

TECHNICAL UNIVERSITY OF CRETE
Electronics and Computer Engineering

Department

Microprocessor and Hardware Laboratory

Diploma Thesis

“Extension of the Leon2 processor for more
effective execution of cryptography algorithms”

Spanos Nikolaos

Advisor

Assistant Prof. Ioannis Papaeystathiou
Examination Committee

Assistant Prof. Ioannis Papaeystathiou
Prof. Apostolos Dollas

Associate Prof. Dionisis Pnevmatikatos

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

2

Acknowledgements

First of all, I would like to thank my advisor assistant Prof. Ioannis Papaeystathiou for

all his support and useful advices during this project, the other two members of the

examination committee Prof. Apostolos Dollas and associate Prof. Dionisis

Pneymatikatos.

Also, from this point, I would like to thank all my friends with who, through these 6

years in Chania, I have shared the best moments of my life so far.

Zotos Alexandros, Skoyrtis Vasilis, Livanos Giorgos, Malafouris Zafeiris, Kagarakis

Leonidas, Karakasiliotis Kostas, Koyfidakis Manolis.

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

3

 To my family

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

4

Table of contents

Introduction..6

1. Related work..9

2. Leon2 Architecture ...11

2.1 Leon2 Microprocessor ..11

2.2 Leon2 Integer Unit (IU)..15

2.2.1 Sparc Architecture ...15

2.2.2 Instructions...16

2.2.3 Instruction Execution – Instruction Formats..18

2.2.4 Instruction pipeline ..20

3. Leon2_ISE Architecture...23

3.1 Private Key Ciphers..23

3.2 Design considerations ...25

3.2.1 Theodoropoulos’ CCproc considerations ..25

3.2.2 Leon2 Design differences ..26

3.3 CC proc Instruction Set..27

3.4 Arithmetic/Logical/Branch Instructions...28

3.4.1 Iror/Irol...29

3.4.2 Double Instructions..30

3.4.3 Loop Instruction...31

3.5 Cipher Instructions ..34

3.5.1 AES cipher Sboxes ..34

3.5.2 Twofish cipher Sboxes...36

3.5.3 Serpent cipher Sboxes..39

3.5.4 Mars cipher Sboxes..43

4. Verification and Performance Evaluation of Leon2_ISE.46

4.1 Verification Procedure ...46

4.2 Verification Tests ..48

4.2.1 Twofish – AES example ..49

4.2.2 Serpent example...53

4.3 Performance Statistics ..54

4.4 Conclusions and Future Work...55

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

5

5. References ..57

Appendix A: Leon2’s Instruction Set Extension..59

Appendix B: Leon’s complete Instruction Set..65

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

6

Introduction

In a increasingly connected world, information security has become a top priority.

Many applications — electronic mail, electronic banking, medical databases, and

electronic commerce — require the exchange of private information. For example,

when engaging in electronic commerce, customers provide credit card numbers when

purchasing products. If the connection is not secure, an attacker can easily obtain this

sensitive data. For this reason protocols have been designed that create secure

connections and protect data transmission from malicious internet users.

Cryptography is a Greek word that literally means the art of writing secrets. In

practice, cryptography is the task of transforming information into a form that is

incomprehensible, but at the same time allows the intended recipient to retrieve the

original information using a secret key. Cryptographic algorithms (or ciphers, as they

are often called) are special programs designed to protect sensitive information on

public communications networks. During encryption, ciphers transform the original

message (called plaintext) in such a way as to hide its substance. An encrypted

message is ciphertext. Decryption is the process of retrieving plaintext from ciphertext

[5].

Figure 1.1: Encryption and Decryption

Two forms of cryptography are commonly used in information systems today: secret-

key ciphers and public-key ciphers. Secret-key ciphers (sometimes referred to as

symmetric-key ciphers) use a single private key to encrypt and decrypt. Public key

ciphers (or asymmetric-key ciphers) use a well-known public key to encrypt and

require a different private key to decrypt. Symmetric-key algorithms tend to be

significantly faster than public-key algorithms. So, during a secure data exchange, at

first a private key is shared between the users with a public key cipher and then all

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

7

other data are being transmitted with a private key cipher, that uses the previous

shared key for encryption/decryption.

Nowadays, there is the demand of greater data encryption and decryption rates. To

achieve this goal, ciphers have been implemented with software routines, directly in

hardware or a combination of both. A software only approach is the lowest-cost

solution but with accordingly low performance. The advantages of a software

implementation include ease of use, ease of upgrade, ease of design, portability, and

flexibility. However, a software implementation offers only limited physical security,

especially with respect to key storage [11]. Conversely, cryptographic algorithms that

are implemented in hardware are by nature more physically secure as they cannot

easily be read or modified by an outside attacker when the key is stored in special

memory internal to the device [12]. As a result, the attacker does not have easy access

to the key storage area and cannot discover or alter its value in a straightforward

manner [11].

When using a general-purpose processor, even the fastest software implementations

of block ciphers cannot satisfy the required data encryption rates for high-end

applications. As a result, hardware implementations are necessary for block ciphers to

achieve this required performance level. Although traditional hardware

implementations lack flexibility, configurable hardware devices offer a promising

alternative for the implementation of processors via the use of IP cores in Application

Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA)

technology. In this thesis, our goal is the enhancement of an existing Instruction Set

Architecture (ISA) of the free LEON2 processor core with new instructions that will

help faster processing of the enciphering and deciphering many of today’s symmetric-

key ciphers.

The extended ISA contains of instructions related with the integer unit (rotate-double),

control transfer instructions (loop), and memory elements called Sboxes in

cryptographic parlance. In order to realize how we incorporated these instructions

(shown in Chapter 3), we should primarily understand the way the leon2 processor

works (Chapter 2). Before that, what follows is a brief overview of previous work

regarding implementations via software, hybric architectures cryptographic co-

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

8

processors, and instruction set extensions (Chapter 1). Finally in chapter 4 we show

the verification process that was followed by running simulation tests, as well as the

resource utilization and maximum frequency results.

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

9

1. Related work

�

This chapter focuses on related work that has been done in software and hardware

level. The flexibility offered by software, as it stated before, is often not enough due

to the small performance evidenced when targeting a general purpose processor

whose instruction set cannot provide a fast and efficient implementation. In contrast

there are many hardware specific implementations, based on FPGA devices or ASICs.

This implementation category provides ultra speed performance (much higher than in

software) for each symmetric algorithm, because of the dedicated hardware

processors. One of the fastest implementations is presented in [18], Alireza Hodjat use

a Virtex II Pro FPGA [19] and achieves a 21.4 Gbits/sec throughput of the AES

algorithm.

We mainly focused to a category of designs that either extend an existing processor’s

architecture or introduce new co-processors specifically for the efficient execution of

symmetric ciphers. Instruction Set Extensions (ISE) result in significant performance

improvements versus traditional software implementations with considerable reduced

logic resource requirements versus hardware-only solutions.

The most recent of these designs [13], presents a general purpose instruction set

extension to a 32-bit SPARC V8 compatible processor core that accelerates the

performance of Galois Field fixed field constant multiplication. This design improves

the existing ISA, while maintaining a generalized implementation format capable of

supporting other algorithms that use Galois Field fixed field constant multiplication.

Burke et al in [14]0 are trying to improve the performance of symmetric ciphers for

the Alpha 21264 processor by examining eight algorithms. After analysis of

bottleneck in these ciphers, they conclude to an extended ISA that consists of

hardware rotations, modulo multiplication, permutation and Sbox access instructions

and may achieve up to a 74% speedup over the baseline machine

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

10

Murat Fiskiran et al in [15] study the effect of different addressing modes that can be

used to calculate the effective address during Sbox access. More specifically they

determinate how performance is affected on 1, 2, 4 and 8 wide EPIC (Explicitly

Parallel Instruction Computer) processors depending on addressing mode of the

architecture, issue width of the processor and number of memory ports. The results

indicate that speedups exceeding 2x can be obtained when fast addressing modes are

used.

Another similar approach comes from [16], where the same authors describe a new

hardware module called PTLU (Parallel Table Look Up). It consists of multiple LUTs

that can be accessed in parallel and its purpose is again Sbox access acceleration.

Their results show maximum speedups of 7.7x for AES and 5.4x for DES, all tested

on a single-issue 64-bit RISC processor.

Hardware co-processors have been developed to accelerate cryptographic algorithm

implementations. The CryptoManiac VLIW co-processor [20] was developed as a

result of instruction set extensions designed to accelerate the performance of a number

of the AES candidate algorithms. CryptoManiac uses an sbox instruction to read its

four 1kB on-chip caches in order to improve the table lookups functions. Furthermore

it features the execution of up to four instructions per cycle and the use of instructions

with up to three operands to allow for the combination of short latency instructions for

single cycle execution.

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

11

2. Leon2 Architecture

In this chapter we focus on describing Leon’s architecture. Leon2 has been chosen

because it is one of the most developed free processor cores available and it may be

implemented on a variety of hardware solutions. We will concentrate on explaining

the main functions of Leon and give extra attention to the components that are

important for the specific project. The rest of the chapter is organized as follows: in

the next section we provide a brief introduction to the LEON2 processor, and section

2.2 presents with more detail the instructions that are supported, their format and the

way pipelining works.

