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Introduction 
 

In a increasingly connected world, information security has become a top priority. 

Many applications — electronic mail, electronic banking, medical databases, and 

electronic commerce — require the exchange of private information. For example, 

when engaging in electronic commerce, customers provide credit card numbers when 

purchasing products. If the connection is not secure, an attacker can easily obtain this 

sensitive data. For this reason protocols have been designed that create secure 

connections and protect data transmission from malicious internet users. 

 

Cryptography is a Greek word that literally means the art of writing secrets. In 

practice, cryptography is the task of transforming information into a form that is 

incomprehensible, but at the same time allows the intended recipient to retrieve the 

original information using a secret key. Cryptographic algorithms (or ciphers, as they 

are often called) are special programs designed to protect sensitive information on 

public communications networks. During encryption, ciphers transform the original  

message (called plaintext) in such a way as to hide its substance. An encrypted 

message is ciphertext. Decryption is the process of retrieving plaintext from ciphertext 

[5]. 

 

 

 

 

Figure 1.1: Encryption and Decryption 
 

Two forms of cryptography are commonly used in information systems today: secret-

key ciphers and public-key ciphers. Secret-key ciphers (sometimes referred to as 

symmetric-key ciphers) use a single private key to encrypt and decrypt. Public key 

ciphers (or asymmetric-key ciphers) use a well-known public key to encrypt and 

require a different private key to decrypt. Symmetric-key algorithms tend to be 

significantly faster than public-key algorithms. So, during a secure data exchange, at 

first a private key is shared between the users with a public key cipher and then all 
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other data are being transmitted with a private key cipher, that uses the previous 

shared key for encryption/decryption.  

 

Nowadays, there is the demand of greater data encryption and decryption rates. To 

achieve this goal, ciphers have been implemented with software routines, directly in 

hardware or a combination of both. A software only approach is the lowest-cost 

solution but with accordingly low performance. The advantages of a software 

implementation include ease of use, ease of upgrade, ease of design, portability, and 

flexibility. However, a software implementation offers only limited physical security, 

especially with respect to key storage [11]. Conversely, cryptographic algorithms that 

are implemented in hardware are by nature more physically secure as they cannot 

easily be read or modified by an outside attacker when the key is stored in special 

memory internal to the device [12]. As a result, the attacker does not have easy access 

to the key storage area and cannot discover or alter its value in a straightforward 

manner [11].   

 

When using a general-purpose processor, even the fastest software implementations 

of block ciphers cannot satisfy the required data encryption rates for high-end 

applications. As a result, hardware implementations are necessary for block ciphers to 

achieve this required performance level. Although traditional hardware 

implementations lack flexibility, configurable hardware devices offer a promising 

alternative for the implementation of processors via the use of IP cores in Application 

Specific Integrated Circuit (ASIC) and Field Programmable Gate Array (FPGA) 

technology. In this thesis, our goal is the enhancement of an existing Instruction Set 

Architecture (ISA) of the free LEON2 processor core with new instructions that will 

help faster processing of the enciphering and deciphering many of today’s symmetric-

key ciphers. 

 

The extended ISA contains of instructions related with the integer unit (rotate-double), 

control transfer instructions (loop), and memory elements called Sboxes in 

cryptographic parlance. In order to realize how we incorporated these instructions 

(shown in Chapter 3), we should primarily understand the way the leon2 processor 

works (Chapter 2). Before that, what follows is a brief overview of previous work 

regarding implementations via software, hybric architectures cryptographic co-
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processors, and instruction set extensions (Chapter 1). Finally in chapter 4 we show 

the verification process that was followed by running simulation tests, as well as the 

resource utilization and maximum frequency results. 
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1.  Related work 

�

This chapter focuses on related work that has been done in software and hardware 

level. The flexibility offered by software, as it stated before, is often not enough due 

to the small performance evidenced when targeting a general purpose processor 

whose instruction set cannot provide a fast and efficient implementation. In contrast 

there are many hardware specific implementations, based on FPGA devices or ASICs. 

This implementation category provides ultra speed performance (much higher than in 

software) for each symmetric algorithm, because of the dedicated hardware 

processors. One of the fastest implementations is presented in [18], Alireza Hodjat use 

a Virtex II Pro FPGA [19] and achieves a 21.4 Gbits/sec throughput of the AES 

algorithm. 

 

We mainly focused to a category of designs that either extend an existing processor’s 

architecture or introduce new co-processors specifically for the efficient execution of 

symmetric ciphers. Instruction Set Extensions (ISE) result in significant performance 

improvements versus traditional software implementations with considerable reduced 

logic resource requirements versus hardware-only solutions. 

 

The most recent of these designs [13], presents a general purpose instruction set 

extension to a 32-bit SPARC V8 compatible processor core that accelerates the 

performance of Galois Field fixed field constant multiplication. This design improves 

the existing ISA, while maintaining a generalized implementation format capable of 

supporting other algorithms that use Galois Field fixed field constant multiplication. 

 

Burke et al in [14]0 are trying to improve the performance of symmetric ciphers for 

the Alpha 21264 processor by examining eight algorithms. After analysis of 

bottleneck in these ciphers, they conclude to an extended ISA that consists of 

hardware rotations, modulo multiplication, permutation and Sbox access instructions 

and may achieve up to a 74% speedup over the baseline machine 
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Murat Fiskiran et al in [15] study the effect of different addressing modes that can be 

used to calculate the effective address during Sbox access. More specifically they 

determinate how performance is affected on 1, 2, 4 and 8 wide EPIC (Explicitly 

Parallel Instruction Computer) processors depending on addressing mode of the 

architecture, issue width of the processor and number of memory ports. The results 

indicate that speedups exceeding 2x can be obtained when fast addressing modes are 

used. 

 

Another similar approach comes from [16], where the same authors describe a new 

hardware module called PTLU (Parallel Table Look Up). It consists of multiple LUTs 

that can be accessed in parallel and its purpose is again Sbox access acceleration. 

Their results show maximum speedups of 7.7x for AES and 5.4x for DES, all tested 

on a single-issue 64-bit RISC processor. 

 

Hardware co-processors have been developed to accelerate cryptographic algorithm 

implementations. The CryptoManiac VLIW co-processor [20] was developed as a 

result of instruction set extensions designed to accelerate the performance of a number 

of the AES candidate algorithms. CryptoManiac uses an sbox instruction to read its 

four 1kB on-chip caches in order to improve the table lookups functions. Furthermore 

it features the execution of up to four instructions per cycle and the use of instructions 

with up to three operands to allow for the combination of short latency instructions for 

single cycle execution.  
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2.  Leon2 Architecture 
 

In this chapter we focus on describing Leon’s architecture. Leon2 has been chosen 

because it is one of the most developed free processor cores available and it may be 

implemented on a variety of hardware solutions. We will concentrate on explaining 

the main functions of Leon and give extra attention to the components that are 

important for the specific project. The rest of the chapter is organized as follows: in 

the next section we provide a brief introduction to the LEON2 processor, and section 

2.2 presents with more detail the instructions that are supported, their format and the 

way pipelining works. 

 

2.1  Leon2 Microprocessor 
LEON2 is a microprocessor which implements a RISC architecture conforming to the 

SPARC v8 definition [1]. It is a synthesizable core written in VHDL and can be 

implemented both on FPGAs and ASICs. It is distributed under the terms of the GNU 

LGPL license so it is an open hardware [2] and it is specifically designed for 

embedded applications. It was originally developed by the European Space Agency 

and nowadays it is maintained by Gaisler Research. The Leon2 32-bit core 

implements the full SPARC v8 standard, it uses big-endian byte ordering, has 32-bit 

internal registers, 72 different instructions in 3 different instruction formats and 3 

addressing modes (immediate, displacement and indexed). It implements signed and 

unsigned multiply, divide and MAC operations and has a 5-stage instruction pipeline 

(Instruction Fetch, Decode, Execute, Memory and Write). It also implements two 

separate instruction and data cache interfaces, Harvard Architecture [3]. 

