match equal to zero) or low value of longest match, the second one

included those with high value of longest match or full match (longest match equal to

16) and the third one included testbenches chosen in random or hierarchical method.

Hierarchical testbenches was chosen for having linearly increased longest match

according to the time. All the testbenches used show that the system works properly in

every situation with the same good performance.

5.2 Conclusions

In this work, we developed the Titan-R Architecture which is an FPGA-based IPcomp

Processor for high-speed networks. Two were the implementations proposed for

creating Titan-R; the first one was the default implementation with a simple counter in

Pipeline Stage Comparator which serially counts the longest match between two 16

bytes long vectors and the other one was to use a pipelined counter (with 8 pipeline

stages) instead of the simple one for improving the performance of the system. The

main goal of this thesis was to improve, as much as it was possible, the performance

of this device and, especially, to increase the value of the throughput. That was the

motivation for creating the optimized version of Titan-R.

The results obtained from the implementations of the device are encouraging,

regarding they are compared to those reported by other systems as X-MatchPRO

architecture. We achieved to develop a system with higher throughput and lower

compression ratio (better compression) trading the area and memory cost and the

latency of the system. The default implementation achieves a value of throughput

around to 2.5 Gb/s and compression ratio lower than that proposed to the related

work, but a large FPGA device with 60% LUT‟s Utilization and 79% BRAM‟s

Utilization is used. Moreover, the latency is very high at a level of 256. Then, the

optimized implementation achieves to improve the value of throughput around to 8.5

Gb/s by keeping the compression ratio and the device utilization at the same levels,

but the main drawback of this implementation is that it increases the latency of the

system and, especially, multiplies it by a factor of 8, due to the 8 pipeline stages used

for implementing the counter (FLM circuit) in Pipeline Stage Comparator of every

Pipeline Stage of the whole system. The new value of latency is 256 x 8 = 2048.

87

5.3 Future Work

Regardless of the encouraging results derived from the above implementations, there

are some things necessary for the further development of the system.

The first idea is to implement the decompression unit by using the implementations of

the compression one, which is not so complex, because the decompression unit is

much simpler than the compression one and does not need to compare the input data

to the dictionary data. It simply maintains the compressibility table and a 4-Kbyte

dictionary for each compressible flow.

Another idea is to develop an interface with both the two units (compression and

decompression one), which will dynamically change according to the operation

needed. This interface is going to be developed by using dynamic reconfiguration.

Moreover, it might be useful to implement and simulate it on board, which is going to

help us to see the full operation of this device and how useful it may be.

Another idea would be to connect many FPGAs in parallel in order to improve the

performance of the system, because parallel processing will enable us to increase the

throughput.

Furthermore, it may be useful a further study in I/O Interface. The first idea would be

to choose external pins for being responsible for the communication of the system

with the external world, but, this may cause to the performance of the system. So we

must find other solutions for implementing the I/O issue. Serial and Ethernet ports,

which are contained in modern FPGA devices, would be alternative solutions for

solving this problem, but we do not know if there will be an impact on the

performance.

Another subject for further research will be to make some measurements for the

energy cost. This device trades area and memory cost for improving its performance

(throughput), so it will be very useful to know the amount of the energy which is

spent for achieving this high value of throughput.

To sum up, these extensions lead closer to an efficient FPGA implementation of

Titan-R.

88

89

Bibliography

[1] I. Papaefstathiou, “Increasing packet network bandwidth through low level

compression”.

[2] I. Papaefstathiou, “Titan II: An IPcomp Processor for 10-Gbps Networks”,

IEEE Design & Test of Computers, November – December 2004.

[3] I. Papaefstathiou, “An Ultra High-Speed Compressor for Packet Networks”.

[4] I. Papaefstathiou, “Accelerating ATM: On-line Compression of ATM

Streams”, 18th IEEE IPCCC’99, Phoenix, Arizona, 10-12 February 1999.

[5] I. Papaefstathiou, “Compressing ATM streams”, IEEE Data Compression

Conference 1999 (DCC’99), Utah, 29-31 March 1999.

[6] I. Papaefstathiou, “Measurement based Connection Admission Control

algorithm for ATM networks that use low level compression”, 7
th

International Conference on Intelligence in Service and Networks, IS&N 2000,

February 25-28 2000, Athens, Greece.

[7] I. Papaefstathiou, “Compression simulation results”, White paper, Cambridge

University, http://www.cl.cam.ac.uk/ip2007/res.html.

[8] J. Nunez and S. Jones, “Gbit/s Lossless Compression Hardware”, IEEE

Transactions on Very Large Scale Integration (VLSI) Systems, vol. 11, no. 3,

June 2003.

[9] J. Nunez, “X-MatchPROvw Compression/Decompression FPGA Processor”,

May 2002.

[10] J. Nunez and S. Jones, “The X-MatchPRO 100 Mbytes/second FPGA-Based

Lossless Data Compressor”.

[11] J. Ziv and A. Lempel, “A Universal Algorithm for Sequential Data

Compression”, IEEE Trans. Information Theory, vol. IT-23, no. 3, May 1978,

pp 337-343.

[12] J. Hennessy and D. Patterson, “Computer Architecture A Quantitative

Approach”, 3rd ed., San Fransisco: Morgan Kaufmann Publishers, 1990.

[13] S. Sjoholm and L. Lindh, “VHDL For Designers”, Prentice Hall, 1997.

[14] S. Brown and Z. Vranesic, “Fundamentals of Digital Logic with VHDL

Design”, McGraw-Hill, 2000.

http://www.cl.cam.ac.uk/ip2007/res.html

90

[15] Xilinx, “Spartan-3 FPGA Family: Complete Data Sheet”, May 25, 2007.

[16] Xilinx, “Virtex-II Pro and Virtex-II Pro X Platform FPGAs: Complete Data

Sheet”, October 10 2005.

[17] Xilinx, “Virtex-4 Family Overview”, October 10 2006.

[18] Xilinx, “Virtex-5 Family Overview: LX and LXT Platforms”, January 4 2007.

[19] Xilinx, “Development System Reference Guide”.

[20] Xilinx, “ISE 9.1i Quick Start Tutorial”.

[21] Xilinx, “XST User Guide”.

[22] Xilinx, “Synthesis and Simulation Design Guide”.

[23] Modelsim, “Modelsim SE User‟s Manual”.

[24] Modelsim, “Modelsim SE Reference Manual”.

[25] Modelsim, “Modelsim SE Tutorial”.

[26] Modelsim, “Modelsim Quick Guide”.