2.1 Leon2 Microprocessor
LEON2 is a microprocessor which implements a RISC architecture conforming to the

SPARC v8 definition [1]. It is a synthesizable core written in VHDL and can be

implemented both on FPGAs and ASICs. It is distributed under the terms of the GNU

LGPL license so it is an open hardware [2] and it is specifically designed for

embedded applications. It was originally developed by the European Space Agency

and nowadays it is maintained by Gaisler Research. The Leon2 32-bit core

implements the full SPARC v8 standard, it uses big-endian byte ordering, has 32-bit

internal registers, 72 different instructions in 3 different instruction formats and 3

addressing modes (immediate, displacement and indexed). It implements signed and

unsigned multiply, divide and MAC operations and has a 5-stage instruction pipeline

(Instruction Fetch, Decode, Execute, Memory and Write). It also implements two

separate instruction and data cache interfaces, Harvard Architecture [3].

The VHDL model is fully synthesizable with most of the commonly synthesis tools, it

is configurable and it uses the AMBA-2.0 AHB/APB onchip buses [4]. All these

features makes Leon2 an ideal microprocessor for System-on-Chip applications. A

block diagram of Leon2 architecture can be seen in figure 2.1. Many of those blocks

are optional and can be removed from the model our application implements.

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

12

Figure 2.1: LEON2 microprocessor architecture

LEON2 implements the following features:

· 32 bits RISC microprocessor

· SPARC v8 compliant

· 5-stage instruction pipeline

· multiply/divide/mac operations on hardware

· separated instruction and data caches

· memory management unit, MMU

· memory interfaces for FLASH, SRAM, SDRAM & PROM

· on-chip RAM

· interrupt handler

· interface for a floating point unit, FPU

· debug support unit, DSU

· two 24-bit timers

�

�

SPARC v8 processor defines three main units, integer unit, floating-point unit and a

custom coprocessor, each one with its own 32-bit internal registers. The latter two

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

13

units are optional, not mandatory for the processor. Leon2 implements the integer unit

completely and the interfaces for the other two units in its core. Gaisler Research also

has a commercial high performance FPU for Leon2 available [CATO03]. Leon2 also

can provide a generic interface for a custom user defined co-processor which will

work in parallel with the main processor in order to increase performance. Figure 2.2

presents the overview of the main processor. Except for the co-processor and the

floating point unit (fpu), integer unit connects with the Register File (RF) and with

system’s cache, which consists of separate instruction and data controllers. Signal

pairs ici-ico and dci-dco are used for transferring data from instruction and data cache

respectively. Component cachemem is the configurable memory where data is stored.

Leon2 uses the AMBA-2.0 AHB bus to connect the main processor with high-speed

controllers like memory and other optional units like the onchip RAM or PCI or

Ethernet interfaces. In the default configuration the processor of LEON2 is the only

master of the AHB bus. Cache component (in figure 2.2) is the sub-section inside the

processor that manages all accesses on the bus and specifically uses signals ahbi–

ahbo to communicate with AHB slaves. For example, if the required data from the

integer unit is not found in cachemem then cache component uses the AHB bus to

load/store data from/to the external memory.

Figure 2.2: Main processor architecture

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

14

Figure 2.3 shows the connections on the AHB bus at the default configuration. The

LEON processor core is normally connected as master 0, while the memory controller

(component mctrl) and APB bridge are connected as slaves 0 and 1. The AHB

controller (component ahbarb) controls the AHB bus and implements the bus arbiter.

The AHB bus can connect up to 16 masters and any number of slaves, but in this case

where only one master is connected, no arbitration scheme is needed. The debug

support unit (component dsu) can read data returned to the processor on the AHB bus.

The figure does not contain all the ports of the components; it just shows the way the

processor transfers and receives data from other modules on the AHB bus.

Figure 2.3: AHB bus connections

Another AMBA-2.0 bus is used to access most onchip peripherals, the APB bus. It is

optimised for simple operation and low-power consumption and it is connected to the

AHB bus via the AHB/APB bridge (component apbmst), which is the master of that

bus.

The memory bus provides a direct interface to PROM, memory mapped I/O devices,

asynchronous static ram (SRAM) and synchronous dynamic ram (SDRAM). Leon2

external memory access is provided by a programmable memory controller. The

controller can decode a map of up to 2 Gbytes. Figure 2.4 shows how the connection

to the different device types is made.

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

15

�

Figure 2.4: Memory device interface

2.2 Leon2 Integer Unit (IU)
The IU contains the general-purpose registers and controls the overall operation of the

processor. The IU executes the integer arithmetic instructions and computes memory

addresses for loads and stores. It also maintains the program counters (PC) and

controls instruction execution for the FPU and the CP.

2.2.1 Sparc Architecture

The LEON integer unit implements SPARC integer instructions as defined in SPARC

Architecture Manual version 8. SPARC includes the following principal features:

�� A linear, 32-bit address space.

�� Few and simple instruction formats — All instructions are 32 bits wide, and

are aligned on 32-bit boundaries in memory. There are only three basic

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

16

instruction formats, and they feature uniform placement of opcode and register

address fields. Only load and store instructions access memory and I/O.

�� Few addressing modes — A memory address is given by either “register +

register” or “register + immediate.”

�� Triadic register addresses— Most instructions operate on two register

operands (or one register and a constant), and place the result in a third

register.

�� A large “windowed” register file — At any one instant, a program sees 8

global integer registers plus a 24-register window into a larger register file.

The windowed registers can be described as a cache of procedure arguments,

local values, and return addresses.

�� Delayed control transfer— The processor always fetches the next instruction

after a delayed control-transfer instruction. It either executes it or not,

depending on the control-transfer instruction’s “annul” bit.

A SPARC processor includes two types of registers: general-purpose or “working”

data registers and control/status registers. The IU’s general-purpose registers are

called r registers. IU control/status registers include of several registers, such as the

program counters (PC and nPC) and Processor State Register (PSR) which contains

various fields that control the processor and hold status information.

An implementation of the IU may contain from 40 to 520 general-purpose 32-bit r

registers. The total number of registers is implementation-dependent but at a given

time an instruction can access the 8 globals and a 24-register window.

2.2.2 Instructions

The processor can be in either of two modes: user or supervisor. In supervisor mode,

the processor can execute any instruction, including the privileged (supervisor-only)

instructions. In user mode, an attempt to execute a privileged instruction will cause a

trap to supervisor software.

Instructions fall into four basic categories:

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

17

1.� Load/store

2.� Arithmetic/logical/shift

3.� Control transfer

4.� Read write control register

Load/Store

Load/store instructions are the only instructions that access memory. They use

two r registers or an r register and a signed 13-bit immediate value to calculate a 32-

bit, byte-aligned memory address. The IU appends to this address an address space

identifier, or ASI which encodes whether the processor is in supervisor or user mode,

and that it is a data access. The destination field of the load/store instructions specifies

an r register that supplies the data for a store or receives the data from a load. Integer

load and store instructions support byte, halfword (16-bit), word (32-bit), and

doubleword (64-bit) accesses.

Arithmetic/Logical/Shift

 The arithmetic/logical/shift instructions perform arithmetic, logical, and shift

operations. With one exception, these instructions compute a result that is a function

of two source operands; the result is either written into a destination register, or

discarded. The exception is a specialized instruction, SETHI, which writes a 22-bit

constant from the instruction into the high-order bits of the destination register.

Control Transfer

 Control-transfer instructions (CTIs) include PC-relative branches and calls,

register-indirect jumps, and conditional traps. Most of the control-transfer instructions

are delayed control-transfer instructions (DCTIs), where the instruction immediately

following the DCTI is executed before the control transfer to the target address is

completed.

The instruction following a delayed control-transfer instruction is called a

delay instruction. The delay instruction is always fetched, even if the delayed control

transfer is an unconditional branch. However, a bit in the delayed control transfer

instruction can cause the delay instruction to be annulled (that is, to have no effect) if

the branch is not taken (or in the branch always case, if the branch is taken).

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

18

State Register Access

The Read/Write Register instructions read and write the contents of software

visible state/status registers. There are also read/write “ancillary state register”

instructions that software can use to read/write unique implementation- dependent

processor registers.

2.2.3 Instruction Execution – Instruction Formats

Architecturally, an instruction is read from memory at the address given by the

program counter (PC). It is then executed or not, depending on whether the previous

instruction was an annulling branch. An instruction may also generate a trap due to

the detection of an exceptional condition, caused by the instruction itself (precise trap),

a previous instruction (deferred trap), an external interrupt (interrupting trap), or an

external reset request. If an instruction is executed, it may change program-visible

processor and/or memory state.

Instructions are encoded in three major 32-bit formats, which are presented in Figure
2.5

Figure 2.5: Summary of instructions formats

The instruction fields are interpreted as follows:

op and op2

These 2- and 3-bit fields encode the 3 major formats and the format 2 instructions

according to Figures 2.6 and 2.7.