 

The VHDL model is fully synthesizable with most of the commonly synthesis tools, it 

is configurable and it uses the AMBA-2.0 AHB/APB onchip buses [4]. All these 

features makes Leon2 an ideal microprocessor for System-on-Chip applications. A 

block diagram of Leon2 architecture can be seen in figure 2.1. Many of those blocks 

are optional and can be removed from the model our application implements. 
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Figure 2.1: LEON2 microprocessor architecture 

 

 

LEON2 implements the following features: 

· 32 bits RISC microprocessor 

· SPARC v8 compliant 

· 5-stage instruction pipeline 

· multiply/divide/mac operations on hardware 

· separated instruction and data caches 

· memory management unit, MMU 

· memory interfaces for FLASH, SRAM, SDRAM & PROM 

· on-chip RAM 

· interrupt handler 

· interface for a floating point unit, FPU 

· debug support unit, DSU 

· two 24-bit timers 

�

�

SPARC v8 processor defines three main units, integer unit, floating-point unit and a 

custom coprocessor, each one with its own 32-bit internal registers. The latter two 
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units are optional, not mandatory for the processor. Leon2 implements the integer unit 

completely and the interfaces for the other two units in its core. Gaisler Research also 

has a commercial high performance FPU for Leon2 available [CATO03]. Leon2 also 

can provide a generic interface for a custom user defined co-processor which will 

work in parallel with the main processor in order to increase performance. Figure 2.2 

presents the overview of the main processor. Except for the co-processor and the 

floating point unit (fpu), integer unit connects with the Register File (RF) and with 

system’s cache, which consists of separate instruction and data controllers. Signal 

pairs ici-ico and dci-dco are used for transferring data from instruction and data cache 

respectively. Component cachemem is the configurable memory where data is stored.  

 

 

Leon2 uses the AMBA-2.0 AHB bus to connect the main processor with high-speed 

controllers like memory and other optional units like the onchip RAM or PCI or 

Ethernet interfaces. In the default configuration the processor of LEON2 is the only 

master of the AHB bus. Cache component (in figure 2.2) is the sub-section inside the 

processor that manages all accesses on the bus and specifically uses signals ahbi–

ahbo to communicate with AHB slaves. For example, if the required data from the 

integer unit is not found in cachemem then cache component uses the AHB bus to 

load/store data from/to the external memory.   

 

 

 

 

  

 

 

 

 

 

 

 

Figure 2.2: Main processor architecture 
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Figure 2.3 shows the connections on the AHB bus at the default configuration. The 

LEON processor core is normally connected as master 0, while the memory controller 

(component mctrl) and APB bridge are connected as slaves 0 and 1. The AHB 

controller (component ahbarb) controls the AHB bus and implements the bus arbiter. 

The AHB bus can connect up to 16 masters and any number of slaves, but in this case 

where only one master is connected, no arbitration scheme is needed. The debug 

support unit (component dsu) can read data returned to the processor on the AHB bus. 

The figure does not contain all the ports of the components; it just shows the way the 

processor transfers and receives data from other modules on the AHB bus.  

 

  

 

 

 

 

 

 

 

 

 

Figure 2.3: AHB bus connections 
 

 

Another AMBA-2.0 bus is used to access most onchip peripherals, the APB bus. It is 

optimised for simple operation and low-power consumption and it is connected to the 

AHB bus via the AHB/APB bridge (component apbmst), which is the master of that 

bus.  

 

The memory bus provides a direct interface to PROM, memory mapped I/O devices, 

asynchronous static ram (SRAM) and synchronous dynamic ram (SDRAM). Leon2 

external memory access is provided by a programmable memory controller. The 

controller can decode a map of up to 2 Gbytes. Figure 2.4 shows how the connection 

to the different device types is made. 
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Figure 2.4: Memory device interface 
 

 

2.2  Leon2 Integer Unit (IU) 
The IU contains the general-purpose registers and controls the overall operation of the 

processor. The IU executes the integer arithmetic instructions and computes memory 

addresses for loads and stores. It also maintains the program counters (PC) and 

controls instruction execution for the FPU and the CP. 

 

2.2.1  Sparc Architecture 
 

The LEON integer unit implements SPARC integer instructions as defined in SPARC 

Architecture Manual version 8. SPARC includes the following principal features: 

�� A linear, 32-bit address space. 

�� Few and simple instruction formats — All instructions are 32 bits wide, and 

are aligned on 32-bit boundaries in memory. There are only three basic 
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instruction formats, and they feature uniform placement of opcode and register 

address fields. Only load and store instructions access memory and I/O. 

�� Few addressing modes — A memory address is given by either “register + 

register” or “register + immediate.” 

�� Triadic register addresses— Most instructions operate on two register 

operands (or one register and a constant), and place the result in a third 

register. 

�� A large “windowed” register file — At any one instant, a program sees 8 

global integer registers plus a 24-register window into a larger register file. 

The windowed registers can be described as a cache of procedure arguments, 

local values, and return addresses. 

�� Delayed control transfer— The processor always fetches the next instruction 

after a delayed control-transfer instruction. It either executes it or not, 

depending on the control-transfer instruction’s “annul” bit. 

 
A SPARC processor includes two types of registers: general-purpose or “working” 

data registers and control/status registers. The IU’s general-purpose registers are 

called r registers. IU control/status registers include of several registers, such as the 

program counters (PC and nPC) and Processor State Register (PSR) which contains 

various fields that control the processor and hold status information. 

 

An implementation of the IU may contain from 40 to 520 general-purpose 32-bit r 

registers. The total number of registers is implementation-dependent but at a given 

time an instruction can access the 8 globals and a 24-register window. 

 

2.2.2  Instructions 
 

The processor can be in either of two modes: user or supervisor. In supervisor mode, 

the processor can execute any instruction, including the privileged (supervisor-only) 

instructions. In user mode, an attempt to execute a privileged instruction will cause a 

trap to supervisor software.  

 

Instructions fall into four basic categories: 
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1.� Load/store 

2.� Arithmetic/logical/shift 

3.� Control transfer 

4.� Read write control register 

 

Load/Store  

Load/store instructions are the only instructions that access memory. They use 

two r registers or an r register and a signed 13-bit immediate value to calculate a 32-

bit, byte-aligned memory address. The IU appends to this address an address space 

identifier, or ASI which encodes whether the processor is in supervisor or user mode, 

and that it is a data access. The destination field of the load/store instructions specifies 

an r register that supplies the data for a store or receives the data from a load. Integer 

load and store instructions support byte, halfword (16-bit), word (32-bit), and 

doubleword (64-bit) accesses. 

 

Arithmetic/Logical/Shift 

 The arithmetic/logical/shift instructions perform arithmetic, logical, and shift 

operations. With one exception, these instructions compute a result that is a function 

of two source operands; the result is either written into a destination register, or 

discarded. The exception is a specialized instruction, SETHI, which writes a 22-bit 

constant from the instruction into the high-order bits of the destination register. 

 

Control Transfer  

 Control-transfer instructions (CTIs) include PC-relative branches and calls, 

register-indirect jumps, and conditional traps. Most of the control-transfer instructions 

are delayed control-transfer instructions (DCTIs), where the instruction immediately 

following the DCTI is executed before the control transfer to the target address is 

completed.  

The instruction following a delayed control-transfer instruction is called a 

delay instruction. The delay instruction is always fetched, even if the delayed control 

transfer is an unconditional branch. However, a bit in the delayed control transfer 

instruction can cause the delay instruction to be annulled (that is, to have no effect) if 

the branch is not taken (or in the branch always case, if the branch is taken). 
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State Register Access 

The Read/Write Register instructions read and write the contents of software 

visible state/status registers. There are also read/write “ancillary state register” 

instructions that software can use to read/write unique implementation- dependent 

processor registers.  

