
TECHNICAL UNIVERSITY OF CRETE

Combination of Collaborative Filtering

and Feature Based Methods for movie

recommendation

by

Mosxopoulos Theodosios

A thesis submitted in partial fulfillment for the

diploma in Electronics and Computer Engineering

in the

Department of Electronics and Computer Engineering

October 12, 2008

http://www.tuc.gr
file:tmos@telecom.tuc.gr
http://www.telecom.tuc.gr
http://courses.ced.tuc.gr

i

Committee:

Assoc. Professor Alexandros Potamianos (Supervisor)

Professor Vasilis Digalakis

Assoc. Professor Euripides Petrakis

“POLONIUS: What do you read, my lord?

HAMLET: Words, words, words.”

Shakspeare, HAMLET Act 2, scene 2, 191-192

TECHNICAL UNIVERSITY OF CRETE

Abstract

Department of Electronics and Computer Engineering

by Mosxopoulos Theodosios

Nowadays with the vast amount of information that is offered through World Wide Web,

it becomes more and more necessary to directly connect users with the information of

their interest. Specifically, many web pages of e-commerce companies have developed

web applications that can exploit data from a database to personally recommend a

movie, a book, or generally an item to a customer. These kind of applications are

called recommendation systems. The majority of recommendation systems is based on

collaborative filtering, a method to make recommendations using the previous ratings

from the same user to similar items or from similar users to specific items.

Nevertheless, such applications in real world have to cope with thousands of items rated

by millions of customers. The ratings-user ratio is extremely low, as each user can rate

only a small amount of the items offered. This problem is oftenly called data sparsity

and makes traditional collaborative filtering impractical. Another option is the feature-

based collaborative filtering. According to this approach, it is more practical to create

a vector of features to represent each item or user. These vectors can be used by the

system to make recommendations.

In this work our goal is to improve the performance of a movie recommendation system

using lexical information extracted automatically from the Web. Using a web search

engine we downloaded unstructured data, we preprocessed it and we examined several

ways to create vectors of lexical features (words) to describe users and items. In addition,

we propose three algorithms that combine feature-based methods with the traditional

collaborative filtering to enhance the accuracy of the movie recommendation system.

http://www.tuc.gr
http://www.telecom.tuc.gr
http://courses.ced.tuc.gr
file:tmos@telecom.tuc.gr

PERILHYHS mera me to apèranto posì plhrofori¸n pou prosfèretai mèsw tou Pagkìsmiou IstoÔ,g�netai ìlo kai perissìtero apara�thto na sundejoÔn �mesa oi di�foroi qr ste me tiplhrofor�e tou endiafèrontì tou. Sugkekrimèna, istosel�de poll¸n epiqeir sewnhlektronikoÔ empor�ou èqoun anaptÔxei efarmogè pou mporoÔn na ekmetalleutoÔn plhro-for�a apì mia b�sh dedomènwn gia na sust soun proswpik� mia tain�a, èna bibl�o, genik�èna proiìn se ènan pel�th. Autì to e�do efarmog¸n kale�tai sust mata sÔstash.H pleioyhf�a twn susthm�twn sÔstash e�nai basismènh sth mèjodo sunergatikoÔ fil-trar�smato (ollaborative filtering), h opo�a gia na prote�nei èna proiìn qrhsimopoie�prohgoÔmene protim sei apì ton �dio qr sth se ìmoia antike�mena , h apì ìmoiou qr stesto �dio proiìn.Parìla tauta, tètoie efarmogè sto pragmatikì kìsmo prèpei na antimetwp�soun qili�deantike�mena pou bajmologoÔntai apì ekatommÔria pel�te. H analog�a antikeimènwn-qrhst¸n e�nai exairetik� qamhl , dedomènou ìti k�je qr sth mpore� na bajmolog seimìno mia mikr posìthta apì ta antike�mena pou prosfèrontai. Autì to prìblhma kale�taisparsity dedomènwn kai kajist� to paradosiakì sunergatikì filtr�risma mh praktikì.Mia �llh epilog e�nai to ston sunergatikì filtr�risma basismèno se qarakthristik� apìto perieqìmeno twn antikeimènwn. SÔmfwna me aut n thn prosèggish, e�nai praktikìterona dhmiourghje� èna di�nusma twn qarakthristik¸n gnwrism�twn gia na antiproswpeÔseik�je antike�meno qr sth kai na qrhsimopoihje� sto sunergatikì filtr�risma.Se aut n thn ergas�a o stìqo ma e�nai na belti¸soume thn apìdosh enì sust matosÔstash taini¸n to opo�o qrhsimopoie� lektik plhrofor�a pou ex�getai autìmata apì tonPagkìsmio Istì. Qrhsimopoi¸nta mia mhqan anaz thsh kateb�same mh domhmènh plhro-for�a, thn proepexergast kame kai exet�same di�forou trìpou na dhmiourg soume tadianÔsmata twn lektik¸n qarakthristik¸n (lèxei) gia na perigr�youme qr ste kai tain�e.Epiplèon, prote�noume trei algor�jmou pou sundu�zoun ta dianÔsmata lektik¸n qarak-thristik¸n me to paradosiakì sunergatikì filtr�risma gia na enisqÔsoun thn akr�beiatou sust mato sÔstash taini¸n.

Acknowledgements

I would express my gratitude to my advisor Alexandros Potamianos for his valuable

guidance to this interesting work that I was assigned. I would also like to thank Vasilis

Digalakis and Euripidis Petrakis for participating in the examining committe.

Furthermore, the fruitful discussions that I had with Elias Iosif during the meetings of

the whole group, he helped me to become familiar with the research field and his useful

advises helped me to trespass all the difficulties emerged during this work.

I could not forget to thank my family, my friends, and all the members of the group.

v

Contents

Abstract iii

Acknowledgements v

List of Figures viii

List of Tables ix

1 Introduction 1

2 Collaborative filtering algorithms 3

2.1 Introduction . 3

2.2 Related work . 4

2.3 User-based Collaborative Filtering . 5

2.3.1 Cosine Vector similarity for users 6

2.3.2 Pearson Correlation Coefficient for users 7

2.3.3 Rating Prediction-Weighted Average at users level 7

2.4 Item-based Similarity Computation . 8

2.4.1 Cosine Vector Similarity for items 9

2.4.2 Pearson Correlation Coefficient for items 10

2.4.3 Adjusted Cosine Similarity . 11

2.4.4 Rating Prediction-Weighted Average at items level 12

2.5 Combination of user-based and item-based collaborative filtering 13

2.5.1 Individual Predictors . 13

2.5.2 Fusion of SUR SIR and SUIR . 14

2.6 Summary . 15

3 Feature-based Recommendation systems 16

3.1 Introduction . 16

3.2 Related Work . 16

3.3 Making Vectors of Lexical Features for movies and users 18

3.3.1 Binary scheme . 18

3.3.2 Frequency and Log frequency schemes 19

3.3.3 Term Frequency Inverse Document Frequency scheme 19

3.4 Feature selection using Mutual Information 20

vi

Contents vii

3.5 Summary . 21

4 Combination of Collaborative Filtering and Feature based methods 22

4.1 Introduction . 22

4.2 Content-based similarity metric . 22

4.3 Similarity matrices . 23

4.3.1 User-User similarity matrix . 24

4.3.2 Movie-Movie similarity matrix . 24

4.4 Proposed models . 25

4.4.1 Heuristic model . 26

4.4.2 Linear model 1 . 27

4.4.3 Linear model 2 . 29

4.4.4 Better selection of neighbors . 31

4.5 Summary . 32

5 Experimental Procedure and Results 33

5.1 Experimental setup . 33

5.1.1 Movie Titles . 33

5.1.2 Reviews . 34

5.1.2.1 Downloading reviews . 34

5.1.2.2 Preprocessing of downloaded reviews 34

5.1.3 Sets of users for Training and Evaluation 34

5.1.4 Creating VLF for movies and users 35

5.2 Baseline . 35

5.3 Evaluation Metric . 37

5.4 Results . 37

5.4.1 User-based collaborative filtering 37

5.4.2 Item-based collaborative filtering 39

5.4.3 Heuristic model . 39

5.4.4 Linear model 1 . 39

5.4.5 Linear model 2 . 41

5.5 Conclusions . 41

6 Discussion and Future work 43

6.1 Conclusions . 43

6.2 Future Work . 43

A Appendix A 45

A.1 Results for test set 1 and test set 2 . 45

B Appendix B 48

B.1 Movie titles . 48

Bibliography 52

List of Figures

2.1 Rating prediction using weighted average at users level. 9

2.2 Rating prediction using weighted average at items level. 13

4.1 Format of User-User similarity matrix . 24

4.2 Format of Movie-Movie similarity matrix 25

4.3 Schematic representation of the Heuristic model 28

4.4 Schematic representation of the Linear model 1 30

4.5 Schematic representation of the Linear model 2 32

5.1 The clusters produced by K-Means clustering (K=2) 36

5.2 MSE vs Neighborhood size: (a)Linear model 2 (b) Linear model 1 (c)
Heuristic model . 42

viii

List of Tables

2.1 A simple user-movie matrix . 5

2.2 User profiles of two different users . 6

2.3 Similarities between users . 8

2.4 Ratings given to two different movie titles 10

2.5 The co-rated cases for different movies . 11

2.6 Similarities between movies . 12

4.1 Example of User-User similarity matrix 24

4.2 Example of Movie-Movie similarity matrix 25

4.3 Weights w1 and w2 for the Linear model 2 31

5.1 Statistical information for the test data sets. 35

5.2 MSE for K-means clustering. 37

5.3 Similarity metrics and their acronyms. 38

5.4 Weighting schemes and their acronyms. 38

5.5 MSE for different similarity metrics in user-based collaborative filtering. . 38

5.6 MSE in item-based collaborative filtering: (a)Using CSi
R, PCCi

R and
ASi

R metrics (b)Using CBi with the LF , TFIDF , I, LF weighting schemes 39

5.7 MSE for Heuristic model. 40

5.8 MSE for Linear model 1. 40

5.9 MSE for Linear model 2. 41

A.1 MSE for Heuristic model for test set 1. 45

A.2 MSE for Heuristic model for test set 2. 46

A.3 MSE for Linear model 2 for test set 1. 46

A.4 MSE for Linear model 2 for test set 2. 46

A.5 MSE for Linear model 2 for test set 1. 47

A.6 MSE for Linear model 2 for test set 2. 47

ix

Chapter 1

Introduction

In recent years there is an overload of products and customers at the Internet. As a

consequence a customer who is interested in purchasing a product finds himself in the

situation of having to choose among thousands or sometimes millions of different items

offered. The ability to bring customers close to products of their taste or interest is vital

for companies who want to be competitive. Thus, a lot of research aims at the developing

recommendation systems. These are systems who make personal recommendations to

users on items offered by one or more companies.

Recommendation systems are used by e-commerce sites to suggest products to their cus-

tomers and to provide consumers with information to help them decide which products

to purchase. Such systems are used by Amazon, a site for selling books, by CDNOW,

the largest CD store on the Web and by NETFLIX which is an on line movie enterprise.

We will focus on the last as it is highly related to the goal of this thesis. NETFLIX has

developed a recommendation system, called Cinematch whose basic role is to predict

whether a user will enjoy a movie or not. It then uses the predictions to make personal

movie recommendations based on each customer’s personal taste. Moreover, NETFLIX

organises a word contest beginning 2/10/2006 and finishing on 2/10/2011 and offering

a prize of 1 million USD to the first team who will succeed an improvement of 10% of

the system [17].

Early recommendation systems used a method called collaborative filtering. Collabora-

tive filtering systems work by collecting human judgments (ratings) for items in a given

domain and matching together people who share the same items or the same tastes. Rec-

ommendations for users are based on the similarity of tastes of other users. In bibliogra-

phy this method is also called user-based or neighborhood-based collaborative filtering [8].

On the other hand, many new recommendation systems use the item-based collabora-

tive filtering in which recommendations are based on the similarity between items [2].

1

Chapter 1. Introduction 2

Furthermore, many researchers have developed content-based methods or feature-based

methods which use information extraction (from documents, URLs, e.t.c) and machine

learning algorithms to make recommendations [4–7]. Finally, research in recommen-

dation systems focus on the combination of user-based and item-based collaborative

filtering [3].