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

19

Figure 2.6: Op encoding (all formats)

Figure 2.7: Op2 Encoding (format 2)

rd

This 5-bit field is the address of the destination (or source) r or f or coprocessor

register(s) for a load/arithmetic (or store) instruction. For an instruction that

read/writes a double (or quad), the least significant one (or two) bits are unused and

should be supplied as zero by software.

a

The a bit in a branch instruction annuls the execution of the following instruction if

the branch is conditional and untaken or if it is unconditional and taken.

cond

This 4-bit field selects the condition code(s) to test for a branch instruction.

imm22

This 22-bit field is a constant that SETHI places in the upper end of a destination

register.

disp22 and disp30

These 30-bit and 22-bit fields are word-aligned, sign-extended, PC-relative

displacements for a call or branch, respectively.

op3

This 6-bit field (together with 1 bit from op) encodes the format 3 instructions.

i

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

20

The i bit selects the second ALU operand for (integer) arithmetic and load/store

instructions. If i = 0, the operand is r[rs2]. If i = 1, the operand is simm13, sign-

extended from 13 to 32 bits.

asi

This 8-bit field is the address space identifier supplied by a load/store alternate

instruction.

rs1

This 5-bit field is the address of the first r or f or coprocessor register(s) source

operand. For an instruction that reads a double (or quad), the least significant bit (or 2

bits) are unused and should be supplied as zero by software.

rs2

This 5-bit field is the address of the second r or f or coprocessor register(s) source

operand when i = 0. For an instruction that reads a double-length (or quad-length)

register sequence, the least significant bit (or 2 bits) are unused and should be

supplied as zero by software.

simm13

This 13-bit field is a sign-extended 13-bit immediate value used as the second ALU

operand for an (integer) arithmetic or load/store instruction when i = 1.

opf

This 9-bit field encodes a floating-point operate (FPop) instruction or a coprocessor

operate (CPop) instruction.

Appendix B contains the complete instructions set our processor.

2.2.4 Instruction pipeline

The LEON integer unit uses a single instruction issue pipeline with 5 stages

(schematically represented in Figure 2.8):

1. FE (Instruction Fetch): If the instruction cache is enabled, the instruction is fetched

from the instruction cache. Otherwise, the fetch is forwarded to the memory controller.

The instruction is valid at the end of this stage and is latched inside the IU.

2. DE (Decode): The instruction is decoded and the operands are read. Operands may

come from the register file or from internal data bypasses. CALL and Branch target

addresses are generated in this stage.

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

21

3. EX (Execute): ALU, logical, and shift operations are performed. For memory

operations (e.g., LD) and for JMPL/RETT, the address is generated.

4. MEM (Memory): Data cache is accessed. For cache reads, the data will be valid by

the end of this stage, at which point it is aligned as appropriate. Store data read out in

the execution stage is written to the data cache at this time.

5. WR (Write): The result of any ALU, logical, shift, or cache read operations are

written back to the register file.

Figure 2.8: Simplified five-stage datapath

The major problem of all pipelined processors is the problem of hazards. A hazard

occurs when an instruction in the pipeline cannot be executed. Figure 2.9 shows an

abstract block diagram of the integer unit, mainly focused on bypassing signals which

is a strategy to resolve the problem of data hazards. This type of hazard occurs when

an instruction depends on the result of a previous instruction. In order to avoid stalling

the pipeline, some signals are forwarded from later stages. There are 4 cases when

data need to be forwarded by a pipeline register:

�� Ex � Dec (for logical/arithmetic instructions)

�� Mem � Dec (for logical/arithmetic instructions)

�� Wb � Dec (both for memory – logical/arithmetic instructions)

�� Wb � Ex (both for memory – logical/arithmetic instructions)

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

22

Figure 2.9: Abstracted datapath of IU, without control signals

The forwarding control was in the decode stage of the datapath. The control of these

cases leads to control lines for multiplexors that select either the normal register

values or one of the forwarded values. Signals that are used in later phases are passed

via the pipeline registers. Figure 2.10 shows how this unit works.

Figure 2.10: Forwarding unit

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

23

3. Leon2_ISE Architecture

In this chapter we will refer to the changes made in the Leon2 processor, with goal the

expantion of its ISA to include symmetric key ciphers. All changes, were based on the

master thesis of D.Theodoropoulos “CCproc : A VLIW cryptography co-processor for

symmetric key ciphers” [6]. Theodoropoulos designed, after thoroughly analysed

most cryptography algorithms, a co-processor called CCproc (Cryptography

CoProcessor) and its Instruction Set, capable to support these ciphers. The first

section makes an overview of Theodropoulos’ analysis of private key ciphers, as well

as the necessary structures and arithmetic operations needed to implement them.

Section 3.2 presents the design considerations and the differences with our project.

Section 3.3 shows the complete instruction set that we should add to the Leon2. The

changes made in Leon2’s Instruction Set Architecture are presented in sections 3.4

(arithmetical/logical/branch instructions) and 3.5(specific cipher instructions).

3.1 Private Key Ciphers

Ciphers can be categorized as stream ciphers or block ciphers. The former operate on

the plaintext a single bit (or sometimes byte) at a time. The latter operate on the

plaintext in groups of bits. The group of bits are called blocks, and the algorithms are

called block ciphers. These algorithms typically have three operational parameters:

key size, block size and number of rounds. The key size is the length of the key used

to encrypt or decrypt data. The block size is the amount of data processed each time

the cipher kernel is invoked. The number of rounds specifies the total number of

iterations executed by the cipher kernel loop.

Figure 3.1 shows a generic schematic for the encryption/decryption process. Before

message encryption starts, every symmetric cipher has an initialization phase. After

this phase is complete, a certain number of various types of arithmetic operations are

being applied on the plaintext for a specific number of rounds. Once the defined

round number has been reached, encryption is finished and ciphertext is ready to be

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

24

transmitted. Decryption process in most cases, if it is not identical, then it is almost

the same.

 Figure 3.1: Encryption/Decryption process

After analysis, Theodoropoulos concluded that the operations and structures most

commonly used are:

1.� Unsigned addition and subtraction modulo 232

2.� Multiplication modulo 232

3.� Exclusive or (xor) between 32-bit data

4.� Fixed shifts and rotations

5.� Data depended shifts and rotations

6.� Finite field polynomial multiplication in 28 modulo a prime polynomial

7.� Expansions and permutations (Xboxes)

8.� Substitution boxes (Sboxes)

9.� Feistel network structures

In Leon2, like most 32-bit processors, operations from 1 to 6 are implemented very

fast, except for the field polynomial multiplication (FFM) modulo a prime polynomial.

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

25

Besides arithmetic operations, there are common structures among ciphers. Sboxes

are usually non-linear structures that map an n-bit value to an m-bit value, essentially

Look Up Tables (LUT). A symmetric cipher may have one or more different Sboxes,

with each one of them having arbitrary dimensions, as shown in Figure 3.2.

Figure 3.2: Sboxes

3.2 Design considerations

3.2.1 Theodoropoulos’ CCproc considerations

In order to implement the necessary instructions, some considerations had to be taken

into account:

�� The operations of bit permutations are not adopted by the newest ciphers and

specifically none of the AES round two finalists except Serpent uses them.

Furthermore they require a considerable amount of hardware and though it

was decided not to be used.

�� The research revealed a high frequency occurrence of two dependent, back-to-

back instructions. Examples are double additions, subtractions and XORs

operations, as well as addition-subtraction followed by a XOR.

�� A fact that characterizes every symmetric cipher is the determined number of

rounds during the key expansion process, plus encryption / decryption. As a

result they can be written in a way that requires absolutely no branch tests.

This observation let to the decision to support a “loop” instruction that would

a priori know the number of rounds and so pre-evaluate the direction, adding

no branch-related pipeline stalls.

�� Due to complexity of the key expansion process, Theodoropoulos supported

an extra functional unit: a KRF (Key Register File) memory module in order

to store all expanded keys.

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

26

�� Many times during processing, symmetric ciphers require 64-bit, 96-bit or

even 128-bit data values at the same time in order to proceed, so with a single

32-bit RISC datapath additional clock cycles are spent on fetching all

appropriate data to the functional unit that will use them. This performance

obstacle led to the decision to examine and finally implement a VLIW 5-stage

pipelined processor, that would consist of four 32-bit clusters, capable to

process four 32-bit instructions in one clock cycle. Its abstract schematic

overview is shown in Figure 2.6

Figure 3.3: CCproc’s abstract schematic overview

3.2.2 Leon2 Design differences

�� The main difference of our design is that we have a single 32-bit RISC

datapath structure extended to support an enhanced symmetric cipher ISA. As

a result any instruction that may require 128-bit data values at the same time in

order to proceed, would be delayed. The narrower datapath does not affect the

effectiveness of our instructions but merely their execution speed.

�� Leon2’s RF (Register File) can access a large number of registers (up to 520).

So, in our design, it was decided not to include a KRF, and store all key values

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

27

into the RF preventing from any additional stall to support operations between

RF’s data and KRF’s data

3.3 CC proc Instruction Set

After evaluating all the above considerations, Theodoropoulos designed the ISA of his

CCproc, categorizing the instructions to four primary formats, Register, Immediate,

loop and cipher. As stated before, some of these instructions are already implemented

in Leon2. Table 1 summarizes all instructions supported in CCproc and not supported

in Leon2 in R, I and loop formats.