 

2.2.3  Instruction Execution – Instruction Formats 
 
Architecturally, an instruction is read from memory at the address given by the 

program counter (PC). It is then executed or not, depending on whether the previous 

instruction was an annulling branch. An instruction may also generate a trap due to 

the detection of an exceptional condition, caused by the instruction itself (precise trap), 

a previous instruction (deferred trap), an external interrupt (interrupting trap), or an 

external reset request. If an instruction is executed, it may change program-visible 

processor and/or memory state.  

 

Instructions are encoded in three major 32-bit formats, which are presented in Figure 
2.5 
 
 

 

 

 

 

 

 

 

 

 

 

Figure 2.5: Summary of instructions formats 
 

The instruction fields are interpreted as follows:  

op and op2 

These 2- and 3-bit fields encode the 3 major formats and the format 2 instructions 

according to Figures 2.6 and 2.7. 
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Figure 2.6: Op encoding (all formats) 

 

 

 

 

 

 

 
Figure 2.7: Op2 Encoding (format 2) 

rd 

This 5-bit field is the address of the destination (or source) r or f or coprocessor 

register(s) for a load/arithmetic (or store) instruction. For an instruction that 

read/writes a double (or quad), the least significant one (or two) bits are unused and 

should be supplied as zero by software. 

a 

The a bit in a branch instruction annuls the execution of the following instruction if 

the branch is conditional and untaken or if it is unconditional and taken. 

cond 

This 4-bit field selects the condition code(s) to test for a branch instruction.  

imm22 

This 22-bit field is a constant that SETHI places in the upper end of a destination 

register. 

disp22 and disp30 

These 30-bit and 22-bit fields are word-aligned, sign-extended, PC-relative 

displacements for a call or branch, respectively. 

op3 

This 6-bit field (together with 1 bit from op) encodes the format 3 instructions.  

i 
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The i bit selects the second ALU operand for (integer) arithmetic and load/store 

instructions. If i = 0, the operand is r[rs2]. If i = 1, the operand is simm13, sign-

extended from 13 to 32 bits. 

asi 

This 8-bit field is the address space identifier supplied by a load/store alternate 

instruction. 

rs1 

This 5-bit field is the address of the first r or f or coprocessor register(s) source 

operand. For an instruction that reads a double (or quad), the least significant bit (or 2 

bits) are unused and should be supplied as zero by software. 

rs2 

This 5-bit field is the address of the second r or f or coprocessor register(s) source 

operand when i = 0. For an instruction that reads a double-length (or quad-length) 

register sequence, the least significant bit (or 2 bits) are unused and should be 

supplied as zero by software. 

simm13 

This 13-bit field is a sign-extended 13-bit immediate value used as the second ALU 

operand for an (integer) arithmetic or load/store instruction when i = 1. 

opf 

This 9-bit field encodes a floating-point operate (FPop) instruction or a coprocessor 

operate (CPop) instruction.  

Appendix B contains the complete instructions set our processor. 

 

2.2.4  Instruction pipeline 
 

The LEON integer unit uses a single instruction issue pipeline with 5 stages 

(schematically represented in Figure 2.8): 

1. FE (Instruction Fetch): If the instruction cache is enabled, the instruction is fetched 

from the instruction cache. Otherwise, the fetch is forwarded to the memory controller. 

The instruction is valid at the end of this stage and is latched inside the IU. 

2. DE (Decode): The instruction is decoded and the operands are read. Operands may 

come from the register file or from internal data bypasses. CALL and Branch target 

addresses are generated in this stage. 
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3. EX (Execute): ALU, logical, and shift operations are performed. For memory 

operations (e.g., LD) and for JMPL/RETT, the address is generated. 

4. MEM (Memory): Data cache is accessed. For cache reads, the data will be valid by 

the end of this stage, at which point it is aligned as appropriate. Store data read out in 

the execution stage is written to the data cache at this time. 

5. WR (Write): The result of any ALU, logical, shift, or cache read operations are 

written back to the register file. 

 

 

 

 

 

 

 

 

Figure 2.8: Simplified five-stage datapath 
 

 

The major problem of all pipelined processors is the problem of hazards. A hazard 

occurs when an instruction in the pipeline cannot be executed. Figure 2.9 shows an 

abstract block diagram of the integer unit, mainly focused on bypassing signals which 

is a strategy to resolve the problem of data hazards. This type of hazard occurs when 

an instruction depends on the result of a previous instruction. In order to avoid stalling 

the pipeline, some signals are forwarded from later stages. There are 4 cases when 

data need to be forwarded by a pipeline register: 

 

�� Ex � Dec  (for logical/arithmetic instructions) 

�� Mem � Dec (for logical/arithmetic instructions) 

�� Wb � Dec  (both for memory – logical/arithmetic instructions) 

�� Wb � Ex  (both for memory – logical/arithmetic instructions) 
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Figure 2.9: Abstracted datapath of IU, without control signals 
 

The forwarding control was in the decode stage of the datapath. The control of these 

cases leads to control lines for multiplexors that select either the normal register 

values or one of the forwarded values. Signals that are used in later phases are passed 

via the pipeline registers.  Figure 2.10 shows how this unit works. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 2.10: Forwarding unit 
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3.  Leon2_ISE Architecture 
 
In this chapter we will refer to the changes made in the Leon2 processor, with goal the 

expantion of its ISA to include symmetric key ciphers. All changes, were based on the 

master thesis of D.Theodoropoulos “CCproc : A VLIW cryptography co-processor for 

symmetric key ciphers” [6]. Theodoropoulos designed, after thoroughly analysed 

most cryptography algorithms, a co-processor called CCproc (Cryptography 

CoProcessor) and its Instruction Set, capable to support these ciphers. The first 

section makes an overview of Theodropoulos’ analysis of private key ciphers, as well 

as the necessary structures and arithmetic operations needed to implement them. 

Section 3.2 presents the design considerations and the differences with our project. 

Section 3.3 shows the complete instruction set that we should add to the Leon2. The 

changes made in Leon2’s Instruction Set Architecture are presented in sections 3.4 

(arithmetical/logical/branch instructions) and 3.5(specific cipher instructions). 

 

3.1  Private Key Ciphers 
 

Ciphers can be categorized as stream ciphers or block ciphers. The former operate on 

the plaintext a single bit (or sometimes byte) at a time. The latter operate on the 

plaintext in groups of bits. The group of bits are called blocks, and the algorithms are 

called block ciphers. These algorithms typically have three operational parameters: 

key size, block size and number of rounds. The key size is the length of the key used 

to encrypt or decrypt data. The block size is the amount of data processed each time 

the cipher kernel is invoked. The number of rounds specifies the total number of 

iterations executed by the cipher kernel loop.  

 

Figure 3.1 shows a generic schematic for the encryption/decryption process. Before 

message encryption starts, every symmetric cipher has an initialization phase. After 

this phase is complete, a certain number of various types of arithmetic operations are 

being applied on the plaintext for a specific number of rounds. Once the defined 

round number has been reached, encryption is finished and ciphertext is ready to be 
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transmitted. Decryption process in most cases, if it is not identical, then it is almost 

the same. 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
             Figure 3.1: Encryption/Decryption process 

 
 

After analysis, Theodoropoulos concluded that the operations and structures most 

commonly used are: 

 
1.� Unsigned addition and subtraction modulo 232 

2.� Multiplication modulo 232 

3.� Exclusive or (xor) between 32-bit data 

4.� Fixed shifts and rotations 

5.� Data depended shifts and rotations 

6.� Finite field polynomial multiplication in 28 modulo a prime polynomial 

7.� Expansions and permutations (Xboxes) 

8.� Substitution boxes (Sboxes) 

9.� Feistel network structures 

 

In Leon2, like most 32-bit processors, operations from 1 to 6 are implemented very 

fast, except for the field polynomial multiplication (FFM) modulo a prime polynomial. 
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Besides arithmetic operations, there are common structures among ciphers. Sboxes 

are usually non-linear structures that map an n-bit value to an m-bit value, essentially 

Look Up Tables (LUT). A symmetric cipher may have one or more different Sboxes, 

with each one of them having arbitrary dimensions, as shown in Figure 3.2. 