In this thesis we try to combine collaborative filtering with feature-based methods to

enhance the accuracy of a movie recommendation system. In particular the research

effort of this work can be divided in two parts:

• In the case of feature-based methods, we adopt the unsupervised approach to

create vectors of lexical features that can describe items (movies) and users. We

can use the term unsupervised because no human knowledge is incorporated in

this procedure. Our experimental corpora are unrestricted (raw text) without any

kind of encoded linguistic information. We create the vectors of lexical features

using different weighting schemes that do not take into account the dependencies

between words. To tackle this drawback we use mutual information grouping words

who are higly associated. Finally, we propose a content-based similarity metric to

compute similarities between two different movies or two different users.

• We propose one heuristic and two linear combinations of user-based collaborative

filtering with feature-based methods. The basic idea of these algorithms is that the

estimations made by the use of feature-based methods can tackle the problem of

data sparsity (see Section 2.3) and enhance the performance of the recommendation

system.

The rest of the thesis is organized as follows: Chapter 2, introduces the item-based and

the user-based collaborative filtering and how they succeed to make rating predictions

and personally recommend movies to users. In Chapter 3 we describe different weighting

schemes used to create vectors of lexical features for movies and users and a content-

based similarity metric that computes similarities between movies and between users. In

Chapter, 4 we present our approaches of combining collaborative filtering with feature-

based methods discussed in Chapter 3. The experimental procedure and the results are

presented in Chapter 5. Finally, Chapter 6 summarizes the conclusions of this thesis

and outlines interesting directions for future work.

Chapter 2

Collaborative filtering algorithms

2.1 Introduction

Imagine that you visit a movie rental shop with the purpose to rent a movie to watch.

There are many movie titles, old and new and it is extremely difficult to decide. What

will you do? The first and easier solution that comes to your mind is to give a call to

a friend with similar tastes with yours asking for his opinion about a number of movie

titles that cached your attention.

In real life, asking a friendly advise is a common phenomenon. In the world of science

and particularly in collective intelligence this method is called user-based collaborative

filtering. You are the target user and your friend whose tastes are similar to yours is

your neighbor. Thus, the recommendation (or the right choice) depends on the opinion

of your neighbor. We will use these terms for the rest of the thesis.

Going back to our example, in case your cell phone is off line you have to use your own

experience based on similar movies watched in the past. In collective intelligence this

method is called item-based collaborative filtering and the recommendation (or the right

choice) depends on items (movies) similar to the target item (or target movie).

The user-based and the item-based collaborative filtering algorithms have three steps in

general [8] (within specific systems, these steps may overlap or the order may be slightly

different):

1. Compute the similarities between all different pairs of users (in the case of user-

based collaborative filtering) or items (in the case of item-based collaborative fil-

tering).

3

Chapter 2. Collaborative filtering algorithms 4

2. Select the most similar users with the target user (in the case of user-based col-

laborative filtering) or the most similar items to the target item (in the case of the

item based collaborative filtering).

3. predict the rating the target user would give to the target item and finally recom-

mend it or not.

In this chapter we present user-based (Herlocker [8] coins also the term neighborhood-

based) and item-based methods for collaborative filtering. We also present the similarity

metrics that compute similarities between users (in user-based collaborative filtering)

and between items (in item-based collaborative filtering). Finally, we describe a method

for making rating predictions both in user-based and item-based collaborative filtering.

2.2 Related work

The term collaborative filtering was given by Goldberg et al.[8] who built a system

for e-mail filtering called Tapestry. This system used collaborative filtering techniques

allowing users to annotate messages. With the aid of these annotations users could find

the messages of their interest by creating specific queries such as “show me all messages

that John thought were important”. The method of collaborative filtering, though, was

not automated and users have to make queries following a query language called TQL

(Tapestry Query Language).

Grouplens [8] was the first automated collaborative filtering system that used the user-

based algorithm. It provided personalized predictions for Usenet news articles. The

original Grouplens system used a similarity metric (see Section 2.3.2) to compute users

similarities. With the use of all available correlated neighbors it made its final rating

predictions by performing a weighted average of deviations from the neighbors mean.

Ringo Music Recommender system [8] which is very similar to Grouplens used user-based

algorithm of collaborative filtering to make personal recommendations of music to users.

Ringo selected the most highly correlated neighbors according to a fixed threshold and

rating predictions were generated by computing the average of ratings from all neighbors.

Bellcore Video Recommender [8] system provided personal recommendations for videos

after choosing the N top-correlated neighbors from a randomly selected set of users.

Bellcore used a multiple regression model to make the rating predictions.

Breese and al.[8] performed an empirical analysis on different user-based collaborative

filtering algorithms applying different similarity metrics.

Chapter 2. Collaborative filtering algorithms 5

Movie Titles

User Titanic The Patriot Green Mile Forest Gump The Rock Average

John 2 0 5 4 0 3,66

Mary 5 3 4 0 1 3,25

Lucas 1 0 0 5 3 3

Antony 3 5 4 0 0 4

Jahne 0 3 5 4 1 3,25

Jade 5 0 0 2 2 2,25

Kathrin 4 3 2 5 0 3,5

Hari 0 4 0 4 2 3,33

Billy 2 3 5 0 1 2,75

Judy 5 0 0 4 3 4

Average 3,375 3,5 4,16 4 1,85

Table 2.1: A simple user-movie matrix

Sarwar and Karypis [2] followed the item-based approach of collaborative filtering as an

alternative to user-based collaborative filtering. They tested three different similarity

metrics (see Section 2.4). The rating predictions were made using the weighted average

of ratings by similar items and by using a linear regression model. They have proved

that item-based approach can succeed high accuracy facing the problem of scalability

which is very often in recommendations systems with a millions of users and thousands

of items.

2.3 User-based Collaborative Filtering

In this section we present more analytically two different methods of computing simi-

larities between users in user-based collaborative filtering, the Cosine Vector similarity

metric and the Pearson Correlation Coefficient and a method of predicting ratings, the

weighted average at the level of users. In the remainder of the thesis Cosine Vector

Similarity is denoted as CSu and Pearson Correlation Coefficient as PCCu (the letter

u means that these metrics are used in user-based collaborative filtering).

To explain these similarity metrics imagine we want to build a movie recommendation

system with |U | = 10 users and |M | = 5 movies,thus we have a |U | × |M | matrix (Table

2.1) with each cell denoting the rating given by user u ∈ U to the movie m ∈ M .

The valid ratings are between 1 (the user did not liked the movie) and 5 (the user really

enjoyed this movie). The value of 0 means that the user has not rated the specific movie.

Every row of this user-item matrix (user-movie matrix in our case) is a vector of the

M th space which we call user profile and denotes the ratings given by each user u ∈ U

to all movies. In real recommendations systems the user-item matrix is very sparse (it

Chapter 2. Collaborative filtering algorithms 6

includes lots of 0) because the majority of users has rate only a very small number of

the items offered. This problem is known as data sparsity and it has a significant impact

on the accuracy of the rating predictions in a recommendation system.

2.3.1 Cosine Vector similarity for users

We present the Cosine Vector similarity metric to compute the similarity between to

different users. It is given by the equation:

CSu(
−→
t ,

−→
k) =

∑
i∈M tiki√∑

i∈M ti
2
√∑

i∈M ki
2
, (2.1)

where M is the whole set of movies,
−→
t and

−→
k are the vectors of ratings (user profiles)

for users t and k, ti and ki are the ratings given by users t and k to item i respectively.

The CSu takes values between 0 (if users are completely dissimilar) and 1 (if users are

completely similar). The above equation can be generally written as

CSu(
−→
t ,

−→
k) =

−→
t
−→
k√∣∣∣

∣∣∣−→t
∣∣∣
∣∣∣
∣∣∣
∣∣∣−→k

∣∣∣
∣∣∣

(2.2)

Movie Titles

User Titanic The Patriot Green Mile Forest Gump The Rock

John 2 0 5 4 0

Mary 5 3 4 0 1

Lucas 1 0 0 5 3

Antony 3 5 4 0 0

Jahne 0 3 5 4 1

Jade 5 0 0 2 2

Kathrin 4 3 2 5 0

Hari 0 4 0 4 2

Billy 2 3 5 0 1

Judy 5 0 0 4 3

Table 2.2: User profiles of two different users

For example if we want to find the similarity between John (with user profile
−→
J) and

Mary (with user profile
−→
M)from Table 2.2 we substitute in Equation (2.1)

Chapter 2. Collaborative filtering algorithms 7

CSu(
−→
J ,

−→
M) = 2×5+0×3+5×4+4×0+0×1√

22+02+52+42+02
√

52+32+42+02+12
= 30

47.90 = 0.626

Thus, the similarity between John and Mary is CSu(
−→
J ,

−→
M) = 0.626.

2.3.2 Pearson Correlation Coefficient for users

An other similarity metric used in user-based collaborative filtering is the Pearson Cor-

relation Coefficient and it is given by the equation:

PCCu(
−→
t ,

−→
k) =

∑
i∈M (ti − t̄)(ki − k̄)√∑

i∈M (ti − t̄)2
∑

i∈M (ki − k̄)2
, (2.3)

where t̄ and k̄ are the rating means of t and k respectively. The PCCu takes values

between −1 (if users are completely dissimilar) and 1 (if users are completely similar).

If the value is close or equal to 0 then the similarity between the users is unknown. For

example if we want to find the similarity between John and Mary from Table 2.2 again

we substitute in Equation (2.3)

PCCu(
−→
J ,

−→
M) = (

(2 − 3.66) × (5 − 3.25) + (0 − 3.66) × (3 − 3.25)√
(2 − 3.66)2 + (0 − 3.66)2 + (5 − 3.66)2 + (4 − 3.66)2 + (0 − 3.66)2

+
(5 − 3.66) × (4 − 3.25)√

(2 − 3.66)2 + (0 − 3.66)2 + (5 − 3.66)2 + (4 − 3.66)2 + (0 − 3.66)2

+
(4 − 3.66) × (0 − 3.25) + (0 − 3.66) × (1 − 3.25)√

(2 − 3.66)2 + (0 − 3.66)2 + (5 − 3.66)2 + (4 − 3.66)2 + (0 − 3.66)2
)

× 1√
(5 − 3.25)2 + (3 − 3.25)2 + (4 − 3.25)2 + (0 − 3.25)2 + (1 − 3.25)2

=
6.14

24.64
= 0.25

Thus the similarity between John and Mary is PCCu(
−→
J ,

−→
M) = 0.25.

2.3.3 Rating Prediction-Weighted Average at users level

In user-based collaborative filtering an oftenly used method to make predictions is the

weighted average and is given by the equation:

Chapter 2. Collaborative filtering algorithms 8

ru,a =

∑
v∈G Su,vrv,a∑

v∈G Su,v

, (2.4)

where ru,a is the predicted rating for target user u to item a, v ∈ G is a neighbor and

G ⊂ U is the neighborhood (the |G| most similar users) for the target user u. Su,v is the

similarity between target user u and his neighbor v and is computed using the similarity

metrics given by the Equations (2.2) and (2.3). Equation (2.4) relies on the fact that

the rating given by the closest user (the neighbor with the highest similarity) is given

the biggest weight as it is the most significant for the rating prediction. For example, we

want to predict the rating that John (denoted as J) would give to “The Rock” (denoted

as R). At first we have to find the similarity between John and all other 9 users. We make

the table of similarities using the CSu just for simplicity. If we take the 5 top similar

Pair of users Similarity

John-Mary 0.626

John-Lucas 0.554

John-Antony 0.548

John-Jahne 0.855

John-Jade 0.467

John-Kathrin 0.770

John-Hari 0.397

John-Billy 0.692

John-Judy 0.548

Table 2.3: Similarities between users

users with John then his neighborhood is G = Jahne,Kathrin,Billy,Mary, Lucas To

predict the rating that John gave to movie The Rock we substitute in Equation (2.4)

and we have

rJ,R = 1×0.855+0×0.770+1×0.692+1×0.626+3×0.554
0.855+0.770+0.692+0.626+0.554 = 1.09

Thus, the estimated rating that John would give to movie “The Rock” is rJ,R = 1.09.

Schematically Equation (2.4) can be shown in Figure 2.1.