Format Operation Syntax Description

Gfm gfm rdx,rsa
galois field multiplication in GF(28) between
rsa and GF operand x and the result is stored to
rdx

krfpaz krfpaz resets KRF's pointer to first address

ldgfmr ldgfmr rsa
loads 8-bit mr register with rsa's value, which
holds modulo polynomial in Galois Field
multiplication

ldgfopx ldgfopx rsa loads Galois Field operand x with rsa's value
ldlc ldlc #a loads 6-bit lc register with #a

r2c/c2r r2c / c2r
rdx,rsa

toggles between rows and columns in a 128-bit
data value

Rol rol rdx,rsa,rsb rotates left rsa by the amount specified from
rsb's 5 LSBs and stores the result to rdx

Ror ror rdx,rsa,rsb rotates right rsa by the amount specified from
rsb's 5 LSBs and stores the result to rdx

addadd addadd
rdx,rsa,rsb,rsc

adds rsa with rsb, adds the result to rsc and
stores it to rdx

addsub addsub
rdx,rsa,rsb,rsc

adds rsa with rsb, subtracts rsc from the result
and stores it to rdx

addxor addxor
rdx,rsa,rsb,rsc

adds rsa with rsb, logic xor between rsc and the
result and stores it to rdx

subadd subadd
rdx,rsa,rsb,rsc

subtracts rsb from rsa, adds the result to rsc and
stores it to rdx

subsub subsub
rdx,rsa,rsb,rsc

subtracts rsb from rsa, subtracts rsc from the
result and stores it to rdx

R

subxor subxor
rdx,rsa,rsb,rsc

subtracts rsa with rsb, logic xor between rsc and
the result and stores it to rdx

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

28

xoradd xoradd
rdx,rsa,rsb,rsc

logic xor between rsa and rsb, adds the result to
rsc and stores it to rdx

xorsub xorsub
rdx,rsa,rsb,rsc

logic xor between rsa and rsb, subtracts rsc
from the result and stores it to rdx

xorxor subxor
rdx,rsa,rsb,rsc

logic xor between rsa and rsb, logic xor
between rsc and the result and stores it to rdx

roli roli rdx,rsa,#a rotates left rsa by the amount specified from
#a's 5 LSBs and stores the result to rdx

I
rori rori rdx,rsa,#a rotates right rsa by the amount specified from

#a's 5 LSBs and stores the result to rdx

loop loop loop label jumps to the beginning of a loop which starts at
address “label”

Table 1: Supported operations in R, I and loop formats. Bold means double instructions.

From the above instructions those referring to the KRF module and Galois Field

Multiplication were not implemented. Moreover, the instruction r2c/c2r has no

meaning in the single RISC processor.

The supported cipher instructions which access different memory modules called

Sboxes, are presented in Table 2.

Table 2: Supported cipher instructions

3.4 Arithmetic/Logical/Branch Instructions

Instruction Syntax Description

aesX aesX rdx,rsa
Sbox access during AES encryption or
decryption (X=E,D) with rsa and the result is
stored to rdx

marsX marsX rdx,rsa
Sbox access during MARS forward mode,
backward mode, or E function (X=F,B,E) with
rsa and the result is stored to rdx

serX serX rdx,rsa
Sbox access during Serpent encryption or
decryption (X=E,D) with rsa and the result is
stored to rdx

tX tsld rsa,rsb / tsbox
rdx,rsa

during Twofish, loads to S0 and S1 rsa and rsb
respectively / Sbox access with rsa and the
result is stored to rdx

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

29

In figure 2.5 we presented the three basic formats of instructions for Leon2 Instruction

Set. Our goal is the enhancement of the existing Instruction Set Architecture (ISA)

with the new instructions presented in the previous chapter.

Instructions with op = 2, are divided according to op3 value. Table 3 lists the possible

instructions for op3[5:0]. With red colour, we distinguish the new instructions which

were added to the design.

Figure 3.4: Arithmetic/Logic instructions in Leon2

We will present one instruction at a time, and the changes made in Leon2 integer unit.

We tried to keep the basic format that these instructions follow. Of course every

instruction has its specific format, described in detail on appendix A. The TSLD

instruction will be presented in the next chapter as it is connected with a cipher

instruction.

3.4.1 Iror/Irol

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

30

Inside the execution stage, we added the rotation of register (rs1) left or right by the

distance indicated by either the register’s rs2 five least significant bits, or the 5-bit

rotcnt value. The result is saved into destination register rd.

The difference from the Shift instructions (SRL, SRA) is that after the shift, the

vacated positions are not filled with zeroes but with register’s MSB or LSB depending

on the direction of the rotation.

3.4.2 Double Instructions

The main difference of these instructions is that double-instructions require three

operands, something that it is not feasible as RF reads only two registers. In order to

accomplish a double instruction at one clock cycle, we have to read 3 operands from

the RF. So, we created a second copy of Register File’s memory.

After this change was made, we added a module inside memory stage capable of

adding/subtracting or making a Xor operation between two operands. This extension

helps us executing the second phase of the instruction, as the first one is implemented

inside the ALU during the execution stage. We preferred not to insert both operations

in execution stage, so that we avoid having a greater delay on the critical path.

The figure 3.5 presents the datapath with a 4-port RF and the added module that is

used during the memory stage of any double instruction.

Figure 3.5: Datapath that includes double instructions; changes are in colour

Unlike all arithmetic/logic instructions which produce their result at the end of the

execution stage, double instructions produce their result at the end of the memory

stage. This leads to a data hazard, when a double instruction writes the register the

following instruction wants to read. Figure 3.6a presents this case. A solution to this

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

31

problem is stalling the dependent instruction in the decode stage for one cycle. Figure

3.6b shows how this stall removes the problem. Data is then forwarded from the write

back (WB) pipeline register to the dependent instruction.

To achieve these, we had to extend the operation of the Control Unit. This

necessitated that the pipeline registers Ex, Mem are extended with 1 bit register which

shows that we refer to a double instruction.

Figure 3.6: Pipeline dependency during a double instruction

To conclude, all double instructions, execute in one cycle. If the instruction that

follows, reads the register written by the double instruction, then there is a one-cycle

stall. All other data dependencies are removed.

3.4.3 Loop Instruction

A control-transfer instruction changes the value of the next program counter (nPC).

There are five basic control-transfer instruction (CTI) types in Leon2:

�� Conditional branch (Bicc, FBfcc, CBccc)

�� Call and Link (CALL)

�� Jump and Link (JMPL)

�� Return from trap (RETT)

�� Trap (Ticc)

As we can see control-transfer instructions can be categorized to conditional and non-

conditional. Only the first type of instructions decide whether to change the normal

execution order or not, according to the value of icc (integer conditions codes).

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

32

�
����������
�

�
����������
�

Loop instruction is a conditional CTI. It examines the value of a loop counter (LC),

and if that value is not zero, then the branch is taken. Otherwise, the branch is not

taken and the next program counter is PC+4. As we mentioned before, this instruction

is important for cases when we already know the number of rounds, resulting to a less

number of instructions needed and consequently smaller execution time.

To implement this instruction, we used the loop controller circuit that Theodoropoulos

had proposed. As it can be seen from figure 3.7, there is “lc” register, two

multiplexers A and B, a ‘1’ constant subtraction unit and a comparator. When an

instruction is being fetched from instruction cache, it is checked if an “ldlc” or “loop”

occurred. If it is the first case, then multiplexer A gives to “lc” the rounds number that

a loop will be repeated. The latter is complete when a “loop” instruction occurs, and if

“lc” value is greater than 1, then its current value is reduced by 1 and “nPCsel” signal

is asserted, in order to enable a new instructions loop commencement. If “lc” is 0, it

means that the appropriate rounds number has been completed, “nPCsel” is not

asserted and program execution continues normally

. Figure 3.7: Loop controller

The loop counter (lc) register was added to the execution pipeline registers, and the

loop controller logic was put in the decode stage, where main control executes. Figure

3.8 shows this change in the decode stage. The value of register “lc” may :

�� Remain the same, if the instruction is neither a ldlc nor a loop.

�� Take the value rounds_number, if it is a ldlc instruction

�� Take the value ex.lc – 1, if it is a taken loop instruction.

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

33

Figure 3.8: Loop controller in datapath

So far, we showed how the signal nPCsel is produced. When it is asserted a branch

occurs. The target address is calculated by sign-extending its immediate field to 32

bits, left-shifting that word displacement by two bits to create a byte displacement,

and adding the resulting byte displacement to the contents of the PC. This procedure

is the same with the one instructions CALL and JMPL follow. The only difference

amongst these instructions is that LOOP has an immediate field of 13 bits, CALL of

30 bits, and finally JMPL has a 22 bits field. If we consider that the loop controller is

an extension on the existing control unit, then we can represent graphically the

changes made in the IU’s decode stage in figure 3.9. The “branch” signal is asserted

when one of the three instructions changes PC’s contents. Signals “jump” and “trap”

concern the Control Transfer Instructions JMPL and TRAP respectively. These

signals may be asserted during execute/write-back stages.