 
 
 
 
 
 
 
 

Figure 3.2: Sboxes 
 

3.2  Design considerations 

 

3.2.1  Theodoropoulos’ CCproc considerations 

In order to implement the necessary instructions, some considerations had to be taken 

into account: 

�� The operations of bit permutations are not adopted by the newest ciphers and 

specifically none of the AES round two finalists except Serpent uses them. 

Furthermore they require a considerable amount of hardware and though it 

was decided not to be used. 

�� The research revealed a high frequency occurrence of two dependent, back-to-

back instructions. Examples are double additions, subtractions and XORs 

operations, as well as addition-subtraction followed by a XOR.  

�� A fact that characterizes every symmetric cipher is the determined number of 

rounds during the key expansion process, plus encryption / decryption. As a 

result they can be written in a way that requires absolutely no branch tests. 

This observation let to the decision to support a “loop” instruction that would 

a priori know the number of rounds and so pre-evaluate the direction, adding 

no branch-related pipeline stalls. 

�� Due to complexity of the key expansion process, Theodoropoulos supported 

an extra functional unit: a KRF (Key Register File) memory module in order 

to store all expanded keys.  
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�� Many times during processing, symmetric ciphers require 64-bit, 96-bit or 

even 128-bit data values at the same time in order to proceed, so with a  single 

32-bit RISC datapath additional clock cycles are spent on fetching all 

appropriate data to the functional unit that will use them. This performance 

obstacle led to the decision to examine and finally implement a VLIW 5-stage 

pipelined processor, that would consist of four 32-bit clusters, capable to 

process four 32-bit instructions in one clock cycle. Its abstract schematic 

overview is shown in Figure 2.6 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.3: CCproc’s abstract schematic overview 

 

 

3.2.2  Leon2 Design differences 

 
 

�� The main difference of our design is that we have a single 32-bit RISC 

datapath structure extended to support an enhanced symmetric cipher ISA. As 

a result any instruction that may require 128-bit data values at the same time in 

order to proceed, would be delayed. The narrower datapath does not affect the 

effectiveness of our instructions but merely their execution speed.  

�� Leon2’s RF (Register File) can access a large number of registers (up to 520). 

So, in our design, it was decided not to include a KRF, and store all key values 



Electronics and Computer Engineering Department – Technical University of Crete 
 

_______________________________________________________________________________ 
Microprocessor and Hardware Laboratory –  August 2008 
 

27 

into the RF preventing from any additional stall to support operations between 

RF’s data and KRF’s data 

 
 

3.3  CC proc Instruction Set 
 
After evaluating all the above considerations, Theodoropoulos designed the ISA of his 

CCproc, categorizing the instructions to four primary formats, Register, Immediate, 

loop and cipher. As stated before, some of these instructions are already implemented 

in Leon2. Table 1 summarizes all instructions supported in CCproc and not supported 

in Leon2 in R, I and loop formats. 

Format Operation Syntax Description 

Gfm gfm rdx,rsa 
galois field multiplication in GF(28) between 
rsa and GF operand x and the result is stored to 
rdx 

krfpaz krfpaz resets KRF's pointer to first address 

ldgfmr ldgfmr rsa 
loads 8-bit mr register with rsa's value, which 
holds modulo polynomial in Galois Field 
multiplication 

ldgfopx ldgfopx rsa loads Galois Field operand x with rsa's value 
ldlc ldlc #a loads 6-bit lc register with #a 

r2c/c2r r2c / c2r 
rdx,rsa 

toggles between rows and columns in a 128-bit 
data value 

Rol rol rdx,rsa,rsb rotates left rsa by the amount specified from 
rsb's 5 LSBs and stores the result to rdx 

Ror ror rdx,rsa,rsb rotates right rsa by the amount specified from 
rsb's 5 LSBs and stores the result to rdx 

addadd addadd 
rdx,rsa,rsb,rsc 

adds rsa with rsb, adds the result to rsc and 
stores it to rdx 

addsub addsub 
rdx,rsa,rsb,rsc 

adds rsa with rsb, subtracts rsc from the result 
and stores it to rdx 

addxor addxor 
rdx,rsa,rsb,rsc 

adds rsa with rsb, logic xor between rsc and the 
result and stores it to rdx 

subadd subadd 
rdx,rsa,rsb,rsc 

subtracts rsb from rsa, adds the result to rsc and 
stores it to rdx 

subsub subsub 
rdx,rsa,rsb,rsc 

subtracts rsb from rsa, subtracts rsc from the 
result and stores it to rdx 

R 

subxor subxor 
rdx,rsa,rsb,rsc 

subtracts rsa with rsb, logic xor between rsc and 
the result and stores it to rdx 
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xoradd xoradd 
rdx,rsa,rsb,rsc 

logic xor between rsa and rsb, adds the result to 
rsc and stores it to rdx 

xorsub xorsub 
rdx,rsa,rsb,rsc 

logic xor between rsa and rsb, subtracts rsc 
from the result and stores it to rdx 

 

xorxor subxor 
rdx,rsa,rsb,rsc 

logic xor between rsa and rsb, logic xor 
between rsc and the result and stores it to rdx 

roli roli rdx,rsa,#a rotates left rsa by the amount specified from 
#a's 5 LSBs and stores the result to rdx 

I 
rori rori rdx,rsa,#a rotates right rsa by the amount specified from 

#a's 5 LSBs and stores the result to rdx 

loop loop loop label jumps to the beginning of a loop which starts at 
address “label” 

 
Table 1: Supported operations in R, I and loop formats. Bold means double instructions. 

 
From the above instructions those referring to the KRF module and Galois Field 

Multiplication were not implemented. Moreover, the instruction r2c/c2r has no 

meaning in the single RISC processor. 

 

The supported cipher instructions which access different memory modules called 

Sboxes, are presented in Table 2. 

 

 
Table 2: Supported cipher instructions 

 
 
3.4  Arithmetic/Logical/Branch Instructions 
 

Instruction Syntax Description 

aesX aesX rdx,rsa 
Sbox access during AES encryption or 
decryption (X=E,D) with rsa and the result is 
stored to rdx 

marsX marsX rdx,rsa 
Sbox access during MARS forward mode, 
backward mode, or E function (X=F,B,E) with 
rsa and the result is stored to rdx 

serX serX rdx,rsa 
Sbox access during Serpent encryption or 
decryption (X=E,D) with rsa and the result is 
stored to rdx 

tX tsld rsa,rsb / tsbox 
rdx,rsa 

during Twofish, loads to S0 and S1 rsa and rsb 
respectively / Sbox access with rsa and the 
result is stored to rdx 
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In figure 2.5 we presented the three basic formats of instructions for Leon2 Instruction 

Set. Our goal is the enhancement of the existing Instruction Set Architecture (ISA) 

with the new instructions presented in the previous chapter. 

 

Instructions with op = 2, are divided according to op3 value. Table 3 lists the possible 

instructions for op3[5:0]. With red colour, we distinguish the new instructions which 

were added to the design. 

 

 

 

 

 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 3.4: Arithmetic/Logic instructions in Leon2 
 
We will present one instruction at a time, and the changes made in Leon2 integer unit. 

We tried to keep the basic format that these instructions follow. Of course every 

instruction has its specific format, described in detail on appendix A. The TSLD 

instruction will be presented in the next chapter as it is connected with a cipher 

instruction. 

 

3.4.1  Iror/Irol 
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Inside the execution stage, we added the rotation of register (rs1) left or right by the 

distance indicated by either the register’s rs2 five least significant bits, or the 5-bit 

rotcnt value. The result is saved into destination register rd. 

 

The difference from the Shift instructions (SRL, SRA) is that after the shift, the 

vacated positions are not filled with zeroes but with register’s MSB or LSB depending 

on the direction of the rotation. 

 

3.4.2  Double Instructions 

The main difference of these instructions is that double-instructions require three 

operands, something that it is not feasible as RF reads only two registers. In order to 

accomplish a double instruction at one clock cycle, we have to read 3 operands from 

the RF. So, we created a second copy of Register File’s memory.  

