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Abstract 

Imaging spectroscopy (also multi/hyper-spectral imaging or chemical imaging) is the application of reflectance 

spectroscopy to every pixel in a spatial image. Spectroscopy can be used to detect individual absorption 

features due to specific chemical bonds in a solid, liquid, or gas, providing a unique spectral profile for 

identifying different materials. Actual detection is dependent on the spectral coverage, spectral resolution, and 

signal-to-noise of the spectrometer, the abundance of the material and the strength of absorption features for 

the material in the wavelength region measured. 

Application of modern spectral acquisition & processing systems for analyzing works of art and manuscripts 

refers only to the study of various colors’ spectral responses composing an artwork, without physically 

extracting pigment materials. In this project, the problem of non-destructive analysis of artworks and especially 

the identification of color pigments in El Greco’s paintings with the aid of MuSIS HS was addressed. MuSIS HS 

comprises an all optical imaging monochromator, operating as an electronically tunable optical filter in a wide 

wavelength range (370-1000 nm). The monochromator is coupled with a megapixel CCD sensor and MuSIS HS 

records light intensity as a function of both wavelength and location.  

A spectral database of painting material replicas, with known chemical and structural characteristics, following 

their original development processes and corresponding to different artists and eras, was utilized for building a 

classifier suitable for pigment identification and mapping. Using training and testing data from the spectra of 

the painting materials acquired by MuSIS HS, several algorithms for spectral classification and segmentation of 

pigments have been tested.  Results from the comparative evaluation of  both unsupervised (k-Means, Isodata) 

and supervised (Maximum Likelihood, Expectation Maximization, Normalized Euclidean Distance, Spectral 

Angle Mapper, Spectral Correlation Mapper, Spectral Information Divergence, Spectral Gradient Mapper) 

algorithms  applied in color pigments and  paintings by El Greco are presented. Establishing an appropriate 

train set and therefore a list of classes of informational value, exhaustive and separable, several discriminality 

measures were employed such as Bhattacharyya distance, Relative Spectral Discriminality Power, Relative 

Spectral Discriminality rate and Relative Spectral Discriminality Entropy. A GUI application was developed for 

facilitating the classification processing.   
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Introduction  

The interpretation of  data acquired from hyper-spectral imaging methods  uses techniques from a number 

of disciplines including  pattern recognition, artificial intelligence, computer vision, image processing and 

statistical analysis. The methodology of pattern recognition applied to a particular problem depends on the data, 

the data model, and the information that one is expecting to find within the data (Bezdek, 1981). Statistical image 

classification techniques are ideally suited for data in which the distribution of the data within each of the classes 

can be assumed to follow a theoretical model. The most commonly used statistical classification methodology is 

based on maximum likelihood, a pixel-based probabilistic classification method which assumes that spectral 

classes can be described by a normal probability distribution in multispectral space (Swain and Davis, 1978). This 

traditional approach to classification is found to have some limitations in resolving interclass confusion if the data 

used are not normally distributed. As a result, in recent years, and following advances in computer technology, 

alternative classification strategies have been proposed. An expectation-maximization (EM) algorithm is used in 

statistics for finding maximum likelihood estimates of parameters in probabilistic models, where the model 

depends on unobserved latent variables. EM alternates between performing an expectation (E) step, which 

computes an expectation of the likelihood by including the latent variables as if they were observed, and a 

maximization (M) step, which computes the maximum likelihood estimates of the parameters by maximizing the 

expected likelihood found on the E step. The parameters found on the M step are then used to begin another E 

step, and the process is repeated. 

 The   performance  of  a  classifier depends  on  the interrelationship between sample size, number of 

features, and classifier complexity. One of the important stages in image classification is that of collection of 

samples for training and testing the classifier. Sample size has an influence on the classification accuracy  with 

which estimates of statistical parameters are obtained for statistical classifiers. Sample selection also depends on a 

number of factors which finally affect classification accuracy. The factors affecting sample selection are: 

1.  Number of training sites for sample collection. 

2.  Sampling method (random or systematic sampling). 

3.  Data source for labeling training sites  

With high-dimensional data sets, such as those acquired by an imaging spectrometer, the training set size 

requirements for the correct application of a classification system may be too high. It is well known that the 

probability of misclassification of a decision rule does not increase as the number of features increases, as long as 

number of training samples is arbitrarily large. However, it has been observed in practice that  additional features 

may degrade the performance of a classifier if the number of training samples that are used to design the classifier 
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is small relative to the number of features. This behavior is referred to as the "peaking phenomenon" (Raudys and 

Jain, 1991; Jain and Chandrasekaran, 1982). Distance metrics can use fewer samples for referencing a class, with 

an expected decrease on classification accuracy. However, classifiers incorporating distance metrics have been 

proven useful in applications where a training set of adequate size is not easy to acquire or due to the high 

dimensionality of the data. The Spectral Angle Mapper Classification (SAM) is an automated method for directly 

comparing image spectra to a known spectra (usually determined in a lab or in the field with a spectrometer) or an 

endmember. This method treats both (the questioned and known) spectra as vectors and calculates the spectral 

angle (angle distance) between them. SAM is insensitive to illumination since the algorithm uses only the vector 

direction and not the vector length. A series of classification algorithms for  discriminating spectra using a 

generalized concept of distance involving statistical correlation, spectral gradients, information theory etc. can be 

used for discriminating materials.   

As every material is formed by chemical bonds, has the potential for detection with spectroscopy. 

Painting materials used for tempera or oil-painting  and particularly in early modern Europe, are pigments bound 

with a medium of oil (linseed oil) or egg (egg yolk). These pigments which were extracted from plants, bones, 

minerals etc. are essentially no different from the materials under study in a spectral imaging application. The 

work reported in this diploma focuses on employing classification algorithms for the non-destructive analysis of 

artworks and especially for the identification of color pigments in El Greco‘s paintings. A spectral database of 

painting material replicas, with known chemical and structural characteristics, following their original 

development processes and corresponding to different artists and eras, was utilized for building a classifier 

suitable for pigment identification and mapping. Using training and testing data from the spectra of the painting 

materials acquired by MuSIS HS, an all optical imaging monochromator, operating as an electronically tunable 

optical filter coupled with a megapixel CCD sensor, several algorithms for spectral classification and 

segmentation of pigments have been tested.  

Chapter 1 & 2  present  all the general concepts about spectral imaging, hyperspectral images and hyperspectral 

signal representation.  A description of a general data analysis procedure for multi/hyper spectral imagery is also 

provided.  

In chapter 3 the classification process and various classification algorithms including unsupervised and 

supervised, parametric and non parametric classification techniques, are discussed in detail. Also the 

methodologies used to assess classification accuracy, such as the Kappa value and the confusion matrix are 

described.  
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Chapter 4 describes the methodology  followed in order to achieve the objectives of this work and the results of 

classification. It also gives information about the hyperspectral images and the hyperspectral acquisition system 

that were used in this research.   

Chapter 5  summarizes the major findings of this project, and provides a number of recommendations for future 

work using different classifiers. 
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Chapter 1 

Introduction to imaging spectroscopy 

Visual perception of scenes depends on appropriate illumination to visualize objects. The human visual 

system is limited to a very narrow portion of the spectrum of electromagnetic radiation, called light. In some cases 

natural sources, such as solar radiation, moonlight, lightning flashes, or bioluminescence, provide sufficient 

ambient light to navigate our environment. Because humankind was mainly restricted to daylight, one of the first 

attempts was to invent an artificial light source—fire (not only as a food preparation method). 

Computer vision is not dependent upon visual radiation, fire, or glowing objects to illuminate scenes. As 

soon as imaging detector systems became available other types of radiation were used to probe scenes and objects 

of interest. Recent developments in imaging sensors cover almost the whole electromagnetic spectrum from x-

rays to radiowaves. In standard computer vision applications illumination is frequently taken as given and 

optimized to illuminate objects evenly with high contrast. Such setups are appropriate for object identification and 

geometric measurements. Radiation, however, can also be used to visualize quantitatively physical properties of 

objects by analyzing their interaction with radiation.  

Physical quantities such as penetration depth or surface reflectivity are essential to probe the internal 

structures of objects, scene geometry, and surface-related properties. The properties of physical objects therefore 

can be encoded not only in the geometrical distribution of emitted radiation but also in the portion of radiation 

that is emitted, scattered, absorbed or reflected, and finally reaches the imaging system. Most of these processes 

are sensitive to certain wavelengths and additional information might be hidden in the spectral distribution of 

radiation. Using different types of radiation allows taking images from different depths or different object 

properties. As an example, infrared radiation of between 3 and 5 µm is absorbed by human skin to a depth of < 1 

mm, while x-rays penetrate an entire body without major attenuation. Therefore, totally different properties of the 

human body (such as skin temperature as well as skeletal structures) can be revealed for medical diagnosis.  

1.1 Electromagnetic waves 

Electromagnetic waves (figure 1.1) were first postulated by James Clerk Maxwell and subsequently 

confirmed by Heinrich Hertz. Maxwell derived a wave form of the electric and magnetic equations, revealing the 

wave-like nature of electric and magnetic fields, and their symmetry. Because the speed of EM waves predicted 

by the wave equation coincided with the measured speed of light, Maxwell concluded that light itself is an EM 

wave. 
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According to Maxwell's equations, a time-varying electric field generates a magnetic field and vice versa. 

Therefore, as an oscillating electric field generates an oscillating magnetic field, the magnetic field in turn 

generates an oscillating electric field, and so on. These oscillating fields together form an electromagnetic wave.  

 

                                    figure 1.1 : EM wave 

In addition to electromagnetic theory, radiation can be treated as a flow of particles, discrete packets of energy 

called photons. One photon travels at the speed of light c and carries energy 

, 

where h = 6.626 × 10−34 J s is Planck‘s constant. Therefore the energy content of radiation is quantized and can 

only be a multiple of hν for a certain frequency ν. While the energy per photon is given by ep the total energy of 

radiation is given by the number of photons. It was this quantization of radiation that gave birth to the theory of 

quantum mechanics at the beginning of the twentieth century. 

Although photons do not carry electrical charge this unit is useful in radiometry, as electromagnetic 

radiation is usually detected by interaction of radiation with electrical charges in sensors. In solid-state sensors, 

for example, the energy of absorbed photons is used to lift electrons from the valence band into the conduction 

band of a semiconductor. The bandgap energy Eg defines the minimum photon energy required for this process. 

As a rule of thumb the detector material is sensitive to radiation with energies Ev >Eg.  

Electric and magnetic fields obey the properties of superposition, so fields due to particular particles or 

time-varying electric or magnetic fields contribute to the fields due to other causes. (As these fields are vector 
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fields, all magnetic and electric field vectors add together according to vector addition.) These properties cause 

various phenomena including refraction and diffraction. For instance, a travelling EM wave incident on an atomic 

structure induces oscillation in the atoms, thereby causing them to emit their own EM waves. These emissions 

then alter the impinging wave through interference. 

Since light is an oscillation, it is not affected by travelling through static electric or magnetic fields in a 

linear medium such as a vacuum. In nonlinear media such as some crystals, however, interactions can occur 

between light and static electric and magnetic fields - these interactions include the Faraday effect and the Kerr 

effect. 

In refraction, a wave crossing 

from one medium to another of different 

density alters its speed and direction 

upon entering the new medium. The 

ratio of the refractive indices of the 

media determines the degree of 

refraction, and is summarized by Snell's 

law. Light disperses into a visible 

spectrum as light is shone through a 

prism because of the wavelength 

dependant refractive index of the prism 

material (Dispersion). 

EM radiation exhibits both wave 

properties and particle properties at the 

same time .The wave characteristics are 

more apparent when EM radiation is 

measured over relatively large 

timescales and over large distances, and 

the particle characteristics are more 

evident when measuring small distances and timescales. Both characteristics have been confirmed in a large 

number of experiments. 

Monochromatic radiation consists of only one frequency and wavelength. The distribution of radiation over the 

range of possible wavelengths is called spectrum or spectral distribution. Figure 1.2 shows the spectrum of 

figure  1.2:  spectrum of electromagnetic  radiation 
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electromagnetic radiation together with the standardized terminology separa-                                                                                                              

ting different parts.  Electromagnetic radiation covers the whole range from very high energy cosmic rays with 

wavelengths in the order of 10
−16

 m(ν =1024 Hz) to sound frequencies above wavelengths of 106 m(ν =102 Hz). 

Only a very narrow band of radiation between 380nm and 780nm is visible to the human eye. Each portion of the 

electromagnetic spectrum obeys the same principal physical laws. Radiation of different wavelengths, however, 

appears to have different properties in terms of interaction with matter and detectability that can be used for 

wavelength selective detectors. There are experiments in which the wave and particle natures of electromagnetic 

waves appear in the same experiment, such as the diffraction of a single photon. When a single photon is sent 

through two slits, it passes through both of them interfering with itself, as waves do, yet is detected by a 

photomultiplier or other sensitive detector only once. Similar self-interference is observed when a single photon is 

sent into a Michelson interferometer or other interferometers (wave-particle duality). 

         figure 1.3 wave-particle duality 

1.2 Spectroscopy/spectrometry 

Spectroscopy was originally the study of the interaction between radiation and matter as a function of 

wavelength (λ). In fact, historically, spectroscopy referred to the use of visible light dispersed according to its 

wavelength, e.g. by a prism. Later the concept was expanded greatly to comprise any measurement of a quantity 

as function of either wavelength or frequency. Thus it also can refer to interactions with particle radiation or to a 

response to an alternating field or varying frequency (ν). A further extension of the scope of the definition added 

energy (E) as a variable, once the very close relationship E=hν for photons was realized. Spectrometry is the 

spectroscopic technique used to assess the concentration or amount of a given species. In those cases, the 

instrument that performs such measurements is a spectrometer or spectrograph. 

Spectroscopy/spectrometry is often used in physical and analytical chemistry for the identification of 

substances through the spectrum emitted from or absorbed by them. Spectroscopy/spectrometry is also heavily 
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used in astronomy and remote sensing. Most large telescopes have spectrometers, which are used either to 

measure the chemical composition and physical properties of astronomical objects or to measure their velocities 

from the Doppler shift of their spectral lines. 

1.2.1 Nature of excitation measured 

The type of spectroscopy depends on the physical quantity measured. Normally, the quantity that is measured 

is an intensity, either of energy absorbed or produced. 

Electromagnetic spectroscopy involves interactions of matter with electromagnetic radiation, such as 

light. 

Electron spectroscopy involves interactions with electron beams. Auger spectroscopy involves inducing 

the Auger effect with an electron beam. In this case the measurement typically involves the kinetic energy of 

the electron as variable. 

Mass spectrometry involves the interaction of charged species with magnetic and/or electric fields, giving 

rise to a mass spectrum. The term "mass spectroscopy" is deprecated, for the technique is primarily a form of 

measurement, though it does produce a spectrum for observation. This spectrum has the mass m as variable, 

but the measurement is essentially one of the kinetic energy of the particle. 

Acoustic spectroscopy involves the frequency of sound. 

Dielectric spectroscopy involves the frequency of an external electrical field 

Mechanical spectroscopy involves the frequency of an external mechanical stress, e.g. a torsion applied to 

a piece of material. 

1.2.2  Measurement process 

Most spectroscopic methods are differentiated as either atomic or molecular based on whether or not they 

apply to atoms or molecules. Along with that distinction, they can be classified on the nature of their 

interaction: 

Absorption spectroscopy uses the range of the electromagnetic spectra in which a substance absorbs. This 

includes atomic absorption spectroscopy and various molecular techniques, such as infrared spectroscopy in 

that region and nuclear magnetic resonance (NMR) spectroscopy in the radio region. 

Reflectance/Emission spectroscopy uses the range of electromagnetic spectra in which a substance 

radiates (emits). The substance first must absorb energy. This energy can be from a variety of sources, which 

determines the name of the subsequent emission, like luminescence. Molecular luminescence techniques 

include spectrofluorimetry. 
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Scattering spectroscopy measures the amount of light that a substance scatters at certain wavelengths, 

incident angles, and polarization angles. The scattering process is much faster than the absorption/emission 

process. One of the most useful applications of light scattering spectroscopy is Raman spectroscopy. 

1.3 Sensor types 

We define a sensor as an instrument capable of measuring electromagnetic radiation. There are hand held 

sensors (e.g., field spectrometer) that can be used in the laboratory or during field work for reference 

measurements.  Multispectral sensors contain multiple detectors that are sensitive to specific ranges of the EM 

spectrum (spectral bands). Typically, multispectral sensors have a few bands (< 10), superspectral sensors have 

many (> 10) bands, and hyperspectral sensors have up to a few hundred spectral bands (figure 1.4). 

Spectrometers are a special type of 

hyperspectral sensors, where spectral 

bands are contiguous.  

Some hyperspectral sensors have 

tunable bands that allow gaps in the 

spectral domain and thus are not 

spectrometers. The precise spectral 

information contained in a 

hyperspectral image enables better 

characterization and identification of 

targets. 

Another classification scheme of 

sensors concerns scanning: 

whiskbroom and pushbroom scanners. 

Their introduction is important to 

understand some of the causes of errors in the image data we have to deal with in data processing. The 

whiskbroom scanner uses a rotating mirror to scan the target surface. It directs a narrow beam of energy onto the 

detector. An important factor of the whiskbroom is the instantaneous field of view (IFOV) of the scanner.         

It is the field of view (or cone angle) of the mirror at the instant that the energy is sensed on the detector. 

Because there is only one detector for each spectral image, we do not have to deal with inter-calibration problems 

between neighboring pixels. As a drawback, there is the mechanical part of the rotating mirror, limiting resolution 

due to slower data rates. 

figure 1.4 spectral resolution 
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The pushbroom  scanner uses a wide-angle optical system that focuses on a strip across the whole of the 

scene onto a linear array of CCD (Charged Coupled Device) or CMOS (Complementary Metal Oxide Semi-

conductor) detectors. The signal from each detector is sampled to create a record for the across track pixels. Each 

column of each spectral image is acquired with a different sensor, which can lead to striping artifacts. On the other 

hand, high data rates can be obtained, which make this technique popular for high resolution sensors. 

Because sensors are a type of transducer, they change one form of energy into another. For this reason, 

sensors can be classified according to the type of energy transfer that they detect: thermal sensors, heat sensors,  

electromagnetic sensors, metal, chemical, optical radiation sensors. 

Optical radiation sensors can be further classified: 

 Light time-of-flight. Used in modern surveying equipment, a short pulse of light is emitted and 

returned by a retroreflector. The return time of the pulse is proportional to the distance and is 

related to atmospheric density in a predictable way. 

 Light sensors, or photodetectors, including semiconductor devices such as photocells, 

photodiodes, phototransistors, CCDs, and Image sensors; vacuum tube devices like photo-electric 

tubes, photomultiplier tubes  and mechanical instruments such as the Nichols radiometer. Solid-

state detectors detect light by causing photons to excite electrons from immobile, bound states of 

the semiconductor (the valence band) to a state where the electrons are mobile (the conduction 

band). The mobile electrons in the conduction band and the vacancies, or ―holes,‖ in the valence 

band can be moved through the solid with externally applied electric fields, collected onto a metal 

electrode, and sensed as a photoinduced current. Microfabrication techniques developed for the 

integrated-circuit semiconductor industry are used to construct large arrays of individual 

photodiodes closely spaced together. The device, called a charge-coupled device (CCD), permits 

the charges that are collected by the individual diodes to be read out separately and displayed as 

an image. 

 Infra-red sensor, especially used as occupancy sensor for lighting and environmental controls. 

 Proximity sensor- A type of distance sensor but less sophisticated. Only detects a specific 

proximity. May be optical - combination of a photocell and LED or laser. Applications in cell 

phones, paper detector in photocopiers, auto power standby/shutdown mode in notebooks and 

other devices. May employ a magnet and a Hall effect device. 

 Scanning laser- A narrow beam of laser light is scanned over the scene by a mirror. A photocell 

sensor located at an offset responds when the beam is reflected from an object to the sensor, 

whence the distance is calculated by triangulation. 
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 Focus. A large aperture lens may be focused by a servo system. The distance to an in-focus scene 

element may be determined by the lens setting. 

 Binocular. Two images gathered on a known baseline are brought into coincidence by a system of 

mirrors and prisms. The adjustment is used to determine distance. Used in some cameras (called 

range-finder cameras) and on a larger scale in early battleship range-finders 

 Interferometry. Interference fringes between transmitted and reflected lightwaves produced by a 

coherent source such as a laser are counted and the distance is calculated. Capable of extremely 

high precision. 

 Scintillometers measure atmospheric optical disturbances. 

 Fiber optic sensors. 