Figure 3.9 Control Transfer Instructions in datapath

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

34

LOOP instruction is a delayed control transfer instruction. Specifically, it changes

control to the instruction at the target address after a 1-instruction delay. The delay

instruction executed after the CTI is executed before the target of the CTI is executed.

3.5 Cipher Instructions
As it was mentioned in chapter 3.1, besides arithmetic operations, there are structures

used by ciphers. These structures called Substitution boxes (Sboxes) are essentially

memory modules or Look Up Tables (LUT). This section focuses on the description

of these Sboxes separately for every cipher, and their integration to the entire design.

All Sboxes have been placed to leon’s memory stage.

The primary goal was to extend the interface of the integer unit so that includes the

communication signals with the controllers of the ciphers. This is shown in Figure

3.10 where we omitted the optional units such as the co-processor and the floating

point unit (fpu). As it can be seen, cipher Sboxes can be considered as small caches,

working in parallel with the processor’s main memory.

Figure 3.10: Main processor architecture including ciphers’ Sboxes

3.5.1 AES cipher Sboxes

The AES cipher uses two 256x8 Sboxes, one for the encryption and one for the

decryption processs. Moreover, we wanted to be able to read 4 values of each memory

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

35

so we created one copy of each dual port memory in order to maximize parallelism.

Figure 3.11 shows how Sboxes have been implemented, where “E” stands for

encryption, and “D” stands for decryption mode.

Figure 3.11: AES Sboxes

After Sbox access, there have been produced four bytes from E-Sboxes and four from

D-Sboxes, which are concatenated into two 32-bit words. The interface of the aes

controller is presented below. Inputs of the controller except for the address, are the

write enable (we) signal, 8-bits write data (din), and signals encryption and decryption

that are asserted every time the instruction refers to the respective memory.

Figure 3.12: AES controller

As it is seen in Figure 3.13, aes caches are synchronous. The result of a Aes load

instruction is produced at the end of the memory stage. Instruction bit 9 determines

the choice between the two outputs.

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

36

Figure 3.13: Implementation of AES controller in datapath

3.5.2 Twofish cipher Sboxes

Twofish uses a different Sbox structure from other ciphers, in a way that its final

result depends on the secret key that is being used. Also, Twofish uses the same Sbox

structure for both encryption and decryption process. Figure 3.14 shows its Sbox

structure, where “S0” and “S1” are two of the subkeys. “In” is the Sbox input, and

“q0” and “q1” are 8x8 Sboxes.

Figure 3.14: Twofish Sboxes

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

37

Our first action was to enhance the existing Instruction Set with an instruction that

loads the subkeys “S0” and “S1”. This is done with the instruction TSLD (tsbox load),

which reads two values from the register file (general purpose/r registers) and stores

them into 2 new status registers (which were added in the design) during the

execution phase. The value of these status registers is altered, only if another TSLD

instruction is executed.

Due to the fact that during a single load Twofish Sbox instruction, as shown in figure

3.14, three independent Sbox structures accesses as well as two xor operations

between them are needed, we could not place this logic as a whole in a combinational

circuit. In the beginning we considered to split Figure 3.14 in two pieces, using two

types of Twofish Sboxes memories, a synchronous and an asynchronous, both having

identical data. Figure 3.15 shows the first implementation of twofish sboxes in

datapath.

Figure 3.15: Twofish Sboxes in datapath

After evaluating this implementation, we discovered that there was a negative impact

to the frequency of our design, so a next attempt was to implement it in 3 separate

cycles keeping only the synchronous Twofish controller. Specifically, during the first

cycle data is read from the Twofish controller. In the second cycle a xor operation is

made between the data read and the first sub-key and the result accesses the Twofish

controller. Finally, in the third cycle another xor operation is made between the data

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

38

read from cycle2 and the second sub-key and the result accesses the Twofish

controller. The final result is stored in the register file during the write back stage.

The afore-mentioned 3 cycle implementation requires that a TSBOX load instruction

is designed as a multi-cycle instruction. To achieve this, we used the existing datapath

of Leon2 shown in Figure 3.15. During normal execution, signal “hold_pc” is not

asserted, so the next instruction that accesses instruction cache is PC + 4. When we

want to stall the pipeline, “hold_pc” is asserted keeping the same instruction in

decode stage. In case there is a multi-cycle instruction then signal “cnt” is

incremented by one.

Figure 3.16: Existing datapath focused on multi-cycle instructions

The first changes we had to make, were to extend the control unit to check the cycle

of the TSBOX instruction and assert the respective bits.

���������	�
���������

� ��������
��������������

� � � 	����	���
��������� ��
��!������ �����
����!���

� �������������
����!��������

� � � 	����	���
��������� ��
��!������ �����
���!����

� �������������
���!����������

� � � 	����	���
��!������ ��
��������� �����
��������

"�

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

39

During the cycles 2, 3 the xor operations use as operands the two sub-keys stored

during a TSLD instruction, and the result produced from the Twofish controller. So,

another necessary change was the extension of the multiplexors during the execution

stage.

The final implementation led to a single synchronous Twofish controller, that reads

two values at a time of each memory q0, q1. Figure 3.16 shows how the read address

accesses twofish controller. During a single TSBOX load instruction, Twofish

controller is accessed 3 times, one time for each cycle.

Figure 3.17: Twofish controller read access

3.5.3 Serpent cipher Sboxes

Serpent is somehow different from the ciphers already mentioned, as it demands an

address of 128 bits (4 words) to access its Sboxes. This happens, in order to succeed

data permutation in the beginning and end of processing. Sbox access will be

presented through the following example.

Suppose that X0, X1, X2, X3 are the four 32-bit words of plaintext where X0 is the

most significant one, and consider that each word’s four MS bits in hexadecimal are:

X0 = hex“6…”, X1 = hex “a…”, X2 = hex “f…”, X3 = hex “8…”

Table 3 shows these numbers also in binary while each column indicates the

respective bit. Last column “weight” shows the value that emerges when computing

each column’s in decimal.

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

40

hex bit 31 bit 30 bit 29 bit 28 weight

6 0 1 1 0 20

a 1 0 1 0 21

f 1 1 1 1 22

8 1 0 0 0 23

Table 3 – Serpent Sbox access example

For example, “bit31” = 1421212120 3210
�������� , which is the Sbox’s access

address. Then, we assume (arbitrarily) that Sbox [14] = 9. Similarly the other columns

emerge the following values:

“bit30” = 520212021 3210
�������� , Sbox [5] = 6

“bit29” = 720212121 3210
�������� , Sbox [7] = 11

“bit28” = 420212020 3210
�������� , Sbox [4] = 10

In Table 4, “bit” columns contain the above results, in binary according the “weight”

column. Indeed “bit31” = 9, “bit30” = 6, “bit29” = 11 and “bit28” = 10.

hex bit 31 bit 30 bit 29 bit 28 weight

a 1 0 1 0 20

7 0 1 1 1 21

4 0 1 0 0 22

b 1 0 1 1 23

Table 4 – Serpent Sbox results example

Finally, if the resulting lines are considered as binary values, with each cell in “bit31”

column containing the MSB, column “hex” translates them to hexadecimal and these

are the final replacements: 6�a, a�7, f�4, and 8�b.

As we can see, Serpent requires all four 32-bit words at the same time leading to an

implementation shown in Figure 3.18. The only difference from our implementation

is that we used 16 dual-port memories instead of 32 single-port ones.

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

41

Figure 3.18: Serpent Sboxes

In LEON2 processor it is not possible to read four register values during a single

instruction. This led to the decision to split the serpent load instruction in two phases.

When a load-phase1 instruction comes, the two most significant words of the address

are read from RF and the first two destination registers are stored in the execution

pipeline registers (control registers added to the execution stage). The load-phase2

instruction is the one that really accesses Serpent sboxes. This instruction reads the

two least significant words of the address (from RF) and besides contains the third

and fourth destination register of the instruction. During this instruction, the 4 words

are used as the address of the Serpent controller and the result is stored in the four

destination registers. Of course, this result is 128 bits length, so there is a 3-cycle stall

to write the data produced to each of the four destination registers. Figure 3.19 shows

how Serpent controller in integrated in datapath. The “cnt” bit which counts the cycle

of the instruction, decides which of the four words to choose.

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

42

Figure 3.19: Serpent controller in datapath

Like the TSBOX load instruction, Serpent load-phase2 instruction is a multi-cycle

instruction. As it is seen from figure 3.19 the result produced from Serpent controller

should remain the same, so that all four cycles read the same result produced. This is

achieved, by asserting an output enable signal only during the first cycle of the multi-

cycle instruction. Thus, the value is kept the same until the execution of another

Serpent load-phase2 instruction.

During decode phase, we extended the control unit to check the order at which

registers would be written. Particularly, the order which is followed is only important

if the same register is written twice. In this occasion, register’s value is the last value

written. It should be noted that registers rd2, rd3 refer to the destination registers of

Serpent load-phase2, whereas rd0, rd1 refer to the ones of Serpent load-phase1. The

following section of code is added to the control unit (decode stage) and relates to the

signals shown in a previous figure (3.16) which focuses on multi-cycle instructions.