 

After this change was made, we added a module inside memory stage capable of 

adding/subtracting or making a Xor operation between two operands. This extension 

helps us executing the second phase of the instruction, as the first one is implemented 

inside the ALU during the execution stage. We preferred not to insert both operations 

in execution stage, so that we avoid having a greater delay on the critical path. 

 

The figure 3.5 presents the datapath with a 4-port RF and the added module that is 

used during the memory stage of any double instruction.  

 

 

 

 

 

 

Figure 3.5: Datapath that includes double instructions; changes are in colour 
 

Unlike all arithmetic/logic instructions which produce their result at the end of the 

execution stage, double instructions produce their result at the end of the memory 

stage. This leads to a data hazard, when a double instruction writes the register the 

following instruction wants to read. Figure 3.6a presents this case. A solution to this 
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problem is stalling the dependent instruction in the decode stage for one cycle. Figure 

3.6b shows how this stall removes the problem. Data is then forwarded from the write 

back (WB) pipeline register to the dependent instruction.  

 

To achieve these, we had to extend the operation of the Control Unit. This 

necessitated that the pipeline registers Ex, Mem are extended with 1 bit register which 

shows that we refer to a double instruction.  

 

 

 

 

 

 

 

 

Figure 3.6: Pipeline dependency during a double instruction 
 

To conclude, all double instructions, execute in one cycle. If the instruction that 

follows, reads the register written by the double instruction, then there is a one-cycle 

stall. All other data dependencies are removed. 

 

3.4.3  Loop Instruction 

A control-transfer instruction changes the value of the next program counter (nPC). 

There are five basic control-transfer instruction (CTI) types in Leon2: 

�� Conditional branch (Bicc, FBfcc, CBccc) 

�� Call and Link (CALL) 

�� Jump and Link (JMPL) 

�� Return from trap (RETT) 

�� Trap (Ticc) 

 

As we can see control-transfer instructions can be categorized to conditional and non-

conditional. Only the first type of instructions decide whether to change the normal 

execution order or not, according to the value of icc (integer conditions codes). 
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Loop instruction is a conditional CTI. It examines the value of a loop counter (LC), 

and if that value is not zero, then the branch is taken. Otherwise, the branch is not 

taken and the next program counter is PC+4. As we mentioned before, this instruction 

is important for cases when we already know the number of rounds, resulting to a less 

number of instructions needed and consequently smaller execution time. 

 

To implement this instruction, we used the loop controller circuit that Theodoropoulos 

had proposed. As it can be seen from figure 3.7, there is “lc” register, two 

multiplexers A and B, a ‘1’ constant subtraction unit and a comparator.  When an 

instruction is being fetched from instruction cache, it is checked if an “ldlc” or “loop” 

occurred. If it is the first case, then multiplexer A gives to “lc” the rounds number that 

a loop will be repeated. The latter is complete when a “loop” instruction occurs, and if 

“lc” value is greater than 1, then its current value is reduced by 1 and “nPCsel” signal 

is asserted, in order to enable a new instructions loop commencement. If “lc” is 0, it 

means that the appropriate rounds number has been completed, “nPCsel” is not 

asserted and program execution continues normally 

 

 

 

 

 

 

 

 

 

 
. Figure 3.7: Loop controller 

 

The loop counter (lc) register was added to the execution pipeline registers, and the 

loop controller logic was put in the decode stage, where main control executes. Figure 

3.8 shows this change in the decode stage. The value of register “lc” may : 

�� Remain the same, if the instruction is neither a ldlc nor a loop. 

�� Take the value rounds_number, if it is a ldlc instruction 

�� Take the value ex.lc – 1, if it is a taken loop instruction. 
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Figure 3.8: Loop controller in datapath 
 

So far, we showed how the signal nPCsel is produced. When it is asserted a branch 

occurs. The target address is calculated by sign-extending its immediate field to 32 

bits, left-shifting that word displacement by two bits to create a byte displacement, 

and adding the resulting byte displacement to the contents of the PC. This procedure 

is the same with the one instructions CALL and JMPL follow. The only difference 

amongst these instructions is that LOOP has an immediate field of 13 bits, CALL of 

30 bits, and finally JMPL has a 22 bits field. If we consider that the loop controller is 

an extension on the existing control unit, then we can represent graphically the 

changes made in the IU’s decode stage in figure 3.9. The “branch” signal is asserted 

when one of the three instructions changes PC’s contents. Signals “jump” and “trap” 

concern the Control Transfer Instructions  JMPL and TRAP respectively. These 

signals may be asserted during execute/write-back stages. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.9 Control Transfer Instructions in datapath 
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LOOP instruction is a delayed control transfer instruction. Specifically, it changes 

control to the instruction at the target address after a 1-instruction delay. The delay 

instruction executed after the CTI is executed before the target of the CTI is executed.  

 

3.5 Cipher Instructions 
As it was mentioned in chapter 3.1, besides arithmetic operations, there are structures 

used by ciphers. These structures called Substitution boxes (Sboxes) are essentially 

memory modules or Look Up Tables (LUT). This section focuses on the description 

of these Sboxes separately for every cipher, and their integration to the entire design. 

All Sboxes have been placed to leon’s memory stage. 

 

The primary goal was to extend the interface of the integer unit so that includes the 

communication signals with the controllers of the ciphers. This is shown in Figure 

3.10 where we omitted the optional units such as the co-processor and the floating 

point unit (fpu). As it can be seen, cipher Sboxes can be considered as small caches, 

working in parallel with the processor’s main memory. 

 

 

 

 

 

 

 

 

 

 

 
 
 

Figure 3.10: Main processor architecture including ciphers’ Sboxes 
 

3.5.1  AES cipher Sboxes  

The AES cipher uses two 256x8 Sboxes, one for the encryption and one for the 

decryption processs. Moreover, we wanted to be able to read 4 values of each memory 
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so we created one copy of each dual port memory in order to maximize parallelism. 

Figure 3.11 shows how Sboxes have been implemented, where “E” stands for 

encryption, and “D” stands for decryption mode.  

  

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 3.11: AES Sboxes 

 
After Sbox access, there have been produced four bytes from E-Sboxes and four from 

D-Sboxes, which are concatenated into two 32-bit words. The interface of the aes 

controller is presented below. Inputs of the controller except for the address, are the 

write enable (we) signal, 8-bits write data (din), and signals encryption and decryption 

that are asserted every time the instruction refers to the respective memory. 

 

 

 

 

 

 

Figure 3.12: AES controller 
 

As it is seen in Figure 3.13, aes caches are synchronous. The result of a Aes load 

instruction is produced at the end of the memory stage. Instruction bit 9 determines 

the choice between the two outputs. 
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Figure 3.13: Implementation of AES controller in datapath 
 

3.5.2  Twofish cipher Sboxes  

Twofish uses a different Sbox structure from other ciphers, in a way that its final 

result depends on the secret key that is being used. Also, Twofish uses the same Sbox 

structure for both encryption and decryption process. Figure 3.14 shows its Sbox 

structure, where “S0” and “S1” are two of the subkeys. “In” is the Sbox input, and 

“q0” and “q1” are 8x8 Sboxes. 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.14: Twofish Sboxes  
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Our first action was to enhance the existing Instruction Set with an instruction that 

loads the subkeys “S0” and “S1”. This is done with the instruction  TSLD (tsbox load), 

which reads two values from the register file (general purpose/r registers) and stores 

them into 2 new status registers (which were added in the design) during the 

execution phase. The value of these status registers is altered, only if another TSLD  

instruction is executed. 

 

Due to the fact that during a single load Twofish Sbox instruction, as shown in figure 

3.14, three independent Sbox structures accesses as well as two xor operations 

between them are needed, we could not place this logic as a whole in a combinational 

circuit. In the beginning we considered to split Figure 3.14 in two pieces, using two 

types of  Twofish Sboxes memories, a synchronous and an asynchronous, both having 

identical data. Figure 3.15 shows the first implementation of twofish sboxes in 

datapath.  
 