2.4 Item-based Similarity Computation

In the previous section we discussed the two most oftenly used methods to compute sim-

ilarities between users. In many cases where the number of users is very large the system

Chapter 2. Collaborative filtering algorithms 9

Figure 2.1: Rating prediction using weighted average at users level.

will have to make a vast amount of computations to make the final rating predictions.

In this section we will present how the Cosine Vector similarity metric and the Pear-

son Correlation Coefficient can be used to compute similarities between items. We will

also present the Adjusted Cosine similarity metric, useful to item-based collaborative

filtering which was applied by Sarwar and Karypis [2]. In the remainder of the thesis

we will denote the Cosine Vector Similarity as CSi, the Pearson Correlation Coefficient

as PCCi and the Adjusted Cosine Similarity as ASi. The letter i denotes that these

metrics are used in item-based collaborative filtering.

2.4.1 Cosine Vector Similarity for items

The Cosine Vector similarity metric for items is given by the equation:

CSi(−→a ,
−→
b) =

∑
u∈U aubu

√∑
u∈U au

2
√∑

u∈U bu
2
, (2.5)

where U is the set of users, M is the set of items, −→a and
−→
b are the two vectors of

ratings for a and b items, au and bu are the rating given from user u to items a and b

respectively. As in Section 2.3.1,the similarity between them is measured by computing

Chapter 2. Collaborative filtering algorithms 10

the cosine of the angle between these two vectors. Generally the above equation can be

written

CSi(−→a ,
−→
b) =

−→a −→
b√

||−→a ||
∣∣∣
∣∣∣−→b

∣∣∣
∣∣∣

(2.6)

Movie Titles

User Titanic The Patriot Green Mile Forest Gump The Rock

John 2 0 5 4 0

Mary 5 3 4 0 1

Lucas 1 0 0 5 3

Antony 3 5 4 0 0

Jahne 0 3 5 4 1

Jade 5 0 0 2 2

Kathrin 4 3 2 5 0

Hari 0 4 0 4 2

Billy 2 3 5 0 1

Judy 5 0 0 4 3

Table 2.4: Ratings given to two different movie titles

For example we want to find the similarity between the movie titles The Patriot(with

the vector name
−→
P) and The Rock(with the vector name

−→
R) according to the ratings

taken by all 10 users as it is shown in Table (2.4). We substitute in the Equation (2.5)

CSi(
−→
P ,

−→
R) = 0×0+3×1+0×3+5×0+3×1+0×2+3×0+4×2+3×1+0×3√

02+32+02+52+32+02+32+42+32+02
√

02+12+32+02+12+22+02+22+12+32
=

17
47.25 = 0.359

Thus, the similarity between movie titles “The Patriot” and “The Rock” is CSi(
−→
P ,

−→
R) =

0.359.

2.4.2 Pearson Correlation Coefficient for items

The Pearson Correlation Coefficient can be also used as a similarity metric between two

items and is measured by computing the Pearson-r correlation of their vectors (the same

as the PCCu). It is given by the equation:

PCCi(−→a ,
−→
b) =

∑
u∈U (au − ā)(bu − b̄)√∑

u∈U (au − ā)2
∑

u∈U (bu − b̄)2
, (2.7)

Chapter 2. Collaborative filtering algorithms 11

where ā and b̄ are the average rating for items a and b. To make the correlation compu-

tation accurate we must first isolate the co-rated cases(i.e., cases where the users rated

both items a and b see Table 2.5). For example we want to find the similarity between

Movie Titles

User Titanic The Patriot Green Mile Forest Gump The Rock

John 2 0 5 4 0

Mary 5 3 4 0 1

Lucas 1 0 0 5 3

Antony 3 5 4 0 0

Jahne 0 3 5 4 1

Jade 5 0 0 2 2

Kathrin 4 3 2 5 0

Hari 0 4 0 4 2

Billy 2 3 5 0 1

Judy 5 0 0 4 3

Table 2.5: The co-rated cases for different movies

the movies “The Patriot” and “The Rock” according to the ratings taken by all 10 users

as it is shown in 2.5. We substitute in the Equation (2.7)

PCCi(
−→
P ,

−→
R) =

(3−3.5)×(1−1.85)+(3−3.5)×(1−1.85)+(4−3.5)×(2−1.85)+(3−3.5)×(1−1.85)√
(3−3.5)2+(3−3.5)2+(4−3.5)2+(3−3.5)2

√
(1−1.85)2+(1−1.85)2+(2−1.85)2+(1−1.85)2

= 1.35
1.48 = 0.912

Thus, the similarity between movie titles “The Patriot” and “The Rock” is PCCi(
−→
P ,

−→
R) =

0.912.

2.4.3 Adjusted Cosine Similarity

Computing similarity using the CSi has one important drawback, the differences in

rating scale between different users are not taken into account. The ASi faces this

problem by subtracting the corresponding user average from each co-rated pair. The

similarity between items a and b using this scheme is given by

ASi(−→a ,
−→
b) =

∑
u∈U (au − ū)(bu − ū)√∑

u∈U (au − ū)2
∑

u∈U (bu − ū)2
, (2.8)

where ū is the average of the uth user’s ratings. For example we want to find the

similarity between movie titles “The Patriot” and “The Rock”. We substitute in the

Equation (2.8) and we have

Chapter 2. Collaborative filtering algorithms 12

ASi(
−→
P ,

−→
R) =

(3−3.25)×(1−3.25)+(3−3.25)×(1−3.25)+(4−3.33)×(2−3.33)+(3−2.75)×(1−2.75)√
(3−3.25)2+(3−3.25)2+(4−3.33)2+(3−2.75)2

√
(1−3.25)2+(1−3.25)2+(1−3.33)2+(1−2.75)2

= −0.203
3.442 =

−0.059

Thus the similarity between the movie titles The Patriot and The Rock is AS(
−→
P ,

−→
R) =

−0.059.

2.4.4 Rating Prediction-Weighted Average at items level

In item-based recommendation systems a typical method to make predictions is the

weighted average and is given by the equation:

ru,a =

∑
b∈Mu

Sa,bru,b∑
b∈Mu

Sa,b

(2.9)

Where ru,a is the predicted rating for target user t to item a, b ∈ G is a similar item to a

and Mu denotes the movies already rated by by the target user u. Sa,b is the similarity

between target item a and an other item b rated by target user t.

For example we want to predict the rating that John would give to “The Rock”. At first

we have to find the similarity between “The Rock” and all other movies already rated

by John. We make the table of similarities using the CSu metric just for simplicity. To

Pair of movies Similarity

The Rock-The Patriot 0.359

The Rock-Titanic 0.622

The Rock-Green Mile 0.246

The Rock-Forest Gump 0.735

Table 2.6: Similarities between movies

predict the rating that John gave to movie “The Rock” we substitute in Equation (2.9)

rJ,R = 2×0.622+5×0.246+4×0.735
0.622+0.246+0.735 = 3.37

Thus, the estimated rating that John would give to “The Rock” is rJ,R = 3.37. Schemat-

ically the rating prediction using the weighted average can be shown in figure 2.2.

Chapter 2. Collaborative filtering algorithms 13

Figure 2.2: Rating prediction using weighted average at items level.

2.5 Combination of user-based and item-based collabora-

tive filtering

Relying on the ratings given to the target item by similar users (SUR) and on the ratings

given by the target user to similar items (SIR) is undesirable, especially when the ratings

from these two sources are quite often not available. Consequently, predictions are often

made by averaging not so similar users or items. Fusing these two data sources to

complement each other under the missing data problem can improve the accuracy of

rating predictions [3]. We can point out that the user-item matrix contains useful data

that remains unexploited. The similar item ratings made by similar users (SUIR) may

provide an extra source for prediction. The Similarity Fusion [3] is the combination of

these three types of ratings in a single collaborative filtering method. The basic idea

of the Similarity Fusion is that each element of the user-item matrix can be treated

as a separate predictor. Its reliability or confidence is then estimated based upon its

similarity toward the rating we want to predict. The test rating is then predicted by

averaging the individual predictions weighted by their confidence.

2.5.1 Individual Predictors

There are lots of differences in rating behavior. Some users have a preference for the

extreme values of the rating scale (they oftenly give the lowest or the greatest rating),

Chapter 2. Collaborative filtering algorithms 14

while others rarely deviate from the median. Likewise, some items get higher ratings

simply because they have been rated by a positive audience. To address the differences

in rating behavior we can normalize the user-item matrix by removing the mean ratings

per user and per item before making predictions. This is shown by the equation

pk,m(xa,b) = xa,b − (x̄a − x̄k) − (x̄b − x̄m), (2.10)

where pk,m(xa,b) is the prediction function for the target item k rated by target user m,

x̄a and x̄k are the average ratings given by user a and k, and x̄b and x̄m are the average

ratings for items b and m. It can be proved that normalizing a matrix by independently

subtracting the row and column means gives the same results.

2.5.2 Fusion of SUR SIR and SUIR

Jun Wang et al. [3] concluded to the equation that combines the SUR, SIR and SUIR

sources of ratings to make rating predictions. It is given by the equation:

x̂k,m =
∑

xa,b

pk,m(xa,b)W
a,b
k,m (2.11)

where

W
a,b
k,m

=

su(uk,ua)∑
xa,b∈SUR su(uk,ua)λ(1 − δ) if xa,b ∈ SUR

si(im,ib)∑
xa,b∈SIR si(im,ib)

(1 − λ)(1 − δ) if xa,b ∈ SIR

sui(xk,m,xa,b)∑
xa,b∈SUIR sui(xk,m,xa,b)

δ if xa,b ∈ SUIR

0 otherwise

(2.12)

It can be easily proven that
∑

xa,b
W

a,b
k,m = 1. The variant W

a,b
k,m acts as a unified weight

matrix to combine the predictors from the three different sources. sui(xk,m, xa,b) denotes

the Euclidean dis-similarity metric between the test rating xk,m and the predictor xa,b

and is given by the equation:

Chapter 2. Collaborative filtering algorithms 15

sui(xk,m, xa,b) =
1√

(1
su(uk,ua))

2 + (1
si(im,ib)

)2
, (2.13)

where su(uk,ua) denotes the similarity between target user u and another user a and

si(im, ib) denotes the similarity between target item m and another item b and they can

be computed using the methods for similarity computation in user-based (see Section

2.3) and item-based (see Section 2.4) collaborative filtering. The parameters λ and

δ control the importance of the different rating sources. A bigger λ emphasizes user

correlations, while smaller λ emphasizes item correlations. When λ equals one, our

algorithm corresponds to a user-based approach, while λ equals to zero results in an

item-based approach. When δ approaches zero, the fusion algorithm becomes the mere

combination of user-based and item-based approaches [3].

2.6 Summary

In this chapter we introduced user-based and item-based collaborative filtering and their

function in rating estimations and in making recommendations, we analytically discussed

the Cosine Vector similarity metric and the Pearson Correlation Coefficient for comput-

ing similarities between users in user-based collaborative filtering, or between items in

item-based collaborative filtering. We also described the Adjusted Cosine similarity

metric and how it is used in the item-based collaborative filtering. In addition, we in-

troduced the weighted average a famous method for making rating predictions for both

methods of collaborative filtering. Finally, we described an already proposed method

for fusing user-based and item-based collaborative filtering facing the problem of data

sparsity.

Chapter 3

Feature-based Recommendation

systems

3.1 Introduction

In Chapter 2, we presented the tow most popular methods of collaborative filtering, the

user-based and the item-based. In both approaches every user or item is described by a

vector of ratings and the closeness between two different users or items is measured by

applying the similarity metrics on their respective vectors.

Unfortunately, ratings are the kind of information that cannot efficiently describe an

item or a user due to the data sparsity of the user-item matrix. This problem is very

significant when the system is in the initial stage of use as users are new and with small

number of ratings. To tackle this problem, we search of an alternative way to describe

items and users. We can use words as features and every feature weighted by a numerical

value showing its significance. Thus, we can represent every item or user his Vector of

Lexical Features (denoted as V LF).

In this chapter we describe how we create the V LF of an item or user using a variety of

schemes that are widely used in the field of text mining and in Information Retrieval.

Additionally, we present a way of more efficient feature selection and why it can be used

in the creation of the VLFs.

3.2 Related Work

Raymond J. Mooney [4] developed a system for book recommendations called LIBRA

(Learning Intelligent Book Recommending Agent). LIBRA downloaded pages according

16

Chapter 3. Feature-based Recommendation Systems 17

to a list of book-description URL s for a number of book titles, and it used a simple

pattern-based information extraction system to extract data for each title. Then with

the ratings given by users to a selected set of book titles, LIBRA learned a profile for

each user using a Bayesian learning algorithm to finally produce a ranked list of the

most recommended titles from the system’s catalog.

Furthermore, the famous Internet Movie Database (IMDB) advertised an algorithm that

uses factors such as user votes, genre, movie title, keywords, and most importantly user

recommendations, to generate an automatic response. This algorithm acquires a great

deal of human support [6].

To tackle this problem Michael Fleischman and Eduard Hovy [6] used both structured

information (director, writer, cast) and natural language plot summaries for each film.

They examined two algorithms which used two different similarity metrics, the word-

space similarity metric and the topic signature similarity metric. According to the first

algorithm, they transformed each plot summary into a vector of binary features, one per

word, where the value of each feature represents whether a specific word exists in the

plot summary or not. Then, they computed the similarity between any two movies using

the cosine vector similarity between their respective feature vectors. According to the

second algorithm, they first created topic signatures (topic signatures are lists of terms

that are weighted by how indicative the term is of the specific topic of genre) for each

genre category as defined by IMDB. They created new genres that are not described

in IMDB by using hierarchical topic clustering and they used these topic signatures to

generate vector descriptions of model genre films. Then they created a feature vector

representation for each movie such that each feature denotes the cosine similarity of the

movie to each one of the model genre films. Finally the similarity between any two movies

is calculated using the cosine vector similarity between these vector representations.

Joshua Alspector and Aleksander Klocz [5] evaluated the use of feature-based methods

to user modeling with the purpose of creating a filtering agent for a video-on-demand

application. They built a model for the movie using a set of important features of the

movies that a user has seen and rated such as The Category, Academy Award, Length and

the Director and using this model they estimated ratings for the target movie. A linear

and a nonlinear approaches were illustrated and they were compared to the user-based

method.

Prem Melville and al. [7] have used a combination of feature-based method with col-

laborative filtering. To provide content-based predictions they treated the prediction

task as a text-categorization problem. They viewed movie content information as text

documents, and user ratings as class labels. They implemented a bag-of-words naive

Bayesian text classifier [12] extended to handle a vector of bag-of-words, where each

Chapter 3. Feature-based Recommendation Systems 18

bag-of-words corresponds to a movie feature. The classifier was used to learn a user

profile from a set of already rated movies. The learned profile is then used to predict (to

find the class) of unrated movies. These predictions were used to fill the sparse user-item

matrix and then they estimated the final ratings applying the user-based method.

3.3 Making Vectors of Lexical Features for movies and

users

In the field of Information Retrieval documents and queries are often represented by

vectors, in a space called vector space model. This representation is widely used for

similarity computation between documents and queries, document classification and

clustering. Such a vector can be represented as

T = (x1, x2, . . . , xn)

where ti is the ith feature of the vector [13]. In this work the T vector is actually the VLF

that represents a movie or a user supposing that our features are words. The features

are computed using the Binary, Frequency or Log frequency, Term Frequency Inverse

Document Frequency weighting schemes. The creation of VLFs using the vector space

model is based on the assumption that the occurrence of a word is independent of the

occurrence of another.

In the following sections we present these schemes more analytically.

3.3.1 Binary scheme

One simple way of producing the VLF for a movie is to apply the Binary scheme or

the Binary Independence Model (BIN) to the document for the specific movie [12].

According to this scheme every word is weighted to 1 or 0 if it is found in the document

or not respectively. Thus, the VLF for a movie will be x = (x1, x2, . . . , xn) where xi

take values 0 or 1.

Chapter 3. Feature-based Recommendation Systems 19

3.3.2 Frequency and Log frequency schemes

While the BIN weighting scheme has been very influential in information retrieval, it

has some shortcomings and it is now rarely used in the form given above. One disad-

vantage is that by considering only the presence or absence of terms, the BIN ignores

the information given from the frequencies of terms. For example, we would expect that

if 1 occurrence of a word is descriptive for the specific movie, then 5 occurrences of the

same word would be more descriptive [12].

To address the weakness of the BIN scheme, we present the Frequency scheme (F) which

is actually a generalization of the BIN scheme. According to this every movie or user

has a VLF with every feature weighted by its term frequency (i.e, the number of times

this word is found in the document)[9, 12]. Thus, the vector of lexical features for a

movie will be x = (x1, x2, . . . , xn) where xi is the term frequency of ith word.

Taking the logarithm of the term frequency of each word we produce the Log Frequency

scheme (LF) of the VLF for a specific movie. This weighting scheme has the additional

advantage of eliminating the singletons (i.e, words with frequency 1) that may exist in

the document. Thus, according to this scheme the vector of lexical features for a movie

will be x = (x1, x2, . . . , xn) where xi is the logarithm of the term frequency of ith word.

3.3.3 Term Frequency Inverse Document Frequency scheme

An other weighting scheme that is widely in information retrieval is the Term Frequency

Inverse Document Frequency scheme (TFIDF). According to TFIDF scheme, the cre-

ation of the VLF for a movie can be separated in two parts. At first, for each word we

compute the Term Frequency or TF, which in this scheme denotes the number of times

the word appears in the document divided by the total number of words. Secondly, we

compute the Document Frequency or DF, which is the number of documents in which

this word appears divided by the total number of documents. Now the 1
DF

is the Inverse

Document Frequency or IDF and it serves to normalize the effect of words that appear

commonly in many documents. The TFIDF weight for a word is produced by multi-

plying the TF with the IDF for this word [10]. This scheme has the characteristic that

greater importance is given to a word that occurs frequently in a document, while ap-

pears rarely in the whole document collection. In this thesis, we use the TFIDF scheme

to create the VLF for each movie as follows:

1. We compute the TF and the IDF for each word as described in the paragraph

above.

Chapter 3. Feature-based Recommendation Systems 20

2. The weight for each word is given by the TF × log10(IDF).

For instance, we suppose we have a document for a movie of W = 1000 words and we

want to compute the TFIDF weight for the word symphony. It is found in the document

10 times, thus the term frequency is TF = 10
1000 = 0.01. Also, this word is found in

the 10 of the M = 100 documents, thus the Document Frequency is DF = 0.1 and the

Inverse Document Frequency is IDF = 1
0.1 = 10. Finally, the TFIDF weight for the

word symphony is TF × log10 IDF = 10 ∗ 1 = 10.

3.4 Feature selection using Mutual Information

In the previous section we assumed that there are no dependencies among the occur-

rences of words. Although this assumption is a simple way of making the VLFs for the

movies of our interest, is very naive and eliminates the significance of pair of words that

are highly associated (i.e, with high frequency of co occurences). For example, assuming

the words dependency, the phrase “ninth symphony” will lose its importance and the

words “ninth” and “symphony” will be weighted as two different features, even though

they are highly associated.

To face this problem we create pairs of words computing the Mutual Information (or

simply I) between them which is given by the equation:

I(x, y) = log10
P (x, y)

P (x)P (y)
, (3.1)

where x and y denote the two words and I(x, y) their Mutual Information.

According to the Equation (3.1) if two words, x and y, have probabilities P (X) and

P (Y), then their Mutual Information I(x, y) compares the probability of observing x

and y together with the probabilities of observing x and y independently. If words x

and y are highly associated then the joint probability P (x, y) will be much larger than

P (x)P (y) and consequently I(x, y) ≫ 0. If there is no interesting relationship between x

and y then P (x, y) ≈ P (x)P (y), and thus I(x, y) ≈ 0. If x and y are in complementary

distribution then P (x, y) ≪ P (x)P (y), forcing I(x, y) ≪ 0 [11].

In this thesis, we compute the I for all the different the pairs of words in a document. We

distinguish those that I ≫ 1, treating them as a single feature and we give them a high

weight (log10100) assuming that these pairs play an important role to the description of

a specific movie.

Chapter 3. Feature-based Recommendation Systems 21

3.5 Summary

In this chapter, we present a feature-based representation of movies by computing their

VLFs according to the widely used vector space model. At first, we analyze four different

weighting schemes, BIN, F, LF and TFIDF without taking account the dependence of

co occurrences of words. Finally, we discuss the use of Mutual Information and how it

can lead us to a more careful feature selection by grouping words with high association.

Chapter 4

Combination of Collaborative

Filtering and Feature based

methods

4.1 Introduction

In the previous chapter we presented an alternative way of representing movies and

users. We used words as features and we gave them a weight according to a specific

scheme based on the vector space model (Section 3.3). Nevertheless, the problem of

data sparsity remains unsolved. Thus, a question arises: How can lexical information

be used to decrease the sparsity problem of a recommendation system?

This chapter deals with the answer to this question. We use the VLF representation

to compute similarities between movies or between users and the methods presented in

Chapter 2 to make rating predictions. Furthermore, we propose algorithms of combining

these rating predictions with the traditional user-based collaborative filtering. This

combination relies on the idea that the missing rates which are responsible for the data

sparsity problem can be filled by the predictions made using lexical information.

4.2 Content-based similarity metric

Suppose we have created the VLF, mt and mk for the two different movies t and k

respectively. Then we can define Vt and Vk as the vocabulary for movies t and k which

are set of words (features) that describe the specific movies. Because |Vt| 6= |Vk| we define

a common vocabulary V for both movies t and k as the union of Vt and Vk (V = Vt∪Vt).

22

Chapter 4. Combination of Collaborative Filtering and Feature based methods 23

We can measure the similarity between two different movies by computing the cosine

distance of their corresponding VLF, and it is given by the equation:

CBi(mt,mk) =

∑V
i=1 mt,imk,i√∑V

i=1 mt,i
2

√∑V
i=1 mk,i

2

, (4.1)

where mt and mk are the VLF for movies t and k respectively. V is the vocabulary for

movies t and k, mi and ki are the values of ith word of mt and mk respectively. The

VLF mt and mk are created according to the BIN ,F ,LF or TFIDF weighting schemes

presented in Chapter 3. This metric relies on the idea that similarity of context implies

similarity of meaning [9]. In other words, movies which have common words from their

corresponding documents tend to be similar.

The content-based similarity metric can be also used to compute similarities between

users. We can create the VLFs for two different users ua and ub by using the VLF of the

movies rated. Thus, the similarity between two different users can be measured using

the cosine distance of their corresponding VLF and it is given by the equation:

CBu(ua, ub) =

∑V
i=1 ua,iub,i√∑V

i=1 ua,i
2

√∑V
i=1 ub,i

2

, (4.2)

where ua and ub are the VLF for users a and b respectively. V is the vocabulary for

users a and b, ai and bi are the values of ith word (feature) of ua and ub. Again, it holds

that V = Va ∪ Vb, where Va and Vb denote the vocabulary (set of features) for users a

and b.

4.3 Similarity matrices

Before we proceed to the presentation of our approach we define the similarity matrices

that we use in the proposed models and how they are created. We use a Movie-Movie

similarity matrix which contains similarities between movies, and a User-User similarity

matrix with similarities between users. Specifically, the similarities in the Movie-Movie

similarity matrix are computed using the CBi (Equation (4.1)). In addition, the similar-

ities in the User-User similarity matrix can be computed using the methods for similarity

Chapter 4. Combination of Collaborative Filtering and Feature based methods 24

User

User Mary Lucas Antony Jahne Jade Kathrin Hari Billy

John 0.626 0.554 0.548 0.855 0.467 0.770 0.397 0.692

Judy 0.554 0.812 0.300 0.376 0.960 0.769 0.518 0.294

Table 4.1: Example of User-User similarity matrix

computation between users from Section 2.3 or the CBu (Equation (4.1)). The following

sections present more analytically the similarity matrices as they are used in our models.