���������	�
��#$%�& ���' ()�'��*����

� 	����	���
��!��

� ��������
�������������

� � 	 �
�	 *����� ��
��!������ �����
����!���

� �������������
����!��������

� � 	
	 +����� ��
��!������ �����
���!����

� �������������
���!����������

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

43

� � 	
	 ������ ��
��!������ �����
���!!���

� �������������
���!!��������

� � 	
	 !����� ��
��������� �����
��������

"�

�

Finally, concerning Serpent instruction, it is not unusual that a destination register is

also a source register. That means that the value that is being read during load-phase2

(registers rd2, rd3) should remain the same even if the value of these registers may

have changed due to a write of the same instruction. This paradox can happen because

the instruction has 4 cycles. The problem was resolved with the use of bypassing.

Specifically, registers’ values are forwarded from memory stage back to the execution

stage during the 3 final cycles of the instruction.�

�

3.5.4 Mars cipher Sboxes

MARS algorithm uses two Sboxes S0 and S1, 256x32 each, however it has the unique

property that they are also used concatenated as one 512x32 Sbox. Thus, we created a

Mars controller that consists of such a dual-port memory. There are four possible

options when accessing a Mars load instruction. The type of load is chosen amongst

the types shown in Figure 3.20. Before Sbox access there are one or two multiplexers,

which in combination with control signals “E”, “F” and “B”, pass the appropriate byte

Depending on cipher’s current processing mode, again a control signal “mode” selects

the required 32-bit word.

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

44

Figure 3.20: Mars Sboxes

To summarize, all cipher instructions need only 1 cycle during store data, and may

need from 1 to 4 cycles during the load phase. Specifically Serpent load, is split to

two phases. Though, it needs the smallest portion of memory (only 128 bytes), it has

the greatest latency from all other cipher instructions due to having to store four

destination registers.

������� ���� ����	
��� ������� ��
�

�� �� �� �� ��

���	�
� �� �� �� ��

����������� ���� ��	�� �	
�� 	���

Table 5 – Summary Cipher Instructions

During the memory stage, a 2-bit register had to be added to the existing pipeline

registers that decides which cipher’s controller was accessed.

Figure 3.21: Sboxes in memory stage

The last thing that had to be considered was the data dependencies that are created

when a cipher load instruction is executed. All cipher load instructions produce their

result at the end of the memory stage. This means that are similar with the double

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

45

instructions that are referred in chapter 3.3. Just like them, to be able to resolve the

data hazard, presented in Figure 3.6a, the same steps are followed. The dependent

instruction is stalled in the decode stage for one cycle. Figure 3.6b shows how this

stall removes the problem. Data is then forwarded from the write back (WB) pipeline

register to the dependent instruction.

Consequently, the operation of the Forwarding Unit had to be extended. This

necessitated that the pipeline registers Ex, Mem are extended with one bit register

“cipher”, which shows that a cipher instruction is executed, regardless of the cipher’s

type.

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

46

4. Verification and Performance Evaluation of Leon2_ISE.

 4.1 Verification Procedure
After the detailed description of the extensions made in Leon2, in this chapter we

focus on verification tests that were made in order to confirm the functionality.

Specific evaluation of hardware results such as operating frequency and occupied area

are examined. Note that for synthesis and implementation we used the Xilinx’s ISE

Foundation Series 7.1i [8] and for simulation Mentor Graphics Modelsim SE 6.0a [9].

A first prototype has been built based on Xilinx’s Virtex 2 FPGAs resources. All

memories needed for the Sboxes have been mapped to distributed memory modules

[10], usually consisting of dual port memories

The model of Leon2 is distributed as a gzipped tar-file; leon-2.1.30.tar.gz. We

unpacked the model in top-level directory. LEON’s structure consists of three main

sub-directories. The one that contains the source code (VHDL) is leon/leon sub-

directory. All testbenches exist in leon/tbench directory, and the data used for

simulation is found in leon/tsource sub-directory.

The first step followed, was the compilation of the existing design. This is done, by

running the compile.bat files in the leon and tbench directories. Each time a new

source file was created, it had to be added correctly to the compilation order inside the

compile.bat file. The next step was the simulation of the design, using the Modelsim.

A generic test bench that is provided in /leon/tbench directory was used. This file

specifies that the contents of memories ROM and SRAM are found in the files ASCII

files rom.dat and ram.dat respectively (inside tsource directory). Particularly, the

execution of the processor starts from ROM and after completion of these instructions,

the control is transferred to the instructions that exist in SRAM.

As it is shown if Figure 4.1, simulation is performed in two stages For every new

insertion of an instruction, functional simulation was used to verify that the results

produced (via a series of tests that we will present below) match the expected ones.

Post-Place and Route (PAR) simulation was done after the whole designed was

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

47

implemented, meaning that all instructions were inserted. Of course, to determine that

the system works as expected, post-PAR simulation of the design is needed. The

drawback is that functional simulation allows us to observe internal signals and

consequently locate possible mistakes. In contrast, only I/O signals of Leon2 are

visible during post-PAR simulation, so the only way to confirm that an executable

code has succeeded was to use memory-referenced instructions (usually a Store

instruction).

Figure 4.1: Design Flow

Functional simulation of every new instruction individually was our first goal. As we

mentioned before, the executable code exists in files rom.dat and ram.dat. In order to

able to recognize the instructions, we had to use a disassembler. This tool translates a

file of binary machine instructions into a file of assembly language. Although, such a

program already existed, we wanted to be able to disassembly the instructions that we

would create, so it was decided to built our own disassembler. It was written in C, and

the compiler used was Microsoft Visual Studio 6.0. This enabled as to understand the

existing code, and to verify the code inserted each time we wanted to check a new

instruction.

The main function of the executable code in ROM, is to “initialise” the processor.

After doing so, we observed that its final instruction transfers control to a specific

instruction in SRAM. We modified that last instruction to transfer control to the

starting address of a block of instructions that we created inside the SRAM. The final

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

48

instruction of our block, is in turn a control transfer instruction that changes the

Program Counter to the starting address of the SRAM. Thus, our block of instructions

precedes any other instruction of SRAM.

After this, we were able to insert the machine language to make tests for the

instructions we wanted to add. Specifically, the procedure that we followed for every

new instruction is presented in the figure below.

Figure 4.2: Procedure followed for verification

4.2 Verification Tests

When the construction of an instruction has been completed, it is imperative that a

well defined set of tasks is used to validate the instruction and demonstrate that the

system works. So, tests were made at the end of every instruction. The final goal was

the verification of the results simulated with the expected results. A simple example

for the verification of the double instruction is the below one. The leftmost register is

always the destination register, while all remaining registers are the source registers.

�

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

49

�����'��,'�-����	*+�
�.��/�	**�
�0��/�	*!�
�!��

1 2�	*+/�	*+/�	**�/	*!����-3�-3�����������	*+�
��.���4�0����(�!�
�+���

1 2�	*+/�	*+/�	**�/	*!���' 5�	�����������	*+�
��+���6�0����5�	���!�
7���5�	���!�
�7���

1 2�	*+/�	*+/�	**�/	*!���' �-3�����������	*+�
��7���6�0����(�!�
�3� �

�#�8 ����	**/�9!���*!9�� ������������	**�
�0���.0���

���	*+/�	**/�9����9�� � ������������: #: ;	**<�
�	*+�
�3� �

As mentioned before the only signals that can give us information of the execution in

the integer unit during post-PAR simulation, are the memory-related signals “address”

and “data”. So, we add a Store instruction, to be able to observe if the last result is

correctly computed. The same procedure is followed at the examples presented below.

More complicated tests, that include cases of data hazards, are available on the thesis’

CD.

4.2.1 Twofish – AES example

An example that shows how instructions referring to Sboxes work, is presented. The

expected results are verified using the Modelsim simulator. At the beginning of this

program, a few store instructions are called in order to initialize the Sboxes. The

names “Q0”, “Q1” refer to the Sboxes of Twofish, while “Encry” refers to the AES

Sbox. Figure 4.3 shows the values of these LUTs. The left part indicates the indices of

the tables and the right part their data. All other values are initialized to zero.