 

 

 

 

 

 

 

 

 

 

Figure 3.15: Twofish Sboxes in datapath  

 

After evaluating this implementation, we discovered that there was a negative impact 

to the frequency of our design, so a next attempt was to implement it in 3 separate 

cycles keeping only the synchronous Twofish controller. Specifically, during the first 

cycle data is read from the Twofish controller. In the second cycle a xor operation is 

made between the data read and the first sub-key and the result accesses the Twofish 

controller. Finally, in the third cycle another xor operation is made between the data 
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read from cycle2 and the second sub-key and the result accesses the Twofish 

controller. The final result is stored in the register file during the write back stage.  

 

The afore-mentioned 3 cycle implementation requires that a TSBOX load instruction 

is designed as a multi-cycle instruction. To achieve this, we used the existing datapath 

of Leon2 shown in Figure 3.15. During normal execution, signal “hold_pc” is not 

asserted, so the next instruction that accesses instruction cache is PC + 4. When we 

want to stall the pipeline, “hold_pc” is asserted keeping the same instruction in 

decode stage. In case there is a multi-cycle instruction then signal “cnt” is 

incremented by one.  

 

 

 

 

 

 

 

 

 

 

Figure 3.16: Existing datapath focused on multi-cycle instructions 

 

The first changes we had to make, were to extend the control unit to check the cycle 

of the TSBOX instruction and assert the respective bits. 
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During the cycles 2, 3 the xor operations use as operands the two sub-keys stored 

during a TSLD instruction, and the result produced from the Twofish controller. So, 

another necessary change was the extension of the multiplexors during the execution 

stage. 

 

The final implementation led to a single synchronous Twofish controller, that reads 

two values at a time of each memory q0, q1. Figure 3.16 shows how the read address 

accesses twofish controller. During a single TSBOX load instruction, Twofish 

controller is accessed 3 times, one time for each cycle. 

 

 

 

 

 

 

 

Figure 3.17: Twofish controller read access  

 

 

3.5.3  Serpent cipher Sboxes  

Serpent is somehow different from the ciphers already mentioned, as it demands an 

address of 128 bits (4 words) to access its Sboxes. This happens, in order to succeed 

data permutation in the beginning and end of processing. Sbox access will be 

presented through the following example. 

 

Suppose that X0, X1, X2, X3 are the four 32-bit words of plaintext where X0 is the 

most significant one, and consider that each word’s four MS bits in hexadecimal are: 

X0 = hex“6…”, X1 = hex “a…”, X2 = hex “f…”, X3 = hex “8…” 

Table 3 shows these numbers also in binary while each column indicates the 

respective bit. Last column “weight” shows the value that emerges when computing 

each column’s in decimal. 
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hex bit 31 bit 30 bit 29 bit 28 weight 

6 0 1 1 0 20 

a 1 0 1 0 21 

f 1 1 1 1 22 

8 1 0 0 0 23 

Table 3 – Serpent Sbox access example 

For example, “bit31” = 1421212120 3210
�������� , which is the Sbox’s access 

address. Then, we assume (arbitrarily) that Sbox [14] = 9. Similarly the other columns 

emerge the following values: 

“bit30” = 520212021 3210
�������� , Sbox [5] = 6 

“bit29” = 720212121 3210
�������� , Sbox [7] = 11 

“bit28” = 420212020 3210
�������� , Sbox [4] = 10 

In Table 4, “bit” columns contain the above results, in binary according the “weight” 

column. Indeed “bit31” = 9, “bit30” = 6, “bit29” = 11 and “bit28” = 10. 

 

hex bit 31 bit 30 bit 29 bit 28 weight 

a 1 0 1 0 20 

7 0 1 1 1 21 

4 0 1 0 0 22 

b 1 0 1 1 23 

Table 4 – Serpent Sbox results example 

Finally, if the resulting lines are considered as binary values, with each cell in “bit31” 

column containing the MSB, column “hex” translates them to hexadecimal and these 

are the final replacements: 6�a, a�7, f�4, and 8�b. 

As we can see, Serpent requires all four 32-bit words at the same time leading to an 

implementation shown in Figure 3.18.  The only difference from our implementation 

is that we used 16 dual-port memories instead of 32 single-port ones. 
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Figure 3.18: Serpent Sboxes  

 

In LEON2 processor it is not possible to read four register values during a single 

instruction. This led to the decision to split the serpent load instruction in two phases. 

When a load-phase1 instruction comes, the two most significant words of the address 

are read from RF and the first two destination registers are stored in the execution 

pipeline registers (control registers added to the execution stage). The load-phase2 

instruction is the one that really accesses Serpent sboxes. This instruction reads the 

two least significant words of the address (from RF) and besides contains the third 

and fourth destination register of the instruction. During this instruction, the 4 words 

are used as the address of the Serpent controller and the result is stored in the four  

destination registers. Of course, this result is 128 bits length, so there is a 3-cycle stall 

to write the data produced to each of the four destination registers. Figure 3.19 shows 

how Serpent controller in integrated in datapath. The “cnt” bit which counts the cycle 

of the instruction, decides which of the four words to choose. 
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Figure 3.19: Serpent controller in datapath  

 

Like the TSBOX load instruction, Serpent load-phase2 instruction is a multi-cycle 

instruction. As it is seen from figure 3.19 the result produced from Serpent controller 

should remain the same, so that all four cycles read the same result produced. This is 

achieved, by asserting an output enable signal only during the first cycle of the multi-

cycle instruction. Thus, the value is kept the same until the execution of another 

Serpent load-phase2 instruction.  

 

During decode phase, we extended the control unit to check the order at which 

registers would be written. Particularly, the order which is followed is only important 

if the same register is written twice. In this occasion, register’s value is the last value 

written. It should be noted that registers rd2, rd3 refer to the destination registers of 

Serpent load-phase2, whereas rd0, rd1 refer to the ones of Serpent load-phase1. The 

following section of code is added to the control unit (decode stage) and relates to the 

signals shown in a previous figure (3.16) which focuses on multi-cycle instructions.   
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Finally, concerning Serpent instruction, it is not unusual that a destination register is 

also a source register. That means that the value that is being read during load-phase2 

(registers rd2, rd3) should remain the same even if the value of these registers may 

have changed due to a write of the same instruction. This paradox can happen because 

the instruction has 4 cycles. The problem was resolved with the use of bypassing. 

Specifically, registers’ values are forwarded from memory stage back to the execution 

stage during the 3 final cycles of the instruction.�

�

3.5.4  Mars cipher Sboxes  

MARS algorithm uses two Sboxes S0 and S1, 256x32 each, however it has the unique 

property that they are also used concatenated as one 512x32 Sbox. Thus, we created a 

Mars controller that consists of such a dual-port memory. There are four possible 

options when accessing a Mars load instruction. The type of load is chosen amongst 

the types shown in Figure 3.20. Before Sbox access there are one or two multiplexers, 

which in combination with control signals “E”, “F” and “B”, pass the appropriate byte 

Depending on cipher’s current processing mode, again a control signal “mode” selects 

the required 32-bit word.  
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Figure 3.20: Mars Sboxes  

 

To summarize, all cipher instructions need only 1 cycle during store data, and may 

need from 1 to 4 cycles during the load phase. Specifically Serpent load, is split to 

two phases. Though, it needs the smallest portion of memory (only 128 bytes), it has 

the greatest latency from all other cipher instructions due to having to store four 

destination registers. 
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Table 5 – Summary Cipher Instructions 

During the memory stage, a 2-bit register had to be added to the existing pipeline 

registers that decides which cipher’s controller was accessed. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3.21: Sboxes in memory stage  

 

The last thing that had to be considered was the data dependencies that are created 

when a cipher load instruction is executed. All cipher load instructions produce their 

result at the end of the memory stage. This means that are similar with the double 
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instructions that are referred in chapter 3.3. Just like them, to be able to resolve the 

data hazard, presented in Figure 3.6a, the same steps are followed. The dependent 

instruction is stalled in the decode stage for one cycle. Figure 3.6b shows how this 

stall removes the problem. Data is then forwarded from the write back (WB) pipeline 

register to the dependent instruction. 

 

Consequently, the operation of the Forwarding Unit had to be extended. This 

necessitated that the pipeline registers Ex, Mem are extended with one bit register 

“cipher”, which shows that a cipher instruction is executed, regardless of the cipher’s 

type. 
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4.  Verification and Performance Evaluation of Leon2_ISE. 
 
 4.1  Verification Procedure 
After the detailed description of the extensions made in Leon2, in this chapter we 

focus on verification tests that were made in order to confirm the functionality. 

Specific evaluation of hardware results such as operating frequency and occupied area 

are examined. Note that for synthesis and implementation we used the Xilinx’s ISE 

Foundation Series 7.1i [8] and for simulation Mentor Graphics Modelsim SE 6.0a [9]. 

 

A first prototype has been built based on Xilinx’s Virtex 2 FPGAs resources. All 

memories needed for the Sboxes have been mapped to distributed memory modules 

[10], usually consisting of dual port memories 

 

The model of Leon2 is distributed as a gzipped tar-file; leon-2.1.30.tar.gz. We 

unpacked the model in top-level directory. LEON’s structure consists of  three main 

sub-directories. The one that contains the source code (VHDL) is leon/leon sub-

directory. All testbenches exist in leon/tbench directory, and the data used for 

simulation is found in leon/tsource sub-directory. 

 

The first step followed, was the compilation of the existing design. This is done, by 

running the compile.bat files in the leon and tbench directories. Each time a new 

source file was created, it had to be added correctly to the compilation order inside the 

compile.bat file. The next step was the simulation of the design, using the Modelsim. 

A generic test bench that is provided in /leon/tbench directory was used. This file 

specifies that the contents of memories ROM and SRAM are found in the files ASCII 

files rom.dat and ram.dat respectively (inside tsource directory). Particularly, the 

execution of the processor starts from ROM and after completion of these instructions, 

the control is transferred to the instructions that exist in SRAM. 

 

As it is shown if Figure 4.1, simulation is performed in two stages For every new 

insertion of an instruction, functional simulation was used to verify that the results 

produced (via a series of tests that we will present below) match the expected ones. 

Post-Place and Route (PAR) simulation was done after the whole designed was 
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implemented, meaning that all instructions were inserted. Of course, to determine that 

the system works as expected, post-PAR simulation of the design is needed. The 

drawback is that functional simulation allows us to observe internal signals and 

consequently locate possible mistakes. In contrast, only I/O signals of Leon2 are 

visible during post-PAR simulation, so the only way to confirm that an executable 

code has succeeded was to use memory-referenced instructions (usually a Store 

instruction). 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.1: Design Flow  

 

Functional simulation of every new instruction individually was our first goal. As we 

mentioned before, the executable code exists in files rom.dat and ram.dat. In order to 

able to recognize the instructions, we had to use a disassembler. This tool translates a 

file of binary machine instructions into a file of assembly language. Although, such a 

program already existed, we wanted to be able to disassembly the instructions that we 

would create, so it was decided to built our own disassembler. It was written in C, and 

the compiler used was Microsoft Visual Studio 6.0. This enabled as to understand the 

existing code, and to verify the code inserted each time we wanted to check a new 

instruction. 

 

The main function of the executable code in ROM, is to “initialise” the processor. 

After doing so, we observed that its final instruction transfers control to a specific 

instruction in SRAM. We modified that last instruction to transfer control to the 

starting address of a block of instructions that we created inside the SRAM. The final 
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instruction of our block, is in turn a control transfer instruction that changes the 

Program Counter to the starting address of the SRAM. Thus, our block of instructions 

precedes any other instruction of SRAM. 

 

After this, we were able to insert the machine language to make tests for the 

instructions we wanted to add. Specifically, the procedure that we followed for every 

new instruction is presented in the figure below.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.2: Procedure followed for verification 

 

4.2  Verification Tests 

When the construction of an instruction has been completed, it is imperative that a 

well defined set of tasks is used to validate the instruction and demonstrate that the 

system works. So, tests were made at the end of every instruction. The final goal was 

the verification of the results simulated with the expected results. A simple example 

for the verification of the double instruction is the below one. The leftmost register is 

always the destination register, while all remaining registers are the source registers. 

�



Electronics and Computer Engineering Department – Technical University of Crete 
 

_______________________________________________________________________________ 
Microprocessor and Hardware Laboratory –  August 2008 
 

49 

�����'��,'�-����	*+�
�.��/�	**�
�0��/�	*!�
�!��

1 2�	*+/�	*+/�	**�/	*!����-3�-3�����������	*+�
��.���4�0����(�!�
�+���

1 2�	*+/�	*+/�	**�/	*!���'  5�	�����������	*+�
��+���6�0����5�	���!�
7���5�	���!�
�7���

1 2�	*+/�	*+/�	**�/	*!���'  �-3�����������	*+�
��7���6�0����(�!�
�3� �

�#�8 ����	**/�9!���*!9�� ������������	**�
�0���.0���

���	*+/�	**/�9����9�� � ������������: #: ;	**<�
�	*+�
�3� � 
 
As mentioned before the only signals that can give us information of the execution in 

the integer unit during post-PAR simulation, are the memory-related signals “address” 

and “data”. So, we add a Store instruction, to be able to observe if the last result is 

correctly computed. The same procedure is followed at the examples presented below. 

More complicated tests, that include cases of data hazards, are available on the thesis’ 

CD. 

 

4.2.1  Twofish – AES example 

An example that shows how instructions referring to Sboxes work, is presented. The 

expected results are verified using the Modelsim simulator. At the beginning of this 

program, a few store instructions are called in order to initialize the Sboxes. The 

names “Q0”, “Q1” refer to the Sboxes of Twofish, while “Encry” refers to the AES 

Sbox. Figure 4.3 shows the values of these LUTs. The left part indicates the indices of 

the tables and the right part their data. All other values are initialized to zero. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4.3: Initial Sbox values 
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We emphasized the meaning of the instructions by typing them in bold. Instruction 

“TSLD” loads the sub-keys S0 and S1. After these steps are completed, we insert a 

few instructions that have various data dependencies and contain twofish and Aes 

load instructions. As it was mentioned before, twofish load lasts for 3 cycles. For 

better comprehension, we show graphically the steps followed during the two twofish 

load instructions in figure 4.4, plus the values of the internal results that are produced 

during twofish instructions that follow (table 6). A is the input (address) and Result is 

the output. 
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Figure 4.4: Twofish Sbox load 

 

 

 

Table 6: Twofish load internal results 

 

The results produced are stored into registers r16, r17 and r22. In order to validate 

their values we used 3 store instructions to main memory. The simulation verifies the 

expected results, shown in figure 4.5. 

 

 

 

 

 

Figure 4.5: PAR simulation 
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4.2.2� AES – Loop – double - rotate example 

An example that verifies the operation of the AES instruction as well as the non-

cipher instructions that were added to leon2 (rotate, double, loop) is the following. 

Our simple loop starts from the 4th instruction and ends with the loop instruction. It is 

run for 3f (hex) times and each time a new value is stored in AES Sboxes (encryption 

and decryption).  Figure 4.6 shows the Sboxes’ values after the end of the loop. 
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Figure 4.6: AES sbox values 

 

Following the loop, we access AES’ LUTs and use the data produced in arithmetic 
operations. The results produced are shown in Figure 4.7. 
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Figure 4.7: PAR simulation 

 

4.2.3  Serpent example 

Similarly wih the first example, we initialize the Serp Sbox with the values shown in 

Figure 4.8. Then, we perform a Serpent load instruction and the results are stored in 

main memory. Figure 4.9 shows the Sbox access for the two least significant bits. The 

rightmost 30 bits are zeros, so they were neglected. Figure 4.10 shows the verification 

of the results, in PAR simulation. 

 

 

 

 

 

Figure 4.8: Serp Sbox 
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Figure 4.9: Serpent load phase2 

 

 

 

 

 

Figure 4.10: PAR simulation 

 

 4.3  Performance Statistics 
This section focuses on the design implementation stage. After making the changes 

with a hardware description language, the next step is to convert the register transfer 

level design (which focuses on describing the flow of the signals between registers) to 

a gate-level description of the circuit by a logic synthesis tool. The synthesis tool used 

is Xilinx XST (Xilinx Synthesis Tool). The synthesis results are then used by 

placement and routing tools to create a physical layout. Table 7 shows the results 

produced for a variety of FPGAs. The rightmost columns show the maximum 

frequency and utilization before any changes were made. The XC4VLX200 FPGA 

has the greatest operating frequency for our design at 83,96 MHz. It should be noted 

that the smallest of these devices that our design may fit is XC3S1500 FPGA with a 

utilization of 79%. 
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   Table 7 – Performance Statistics 

 
4.4  Conclusions and Future Work 
 

As we mentioned in the beginning of this thesis report, internet is growing larger over 

the years that pass. Also various embedded processors are more and more used in 

many wireless communications devices, such as cell phones, PDAs (Personal Digital 

Assistants), televisions. Consequently, secure communication and confidentiality are 

crucial, in order to avoid virus infection, privacy loss, and stop digital crime activities 

from malicious users. 

 

Cryptography is a major issue, which should be taken into account when designing 

new processors that will be used for communication and data exchange. This project 

was focused on enhancing the existing ISA of Leon2 with instructions that may 

improve the efficiency and the performance of cryptographic algorithms. In summary 

our design has added the following characteristics:  

�� Instructions such as Rotate and Loop were added to the ISA. 

�� Increased the number of register file’s (RF) read ports to three. This was done, 

so that double instructions may be calculated. 

�� Supports different Sbox structures for a variety of ciphers. 

�� Fits in FPGAs, without a great decrease in maximum operating frequency 

In addition, there are a few potential improvements that can be made: 

�� Better use of the third port in RF, to utilize instructions that require three input 

operands. 
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�� Addition of the Galois Field Multiplication, an operation commonly used by 

the AES cipher. 

�� Calculation of the performance that this design achieves, and comparison with 

pure software implementation (assembly).  

 

In summary, cipher algorithms have been developing through the years and they will 

always be, while concurrently many ways are being discovered to unlock even the 

securest ones. For this reason, new designs should be developed to protect people 

from malicious users. 
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Appendix A:  Leon2’s Instruction Set Extension 
 
 
 

1.� Iror/Irol 
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2.� Double Instructions 

 
 
 
 
 
 
 
 
 
 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
3.� Ldlc/Iloop 
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4.� cipher instructions 
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5.� Aes 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

6.� Tsld/TSBOX 
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7.� SERP 
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8.� Mars 
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Appendix B:  Leon’s complete Instruction Set 
 
 
 

Opcode  Name 
LDSB (LDSBA†)  �������� ���!"�#�$�%�&�"$ �"��'��(�

LDSH (LDSHA†)  �������� ��)���*�$��#�$�%�&�"$ �"��'��(�

LDUB (LDUBA†)  �����+ ��� ���!"�#�$�%�&�"$ �"��'��(�

LDUH (LDUHA†)  �����+ ��� ��)���*�$��#�$�%�&�"$ �"��'��(�

LD (LDA†)  �����, �$��#�$�%�&�"$ �"��'��(�

LDD (LDDA†)  �����-�./�*�$��#�$�%�&�"$ �"��'��(�

LDF  �����0���"� ��'�� "�

LDDF  �����-�./��0���"� ��'�� "�

LDFSR  �����0���"� ��'�� "��"�"�1���"$�

LDC  �����2�'$�����$�

LDDC �����-�./��2�'$�����$�

LDCSR  �����2�'$�����$��"�"�1���"$�

STB (STBA†) �"�$��!"�#� "��&�"$ �"��'��(�

STH (STHA†)  �"�$�)���*�$��#� "��&�"$ �"��'��(�

ST (STA†)  �"�$�, �$��#� "��&�"$ �"��'��(�

STD (STDA†)  �"�$�-�./�*�$��#� "��&�"$ �"��'��(�

STF  �"�$�0���"� ��'�� "�

STDF ��"�$�-�./��0���"� ��'�� "�

STFSR  �"�$�0���"� ��'�� "��"�"�1���"$�

STDFQ†  �"�$�-�./��0���"� ��'�� "���$$��"$�'�3..�

STC  �"�$�2�'$�����$�

STDC  �"�$�-�./��2�'$�����$�

STCSR  �"�$�2�'$�����$��"�"�1���"$�

STDCQ† ��"�$�-�./��2�'$�����$���$$��"$�'�3..�

LDSTUB (LDSTUBA†)  &"�%���������"�$�+ ��� ���!"�#� �&�"$ �"��'��(�

SWAP (SWAPA†)  �*�'�$�1���"$�*�"4�5%�$!�#� �&�"$ �"��'��(�

SETHI  �"�)��4�		�/�"�����$�1���"$�

NOP �6��7'$�"�� �

AND (ANDcc) & ��#� ��%����!����(�

ANDN (ANDNcc)  & ��6�"�#� ��%����!����(�

OR (ORcc)  8 ��.����7$�#� ��%����!����(�

ORN (ORNcc)  8 ��.����7$�6�"�#� ��%����!����(�

XOR (XORcc)  9���.����7$�#� ��%����!����(�

XNOR (XNORcc)  9���.����6�$�#� ��%����!����(�

SLL  �4��"���"���������

SRL  �4��"�1��4"���������

SRA  �4��"�1��4"�&$�"4%"���
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ADD (ADDcc)  &���#� ��%����!����(�

ADDX (ADDXcc)  &���*�"4�2�$$!�#� ��%����!����(�

TADDcc (TADDccTV)  :�����&���� ��%����!�����#� ��:$�'�� ���$���*(�

SUB (SUBcc)  �./"$��"�#� ��%����!����(�

SUBX (SUBXcc)  �./"$��"�*�"4�2�$$!�#� ��%����!����(�

TSUBcc (TSUBccTV)  :������./"$��"�� ��%����!�����#� ��:$�'�� ���$���*(�

5+������ 5.�"�'�!��"'�#� ��%����!����(�

+5+��#+5+���(�� + ��� ��8 "�$�5.�"�'�!�#� ��%����!����(�

�5+��#�5+���(�� ��� ��8 "�$�5.�"�'�!�#� ��%����!����(�

+-8;�#+-8;��(�� + ��� ��8 "�$�-�����#� ��%����!����(�

�-8;�#�-8;��(�� ��� ��8 "�$�-�����#� ��%����!����(�

�&;9�� ��������$<��*� ��*�

19�:719�� 1�"�$�����$<��*� ��*�

������ �$� �4�� �� "�$��� ��"�� ������

0������ �$� �4�� �����"� ��'�� "��� ��"�� ������

2������ �$� �4�� ���'$�����$��� ��"�� ������

2&���� 2����� ���� =�

>5?��� >.%'�� ���� =�

19::� 1".$ ��$�%�:$�'�

:����� :$�'�� �� "�$��� ��"�� ������

1-&�1� 1���& �����$!��"�"�1���"$�

1-@�� 1���@�1���"$�

1-?�1� 1���?$�����$��"�"�1���"$�

1-, 85� 1���, � ��*�8 ������5��=�1���"$�

1-:�1�� 1���:$�'�����1���"$�

, 1&�1� , $�"�& �����$!��"�"�1���"$�

, 1@�� , $�"�@�1���"$�

, 1?�1� , $�"�?$�����$��"�"�1���"$�

, 1, 85� , $�"�, � ��*�8 ������5��=�1���"$�

, 1:�1� , $�"�:$�'�����1���"$�

�:�&1�� �"�$���$$�$�

+685?�� + �%'�% "��

0�+�)�� 0�.�4�8 �"$.�"�� �5%�$!�

0?�'�� 0���"� ��'�� "�7'$�"�

2?�'�� 2�'$�����$�7'$�"A��%'�% "�"�� ��' � "�

 