4.3.1 User-User similarity matrix

Suppose we have a set N of users with their ratings considered as known, and a set T

of target users we want to predict their ratings to specific movies. Then the User-User

similarity matrix will be a |T |×|N | matrix with each cell denoting the similarity of target

user u ∈ T with the known user v ∈ N . The format of the User-User similarity matrix

is presented in Figure 4.1, where Su,v denotes the similarity between users u and v. For

Figure 4.1: Format of User-User similarity matrix

example, looking back to the User-Movie matrix (see Table 2.1) we suppose that John

and Judy are the target users and the other 8 users are known. Thus, the User-User

similarity matrix will be 2 × 8 matrix presented in Table 4.1. The similarities of the

User-User similarity matrix in Table 4.1 have been computed using the CSu according

to Equation (2.1).

4.3.2 Movie-Movie similarity matrix

Suppose we have M movie titles, then the Movie-Movie similarity matrix is a |M |× |M |
matrix with each cell denoting the similarity of a movie t ∈ M with any other movie

k ∈ M including herself. The format of the Movie-Movie similarity matrix is shown

in Figure 4.2, where St,k denotes the similarity between movies t and k. For example,

Chapter 4. Combination of Collaborative Filtering and Feature based methods 25

Figure 4.2: Format of Movie-Movie similarity matrix

Movie Title

Movie Title Titanic The Patriot Green Mile Forest Gump The Rock

Titanic 1 0.65 0.80 0.75 0.60

The Patriot 0.65 1 0.40 0.30 0.70

Green Mile 0.80 0.40 1 0.90 0.25

Forest Gump 0.75 0.30 0.90 1 0.35

The Rock 0.60 0.70 0.25 0.35 1

Table 4.2: Example of Movie-Movie similarity matrix

from the User-Movie matrix (Table 2.1) We produce the following 5 × 5 Movie-Movie

similarity matrix in Table 4.2(the similarities are identical).

4.4 Proposed models

In this section we propose three models that can cope with the problem of data sparsity

by combining the ratings of similar users with rating predictions made by the item-

based approach. In general, the algorithms who describe the three models have 2 steps

in common.

1. Make a first prediction r1
u,a of the rating target user u would give to movie a

(ru,a), using the weighted average of the ratings given to similar movies already

rated by user u, according to item-based approach. The similarities between the

target movie a with the movies already rated are obtained from the Movie-Movie

similarity matrix (Section 4.3.2).

2. Make a final prediction r2
u,a of the rating ru,a using the weighted average of the

ratings given to movie a by the U most similar users combined with r1
u,a. The

similarities between the target user u and his neighbors are obtained from the

User-User similarity matrix (Section 4.3.1).

Chapter 4. Combination of Collaborative Filtering and Feature based methods 26

4.4.1 Heuristic model

A naive and heuristic approach of solving the problem of data sparsity is to simply fill

the missing ratings of the user-movie matrix. The algorithm that describes this model

can be separated in 2 steps:

1. we predict the r1
u,a, the rating the target user u gave to movie a using the Equation

(2.9). We use the Movie-Movie similarity matrix to obtain the similarities between

movie a and all the other movies the target user has already rated.

2. we apply the user-based method for a neighborhood of U users and we predict the

rating r2
u,a using the weighted average (see Section 2.3.3) of the ratings already

given to the target movie by the neighbors according to the Equation (2.4). In

case the target movie has not been rated by a specific neighbor, this missing rating

is substituted by the prediction r1
u,a from step 1.

Formally, the algorithm of the heuristic model can be described by the equations:

r2
u,a =

∑
v∈U Rv

|U | , (4.3)

where |U | is the total number of neighbors and the variable Rv is given by the equation:

Rv =

r1
u,a if rv,a ≡0

rv,a if rv,a 6=0,
(4.4)

where r2
u,a is the final rating prediction, rv,a is the rating by neighbor v ∈ U given to

movie a ∈ M . This model heuristically selects which rating r2
u,a or rv,a to use for the final

prediction. Thus, this model tackles the problem of data sparsity by substituting the

missing rates (rv,a ≡ 0) with the prediction r1
u,a made using the feature-based methods

from Chapter 3. For instance, suppose we want to predict the rating that Judy (J) will

give to movie “The Patriot” (P) the procedure is the following:

1. Judy has already rated the movies “Titanic” with 5, “Forest Gump” with 4 and

“The Rock” with 3. Thus, if we use the Movie-Movie similarity matrix (Table 4.2)

and we substitute in Equation (2.9) we have

Chapter 4. Combination of Collaborative Filtering and Feature based methods 27

r1
J,P =

0.65 × 5 + 0.30 × 4 + 0.70 × 3

0.65 + 0.30 + 0.70

=
6.55

1.65

= 3.96

The estimated rating produced in the first step of the algorithm is r1
J,P = 3.96.

2. The neighbors of Judy are U = {Mary,Lucas,Antony, Jahne, Jade,Kathrin,Hari,Billy}
thus if we use the User-User similarity matrix (Table 4.1) and by substituting in

Equation (4.3), we have

r2
J,P =

0.554 × 3 + 0.812 × 3.96 + 0.300 × 5 + 0.376 × 3

8

+
0.960 × 3.96 + 0.769 × 3 + 0.518 × 4 + 0.294 × 3

8

=
16.56

8

= 2.07

The numbers in bold denote that the rv,P is missing and according to Equation

(4.4), the Rv = r1
J,P . Thus the final prediction of the rating that Judy would give

to movie “The Patriot” is r2
J,P = 2.07

The Heuristic model can be shown schematically in Figure 4.3.

4.4.2 Linear model 1

The algorithm that describes this model consists of two steps similar to the heuristic

model (see Section 4.4.1). The algorithm is the following:

1. We predict the r1
u,a using Equation (2.9). We use the Movie-Movie similarity

matrix to obtain the similarities between movie a and all the other movies the

target user has already rated.

2. The final rating r2
u,a is given by the equation:

r2
u,a =

∑
v∈U Rv∑

v∈U Su,v

, (4.5)

Chapter 4. Combination of Collaborative Filtering and Feature based methods 28

Figure 4.3: Schematic representation of the Heuristic model

where Su,v denotes the similarity between the target user u and his neighbor v.

The Su,v is a cell from the User-User similarity matrix (Table 4.1). The variable

Rv is given by the equation:

Rv =

r1
u,aSu,v if rv,a ≡0

(w1r
1
u,a + w2rv,a)Su,v if rv,a 6=0,

(4.6)

where rv,a the rating given from neighbor v to movie a.

The weights w1 and w2 are given by the equations:

w1 =
Mu

Mt

(4.7)

w2 =
Mt − Mu

Mt

, (4.8)

where Mu denotes the number of movies rated by the target user u and Mt is the total

number of movies. As we can see it holds that w1 + w2 = 1. The weights w1 and w2 are

Chapter 4. Combination of Collaborative Filtering and Feature based methods 29

fixed according to the number of movies rated by the target user u. This model relies

on the idea that if the target user has rated a large number of movies can be considered

as an experienced user and the prediction r1
u,a is given more weight. Otherwise, more

weight is given to rv,a (w2 is closer to 1 and w1 ≪ w2). It becomes clear that w1 = 1, if

the user has rated all the movies and w2 = 1 if the target user is a new user (he has not

previously rated any movie). For instance, suppose we want to predict the rating that

Judy will give to movie “The Patriot” (P), the procedure is the following:

1. The estimated rating produced using Equation (2.9) is r1
J,P = 3.96. The weights

w1 and w2 are computed using the Equations (4.7) and (4.8)

w1 =
MJ

Mt

=
3

5
= 0.6

w2 = 1 − w1 = 0.4

2. The neighbors of Judy are G = {Mary,Lucas,Antony, Jahne, Jade,Kathrin,Hari,Billy}
thus if we use the User-User similarity matrix (Table 4.1) and by substituting in

Equation (4.5), we have

r2
J,P =

(0.6 × 3.96 + 0.4 × 3) × 0.554 + 3.96 × 0.812 + (0.6 × 3.96 + 0.4 × 5) × 0.300

0.554 + 0.812 + 0.300 + 0.376 + 0.960 + 0.769 + 0.518 + 0.294

+
(0.6 × 3.96 + 0.4 × 3) × 0.376 + 3.96 × 0.960 + (0.6 × 3.96 + 0.4 × 3) × 0.769

0.554 + 0.812 + 0.300 + 0.376 + 0.960 + 0.769 + 0.518 + 0.294

+
(0.6 × 3.96 + 0.4 × 4) × 0.518 + (0.6 × 3.96 + 0.4 × 3) × 0.294

0.554 + 0.812 + 0.300 + 0.376 + 0.960 + 0.769 + 0.518 + 0.294

=
17.51

4.58

= 3.82

Thus the final prediction of the rating that Judy would give to movie “The Patriot”

is r2
J,P = 3.82. The predicted rating r1

J,P is bolded to show the cases where rating

rv,a is missing.

A schematic representation of the Linear model 1 is shown in Figure 4.4.

4.4.3 Linear model 2

The algorithm is similar to Linear model 1 (see Section 4.4.2). Nevertheless, the weights

w1 and w2 are computed differently. The algorithm is the following:

Chapter 4. Combination of Collaborative Filtering and Feature based methods 30

Figure 4.4: Schematic representation of the Linear model 1

1. We predict the r1
u,a using Equation (2.9). We use the Movie-Movie similarity

matrix to obtain the similarities between movie a and all the other movies the

target user has already rated.

2. The final prediction is given by the Equations (4.5) and (4.6) but the weights w1

and w2 are now computed using the following Equations:

w1 =
Mu − CMu,v

Mu

(4.9)

w2 =
CMu,v

Mu

(4.10)

where CMu,v is the number of co-rated movies between user u and user v. Mu is the

number of movies rated by user u. This model implies that if neighbor v has many

co-rated movies with the target user, then his rating to movie a (rv,a) will be given more

weight as he is considered more experienced in rating movies. For instance, suppose we

want to predict the rating that Judy will give to movie “The Patriot”, the procedure is

the following:

Chapter 4. Combination of Collaborative Filtering and Feature based methods 31

Neighbor v w1 w2

Mary 0.33 0.67

Lucas 0.33 0.67

Antony 0.33 0.67

Jahne 0.5 0.5

Jade 0.33 0.67

Kathrin 0 1

Hari 0.33 0.67

Billy 0.33 0.67

Table 4.3: Weights w1 and w2 for the Linear model 2

1. The estimated rating produced using Equation (2.9) is r1
J,P = 3.96. The weights w1

and w2 are computed using the Equations (4.9) and (4.10) and they are different

for every neighbor. The weights w1 and w2 are shown in Table 4.3.

2. The neighbors of Judy are G = {Mary,Lucas,Antony, Jahne, Jade,Kathrin,Hari,Billy}.
Thus, we use the User-User similarity matrix (Table 4.1) and we substitute in

Equation (4.5)

r2
J,P =

(0.33 × 3.96 + 0.67 × 3) × 0.554 + 3.96 × 0.812 + (0.33 × 3.96 + 0.67 × 5) × 0.300

0.554 + 0.812 + 0.300 + 0.376 + 0.960 + 0.769 + 0.518 + 0.294

+
(0.33 × 3.96 + 0.67 × 3) × 0.376 + 3.96 × 0.960 + (0 × 3.96 + 1 × 3) × 0.769

0.554 + 0.812 + 0.300 + 0.376 + 0.960 + 0.769 + 0.518 + 0.294

+
(0.33 × 3.96 + 0.67 × 4) × 0.518 + (0.33 × 3.96 + 0.67 × 3) × 0.294

0.554 + 0.812 + 0.300 + 0.376 + 0.960 + 0.769 + 0.518 + 0.294

=
12.14

4.58

= 2.65

The final prediction of the rating that Judy would give to movie “The Patriot” is

r2
J,P = 2.65

A schematic representation of the Linear model 2 is shown in Figure 4.5

4.4.4 Better selection of neighbors

A crucial step in collaborative filtering is the selection of a neighborhood. The neighbors

of the active user entirely determine his predictions. Because of the data sparsity the

similarities between users are determined by a small number of co-rated movies. In this

way, many users are considered as very close to the target user without actually having

Chapter 4. Combination of Collaborative Filtering and Feature based methods 32

Figure 4.5: Schematic representation of the Linear model 2

many similar preferences. Additionally, it is more wise to select users with an essential

number of ratings as they tend to be more experienced in rating movies. To enhance the

accuracy of our algorithms we apply two criterion to decide if a user can be considered

as a confident neighbor or not:

• We apply a threshold L in the number of movies rated by the neighbor v (Mv).

If Mv ≥ L then the user v is a confident neighbor and his rating is taken into

account in the rating prediction, otherwise he is rejected. In this thesis L = M̄G,

where MG the average number of ratings of the predefined neighborhood G.

• We apply a threshold K in the number of common movies between the target

user u and his neighbor v (CMu,v). If CMu,v > K then the user v is a confident

neighbor and his rating is taken into account in the rating prediction, otherwise

he is rejected. In this thesis we suppose that K = Mu

2 .

4.5 Summary

In this chapter we proposed one heuristic and two linear combinations of user-based

collaborative filtering and feature-based methods. These models rely on the idea that

the rating predictions made by feature-methods can tackle the problem of data sparsity

and enhance the performance of the movie recommendation system. Finally, we describe

two criterion for deciding if a neighbor is really useful for the rating prediction or not.

Chapter 5

Experimental Procedure and

Results

5.1 Experimental setup

In Chapter 4, we proposed three ways of combining user-based with item-based collab-

orative filtering with feature-based methods. In this chapter we evaluate our models

on real data and compare their performance with a baseline and with user-based and

item-based collaborative filtering in separate. Specifically, our experiments worked on

different kinds of information:

1. Movie titles.

2. Ratings given by specific users to these movie titles.

3. Downloaded reviews for each movie title.

The experimental data are presented analytically in the following Sections.

5.1.1 Movie Titles

The on line movie rental company NETFLIX provided us with a dataset of more than 100

million ratings given to 17770 movie titles by 480 thousand randomly selected customers.

Nevertheless if we used the whole set of the offered movie titles the experiments would

be time consuming. Thus, the movies used in the experimental procedure are a subset

of the original data set given from NETFLIX. The movie selection was not random, we

analyzed this huge amount of ratings and we selected the 200 most rated movie titles.

33

Chapter 5. Experimental Procedure and Results 34

We made a list of the selected movies which contains two fields of information: 1) Title

2) Year of production.

5.1.2 Reviews

5.1.2.1 Downloading reviews

Having created the list of movie titles we used the Web search engine of the Yahoo-search

API [18], to download reviews related to the selected movie titles. To make this possible,

we used a query with the fields of Title and Year of production inserted parametrically.

The query used is the following:

(review OR reviews OR summary OR comments OR synopsis) AND (movie

OR film OR dvd OR cinema) AND (movie title AND year)

5.1.2.2 Preprocessing of downloaded reviews

For each movie title a query was created and it was given as input to our search engine.

We downloaded the 100 top ranked URL s returned as output. At first, the downloaded

documents were (a)cleaned from the HTML tags, (b)cleaned from punctuation (c) lower-

cased. The 100 cleaned documents were appended to a single document for every movie.

Lastly, to track and eliminate the repeating parts of lexical information (duplicates),for

each document we compute the CB similarity (see Section 4.2) of every line with any

other line in the document, using the BIN weighting scheme. The whole procedure of

preprocessing was repeated for all the 200 selected movie titles.

5.1.3 Sets of users for Training and Evaluation

We created a set of randomly selected 500 users as the training set (denoted as Train

set). The only criterion for a user to be considered as training user is to have rate more

than 20 movie titles from the selected 200 movies.

Furthermore, we created three sets for evaluation:

• A set of 80 randomly selected users with a small average number of ratings (denoted

as Set 1)

• A set of 80 randomly selected users with a large average number of ratings (denoted

as Set 2)

Chapter 5. Experimental Procedure and Results 35

• A third set of 160 users (denoted as Set 3) contains both sets 1 and 2 mixed

together.

The test data sets are presented in Table 5.1.

Dataset Number of Total number of Average number of
users ratings ratings

Set 1 80 1728 21.6

Set 2 80 12507 156.3

Set 3 160 14235 88.9

Table 5.1: Statistical information for the test data sets.

The user profiles for both training and testing users contain the selected movie titles

with the ratings given to them. The ratings take integer values from 1 (the user disliked

the movie) to 5 (the user really enjoyed the movie).

We apply our models from Chapter 4 on this three test data sets to evaluate the perfor-

mance of the proposed algorithms in the case of new users (Set 1), of experienced users

(Set 2) and in general case (Set 3).

5.1.4 Creating VLF for movies and users

The 200 preprocessed documents are parsed and every word is weighted according to

the schemes presented in Chapter 3. Expect from the cases where a word is a stop word

(i.e, an article). For this purpose we use a stop word list. Thus, we create a VLF for

every movie.

Having created the user profiles (for training and evaluation), we parse the documents

of the movies he has already rated according his user profile. Finally, we create his VLF

using the weighting schemes presented in Chapter 3.

5.2 Baseline

The K-Means clustering algorithm is used as the Baseline of this work. K-Means al-

gorithm separates the training user set in K clusters according to the co-rated movie

titles. The K-Means clustering begins with K randomly placed centroids (every centroid

represents the center of each cluster), and assigns every training user to the nearest one

using the Euclidean distance metric. After the assignment, the centroids are moved to

the average location of all the users assigned to them, and the assignments are redone

Chapter 5. Experimental Procedure and Results 36

[1]. This process repeats until the assignments stop changing. At the end of the process

the training user set is splitted in K clusters. The Euclidean distance metric is given by

the equation:

E(−→u ,−→v) =

√√√√
M∑

i=1

(ui − vi)
2
, (5.1)

where −→u and −→v are the user profiles of users u and v, M denotes the movies offered

and ui and vi are the ratings given to movie i ∈ M by users u and v respectively.

After the creation of the K clusters which denote the K classes of training users, we

compute the distance of each target user u from the test sets with each of the K centroids

produced by the K-Means clustering. The smallest distance that target user u has with

the centroids denotes the class this user belongs to. Thus, the rating ru,a that user u

would give to movie a is the average of the ratings of all users of the cluster. An example

of K-Means clustering for K = 2 is shown in Figure 5.1.

Figure 5.1: The clusters produced by K-Means clustering (K=2)

We applied the K-Means algorithm in our training user set for K = 1, K = 2, and

K = 5 clusters, and we evaluated its performance for the three test data sets, 1, 2 and

3. The results are shown in Table 5.2.

It can be concluded that better results are achieved for K = 5 clusters for the three test

data sets. Thus, we can consider the MSE of the K-Means clustering for K = 5 as our

Baseline. In the following sections we present the results for the test set 3 as it contains

both test set 1 and set 2 and it is more indicative.

Chapter 5. Experimental Procedure and Results 37

Data Set K = 1 K = 2 K = 5

set 1 1.1748 1.1700 1.1609

set 2 0.9803 0.9786 0.9656

set 3 1.0039 1.0022 1.0001

Table 5.2: MSE for K-means clustering.

5.3 Evaluation Metric

To evaluate the performance of our models we use the Mean Square Error rate. The

MSE is given by the equation

MSE =
1

R

∑

i∈R

(ri − r̄i)
2, (5.2)

where ri is the real rating, r̄i is the estimated rating and R is the total number of ratings

for estimation. It is expected that smaller MSE means better results. The value of this

metric range from 0 to 16.

5.4 Results

In this section we present the results produced from the experiments on the proposed

models. In addition, we compare them with our baseline and with the user-based

and item-based collaborative algorithms. The experiments were made on all three test

datasets but in we only present the results for the test set 3 as it is more indicative. All

the experiments presented have been made taking all users as neighbors (Neighborhood

size = 500). Table 5.3 contains all the similarity metrics used in our experiments with

their respective acronyms. Also, Table 5.4 contains all the weighting schemes used in

the experiments.

5.4.1 User-based collaborative filtering

We applied the proposed algorithms from Chapter 4 on the three test data sets but

we present only the results given from test set 3 as they are more indicative. Table 5.5

shows the MSE for user-based collaborative filtering using the CSu (see Section 2.3.1) the

PCCu (see Section 2.3.2) and the CB (see Section 4.2) similarity metrics. Furthermore,

we evaluate the impact on the MSE for both criterions in neighbor selection presented

Chapter 5. Experimental Procedure and Results 38

Acronym Description of similarity metric

CSi
R Cosine Vector similarity metric for items using ratings

PCCi
R Pearson Correlation similarity metric for items using ratings

ASi
R Adjusted Cosine similarity for items using ratings

CBi
BIN Content-based similarity metric for items using lexical features

according to the BIN weighting scheme

CBi
F Content-based similarity metric for items using lexical features

according to the F weighting scheme

CBi
LF Content-based similarity metric for items using lexical features

according to the LF weighting scheme

CBi
TFIDF Content-based similarity metric for items using lexical features

according to the TFIDF weighting scheme

CBi
I,LF Content-based similarity metric for items using lexical features

according to the LF weighting scheme taking account of the Mutual Information

CSu
R Cosine Vector similarity metric for users using ratings

PCCu
R Pearson Correlation similarity metric for users using ratings

CBu
LF Content-based similarity metric for users using lexical features

according to the LF weighting scheme

Table 5.3: Similarity metrics and their acronyms.

Acronym Weighting scheme

BIN Binary

F Frequency

LF Log Frequency

TFIDF Term Frequency Inverse Document Frequency

(I, LF) Log Frequency using Mutual Information

Table 5.4: Weighting schemes and their acronyms.

in Section 4.4.4. As we can observe all three metrics achieve significantly better results

Sim Metric No criterion M̄G
Mu

2

CSu
R 0.9168 0.8882 0.8750

PCCu
R 0.9156 0.8837 0.8709

CBu
LF 0.9156 0.8849 0.8724

Table 5.5: MSE for different similarity metrics in user-based collaborative filtering.

than our Baseline. The MSE remains the same for the three similarity metrics and the

application of neighbor selection offers an important improvement. Because of the fact

that CBu
LF gives similar results with CSu

R and PCCu
R, we present the results for CSu

R

and PCCu
R.

Chapter 5. Experimental Procedure and Results 39

5.4.2 Item-based collaborative filtering

Table 5.6 shows the MSE for the CBi presented in Chapter 4 using all the different

weighting schemes and the MSE for CSi, PCCi, ASi metrics presented in Section 2.4 in

comparison with our baseline. We observe that ASi
R achieves better results than all the

Baseline 1.0001

Sim Metrics

CSi
R 0.8880

PCCi
R 0.8281

ASi
R 0.7211

Baseline 1.0001

CB Metric

CBi
BIN 0.9015

CBi
F 0.8988

CBi
LF 0.9021

CBi
TFIDF 0.8379

CBi
I,LF 0.8898

Table 5.6: MSE in item-based collaborative filtering: (a)Using CSi

R
, PCCi

R
and ASi

R

metrics (b)Using CBi with the LF , TFIDF , I, LF weighting schemes

other similarity metrics in the item-based collaborative filtering. Furthermore, the CBi

similarity metric works significantly better with the TFIDF weighting scheme. Also

the application of feature selection using I gives a small improvement compared to the

simple LF weighting scheme.

5.4.3 Heuristic model

In Table A.6 we evaluate the performance of the heuristic model (see Section 4.4.1) using

the CB similarity metric (with different weighting schemes) in item-based collaborative

filtering, and the CSu and the PCCu in user-based collaborative filtering. In addition

we evaluate the performance of the heuristic model

We observe that the heuristic model achieves significantly better results than our base-

line, and item-based and user-based collaborative filtering in separate. At the level of

users PCCu and CSu metrics gave the same results. At the level of items we observe

that the CBi similarity metric works better using the TFIDF weighting scheme. Also,

the feature selection using I enhanced the accuracy of the model reducing the MSE.

The application of criterions in neighbor selection had generally a small improvement,

nevertheless in the cases of CBi
TFIDF + PCCu

R and CBi
TFIDF + CSu

R combinations the

MSE had a small augmentation.

5.4.4 Linear model 1

In Table 5.8 we evaluate the performance of the Linear model 1 (Section 4.4.2) using the

CBiS similarity metric (with all different weighting schemes) combined with the CSu

Chapter 5. Experimental Procedure and Results 40

Baseline MSE = 1.0001

Heuristic model

Neighbor selection

Metrics combined No Criterion M̄G
Mu

2

CBi
BIN + CSu

R 0.8217 0.8100 0.8122

CBi
F + CSu

R 0.8202 0.8091 0.8115

CBi
LF + CSu

R 0.8221 0.8102 0.8124

CBi
TFIDF + CSu

R 0.7836 0.7877 0.7952

CBi
I,LF + CSu

R 0.8146 0.8055 0.8086

CBi
BIN + PCCu

R 0.8217 0.8100 0.8122

CBi
F + PCCu

R 0.8202 0.8091 0.8115

CBi
LF + PCCu

R 0.8221 0.8102 0.8124

CBi
TFIDF + PCCu

R 0.7836 0.7877 0.7952

CBi
I,LF + PCCu

R 0.8146 0.8055 0.8086

Table 5.7: MSE for Heuristic model.

and the PCCu. We also test the impact of neighbor selection on the performance of

Linear model 1.

Baseline MSE = 1.0001

Linear model 1

Neighbor selection

Metrics combined No Criterion M̄G
Mu

2

CBi
BIN + CSu

R 0.8719 0.8595 0.8555

CBi
F + CSu

R 0.8701 0.8574 0.8535

CBi
LF + CSu

R 0.8729 0.8600 0.8560

CBi
TFIDF + CSu

R 0.8146 0.8060 0.8031

CBi
I,LF + CSu

R 0.8616 0.8495 0.8458

CBi
BIN + PCCu

R 0.8719 0.8589 0.8552

CBi
F + PCCu

R 0.8697 0.8569 0.8532

CBi
LF + PCCu

R 0.8725 0.8594 0.8584

CBi
TFIDF + PCCu

R 0.8142 0.8045 0.8032

CBi
I,LF + PCCu

R 0.8768 0.8489 0.8455

Table 5.8: MSE for Linear model 1.

It is obvious that the Linear 1 model achieves better results than our baseline and user-

based and item-based collaborative filtering in separate. Furthermore, at the level of

items we observe that CBi similarity metric works better with the TFIDF weighting

scheme. Also the feature selection with I achieved a small improvement in our model.

At the level of users CSu and PCCu metrics gave the same results. Lastly, the neighbor

selection achieved an improvement as it reduced the MSE.

Chapter 5. Experimental Procedure and Results 41

5.4.5 Linear model 2

In Table 5.9 we evaluate the performance of the Linear model 2 (Section 4.4.3) using the

CBiS similarity metric (with all different weighting schemes) combined with the CSu

and the PCCu. We also test the impact of neighbor selection on the performance of

Linear model 2.

Linear model 2

Baseline MSE = 1.0001

Neighbor selection

Metrics combined No Criterion M̄G
Mu

2

CBi
BIN + CSu

R 0.8477 0.8156 0.8085

CBi
F + CSu

R 0.8457 0.8142 0.8073

CBi
LF + CSu

R 0.8482 0.8160 0.8088

CBi
TFIDF + CSu

R 0.7971 0.7792 0.7782

CBi
I,LF + CSu

R 0.8384 0.8086 0.8025

CBi
BIN + PCCu

R 0.8471 0.8148 0.8075

CBi
F + PCCu

R 0.8451 0.8137 0.8062

CBi
LF + PCCu

R 0.8476 0.8151 0.8077

CBi
TFIDF + PCCu

R 0.7971 0.7783 0.7773

CBi
I,LF + PCCu

R 0.8377 0.8077 0.8015

Table 5.9: MSE for Linear model 2.

Again the Linear 2 model achieves better results than K-Means (for the three values of

K) and user-based and item-based collaborative filtering in separate. Furthermore, at

the level of items we observe that CBi similarity metric works better with the TFIDF

weighting scheme. Also the feature selection with I achieved a small improvement in

our model. At the level of users CSu and PCCu metrics gave the same results. Lastly,

the neighbor selection achieved a small improvement as it reduced the MSE.

Figures 5.2 show how MSE decreases related to the neighborhood size for the Heuristic,

Linear 1 and Linear 2 models in comparison with the user-based approach and our

baseline. We can conclude that all three models surpassed in performance our baseline

and the user-based Collaborative filtering.

5.5 Conclusions

The user-based approach achieves better results than our baseline. Nevertheless, this

method cannot tackle the problem of data sparsity. Moreover, the PCCu and CSu had

in generally the same performance.

Chapter 5. Experimental Procedure and Results 42

0 100 200 300 400 500
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1
For test set 3

Neighbohood size

M
S

E

K−means
user−based approach
Linear model 2

(a)
0 100 200 300 400 500

0.8

0.85

0.9

0.95

1

1.05
For test set 3

Neighbohood size

M
S

E

K−means
user−based approach
Linear model 1

(b)

0 100 200 300 400 500
0.75

0.8

0.85

0.9

0.95

1

1.05

1.1
For test set 3

Neighbohood size

M
S

E

K−means
user−based approach
Heuristic model

(c)

Figure 5.2: MSE vs Neighborhood size: (a)Linear model 2 (b) Linear model 1 (c)
Heuristic model

The item-based approach of Collaborative filtering performed better than our baseline.

The use of CBi metric worked better with the TFIDF than with anyother weighting

scheme. Nevertheless, the ASi metric proposed by Sarvar and Karypis achieved better

results.

The heuristic model (Section 4.4.1) although its simplicity, reduced the MSE by 20%

from the Baseline substituting the missing ratings of the sparse user-movie matrix with

the rating predictions given by the item-based collaborative filtering and using feature-

based methods. Furthermore, the Linear model 1 reduced the MSE by 20% giving

different weights to the ratings from the two lineraly combined rating sources. Lastly,

the linear model 2 from Section (4.4.3) achieved a higher performance than the Heuristic

and Linear model 1, weighting more efficiently the ratings given from both sources.

Finally, a more accurate neighbor selection using the criterions from Section 4.4.4 en-

hanced the accuracy (of 3%)of user-based collaborative filtering and as a consequence

the performance of the proposed models.

Chapter 6

Discussion and Future work

6.1 Conclusions

In this work we managed to efficiently combine user-based collaborative filtering with

fetaure-based methods leading to a hybrid recommendation system which efficiently com-

bines lexical information with ratings. Although their simplicity, the proposed models

surpassed the K-Means algorithm and the traditional user-based approach. Furthermore,

we proved that lexical information extracted from unstructured documents automati-

cally downloaded from World Wide Web can be used to represent items and users and

to compute semantic similarities between them. In addition, we achieved to recommend

movies using their vectors of lexical features making accurate rating predictions and

tackle the problem of data sparsity which is very often in recommendation systems.

6.2 Future Work

Future work can be made in both fields of collaborative filtering and feature-based

methods. At first, the usnion of user-based and item-based collaborative filtering by

similarity fusion (Section 2.5) can be investigated. The proposed methods do not use

any additional information but only ratings. Thus, the use of lexical information in the

approach of similarity fusion can possibly achieve better results.

Furthermore, a more careful selection of the most descriptive lexical features can en-

hance the efficiency of feature-based methods and the performance of the whole system.

Finally, a more complex selection of the most confident neighbors in user-based collab-

orative filtering can augment the accuracy of the user-based collaborative filtering and

the whole system in general.

43

Chapter 6. Discussion and Future work 44

Another problem which do not investigated is the problem of scalability which many

modern recommendation systems have to face. The proposed models will be impracti-

cal in an on line recommendation system. In particular, the creation of the similarity

matrices will take days even months to finish. The number of items offered in a recom-

mendation system is finite and without frequent changes. Thus, the item-item similarity

matrix can be updated offline and in fixed times without causing problems to the user.

On the other hand, the user-user similarity matrix has to be updated in rating given by

every customer. A hint for future work could be the optimization of our models to face

the problem of scalability and to test them on the original dataset given by NETFLIX.

Appendix A

Appendix A

A.1 Results for test set 1 and test set 2

In this part of the appendix we present the rest of our results for test set 1 and test set

2 for the Heuristic, Linear model 1 and Linear model 2. We present only the results for

the case of PCCu as it gives similar results with the CSu metric.

Test set 1

Baseline MSE = 1.1609

Heuristic model

Neighbor selection

Metrics combined No Criterion M̄G
Mu

2

CBi
BIN + PCCu

R 0.9860 0.9912 0.9990

CBi
F + PCCu

R 0.9825 0.9886 0.9967

CBi
LF + PCCu

R 0.9862 0.9914 0.9992

CBi
TFIDF + PCCu

R 0.9465 0.9618 0.9739

CBi
I,LF + PCCu

R 0.9767 0.9834 0.9925

Table A.1: MSE for Heuristic model for test set 1.

45

Appendix A 46

Test set 2

Baseline MSE = 0.9656

Heuristic model

Neighbor selection

Metrics combined No Criterion M̄G
Mu

2

CBi
BIN + PCCu

R 0.7990 0.7849 0.7864

CBi
F + PCCu

R 0.7978 0.7843 0.7860

CBi
LF + PCCu

R 0.7994 0.7852 0.7866

CBi
TFIDF + PCCu

R 0.7611 0.7636 0.7705

CBi
I,LF + PCCu

R 0.7922 0.7809 0.7831

Table A.2: MSE for Heuristic model for test set 2.

Test set 1

Baseline MSE = 1.1609

Linear model 1

Neighbor selection

Metrics combined No Criterion M̄G
Mu

2

CBi
BIN + PCCu

R 0.9903 0.9868 0.9877

CBi
F + PCCu

R 0.9867 0.9839 0.9849

CBi
LF + PCCu

R 0.9888 0.9870 0.9879

CBi
TFIDF + PCCu

R 0.9468 0.9530 0.9549

CBi
I,LF + PCCu

R 0.9802 0.9775 0.9794

Table A.3: MSE for Linear model 2 for test set 1.

Test set 2

Baseline MSE = 0.9656

Linear model 1

Neighbor selection

Metrics combined No Criterion M̄G
Mu

2

CBi
BIN + PCCu

R 0.8558 0.8418 0.8372

CBi
F + PCCu

R 0.8538 0.8399 0.8353

CBi
LF + PCCu

R 0.8565 0.8424 0.8377

CBi
TFIDF + PCCu

R 0.7958 0.7856 0.7822

CBi
I,LF + PCCu

R 0.8608 0.8317 0.8272

Table A.4: MSE for Linear model 2 for test set 2.

Appendix A 47

Test set 1

Baseline MSE = 1.1609

Linear model 2

Neighbor selection

Metrics combined No Criterion M̄G
Mu

2

CBi
BIN + PCCu

R 1.0000 0.9762 0.9776

CBi
F + PCCu

R 0.9958 0.9728 0.9743

CBi
LF + PCCu

R 1.0003 0.9765 0.9779

CBi
TFIDF + PCCu

R 0.9555 0.9379 0.9421

CBi
I,LF + PCCu

R 0.9896 0.9661 0.9687

Table A.5: MSE for Linear model 2 for test set 1.

Test set 2

Baseline MSE = 0.9656

Linear model 2

Neighbor selection

Metrics combined No Criterion M̄G
Mu

2

CBi
BIN + PCCu

R 0.8260 0.7925 0.7839

CBi
F + PCCu

R 0.8242 0.7913 0.7830

CBi
LF + PCCu

R 0.8265 0.7928 0.7842

CBi
TFIDF + PCCu

R 0.7752 0.7563 0.7545

CBi
I,LF + PCCu

R 0.8168 0.7859 0.7784

Table A.6: MSE for Linear model 2 for test set 2.

Appendix B

Appendix B

B.1 Movie titles

The movie titles used in our experiments and their year of production. They are num-

bered according to the number of ratings:

1 Miss Congeniality 2000

2 Independence Day 1996

3 The Patriot 2000

4 The Day After Tomorrow 2004

5 Pirates of the Caribbean: The Curse of

the Black Pearl 2003

6 Pretty Woman 1990

7 Forrest Gump 1994

8 The Green Mile 1999

9 Con Air 1997

10 Twister 1996

11 Sweet Home Alabama 2002

12 Pearl Harbor 2001

13 Armageddon 1998

14 The Rock 1996

15 What Women Want 2000

16 Bruce Almighty 2003

17 Ocean’s Eleven 2001

18 The Bourne Identity 2002

19 The Italian Job 2003

20 I 2004

21 American Beauty 1999

22 How to Lose a Guy in 10 Days 2003

23 Lethal Weapon 4 1998

24 Shrek 2 2004

25 Lost in Translation 2003

26 Top Gun 1986

27 Pulp Fiction 1994

28 Gone in 60 Seconds 2000

29 The Sixth Sense 1999

30 Lord of the Rings: The Two Towers

2002

31 Men of Honor 2000

32 Gladiator 2000

33 Lord of the Rings: The Fellowship of

the Ring 2001

34 Sister Act 1992

35 Double Jeopardy 1999

36 Two Weeks Notice 2002

37 The Royal Tenenbaums 2001

48

Appendix B 49

38 Troy 2004

39 National Treasure 2004

40 50 First Dates 2004

41 Indiana Jones and the Last Crusade

1989

42 My Big Fat Greek Wedding 2002

43 Mystic River 2003

44 Titanic 1997

45 Dirty Dancing 1987

46 Catch Me If You Can 2002

47 Finding Nemo (Widescreen) 2003

48 The Matrix 1999

49 Kill Bill: Vol. 1 2003

50 The Wedding Planner 2001

51 The Shawshank Redemption: Special

Edition 1994

52 The Last Samurai 2003

53 John Q 2001

54 Swordfish 2001

55 The Fugitive 1993

56 The Bourne Supremacy 2004

57 The Terminal 2004

58 Men in Black II 2002

59 Spider-Man 2 2004

60 Braveheart 1995

61 Men in Black 1997

62 Ghost 1990

63 Air Force One 1997

64 Lord of the Rings: The Return of the

King 2003

65 Man on Fire 2004

66 The Incredibles 2004

67 Mr. Deeds 2002

68 Collateral 2004

69 Spider-Man 2002

70 Saving Private Ryan 1998

71 Erin Brockovich 2000

72 Monsters 2001

73 Shrek (Full-screen) 2001

74 The Silence of the Lambs 1991

75 Memento 2000

76 Tomb Raider 2001

77 Ferris Bueller’s Day Off 1986

78 Maid in Manhattan 2002

79 Entrapment 1999

80 Meet the Parents 2000

81 Dodgeball: A True Underdog Story 2004

82 Rain Man 1988

83 Patch Adams 1998

84 Big Fish 2003

85 Fight Club 1999

86 S.W.A.T. 2003

87 Good Will Hunting 1997

88 A Few Good Men 1992

89 Enemy of the State 1998

90 The General’s Daughter 1999

91 Minority Report 2002

92 Something’s Gotta Give 2003

93 Raiders of the Lost Ark 1981

94 Anger Management 2003

95 Sideways 2004

96 American Pie 1999

97 Kill Bill: Vol. 2 2004

98 The Fast and the Furious 2001

99 The School of Rock 2003

100 Napoleon Dynamite 2004

101 The Notebook 2004

102 Cold Mountain 2003

103 Sleepless in Seattle 1993

104 Bringing Down the House 2003

105 Big 1988

106 Jurassic Park 1993

107 Chicago 2002

108 The Recruit 2003

109 Lethal Weapon 1987

110 Seabiscuit 2003

111 The League of Extraordinary Gentle-

men 2003

Appendix B 50

112 Harry Potter and the Chamber of Se-

crets 2002

113 You’ve Got Mail 1998

114 Legally Blonde 2001

115 Eternal Sunshine of the Spotless Mind

2004

116 Ocean’s Twelve 2004

117 Hitch 2005

118 The Butterfly Effect: Director’s Cut

2004

119 A Beautiful Mind 2001

120 Ray 2004

121 Die Hard 1988

122 The Aviator 2004

123 The Usual Suspects 1995

124 Finding Neverland 2004

125 Meet the Fockers 2004

126 Runaway Bride 1999

127 The Manchurian Candidate 2004

128 Anchorman: The Legend of Ron Bur-

gundy 2004

129 The Matrix: Reloaded 2003

130 The Godfather 1972

131 Steel Magnolias 1989

132 Father of the Bride 1991

133 Harry Potter and the Sorcerer’s Stone

2001

134 Big Daddy 1999

135 Road to Perdition 2002

136 Master and Commander: The Far Side

of the World 2003

137 Being John Malkovich 1999

138 13 Going on 30 2004

139 The Stepford Wives 2004

140 Along Came a Spider 2001

141 The Sum of All Fears 2002

142 Mean Girls 2004

143 Ghostbusters 1984

144 Mission: Impossible 1996

145 Indiana Jones and the Temple of Doom

1984

146 Fahrenheit 9/11 2004

147 Phone Booth 2003

148 Million Dollar Baby 2004

149 Runaway Jury 2003

150 Grease 1978

151 Face/Off 1997

152 Radio 2003

153 Cheaper by the Dozen 2003

154 Along Came Polly 2004

155 Schindler’s List 1993

156 Love Actually 2003

157 Adaptation 2002

158 Hidalgo 2004

159 Stepmom 1998

160 Starsky & Hutch 2004

161 Speed 1994

162 Spanglish 2004

163 Gangs of New York 2002

164 Pay It Forward 2000

165 Van Helsing 2004

166 Jerry Maguire 1996

167 Seven 1995

168 X-Men 2000

169 Mona Lisa Smile 2003

170 The Waterboy 1998

171 X2: X-Men United 2003

172 Secondhand Lions 2003

173 Bend It Like Beckham 2002

174 Apollo 13 1995

175 Matchstick Men 2003

176 Garden State 2004

177 Paycheck 2003

178 Monster 2003

179 The Mummy Returns 2001

180 The Terminator 1984

181 Under the Tuscan Sun 2003

182 The Breakfast Club 1985

Appendix B 51

183 Dead Poets Society 1989

184 Remember the Titans 2000

185 Harry Potter and the Prisoner of Azk-

aban 2004

186 Monster’s Ball 2001

187 About Schmidt 2002

188 Clear and Present Danger 1994

189 There’s Something About Mary: Spe-

cial Edition 1998

190 Star Wars: Episode II: Attack of the

Clones 2002

191 The Bone Collector 1999

192 Star Wars: Episode V: The Empire

Strikes Back 1980

193 Hotel Rwanda 2005

194 Traffic 2000

195 Happy Gilmore 1996

196 Coming to America 1988

197 Signs 2002

198 Philadelphia 1993

199 Reservoir Dogs 1992

200 GoodFellas: Special Edition 1990

Bibliography

[1] Toby Seragan Programming collective intelligenceO’Reilly 2007

[2] Badrul Sarwar, George Karypis, Joseph Konstan, and John Riedl Item-based Col-

laborative filtering algorithms Proceedings of the 10th International Conference on

World Wide Web 2001, Hong Kong, pp.285-295

[3] Jun Wang, Arjen P. de Vries, Marcel J.T. Reinders Unifying User-based and Item-

based Collaborative filtering approaches by Similarity Fusion SIGIR 2006, Seatle,

Washington, USA, pp.501-508

[4] Raymond J. Mooney Content-based Book Recommending Using Learning for Text

Categorization Proceedings of the 5th ACM Conferences on Digital Libraries June

2000, San Antonio, TX, pp.195-240

[5] Joshua Alspector and Aleksander Kolcz Comparing Feature-based and Clique-based

User Models for Movie Selection Proceedings of the 3th ACM Conference on Digital

Libraries 1998, Pittsburg, Pennsylvania, USA, pp.11-18

[6] Michael Fleischman and Eduard Hovy Recommendations Without User Preferences:

A Natural Language Processing Approach Proceedings of the 8th International Con-

ference on Intelligent user interfaces 2003, Miami, Florida, USA, pp.242-244

[7] Prem Melville, Raymond J. Mooney and Ramadass Nagarajan Content Boosted Col-

laborative Filtering for Improved Recommendations Proceedings of the 8th National

conference on Artificial Intelligence (AAAI-2002) July 2002, Edmonton, Canada,

pp.187-192

[8] Jonathan L. Herlocker, Joseph A. Konstan, Al Borchers, and John Riedl An algo-

rithmic Framework for Performing Collaborative Filtering Annual ACM Conference

on Research and Development in Information Retreival, Proceedings of the 22nd

annual International ACM SIGIR conference on Research and develpment in Infor-

mation Retrieval 1999, Berkley, California, USA, pp.230-237

52

Bibliography 53

[9] Elias Iosif and Alexandros Potamianos Unsupervised Semantic Similarity Computa-

tion using Web Search Engines Proceedings of the IEEE/WIC/ACM International

Conference on Web Intelligence 2007, pp.381-387

[10] Sandeep Tata and Jignesh M. Patel Estimating the Selectivity of tf-idf Cosine

Similarity Predicates ACM SIGMOD 2007, pp. 7-12

[11] Kenneth Ward Church Word Association Norms, Mutual Information Annual

Meeting of the ACL. Proceedings of the 27th Annual Meeting on Accosiation for

Computational Linguistics 1990, Vancouver, British Columbia, Canada, pp.76-83

[12] David D. Lewis Naive (Bayes) at Forty: The Independence Assumption in Infor-

mation Retrieval Procedings of ECML-98, 10th European Conference on Machine

Learning, pp.4-15

[13] Elias Iosif Msc Unsupervised Induction of Semantic Classes Using Semantic Simi-

larity Metrics Technical University of Crete, Departement of Electronics and Com-

puter Engineering, July 2007

[14] Thomas M. Cover, Joy A. Thomas Elements of Information Theory Donald L.

Schilling, 2001

[15] D Jurafsky, JH Martin Speech and Language Processing: an Introduction to Com-

putational Linguistics Prentice Hall, 2000

[16] Billy McCafferty http://devlicio.us/blogs/billy mccafferty/ Netflix Memoirs: Using

the Pearson Correlation Coefficient

[17] Web Site of Netflix Prize www.netflixprize.com

[18] Web Site of Yahoo Search API http://search.cpan.org/jfriedl/Yahoo-Search-

1.10.13/lib/Yahoo/Search.pm

	Abstract
	Acknowledgements
	List of Figures
	List of Tables
	1 Introduction
	2 Collaborative filtering algorithms
	2.1 Introduction
	2.2 Related work
	2.3 User-based Collaborative Filtering
	2.3.1 Cosine Vector similarity for users
	2.3.2 Pearson Correlation Coefficient for users
	2.3.3 Rating Prediction-Weighted Average at users level

	2.4 Item-based Similarity Computation
	2.4.1 Cosine Vector Similarity for items
	2.4.2 Pearson Correlation Coefficient for items
	2.4.3 Adjusted Cosine Similarity
	2.4.4 Rating Prediction-Weighted Average at items level

	2.5 Combination of user-based and item-based collaborative filtering
	2.5.1 Individual Predictors
	2.5.2 Fusion of SUR SIR and SUIR

	2.6 Summary

	3 Feature-based Recommendation systems
	3.1 Introduction
	3.2 Related Work
	3.3 Making Vectors of Lexical Features for movies and users
	3.3.1 Binary scheme
	3.3.2 Frequency and Log frequency schemes
	3.3.3 Term Frequency Inverse Document Frequency scheme

	3.4 Feature selection using Mutual Information
	3.5 Summary

	4 Combination of Collaborative Filtering and Feature based methods
	4.1 Introduction
	4.2 Content-based similarity metric
	4.3 Similarity matrices
	4.3.1 User-User similarity matrix
	4.3.2 Movie-Movie similarity matrix

	4.4 Proposed models
	4.4.1 Heuristic model
	4.4.2 Linear model 1
	4.4.3 Linear model 2
	4.4.4 Better selection of neighbors

	4.5 Summary

	5 Experimental Procedure and Results
	5.1 Experimental setup
	5.1.1 Movie Titles
	5.1.2 Reviews
	5.1.2.1 Downloading reviews
	5.1.2.2 Preprocessing of downloaded reviews

	5.1.3 Sets of users for Training and Evaluation
	5.1.4 Creating VLF for movies and users

	5.2 Baseline
	5.3 Evaluation Metric
	5.4 Results
	5.4.1 User-based collaborative filtering
	5.4.2 Item-based collaborative filtering
	5.4.3 Heuristic model
	5.4.4 Linear model 1
	5.4.5 Linear model 2

	5.5 Conclusions

	6 Discussion and Future work
	6.1 Conclusions
	6.2 Future Work

	A Appendix A
	A.1 Results for test set 1 and test set 2

	B Appendix B
	B.1 Movie titles

	Bibliography