Figure 4.3: Initial Sbox values

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

50

�#�8 ����	!/�9!�����9��

= 1 1 �	!/�	!/�9����9�� ��	!�
�0��������

= 1 1 �	*+/�	�/�9�+**9��

= 1 1 �	*!/�	�/�9��++9���

= #��	*+/�	*!������/����	>)����������������������	�
�����

 � �� ������������ � ������ ��
����
������������� ��
������������������
� ����

�

�#�8 ����	�/�9������9��������)�����	-������

= 1 1 �	*!/�	�/�9�+�!9��

= 1 1 �	**/�	�/�9�7��9�� �

�? �@��8 �	**/�	*!�����/�A��� �����! ����	�
���"���

�

�#�8 ����	�/�9������9��

= 1 1 �	*!/�	�/�9��!!9��

= 1 1 �	**/�	�/�9��++9��

�? �@��8 �	**/�	*!�����/�A��� �����! ����	�
�������

�

�#�8 ����	�/�9������9��

= 1 1 �	*!/�	�/�9��0�9��

= 1 1 �	**/�	�/�9����9��

�? �@��8 �	**/�	*!�����/�A!�� �����! ����	�
��##���

�

�#�8 ����	*�/�9��!���9�� ��	*��
���0������

= 1 1 �	*!/�	�/�9����9��

= 1 1 �	**/�	�/�9����9��

�? �@��8 �	**/�	*!�����/�A��� �����! ��##	�
�������

�

= 1 1 �	*!/�	�/�9�+�*9��

= 1 1 �	**/�	�/�9�7�!9��

�? �@��8 �	**/�	*!�����/�A��� �����! ����	�
�������

�

�#�8 ����	�/�9������9��

= 1 1 �	*!/�	�/�9�+�!9��

= 1 1 �	**/�	�/�9�7..9��

�? �@��8 �	**/�	*!�����/�A!�� �����! ����	�
��""���

We emphasized the meaning of the instructions by typing them in bold. Instruction

“TSLD” loads the sub-keys S0 and S1. After these steps are completed, we insert a

few instructions that have various data dependencies and contain twofish and Aes

load instructions. As it was mentioned before, twofish load lasts for 3 cycles. For

better comprehension, we show graphically the steps followed during the two twofish

load instructions in figure 4.4, plus the values of the internal results that are produced

during twofish instructions that follow (table 6). A is the input (address) and Result is

the output.

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

51

= 1 1 �	*!/�	�/�9�+�!9��

�? �@��8 �	!B/�	*!����� ��� �������$�
� % &#��'������������	�
������������ �

�? �@��8 �	**/�	*������ ��� ���������
� % &#��'������������	�
��������������

= #��	!7/�	**���� /����	>)���������������(�
������������������	��
�������������

= 1 1 �	**/�	*!/�	**� � ��	**�
�	**�6�	*!�
����++��+��*��

���	**/�	!C/�9����9�� � �����: �D ;	!C<�EE�	**�

���	!B/�	!C/�9���09�� � �����: �D ;	!C60<�EE�	!B�

���	!7/�	!C/�9���.9�� � �����: �D ;	!C6.<�EE�	!7�

Figure 4.4: Twofish Sbox load

Table 6: Twofish load internal results

The results produced are stored into registers r16, r17 and r22. In order to validate

their values we used 3 store instructions to main memory. The simulation verifies the

expected results, shown in figure 4.5.

Figure 4.5: PAR simulation

� ��������������� � ��������������� � �

�� �� �� �� �� ��
�	��

������������ ���������

� ������������� ������������ ����������	� ������������

������������ ������������ ������������ ���������� ����������	� ������������

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

52

4.2.2� AES – Loop – double - rotate example

An example that verifies the operation of the AES instruction as well as the non-

cipher instructions that were added to leon2 (rotate, double, loop) is the following.

Our simple loop starts from the 4th instruction and ends with the loop instruction. It is

run for 3f (hex) times and each time a new value is stored in AES Sboxes (encryption

and decryption). Figure 4.6 shows the Sboxes’ values after the end of the loop.

= 1 1 �	**/�	�/�9����9�� � � ��	**�
��������������

= 1 1 �	*!/�	�/�9����9�� � � ��	*!�
��������������

21 2F�	�/�	�/�9��+�9�� � � ��)��
��#���)&&*��&+������

= #��	*!/�	*!������/����	>)������� ����������	�
������

= #��	**/�	*!������/� ��	>)������� ��� ��������	�
������

= 1 1 �	*!/�	*!/�9���!9��� � ��	*!�66��

�G �	**/�	**/�9���!9��� � ��	**�66��

2��%�	�/�	�/�9!���9�� � � ���*��
�*��,���-�� ���3'�H�0 �����	-��������

�

�

�

�

�

�

�

�

�

�

�

�

�

�
Figure 4.6: AES sbox values

Following the loop, we access AES’ LUTs and use the data produced in arithmetic
operations. The results produced are shown in Figure 4.7.
�

�#�8 ����	!C/�9!���*!9��� � ��	!C�
�0�����.0�����

�#�8 ����	*!/�9*�03�'9�� � �

= 1 1 �	*!/�	*!/�9��++9��� � ��	*!�
�.!�*���.�++��

= #��	*+/�	*!����� /����	>)������� ��	*+�
�������"���#��"���	�
�����#������ �

= #��	**/�	*!����� /� ��	>)������� ��	**�
�� �����"���#��"���	�
����.����������

$�$�	*�/�	*+/�	**� � � ��	*��
�	*+�EE����!*3����	������
��+�+���*����

1 2�	*+/�	*+/�	*��/	**���5�	5�	�� ��	*+�
�	*+�5�	�	*��5�	�	**�
��+�����*�����

�#�8 ����	�/�9������9��

���	*+/�	!C/�9����9�� � � �����: �D ;	!C<�EE�	*+�

���	**/�	!C/�9���09�� � � �����: �D ;	!C60<�EE�	**�

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

53

Figure 4.7: PAR simulation

4.2.3 Serpent example

Similarly wih the first example, we initialize the Serp Sbox with the values shown in

Figure 4.8. Then, we perform a Serpent load instruction and the results are stored in

main memory. Figure 4.9 shows the Sbox access for the two least significant bits. The

rightmost 30 bits are zeros, so they were neglected. Figure 4.10 shows the verification

of the results, in PAR simulation.

Figure 4.8: Serp Sbox

= 1 1 �	*!/�	�/�9���79��

= 1 1 �	**/�	�/�9���I9��

�#$%�	**/�	*!�������������������� ��*�(��
�/��

= 1 1 �	*!/�	�/�9��� 9�� ��	*!�
� ��

= 1 1 �	**/�	�/�9���B9����	**�
�B ��

�#$%�	**/�	*!�������������������� ��*�.	��
�$��

�

= 1 1 �	*!/�	�/�9���*9�� ��	*!�
�* ��

= 1 1 �	**/�	�/�9���+9����	**�
�+��

= 1 1 �	*+/�	�/�9���!9�� ��	*+�
�!��

�#$%�	*���	 ��/�	*+��	 !�/�	*!/�	**����� ��)�'��!����������� ��*�)&0.�*'0��� ���

�#$%�	**��	 *�/�	*!��	 +�/�	*+/�	**����� ��)�'��*���������� ��*�)&0.�*'0��� ����
������
����
��
�������
���

1 2�	*0/�	*+/�	**�/	*!���' �-3�� ���	*0�
�	*+�6�	**�4�	*!�
�+�6�* �4�!�
�0 �

�

���	*!/�	!C/�9����9�� � �����: �D ;	!C<�EE�	*!�
�!��

���	*+/�	!C/�9���09�� � �����: �D ;	!C60<�EE�	*+�
�+�

���	*0/�	!C/�9���.9�� � �����: �D ;	!C6.<�EE�	*0�
�0 �

�

�

�

�

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

54

�

�

�

�

�

�

Figure 4.9: Serpent load phase2

Figure 4.10: PAR simulation

 4.3 Performance Statistics
This section focuses on the design implementation stage. After making the changes

with a hardware description language, the next step is to convert the register transfer

level design (which focuses on describing the flow of the signals between registers) to

a gate-level description of the circuit by a logic synthesis tool. The synthesis tool used

is Xilinx XST (Xilinx Synthesis Tool). The synthesis results are then used by

placement and routing tools to create a physical layout. Table 7 shows the results

produced for a variety of FPGAs. The rightmost columns show the maximum

frequency and utilization before any changes were made. The XC4VLX200 FPGA

has the greatest operating frequency for our design at 83,96 MHz. It should be noted

that the smallest of these devices that our design may fit is XC3S1500 FPGA with a

utilization of 79%.

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

55

����� ���� ���! ��
"��#$%���

&!'(���)(�&*+�� ,��	�+!���#�
��������������

��� !� "�	�	 ��	���

��	�
���� ��� ������ 		� � ������ ��� �

������	��� ����
����� ��� � �	
��� �� �

������	��� ���� ������ ��� � 	�
��� �� �

��������� ��� ���	�� ��� � ��
��� ���

��������� ��� ���	�� ���� ������ �	��

 Table 7 – Performance Statistics

4.4 Conclusions and Future Work

As we mentioned in the beginning of this thesis report, internet is growing larger over

the years that pass. Also various embedded processors are more and more used in

many wireless communications devices, such as cell phones, PDAs (Personal Digital

Assistants), televisions. Consequently, secure communication and confidentiality are

crucial, in order to avoid virus infection, privacy loss, and stop digital crime activities

from malicious users.

Cryptography is a major issue, which should be taken into account when designing

new processors that will be used for communication and data exchange. This project

was focused on enhancing the existing ISA of Leon2 with instructions that may

improve the efficiency and the performance of cryptographic algorithms. In summary

our design has added the following characteristics:

�� Instructions such as Rotate and Loop were added to the ISA.

�� Increased the number of register file’s (RF) read ports to three. This was done,

so that double instructions may be calculated.

�� Supports different Sbox structures for a variety of ciphers.