 

      

 

 

 

 

 

                                 

 figure 1.5 typical characteristics of an image spectrometer 
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   figure 1.6 Principle of (remote sensing) imaging spectroscopy 

 

 

1.4 Imaging spectroscopy ⊂ 𝑒𝑙𝑒𝑐𝑡𝑟𝑜𝑚𝑎𝑔𝑛𝑒𝑡𝑖𝑐  𝑠𝑝𝑒𝑐𝑡𝑟𝑜𝑠𝑐𝑜𝑝𝑦  

Imaging spectroscopy (also spectral imaging or chemical imaging) is the application of reflectance 

spectroscopy to every pixel in a spatial image. Spectroscopy can be used to detect individual absorption features 

due to specific chemical bonds in a solid, liquid, or gas. Solids can be either crystalline (i.e. minerals) or 

amorphous (like glasses). Every material is formed by chemical bonds, and has the potential for detection with 

spectroscopy. Actual detection is dependent on the spectral coverage, spectral resolution, and signal-to-noise of 

the spectrometer, the abundance of the material and the strength of absorption features for that material in the 

wavelength region measured.  
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In remote sensing situations (figure 1.6), the surface materials mapped must be exposed in the optical 

surface (e.g., to map surface mineralogy it must not be covered with vegetation), and the diagnostic absorption  

features must be in regions of the spectrum that are reasonably transparent to the atmosphere (the atmosphere can 

be corrected for all but the strongest absorptions). The optical surface is the same as what the geologist sees in the 

field with his or her eyes. Spectroscopy can be used in laboratories on hand samples, in the field with portable 

field spectrometers (spatial resolution in the millimeter to several meter range), from aircraft, and in the future 

from satellites. The aircraft systems now operational can image large areas in short time (~2 sq. km per second!), 

producing spectra for each pixel that can be analyzed for specific absorption bands and thus specific materials. 

These measurements can then be used for the unambiguous direct and indirect identification of surface materials 

and atmospheric trace gases, the measurement of their relative concentrations, subsequently the assignment of the 

proportional contribution of mixed pixel signals (e.g., the spectral unmixing problem), the derivation of their 

spatial distribution (mapping problem), and finally their study over time (multi-temporal analysis). 

Imaging spectroscopy can be considered as the equivalent of color photography, but each pixel needs to 

acquire many bands of light intensity data from the spectrum, instead of just the three bands of the RGB color 

model. More precisely, it is the simultaneous acquisition of spatially coregistered images in many spectrally 

contiguous bands. 

Some spectral images contain only a few image planes of spectral data, while others are better thought of 

as full spectra at every location in the image. For example, solar physicists use spectroheliograms, images of the 

Sun built up by scanning the slit of a spectrograph, to study the behavior of surface features on the Sun; such a 

spectroheliogram may have a spectral resolution of over 100,000 (λ / Δλ) and be used to measure local motion 

(via the Doppler shift) and even the magnetic field  at each location in the image plane. The multispectral images 

collected by the Opportunity rover, in contrast, have only four wavelength bands and hence are only a little more 

than 3-color images. To be scientifically useful, such measurement should be done using an internationally 

recognized system of units. 

1.5 Hyperspectral imaging 

 For the last one hundred years detectors have been developed for radiation of almost any region of the 

electromagnetic spectrum. Recent developments in detector technology incorporate point sensors into integrated 

detector arrays, which allows setting up imaging radiometers instead of point measuring devices. Quantitative 

measurements of the spatial distribution of radiometric properties are now available for (remote) sensing at almost 

any wavelength. 
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Hyperspectral imaging collects and processes information from across the electromagnetic spectrum. 

Unlike the human eye, which just sees visible light, hyperspectral imaging is more like the eyes of the mantis 

shrimp, which can see visible light as well as from the ultraviolet to infrared. Hyperspectral capabilities enable the 

mantis shrimp to recognize different types of coral, prey, or predators, all which may appear as the same color to 

the human eye (figure 1.7). 

  

 

 

 

figure 1.7 mantis shrimp’s spectacular eye vision spectral range  

Humans build sensors and processing systems to provide the same type of capability for application in 

agriculture, mineralogy, physics, and surveillance and other fields of science. Hyperspectral sensors collect 

information as a set of 'images'. Each image represents a range of the electromagnetic spectrum and is also known 

as a spectral band. Hyperspectral sensors look at objects using a vast portion of the electromagnetic spectrum. 

Certain objects leave unique 'fingerprints' across the electromagnetic spectrum. These 'fingerprints' are known as 

Mantis shrimp possess hyperspectral colour vision, 

allowing up to 12 colour channels extending in the 

ultraviolet. Their eyes (both mounted on mobile 

stalks and constantly moving about independently 

of each other) are similarly variably colored, and are 

considered to be the most complex eyes in the 

animal kingdom. 
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spectral signatures and enable identification of the materials that make up a scanned object. For example, having 

the spectral signature for oil helps mineralogists find new oil fields. 

The precision of these sensors is typically measured in spectral resolution, which is the width of each 

band of the spectrum that is captured. If the scanner picks up on a large number of fairly small wavelengths, it is 

possible to identify objects even if said objects are only captured in a handful of pixels. However, spatial 

resolution is a factor in addition to spectral resolution. If the pixels are too large, then multiple objects are 

captured in the same pixel and become difficult to identify. If the pixels are too small, then the energy captured by 

each sensor-cell is low, and the decreased signal-to-noise ratio reduces the reliability of measured features. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



21 

Chapter 2 

Hyperspectral Data Processing  

The high spectral resolution characteristic of hyperspectral sensors preserves important aspects of the 

spectrum (e.g. shape of narrow absorption bands) and makes differentiation of different materials possible. The 

spatially and spectrally sampled information can be described as a datacube, whose face is a function of the 

spatial coordinates and depth is a function of spectral band (or wavelength).The data in each band corresponds to 

a narrow band image of the surface covered by the field of view of the sensor, where as along the wavelength 

dimension, each image pixel provides a spectrum characterizing the materials within the pixel. The nature and 

organization of the collected data is illustrated in figure 2. 

          figure 2: Imaging spectrometry data cube illustrating  

                                                                   the 3-D spatial  and spectral character of the data. 

2.1  Signal representation 

The data that is supplied by such systems is best represented in the form of an N-dimensional vector for 

each pixel where N is the number of spectral bands. This viewpoint of the data is referred to as a feature space 

representation, as compared to the image space and spectral space presentation in figure 2.1. Typically there are 

several hundred thousand pixels per data set. The spectral space graph of figure 2. 1(b) might lead one to believe 

that each ground cover material is appropriately represented by a single spectral curve; some use the term 

"spectral signature." To proceed from this assumption gives up a considerable amount of potential. The angle of 

the sun, and thus the time of day, season and latitude, the direction of view, the atmospheric condition, and a 

number of other such uncontrollable variables substantially affects the spectral response of any given material. 

From a scientific point of view, it has been of interest to try to make adjustments for these variables. However, 

this proves to be quite a daunting problem as it is difficult to accumulate the needed data for each pixel and each 
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column of atmosphere to enough precision to do more than have a cosmetic effect on the data in image space. 

Sound application of appropriate analysis algorithms are not usually much improved by such adjustments. 

More significantly, beyond these observational variables, at least when considering remote sensing 

situations, the Earth's surface itself is a highly variable and dynamic place from a spectral point of view. Consider 

the grassy areas of figure 2.1(a). Even in terms of the three bands used to generate this image, it is apparent to the 

unaided eye that the spectral response of the class "grass" varies significantly over that scene. From a data 

analysis point of view, it is important to recognize that this variation in the ground scene response is not all 

"noise." Some (most) of this variation is information bearing. Thus, from a data analysis standpoint, a more effec-

tive and complete representation of diagnostic spectral responses is in terms of class-conditional probability 

density functions in the N-dimensional vector space. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.2 Class Discrimination – Feature Selection 

It is in such a representation, where not only the average spectral response but also the manner of 

variation of a material's response about its average exhibits, that is the most information bearing. To make clearer 

the value of this model in discriminating between two classes, one of the most common ways to predetermine the 

    figure. 2.1. (a) A simulated color IR image of an urban area, the Washington, D.C., mall. This image is made using three bands of the 210 bands collected 

by the sensor system, one band from the visible green, one from the visible red, and one from the near infrared. Such displays are referred to as displays 

in image space. (b) A display of the data of pixels of three materials as a function of wavelength by spectral band number. The bands in this case are 

approximately 10 nm wide over the range of 0.4-2.4 pm. This type of data display is referred to as a display in spectral space. 
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separability of two classes of materials is by the use of a statistical distance measure [1]. A simple straightforward 

measure is the Euclidean distance, where only mean differences are used, neglecting the covariance of the classes. 

The Mahalanobis distance use same mean covariance matrix, whereas Bhattacharyya and Jeffreys-Matusita 

account for the different class covariances. Equations are in the respective distances in their Gaussian form: 

𝐸𝑢𝑐𝑙𝑖𝑑𝑒𝑎𝑛 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒:  𝐷𝐸 = (𝑚𝑖 −𝑚𝑗 )𝑇(𝑚𝑖 −𝑚𝑗 ) 

𝑀𝑎𝑎𝑙𝑎𝑛𝑜𝑏𝑖𝑠 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒:   𝐷𝑀 = (𝑚𝑖 −𝑚𝑗 )𝑇(
𝛴𝜄 + 𝛴𝑗

2
)−1(𝑚𝑖 −𝑚𝑗 ) 
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𝐽𝑒𝑓𝑓𝑟𝑖𝑒𝑠 − 𝑀𝑎𝑡𝑢𝑠𝑖𝑡𝑎 𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒:   𝐷𝐽𝑀 = 2(1 − 𝑒𝐷𝐵 )  

Note that the first term on the right measures the portion of the class (the two classes are referred as i and 

j) separation due to the difference in means, while the second term measures the separation of the classes due to 

the covariances. Thus, to use only a single spectral curve to model a class (a "spectral signature?"), even if it is the 

average of a number of actual spectral responses makes use of only the separability measured by the first term on 

the right of the above equation. Further, even from this partial modeling of the class densities, it is clear that, 

though two classes might have the same mean values, making that first term on the right zero, they may still be 

quite separable.  

Modeling each class in terms of a probability density function allows one to capture the information about 

a class also by the "shape" of the class in feature space, as quantified by all higher order statistics. Then 

classification can conveniently be implemented via the discriminant function concept. Other measures for 

calculating the class separability are the Receivers Operating Characteristic curve(ROC curve,[2]). 

 

 

 

 

 

 

figure 2.2 : Results of a Monte Carlo study of the relationship between Probability of Correct Classification and two different statistical 

separability  measures. 
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   Unfortunately, the relationship between distance measures and  classification accuracy is not precisely 

one-to-one for any of the measures above, meaning that a given value of a distance measure does not imply a 

specific value of  probability of  correct classification. Rather, the best that can be said is that (1) a given value of 

a distance measure implies a certain range of possible classification accuracies, and (2) usually (but not always), a 

larger value of a distance measure implies a larger value of classification accuracy. This is an important 

limitation, and has been studied in the literature extensively. Only in a few cases has it been possible to derive 

bounds on the probability of correct classification. In cases where it has not been possible to derive such error 

bounds analytically, it is useful to study the property of separability measures empirically.  In the graphs of figure 

2.2  are shown graphically the results of Monte Carlo studies of the relationship between several distance 

measures and classification accuracy. The results that fall in a narrower range imply a greater degree of unique 

one-to-one mapping between the distance measure and classification accuracy. 

From these results for two-dimensional data, the Error Function Bhattacharrya Distance appears to most 

nearly provide the kind of performance desired, with direct Bhattacharrya Distance not far behind. Given the 

larger amount of computation required for the error function transformation, the direct Bhattacharrya Distance 

measure may be a good choice for many circumstances. 

A naive search for a set of N features results in a univariate set of M best features. But ordering all the 

features by some class separability measure and selecting the M best, does not necessarily lead to the best 

multidimensional feature set. A more successful approach is a multivariate one, in which we try to find the 

optimal combination of available features. The best subset of M variables out of N may be found by evaluating 

the class separability measure (D) for all possible combinations of M variables. However, the number of all 

possible combinations, becomes huge even for modest values of N and M. Therefore, several approaches have 

been suggested to avoid the exhaustive search. We divide them into three groups: sequential, randomized and 

exponential algorithms. An example of a randomized algorithm is the tabu search, first presented by Glover [3]. 

Zang used it for feature selection [4]. The tabu search starts with an initial feature set of the desired length M. A 

random number i from 1 to M determines which feature is scanned. All unused features are tried in position i of 

the feature set to improve the performance of the feature set. The best performing feature replaces the old feature 

on that position. Notice that the old feature is always replaced, even if this means a loss in performance of the new 

feature set. If we would only replace the old feature in case of a performance gain, we were bound to be trapped in 

the first local minimum encountered. 

Exponential algorithms evaluate a number of subsets that grow exponentially with the dimensionality of 

the search space, e.g., exhaustive search, branch and bound [5]. Sequential algorithms add and remove features 

sequentially, e.g. sequential forward and backward selection. 
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2.3 High dimensional Data 

A two-channel feature space plot for the area marked by the dashed rectangle in the three-channel image space 

figure is shown in figure 2.3. From the image space presentation, which utilizes three of the 12 bands available in 

this data set, it appears that there are two fairly distinct classes of ground cover in the rectangular area, but this is 

not so apparent from a visual observation of the two-dimensional feature space presentation. For these two classes 

in these two bands, the data appears to be heavily overlapped, and the two classes do not appear to be spectrally 

distinct. However, an advantage of the feature space representation is that its dimensionality is easily expanded, 

while that of the image space is not. If one adds a third dimension to this feature space or a fourth, one might well 

be able to visualize that spreading these same data points over the larger volume of the higher dimensional space 

would allow for greater potential separability. Increasing the dimensionality further would spread the data over an 

even greater volume, thus reducing overlap and enhancing the potential for discrimination, so long as the 

fundamental assumption that different materials do have diagnostically different characteristics remains valid. 

(We note in passing that for multispectral data of Earth observational scenes, like the case illustrated above, 

classes of data in N-dimensional feature space usually do not occur in distinct clusters. Rather they occur in a 

sparse continuum, making the process of quantitatively specifying to 

considerable precision the classes to be discriminated a key to 

successful data analysis). As an extreme illustration of this, consider 

that one has 10-bit data in 100-dimensional space, a very feasible cir-

cumstance today. The 10-bit data implies 1024 possible discrete 

values in each of the 100 dimensions, or that there are approximately 

(10
3
)

100
 =10

300
 discrete locations in this feature space. The volume of 

this space is so great that even for a data set of 10
6
 pixels, the 

probability of any two pixels landing in the same digital cell or even 

fairly adjacent cells is vanishingly small. Thus there is no overlap, 

and in theory, anything is separable from anything. However, there 

are complexities that must be dealt effectively in such a space in 

order to approach this potential. 

  High-dimensional vector spaces have been found by 

mathematicians to have some rather unusual and unintuitive 

characteristics [6]. It has been shown [7] that high-dimensional space 

is mostly empty, which implies that multivariate data in R
d
 is usually 

in a lower dimensional structure. As a consequence, for any given 

analysis task, high-dimensional data can be projected to a lower di-

figure. 2.3: Two agricultural species in (a) three-

dimensional image space and (b) two-dimensional 

feature space. 



26 

mensional subspace without losing significant information in terms of separability among the different statistical 

classes. However, the specific subspace will surely be different for each different data set and analysis task. A 

second consequence of the foregoing, is that normally distributed data will have a tendency to concentrate in the 

tails; similarly, uniformly distributed data will be more likely to be collected in the corners, making  density 

estimation more difficult. Local neighborhoods are almost surely empty, producing the effect of losing detailed 

density estimation. 

It turns out that this difficulty in density estimation is one of the chief challenges facing the data analyst. 

Due to the large number of parameters of the scene and its observation, one must expect to have to train a 

classifier for each new data set that is to be analyzed. The labeling of training samples and accumulation of the 

information by which to do so nearly always means that there will be a paucity of training samples with which to 

model each of the class density functions. Thus, one must determine the parameters of a high dimensional density 

function with a relatively small number of samples. 

In a very general context, Hughes was able to demonstrate the impact of this problem on a theoretical 

basis some years ago [20]. One of his results is displayed in figure: 2.4, which shows the mean recognition 

accuracy averaged over the ensemble of possible classifiers, versus the measurement complexity. Here, 

measurement complexity is related to the number of discrete cells in the feature space, and therefore the number 

of spectral bands and the bit precision in each. The parameter, m, of the individual graphs of the figure is the 

number of training samples available to define the classes. 

It is seen that the expected accuracy starts at 50% for this two-class case, i.e., chance performance. For 

the case of an infinite number of training samples, the curve proceeds upward to the right as measurement 

complexity increases, rapidly at first but then more slowly, becoming asymptotic to its final value. However, for 

any finite number of training samples, the result has a maximum value. This is because there will then be 

estimation error in determining the values of the parameters of the classifier, and for a given number of training  

 

Figure 2.4. Mean recognition accuracy versus measurement 

     figure. 2.4: Mean recognition accuracy versus measurement complexity for the 

finite training case. 
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samples, the greater the measurement complexity the greater the estimation error and the poorer the 

performance. This may be the explanation for less complex classifiers sometimes outperforming more complex 

ones. The maximum value of each curve does increase with increasing numbers of training samples, and in this 

case, occurs at a higher measurement complexity. Thus on average, to achieve higher accuracy will require 

increased numbers of features and/or an increase in SNR reflected in the number of bits or discrete values per 

feature. Thus the number of spectral features and the SNR are interrelated with the number of training samples 

available per class. 

 

2.4 Data Analysis Procedure [31] 

The major question that the analyst must deal with is how to choose and train a suitable sequence of 

algorithms by which to accomplish the desired analysis, given the circumstances found in an experiment. The 

problem of optimally training a classifier comes down to how completely and precisely one models the data set 

and the specific classes one wishes to discriminate between. The classification process ordinarily involves 

assigning each pixel to one of a list of classes. Thus one must set up an exhaustive list of classes, so that there is a 

logical class to which to assign each pixel of the data set, even though one may be interested in only one or a 

small number of classes in the scene. The rule for establishing the list of classes then is that the classes must be: 

 Of informational value. The list must contain all of the classes of interest to the information consumer. 

 Exhaustive. In addition to those desired by the user, it must contain enough additional classes so that there 

is a logical class to which to assign each pixel in the data set. 

 Separable. The classes must be separable in terms of available spectral features. 

Further, each class must be modeled to adequate completeness and precision. As pointed out earlier, one 

must specify not only the mean response of a given class, but also how the response for that class varies about its 

mean, since this variation is often quite diagnostic of the class. Modeling the class response in terms of a 

multidimensional probability density function is perhaps the most effective way of doing this. However, as the 

measurement complexity, defined by the number of features and the bit precision of the data reflecting S/N, 

increases, this becomes more daunting. There will usually only be a limited number of samples that can be made 

available for defining a class density function model. The number of training samples needed varies greatly with 

the specific situation. A number many times as large as the number of features is highly desirable, although there 

are algorithms becoming available to mitigate this condition to some extent. 

In addition, the analyst has the further challenge that the samples used for training the classifier must be 

truly representative of the class intended. If one wishes to define a class to be called "corn" in an agricultural 

problem, how thick must be the stand of corn in a pixel for it to be desired to call the pixel corn, how much weeds 

should be allowed, what range of varieties (include popcorn?) what range of planting dates and thus maturity 
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level, and many other variables must be considered. Clearly the process is not in any sense "automatic" as it must 

reflect the specific requirements of the user. 

Data flow through a system to a final analysis generally requires the application of a sequence of 

algorithms. Figure 2.5 outlines such a sequence. The numbered paragraphs refer to the numbered boxes in the 

diagram: 

 

 

      1)Hyperspectral data consists of data gathered in more than one spectral band. There is no accepted definition 

for where the boundary is between data termed multispectral and hyperspectral. It is well established that the 

geometry of vector spaces changes continually as the dimensionality of the space increases, and indeed that it is 

materially different from the familiar three-dimensional geometry by the time dimensionality reaches seven to ten. 

Further, it usually requires a dimensionality of the order often or more to satisfactorily accomplish many practical 

analysis tasks. Thus it will be assumed that the data to be analyzed contains at least ten and perhaps as many as 

several hundred spectral bands. 

     2)Again assuming that the data were gathered in a larger number of bands than is necessary or desirable for the 

particular analysis at hand, an important early step is to form the feature subset that is to be used in the analysis. 

This should be done in a situation-specific way, that is, using the description of the specific classes desired. Thus, 

a feature extraction algorithm such as those described above is applied at this point. 

Figure. 2.5. A schematic diagram of the hyperspectral data analysis process. 

 

 

Observations 
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3) Given box 2, there may still remain the decision as to how many of the generated features to utilize. The 

choice here and that in box 4 will depend to some extent upon the individual classes and the precision with which 

they have been modeled. 

4) There remains, then, the application of the specific classification algorithm to be used. Again, the choice of 

algorithm depends upon the class model precision and the level of detail of the classes. 

5) As has been detailed above, the labeling of adequate sets of training samples is a key step, perhaps the most 

important step of the entire process. 

6)Having labeled a set of samples for each class that are assumed to be truly representative of an exhaustive list of 

classes that includes the desired classes, the task here is to use those samples to define as precise an N-

dimensional model of the classes in the feature space as possible. Except in very simple cases where a single point 

in feature space is adequate, this will nearly always consist of modeling the entire distribution of each class. This 

may involve use of an iterative scheme, or it may simply consist of computing first- and second-order statistics. 

However classes may require modeling in terms of more than one mode, with the training samples divided 

between the various modes. There are also additional algorithms that can further assist in mitigating the small 

training sample problem [8]. 

7)Box 7 suggests one option for labeling training pixels being an attempt to adjust all or a part of the data for the 

various observational variables that were present, depending on the precise conditions of the scene and the sensor 

system at the time each pixel measurement was made. If one could do this adequately, this would make possible 

the use of some additional sources of reference data on which to base the labeling, as indicated on the diagram. 

The adjustment of the data for all of these variables is a very complex task and is problematic. It often cannot be 

done with as much precision as needed. Because of this, the overall scheme above is designed to not necessarily 

require calibrated data that has been so adjusted. 
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Chapter 3 

Hyperspectral Classification 

3.1 Introduction 

Statistical classification is a procedure in which individual items are placed into groups based on 

quantitative information on one or more characteristics inherent in the items (referred to as traits, variables, 

characters, etc) and based on a training set of previously labeled items. These characteristics are generally their 

response in different spectral ranges. Labeling is implemented through pattern classification procedures. The term 

―pattern‖ refers  to the set of radiance/reflectance measurements obtained in the various wavebands for  a given 

pixel, and spectral pattern classification refers to the family of classification procedures that utilizes this pixel-by-

pixel spectral information as the basis for land cover classification, painting material classification, cancer tissue 

identification etc.  In contrast, spatial pattern recognition involves the classification of image pixels on the basis of 

their spatial relationship with pixels surrounding them. Temporal pattern recognition uses change in spectral 

reflectance over time as the basis of feature identification.   

The classification process has two main stages. In the first stage, the number and nature of the categories 

are determined, whilst in the second stage every unknown or unseen element is assigned to one of the categories 

according to its level of resemblance (or similarity) to the basic patterns. These stages are often called 

classification and identification, respectively. In the context of hyperspectral remote sensing, the categories could 

be land cover features or cloud types, and the assignment to one of the categories is carried out by allocating 

numerical labels, corresponding to the classes, to individual pixels. Hence, for a researcher working in the remote 

sensing field, classification basically means determining the class membership of each pixel in an image by 

comparing the characteristics of that pixel to those of categories known a priori. 

3.2 The classification process 

Image classification is the process of creating a meaningful digital thematic map from an image dataset. 

The classes shown on the map are derived either from known cover types or by algorithms that search the data for 

similar pixels. Once data values are known for the distinct cover types in the image, a computer algorithm can be 

used to divide or segment the image into regions that correspond to each cover type or class. Image classification 

can be done using a single image dataset, multiple images acquired at different times, or image data with 

additional information such as elevation measurements, or expert knowledge about the area. Traditionally, image 

classification involves several steps : 

(i) "Feature extraction/selection : The term feature refers to a single element of a pattern. More generally, a 

feature can be thought of "...as a distillation of that information contained in the measurements which is 
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useful for deciding on the class to which the pattern belongs" (Swain and Davis, 1978). In addition data 

are often highly correlated between spectral bands, which may not be useful for land cover classification 

and even may reduce classification accuracy. Thus, feature extraction performs two functions: 

 separation of useful information from noise or non-information and 

 reduction of the dimensionality of the data in order to simplify the calculations performed by the 

classifier, and to increase the efficiency of statistical estimators in a statistical classifier. 

These aims can be achieved by applying spatial or spectral transform to the image, such as selection of a 

subset of bands, or a principal component transformation to reduce the data dimensionality. 

 (ii) Training: The term "training" arose from the fact that many pattern recognition systems were "trainable"; i.e., 

they learned the discriminant functions in the feature space by adjusting their parameters when applied to a 

training pattern (pixel vector) whose true class is known. This process of training a classifier is either supervised 

by the analyst or unsupervised. 

(iii) Labeling: The process of allocating individual pixels to their most likely class is known as labelling. This 

process of labeling can be approached in one of two ways. If the analyst knows the number of separable pixels 

that exist in the area covered by the image, and if it is possible to estimate the statistical properties of the values 

taken on by the features describing each of these pixels (in statistical classifiers), then individual pixels (test 

pixels) can be labeled as belonging to the classes based on these statistical properties. The other method is where 

the analyst has no clear idea of the number and character of the classes present in the images. A method of 

allocating and reallocating the individual pixels to one of an initial set of randomly-chosen pixels is used. At each 

stage, each pixel in turn is given the label of one of these randomly chosen pixels using some classifier. At the end 

of first iteration, when every pixel has been labeled, the randomly chosen pixels can be altered in character (either 

by combining, splitting, and removing some of the pixels) according to the nature of the pixels which have been 

associated with them. This process of pixel labeling is repeated until the process converges.  

Generally, image classification techniques can be divided into supervised and unsupervised methods 

based on the involvement of the user during the classification process. Methods can be further sub-divided into 

parametric and non-parametric techniques, based on whether or not the classifier employs some distributional 

assumption about the data. 

Supervised learning is the more useful technique when the data samples have known outcomes that the 

user wants to predict. On the other hand, unsupervised learning is more appropriate when the user does not know 

the subdivisions into which the data samples should be divided. Prior categorical division may not be obvious 

because the problem may be a new one, for which the user has little experience. In such a case, an unsupervised 

learning procedure can provide insight into groupings that may make physical sense and facilitate future analysis. 
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Supervised classification techniques require training areas to be defined by the analyst in order to 

determine the characteristics of each category. Each pixel in the image is, thus, assigned to one of the categories 

using the extracted discriminating information. Problems of diagnosis, pattern recognition, identification, 

assignment and allocation are essentially supervised classification problems, since in each case the aim is to 

classify an object into one of a pre-specified set of classes. Unsupervised classification, on the other hand, 

searches for natural groups of pixels, called clusters, present within the data by means of assessing the relative 

locations of the pixels in the feature space. In these classification systems, an algorithm is used to identify unique 

clusters of points in feature space, which are then assumed to represent unique categories. These are automated 

procedures and therefore require minimal user interaction. 

 

 

 

 

 

 

 

 

Parametric classification procedures use some statistical measures to derive rules from the data, which 

leads to some assumptions. The most common assumption of this kind is that of the normal (Gaussian) frequency 

distribution of the data being used. However, non-parametric methods do not make any assumptions about the 

frequency distribution of the data used, and do not use statistical estimates. The minimum distance and maximum 

likelihood classifiers are examples of statistical classification methods, whilst the artificial neural network, 

support vector machine, and decision tree methods can be given as examples of non-parametric classification 

methods.  

 

3.2.1 Data reduction 

One of the problems with hyperspectral  (high-dimensional)  datasets is that, in many cases, not all the 

measured variables are important for understanding the underlying phenomena of interest. While certain 

computationally expensive novel methods can construct predictive models with high accuracy from high-

figure 3.1: Supervised VS. Unsupervised classification 
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dimensional data, it is still of interest in many applications to reduce the dimension of the original data prior to 

any modeling of the data. In mathematical terms, the problem can be stated as follows: given the M-dimensional 

random variable  𝒙=[𝑥1 𝑥2 … 𝑥𝑀] , find a lower dimensional representation of it, 𝒚=[𝑦1 𝑦2 … 𝑦𝑀]  with k<M, 

that captures the content in the original data, according to some criterion. The components of 𝒚  are sometimes 

called the hidden components.  

Principal components analysis (PCA) [9] is a classical method that provides a sequence of best linear 

approximations to a given high-dimensional observation.  It is one of the most popular techniques for 

dimensionality reduction. However, its effectiveness is limited by its global linearity.  Multidimensional scaling 

(MDS) [10], which is closely related to  PCA, suffers from the same drawback. Factor analysis [11] and 

independent component analysis (ICA) [12] also assume that the underling manifold is a linear subspace. 

However, they differ from PCA in the way they identify and model the subspace.  The subspace modeled by PCA 

captures the maximum variability in the data, and can be viewed as modeling the covariance structure of the data, 

whereas factor analysis models the correlation structure.  ICA starts from a factor analysis solution and searches 

for rotations that lead to independent components .The main drawback with all these classical dimensionality 

reduction approaches is that they only characterize linear subspaces (manifolds) in the data. In order to resolve the 

problem of dimensionality reduction in nonlinear cases, many recent techniques, including kernel PCA [14],  

Laplacian eigenmaps (LEM) [15], etc.  

3.2.1.1 Principal Components Analysis (PCA) 

Principal component analysis (PCA) is the best, in the mean-square error sense, linear dimension 

reduction technique. Being based on the covariance matrix of the variables, it is a second-order method. In various 

fields, it is also known as the singular value decomposition (SVD), the Karhunen-Loeve transform, the Hotelling 

transform, and the empirical orthogonal function (EOF) method. In essence, PCA  seeks to reduce the dimension 

of the data by finding few orthogonal linear combinations (the PCs) of the original variables with the largest 

variance. In other words, the goal of principal component analysis is to compute the most meaningful 

(orthonormal) basis to re-express a noisy data set. The hope is that this new basis will filter out the noise and 

reveal hidden structure.  

By assuming linearity PCA seeks a linear combination of the original basis that best re-express a given 

dataset.  The first component, s1 , is the linear combination with the largest variance. We have 𝑠1 =  𝒙𝑇𝒘𝟏, where 

the p-dimensional coefficient vector  𝒘=[𝑤1 𝑤2  … 𝑤𝑝] solves 

𝑤1 = 𝑎𝑟𝑔𝑚𝑎𝑥| 𝑤=1 |𝑉𝑎𝑟{𝒙𝑇𝒘} 
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The second  PC is the linear combination with the second largest variance and orthogonal to the first PC, and so 

on.  There are as many PCs as the number of the original variables. For many datasets, the first several PCs 

explain most of the variance, so that the rest can be disregarded with minimal loss of information. Since the 

variance depends on the scale of the variables, it is customary to first standardize each variable to have mean zero 

and standard deviation one. After the standardization, the original variables with possibly different units of 

measurement are all in comparable units. Assuming a standardized data with the empirical covariance matrix  

𝛴𝑝𝑥𝑝 =
1

𝑛−1
𝑿𝑿𝑇. 

Note that 𝑿𝑿𝑇 is a symmetric matrix so it can be diagonalized by its orthonormal eigenvectors. Thus  

𝑿𝑿𝑇 = 𝑼𝜦𝑼𝑇, 

Where 𝜦=diag[𝜆1 𝜆2 … 𝜆𝑝] is the diagonal matrix of the ordered eigenvalues 𝜆1 < 𝜆2< … <𝜆𝑝  𝑎𝑛𝑑 𝑼 is a p x p 

orthogonal matrix containing the eigenvectors. It can be shown [21] that the PCs are given by the p rows of the p 

x n matrix S, where S = 𝑼𝑇𝑿 (the weight matrix W is given by 𝑼𝑇). The subspace spanned by the first k 

eigenvectors has the smallest mean square deviation from X among all subspaces of dimension k. Another 

property of the eigenvalue decomposition is that the total variation is equal to the sum of the eigenvalues of the 

covariance matrix,  

 𝑉𝑎𝑟 𝑃𝐶𝑖 = 

𝑝

𝑖=1

 𝜆𝜄 =

𝑝

𝑖=1

  𝑡𝑟𝑎𝑐𝑒(𝜮)

𝑝

𝑖=1

 

and that the fraction  𝜆𝜄/𝑡𝑟𝑎𝑐𝑒(𝜮)𝜅
𝑖=1  gives the cumulative proportion of the variance explained by the 

first κ PCs.  

Performing PCA is quite simple in practice: 

1 .Organize a data set as an mxn matrix, where m is the number of measurement types and  n is the 

number of trials. 

2. Subtract of the mean for each measurement type or row xi . 

3. Calculate the eigenvectors (or the SVD) of the covariance. 

One benefit of PCA is that we can examine the variances (𝑉𝑎𝑟 𝑃𝐶𝑖 ) associated with the principle components. 

Often one finds that large variances associated with the first k<p principal components, and then a precipitous 
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drop-off. One can conclude that most interesting dynamics occur only in the first k dimensions.  Both the strength 

and weakness of PCA is that it is a non-parametric analysis.  

The interpretation of the PCs can be difficult at times. Although they are uncorrelated variables 

constructed as linear combinations of the original variables, and have some desirable properties, they do not 

necessarily correspond to meaningful physical quantities. In some cases, such loss of interpretability is not 

satisfactory to the domain scientists. 

3.2.1.2 kernel Principal Components Analysis (k-PCA) 

Kernel principal component analysis (kernel PCA) is an extension of principal component analysis (PCA) 

using techniques of kernel methods. Using a kernel, the originally linear operations of PCA are done in a 

reproducing kernel Hilbert space with a non-linear mapping.  Kernel  Methods  approach the problem by mapping 

the data into a high dimensional feature space, where each co-ordinate corresponds to one feature of the data 

items, transforming the data into a set of points in a Euclidean space. In that space, a variety of methods can be 

used to find relations in the data. Since the mapping can be quite general (not necessarily linear, for example), the 

relations found in this way are accordingly very general. This approach is called the kernel trick.  

Kernel trick is a method for using a linear classifier algorithm to solve a non-linear problem by mapping 

the original non-linear observations into a higher-dimensional space, where the linear classifier is subsequently 

used; this makes a linear classification in the new space equivalent to non-linear classification in the original 

space. This is done using Mercer's theorem, which states that any continuous, symmetric, positive semi-definite 

kernel function K(x, y) can be expressed as a dot product in a high-dimensional space. More specifically, if the 

arguments to the kernel are in a measurable space X, and if the kernel is positive semi-definite then there exists a 

function θ(x) whose range is in an inner product space of possibly high dimension, such that 

𝐾 𝑥,𝑦 = 𝜑 𝑥 𝜑(𝑦) 

The kernel trick transforms any algorithm that solely depends on the dot product between two vectors. 

Wherever a dot product is used, it is replaced with the kernel function. Thus, a linear algorithm can easily be 

transformed into a non-linear algorithm. This non-linear algorithm is equivalent to the linear algorithm operating 

in the range space of θ. However, because kernels are used, the θ function is never explicitly computed. This is 

desirable, because the high-dimensional space may be infinite-dimensional (as is the case when the kernel is a 

Gaussian). 

By assuming non linearity, k-PCA seeks a non linear combination of the original basis that best re-

express a given dataset.  The first component, s1 , is the component with the largest variance. We have 𝑠1 =

 𝒙𝑇𝒘𝟏, where the p-dimensional coefficient vector  𝒘=[𝑤1 𝑤2  … 𝑤𝑝] solves 
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𝑤1 = 𝑎𝑟𝑔𝑚𝑎𝑥| 𝑤=1 |𝑉𝑎𝑟 𝜑 𝒙 
𝑇𝜑 𝒘  = 𝑎𝑟𝑔𝑚𝑎𝑥| 𝑤=1 |𝑉𝑎𝑟{𝛫(𝒙,𝒘)} 

Assuming a standardized data with the empirical covariance matrix  

𝛴𝑝𝑥𝑝 ′ =
1

𝑛−1
𝜑 𝑿 𝜑(𝑿)𝑇, 

we must - like in the linear case – diagonise the covariance matrix. If λ, V eigenvalues and eigenvectors of 𝛴𝑝𝑥𝑝
′  

then :  

𝜆𝑽 = 𝛴′𝑽 
𝑲𝑴
   

 

𝜆 𝜑 𝑥𝑘 𝑽 = 𝜑 𝑥𝑘 𝛴
′𝑽 ,𝑓𝑜𝑟 𝑘 = 1,…𝑝

𝑽 =  𝛼𝑖𝜑(𝑥𝑖)

𝒑

𝒊=𝟏

= 𝒂𝝋 
  

⟹  𝜆 𝛼𝑖𝜑(𝑥𝑖)

𝒑

𝒊=𝟏

𝜑 𝑥𝑘 =
1

𝑛 − 1
  𝛼𝑖(

𝒑

𝒊=𝟏

𝜑 𝑥𝑘  𝜑 𝑥𝑗 

𝒑

𝒋=𝟏

)(𝜑(𝑥𝑗 )𝜑(𝑥𝑖))
𝑲𝒆𝒓𝒏𝒆𝒍  𝒕𝒓𝒊𝒄𝒌 
           

⇒  𝑛 − 1 𝜆𝜥𝜶 = 𝜥𝟐𝜶 ⇒  𝑛 − 1 𝜆𝜶 = 𝜥𝜶 (𝜥 𝑠𝑦𝑚𝑚𝑒𝑡𝑟𝑖𝑐) 

By definition of kernels ,K is positive semi definite. K‘s eigenvalues will be nonnegative and will give the 

solutions (n-1)λ of  𝑛 − 1 𝜆𝜶 = 𝜥𝜶. We therefore only need to diagonalized K. Let 𝜆1 < 𝜆2< … <𝜆𝑝  denote the 

Eigenvalues and 𝒂𝟏,𝒂𝟐,… ,𝒂𝒑 the corresponding complete set of eigenvectors. We normalize 𝒂𝟏,𝒂𝟐,… ,𝒂𝒑 by 

requiring the corresponding vectors in our Hilbert space to be normalized:    𝑽𝒌𝑽𝒌 = 1 ⇒  𝜆𝑘 𝜶
𝜅𝜶𝜅 = 1.  

 For  the purpose of principal component extraction, we need to compute projections on the eigenvectors 

𝑽𝒌. Let x be a test point:  

𝑘𝑃𝐶𝑘  𝒙 =  𝑽𝑘𝜑 𝒙 =   𝑎𝒊
𝒌

𝒑

𝒊=𝟏

 𝜑 𝒙𝒊 𝜑 𝒙 =    𝑎𝒊
𝒌

𝒑

𝒊=𝟏

 𝐾(𝒙𝒊,𝒙) 

3.3 Unsupervised classification 

An unsupervised classification method is used to determine the number of spectrally-separable groups or 

clusters in an image for which there is insufficient reference information available. These unsupervised methods 

can be viewed as techniques of identifying  natural groups, or structures, within multispectral image data. While 

applying an unsupervised method, the analyst generally specifies only the number of classes (or the upper and 

lower bound on the number of classes) and some statistical measure, depending upon the type of clustering 
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algorithms used. These methods generate the specified number of clusters in feature space, and the user assigns 

these clusters (spectral classes) to information classes depending on his or her knowledge of the area. 

Determination of the clusters is performed by estimating the distances or comparison of the variance within and 

between the clusters. These automated classification methods are expected to delineate (or extract) those land 

cover features that are desired by the analyst. After the specified number of groups is determined, they are labeled 

by allocating pixels to land cover features present in the scene. However, some groups may be inappropriate since 

they represent either irrelevant categories for the purpose of the study or else they are mixed classes. Therefore, 

the spectral characteristics of the area of interest should be sufficiently well known to the analyst to allow him to 

correctly label the clusters representing actual features.  

Unsupervised classification techniques generally require user interaction in specifying the number of 

groups to be recognized and in labeling the correctly identified areas with the individual feature (or class) label. 

Owing to the minimal amount of user involvement, they are usually considered as automated procedures. 

Clustering has been used for several decades in various fields for grouping data. There are numerous clustering 

algorithms that can be used to determine the natural spectral grouping present in the data set, each having its own 

characteristics. Some procedures iterate to a local minimum for the average distance from each pixel to the nearest 

cluster means. For example, the most popular clustering algorithms used in remote sensing image classification 

are k-means [15], fuzzy C-means [16] and isodata [17],  statistical clustering methods, and the SOM (self 

organising feature maps), an unsupervised neural classification method.  

3.3.1 K-means  

The k-means algorithm is an algorithm to cluster n objects based on attributes into k partitions, k < n. It 

is similar to the expectation-maximization algorithm for mixtures of Gaussians in that they both attempt to find 

the centers of natural clusters in the data. It assumes that the object attributes form a vector space. The objective it 

tries to achieve is to minimize total intra-cluster variance, or, the squared error function: 

𝑉 =   (𝑥𝑗 − 𝜇𝑖)
2

𝑥𝑗  ∈ 𝑆𝑖  

𝑘

𝑖=1

 

where there are k clusters Si, i = 1, 2, ..., k, and µi is the centroid or mean point of all the points xj ∈ Si. 

The algorithm is composed of the following steps: 

1. Place K points into the space represented by the objects that are being clustered. 

These points represent initial group centroids. 
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2. Assign each object to the group that has the closest centroid. 

3. When all objects have been assigned, recalculate the positions of the K centroids. 

4. Repeat Steps 2 and 3 until the centroids no longer move. This produces a separation 

of the objects into groups from which the metric to be minimized can be calculated. 

 

A drawback of the k-means algorithm is that the number of clusters k is an input parameter. An 

inappropriate choice of k may yield poor results. The algorithm also assumes that the variance is an appropriate 

measure of cluster scatter.  

An important component of a clustering algorithm is the distance measure between data points. If the 

components of the data instance vectors are all in the same physical units then it is possible that the simple 

Euclidean distance metric is sufficient to successfully group similar data instances. However, even in this case the 

Euclidean distance can sometimes be misleading. Figure shown below illustrates this with an example of the 

width and height measurements of an object. Despite both measurements being taken in the same physical units, 

an informed decision has to be made as to the relative scaling. As the figure shows, different scalings can lead to 

different clusterings. 

Suppose that we have n sample feature vectors x1, x2, ..., xn all from the same class, and we know that 

they fall into k compact clusters, k < n. Let mi be the mean of the vectors in cluster i. If the clusters are well 

separated, we can use a minimum-distance classifier to separate them. That is, we can say that x is in cluster i if 

|| x - mi || is the minimum of all the k distances. This suggests the following procedure for finding the k means: 

 Make initial guesses for the means m1, m2, ..., mk 

 Until there are no changes in any mean 

o Use the estimated means to classify the samples into clusters 

o For i from 1 to k 

 Replace mi with the mean of all of the samples for cluster i 

o end_for 

 end_until 

Here is an example (figure 3.2) showing how the means m1 and m2 move into the centers of two clusters: 
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Shows the initial randomized 

centroids and a number of points. 

 

Points are associated with the 

nearest centroid. 

 

Now the centroids are moved to the 

center of their respective clusters. 

 

Steps 2 & 3 are repeated until a suitable 

level of convergence has been reached. 

 

3.3.2 Fuzzy C-Means 

Fuzzy c-means (FCM) is a method of clustering which allows one piece of data to belong to two or more 

clusters. This method (developed by Dunn in 1973 and improved by Bezdek in 1981) is frequently used in pattern 

recognition. It is based on minimization of the following objective function: 

     ,      

where m is any real number greater than 1, uij is the degree of membership of xi in the cluster j, xi is the ith of d-

dimensional measured data, cj is the d-dimension center of the cluster, and ||*|| is any norm expressing the 

similarity between any measured data and the center. 

Fuzzy partitioning is carried out through an iterative optimization of the objective function shown above, with the 

update of membership uij and the cluster centers cj by: 

     ,      

This iteration will stop when , where  is a termination criterion between 0 

and 1, whereas k are the iteration steps. This procedure converges to a local minimum or a saddle point of Jm. 

The algorithm is composed of the following steps: 

1. Initialize U=[uij] matrix, U
(0)

 

figure 3.2:  k-means clustering process 

http://en.wikipedia.org/wiki/Image:K_Means_Example_Step_1.svg
http://en.wikipedia.org/wiki/Image:K_Means_Example_Step_2.svg
http://en.wikipedia.org/wiki/Image:K_Means_Example_Step_3.svg
http://en.wikipedia.org/wiki/Image:K_Means_Example_Step_4.svg
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2. At k-step: calculate the centers vectors C
(k)

=[cj] with U
(k) 

 

 

3. Update U
(k)

 , U
(k+1) 

 

 

4. If || U
(k+1)

 - U
(k)

||<  then STOP; otherwise return to step 2. 

As already told, data are bound to each cluster by means of a Membership Function, which represents the 

fuzzy behavior of this algorithm. To do that, we simply have to build an appropriate matrix named U whose 

factors are numbers between 0 and 1, and represent the degree of membership between data and centers of 

clusters. 

For a better understanding, we may consider this simple mono-dimensional example. Given a certain data set, 

suppose to represent it as distributed on an axis. The figure below shows this: 

 

Looking at the picture, we may identify two clusters in proximity of the two data concentrations. We will refer to 

them using ‗A‘ and ‗B‘.  

 

In the FCM approach, instead, the same given datum does 

not belong exclusively to a well defined cluster, but it can 

be placed in a middle way. In this case, the membership 

function follows a smoother line to indicate that every 
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datum may belong to several clusters with different values of the membership coefficient. 

 

In the figure on the left, the datum shown as a red marked 

spot belongs more to the B cluster rather than the A cluster. 

The value 0.2 of ‗m‘ indicates the degree of membership to 

A for such datum. Now, instead of using a graphical 

representation, we introduce a matrix U whose factors are 

the ones taken from the membership functions: 

 

The number of rows and columns depends on how many data and clusters we are considering. More exactly 

we have C = 2 columns (C = 2 clusters) and N rows, where C is the total number of clusters and N is the total 

number of data.  We can notice that in the first case the coefficients are always unitary. It is so to indicate the 

fact that each datum can belong only to one cluster.  

Other properties are shown below: 

  

  

  

3.3.3  Isodata  

Isodata stands for Iterative Self-Organizing Data Analysis Techniques. This is a more sophisticated 

algorithm which allows the number of clusters to be automatically adjusted during the iteration by merging 

similar clusters and splitting clusters with large standard deviations. In the migrating means (or ISODATA, or 

nearest mean) algorithm (Ball and Hall, 1965), the value of the function to be minimized is the average 



42 

Euclidean distance between each sample point and the corresponding cluster mean. Intuitively, this is 

equivalent to generating spherical clusters with small variances or scatter. There is no analytical method for 

generating clusters that minimizes the value of this function. There are a number of different forms of this 

algorithm, but in all of them at least two parameters must be specified by the user: the number of clusters and 

the maximum number of iterations. The latter parameter ensures the method will terminate if convergence is 

not achieved: 

We first define the following parameters: 

1. K = number of clusters desired; 

2. I = maximum number of iterations allowed; 

3. P = maximum number of pairs of cluster which can be merged; 

4.  = a threshold value for minimum number of samples in each cluster can have (used for discarding 

clusters); 

5.  = a threshold value for standard deviation (used for split operation); 

6.  = a threshold value for pairwise distances (used for merge operation). 

The algorithm: 

 Step 1. Arbitrarily choose  (not necessarily equal to K) initial cluster centers:  𝑚1,𝑚2,… ,𝑚𝑘  from the 

data set {𝑥𝑖 , 𝑖 = 1,2 ,… ,𝑁} . 

 Step 2. Assign each of the  samples to the closest cluster center:  

𝒙 ∈  𝜔𝑗  𝑖𝑓 𝐷𝐿 𝒙,𝒎𝒋 = max{𝐷𝐿 𝒙,𝒎𝒊 , 𝑖 = 1,2 ,… ,𝑘} 

 Step 3. Discard clusters with fewer than  𝛩𝛮  members, i.e., if for any j,  𝑁𝑗 < 𝛩𝛮  , then discard 𝜔𝑗   and   κ  

<-- κ-1. 

 Step 4. Update each cluster center:  𝒎𝑗  =
𝟏

𝜨𝒋
 𝒙𝑥∈ 𝝎𝒋   (𝑗 = 1,2 ,… ,𝑘) 

 Step 5. Compute the average distance 𝐷𝑗  of samples in cluster 𝝎𝒋 from their corresponding cluster center:   

𝐷𝑗  =
1

𝛮𝒋
 𝐷𝐿 𝒙,𝒎𝒋 𝑥∈ 𝝎𝒋   (𝑗 = 1,2 ,… , 𝑘) 
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 Step 6. Compute the overall average distance of the samples from their respective cluster centers:  

 𝐷 =  
1

𝑁
 𝑁𝑗𝐷𝑗
𝑘
𝑗=1  

 Step 7. If  𝑘 ≤
𝑘

2
  (too few clusters),  go to Step 8; else if 𝑘 > 2𝑘 (too many clusters), go to Step 11; else 

go to Step 14. 

(Steps 8 through 10 are for split operation, Steps 11 through 13 are for merge operation.) 

 Step 8. First step to split. Find the standard deviation vector 𝜍𝑗 = [𝜍1
 𝑗  ,… ,𝜍𝑁

 𝑗  ]𝑇  for each 

cluster:  𝜍𝑖
 𝑗  =   

𝟏

𝜨𝒋
 (𝑥𝑖 −𝑚𝑖

(𝑗 ))2
𝑥∈ 𝝎𝒋  ,   𝑖 = 1,2 ,… ,𝑛, 𝑗 = 1,2 ,… ,𝑘 ,   

where 𝑚𝑖
(𝑗 )  is the ith component of 𝒎𝒋 and 𝜍𝑖  is the standard deviation of the samples in 𝜔𝑗  along the ith 

coordinate axis. 𝛮𝑗  is the number of samples in 𝜔𝑗 . 

 Step 9. Find the maximum component of each 𝛴𝑗  and denote it by 𝜍𝑚𝑎𝑥
 𝑗 ;  Do this for 𝑗 = 1,2 ,… ,𝑘 

 Step 10. If for any 𝜍𝑚𝑎𝑥
 𝑗   , 𝑗 = 1,2 ,… ,𝑘  

o , 

o , 

o                                                                                                                                          

then split 𝒎𝒋 into two new cluster centers 𝒎𝒋
+ and 𝒎𝒋

− by adding +δ, -δ to the component 

of 𝒎𝒋  corresponding to 𝜍𝑚𝑎𝑥
 𝑗 , where δ can be 𝛼𝜍𝑚𝑎𝑥

 𝑗 , for some 𝛼 > 0 ,. Then delete 𝒎𝒋 

 and let κ  κ+ 1. Goto Step 2 

              else Go to Step 14. 

 Step 11. First step to merge. Compute the pair wise distances 𝐷𝑖𝑗   between every two cluster centers:  𝐷𝑖𝑗   

=  𝐷𝐿 𝒎𝒊,𝒎𝒋  𝑓𝑜𝑟 𝑎𝑙𝑙 𝑖 ≠ 𝑗 and arrange 
𝑘 𝑘−1 

2
  of these  distances in ascending order. 

 Step 12. Find no more than  smallest  𝐷𝑖𝑗 's which are also smaller than  and keep them in 

ascending order:  

𝐷𝑖1𝑗1
≤  𝐷𝑖2𝑗2

≤ ⋯ ≤  𝐷𝑖𝑃 𝑗𝑝  



44 

 Step 13. Perform pair wise merge: for 𝑙 = 1,2,…𝑃 do the following: 

 If neither of 𝒎𝑗𝑙  nor 𝒎𝑖𝑙   has been used in this iteration, then merge them to form a new center:  𝒎 =

1

𝑁𝑗𝑙 +𝑁𝑖𝑙
[𝑁𝑗𝑙𝒎𝑗𝑙 + 𝑁𝑖𝑙  𝒎𝑖𝑙 ]. Delete 𝒎𝑖𝑙  and 𝒎𝑗𝑙 , and let k  k  - 1 and go to Step 2. 

 Step 14. Terminate if maximum number of iterations I is reached. Otherwise go to Step 2. 

The Isodata algorithm is more flexible than the K-mean method. But the user has to choose empirically many 

more parameters listed previously. 

3.4 Supervised classification 

Supervised classification methods are most commonly used in hyperspectral sensing and based on the 

knowledge of the area to be classified. "These methods are often central to the image analysis process, since these 

concerns the direct transformation from pixel counts to thematic map" (Wilkinson, 2000). Supervised 

classification may be defined as the process of identifying unknown objects by using the spectral information 

derived from training data provided by the analyst. The result of the identification is the assignment of unknown 

pixels to pre-defined categories. The main difference between the unsupervised and supervised classification 

approaches is that supervised classification requires training data. The analyst locates specific sites in the remotely 

sensed image that represent homogeneous examples of known land cover types. These areas are commonly 

referred to as training sites because the spectral characteristics of these known areas are used to train the classifier.  

The training data thus extracted is used to find the properties of each individual class. The training data are 

generally derived from fieldwork, analysis of aerial photographs, from the study of appropriate maps, or from 

personal experience. 

Supervised classification is performed in two stages; the first stage is the training of the classifier, and the 

second stage is testing the performance of the trained classifier on unknown pixels. In the training stage, the 

analyst defines the regions that  will  be used  to  extract training data, from  which  statistical estimates of the 

data properties are computed. At the classification stage, every unknown pixel in the test image is labeled in terms 

of its spectral similarity to specified land cover features. If a pixel is not spectrally similar to any of the classes, 

then it can be allocated to an unknown class. As a result, an output image, or thematic map is produced, showing 

every pixel with a class label. The characteristics of the training data selected by the analyst have a considerable 

effect on the reliability and the performance of a supervised classification process. The training data must be 

defined by the analyst in such a way that they accurately represent the characteristics of each individual feature 

and class used in the analysis. Two features of the training data are of key importance. One is that data must 

represent the range of variability within class and the other is that the size of the training data set should be 

sufficient. In order to have a representative set of data, the pixels should be so selected that they correctly 
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represent the spectral diversity of each class. Pixels should be selected from each of the fields to include all 

spectral classes. The best sampling strategy is to select training pixels randomly from the whole test image. 

Unfortunately, this is generally not possible in practice, as data for the whole area are generally not available.  

 The size of the training data set is also very important in supervised classification, if statistical estimates 

are to be reliable. Sample size is mainly related to the number of features whose statistical properties are to be 

estimated. Typically, it is recommended that the minimum training set size is some 10-30 times the number of 

wave bands per class being used for classification (Mather, 1999; Piper, 1992).  Generally, a large training set is 

required for mapping from multispectral data sets. Supervised classification methods require more user 

interaction, especially in the collection of training data.  The accuracy of supervised classification is determined 

partly by the quality of the ground truth data and partly by how well the set of ground truth pixels are 

representative of the full image. In order to measure the accuracy, it is common practice to use only part of the 

ground truth data for training the classifier and to use the remaining pixels for testing, that is to see if the classifier 

output corresponds to reality. 

3.4.1 Parametric Classifiers 

Parametric approaches to classification make use of a parameterized model of the classes in the spectral 

feature space. These are generally more powerful than non-parametric methods and lead to higher overall 

classification accuracy if the data used satisfy the requirements of the model. The maximum likelihood method is 

the most common parametric approach. This procedure models classes according to the frequency distributions of 

the  training pixels. Most often classes are modeled by using the multivariate form of the normal probability 

density function. Pixels are then classified by assigning them to the class to which they have the highest statistical 

likelihood of belonging. 

3.4.1.1 Bayesian Classifier 

 Bayesian Decision Theory shows us how to design an optimal classifier if we know the prior probabilities 

P(wi) and the class-conditional densities p(x|wi). Unfortunately, we rarely have complete knowledge of the 

probabilistic structure. However, we can often find design samples or training data that include particular 

representatives of the patterns we want to classify. To simplify the problem, we can assume some parametric form 

for the conditional densities and estimate these parameters using training data. Then, we can use the resulting 

estimates as if they were the true values and perform classification using the Bayesian decision rule. Bayesian 

classification and decision making is based on probability theory and the principle of choosing the most probable 

or the lowest risk (expected cost) option [18]. 
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Assume that there is a classification task to classify feature vectors (samples) to K different classes. A 

feature vector is denoted as x = [x\, x2, · · · , xD]
T
 where D is the dimension of a vector. The probability that a 

feature vector x belongs to class wk is P(wk |x), and it is often referred to as a posteriori probability. The 

classification of the vector is done according to posterior probabilities or decision risks calculated from the 

probabilities. The posterior probabilities can be computed with the Bayes formula 

𝑃 𝜔𝑘  𝒙 =
𝑃 𝒙 𝜔𝑘 𝑃(𝜔𝑘)

𝑃(𝒙)
, 

,where 𝑃 𝒙 𝜔𝑘   is the probability density function of class 𝜔𝑘  in the feature space and 𝑃 𝜔𝑘  𝒙  is the a priori 

probability, which tells the probability of the class before measuring any features. If prior probabilities are not 

actually known, they can be estimated by the class proportions in the training set. The divisor: 

𝑃 𝒙 =   𝑃 𝒙 𝜔𝑖 𝑃(𝜔𝑖)

𝐾

𝑖=1

 

is merely a scaling factor to assure that posterior probabilities are really probabilities, i.e., their sum is one. It can 

be shown that choosing the class of the highest posterior probability produces the minimum error probability 

[18,19]. However, if the cost of making different kinds of errors is not uniform, the decision can be made with a 

risk function that computes the expected cost using the posterior probabilities, and choose the class with minimum 

risk. 

The major problem in the Bayesian classifier is the class-conditional probability density function 

𝑃 𝒙 𝜔𝑘  . The function tells the distribution of feature vectors in the feature space inside a particular class, i.e., it 

describes the class model. In practice it is always unknown, except in some artificial classification tasks. The 

distribution can be estimated from the training set with a range of methods. 

 

3.4.1.2 Maximum likelihood  (multivariate Gaussian case, Gaussian mixture model case )  

 

The maximum likelihood method is a well known supervised classification algorithm that is based on the 

assumption that the probability density function for  each class is normal (Gaussian) (Tou and Gonzalez, 1974). 

The normal distribution describes the probability of a single feature and it is specified by two parameters, the 

mean and the variance. The mean of the distribution controls the location of the distribution and the variance 

controls the spread of the data. When more than one feature is involved, then the multivariate generalization of the 

normal distribution has to be used, i.e. the multivariate normal distribution. Instead of a single mean controlling 

the location of the distribution there is now one mean for each feature making up a mean vector. The multivariate 

equivalent of the variance is the variance-covariance matrix, representing the variability of pixel values for each 

feature within a particular class and the correlations between the features. These two parameters are computed for 
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each sample, and they are used to describe each class. The maximum likelihood classifier generates estimates of 

both the variance-covariance matrix and mean of the category spectral response patterns during the classifier 

training process. These estimates are derived by selecting samples that represent each class to be recognized from 

the total population to be classified. 

The assumption of normality is generally reasonable for common spectral response distributions. Under 

this assumption, the distribution of a class response pattern can be completely described  by the mean vector and 

the covariance matrix. With these parameters, it is possible to compute the statistical probability of a given pixel 

being a member of a particular land cover class. The pixel is assigned to the class for which the probability of 

membership is the highest. Although in practice the assumption of  ―normally distributed‖ data is not generally 

met, the classifier generally outputs an acceptable result. 

Assume that there is a set of independent samples X = {x1,..., xN} drawn from a single distribution 

described by a probability density function p(X; θ) where θ is the PDF parameter list. The likelihood function 

ℒ X;𝛉 =  p(𝐱n ;𝛉)

𝐍

𝐧=𝟏

 

tells the likelihood of the data X given the distribution or, more specifically, given the distribution parameters θ. 

The goal is to find θ that maximizes the likelihood: 

𝜃 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃ℒ X;𝛉  

Usually this function is not maximized directly but the logarithm 

𝐿 𝑋;𝜽 = 𝑙𝑛ℒ X;𝛉 =  lnp(𝐱n ;𝛉)

N

𝐧=1

 

called the log-likelihood function which is analytically easier to handle. Because of the monotonicity of the 

logarithm function the solution to 𝑎𝑟𝑔𝑚𝑎𝑥𝜃ℒ X;𝛉  is the same using ℒ X;𝛉  or 𝐿 𝑋;𝜽  [18]. 

 Maximizing the log likelihood function for multivariate Gaussian case (figure 3.3) : 

The Gaussian probability density function in one dimension is a bell shaped curve defined by two parameters, 

mean μ and variance ζ
2
. In the D-dimensional space it is defined in a matrix form as 

𝑁 𝒙,𝝁,𝜮 =
1

2𝜋
𝐷
2   𝜮 

1
2

exp[(−
1

2
 𝒙 − 𝝁 𝛵𝛴 𝒙 − 𝝁 ] 

,where μ is the mean vector and Σ the covariance matrix.  
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The Gaussian distribution is usually quite good approximation for a class model shape in a suitably selected 

feature space. It is a mathematically sound function and extends easily to multiple dimensions. In the Gaussian 

distribution lies an assumption that the class model is truly a model of one basic class. If the actual model ,the 

actual probability density function, is multimodal, it fails. For example, if we are searching for different face parts 

from a picture and there are several basic types of eyes , because of people from different races perhaps, the single 

Gaussian approximation would describe  a wide mixture of all eye types, including patterns that might not look 

like an eye at all. 

 Depending on p(x; θ) it might be possible to find the maximum analytically by setting the derivatives of 

the log-likelihood function to zero and solving θ. It can be done for a Gaussian PDF, which leads to the well-

known intuitive estimates for a mean and variance [18], but usually the analytical approach is intractable. In the 

case of a Gaussian pdf we can use the estimated μ and Σ to classify test vectors with log version of pdf: 

−2lnp(x) = + 
1

2
ln 𝜮𝜃𝑖  +

1

2
(𝒙 − 𝝁𝜃𝑖)

𝑇𝛴𝜃𝑖
−1(𝒙 − 𝝁𝜃𝑖).  An observation vector will be assigned to the class i for 

which the value   −2lnp(x) is the smallest.  The reliability of the results obtained with this classifier declines 

when the frequency distribution of the data departs from normality, especially when the distribution is bimodal. In 

extreme cases, where the multivariate normal assumption does not properly describe the data distribution in 

feature space, the results can be misleading. The other drawback of this method is the computational cost required 

to  classify each pixel. This is particularly important in circumstances where data to be classified are measured in 

a large number of spectral bands, or include many spectral classes to be discriminated. The reliability of the 

estimates of mean vector and variance-covariance matrix, which are fundamental to the calculation of the 

likelihood, is affected by the relationship between sample size and the number of features. It should also be noted 

that all features are used to discriminate between classes, rather than the minimum effective set. It is not possible 

figure 3.3: 
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to use categorical data with this classifier as the classifier assumes that the data forming each class are normally 

distributed. The maximum likelihood classification method  is available in almost all remote sensing and image 

processing software packages, and it is generally used as the standard supervised classification method. 

 Maximizing the log likelihood function for Gaussian mixture model case  (figure 3.4): 

Gaussian mixture model (GMM) is a mixture of several Gaussian distributions and can therefore represent 

different subclasses inside one class. The probability density function is defined as a weighted sum of Gaussians 

𝑝 𝒙;𝜽 =  𝑎𝒄𝑁 𝒙,𝝁𝒄,𝜮𝒄 

𝑪

𝑐=1

 

where 𝑎𝒄 is the weight of the component c,  0 <𝑎𝒄 < 1 for all components, and  𝑎𝒄
𝐶
𝑐=1 = 1. The parameter list 

𝜽 = {𝑎𝟏,𝝁𝟏,𝜮𝟏,… ,𝑎𝒄,𝝁𝒄,𝜮𝒄} defines a particular Gaussian mixture probability density function. 

 

Estimation of the Gaussian mixture parameters for one class can be considered as un-supervised learning 

of the case where samples are generated by individual components of the mixture distribution and without the 

knowledge of which sample was generated by which component. Clustering usually tries to identify the exact 

components, but Gaussian mixtures can also be used as an approximation of an arbitrary distribution. For  

Gaussian mixture  PDF  the analytical approach of estimating parameters is intractable. In practice an iterative 

method such as the expectation maximization (EM) algorithm is used. Maximizing the likelihood may in some 

cases lead to singular estimates, which is the fundamental problem of maximum likelihood methods with 

Gaussian mixture models[22]. 

The expectation maximization (EM) algorithm is an iterative method for calculating maximum likelihood 

distribution parameter estimates from incomplete data (some elements missing in some feature vectors). It can 

figure 3.4 
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also be used to handle cases where an analytical approach for maximum likelihood estimation is infeasible, such 

as Gaussian mixtures with unknown and unrestricted covariance matrices and means. 

Assume that each training sample contains known features and missing or unknown features. Mark all 

good features of all samples with X and all unknown features of all samples with Y. The expectation step (E-step) 

for the EM algorithm is to form the function 

Q 𝛉;𝛉𝐢 ≜ EY [𝑙𝑛ℒ X, Y;𝛉 |X;𝛉𝐢] 

where 𝛉𝐢 is the previous estimate for the distribution parameters and θ is the variable for a new estimate 

describing the (full) distribution. The function calculates the likelihood of the data, including the unknown feature 

Y marginalized with respect to the current estimate of the distribution described by 𝛉𝐢. The maximization step (M-

step) is to maximize Q 𝛉;𝛉𝐢  with respect to θ
i
  and set 

𝛉𝐢+𝟏
𝐢+𝟏
  argmaxθQ 𝛉;𝛉𝐢  

The steps are repeated until a convergence criterion is met [19]. For the convergence criterion it is suggested in 

[18] that 

Q 𝛉𝐢+𝟏;𝛉𝐢 − Q 𝛉𝐢;𝛉𝐢−𝟏 ≤ Τ 

with a suitably selected T and in [19] that 

 𝛉𝐢+𝟏−𝛉𝐢 ≤ ε 

for an appropriately chosen vector norm and ε . Common for both of these criteria is that iterations are stopped 

when the change in the values falls below a threshold. A more sophisticated criterion can be derived by using a 

relative rather than absolute rate of change. 

The EM algorithm starts from an initial guess θ° for the distribution parameters and the log-likelihood is 

guaranteed to increase on each iteration until it converges. The convergence leads to a local or global maximum, 

but it can also lead to singular estimates, which is true particularly for Gaussian mixture distributions with 

arbitrary covariance matrices. The description of the general EM algorithm and also its application for the 

Gaussian mixture model can be found in [18,19,22].   
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The initialization is one of the problems of the EM algorithm. The selection of θ° (partly) determines 

where the algorithm converges or hits the boundary of the parameter space producing singular, meaningless 

results. Some solutions use multiple random starts or a clustering algorithm for initialization. [23] 

The application of the EM algorithm to Gaussian mixtures according to [23] goes as follows. The known 

data X is interpreted as incomplete data. The missing part Y is the knowledge of which component produced each 

sample xn. For each xn there is a binary vector yn = (yn,1, ... , yn,c}, where yn,c = 1, if the sample was produced by 

the component c, or zero otherwise. The complete data log-likelihood is 

𝑙𝑛ℒ X, Y;𝛉 =   yn,c ln(𝑎𝒄𝑝 𝒙𝑛 |𝑐;𝜽 )

𝐂

𝐜=𝟏

𝐍

n=1

 

The E-step is to compute the conditional expectation of the complete data log-likelihood, the Q-function, 

given X and the current estimate of the parameters. Since the complete data log-likelihood 𝑙𝑛ℒ X, Y;𝛉  is linear 

with respect to the missing Y, the conditional expectation W=E[Y|X,θ] has simply to be computed and put it into 

𝑙𝑛ℒ X, Y;𝛉 . 

Therefore 

Q 𝛉;𝛉𝐢 ≜ Ε 𝑙𝑛ℒ X, Y;𝛉  X,𝛉𝐢 = ln(X, W;𝛉) 

where the elements of W are defined as 

wn,c ≜ E yn ,c X,𝛉𝐢 = P[yn,c = 1|xn,c ,𝛉𝐢] 

The probability can be calculated with the Bayes law 

wn,c =
𝑎𝒄

𝒊𝑝 𝒙𝑛 |𝑐;𝜽𝒊 

 𝑎𝒋𝒊𝑝 𝒙𝑛 |𝑗;𝜽𝒊 C
j=1

       (1) 

 

where 𝑎𝒄
𝒊 is the a priori probability (of estimate θ

i
) and wn,c is the a posteriori probability that yn,c = 1 after 

observing xn. In other words , wn,c is the probability that xn was produced by component c.  

Applying the M-step to the problem of estimating the distribution parameters for C-component Gaussian 

mixture with arbitrary covariance matrices, the resulting iteration formulas are as follows: 

𝑎𝒄
𝒊+𝟏 =

1

𝑁
 wn,c

𝑁

𝑛=1

              (2) 
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𝜇𝒄
𝒊+𝟏 =

 𝒙𝑛wn,c
𝑁
𝑛=𝟏

 wn,c
𝑁
𝑛=𝟏

          (3)  

𝛴𝒄
𝒊+𝟏 =

 wn,c 𝒙𝑛 − 𝜇𝒄
𝒊+𝟏  𝒙𝑛 − 𝜇𝒄

𝒊+𝟏 Τ𝑁
𝑛=𝟏

 wn,c
𝑁
𝑛=𝟏

 (4) 

 

The new estimates are gathered to θ
i+1

. If the convergence criterion is not satisfied, i ← i + 1 and Eqs. 1-4 are 

evaluated again with new estimates. [18] 

The interpretation of the Eqs. 2-4 is actually quite intuitive. The weight ac of a component is the portion 

of samples belonging to that component. It is computed by approximating the component-conditional PDF with 

the previous parameter estimates and taking the posterior probability of each sample point belonging to the 

component c (Eq. 1). The component mean μ0 and covariance matrix Ec are estimated in the same way. The 

samples are weighted with their probabilities of belonging to the component, and then the sample mean and 

sample covariance matrix are computed. 

It is worthwhile to note that so far the number of components C was assumed to be known. Clustering 

techniques try to find the true clusters and components from a training set, but our task of training a classifier only 

needs a good enough approximation of the distribution of each class. Therefore, C does not need to be guessed 

accurately, it is just a parameter defining the complexity of the approximating distribution. Too small C prevents 

the classifier from learning the sample distributions well enough and too large C may lead to an overfitted 

classifier. More importantly, too large C will definitely lead to singularities when the amount of training data 

becomes insufficient. 

 

3.4.2 Non Parametric Classifiers 

The simplest forms of classifier rely on non-parametric methods, because these algorithms make no 

assumptions about the probability distribution of the data, and are often considered robust because they may work 

well for a wide variety of class distributions, as long as the class signatures are reasonably distinct. A wide variety 

of non-parametric spectral classifiers is available. These consist of statistical methods such as the parallelepiped 

or box classifier, the minimum distance classifier, and non-statistical methods such as the neural network, support 

vector machines, and decision tree classifiers. 

3.4.2.1  The Minimum Distance classifier 

Minimum distance classifier is a simple non-parametric classification method, which uses the minimum 

distance between the pixel and the centroid or the most representative spectra  of the training class. This 
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classification method uses different kind of distance metrics in multidimensional feature space to measure  the 

degree of  dissimilarity between  pixels and class centroids computed from training data. The pixel is assigned to 

the least dissimilar class centroid. Like the parallelepiped classifier, this algorithm does not take all the training 

data into consideration. For example, in order to assign a pixel to a specified class, Euclidean distances are 

calculated for each reference vector (or mean), and then the minimum value, i.e. the shortest distance, is 

determined. As a result, the pixel is allocated to the class that is the closest in terms of the estimated 

multidimensional Euclidean distance.  

This type of classifier is mathematically simple and computationally efficient, but has certain limitations. 

Most importantly, it is sensitive to different degrees of variance in the spectral response data. Due to these 

problems, this classifier is not widely used in applications where spectral classes are close to one another in 

measurement space and have high variance. However, it can give results that are comparable to other statistical 

classifiers, such as the maximum likelihood classifier in cases where the classes are well defined in feature space. 

Each classifier uses different functions to calculate distance. Such a distance function is known as a 

metric. Together with the set, it makes up a metric space. In mathematics, a metric space is a set where a notion of 

distance (called a metric) between elements of the set is defined. The metric space which most closely 

corresponds to our intuitive understanding of space is the 3-dimensional Euclidean space. In fact, the notion of 

"metric" is a generalization of the Euclidean metric arising from the four long known properties of the Euclidean 

distance. The Euclidean metric defines the distance between two points as the length of the straight line 

connecting them. More generally: 

A metric on a set Ω is a function called the distance function  or simply distance  𝑑: Ω x Ω → R (where R 

is the set of real numbers).  

∀ 𝒙,𝒚, 𝒛 ∈ 𝑅, d(.,.) is required to satisfy the following conditions: 

 𝑑 𝒙,𝒚 ≥ 0  (equality holds if  𝑥 = 𝑦) 

 𝑑 𝒙,𝒚 =  𝑑 𝒚,𝒙   

 𝑑 𝒙,𝒛 ≤ 𝑑 𝒙,𝒚 +  𝑑(𝒚,𝒛) 

These conditions express intuitive notions about the concept of distance. For example distance function 

between distinct points is positive and the distance operator should yield the same value independent of the order 

of the operands. The triangle inequality means that the distance traversed directly between x and z, is not larger 

than the distance to traverse in going first from x to y, and then from y to z.  

a) Spectral Angle mapper   & Euclidean distance   
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Let  𝒙,𝒚 ∈ 𝑅𝑀  (𝒙,𝒚  non negative, M-dimensional data). Spectral 

angle mapper [24] calculates the angle (figure 3.5) between 

spectra in a M-dimensional space using the concept of inner 

products: 

  𝒙,𝒚 =   𝒙  𝒚 cos 𝒙,𝒚 → 

𝜃 𝒙,𝒚 = 𝑆𝐴𝑀 𝒙,𝒚 =  cos−1  
 𝒙,𝒚 

 𝒙  𝒚 
 , 0 ≤ 𝜃 ≤

𝜋

2
 

Euclidean distance or Euclidean metric is the "ordinary" distance 

between two spectra that one would measure with a ―ruler‖, which can 

be proven by repeated application of the Pythagorean theorem (figure 

3.6). By using this formula as distance, Euclidean space becomes a 

metric space. The associated norm is called the Euclidean norm. 

Let  𝒙,𝒚 ∈ 𝑅𝑀  (𝒙,𝒚 non negative, M-dimensional data): 

𝛥(𝒙,𝒚) =  𝒙 − 𝒚 =   (𝑥𝑖 − 𝑦𝑖)
2

𝑀

𝑖=1

 

1. Invariance to Multiplicative Scaling:  

The angle measured by SAM is invariant to multiplication of and by scalars, because multiplication of a 

vector by a scalar simply increases its extent in a particular direction, but it does not alter the angle it creates with 

another vector. This invariance is useful for hyperspectral processing because atmospheric compensation 

algorithms are limited in their ability to estimate reflectances to within a multiplicative constant.  Also certain 

light conditions in a lab driven experiment could favor bands (non uniform light source) by scaling overall 

spectra. 

𝜃 𝛼𝒙,𝛽𝒚 = 𝑆𝐴𝑀 𝛼𝒙,𝛽𝒚 

=  cos−1  
 𝛼𝒙,𝛽𝒚 

 𝛼𝒙  𝛽𝒚 
 

=  cos−1  
𝛼𝑥1𝛽𝑦1 + 𝛼𝑥2𝛽𝑦2 +  …+  𝛼𝑥𝑀𝛽𝑦𝑀

  𝛼𝑥1 
2 +  𝛼𝑥2 

2 +  …+  𝛼𝑥𝑀 
2  𝛽𝑦1 

2 +  𝛽𝑦2 
2 + …+   𝛽𝑦𝑀 

2
 

= cos−1  
𝑎𝛽 𝑥1𝑦1 + 𝑥2𝑦2 +  …+  𝑥𝑀𝑦𝑀 

 𝑎  𝑏  𝑥1
2 + 𝑥2

2 +  …+ 𝑥𝑀
2 𝑦1

2 + 𝑦2
2 + …+ 𝑦𝑀

2
 = 

 
 
 

 
    cos−1  

 𝒙,𝒚 

 𝒙  𝒚 
 , 0 ≤ 𝑎𝛽

   cos−1  − 
 𝒙,𝒚 

 𝒙  𝒚 
 , 𝛼𝛽 ≤ 0

  

figure 3.5  . Vector representation of two 
spectra for three different λ. 

figure 3.6  . Vector representation of two 
spectra for three different λ. 

a) Spectral Angle mapper   & Euclidean distance   
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             = 𝑆𝐴𝑀 𝒙,𝒚   

In contrast, distances measured by EMD depend on the multiplication of and by scalars, because multiplication of 

a vector by a scalar increases each of the  (𝑥𝑖 − 𝑦𝑖)
2  terms  :  

𝛥(𝛼𝒙,𝛽𝒚) =  𝛼𝒙 − 𝛽𝒚 =   (𝛼𝑥𝑖 − 𝛽𝑦𝑖)
2

𝑀

𝑖=1

≠ 𝛥(𝒙,𝒚) 

Different variations of EMD   can be used in hyperspectral analysis by normalizing the distance:  

𝛥∗(
𝒙

𝒙 
,
𝒚

𝒚 
) =  

𝒙

𝒙 
 −  

𝒚

𝒚 
 =   (

𝑥𝑖
𝒙 
−
𝑦𝑖
𝒚 

)2

𝑀

𝑖=1

 

𝛥∗∗(𝒙,𝒚)=  
1

𝑀
  

(𝑥𝑖−𝑦𝑖)
2

(𝑥𝑖
𝑚𝑎𝑥 −𝑦𝑖

𝑚𝑖𝑛 )2
𝑀
𝑖=1  

2. Additivity  

 

𝐿𝑒𝑡  𝒙,𝒚 ∈ 𝑅𝑀  expressed as partitions of vector elements :  𝒙 =  𝒙𝒂  𝒙𝒃 ,𝒚 =  𝒚𝒂  𝒚𝒃 , where Μ = α + b 

and 𝒙𝒂,𝒚𝒂  ∈ 𝑅𝛼   , 𝒙𝒃,𝒚𝒃  ∈ 𝑅𝑏 . A distance metric is non additive if 

 𝑑 𝒙,𝒚 ≠  𝑑 𝒙𝒂,𝒚𝒂 +  𝑑(𝒙𝒃,𝒚𝒃) 

SAM is a non additive distance function [24]:  

𝑐𝑜𝑠𝜃 𝒙,𝒚 = cos 𝑆𝐴𝑀 𝒙,𝒚  

=  
 𝒙,𝒚 

 𝒙  𝒚 
=  

 𝒙𝒂,𝒚𝒂 +   𝒙𝒃,𝒚𝒃 

  𝒙𝑎 
2 +  𝒙𝑏 

2  𝒚𝑎 
2 +  𝒚𝑏 

2
=  =

1 +  
 𝒙𝒃,𝒚𝒃 
 𝒙𝒂,𝒚𝒂 

 1 +
 𝒙𝑏 2

 𝒙𝑎 2  1 +
 𝒚𝑏 2

 𝒚𝑎 2

 
 𝒙𝒂,𝒚𝒂 

 𝒙𝑎  𝒚𝑎 

=
1 +  

 𝒙𝒃,𝒚𝒃 
 𝒙𝒂,𝒚𝒂 

 1 +
 𝒙𝑏 2

 𝒙𝑎 2  1 +
 𝒚𝑏 2

 𝒚𝑎 2

 𝑐𝑜𝑠𝜃𝛼 = 𝛽𝑐𝑜𝑠𝜃𝛼 =  β
′𝑐𝑜𝑠𝜃𝑏 , 

 where  β,β‘ depend only in  𝒙𝒂,𝒚𝒂,𝒙𝒃,𝒚𝒃.  
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  𝑐𝑜𝑠𝜃 𝒙,𝒚 = 𝛽𝑐𝑜𝑠𝜃𝛼  ≠ 𝑐𝑜𝑠𝜃𝛼 +  𝑐𝑜𝑠𝜃𝑏  𝜃 𝒙,𝒚  ≠ 𝜃𝛼 + 𝜃𝑏 ,(𝜃 = 𝜃 𝒙,𝒚 ,   𝜃𝛼 = 𝜃𝛼 𝒙𝒂,𝒚𝒂 ,    𝜃𝑏 =

𝜃𝑏 𝒙𝒃,𝒚𝒃  

By observing  β=
1+ 

 𝒙𝒃,𝒚𝒃 

 𝒙𝒂,𝒚𝒂 

 1+
 𝒙𝑏 

2

 𝒙𝑎 
2
 1+

 𝒚𝑏 
2

 𝒚𝑎  
2

= 𝑐𝑜𝑠𝜃(𝒙𝒂,𝒙𝒃)𝑐𝑜𝑠𝜃(𝒚𝒂,𝒚𝒃)(1 +  
 𝒙𝒃,𝒚𝒃 

 𝒙𝒂,𝒚𝒂 
) , the first two terms are always less 

than one and the third term is unconstrained (although for reflectance signals from the reflective regime, which 

must be positive, this term is necessarily greater than one).  Given two (subset) spectra  𝒙𝒂,𝒚𝒂,  β is calculated 

with  one or more bands (𝒙𝒃,𝒚𝒃) that are selected from the unused bands and appended to the starting set [24]. 

After selecting the initial subset of bands, we would like β to be as small as possible to broaden the initial angle.   

Any unused band may be ranked by its associated value of β, and the band having the lowest value of β is added 

to the initial subset of bands. Then, is reevaluated with the new band, and is updated for the remaining unused 

bands. The process may be repeated iteratively, until a stopping condition is met. One logical criterion is when no 

remaining bands exist that yield β<1. This is equivalent to adding bands to increase the angle until no bands exist 

having β<1 [24].  

The property of additivity for Euclidean distance can only be satisfied for (EMD)
2
 because of the square root: 

𝛥2(𝒙,𝒚)  =    (𝑥𝑖 − 𝑦𝑖)
2

𝑀

𝑖=1

 =   (𝑥𝑖 − 𝑦𝑖)
2

𝑖  ∈ 𝛼

 +   (𝑥𝑖 − 𝑦𝑖)
2

𝑖  ∈ 𝛽

 

3. Monotonicity  

A distance metric is monotonic if its value increase monotonically as the dimension of its operands, x and y, 

increase. By examining (1 +  
 𝒙𝒃,𝒚𝒃 

 𝒙𝒂,𝒚𝒂 
), it is clear that the  term may be greater or less than one, depending on the 

values in 𝒙𝒂,𝒚𝒂,𝒙𝒃,𝒚𝒃 . Thus, the addition of more spectral bands does not always guarantee an increase in angle 

(non monotonic) . On the other hand for EMD it is evident that an addition of bands to x,y  cannot decrease 

distances because of additional terms   (𝑥𝑖 − 𝑦𝑖)
2. Thus, nonzero spectral bands necessarily lead to an increase in 

the distance metric  (monotonic). We can conclude that the contrast between two signals measured by EMD 

increases with the number of bands.  

Various distance  functions  have been proposed for hyperspectral analysis but they have not gained much 

acceptance and credibility as SAM and EMD. This may be because the metric is not as intuitive, or because it 

does not have any physically meaningful properties, as SAM does, or even because they do not meet the criteria 

for a metric. However, this fact alone does not disqualify it from being useful. The three properties of a distance 

metric are desirable, but not absolutely necessary. There exist several different approaches for what a distance 

function could ―measure‖. In most cases a direct transformation on the spectra‘s values reveal underlying 

properties such as correlation and independence,  surface reflectance attributes or even probabilistic behaviors . 
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b)  Spectral Correlation Mapper (SCM) [25] 

Let   𝒙,𝒚 ∈ 𝑅𝑀  and   𝑥 ,𝑦   are the sample means of  𝒙,𝒚  respectively. The distance that  SCM calculates 

is:  

𝑆𝐶𝑀(𝒙,𝒚)  =  
 (𝑥𝑖 −  𝑥 )(𝑦𝑖 −  𝑦 )𝒊

  (𝑥𝑖  −  𝑥 )2
𝑖   (𝑦𝑖 −  𝑦 )2

𝑖

 

This distance function effectively calculates a statistical measure of independence known as Pearson 

correlation coefficient . In probability theory and statistics, correlation, (often measured as a correlation 

coefficient), indicates the strength and direction of a linear relationship between two random variables. In general 

statistical usage, correlation or co-relation refers to the departure of two variables from independence. In this 

broad sense there are several coefficients, measuring the degree of correlation, adapted to the nature of data. A 

number of different coefficients are used for different situations. The best known is the Pearson product-moment 

correlation coefficient, which is obtained by dividing the covariance of the two variables by the product of their 

standard deviations. From a geometric point of view a correlation angle is defined as: 

 𝑆𝐶𝐴 𝒙,𝒚 = 𝑎𝑟𝑐𝑐𝑜𝑠(
𝑆𝐶𝑀 𝒙,𝒚 + 1

2
) 

 

 

The term 𝑆𝐶𝑀 𝒙,𝒚 =  
 (𝑥𝑖 − 𝑥 )(𝑦𝑖 − 𝑦 )𝒊

  (𝑥𝑖 − 𝑥 )2
𝑖   (𝑦𝑖 − 𝑦 )2

𝑖
 is the cosine of  𝒙,𝒚, shifted by their sample means. In 

other words  SCM  resemblances  SAM as a normalized inner product shifted by mean:     𝑐𝑜𝑠(𝑆𝐴𝑀 𝒙 − 𝑥 , 𝒚 −

 𝑦  )  =  𝑆𝐶𝑀 𝒙,𝒚  SCM is an improved version of  SAM, because it can recognize both positive and negative 

correlations. The above table summarizes SCM, SAN differences. 

Table  3.7  : SAM & SCM comparison 
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In the left  of table 3.7 two spectra that we want to classify (blue + light blue) present different monotony  

from reference spectrum . SAM‘s cosine measures differences without  recognizing the negative correlation 

between them. On the other hand  SCM  recognizes the negative cross-correlation of data "measuring" -1, that is 

to say data change values at opposite directions. In the second table where spectra values have more fluctuations  

SAM  measures almost identical distances (target B,  target C) for vectors that differ considerably as it appears  

with a simple observation. 

c) Spectral Information Divergence (SID) [26] 

Spectral Information Divergence (SID) is an information theoretic spectral metric which is derived from 

the concept of divergence in information theory.  In order to describe the probabilistic behavior of spectra 

signatures we must define an appropriate probability space (𝛺,𝛴,𝛲)  associated with it.  

Let   𝐱, 𝐲 ∈ RM  hyperspectral pixel vectors:  𝒙=[𝑥1 𝑥2 … 𝑥𝑀] , 𝒚=[𝑦1 𝑦2 … 𝑦𝑀].  

Then 𝐱, 𝐲 can be modeled as random variables by defining appropriate probability distributions. All 

component in  𝐱, 𝐲 are nonnegative due to the nature of radiance or reflectance so we can normalize to the range 

[0,1] by defining 

 𝑝𝑗 =  
𝑥𝑗

 𝑥𝑖
𝑀
𝑖=1

  , 𝑞𝑗 =  
𝑦𝑗

 𝑦𝑖
𝑀
𝑖=1

  so that 𝒑 =  𝑝𝑚  𝑚=1
𝑀 , 𝒒 =  𝑞𝑚  𝑚=1

𝑀  are the desired probability vectors 

resulting from pixel vectors 𝐱, 𝐲 respectively.  

 Using  𝒑,𝒒 we define Spectral Information Divergence by  

𝑆𝐼𝐷 𝐱, 𝐲 = D 𝐱 || 𝐲  +  𝐲 || 𝐱  , where 

D 𝐱 || 𝐲 =   𝑝𝑖
M
i=1 log(

𝑝 𝑖

𝑞𝑖
) and  D 𝐲 || 𝐱 =   𝑞𝑖

M
i=1 log(

𝑞𝑖

𝑝 𝑖
). 

SID considers each pixel as a random variable and uses its spectral histogram to define a probability 

distribution. In other words this distance function views each pixel spectrum as a random variable and then 

measures the discrepancy of probabilistic behaviors between their spectra. The term  D 𝐱 || 𝐲  is called the 

relative entropy of Y with respect to x which is also known as Kullack-Leihler information function, directed 

divergence or cross entropy. Spectral Information Divergence can be used to measure the spectral similarity 

between two pixel vectors X  and reference pixel vector y.  
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d)  Spectral Gradient Angle (SGA) 

Spectral gradient [27] is a surface reflectance descriptor which is invariant to scene geometry and incident 

illumination for smooth diffuse surfaces. The invariant properties of the spectral gradients by examining the rate 

of change in reflected intensity with respect to wavelength make them a particularly appealing tool in many 

diverse areas of computer vision such as color constancy, tracking, scene classification, material classification, 

stereo correspondence, even re-illumination of a scene. 

The measurement of the energy of radiation, an objective quantity that can be measured in W, is called 

radiometry. When the spectral sensitivity of the eye is taken into account, the measurement is called photometry, 

where light is measured in lumens. Photometry is semi-objective, intermediate between the physical stimulus of 

energy and the psychophysical response of brightness.  

Photometric data is a readily available dense source of information in intensity images, but is not widely 

used in computer vision because of its dependence on viewpoint and incident illumination. Computer vision 

algorithms main objective is to identify objects from an imaged scene. Although reflected light is a primary 

source of information for object identification, slight variations in viewing conditions often cause large changes in 

an object's appearance. Different approaches have been developed to eliminate variations:   

 Color/cue  constancy algorithms, 

 identifying reflectance-based object properties that are invariant to illumination  

Most color techniques assume that the spectral reflectance functions have the same degrees of freedom as 

the number of photoreceptor classes (typically three.) Thus, none of these methods can be used in grayscale 

images for extracting illumination invariant color information.  

Spectral Gradient is an invariant to illumination distance metric by identifying materials with the same 

reflectance under variable viewing conditions and discriminating materials with distinct reflectance functions. 

  Reflected light Ι from each point p = (x, y, δ) at wavelength λ in a imaged scene depends on the light 

source , E and the surface reflectance S of the materials composing the scene: 

I(ρ, ι )  = E(ρ, ι)S(ρ , ι )  

The reflectance function S(p, λ) may depend on the surface material, the geometry of the scene and the viewing 

and incidence angles. When the spectral distribution of the incident light does not vary with the position of the 

light, the geometric and spectral components of the incident illumination are separable: 

E(ρ , ζ , υ, ι)= e(ρ , ι )E(ρ , ζ ,  υ) 

where  e(ι )  is the illumination spectrum. 
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I π,λ  = e π,λ E ρ, ζ, υ, S ρ, ι →  

𝑙𝑛 𝐼 𝜌, 𝜆  =   ln[e ρ,ι ] + ln[E π, θ, θ, ] + ln[S π, λ ] → 

𝜕 𝑙𝑛 𝐼 𝜌, 𝜆  

𝜕𝜆
=

1

e π,λ 

𝜕e π,λ 

𝜕λ
+

1

S ρ, ι 

𝜕S ρ, ι 

𝜕λ
 

  

1. Invariance to Incident Illumination 

Although the spectral distribution of the most commonly used indoor-scene illuminations sources (i.e., 

tungsten and fluorescent light) is not constant, one can assume that e changes very slowly over small 

increments of λ. This means that its derivative with respect to wavelength is approximately zero. 

𝜕 𝑙𝑛 𝐼 𝜌, 𝜆  

𝜕𝜆
=

1

S ρ, ι 

𝜕S ρ, ι 

𝜕λ
  

2. Invariance to Geometry and Viewpoint 

 Lambertian Model    

 𝑆 𝜌, 𝜆 = 𝑐𝑜𝑠𝜃 𝜌 𝑝 𝜌, 𝜆 ,      where  p(ρ, ι )  is the albedo or diffuse reflection   coefficient at 

point p. 

 Smooth Diffuse Reflectance Model olff[30]):  

    𝑆 𝜌, 𝜆 = 𝑐𝑜𝑠𝜃 𝜌 𝑝 𝜌, 𝜆  1 − 𝐹 𝜃 𝜌 ,𝑛 𝜌    1 − 𝐹  𝑠𝑖𝑛−1  
𝑠𝑖𝑛𝜑  𝜌 

𝑛 𝜌 
,

1

𝑛 𝜌 
    ,  where  ζ (p) 

and  υ(p) are the incidence and viewing angles respectively, p(p, ι )  is the surface albedo, F() is 

the Fresnel reflection coefficient, and n is the index of refraction.  

  The partial derivative of the incident illumination with respect to wavelength for both models is always a 

function of albedo because all the other terms depend only in a specific point π: 

𝜕 𝑙𝑛 𝐼 𝜌, 𝜆  

𝜕𝜆
=  

1

p ρ, ι 

𝜕p ρ, ι 

𝜕λ
  

Notice from the last derivative that spectral gradient encodes  information at discrete spectral locations about how 

fast the surface albedo changes as the spectrum changes. It is a profile of the rate of change of albedo with respect 

to wavelength over a range of wavelengths. 

In order to use spectral gradient as a pixel distance metric we can built the spectral gradient angle [29]: 
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𝜃𝑆𝐺  π1
, π

2
 =  cos−1

 

 
  

𝜕 𝑙𝑛 𝐼 π
1

,𝜆  

𝜕𝜆
,
𝜕 𝑙𝑛 𝐼 π

2
, 𝜆  

𝜕𝜆
 

 
𝜕 𝑙𝑛 𝐼 π

1
,𝜆  

𝜕𝜆
  

𝜕 𝑙𝑛 𝐼 π
2

, 𝜆  

𝜕𝜆
 
 

 
 

, 0 ≤ 𝜃 ≤
𝜋

2
 

 

e) SID – SAM Mixed Measure [26] 

 Combining SID and SAM into a new measure which is the product of them, a new hyperspectral distance 

function can be defined as it increases spectral discriminability because it makes two similar spectral signatures 

even more similar and two dissimilar spectral signatures more distinct:  

𝑆𝐼𝐷𝑆𝐴𝑀1 𝒙,𝒚 = 𝑆𝐼𝐷 𝒙,𝒚 ∗ tan(𝑆𝐴𝑀 𝒙,𝒚 ) 

𝑆𝐼𝐷𝑆𝐴𝑀2 𝒙,𝒚 = 𝑆𝐼𝐷 𝒙,𝒚 ∗ sin(𝑆𝐴𝑀 𝒙,𝒚 ) 

 

f)  Spectral similarity scale (SSS) [28]  

The mathematic definition of the SSS is founded on the definition of vector  identity (two identical 

vectors have the same magnitude and  direction) and the assumption that vector magnitude is independent of 

direction.  Extrapolating from the definition of vector identity to similarity leads to the statement that two  

similar vectors must have both similar magnitude and direction.  Thus, the similarity of two reflectance spectra is 

completely defined by a ―similarity vector‖ consisting of two elements that separately describe magnitude and 

direction similarity.  The magnitude of the similarity vector is the scalar representation of spectral similarity while 

the direction of the similarity vector indicates the relative influence of the two components.  This concept can be 

applied to high dimensional reflectance data and thus defines the Spectral  Similarity Scale; numbers on the scale 

are termed Spectral  Similarity Values (SSV). The elements of magnitude and direction are described by a 

traditional distance function like EMD and pearson coefficient respectively. It is possible to use different 

components that capture the notion of magnitude and direction to define ―similarity vectors‖. Another 

combination could be SID or GSA for magnitude and SCM for direction. 

  𝑆𝑆𝑉1 =   𝐸𝑀𝐷2 + 𝑆𝐶𝑀2  

𝑆𝑆𝑉2 =   𝑆𝐼𝐷2 + 𝑆𝐶𝑀2  
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g)  Minimum Distance classifiers with statistical parameters 

 Minimum Distance to Means:  

  

Let   𝐱, 𝐲 ∈ RM  hyperspectral pixel vectors:  𝒙=[𝑥1 𝑥2 … 𝑥𝑀] , 𝝁𝒚=[𝜇𝑦  𝜇𝑦 …  𝜇𝑦 ], where 𝜇𝑦  = 

sample mean of reference vector y  

𝐸𝑀𝐷2 𝒙,𝝁𝒚 =  𝒙 − 𝝁𝒚 
2

=   𝑥𝑖 − 𝜇𝑦 
2

𝑀

𝑖=1

= (𝒙 − 𝝁𝒚)𝑇(𝒙 − 𝝁𝒚)  

In this case, pixels are assigned to whichever class has the smallest Euclidean distance to its mean. The classes 

are, by default, assumed to have probability density functions with common covariances that are equal to the 

identity matrix. This is equivalent to assuming that the classes all have unit variance in all features and the 

features are all uncorrelated to one another. Geometrically, for the two-class, two-feature case, figure shows the 

decision boundaries for this classifier would appear  for a given set of classes distributed as the two elongated 

oval areas. It is seen in this case that the decision boundary for the Minimum Euclidean Distance classifier is 

linear and is in fact the perpendicular bisector of the line between the two class mean values. Its location is 

uninfluenced by the shapes of the two class distributions.  

 

 Fisher‘s Linear Discriminant:    𝑑𝐹𝐿𝐷 = (𝒙 − 𝝁𝒚)𝑇𝛴−1(𝒙 − 𝝁𝒚) 

In this case, the classes are assumed to have density functions with common covariance specified by  𝛴−1. This is 

equivalent to assuming that classes do not have  a common covariance all features, the features are not necessarily 

uncorrelated, but all classes have the same variance and correlation structure. In this case the decision boundary in 

feature space will be linear, but its location and orientation between the class mean values will depend on  the 

combined covariance for all the classes in addition to the class means.  

Geometrically, for the two-class, two-feature case, Figure shows how the decision boundary for this 

classifier would appear for a given set of classes indicated by the two elongated oval areas. It is seen in this case 

that the decision boundary for the Fisher Linear Discriminant classifier is also linear but its orientation and 

location of the combined distribution are influenced by the overall shape. 

 

 Quadratic (Gaussian) Classifier:  𝑑𝑄𝐺 = −
1

2
ln 𝛴𝑦  −

1

2
 𝒙 − 𝝁𝒚 

𝑇
𝛴𝑦

−1 𝒙 − 𝝁𝒚  

 

In this case the classes are not assumed to have the same covariance, each being specified by 𝛴𝑦 . The 

decision boundary in feature space will be a second-order hyper surface (or several segments of second order 
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hyper surfaces if more than one subclass per class is assumed), and its form and location between the class mean 

values will depend on the  𝛴𝑦  's.    

Geometrically, for the two-class, two-feature case, Figure shows how the decision boundaries for this 

classifier would appear for a given set of classes indicated by the two elongated oval areas. Interestingly, if the 

data for the two classes had the mean values and class and feature variances as indicated, but with features 

uncorrelated with one another, the data would be spread over the regions indicated by the circles. Under these 

circumstances the error rate, as indicated by the overlapped area would be substantially greater.  This is another 

illustration of the fact that correlation does not always imply redundancy and features being uncorrelated is not 

necessarily desirable.  Note that as described, the minimum distance to means, the Fisher  linear discriminant, and 

the quadratic classifier are all maximum likelihood classifiers. They form a hierarchically related set and differ 

only in the assumptions about the details of  the class covariance functions.  

3.5 Accuracy assessment 

The results of any classification process applied to hyperspectral data classification must be quantitatively 

assessed in order to determine their accuracy. As suggested by Lillesand and Kiefer (1994), a classification 

process is not complete until its accuracy is assessed. There may be different ways to assess the accuracy of a 

classification process. Accuracy assessment can be qualitative or quantitative, expensive or inexpensive, quick or 

time consuming, well-designed and efficient. The purpose of quantitative accuracy assessment is the identification 

and measurement of map errors. Quantitative accuracy assessment involves comparison of an area on a map 

against reference information of the same area, assuming reference data to correct. There are number of ways to 

determine the degree of error in the end-product, which is typically a thematic map or image, by measuring 

overall classification accuracy, and calculating  the Kappa statistics for a given number of test data. 

3.5.1 Confusion Matrix 

The accuracy of classification has traditionally been measured by the overall accuracy by generating a 

confusion matrix and determining accuracy levels by dividing the total number of correctly classified pixels (sum 

of major diagonal of confusion matrix, also called actual agreement) by the total number of reference pixels. 

However as a single measure of accuracy, the overall accuracy gives no insight into how well the classifier is 

performing for each of the different classes (Fitzgerald and Lees, 1994). In particular, a classifier might perform 

well for a single class that accounts for a large proportion of the test data and this will create a bias in overall 

accuracy, despite low class accuracies for other classes. To avoid such a bias when assessing the accuracy of a 

classifier, it is important to consider the individual class accuracies. Individual class accuracy can be obtained by 

dividing the total number of correctly classified pixels in that category by the total number of pixels of that 

category. Individual class accuracy can be determined by using the reference data (called producer's accuracy). 



64 

The resulting percentage accuracy indicates the probability that a reference pixel will be correctly classified.  

Story and Congalton (1986) suggested that producer's accuracy is a measure of error of omission. However, a 

misclassification error is not only an omission from the correct class but also a commission into another class. 

Individual class accuracy obtained from the classified data in that category (user's accuracy) is a measure of  error 

of commission (Story and Congalton, 1986). 

 

3.5.2 Kappa statistics 

Generally, the confusion matrix is an appropriate tool for assessing the accuracy of hyperspectral  

classifications. However, Congalton (1991) suggested the use of the Kappa coefficient as a suitable measure of 

the accuracy of a thematic classification. It is a measure of the randomness of the classification results. It 

measures the difference between the actual agreement in the confusion matrix (i.e., the agreement between the 

classification and the reference data as indicated by the major diagonal) and the chance agreement which is 

indicated by row and column totals. It provides a better measure of the accuracy of a classifier than the overall 

accuracy, and it takes into account the whole confusion matrix rather than the diagonal elements alone.   Cohen's 

kappa coefficient is a statistical measure of inter-rater agreement. It is generally thought to be a more robust 

measure than simple percent agreement calculation since κ takes into account the agreement occurring by chance. 

Cohen's kappa measures the agreement between two raters who each classify N items into C mutually exclusive 

categories.  The equation for κ is: 

𝑘 =
𝑃𝑟 𝑎 − 𝑃𝑟 𝑒 

1 − 𝑃𝑟 𝑒 
  

,where Pr(a) is the relative observed agreement among raters, and Pr(e) is the hypothetical probability of chance 

agreement. If the raters are in complete agreement then κ = 1. If there is no agreement among the raters (other 

than what would be expected by chance) then κ ≤ 0. 

The Kappa statistic is calculated from the confusion matrix by using the following formula: 

𝐾 =
𝑛 𝑥𝑖𝑖

𝑝
𝑖=1 − 𝑥𝑖𝑜𝑥𝑜𝑖

𝑝
𝑖=1

𝑛2 −  𝑥𝑖𝑜𝑥𝑜𝑖
𝑝
𝑖=1

 

,where 𝑛  = total number of pixels used for testing the accuracy of a classifier ,P=number of classes,               

 𝑥𝑖𝑖
𝑝
𝑖=1  = sum of diagonal elements of confusion matrix,  𝑥𝑖𝑜

𝑝
𝑖=1  = sum of row I,   𝑥𝑜𝑖

𝑝
𝑖=1  = sum of column i. 
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3.5.3 Statistical separability measures  

           In many applications we are required to identify a target pixel extracted from an unknown image scene 

using an existing spectral library or database Δ. In this case, it is of interest to know what is the likelihood of the 

pixel in question being identified as one of the signature spectra in  Δ. Let  {sj}j=1
J

 be  J   spectral signatures in Δ  

and t   be a target pixel to be identified using . Let m(.,.) be any given hyper spectral measure. We define the 

spectral discriminatory probabilities of all sj 's in Δ  with respect to t   as follows: 

pt,Δ
m  i =

m(t, si)

 m(t, sj)
J
j=1

, for i = 1,2,… , J 

where  m(t, sj)
J
j=1  is a normalization constant determined by t  and  Δ. The resulting probability vector 

pt,Δ
m = (pt,Δ

m  1 , pt,Δ
m  2 ,… , pt,Δ

m  J )Τ 

    is called the spectral discriminatory probability vector of Δ with respect to t[26]. The target pixel t can be 

identified by selecting the one with the smallest spectral discriminatory probability because t and the selected 

one have the minimum spectral discrimination. 

If  we are given two spectral similarity measures, how do we evaluate which of the two is more effective? To 

meet this need ,a criterion, spectral discriminatory power [26], is developed. It is designed based on the power 

of discriminating one pixel from another relative to a reference pixel d. Assume that m(.,.) is any given 

hyperspectral measure. Let d be the spectral signature of a reference pixel and si , sj be the spectral signatures of 

two pixels. We define spectral discriminatory power of m(.,.) by 

PWm (si , sj; d)=max{
m(si ,d)

m(sj ,d)
,

m(sj ,d)

m(si ,d)
} 

   The PW provides an index of spectral discrimination capability of a specific hyperspectral measure m(.,.) 

between any two spectral signatures relative to d. Obviously, the higher the PW is,the better discriminatory 

power m(.,.)    has.  

   In addition, PW is symmetric and bounded below by one, i.e., PW >= 1 with equality if and only ifsi = sj .  

    Since  pt,Δ
m = (pt,Δ

m  1 , pt,Δ
m  2 ,… , pt,Δ

m  J )Τ is the spectral discriminatory probability vector of t using a spectral 

library Δ, we can further define ηhe spectral discriminatory entropy [26] of Δ with respect to t by 

Η
m t; Δ =  pt,Δ

m  j logpt,Δ
m  j 

J

j=1

 

   which provides the uncertainty measure of identifying t using the spectral signatures in  Δ. A smaller Η
m t; Δ  

indicates a better chance to identify t. 
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Chapter 4 

Experimental Methods and Results (Case study: El Greco‘s pigment identification)  

As in forensics, analyzing a piece of artwork typically begins with the most fundamental visualization 

tool of all: the human eye. A microscopically small sample of pigment is taken from a painting and placed under a 

standard microscope for examination. A scanning electron microscope is then typically used to look at the same 

sample with higher magnification. X-ray fluorescence and radiography are also routinely used to gather elemental 

data. Various spectroscopic techniques are then employed, depending on the desired application for the 

identification of pigments. 

Application of physical/chemical destructive methods for pigment analysis, as mentioned above, involves 

the extraction of a specimen in order to study its structure and chemical composition. Although the dimensions of 

specimens must not exceed a few square millimeters in area and a few cubic millimeters in volume, researchers 

have to identify surfaces characterized by high spatial heterogeneity.  Also, repetitive sampling is a prohibited 

procedure due to the historical value of the artwork, its small dimensions or even its maintenance condition. 

Microchemistry, Selective coloration with Electronic Microanalysis, X-ray Diffractometry, Mass Spectrometry, 

Gas Chromatography, Thin layer Chromatography, Neutron/Proton Activation Analysis [32] , laser induced 

breakdown spectroscopy are some of the established methods for exploring pigment materials. 

 In an attempt to cancel the invasive nature of these methods, optical spectroscopy has been extensively 

applied and evaluated in the scientific analysis and documentation of artworks. Application of modern spectral 

processing systems refers only to the study of various colors‘ spectral responses composing an artwork without 

physically extracting pigment materials. X-ray Fluorescence spectroscopy,  Infrared Absorption spectroscopy, 

Ultraviolet Fluorescence spectroscopy, Near-Infrared Reflectroscopy, Gamma Spectroscopy, (surface-enhanced) 

Raman spectroscopy, Fourier transform infrared etc. have provided a unique insight into the material composition, 

technique of construction and deterioration effects  which are essential for the analysis and helpful in determining 

the optimum preservation scheme. However, the above techniques suffer from the major drawback that they are 

capable of acquiring spectral information from only one -visually selected- spatial point. 

These limitations highlight the need for the development of spatially resolved spectral acquisition 

methods and technologies, capable of performing spectral mapping of the area under study. Imaging spectroscopy 

as the application of reflectance spectroscopy to every pixel in a spatial image of an artwork can be used to detect 

individual absorption features of a color pigment due to specific chemical bonds. Hyperspectral processing 

systems implemented by high spatial and spectral resolution imaging monochromators and devices (HySI) can be 
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employed for the analysis of artworks as they provide a non-destructive information extraction framework, 

enabling an in-depth, in-situ and real time analysis without compromising the artwork‘s integrity.  

Besides the non-destructive analysis advantage of imaging spectroscopy, HySI systems offer a fast, 

high quality and real time provision of information data for comparative analysis available even after the 

completion of conservation works. Moreover, their capabilities of capturing images in a range of hundreds narrow 

spectral bands combined with versatile software, provide an attractive technology for a close examination of 

subtle variances in color pigments‘ materials and binding media.  

Other non-destructive methods are:  Reflected UV photography, Ultraviolet Fluorescence Photography, 

Infrared Reflection Photography, Photography with Color infrared film, Optical coherence tomography, 

Radiography. 

4.1 Hyperspectral acquisition system 

Typical HySI configurations involve coupling an imaging monochromator with an imaging detector, 

while both are interfaced with personal computer elements and controlling units.  Imaging monochromators 

although implemented by different technologies  operate as band pass filters (acousto-optic, liquid crystal tunable 

filters, and Fourier transformed interferometers) tuning the full spectral range to  the specific application 

requirements. Then an imaging detector captures the reflected image and special developed software is used to 

analyze the acquired spectral images.  However these configurations fail to provide a sufficient amount of 

diagnostic information due to its technological limitations. In particular they suffer from narrow spectral range, 

since different modules are required to cover the visible or the (N)IR spectral range, low throughput and image 

shifting. Low throughput of these systems necessitates the use of a high power light source for the illumination of 

the object in order to obtain acceptable image brightness. But this could be harmful for the object, since high 

power illumination can provoke photo thermal and/or photochemical damage.  

In an attempt to overcome the above-mentioned limitations and provide a HySI system capable of real 

time spectral imaging (both reflectance and fluorescence) with high spectral resolution and high throughput ratio, 

Dr. Balas et al [34,35] developed an all-optical imaging monochromator functioning as an electronically tunable 

narrow band pass optical filter. Displacement of the optical elements of the latter, results in the tuning of the 

imaging wavelength, which is performed with the aid of electromechanical manipulators controlled from the PC 

via microcontroller. Mu.SIS HS‘ (figure 4.1) technical features are: 

 

 



68 

 

 Spectral imaging acquisition of 5nm full width half maximum (FWHM), performing in 34 spectral bands 

of about 20nm each, in the spectral range 360nm (Ultraviolet)–1550nm (Near Infrared).  

 Real time capturing & displaying images with an analysis of 1600x1200 pixels. 

 Minimum transmittance is 40% across its operational spectral range, which determines the high 

throughput of the developed monochromator.  

 Tuning spectral range of the filtering system is matched with the responsivity spectral range of the charge 

coupled device(CCD) image sensor, with the capability of extending to longer wavelengths, up to the 

mid-infrared range (photocathode). 

 A megapixel CCD camera, for feeding back the monochromator signal,  based on the IEEE-1394 data 

transferring protocol, capable of acquiring images at a rate of 15 frames/s at full resolution and of more 

than 30 frames/sat VGA resolution. 

 A special calibration procedure [36] is executed before any imaging procedures, compensating for the 

wavelength dependence of the response of the electro optical parts of the system, such as CCD, 

illuminators, etc, thus ensuring the full exploitation of the CCD‘s  dynamic range. 

 Operating in imaging mode, an image at each wavelength band is acquired while, in spectroscopy mode, a 

fully resolved diffuse reflectance and/or fluorescence spectrum per image pixel can be recorded (image 

spectral cube). The combination of spectral and color imaging with calibration enables the system to 

operate as either Imaging Spectrometer or Imaging Colorimeter. 

 

 

 

figure 4.1: MuSIS HS  
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4.2 Data Description  

Evaluating Mu.SIS HS performance in the non-destructive analysis of objects of artistic and historic 

value,  spectral imaging was performed for several cases of interest with different data sets such as: (1) recovery 

of overwritten script, (2) pigment identification and mapping (3) assessment of laser cleaning effects  [33], (4) 

pigment identification in El greco‘s Concert of Angels (1608-1614) [37].   

By observing the reflectance spectra at different wavelengths it was possible to determine the ideal band 

(600nm) in which the underlying previously erased inscription became non-transparent, for the case of 

overwritten script. Moreover, pigment identification was possible by determining the reflectance behavior of color 

pigments in a series of spectral images and matching them with spectral profiles of reference samples developed 

for comparison. For example, it was clearly seen that the variation of reflectance as a function of the wavelength 

of a red paint under study, matched with a vermilion reference sample, while it was in clear contrast with a mars 

red reference sample.  In the case of cleaning effects,  a set of spectral images of a detail of an old manuscript 

cleaned with a 532nm-second harmonic Q-switched Nd:YAG and an excimer laser at  248 nm were used. The 

Nd:YAG induced surface alterations which, while were not seen in the visible, they were well depicted in the 

380nm images. The captured spectral images also showed an in-depth damage provoked by the excimer laser. 

A similar methodology  for identifying El greco‘s Concert of Angels (figure 4.2) pigment materials was 

used:  

  

Figure 4.2: Spectral imaging on El greco’s Concert of Angels (1608-1614). 
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1. The first step was to develop a manufacturing process for replicating both color pigments and the 

underlying layer of canvas or wooden panel with the ones used in painter‘s era, acquiring materials of 

very similar chemical composition. In particular, two series of pigment samples were composed, one for 

oil-painting on prepared canvas and another one for egg painting (egg tempera pigments) on prepared 

wooden plate. 

 Wooden plates for egg pigments were constructed from sea plywood, coated with a mixture of 

animal bone glues and covered with cotton material of cellular texture (the mixture and cotton 

combination was known as a "size"). Once the size dried, layer upon layer of gesso applied, each 

layer sanded down before the next applied (2-3 layers totally) before a smooth hard surface 

emerged. 

 For oil painting sampling, canvas was stretched across 5 wooden frames made of linen. Early 

canvas as in the case of El Greco‘s Concert of Angels was made of linen, a sturdy brownish fabric 

of considerable strength. Linen is particularly suitable for the use of oil paint. Gesso of 10-12 layers 

totally was applied. 

 34 different pigments of various colors (red, blue, green, ochre, black & white for egg-painting and 

red, blue, green, ochre and yellow for oil-painting, table 4.3) from KREMER PIGMENTE‘s 

catalogue [40] were selected and applied on the wooden panels or canvas  with different 

preparation procedures according to oil (linseed oil as binding media) or egg (egg yolk as binding 

media) sampling scheme.  

 Gradually darker tones of each pigment were applied, by painting consecutive layers in different 

areas of plates or canvas, acquiring a sufficient amount of 108 representative samples (figure 4.4-

4.11)  

 Carbon black  lines  were drawn  on  the  substrate   for simulating  the presence  of  under 

drawings.In order to assess the selected color pigments as suitable for building up an El Greco color 

reference database, in terms of similarity with the original pigments, X-ray Diffractometry 

technology was used.  The crystalline structure of pigments was compared with crystalline profiles 

of pigments known to have been used by El Greco. The latter profiles have been obtained from 

other works using destructive methods [37]. 
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Pigment Name Pigment 

code 

Pigment’s Concentration 

per egg yolk ml 

Pigment’s Concentration 

per linseed oil ml 
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 Table 4.3 :  Selected pigments from KREMER PIGMENTES’s catalog 
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figures 4.4,4.5:  reference samples  of black, white and yellow pigments. 

Wood plate 

Canvas 
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figures 4.4,4.5:  reference samples  of red pigments. 

Wood plate 

Canvas 
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figures 4.6,4.7:  reference samples  of blue pigments. 

Wood plate 

Canvas 
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figures 4.8,4.9:  reference samples  of ochre pigments. 

Wood plate 

Canvas 
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figures  4.10,4.11:  reference samples  of green pigments. 

Wood plate 

Canvas 
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2. Spectral imaging with Mu.SIS was performed at 320-1550 nm both for pigments (figures 4.12) and for 

several areas of El Greco‘s Concert of Angels (figure 4.13).   

 

 

 

figure 4.12:  example of spectral imaging of red egg pigments at various wavelengths. 
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figure 4.13:  example of spectral imaging of an upper left portion from  El Greco’s painting. 
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3. After processing reference color pigments with an spectrometer, an absorption profile (table 4.14)  based 

on near infrared reflectance was developed, as at these wavelengths, pigments exhibited the most 

discrimination. Each color pigment presented a specific absorption behavior at different spectral ranges 

and with pseudocolor information from selected (N)IR bands, enabled the identification of unknown 

pigments on Angels Concert [37]. For example, the green cloth from the second angel from the left, 

exposed definite spectral similarities with  Malachite‘s reference color pigment. In particular, spectral 

images sampled from different areas of the green cloth, displayed blue-green pseudocolor, 100% 

absorption at IR bands and low percentage of fluorescence at Ultraviolet, which matched quite well with 

malachite‘s spectral profile.  Further identification of the rest sample areas across the painting was aided 

by appropriate software.  

  

The results of the above non-destructive analysis for all cases clearly shown that Mu.SIS could detect, 

identify and map the distribution of A&M materials—both original and added, based on their spectral 

characteristics, in a strictly non-destructive way. It was possible to differentiate and identify A&H materials with 

similar coloration but of different chemical nature, by simply tuning the imaging wavelength, inspecting the 

narrow band images of both A&H object and material models and comparing their reflectance (or fluorescence) 

characteristics. Also, pigment identification of El Greco‘s Concert of Angels was possible by comparing sample 

Figure 4.14: % absorption at near infrared of reference samples  

             ~              ~              ~              ~              ~ 
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areas with reference absorption profiles based on reflectance (or fluorescence) responses  at selected spectral 

ranges. 

4.3 Experimental methods and results 

Previous works on using multispectral imaging for pigment identification [38],[39] involved applying 

spectroscopic methods (Vidicon system, CCD camera combined with a liquid crystal tunable filter) on a limited 

set of sample materials and then perform a classification or segmentation task. Based on observations and 

classification results, both studies proposed general guidelines for the application to an actual work of art. In 

particular, PCI score plots of spectral responses, used for discriminating a limited set of egg tempera pigments 

[38]. Preliminary results on Luca  Signorelli‘s  ―Predella  della  Trinita‖  showed that imaging  spectroscopy in  

combination  with  PCA  is  a useful  methodology  for  detecting  zones  of  paintings  characterized  by  different  

chemical  composition or  different  physical  properties.  LDA and FCM clustering was used [39] for 

discriminating four substances with differing near-IR spectra (graphite, blue pen ink, indocyanine green and 

dysprosium chloride). Moreover, LDA classification of the spectroscopic imaging data from a 16th century 

drawing (Winnipeg Art Gallery archival photograph of Untitled Hamlet with Bridge, Mountains in Background) 

revealed regions of the drawing where small amounts of the ink or its decomposition products remained after an 

unsuccessful cleaning attempt.  

Facilitating further the development of a spectral database for color pigments and to improve MuSIS HS‘ 

diagnostic capabilities in non-destructive analysis of artworks, several classification and segmentation algorithms 

have been tested with El Greco‘s oil & egg reference pigments.  Isodata, Maximum Likelihood, Expectation 

Maximization, Spectral Angle Mapper, Spectral Correlation Mapper, Spectral Information Divergence, 

Normalized Euclidean and Spectral Gradient Angle ‗s performance evaluated with the sample library of El 

Greco‘s oil and egg pigments.  

Spectral imaging acquisition was performed with 

MuSIS HS, in the spectral range 400–1000 nm with 

20 nm tuning step. Spectral cubes with 1600x1200 

resolution obtained after calibration for the 10 

reference wooden plates and canvas. For each cube, 

spectral images co-registered, saved and transformed 

from reflectance to intensity values with MuSIS 

software for further classification processing. The 

classification process involved assigning each pixel to 

one of a list of classes. Thus, one must set up an exhaustive list of classes, so that there is a logical class to which 

Figure 4.15: possible pigments pools for assembling a suitable train set   
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to assign each pixel of the data set, even though one may be interested in only one or a small number of classes in 

the scene. All of the 34x4 different sample pigments have been assigned as classes, plus 4x2 classes for canvas 

and wooden plate. For the maximum likelihood classifier, a key requirement is to have the training data size for 

each class equal to from 10-30 times the number of features (Mather, 1999). The required training set size may 

therefore be large, and acquiring such training sets may be difficult where a large number of classes is involved or 

utilizing data acquired in many wavebands. In our case, a training sample was composed as a vector of 30 

intensity values in the spectral range [400, 420, 440, … ,980, 1000] nm. Each training sample represents a pixel 

from the reference images. A systematic sampling approach was developed with the aid of a  gui application 

(figure 4.16 ), rather than random sampling of pigments, in order to deliver sufficient classification accuracy. 

Specifically, samples near the centre of the painted area were most suitable to built train sets for each pigment 

(figure 4.15). Also test sets were extracted from a diagonal area (3/7 ratio with train set approximately). 

Validation of the algorithms is demonstrated with pseudocolor maps for every color and every tone separately. 

EM algorithm tends to converge to a singular solution, when training data is (nearly) insufficient as in the case of 

oil pigments, where it was not possible to collect enough samples to train the classifier. For Spectral Angle 

Mapper and the rest distance metrics, 4 samples were selected for each color (one for each tone) as reference 

vectors for computing distances with all the other pixels.  After thresholding the minimum distance (or angle in 

most cases)  a pseudocolor map displayed the classification results. For every algorithm, confusion matrixes and 

Kappa statistics were obtained. Establishing an appropriate train set and therefore a list of classes of informational 

value, exhaustive and separable,  several  discriminality measures were utilized such as Bhattacharyya distance, 

Relative Spectral Discriminality Power, Relative Spectral Discriminality rate and Relative Spectral Discriminality 

Entropy. 

 

The Classification process is described in the following diagram (Classification Process for Spectral Database): 

 

 



Train set

Class Discrimination tests

(Bhattacharyya distance,  
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Pool of 30- dimensional 

vectors
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Build 
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EM

SAM

SID
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thresholding

K - means
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Classification Process for El Greco’s paintings 

1       Spectral acquisition of reference pigments (MuSIS)

2       Image registration / Intensity transform (MuSIS software)

3a     PCI

4a     False color images with principal components

         (supervised classification)

3b     train set from Spectral Database

4b     ML, SAM, SID, SCM  classification

5b     Thematic (pseudocolor) maps 

Classification Process for Spectral Database 

1       Spectral acquisition of reference pigments (MuSIS)

2       Image registration / Intensity transform (MuSIS software)

         (unsupervised classification)

3a     K-means/Isodata

4a     Thematic Maps

         (supervised classification)

3b     Data extraction 

4b     train set (Bh. Dist., RSDR, RSDE) / test set (7/3)

5b     ML, EM and distance metrics classification

6b     Confusion matrix / Kappa

7b     Thematic (pseudocolor) maps 

Figure 4.16: Greco GUI   



4.3.1 k-means/Isodata clustering 

Several parameters with isodata algorithm have been tested both for oil and egg (appendix A).  Best 

results acquired with the following parameters:  

o Number of classes: 20(min)-32(max) 

o Maximum iterations: 10 

o Change Threshold %: 5 

o Minimum # Pixel in Class: 1 

o Maximum  Class (std) deviation: 0.5 

o Minimum Class Distance: 2 

o Maximum # Merge Pairs: 2 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

figure 4.17 :  example of isodata clustering with  blue egg pigments 

figure 4.19:    example of isodata clustering with  blue oil pigments figure 4.20:     example of isodata clustering with  red oil  pigments 

figure 4.18:   example of isodata clustering with  red  egg  pigments 
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4.3.2 Maximum Likelihood results 

Each reference canvas or wooden plate was tested with ML classifier. As the number of egg and oil 

pigments, including different concentrations, corresponds to >90 classes, 4 (egg) or 5 (oil) pseudocolor maps 

(thematic maps) used to display classification accuracy [Appendix E].Also in Appendix D are listed all the 

confusion matrixes for every color set separately. Bhattacharyya distance computed for testing class separability 

[Appendix B]. Sampling  of classes for gathering different train sets, repeated as many times required to obtain 

adequate classification accuracy. 

Classification example for red egg pigments (one color for every 4 concentrations of each class):  

figure 4.21:   (ML) Pseudocolor map of red pigments reference wooden plate with red color classes.    

red  <->  Realgar Kremer:4250 

green  <->  Minio Kremer:4200 

blue  <->  Cinnabar Kremer:4860 

yellow  <->  Hematite Kremer:4860 

magenta <-> Red Lake, Dark 

cyan          <-> Red Lake, Light 
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figure   4.22:  (ML) Pseudocolor map of red pigments reference wooden plate displaying different concentrations 

lighter < … < … <  darker 

red < green < blue < yellow 
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(norm.) 
Bhattacharyya 
distance-reds 

REALGAR KREMER 
MINIO 

KREMER 

CINNABAR 

KREMER 

HEMATITE 

KREMER 

RED 

LAKE,DARK 

RED 

LAKE,LIGHT 

REALGAR KREMER 0 0,004242 0,022344 0,710386 0,024293 0,001534 

MINIO KREMER  0 0,051674 0,88392 0,056983 0,00486 

CINNABAR 
KREMER 

  0 0,471107 0,02476 0,036856 

HEMATITE 
KREMER 

   0 0,77888 1 

RED LAKE,DARK     0 0,026796 

RED LAKE,LIGHT      0 

Red (egg) pigments 
REALGAR 

KREMER 

MINIO 

KREMER 

CINNABAR 

KREMER 

HEMATITE 

KREMER 

RED 

LAKE,DARK 

RED 

LAKE,LIGHT 
Users  (%) 

       100 REALGAR KREMER 6944 0 0 0 0 0 

MINIO KREMER 0 4924 0 0 0 0 100 

CINNABAR KREMER 0 0 5246 0 0 0 100 

HEMATITE KREMER 0 0 0 7175 0 0 100 

RED LAKE,DARK 0 0 0 0 4587 0 100 

RED LAKE,LIGHT 0 0 0 0 12 4508 99,73451 

        Producers  (%) 

COHEN KAPPA 

100 

kappa value : 

100 

0,999566 

100 

Variance : 

100 

6,16E-06 

99,73907 

z (k/sqrt(var)) : 

100 

402,5909 

98,0815 

figure 4.23   (ML) Pseudocolor map of red pigments reference wooden plate with blue/green/ochre color classes. Maximum Likelihood classifies only red 

pigments on red reference plate without mixing with other color pigments.  

Table  4.24:   (norm.) Bhattacharyya distance of red pigments  
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Classification example for oil egg pigments: 

 

 

 

figure 4.25   (ML) Pseudocolor map of red pigments reference canvas with red color classes.    

red  <->  Realgar Kremer 

green  <->  Minio Kremer:4250 

blue  <->  Cinnabar Kremer:4200 

yellow  <->  Hematite Kremer:4860 

magenta <-> Red Lake, Dark 

cyan          <-> Red Lake, Light 
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figure 4.26:   (ML) Pseudocolor map of red pigments reference canvas displaying different concentrations  

lighter < … < … <  darker 

red < green < blue < yellow 
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(norm.) Bhattacharyya distance-
reds 

REALGAR 

KREMER 

MINIO 

KREMER(4250) 

CINNABAR 

KREMER(4200) 

HEMATITE 

KREMER(4860) 

RED 

LAKE,DARK 

RED 

LAKE,LIGHT 

REALGAR KREMER 0 0,051686 0,019017 0,357114 0,024157 0,029058 

MINIO KREMER(4250)  0 0,012609 1 0,212152 0,228739 

CINNABAR KREMER(4200)   0 0,736931 0,10731 0,116339 

HEMATITE KREMER(4860)    0 0,44611 0,347163 

RED LAKE,DARK     0 0,002689 

RED LAKE,LIGHT      0 

Red (egg) pigments 

REALGAR 

KREMER 

MINIO 

KREMER(4250) 

CINNABAR 

KREMER(4200) 

HEMATITE 

KREMER(4860) 

RED 

LAKE,DARK 

RED 

LAKE,LIGHT Users  (%) 

        REALGAR KREMER 5865 2 0 0 0 0 99,96591 

MINIO KREMER(4250) 0 7086 0 0 0 0 100 

CINNABAR KREMER(4200) 0 0 4371 0 0 0 100 

HEMATITE KREMER(4860) 0 0 0 5868 0 0 100 

RED LAKE,DARK 0 0 2 0 2148 3 99,76777 

RED LAKE,LIGHT 0 0 0 0 153 4103 96,40508 

Producers  (%) 100 99,97178 99,95426 100 93,35072 99,92694 97,19894 

        COHEN KAPPA kappa value : 0,993382 Variance : 7,36E-06 z (k/sqrt(var)) : 366,0446 

 

figure  4.27:  (ML) Pseudocolor map of red pigments reference canvas with 

blue/green/ochre color classes. Maximum Likelihood classifies red pigments on red 

reference plate,  mixing only some canvas pixels with  other color pigments.  

Table  4.28:   (norm.) Bhattacharyya distance of red oil  pigments  
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NEUC (RSDE:2.9066)

4.3.3 Distance metrics results 

 Each reference canvas or wooden plate was tested with SPAM, SCM, NEUC, SGA, SID  distance 

metrics and  pseudocolor maps used to display classification accuracy for different color sets separately  

[Appendix E ] and confusion matrixes [Appendix D] . Also, RSDR and RSDE  computed for testing classes 

separability   [Appendix C]. The goal was to achieve classification accuracy close to maximum likelihood results 

with the fewest possible reference vectors. For representing each pigment, 4 vectors were selected for a color 

class (one for each concentration) [Appendix F].  

 Classification example for red egg pigments: 
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SID (RSDE:2.6851)
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NEUC (RSDE:2.9206)

figure  29-34 :  Spectral similarity of red reference 

pigments with the other reference pigments in the 

train set. 
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figure  4.35:  (NEUC pseudocolor map of red egg pigments)  

 

 

 

 

 

 

 

 

 

 

 

 

 

figure  4.36: (SPAM pseudocolor map of red egg pigments)  
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figure 4.37  (SGA pseudocolor map of red egg pigments)  

 

figure 4.38  (SCM pseudocolor map of red egg pigments )  
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Red (egg) pigments  

SPAM 

REALGAR 

KREMER 

MINIO 

KREMER 

CINNABAR 

KREMER 

HEMATITE 

KREMER 

RED 

LAKE,DARK 

RED 

LAKE,LIGHT Users  (%) 

        REALGAR KREMER 7000 38 0 0 0 0 99,46007 

MINIO KREMER 144 4847 0 0 0 0 97,11481 

CINNABAR KREMER 59 0 5213 0 0 0 98,88088 

HEMATITE KREMER 0 0 0 7080 0 0 100 

RED LAKE,DARK 0 0 0 9 4593 0 99,80443 

RED LAKE,LIGHT 5 0 160 0 0 4428 96,40758 

        Producers  (%) 97,11432 99,22211 97,02215 99,87304 100 100 97,42633 

COHEN KAPPA kappa value : 0,985053 Variance : 6,14E-06 z (k/sqrt(var)) : 397,6817 

 

figure 4.39  (SID pseudocolor map of red egg pigments )  
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COHEN KAPPA kappa value : 0,989764 Variance : 6,11E-06 z (k/sqrt(var)) : 400,5672 

 

 

 

 

 

 

 

Red (egg) pigments - 

SGA 

REALGAR 

KREMER 

MINIO 

KREMER 

CINNABAR 

KREMER 

HEMATITE 

KREMER 

RED 

LAKE,DARK 

RED 

LAKE,LIGHT Users  (%) 

        REALGAR KREMER 6972 93 0 0 0 0 98,68365 

MINIO KREMER 121 4893 0 0 0 0 97,58676 

CINNABAR KREMER 0 0 5247 0 0 29 99,45034 

HEMATITE KREMER 0 1 0 7036 0 0 99,98579 

RED LAKE,DARK 0 0 5 7 4628 14 99,44134 

RED LAKE,LIGHT 0 0 15 0 0 4586 99,67398 

Producers  (%) 98,29409 98,1151 99,62028 99,90061 100 99,07107 98,01686 

Red (egg) pigments 

SCM 

REALGAR 

KREMER 

MINIO 

KREMER 

CINNABAR 

KREMER 

HEMATITE 

KREMER 

RED 

LAKE,DARK 

RED 

LAKE,LIGHT Users  (%) 

        REALGAR KREMER 7016 62 9 0 0 0 98,99817 

MINIO KREMER 99 4929 0 0 0 0 98,03103 

CINNABAR KREMER 1 0 5275 0 0 0 99,98105 

HEMATITE KREMER 0 0 0 7215 0 0 100 

RED LAKE,DARK 0 0 0 0 4631 0 100 

RED LAKE,LIGHT 0 0 9 0 0 4593 99,80443 

Producers  (%) 98,59472 98,75776 99,65993 100 100 100 98,88944 
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(Confusion Matrixes for red egg pigments with SPAM, NEUC, SID, SGA, SCM distance metrics)  

 

COHEN KAPPA kappa value : 0,985053 Variance : 6,14E-06 z (k/sqrt(var)) : 397,6817 

 

Red (egg) pigments - 

SID 

REALGAR 

KREMER 

MINIO 

KREMER 

CINNABAR 

KREMER 

HEMATITE 

KREMER 

RED 

LAKE,DARK 

RED 

LAKE,LIGHT Users  (%) 

        REALGAR KREMER 6979 7 0 35 0 0 99,40179 

MINIO KREMER 240 4714 0 7 0 0 95,02117 

CINNABAR KREMER 232 0 5033 3 0 0 95,5391 

HEMATITE KREMER 0 0 0 6902 0 0 100 

RED LAKE,DARK 0 0 0 40 4569 0 99,13213 

RED LAKE,LIGHT 0 0 174 23 0 4397 95,7118 

Producers  (%) 93,66528 99,85173 96,65834 98,45934 100 100 95,7605 

Red (egg) pigments 

NEUC 

REALGAR 

KREMER 

MINIO 

KREMER 

CINNABAR 

KREMER 

HEMATITE 

KREMER 

RED 

LAKE,DARK 

RED 

LAKE,LIGHT Users  (%) 

        REALGAR KREMER 6999 36 0 0 0 0 99,48827 

MINIO KREMER 156 4830 0 0 0 0 96,87124 

CINNABAR KREMER 77 0 5195 0 0 0 98,53945 

HEMATITE KREMER 0 0 0 6996 0 0 100 

RED LAKE,DARK 0 0 0 9 4592 0 99,80439 

RED LAKE,LIGHT 8 0 165 1 0 4419 96,21163 

Producers  (%) 96,67127 99,26017 96,92164 99,85727 100 100 97,04439 

 

COHEN KAPPA kappa value : 0,972402 Variance : 6,19E-06 z (k/sqrt(var)) : 390,9475 

 

COHEN KAPPA kappa value : 0,983678 Variance : 6,15E-06 z (k/sqrt(var)) : 396,6698 
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accuracy 

Maximum likelihood SAM NEUC SID SCM SGA 

% kappa % kappa % kappa % kappa % kappa % kappa 

(egg) red 98,0815 0,99566 97,42633 0,985053 97,4439 0,973678 95,7605 0,972402 98,88944 0,985053 98,01686 0,989764 

(egg) blue 99,75482 1 99,95773 0,999464 99,95773 0,999464 99,9535 0,999411 99,92814 0,999089 99,89855 0,998715 

(egg) green 99,65648 0,99599 96,42338 0,955708 96,31022 0,954291 95,72433 0,947062 91,71516 0,898689 82,07646 0,783188 

(egg) ochre 91,80865 0,905788 79,668 0,788225 78,34062 0,75453 72,95825 0,710483 97,25021 0,967478 74,52322 0,733453 

(oil) red 84,19894 0,993382 72,34722 0,882595 70,08237 0,866539 65,05462 0,732788 78,36184 0,907312 78,93096 0,915065 

(oil) blue 86,78327 0,86835 76,30148 0,75628 75,38559 0,744692 74,72094 0,742798 81,51693 0,839506 81,57736 0,847937 

(oil) green 84,84561 0,877941 75,51325 0,79461 63,11801 0,609101 64,25459 0,616915 68,30366 0,671958 54,7689 0,505582 

(oil) ochre 94,389 0,980824 71,20871 0,830218 69,19566 0,819875 63,17699 0,703517 84,12968 0,885817 61,15516 0,633121 

(oil) yellow 80,83664 0,837055 79,3176 0,8061 78,98107 0,80451 71,31573 0,791338 79,3102 0,796952 60,43001 0,765396 

accuracy 

Exp.Max.(2 Comp.) Exp.Max.(3 Comp.) Exp.Max.(4 Comp.) 

% kappa % kappa % kappa 

(egg) red 97,94399 0,9637 99,28292 0,990618 98,19902 0,979131 

(egg) blue 99,9535 1 99,94505 1 99,9535 1 

(egg) green 98,39961 0,97991 99,1311 0,989392 99,05432 0,98429 

(egg) ochre 97,80143 0,974953 98,47813 0,984055 97,81727 0,976107 

Table 4.40:   accuracy scores  for EM,ML and distance metrics. 
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         The above table summarizes the classification accuracy of all the algorithms used for pigment identification. 

Maximum Likelihood and Spectral correlation Mapper seem to be efficient enough for classifying pigments as 

they scored higher than the other algorithms. Probabilistic approach of ML and the ability of SCM to recognize 

negative correlation –especially near the ends of each sample area- affect classification accuracy both for canvas 

and wooden plates.  However, linseed oil as binding media for oil pigments used in canvas samples increased the 

difficulty of acquiring train/test sets and thus evaluating algorithms performance, as it expanded beyond the 

(distinct) boundaries of each color‘s sample area. On the other hand, egg pigments are more easily classified, 

because egg yolks compose color materials of higher density that doesn‘t bleed on wooden plates. Classification 

rate of distance metrics for egg pigments range from 72% to 99% (kappa: 0.71-0.99), while for oil pigments range 

from 54% to 83%(kappa: 0.50-0.88). ML appears to be less sensitive to binding media as it scores >80% for both 

cases. Generally, SAM and NEUC perform similar, while SID and SGA don‘t appear to improve classification 

rate, especially for oil pigments. Expectation Maximization provides a minor performance improvement over ML 

for most pigments, in the expense of time needed to complete a classification task ((average classification time on 

a AthlonXP 3000+, 2GB memory), EM(3 components):1380.5567 seconds, ML: 955.624581 seconds, SAM: 

266.515542 seconds, SCM: 276.694712 seconds, NEUC: 203.890509 seconds, SID: 627.508936 seconds).  

Thematic maps support these observations, providing an overall aspect of classification results for comparative 

evaluation of ML, EM and distance metrics. For example, comparing pseudocolor maps of distance metrics of red 

egg pigments (figures 4.35 – 4.39) with the pseudocolor map of ML (figure 4.21), it is clearly seen that SCM 

(with only 4 reference vectors per color) approximates ML‘s performance.  

4.3.4   El Greco‘s paintings  

               During fall-winter of 2008 the Museum of Cycladic Art, in collaboration with SEACEX (Sociedad 

Estatal Para la Acción Cultural Exterior), presented an exhibition of El Greco and his workshop. The exhibition 

focused on El Greco‘s workshop in Spain and its impact on 17th century Spanish painting, including paintings 

made by the master himself, his students Jorge Manuel Theotocopoulos (1578-1631) and Luis Tristan (ca. 1585-

1624) and other artists who were affiliated with or influenced by his workshop. Two or more versions of each 

iconographic theme were presented: the original, made by El Greco himself, and copies, produced by his students. 

The exhibition addressed also the issue of authenticity as El Greco has been extensively forged in the 20th 

century. Modern technology allows for the detection of fakes, but as some collectors and museums refuse to test 

their Greco paintings, controversy over the authenticity of a considerable number of works is sustained.  

                However, employing modern diagnostic methods of non invasive nature could address authenticity 

issues without destructive tests. Dr. Balas and his scientific team performed spectral imaging with Mu.SIS HS on 

several paintings of El Greco and his workshop. The acquired spectral cubes combined with the train sets of El 
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Greco‘s pigments were tested with several classification algorithms (figure 4.41). However, realistically, aging of 

the media often leads to sample spectra which deviate considerably from the ideal reference target spectra. Thus, 

strict spectral library searches may not adequately match regions with the target spectra of a painting. Generally, a 

supervised classifier containing a set of training spectra that span the variability encountered for the type and age 

of work will outperform a simple spectral library search. Although our spectral library is not exhausting or 

complete, classification thematic maps showed definite similarities with the materials used in El Greco‘s 

paintings. Also, using spectral discrimination measures on sample areas, it is possible to detect similarities 

between paintings.    

 

 

 

 

  

 

 

 

 

figure  4.41: classification process for El Greco’s paintings    
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The following classification examples of  paintings are demonstrated:  

1. “Saint James, Apostle and Pilgrim”, El Greco   

 red kirtle detail 

2. “Espolio”, J.M Theotokopoulos 

 red kirtle detail 

 yellow kirtle detail 

3. “Saint Louis, King of France”, J.M. Theotokopoulos  

 face detail 

 red kirtle detail 

 blue background detail 

 

 

 

 

 

 

Analysis of the spectroscopic imaging data from the three paintings (details) was carried out with 

Maximum Likelihood classifier and SPAM, SCM, SID distance metrics. Also, PCI falsecolor maps (red for first 

component, green for second component, blue for third or fourth component) were used either for distinguishing 

zones which,  in  the  rgb  image,  appear  to  be  painted  with the  same  pigment or for enhancing image color 

discrimination. Because of the age of the works, large variations in spectra of the paintings were observed, but 

in most cases thematic maps agreed on pigment‘s identity.  

In El Greco‘s Saint James, Apostle and Pilgrim (figure 4.42), the kirtle, according to ML classifier, 

appears to have been painted with red pigment Minio Kremer (4250) (figure 4.44), while distance metrics 

recognize two different areas, as PCI image depicts (figure 4.43), with Minio Kremer (4250) and Cinnabar 

Kremer (4200) pigments.  

In J.M. Theotokopoulos‘ Espolio (figure 4.46) and Saint Louis, King of France (figure 4.50) the darkest 

areas of the red kirtles appear to have been painted with Red Lake, while the lighter area with Cinnabar Kremer 

(figure 4.49, figure 4.52).  Also,  the yellow kirtle on the down right of Espolio with Naples Yellow Kremer 

(4313) or Massicot Kremer (4301) or most probably a mix of the two.  For the details on face of Saint Louis a 

lead-Tin Kremer (1011) or a Massicot Kremer (4301) was used, while for the blue background both ML and 

distance metrics agree on Azurite Kremer.  
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class/color 
 

(oil) red 

red REALGAR KREMER 

green MINIO KREMER(4250) 

blue CINNABAR KREMER(4200) 

yellow HEMATITE KREMER(4860) 

magenta RED LAKE,DARK 

cyan RED LAKE,LIGHT 

figure  4.42: Saint James, Apostle and Pilgrim, El Greco 

 

 

 

Color legend 

figure 4.43:  PCI falsecolor image of kirtle (detail) 

figure 4.44:  thematic map of red pigments ( ML classifier)  

figure 4.45: thematic map of red pigments    
(SCM/SID/SPAM distance metric) 
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figure 4.47: RGB image /  PCI falsecolor image/  (λ=780,760nm) image 

 (details)  

figure  4.46: Espolio, J.M. Theotokopoulos  

figure  4.48: spectral response of four points from Espolio (details) 
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class/color (oil) red (oil) yellow 

red REALGAR KREMER NAPLES YELLOW KREMER(4313) 

green MINIO KREMER(4250) LEAD-TIN KREMER(1011) 

blue CINNABAR KREMER(4200) MASSICOT KREMER(4301) 

yellow HEMATITE KREMER(4860) OCHRE GOLD ITALY KREMER(4800) 

magenta RED LAKE,DARK 
 

cyan RED LAKE,LIGHT 
 

 

 

Color legend (red pigments) 

Thematic map of yellow pigments 

 ( ML / SCM / SID / SPAM) 

 

Thematic map of red pigments 

 ( ML / SCM / SID / SPAM) 

Color legend (yellow pigments) 

figure  4.49: Thematic maps of red 

& yellow pigments. 
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figure  4.50 Saint Louis, King of France,  

J.M. Theotokopoulos  

figure 4.51: RGB image /  PCI falsecolor image/ NIR (λ=1000 nm) image (detail)  

figure 4.52: Thematic map of red pigments  ( ML / SCM / SID / SPAM) 
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class/color (oil) red (oil) blue (oil) yellow 

red REALGAR KREMER LAPIS LAZULI KREMER NAPLES YELLOW KREMER(4313) 

green MINIO KREMER(4250) LAPIS LAZULI KREMER(C=0.85) LEAD-TIN KREMER(1011) 

blue CINNABAR KREMER(4200) AZURITE KREMER MASSICOT KREMER(4301) 

yellow HEMATITE KREMER(4860) EGYPTIAN KREMER OCHRE GOOLD ITALY KREMER(4800) 

magenta RED LAKE,DARK SMALT KREMER 
 

cyan RED LAKE,LIGHT INDIGO KREMER 
 

figure 4.53: Thematic map of yellow pigments  ( ML / SCM / SID / SPAM) 

figure 4.54: Thematic map of blue pigments  ( ML / SCM / SID / SPAM) 

Color legend (blue pigments) 
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Chapter 5 

Conclusion and future work 

An important step towards our understanding of works of art and their history is the composition of the 

pigments used by the artists. Knowledge of their main elements, such as the pigments and bonding agents used, is 

vital for the preservation of paintings. Examinations of such compounds are usually done with destructive 

techniques in which a sample or microsample is required. Due to the uniqueness of the artwork, samples for 

external studies can only be taken with the utmost caution and only when they are vital for gathering additional 

information for the preservation of the piece. As a result, the need for the development of non-invasive techniques 

to identify pigments is growing. 

MuSIS HS constitutes a hyper-spectral imaging apparatus, capable of performing spectral imaging in a 

wide spectral range of  34  bands from UV to NIR. The combination of an imaging monochromator with a CCD 

camera resolves spatial resolution issues that similar optical spectroscopy technologies fail to address. Thus, it can 

be used  as a non-invasive technique for extracting spectral information from pigments and paintings. A spectral 

library of  El Greco‘s pigments composed by materials with known chemical and structural characteristics,  

following their original development process, was an ideal candidate for testing MuSIS diagnostic capabilities. 

Isodata unsupervised classifier was successful at discriminating pigments areas from canvas or wooden plate and 

was able to discriminate some (a few) colors.  Employing different supervised  classification algorithms, pigment 

identification was possible with adequate accuracy. In particular, Maximum Likelihood, a well- known 

classification tool used in remote sensing for the past 20 years, was able to discriminate successfully several color 

pigments with >80% accuracy for oil  colors and >91% for tempera colors. A systematic sampling process was 

used instead of random sampling to achieve the above results. Expectation Maximization offered a marginal 

improvement over ML‘s classification accuracy in the expense of classification time. Also a more strict sampling 

scheme from reference pigments was employed, as EM was very sensitive producing  singular results when train 

sample area was not homogenous, i.e pigments separated from oil or egg bonding agents. In the case of oil colors 

on canvas with EM it was not possible to acquire sufficient classification accuracy due to sensitivity to sample 

size and sampling plan. 

The concept of distance as a classification technique was also explored in this project. Referencing a class 

only using a few training samples normally leads to a decrease of accuracy comparing with a parametric classifier. 

However  classifiers incorporating distance metrics have been proven useful in applications where a training set of 

adequate size is not easy to acquire (oil pigments) or due to the high dimensionality of the data. A series of 

classification algorithms for  discriminating spectra using generalized ideas of distance involving statistical 

correlation, spectral gradients, information theory etc. was employed for discriminating pigments. In the case of 
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egg pigments, Spectral Correlation Mapper, with 4 samples per color, was able to perform similar with ML,  

whereas the other distance metrics achieved a classification accuracy of  >78% .  On the other hand, oil painting 

was a more difficult classification task in order to maintain a high accuracy score for distance metrics (ML 

appears to be less sensitive to binding media). SCM was able, for most color sets, to perform similar with ML, 

while other distance metrics for some color pigments appear to perform well, for other color sets classification 

accuracy declines. In particular, with the red color set, both oil and egg, all the classifiers performed adequate 

(>95% for egg, >70% for oil) , while for distance metrics ,except SCM, the ochre & green color sets were  the 

most problematic.  Thematic maps supported these observations, providing an overall aspect of classification 

results for comparative evaluation of ML, EM and distance metrics, especially in canvas samples where the 

difficulty of acquiring train/test sets increased , as the linseed oil expanded beyond the (distinct) boundaries of 

each color‘s sample area. In these cases, RSDR and RSDE were useful for selecting appropriate reference 

samples.  

  Testing  MuSIS HS and  the ML, SID, SCM, SPAM classifiers with oil train sets on El Greco‘s 

paintings provided by the Museum of Cycladic Art, it was able to demonstrate spectral similarity and close 

relation with color pigments used in paintings and the spectral library. In most cases, classifiers agreed on 

identifying the same reference pigments with the ones used in the paintings. Also, PCA on spectral cubes can be 

used for aiding the classification analysis,  providing an enhanced image of the painting or revealing details not 

visible in the 400-700 spectral range. A pseudocolor color image  of 3 PCA components was utilized for this 

purpose. 

The classification methodology discussed in this diploma thesis aided by a simple-to-use GUI application 

could facilitate the work of an art work preserver, help pigment identification if an adequate spectral library is 

provided, while implementation of other classification algorithms is possible. Preliminary results with SVMs and 

spectral unmixing confirm that MuSIS HS is suitable for pigment identification tasks under several supervised 

classification schemes.   

 

 hj  
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