�� Fits in FPGAs, without a great decrease in maximum operating frequency

In addition, there are a few potential improvements that can be made:

�� Better use of the third port in RF, to utilize instructions that require three input

operands.

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

56

�� Addition of the Galois Field Multiplication, an operation commonly used by

the AES cipher.

�� Calculation of the performance that this design achieves, and comparison with

pure software implementation (assembly).

In summary, cipher algorithms have been developing through the years and they will

always be, while concurrently many ways are being discovered to unlock even the

securest ones. For this reason, new designs should be developed to protect people

from malicious users.

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

57

5. References
�
�

[1] “The SPARC Architecture Manual, Version 8”, SPARC International Inc., 1992.

[2] Graham Seaman: “Free Hardware: Past, Present & Future”, Erste Oekonux
Konferenz, 2002

[3] John L. Hennessy, David A. Patterson: “Computer Architecture, a Quantitative
Approach”, Ed. Mc-Graw-Hill 1993.

[4] “AMBA (tm) Specification, Rev. 2.0”, ARM Limited, 1999. http://www.arm.com/

[5] James F.Kurose, Keith W.Ross: “Computer Networking: A Top-Down Approach
Featuring the Internet”, Prentice Hall 2003

[6] Theodoropoulos Dimitris,“CCproc: A custom VLIW cryptography co-processor
for symmetric key ciphers”,2005.

[7] LEON Sparc v8 CPU Core, Gaisler Research, http://www.gaisler.com/

[8] http://www.xilinx.com

[9] http://www.model.com

[10] Xilinx Corporation, “Distributed memory v7.1”, January 2005

[11]B. Schneier, Applied Cryptography, John Wiley & Sons Inc., New York, New
York, USA, 2nd edition, 1996.

[12] R.Doud, “Hardware Crypto Solutions Boost VPN”, Electronic Engineering
Times, 1999.

[13] AJ Elbirt, “Fast and Efficient Implementation of AES Via Instruction Set
Extensions”, 2007.

[14] J. Burke, J. McDonald, T. Austin, “Architectural Support for Fast Symmetric-

Key Cryptography”, ASPLOS 2000

[15] A. Murat Fiskiran and Ruby B. Lee, “Performance Impact of Addressing Modes

on Encryption Algorithms”, Proceedings of the International Conference on Computer

Design (ICCD 2001), pp. 542-545, September 2001

[16] A. Murat Fiskiran and Ruby B. Lee, “On-Chip Lookup Tables for Fast

Symmetric-Key Encryption”, Proceedings of the IEEE 16th International Conference

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

58

on Application-Specific Systems, Architectures and Processors (ASAP), pp. 356-363,

July 23-25, 2005

[17] A. Murat Fiskiran and Ruby B.Lee, “Fast Parallel Table Lookups to Accelerate

Symmetric-Key Cryptography”, 2005

[18] Alireza Hodjat, Ingrid Verbauwhede, “A 21.54 Gbits/s Fully Pipelined AES

Processor on FPGA”, IEEE Symposium on Field-Programmable Custom Computing

Machines, April 2004

[19] Xilinx Corporation, “Virtex-II Pro and Virtex-II Pro X Platform FPGAs”, March

2005

[20] Lisa Wu, Chris Weaver, and Todd Austin, “Cryptomaniac: A Fast Flexible

Architecture for Secure Communication”, ISCA 2001, June 2001

[21] Katherine Compton, Scott Hauck, “Reconfigurable Computing: A survey of

Systems and Software”, ACM Computing Surveys (CSUR), 2002

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

59

Appendix A: Leon2’s Instruction Set Extension

1.� Iror/Irol

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

60

2.� Double Instructions

3.� Ldlc/Iloop

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

61

4.� cipher instructions

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

62

5.� Aes

6.� Tsld/TSBOX

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

63

7.� SERP

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

64

8.� Mars

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

65

Appendix B: Leon’s complete Instruction Set

Opcode Name
LDSB (LDSBA†) �������� ���!"�#�$�%�&�"$ �"��'��(�

LDSH (LDSHA†) �������� ��)���*�$��#�$�%�&�"$ �"��'��(�

LDUB (LDUBA†) �����+ ��� ���!"�#�$�%�&�"$ �"��'��(�

LDUH (LDUHA†) �����+ ��� ��)���*�$��#�$�%�&�"$ �"��'��(�

LD (LDA†) �����, �$��#�$�%�&�"$ �"��'��(�

LDD (LDDA†) �����-�./�*�$��#�$�%�&�"$ �"��'��(�

LDF �����0���"� ��'�� "�

LDDF �����-�./��0���"� ��'�� "�

LDFSR �����0���"� ��'�� "��"�"�1���"$�

LDC �����2�'$�����$�

LDDC �����-�./��2�'$�����$�

LDCSR �����2�'$�����$��"�"�1���"$�

STB (STBA†) �"�$��!"�#� "��&�"$ �"��'��(�

STH (STHA†) �"�$�)���*�$��#� "��&�"$ �"��'��(�

ST (STA†) �"�$�, �$��#� "��&�"$ �"��'��(�

STD (STDA†) �"�$�-�./�*�$��#� "��&�"$ �"��'��(�

STF �"�$�0���"� ��'�� "�

STDF ��"�$�-�./��0���"� ��'�� "�

STFSR �"�$�0���"� ��'�� "��"�"�1���"$�

STDFQ† �"�$�-�./��0���"� ��'�� "���$$��"$�'�3..�

STC �"�$�2�'$�����$�

STDC �"�$�-�./��2�'$�����$�

STCSR �"�$�2�'$�����$��"�"�1���"$�

STDCQ† ��"�$�-�./��2�'$�����$���$$��"$�'�3..�

LDSTUB (LDSTUBA†) &"�%���������"�$�+ ��� ���!"�#� �&�"$ �"��'��(�

SWAP (SWAPA†) �*�'�$�1���"$�*�"4�5%�$!�#� �&�"$ �"��'��(�

SETHI �"�)��4�		�/�"�����$�1���"$�

NOP �6��7'$�"�� �

AND (ANDcc) & ��#� ��%����!����(�

ANDN (ANDNcc) & ��6�"�#� ��%����!����(�

OR (ORcc) 8 ��.����7$�#� ��%����!����(�

ORN (ORNcc) 8 ��.����7$�6�"�#� ��%����!����(�

XOR (XORcc) 9���.����7$�#� ��%����!����(�

XNOR (XNORcc) 9���.����6�$�#� ��%����!����(�

SLL �4��"���"���������

SRL �4��"�1��4"���������

SRA �4��"�1��4"�&$�"4%"���

Electronics and Computer Engineering Department – Technical University of Crete

Microprocessor and Hardware Laboratory – August 2008

66

ADD (ADDcc) &���#� ��%����!����(�

ADDX (ADDXcc) &���*�"4�2�$$!�#� ��%����!����(�

TADDcc (TADDccTV) :�����&���� ��%����!�����#� ��:$�'�� ���$���*(�

SUB (SUBcc) �./"$��"�#� ��%����!����(�

SUBX (SUBXcc) �./"$��"�*�"4�2�$$!�#� ��%����!����(�

TSUBcc (TSUBccTV) :������./"$��"�� ��%����!�����#� ��:$�'�� ���$���*(�

5+������ 5.�"�'�!��"'�#� ��%����!����(�

+5+��#+5+���(�� + ��� ��8 "�$�5.�"�'�!�#� ��%����!����(�

�5+��#�5+���(�� ��� ��8 "�$�5.�"�'�!�#� ��%����!����(�

+-8;�#+-8;��(�� + ��� ��8 "�$�-�����#� ��%����!����(�

�-8;�#�-8;��(�� ��� ��8 "�$�-�����#� ��%����!����(�

�&;9�� ��������$<��*� ��*�

19�:719�� 1�"�$�����$<��*� ��*�

������ �$� �4�� �� "�$��� ��"�� ������

0������ �$� �4�� �����"� ��'�� "��� ��"�� ������

2������ �$� �4�� ���'$�����$��� ��"�� ������

2&���� 2����� ���� =�

>5?��� >.%'�� ���� =�

19::� 1".$ ��$�%�:$�'�

:����� :$�'�� �� "�$��� ��"�� ������

1-&�1� 1���& �����$!��"�"�1���"$�

1-@�� 1���@�1���"$�

1-?�1� 1���?$�����$��"�"�1���"$�

1-, 85� 1���, � ��*�8 ������5��=�1���"$�

1-:�1�� 1���:$�'�����1���"$�

, 1&�1� , $�"�& �����$!��"�"�1���"$�

, 1@�� , $�"�@�1���"$�

, 1?�1� , $�"�?$�����$��"�"�1���"$�

, 1, 85� , $�"�, � ��*�8 ������5��=�1���"$�

, 1:�1� , $�"�:$�'�����1���"$�

�:�&1�� �"�$���$$�$�

+685?�� + �%'�% "��

0�+�)�� 0�.�4�8 �"$.�"�� �5%�$!�

0?�'�� 0���"� ��'�� "�7'$�"�

2?�'�� 2�'$�����$�7'$�"A��%'�% "�"�� ��' � "�

