
TECHNICAL UNIVERSITY OF CRETE

Design and implementation of a

spatially-enabled wiki

by

Dimitrios Strevinas

A thesis submitted in partial fulfillment for the

Diploma of Computer Engineering

in the

Department of Electronics and Computer Engineering

May 2009

http://www.tuc.gr
file:voas_acc@yahoo.com
http://www.ece.tuc.gr

TECHNICAL UNIVERSITY OF CRETE

Abstract

Department of Electronics and Computer Engineering

Diploma of Computer Engineering

by Dimitrios Strevinas

The availability of large volumes of digital spatial content in modern applications, local

datastores (e.g.,institutions and organization intranets) and the internet has generated

interest in methods and tools for effective management of the shared content. Spatial

information access is divided by thematic interest across a vast amount of web places,

institutions and agencies, reducing the reachability and creativity that can emerge by

combining multiple sources of geospatial content. Additionally, it is up to the provider,

whether spatial content is described in a complete manner or demonstrated by means

of rendered graphic samples.

We propose an approach, concerning the management of spatial information, based

on the integration of the wiki architecture, state–of–the–art web–mapping applications

and mature and major geospatial libraries. Targeting at the centralization of content

within wiki systems and promoting their collaborative nature, such an architecture could

benefit spatial analysis, spatial decision support and, of course, education. Thus the

emerged project, named GeoMoin, is a modular collaborative web–mapping application,

developed to achieve these goals.

http://www.tuc.gr
http://www.ece.tuc.gr
file:voas_acc@yahoo.com

Acknowledgements

This dissertation could not have been completed without the help of many people. I

am foremost grateful to my supervisor, Professor Vasilis Samoladas, for assigning this

project which introduced me to the world of GIS, the encouragement and the confidence

he showed to me and to my work.

Special thanks are given to Thomas Waldmann and Radomir Dopieralski from the Moin-

Moin team; Steve Lime, Frank Warmerdam, Paul Ramsey, Tom Kralides, Daniel Moris-

sette, Aaron Racicot, Howard Butler, Sean Gillies and Yewondwossen Assefa from the

OSGeo and GIS Python for their invaluable and tireless support, ideas and corrections

over the long days in the IRC channels.

Above all, my deepest thanks go to my family, my friends and Maria for their love,

support and encouragement in all aspects of my life.

iii

Contents

Abstract ii

Acknowledgements iii

List of Figures viii

Abbreviations x

1 Introduction 1
1.1 Motivations . 2
1.2 Contributions . 3
1.3 Thesis structure . 4

2 Wikis and MoinMoin 5
2.1 Introduction to wiki concepts . 5

2.1.1 What is a wiki . 5
2.1.2 Editing, linking and searching in a wiki environment 6
2.1.3 Controlling changes . 7
2.1.4 Trust and security within a wiki 8
2.1.5 Architectures of wikis . 9

2.2 The MoinMoin wiki . 10
2.3 MoinMoin features . 10
2.4 MoinMoin architecure . 12
2.5 Extensions within MoinMoin . 13

2.5.1 Actions . 14
2.5.2 Macros . 16
2.5.3 Parsers . 19
2.5.4 Formatters . 22
2.5.5 Themes . 23

2.6 XML-RPC and WikiRPC . 23
2.7 MoinMoin event sequence . 26

3 GIS concepts and web–mapping 30
3.1 A GIS overview . 30
3.2 Spatial data models . 32

iv

Contents v

3.2.1 Vector data model . 32
3.2.2 Raster data model . 34
3.2.3 Image data . 36
3.2.4 Data accuracy and quality . 37

3.3 Important GIS issues . 40
3.3.1 Organizing non–spatial data . 40

3.3.1.1 Tabular models . 40
3.3.1.2 Hierarchical models . 41
3.3.1.3 Network models . 41
3.3.1.4 Relational models . 41
3.3.1.5 Object–oriented models 43

3.3.2 Map projections in overview . 43
3.3.2.1 Metric properties of maps 44
3.3.2.2 Construction of a map projection 45
3.3.2.3 Different projection surfaces and their “development” . . 46
3.3.2.4 Projection definitions . 48

3.3.3 Geocoding principles . 49
3.3.4 Topological overlays . 50

3.4 WebGIS and Web mapping . 50
3.4.1 Types of web–mapping . 52
3.4.2 Advantages of web–mapping and WebGIS 54
3.4.3 Disadvantages and problematic issues 55
3.4.4 WebGIS and Spatial Desicion Support 56

4 The MapServer Package 58
4.1 What is MapServer . 58
4.2 Setting the terrain for FOSS GIS development 59

4.2.1 The Open Geospatial Consortium 59
4.2.2 The Open Source Geospatial Foundation 60

4.3 Intoducing MapServer capabilities . 61
4.4 Mapserver’s configuration: The Mapfile 63

4.4.1 A simple mapfile . 64
4.4.2 Associating datasets to a LAYER object 66
4.4.3 Using projections within the mapfile 69

4.5 Introducing MapScript . 73
4.5.1 MapScript objects discussion . 74
4.5.2 Rendering a map . 74
4.5.3 Accessing the features of a layer 75
4.5.4 Computations on spatial features 78

4.6 OGC web–services within MapServer . 79
4.6.1 The WMS service overview . 80
4.6.2 The WFS service overview . 81
4.6.3 Integration with MapServer . 84

4.6.3.1 Mapserver as WMS client 84
4.6.3.2 Mapserver as WMS client 85
4.6.3.3 Mapserver as WFS client 87

Contents vi

5 The GeoMoin Web Application 89
5.1 Overview . 89
5.2 Design and implementation in overview 90

5.2.1 Application architecture . 91
5.2.2 Overview of system components 94

5.3 Filesystem data services: Requirements and Implementation 95
5.3.1 Spatial data in the Filesystem and retrieval requiremenents 96
5.3.2 Mapfiles storage and retrieval . 98
5.3.3 Markfiles and their usage . 99

5.4 DBMS data services: Installation and Implementation 100
5.4.1 DBMS architecture in GeoMoin . 100
5.4.2 PostGIS extension for PostgreSQL 101
5.4.3 PygreSQL PGDB module for DBMS access 103
5.4.4 GeoMoin database schema specification 104

5.4.4.1 Implementing the schema on PostgreSQL 108
5.4.5 GeoMoin DBMS Wrapper: pgUtils 111

5.5 OWS data services . 116
5.6 Business tier . 116

5.6.1 InstallManager . 116
5.6.2 Uploading a dataset . 117
5.6.3 Invoking the installer action . 118
5.6.4 Installing the datasets using OgrTypes 118

5.7 Dataset controlling system: LayerManager 121
5.7.1 Querying and managing the installed datasets 122
5.7.2 Generation a UMN mapfile layer definition 124
5.7.3 Creating an annotation layer . 125
5.7.4 WMS/WFS access through LayerManager 127

5.8 Map controlling system: MapManager . 128
5.8.1 Creating and editing a mapfile . 128

5.9 Spatial visualization system . 133
5.9.1 Definition and implementation of the renderer 133
5.9.2 The map rendering process . 135
5.9.3 Managing the layer status and position before rendering 137
5.9.4 Defining the extent and navigation tools 139
5.9.5 Query capabilities . 144
5.9.6 Annotating a rendered map . 151

5.9.6.1 Enabling an annotation layer in the MapRenderer 152
5.9.6.2 Annotation table structure 153
5.9.6.3 Creating an annotation 154
5.9.6.4 Displaying and managing annotations 160

5.9.7 Using XML-RPC to manage the WIKI content 165
5.10 GeoMoin mapplets . 166

5.10.1 Synchronous mapplets . 166
5.10.2 Asynchronous mapplets . 171

5.11 User services and AJAX . 178
5.11.1 MapManager . 181
5.11.2 LayerManager . 184

Contents vii

5.11.2.1 Querying and extracting dataset information 184
5.11.2.2 Creating annotation layers 186
5.11.2.3 WMS managing . 187

5.11.3 Spatial Visualization System . 191
5.11.3.1 Navigation tools and queries 192
5.11.3.2 Annotation interactions 194
5.11.3.3 Layer management and general information 195
5.11.3.4 Mapplet interactions . 198

5.11.4 Interactions between text and maps 200

6 Conclusion 204
6.1 Case–study: A map of greece . 204
6.2 Summary of theoritical results . 210
6.3 Future work . 211

6.3.1 Global availability of GeoMoin . 212
6.3.2 GeoMoin within a multi–server environment 212

A Technical Issues 214
A.1 Installation . 214

A.1.1 Pre–required general libraries . 215
A.1.2 PostgreSQL and Postgis. 218
A.1.3 Apache web server . 219
A.1.4 MapServer and GDAL . 220
A.1.5 MoinMoin wiki . 221
A.1.6 GeoMoin Installation . 222

Bibliography 225

List of Figures

3.1 Spatial data models . 32
3.2 Satellite imagery . 36
3.3 A relational table schema . 42
3.4 Linkages within a relational database file 44
3.5 The cylindrical projection . 47
3.6 The conical projectial . 47
3.7 Azimuthal projections . 47
3.8 overlaying . 51
3.9 Web Mapping . 52

4.1 Mapserver architecture . 62
4.2 World map with lat/long . 70
4.3 Wisconsin area projections . 72
4.4 Mapfile basic structure . 74
4.5 WMS retrieved map . 81

5.1 3-Tier architecture . 92
5.2 DBMS access . 100
5.3 Geometry types . 102
5.4 Access control flowchart for a SELECT query. 113
5.5 Access control flowchart for an INSERT query. 113
5.6 Access control flowchart for an UPDATE query. 115
5.7 Installing dataset to the filesystem . 119
5.8 Installing dataset to the database . 121
5.9 Ogrtypes structure . 124
5.10 Python dictionary containing parsed map 130
5.11 Setting the layer status . 138
5.12 Tolerance and buffer size . 147
5.13 Annotation table registration . 151
5.14 Annotation table content . 153
5.15 An annotation popup . 165
5.16 Synchronous mapplet flowchart . 167
5.17 Asynchronous mapplet flowchart . 172
5.18 Classic Web Application Model versus AJAX Model 179
5.19 ManagerManager panel: select map . 181
5.20 ManagerManager panel: edit raw . 182
5.21 ManagerManager panel: edit gui . 182
5.22 ManagerManager panel: edit layers . 183

viii

List of Figures ix

5.23 ManagerManager panel: edit web object 183
5.24 LayerManager panel: Search query panel 184
5.25 LayerManager panel: Search query results 185
5.26 LayerManager panel: Layer information 185
5.27 LayerManager panel: Modifying layer info 186
5.28 LayerManager panel: Adding annotation fieldnames 187
5.29 LayerManager panel: Creating annotation table 188
5.30 LayerManager panel: Annotation layer creation 188
5.31 LayerManager panel: WMS widget . 189
5.32 LayerManager panel: WMS registration 189
5.33 LayerManager panel: WMS demo connection 190
5.34 SVS: layout . 191
5.35 SVS: rendering . 191
5.36 SVS: toolbox . 192
5.37 SVS: Query options . 193
5.38 SVS: query results . 194
5.39 SVS: Annotation options . 195
5.40 SVS: annotation insertion . 196
5.41 SVS: displaying an annotation . 196
5.42 SVS: information tab . 197
5.43 SVS: Layer managing tab . 197
5.44 SVS: Synchonous mapplet example . 198
5.45 SVS: Asynchonous mapplet part 1 . 199
5.46 SVS: Asynchonous mapplet part 2 . 199
5.47 SVS: Wiki tools . 200
5.48 Attaching a rendering to a page . 201
5.49 Displaying the attached map . 201
5.50 Attaching a BookMap to a page . 202
5.51 A gallery using BookMaps . 203

6.1 Case study: Attaching datasets . 205
6.2 Case study: Installing datasets . 205
6.3 Case study: Dataset information . 206
6.4 Case study: Make layer queryable . 207
6.5 Case study: Creating a label . 208
6.6 Case study: Importing layers . 208
6.7 Case study: Adding the map to wiki page 209
6.8 Case study: Setting the map options . 209
6.9 Case study: Visualizing the map . 210

Abbreviations

FOSS Free and Open Source Software

GIS Geographical Information Systems

OGC Open Geospatial Consortium

OSGeo Open Source Geospatial Foundation

OWS OGC Web Services

sDSS Spatial Decision Support Systems

WebGIS World-Wide Web with Geographical Information Systems

WCS Web Coverage Service

WFS Web Feature Service

WKB Well Known Binary (Representation)

WKT Well Known Text (Representation)

WMS Web Mapping Service

x

... to my grandfather, Dimitris

xi

Chapter 1

Introduction

In recent years, we have seen a tremendous explosion of digital spatial information avail-

able on the internet, local agencies, institutions and governments. Additionally online

web–mapping applications like Google Earth, GoogleMaps and YahooMaps increased

the public interest concerning what can be achieved through the use of digital cartogra-

phy, while raising the standards of quality, accuracy of the content along with the funds,

crucial for the maintainance of such state–of–the–art services. Moreover, the continuous

advances of Free and Open Source software (FOSS) within the GIS terrain, make them

a respective alternative to commercial high–cost applications. Web–mapping applica-

tions like MapServer, GeoServer and OpenLayers, spatial libraries like GDAL and GEOS

along with powerful desktop applications like GRASS are particularly good examples of

such software.

On the other hand, the digital spatial data is the most important, yet expensive part of

a GIS[1]. The importancy lies in the fact that they serve as the input for the GIS ap-

plications. The expense can be attributed to the man–hours spent to be generated plus

the huge cost of the equipment used to automate or faciliate the operation. While there

are many private sector firms specializing in providing digital data, federal, provincial

and state government agencies are an excellent source. Large costs associated with data

capture and input, prove government departments as the only agencies with financial

resources and manpower funding to invest in data compilation. Yet, the financing and

technical expertise vary from one country to another, resulting in not enough attention

being given to the quality of the data or the processes by which they are prepared.

Additionally, spatial information, depending on the thematic content they cover, can

be seen scattered loosely around local institutions, web datastores and web services1

proving themselves:
1In example, OGC web services are a form of providing spatial content to the web in a predefined

architectural manner

1

Chapter 1. Introduction 2

• Difficult to be located.

• Non–properly described.

• Non–qualified compared to the cost in order to obtained.

Fortunately, the advances in the incorporation of the GIS technlogies within the Web

(not to mention the mobile devices), introducing the concept of WebGIS and web–

mapping applications, has opened new markets and caught the attention of financiers

resulting in the upgrowth of both the technologies and the methods used to produce and

provide geospatial information. These efforts result in broad societal and commercial

benefits in areas such as education, decision-making for a sustainable future, land-use

planning, agricultural, and crisis management.

1.1 Motivations

In this section a list of important issues, concerning the need of an application like

GeoMoin, is presented. The listing is by no means complete as long as different require-

ments are emerging over time, but surely addresses the initial motivations behind the

development of the software.

• Geospatial content is not easily accessible; Many different providers exist

but it is difficult to locate the appropriate one.

• Geospatial content is expensive; Accurate and qualified datasets are usually

associated with high costs (e.g. satellite imagery). As long as the copyrights

are preserved, a centralized web–place can exist where users contribute accurate,

qualified, properly described and, above all, free spatial content.

• Spatially–enabling a web site requires expertise and consideration of fi-

nancial resources; Today, spatial information is an important multimedia source

of information which can fit within every modern organization’s web–site. Design-

ing the web architecture in order to support spatial content can become a difficult

task that requires expertise and sometimes a considerable amount of time. Addi-

tionally, different solutions and experts can be employed for such case, requiring

considerable financial resources.

• Free and Open Source spatial applications can match commercial so-

lutions; Geographic Information Science is a field that is being benefited by the

development and use of open–source packages. Complicated GIS application can

Chapter 1. Introduction 3

be developed and distributed at no cost leaving the financial need to the demanding

part of creating the spatial information itself.

• Access to easily configurable web–application promotes education; Based

on open–source solutions, an application fully functional within the web can exist,

where users can learn about the different aspects of building–block applications

like MapServer, create maps without diving in the technical configuration details,

visualize datasets, develop new tools, and analyze geographic information.

1.2 Contributions

The GeoMoin project, described in this thesis report, is being developed in a continuous

effort to assist the GIS community targeting at the motivations presented in the previous

sections. Following the traces of the projects like the Wikipedia, we believe that the

collaborative work within a properly developed context can achieve these goals.

Concerning spatial data acquisition and benefit, GeoMoin provides tools that allow its

users to contribute content within its storage subsystems; content that can be tagged

with metadata and described, discussed and maintained within the pages of the wiki sys-

tem which supports the whole application. Users can submit queries, which on matching,

return ready–to–use datasets (by this concept, layers) fullfilling their needs. These lay-

ers are properly constructed in a form that can be used as–is in order to be used in

fully navigation thematic maps within the GeoMoin application. That is, datasets,

apart from being downloaded, can be visualized within the context of the application

by user–defined renderings. Additionally, GeoMoin provides a framework for embedding

and visualizing OGC’s OWS services and particularly WMS and WFS. By supporting

this feature, remote datastores like NASA’s Jet Propulsion Laboratory web services can

be directly accessible providing hands–on rendered images and XML–formatted raw fea-

tures respectively.

As stated before, spatial datasets can be directly embedded into fully–navigational and

queryable maps within the wiki pages. By building configuration files, called mapfiles,

the maps can be fully customized in terms of the facilities they offer, while proper wiki–

markup configuration directives customize the linking between the pages of the wiki sys-

tem and the maps themselves. The wiki pages are now automatically spatially–aware,

allowing the system to host spatial information from web–sites and small organizations

that do not have the sufficient funds and extertise to built or manage a fully functional

web–mapping service within their web infrastructure.

As far as spatial desicion support facilities is concerned, the GeoMoin system is suitable

for providing navigational and querying results over different spatial scenarios and case

Chapter 1. Introduction 4

studies, whilst user–developed modules, called mapplets, can fit in the context of the

application providing tools able to spatially analyse geographic information and interac-

tively intermediate in the rendering and navigational procedure. As soon as, GeoMoin

fits natively within the MoinMoin2 project, properly developed tools can include report

extractions, and subsystems that can manage desicion support scenarios.

1.3 Thesis structure

The rest of this thesis is organized as follows:

Chapter 2 provides a review of the underlying web architecture behind the concept of

wikis. It describes, in particular, MoinMoin, which is the wiki behind the GeoMoin ap-

plication. The different methods, or modules, capable of expanding the wiki capabilities

are described using examples.

Chapter 3 provides a introduction to the concept of Geographic Information Systems

(GIS) analyzing the input data structures, projection, methodologies concerning spatial

and non–spatial organizational modeling, methods for spatial analysis and finally the

methods and requirements concerning the development of web–mapping applications.

Chapter 4 introduces the readed to the free and open source packages which are the

building bocks behind the development of GeoMoin. The UMN Mapserver web–mapping

framework is described in details along with the frequently used GDAL library.

Chapter 5 presents in full detail the architecture of the GeoMoin project in the first

sections, while in the rest of the sections each module is analysed and the workarounds

used are presented. The logical division of the chapter is based in the 3–tier architecture

of GeoMoin being data storage tier, business logic tier and user services tier respectively.

Chapter 6 provides samples case studies, by using GeoMoin, along with performance

discussion and results. It summarises the goals achieved and provides direction for

future research and development.

Appendix A provides technical details over miscellaneous issues presented throughout

the chapters along with installation instructions.

2MoinMoin is the wiki that supports the GeoMoin application and is described in Chapter 2

Chapter 2

Wikis and MoinMoin

2.1 Introduction to wiki concepts

The current chapter is dedication to a discussion concerning the logic of the online col-

laborative environments called wikis and, particularly, MoinMoin which will be used

throughout this work. Starting at describing the concept behind the need of wikis, their

architectures and design rules are mentioned 1 , while the specific issues and implemen-

tations within MoinMoin are as extensively described as possible.

2.1.1 What is a wiki

A wiki is a collection of web pages designed to enable anyone who accesses it to con-

tribute or modify content. Ward Cunningham the developer of the first wiki software,

WikiWikiWeb, describes the essence of the wiki concept as follows [3]:

• A wiki invites all users to edit any page or to create new pages within the wiki

Web site, using only a plain-vanilla Web browser without any extra add-ons.

• Wiki promotes meaningful topic associations between different pages by making

page link creation almost intuitively easy and showing whether an intended target

page exists or not.

• A wiki is not a carefully-crafted site for casual visitors. Instead, it seeks to involve

the visitor in an ongoing process of creation and collaboration that constantly

changes the Web site landscape.
1Numerous elements of this chapter are attributed to the Wikipedia article on wikis [2].

5

Chapter 2. Wikis and MoinMoin 6

Table 2.1: Wiki linking from HTML to wiki markup.
Wiki syntax Equivelant HTML Rendered output
”Take some more [[tea]],” the
March Hare said to Alice, very
earnestly.

<p>”Take some more
<a href=”/wiki/Tea” ti-
tle=”Tea” >tea ,” the
March Hare said to Alice,
very earnestly.</p>

”Take some more tea,” the
March Hare said to Alice, very
earnestly.

Every wiki engine introduces the wiki owner to numerous “plugins” which can used to

mutate a classic wiki instance to a:

• Content management system (CMS) A web–location where users create, edit,

manage and publish content in a consistently orgazinised fashion.

• Concurrent version system (CVS) A web–location that keeps track of all work

and all changes in a set of files, and allows several developers (potentially widely

separated in space and/or time) to collaborate

• Blog space Users can maintain their own blog or online diary in a wiki, or create

a blog community

• Social network Web–location that can be used to enthrust social activities (eg.

users can provide jobs and opportunities to other members of the wiki)

2.1.2 Editing, linking and searching in a wiki environment

Ordinarly the structure and formating of a wiki page is presented in a simple markup

language, in order to provide a steep learing curve for non experienced users. This

markup language, of course, is afterwards translated to html and presented to the user’s

browser. An example of a wiki syntax for linking is shown in table 2.1.2.

Although limiting access to HTML and Cascading Style Sheets (CSS) within wikis, limits

user ability to alter the structure and formatting of wiki content, there are some benefits.

Limited access to CSS promotes consistency in the look and feel and, sometimes, having

JavaScript disabled prevents a user from implementing code, which may limit access for

other users. Increasingly, wikis are making WYSIWYG (”What You See Is What You

Get”) editing available to users, usually by means of JavaScript or an ActiveX control

that translates graphically-entered formatting instructions, such as ”bold” and ”italics”,

into the corresponding HTML tags or wikitext. In those implementations, the markup of

a newly edited, marked-up version of the page is generated and submitted to the server

Chapter 2. Wikis and MoinMoin 7

transparently, and the user is shielded from this technical detail. However, WYSIWYG

controls do not always provide all of the features available in wikitext.

Wikis, ordinarly, keep track of the changes the user has made. Ofter, every version of

the page is separetely stored. This means that authors can revert to an older version of

the page, should it be necessary because a mistake has been made or the page has been

vandalised.

Usually a wiki page contains a large number of links to other pages for the user to

navigate through. This can be thought as a form of non–linear navigation which is

generally “native” to wiki architectures as opposing to other web structured schemes of

design. Wikis offer the backlink feature which provide a list of pages that link to the

current page.

It is typical for a wiki page, to contain links to wiki pages that do not yet exist. This

is a form of inviting users to create add content that needs to exist.

Links and pages in a wiki instance use the CamelCase format. The word ”CamelCase”

itself is in this format too. A word like that is produced by removing the spaces between

the words and capitalising the first letters. The wiki system can, of course, split the

words and lower the letters before presenting the user with the link, but generally this

behaviour is not used.

As far as searching in wiki is concerned, the user is always presented with a title search,

and sometimes with a full–text search. The desicions on whether a wiki will support

advanced search features depends on whether the storage is based on a database or the

filesystem. Generally filesystem–based wikis can use open–source libraries like Xapian2

or Lucene3 which provide full text indexing and searching capabilities. Alternatively,

external search engines such as Google can sometimes be used on wikis with limited

searching functions in order to obtain more precise results. However, a search engine’s

indexes can be very out of date (days, weeks or months) for many websites.

2.1.3 Controlling changes

Wikis are generally designed with the philosophy of making it easy to correct mistakes,

rather than making it difficult to make them. Thus, while wikis are very open, they

provide a means to verify the validity of recent additions to the body of pages. The

most prominent, on almost every wiki, is the Recent Changes facility; a specific list
2Xapian is an open source probabilistic information retrieval library, released under the GNU General

Public License (GPL). That is, it is a full text search engine library for programmers.
3Lucene is a free/open source information retrieval library, originally created in Java by Doug Cutting.

It is supported by the Apache Software Foundation and is released under the Apache Software License.
Lucene has been ported to programming languages including Delphi, Perl, C#, C++, Python, Ruby
and PHP.

Chapter 2. Wikis and MoinMoin 8

numbering recent edits, or a list of edits made within a given time frame. Some wikis

can filter the list to remove minor edits and edits made by automatic importing scripts

(bots).

From the change log, other functions are accessible in most wikis: the revision history

shows previous page versions, while the diff feature highlights the changes between two

revisions. Using the revision history, an editor can view and restore a previous version

of the article. The diff feature can be used to decide whether or not this is necessary.

A regular wiki user can view the diff of an edit listed on the ”Recent Changes” page

and, if it is an unacceptable edit, consult the history, restoring a previous revision; this

process is more or less streamlined, depending on the wiki software used.

In case unacceptable edits are missed on the ”recent changes” page, some wiki engines

provide additional content control. It can be monitored to ensure that a page, or a

set of pages, keeps its quality. A person willing to maintain pages will be warned of

modifications to the pages, allowing him or her to verify the validity of new editions

quickly.

2.1.4 Trust and security within a wiki

Critics of publically-editable wiki systems argue that these systems could be easily tam-

pered with, while proponents argue that the community of users can catch malicious

content and correct it. Lars Aronsson, a data systems specialist, summarizes the con-

troversy as follows:

“ Most people, when they first learn about the wiki concept, assume that

a Web site that can be edited by anybody would soon be rendered useless

by destructive input. It sounds like offering free spray cans next to a grey

concrete wall. The only likely outcome would be ugly graffiti and simple

tagging, and many artistic efforts would not be long lived. Still, it seems to

work very well. ”

The open philosophy of most wikis, allowing anyone to edit content, does not ensure

that every editor is well–meaning. Vandalism can be a major problem. In larger wiki

sites, such as those run by the Wikimedia Foundation, vandalism can go unnoticed for

a period of time. Wikis by their very nature are susceptible to intentional disruption,

known as trolling4 or to WikiSpam5. Wikis tend to take a soft security approach to
4An Internet troll, or simply troll in Internet slang, is a person who posts controversial and usually

irrelevant or off-topic messages in an online community, such as an online discussion forum or chat room,
with the intention of baiting other users into an emotional response or to generally disrupt normal on-
topic discussion.

5WikiSpam is a wiki–wide problem. It won’t be solved but wikiwide. These spammers add links to
wikis, blogs, bulletin boards, and guestbooks so their Google pagerank increases.

Chapter 2. Wikis and MoinMoin 9

the problem of vandalism; making damage easy to undo rather than attempting to

prevent damage. Larger wikis often employ sophisticated methods, such as bots that

automatically identify and revert vandalism and JavaScript enhancements that show

characters that have been added in each edit. In this way vandalism can be limited to

just “minor vandalism”, where the characters added/eliminated are so few that bots do

not identify them and users do not pay much attention to them.

The amount of vandalism a wiki receives depends on how open the wiki is. For instance,

some wikis allow unregistered users, identified by their IP addresses, to edit content,

whilst others limit this function to just registered users. Most wikis allow anonymous

editing without an account, but give registered users additional editing functions; on

most wikis, becoming a registered user is a short and simple process. Some wikis require

an additional waiting period before gaining access to certain tools. For example, on the

English Wikipedia, registered users can only rename pages if their account is at least four

days old. Other wikis, such as the Portuguese Wikipedia, use an editing requirement

instead of a time requirement, granting extra tools after the user has made a certain

number of edits to prove their trustworthiness and usefulness as an editor. Basically,

“closed up” wikis are more secure and reliable but grow slowly, whilst more open wikis

grow at a steady rate but result in being an easy target for vandalism. A clear example of

this would be that of Wikipedia and Citizendium. The first is extremely open, allowing

anyone with a computer and internet access to edit it, making it grow rapidly, whilst the

latter requires the users’ real name and a biography of themselves, affecting the growth

of the wiki but creating an almost “vandalism–free” ambiance.

Another workaround used by many wikis, including MoinMoin, is the presence of Access

Control Lists (ACLs) in each wiki page. That is, the user can decide whether a page

can be editable, by which users or by which groups when the wiki supports user groups.

2.1.5 Architectures of wikis

Wiki architecture is similar to any other software architecture, requiring a local network

or “hosted” site to deliver the product to the customer or end user. Thus a wiki can be

viewed as a web–location which can be hosted within the provider’s hardware or within

an intranet or local network. Sometimes users create “personal wikis” where the wiki

is positioned as a personal knowledge management system, designed to run on a single

computer and align to personal storage.

The wiki architecture is based on a server–side delivery of content, where the server

provides the content, along with the editing tools and the various facilities. In most

scenarios, wiki instances operate within a web–server content (such as Apache) while

wikis like MoinMoin can additionally operate in a stand–alone mode serving as a daemon.

Chapter 2. Wikis and MoinMoin 10

Moreover various architectures can be used to built and provide the wiki system, ranging

from cgi (common gateway interface) and web–development languages like Python, PHP,

ASP.NET, C# to fastcgi6 and mod python7.

2.2 The MoinMoin wiki

The wiki serving the GeoMoin project is MoinMoin8 9. Mainly developed by Jurgen

Hermann and Thomas Waldmann this cross–platform wiki engine is implemented in

Python and was initially based on the PikiPiki wiki engine. Distributed under the

terms of the GNU General Public License, MoinMoin is free software. It is shipped with

a feature set of fine grained access control, simple user groups, GUI editor, easy install,

simple but efficient spam protection, easy theming combined with a simple code base

making it often the wiki of choice for many open source projects (e.g. Apache, Debian,

Ubuntu, Fedora) and corporate wikis. Moreover python language is well–known for its

fast learning curve and high level programming facilities.

MoinMoin wiki has an extensive support of unicode pages, supporting multilanguage

content and interface. There is an ongoing attempt by the MoinMoin community to

translate both the interface and the documentation in many different languages.

2.3 MoinMoin features

MoinMoin support a vast number of features some of which are unique between the

different wiki flavors10. As far as markup features for the wiki page editing is concerned,

almost all the HTML markup directives are supported, including but not limited to

headings, text forms (eg bold,italic), links, tables, lists e.t.c.

Base features

• Backups of all page revisions
6FastCGI is an open extension to CGI that provides high performance for all Internet applications

without the penalties of Web server APIs.
7Mod python is an Apache module that embeds the Python interpreter within the server. With

mod python developers can write web-based applications in Python that will run many times faster than
traditional CGI and will have access to advanced features such as ability to retain database connections
and other data between hits and access to Apache internals.

8http://moinmo.in/
9During the publication of this work the current version of MoinMoin package is 1.8.0

10The web sites http://moinmo.in/WikiEngineComparison and http://www.wikimatrix.org contain
an extensive comparison on the supported features between many wiki engines, with the second being
dedicating to this kind of requests

Chapter 2. Wikis and MoinMoin 11

• Page revision list

• Diffs between arbitrary page versions

• Recent changes

• Subpages

• I18N (foreign and multi-language) support

• Unicode support, standard encoding is utf–8

• Lots of help pages

• Grouping of pages within categories

• RSS feed for RecentChanges

• Wiki page templates

• Configurable edit locking/warning to avoid editing conflicts

• Copying/deleting/renaming of pages, optionally including subpages

Advanced features

• GUI (WYSIWYG) and text (markup) editor

• Large number of macros

• Attachents

• Email and jabber notification

• WikiSynchronisation – keeps wiki content in sync

• Caches bytecode-compiled versions of pages to speed up.

• Theming

• Underlay directory for storing read-only pages

• Access control lists

• Reuse of authentication done by web server

• Modular authentication makes it easy to support single–sign–on

• Pluggable Parsers support many different input formats.

Chapter 2. Wikis and MoinMoin 12

• Pluggable Formatters support many different output formats.

• Antispam features, surge protection

MoinMoin, moreover, includes many extensibility features and environments described

later in the chapter.

2.4 MoinMoin architecure

MoinMoin’s storage mechanisms are based on flat files and folders,meaning that the user

information and wiki pages are stored in a special location in the filesystem of the server.

This methodology faciliates the manipulation of the content on the server especially in

the the case of managing revisions if the wiki is attacked by spammers.

Currently a storage abstraction layer is being developed in order to let the system

administrator choose between relying on a flat file system or a relational database one.

MoinMoin is a multi–platform software tested on the following Operating System (OS)

environments:

• Linux distributions

• Unix distributions

• Mac OS X

• Windows

• OpenVMS

Additionally, any other platform that support the python interpreter could host a Moin-

Moin wiki instance.

In the current work, MoinMoin wiki is served through the Apache2 webserver, with

MoinMoin acting as a Common Gateway Interface (CGI). Of course there are lots of

alternatives for system administrators including:

• Standard CGI (for apache,IIS and others)

• WSGI e.g. Apache with mod wsgi11

11The aim of mod wsgi is to implement a simple–to–use Apache module which can host any Python
application which supports the Python WSGI interface. The module would be suitable for use in
hosting high performance production web sites, as well as average personal sites running on commodity
web hosting services.

Chapter 2. Wikis and MoinMoin 13

• Built-in standalone Python http server

• Apache or lighttpd with FastCGI

• Apache with mod python

• Twisted python network engine

• Zeus Web Server with FastCGI

• Sun Java System Web Server with FastCGI

Before explaining the cycling of an HTTP request through MoinMoin, the following

section introduces the concept of MoinMoin’s extensions (plugins) and, of course, its

basic modules.

2.5 Extensions within MoinMoin

Apart from the basic modules that built–up the MoinMoin package, there exists a num-

ber of mechanisms that extend MoinMoin’s capabilities and features. These mecha-

nisms are called plugins. Through plugin development a python programmer has access

to MoinMoin’s Application Programming Interface (API). Plugins can serve a number

of functions including the handling of user input, reaction to events and formatting of

the output on the client’s web–browser. Many programmers have contributed to Moin-

Moin’s development, creating plugins which can be easily installed to an instance of the

wiki. GeoMoin, specifically, is a plugin collection enabling MoinMoin to handle spatial

content. Below is a list of the main types of plugins supported:

• actions

• parsers

• formatters

• macros

• themes

• WikiRPC

For each type of the above plugins, the programmer can develop his own module which

will be executed by MoinMoin upon user’s request. There are lots of built–in plugins

in the system which exist in every instance of wiki. Of course, user–specific plugins

Chapter 2. Wikis and MoinMoin 14

are installed in a different filesystem location than the one that built–in plugins are

installed to, with the first, overriding the second. That is, the programmer can create

a new “FullSearch.py” macro not by altering the original macro, but creating a macro

with the same name in the special directory of the wiki instance.

Upon changing or installing a new plugin there exist different methodologies for them to

become active, based on different enviroments, that is, for simple CGI, the plugin will be

available upon the next HTTP request. For the standalone or the Twisted framework,

the MoinMoin server must be restarted. On installations that are based on FastCGI and

mod python the web–server must be restarted. Before describing the types of plugins,

it is useful to inform that on MoinMoin’s web–site: moinmo.in which is itself a wiki,

there exists the CategoryMarket page which lists the so–called “markets” for each type

of plugins, being ActionMarcet, ParserMarcet etc.

2.5.1 Actions

The action is what the MoinMoin code does with the client request (and the requested

page). The default action is to parse the page as wiki text and output HTML. However

other actions can be defined to allow arbitrary processing. Thus actions can server as

the moral equivalent of CGI scripts, but inside a MoinMoin context.

By writing an action, MoinMoin can be extented to do any processing the programmer

needs, which, most often, is page–oriented12, but in general any processing is allowed,

as for example, printing all the users registered in the wiki.

There are built–in action which are page–oriented like:

show Parses the page using the defined formatter and outputs html

edit Imports and outputs the defined editor (text or GUI) so that the user can update

the page

diff Makes a comparison between two versions of the same page

highlight Highlights certain words on a page

Any action script is executed before any output is generated, so that the script can

decide what the output should be. It can generate a pre-defined output in place of the

page, it can send back the original page or provide the original page with a message in

a handy popup–like window. Below there is a simple action that determines if a user is

a wiki superuser and outputs some text:
12Meaning that those actions have impact on a particular page

Chapter 2. Wikis and MoinMoin 15

""" In this action we will create a page on-the-fly

which checks if a user is superuser and sends some

message to the client """

The execute function is taking control when the

action is invoked

def execute(pagename, request):

Here we get the user object from the request object

which holds lots of valuable data

user = request.user

Send http headers to the client

request.emit_http_headers()

Add a pop-up like message

request.theme.add_msg("Action completed!")

Set the title of the on-the-fly page

request.theme.send_title("We want to say")

Use the user object to do the check

if user.isSuperUser():

The request object gives direct access

to the output stream

request.write("
You are a super user")

else:

request.write("
You are a simple user")

Tell the default formatter to end the page content

request.write(request.formatter.endContent())

We now send the footer of the page

request.theme.send_footer(request.page.page_name)

And some closing html data

request.theme.send_closing_html()

Now let’s look at an action that inserts a tuple in an database and return a status

message to the page.

The python module for accessing various databases

import pgdb

def execute(pagename, request):

Create a connection object

dbConn = pgdb.connect(user="user1",password="qwerty",

host="127.0.0.1",database="mydb")

Chapter 2. Wikis and MoinMoin 16

try:

Create an execution cursor

cur = dbConn.cursor()

cur.execute("INSERT INTO users(id,name) VALUES (10,’somebody’);")

Commit the current transaction

dbConn.commit()

cur.close()

Send the fancy message

request.theme.add_msg("Database operation complete!")

except:

In case of error send another fancy message

request.theme.add_msg("An error was detected!")

In addition to the fancy message, send the original

page content too!

request.page.send_page()

Studying MoinMoin’s built–in plugins is an excellent way for the module designer to get

a grasp of the various work–arounds that can be achieved using the action modules.

2.5.2 Macros

A macro is a mechanism for incorporating dynamic content in the middle of page out-

put. A macro definition usually includes a small number of parameters, and is used to

output information which is processed and/or formatted when the page is accessed. Like

the action modules, macros have direct access to the request,formatter and page object

being that of macro.request, macro.formatter and macro.request.page respectively.

A part that needs attention is that a macro is prohibited from altering the output

before and after its definition. That is, for example, using the theme object derived

from the request object the developer cannot send data to a page by writing eg. re-

quest.theme.send msg(”Hello World”)

Built–in macros exist in every installation of a MoinMoin wiki that are responsible for

doing specific tasks like outputting system information, recent changes etc. A macro

developer can easily create a macro using a simple environment like the one described

earlier in the actions section. The following simple macro output an html form that re-

quires the user to enter some information and then using the submit button a MoinMoin

action is taking place to handle the data.

In this macro we will use the default formatter’s

Chapter 2. Wikis and MoinMoin 17

rawHTML function to print the form we define

def execute(macro, args):

html=""

html+="<p> The following arguments where found: %s </p>"%args

html+="""

<form name="simple" method="POST">

<p> Please enter some information </p>

Input 1: <input type="text" name="input1">

Input 2: <input type="text" name="input2">

<input type="submit" name="action" value="PgExample">

</form>

"""

return macro.formatter.rawHTML(html)

In the above example someone can clearly note that in the HTML form statement there

is no action directive described. But viewing the HTML submit input we can see that

the name of the submit control is named action which makes MoinMoin handle the

request and search for an action named “value” to handle the posting of the form. In

this case the action is called “PgExecute” and is implemented below:

""" Simple action that capture the HTTP request and

displays the contents of 2 particular form variables"""

def execute(pagename, request):

Get HTTP request parameters

parms = request.form

input1=""

input2=""

The parms is a dictionary, check to see if it contains

the values we are interested in

if (parms.has_key(’input1’) and parms["input1"][0]!=""):

input1=parms["input1"][0]

if (parms.has_key(’input2’) and parms["input2"][0]!=""):

input2=parms["input2"][0]

Output what we found

request.emit_http_headers()

request.theme.send_title("Results")

request.write("You have issued:
")

request.write(input1)

request.write("
")

Chapter 2. Wikis and MoinMoin 18

request.write(input2)

request.write(request.formatter.endContent())

request.theme.send_footer(request.page.page_name)

request.theme.send_closing_html()

Instead of submitting a form that way (using the name “action”) one can implentend

two different workarounds:

• Hard code an action directive in the form tag which can move the control to either

a python script somewhere in the filesystem or, of course, to any web page which

can handle this input being that jsp, php etc.

• Put whatever name and value pair for the sumbit button he wants. So the same

page will be re-invoked, thus the same script will be re-invoked, so the form data

print can be handled by the macro itself.

An example of the second usage is posted below:

In this macro we will use the default formatter’s

rawHTML function to print the form we define

def execute(macro, args):

Get HTTP request parameters

parms = macro.request.form

html=""

If the form was submitted in previous invocation

if (parms.has_key(’mode’) and parms["mode"][0]=="work"):

input1=parms["input1"][0]

input2=parms["input2"][0]

html+="You have issued:
"

html+=input1 + " and " + input2 + "
"

if it is the first invocation

else:

html+="<p> The following arguments where found: %s </p>"%args

html+="""

<form name="simple" method="POST">

<p> Please enter some information </p>

Input 1: <input type="text" name="input1">

Input 2: <input type="text" name="input2">

<input type="submit" name="mode" value="work">

Chapter 2. Wikis and MoinMoin 19

</form>

"""

return macro.formatter.rawHTML(html)

Of course, as stated before, macros are not used only for form handling and html output.

As soon as a programmer can import every python module he chooses, every possible

task can be performed. The last thing important to mentioned on macros, is how they

can be defined in a page so they can be execute. A simple wiki page containing a macro

is shown below:

Welcome to my page. This page contains a macro.

<<MyMacro(param1, param2, param3)>>

Note that the anchors are needed for the content to be treated as a wiki markup for

macro execution.

2.5.3 Parsers

A parser, or, more formally, syntactic analyser, is a process that analyzes a sequence of

tokens to determine grammatical structure with respect to a given (more or less) formal

grammar. In a MoinMoin context, a parser is a python module that is provided with

plain text, reads the input, analyzes the content and uses a formatter to display the

appropriate output to the wiki page. Like every other module, parsers have access to

MoinMoin objects already instantiated.

Let’s have a look at a request for a parser execution within a wiki page:

This page contains a parser

{{{

#!map ,

mapfile=1214071817.69.30350_usa_laea.map

need_options=true

need_reference=false

some comments go here

need_legend=true

autopopup=false

debug=true

Chapter 2. Wikis and MoinMoin 20

annotation=goodies

}}}

[[FullSearch(CategorySamples)]]

CategoryCategory

It is clear that in order for MoinMoin to treat a parser statement as executable, it

is important that the call is surrounded by three left-sided and three right-sided

brackets, having the name of the parser issued, beginning with the symbols #! and

ending with a comma, while the content follows.

The content can be of any type the developer decides, as long as the appropriate analysis

is developed within the module. A typical usage of a parser module within MoinMoin is

the colorization and proper output of some input written in a well–known format. For

example, using the text pascal parser, one can feed it with pascal code and on viewing of

the page, a very stylish representation will be produced. For parser modules like that,

a developer can create a class that derives from the built–in ParserBase class which

contains the framework for colorizing the input, so that the developer is only requested

to define the rules of the language as long as the reserved words.

Parsers, of course, can be used for far more complicated tasks than colorising a well–

known format. In that scenario, like the other modules, the developer is introduced to

a method of defining parsers within MoinMoin. A very simple example of a parser is

already in the built–in parser collection and is responsible for wrapping a raw text input

into html <pre> directives:

-*- coding: iso-8859-1 -*-

"""

MoinMoin - Plain Text Parser, fallback for text/*

@copyright: 2000-2002 Juergen Hermann <jh@web.de>

@license: GNU GPL, see COPYING for details.

"""

Dependencies = []

class Parser:

"""

Chapter 2. Wikis and MoinMoin 21

Send plain text in a HTML <pre> element.

"""

extensions = ’*’

Dependencies = []

def __init__(self, raw, request, **kw):

The raw parameter contains the input text as a WHOLE

self.raw = raw

Parsers have direct access to request and form obejcts

self.request = request

self.form = request.form

self._ = request.getText

def format(self, formatter):

""" Send the text. """

This is the output of a <pre> html markup

self.request.write(formatter.preformatted(1))

Print the text, replacing tabs with spaces

self.request.write(formatter.text(self.raw.expandtabs()))

This is the equivelant of </pre> markup

self.request.write(formatter.preformatted(0))

In that case the developer is needed to define a class name Parser which must contains

two important functions, init and format, with first being the first function called

when the parser is executed and the last being the last one to be executed handling the

output of the parsing results. Please note that no call for the format function is done

inside init . That is, those functions are called automatically in the correct order.

A developer can create as many classes as he wants, thus doing the actual parsing in a

different class. A workaround frequently used is the following:

• init is called, which holds the raw data to be parsed

• Instantiate a class named pdp (Page Data Processor) inside init which does

the actual parsing and returns the parsed data in a special structure or a simple

dictionary.

• Instantiate a user–specified class inside init which given as input the parsing

structure computed above does the required calculations or procedures and after-

wards saves the output in a particular structure. The output could vary from

simple text or html to special formats supported by MoinMoin like pdf.

Chapter 2. Wikis and MoinMoin 22

• init finishes its execution.

• format function takes control, which having the required visibility to the output

structure, uses a predefined formatter to render the output to the client–browser.

In the current work, the above workaround is used in the parser that renders and projects

the maps to the client browser. The result is clean well–structured source code.

2.5.4 Formatters

A formatter is used to output the page in a particular format. The default formatter for

MoinMoin is the html formatter. The user can command a page to be rendered using

another formatter either by editing the page and inserting a #format followed by the

name of the installed formatter, or by selecting an action that recreates an on-the-fly

presentation of the page using the selected parser.

Generally speaking, a formatter provides to MoinMoin an interface for outputting stan-

dard document elements. As we stated earlier, MoinMoin uses the idea of separate

parsers (e.g. for parsing the wiki syntax) and formatters (e.g. for outputting HTML

code) with a SAX13–like interface between the two. The idea is that it is possible to

output DocBook instead of HTML, only by writing a docbook-formatter that imple-

ments the formatter interface, while all parsers that use the interface will automatically

be supported. This formatter interface is implemented in the class FormatterBase.

Writing a formatter is a demanding project that requires that the developer is special-

ized in the particular format, so it is out of the scope of this work to provide information

on how to build one.

An important element to note is that every module described earlier has direct access to

the formatter object used in the particular page so it is recommended that this interface

is being, rather than directly outputting HTML, so that the document can be deliv-

ered to the client in any supported output format. The FormatterBase class contains

everything a formatter can do and is implemented in the file init .py located in the

formatter under the MoinMoin package installation location.

13The Simple API for XML (SAX) is a serial access parser API for XML. SAX provides a mechanism
for reading data from an XML document. It is a popular alternative to the Document Object Model
(DOM).

Chapter 2. Wikis and MoinMoin 23

2.5.5 Themes

A theme determines the visual appearance of the output. There can be different screen

layouts, icons and CSS per theme. The default theme is “modern”. A user can set a

different theme in the user preferences. Describing themes in detail is out of the scope

of the current work.

2.6 XML-RPC and WikiRPC

XML-RPC is a remote procedure call protocol which uses XML to encode its calls and

HTTP as a transport mechanism. XML-RPC defines only a handful of data types and

commands, and the entire description can be printed on two pages of paper. This is in

stark contrast to most RPC systems, where the standards documents often run into the

hundreds of pages and require considerable software support in order to be used. It is

beyond the scope of this document to discuss the complete XML-RPC specification, but

a sample request–response is include below:

<?xml version="1.0"?>

<methodCall>

<methodName>examples.getStateName</methodName>

<params>

<param>

<value><i4>41</i4></value>

</param>

</params>

</methodCall>

<?xml version="1.0"?>

<methodResponse>

<params>

<param>

<value><string>South Dakota</string></value>

</param>

</params>

</methodResponse>

In general, XML-RPC defines standard data types and their XML representation, which

can be used in order to formulate requests to particular methods and responses.

Chapter 2. Wikis and MoinMoin 24

WikiRPC stands for an implementation of the XML-RPC specification in regard to

wiki systems. WikiRPC is a standard and is currently at its second version. Acting as

a specification, WikiRPC is implemented by the following wiki engines:

• TWiki

• MoinMoin

• UseModWiki

• PhpWiki

• OpenWiki

• WikiGateway

WikiRPC defines standard functions in order to manage the wiki content using client

tools:

getRecentChanges(Date timestamp) Get list of changed pages since timestamp,

which should be in UTC. The result is an array, where each element is a struct.

int getRPCVersionSupported() Return the WikiRPC version implemented

utf8 getPage(utf8 pagename) Get the raw Wiki text of page, latest version.

utf8 getPageVersion(utf8 pagename, int version) Get the raw Wiki text of page.

utf8 getPageHTML(utf8 pagename) Return page in rendered HTML, latest ver-

sion.

utf8 getPageHTMLVersion(utf8 pagename, int version) Return page in ren-

dered HTML.

array getAllPages() Returns a list of all pages. The result is an array of utf8 page-

names.

struct getPageInfo(utf8 pagename) returns a struct with information about a

particular page.

struct getPageInfoVersion(utf8 pagename, int version) Returns a struct just

like plain getPageInfo(), but this time for a specific version.

array listLinks(utf8 pagename) Lists all links for a given page.

array getBackLinks(utf8 page) Returns the pages that link to this page.

Chapter 2. Wikis and MoinMoin 25

putPage(utf8 page, utf8 content, struct attributes) Writes the content of the

page.

array listAttachments(utf8 page) Lists attachments on a given page. The array

consists of utf8 attachment names that can be fed to getAttachment (or putAt-

tachment).

putAttachment(utf8 attachmentName, base64 content) (over)writes an attach-

ment.

struct getAttachmentInfo(utf8 attachmentName) Returns attachment informa-

tion.

MoinMoin is implementing the above specified functions as a subset containing many

other facilities. The following example posted in the official website of MoinMoin return

the names of all the pages included in a wiki instance:

1 import xmlrpclib

2 srcwiki = xmlrpclib.ServerProxy("http://localhost/mywiki?action=xmlrpc2")

3

4 allpages = srcwiki.getAllPages()

5 for pagename in allpages:

6 pagedata = srcwiki.getPage(pagename)

7 print "Got %s." % pagename

8 print pagedata

It is important to note that a programmer can create individual WikiRPC methods as

plugins in order to perform special remote operations within the wiki instance. The

small plugin below checks if a particular page exists in the wiki instance:

from MoinMoin import Page

import xmlrpclib

def execute(xmlrpcobj,pagename):

request = xmlrpcobj.request

thepage = Page.Page(request,pagename)

if thepage.isStandardPage(False)==True:

return xmlrpclib.Boolean(1)

else:

return xmlrpclib.Boolean(0)

Chapter 2. Wikis and MoinMoin 26

WikiRPC plugins are extensively used in GeoMoin wherever the MoinMoin request

object does not exist (eg when remote scripts are called using AJAX functions).

2.7 MoinMoin event sequence

Now that the MoinMoin extensions are described, we can provide a sequence of the

order the events are taking place in MoinMoin upon an HTTP request [4]. This se-

quence is crucial to understanding the inner working between the MoinMoin modules

and components. The listing below provides the events as a summary:

• The user issues an HTTP request.

• Determine the theme to use

– perform the action for the page, which is, in the default case is:

• Parse the page input

• Format the page for output

– in the process of outputting the page, execute any macros or parsers that are

encoded in the page. Any output from the macros or parsers is incorporated

(inline) with the other output from the page.

• Send the result back to the client

Assuming that the architecture of the system is based on Apache web–server with Moin-

Moin acting as a CGI application. We won’t run into much detail on how apache com-

municates with the CGI applications. In the process of describing the cycle an HTTP

request follows before a response is returned to the client, it is possible that many mod-

ules and function contained in the MoinMoin application will be stated and whenever

possible, described to detail. Based on the fact that MoinMoin has a state–of–the–art

architecture as far as the layers of abstraction is concerned, we could state that a mi-

gration from standard CGI to FastCGI or mod python, would change the roll of event

only partly.

When the user–agent issues the HTTP request to the server, Apache takes control

identifying an executable command. The CGI protocol definition describes from a web-

server’s point–of–view how the control will be passed to the cgi application along with

the parameters, and the returning of the output. The HTTP request variables are passed

to the CGI program using enviroment variables. In our case the CGI that is ordered

Chapter 2. Wikis and MoinMoin 27

to be executed is moin.cgi whose main role is the dispatching of the control to the

appropriate MoinMoin server class object which in case is ServerCGI written in python.

The fact that moin.cgi is very small in terms of lines of code give us the ability to post

it here:

#!/usr/bin/env python

-*- coding: iso-8859-1 -*-

"""

MoinMoin - CGI Driver Script

@copyright: 2000-2005 by Juergen Hermann <jh@web.de>,

2008 by MoinMoin:ThomasWaldmann

@license: GNU GPL, see COPYING for details.

"""

import sys, os

sys.path.insert(0, ’/usr/local/lib/python2.5/site-packages’)

sys.path.insert(0, ’/usr/local/share/moin/mywiki’)

from MoinMoin.server.server_cgi import CgiConfig, run

class Config(CgiConfig):

name = ’moin’

run(Config)

The server cgi module is located here: MoinMoin/server/server cgi.py and is responsi-

ble for dispatching the control to the appropriate Request Subclass. Request sub classes

handle all the information that came from the client. There is a request sub class for each

type of server environment, hiding the differences between different servers behind a com-

mon API. This common API is a class that every Request Subclass derives from, called

RequestBase, and can found in the following location: MoinMoin/request/ init .py.

That is, RequestBase is the last level of abstraction between the different types of web–

serving.

In example, request cgi located at: MoinMoin/request/request cgi.py implements the

functions that read from the input stream, write back to it and capture the HTTP re-

quest parameters storing them to cgi.FieldStorage14 structures. Finally the request cgi
14cgi is a Python module for accessing features of the Common Gateway Interface. Fieldstorage is a

module specialised in preserving the information in a structured manner.

Chapter 2. Wikis and MoinMoin 28

object moves to the higher abstraction level by calling RequestBase’s run function.

From now on, there are no differences between the various architectural decisions.

The run function, upon execution, initializes the theme which was predefined to be used

and afterwards, based on the url sent with the HTTP request, decides what pagename

(url) or action was requested and invokes:

• Page().send page() to output normal wiki pages

• MoinMoin.action.handler() to get a function handler to the particular function’s

definition, if the url contained a request for a particular action

If a page was requested to be rendered the following steps are being executed:

• Loads the raw page (into body)

• Decides what formatter to use (default is text html formatter)

• Creates formatter (or uses default from Request object already instantiated)

• Reads processing instructions and access controls (ACLS) at the top of the page

• Sends page header if needed

• Decides what Parser to use (default is “wiki” parser)

• Creates Parser object

• Calls send page content() to:

– use a cached page if possible

– use Parser(body, request).format(formatter) to create the page if not

– send the page body

• Sends footnotes if any

• Sends footer if needed

The Parser(body, request).format(formatter) function parses the body of the raw page

looking for special strings and calls the supplied formatter to translate the parts into the

output language (usually HTML). Additionally the formatter calls the macros found in

the page and creates and calls any parser declared.

When the page is ready for output, request.write(text) is called, which is implemented

for every different web–serving environment, and outputs the data to the user agent.

Chapter 2. Wikis and MoinMoin 29

Thus, without running into specific detail, the above call–graph is executed upon an

HTTP request. It is clear that MoinMoin offers a well–structured environment for

web–application development giving the programmer a complete, well–organised API,

supporting both low level and high level tasks. Throughout the development of Geo-

Moin, MoinMoin acted transparently, introducing solutions to every web–development

difficulty that appeared, while its development team was highly active and helpful on

both the mailing list and the MoinMoin irc room.

Chapter 3

GIS concepts and web–mapping

3.1 A GIS overview

A geographic information system (GIS) is an information system for capturing, stor-

ing, analyzing, managing and presenting data which are spatially referenced [5]. In the

strictest sense, it is any information system capable of integrating, storing, editing, ana-

lyzing, sharing, and displaying geographically referenced information. In a more generic

sense, GIS applications are tools that allow users to create interactive queries (user cre-

ated searches), analyze spatial information, edit data, maps, and present the results of

all these operations. That is, thanks to the advent of sophisticated computer techniques

has proliferated the multi-disciplinary application of geo-processing methodologies, and

provided data integration capabilities that were logistically impossible before.

Geographic information systems technology can be used for scientific investigations, re-

source management, asset management, environmental impact assessment, urban plan-

ning, cartography, criminology, geographic history, marketing, logistics and decision

support just to name a few. For example, GIS might allow emergency planners to easily

calculate emergency response times in the event of a natural disaster, GIS might be used

to find wetlands that need protection from pollution, or GIS can be used by a company

to site a new business location to take advantage of a previously underserved market.

A GIS system has four main functional subsystems [1]. These are:

Data input subsystem This subsystem allows the user to capture, collect, and trans-

form spatial and thematic data into digital form. The data inputs are usually de-

rived from a combination of hard copy maps, aerial photographs, remotely sensed

images, reports, survey documents, etc.

30

Chapter 3. GIS concepts and web–mapping 31

Data storage and retrieval This subsystem organizes the data, spatial and attribute,

in a form which permits it to be quickly retrieved by the user for analysis, and

permits rapid and accurate updates to be made to the database. This component

usually involves use of a database management system (DBMS) for maintaining

attribute data. Spatial data is usually encoded and maintained in a proprietary

file format.

Data manipulation and analysis This subsystem allows the user to define and exe-

cute spatial and attribute procedures to generate derived information. This sub-

system is commonly thought of as the heart of a GIS, and usually distinguishes

it from other database information systems and computer-aided drafting (CAD)

systems.

Data output This subsystem allows the user to generate graphic displays, normally

maps, tabular reports representing derived information products as well as various

information in the various forms supported by the GIS product (eg. Geography

Markup Language [GML]).

An operational GIS also has a series of components that combine to make the system

work [1]. These components are critical to a successful GIS.

Hardware This is the computer system on which a GIS operates. Today, GIS software

runs on a wide range of hardware types, from centralized computer servers to

desktop computers used in stand-alone or networked configurations.

Software GIS software provides the functions and tools needed to store, analyze, and

display geographic information. A review of the key GIS software subsystems is

provided above.

Data The most important component of a GIS is the data. Geographic data and

related tabular data can be collected in-house, compiled to custom specifications

and requirements, or occasionally purchased from a commercial data provider. A

GIS can integrate spatial data with other existing data resources, often stored in

a corporate DBMS. The integration of spatial data (often proprietary to the GIS

software), and tabular data stored in a DBMS is a key functionality afforded by

GIS.

People GIS technology is of limited value without the people who manage the system

and develop plans for applying it to real world problems. GIS users range from

technical specialists who design and maintain the system to those who use it to

help them perform their everyday work. The identification of GIS specialists versus

end users is often critical to the proper implementation of GIS technology.

Chapter 3. GIS concepts and web–mapping 32

Methods A successful GIS operates according to a well-designed implementation plan

and business rules, which are the models and operating practices unique to each

organization.

3.2 Spatial data models

Traditionally spatial data has been stored and presented in the form of a map. Three

basic types of spatial data models have evolved for storing geographic data digitally.

These are referred to as :

• Vector

• Raster

• Image

The diagram 3.2 reflects the two primary spatial data encoding techniques. These are

vector and raster. Image data utilizes techniques very similar to raster data, however

typically lacks the internal formats required for analysis and modeling of the data. Im-

ages reflects pictures or photographs of the landscape.

Figure 3.1: Spatial data types.

3.2.1 Vector data model

In the vector data model, objects are constructed from points and edges as primitives.

A point is represented by its coordinates, whereas more complex and surfacic objects are

Chapter 3. GIS concepts and web–mapping 33

represented by structures (lists,sets,arrays) on the point representation. In particular

can be represented by the finite set of its vertices.

There exists a large number of variants to represent spatial obejcts in a vector model.

The following is a simple representation [6]:

• A point is represented by its coordinates [x: real,y: real [,z: real]]

• A polyline is represented by a list of points < p1, pn >, each pi being a a

vertex. Each pair (pi,pi+1), with i < n, represents one of the polyline’s edges.

• A polygon is also represented by a list of points. The notable difference is that

the list represents a closed polyline, and therefore the pair (pn,p1) is also an edge

of the polygon. We could also note that in a different representation, a polygon

could be a list of lines, whereas a line is consisting of exactly two points.

• A region is simply a set of polygons: { polygon }

A few remarks are noteworthy. First, there are n way of choosing where to start the

boundary description of a polygon object; once the starting vertex has been chosen there

are two ways of scanning the vertices, called clockwise and anticlockwise orders. Second,

there is no apparent distinction between a polyline structure and a polygon one. It is

up to the software that manipulates geometric data to interpret properly the structure,

and to check if the representation is valid; that is, to verify that the polyline is closed

for the polygon.

By considering collections and no longer individual objects, we become interested in

the relationships among objects of the same collection. In the Appendix we describe

the three commonly used representations of collections of objects, respectively called

spaghetti, network and topological models. The topological model is often referred to as

an intelligent data structure because spatial relationships between geographic features

are easily derived when using them. Primarily for this reason the topologic model is the

dominant vector data structure currently used in GIS technology. Many of the complex

data analysis functions cannot effectively be undertaken without a topologic vector data

structure.

Government agencies and other organizations collect spatial information and georefer-

enced socioeconomic data in their own areas of responsibility. Along with international

standardization committes, these organizations help define geospatial data standards,

whose data formats have very strict rules about their content and characteristics of the

data they contain. Data are also available in formats specific to particular GIS or Com-

puter Aided Design (CAD) packages. For example, the DXF format was intended as a

Chapter 3. GIS concepts and web–mapping 34

Table 3.1: Popular vector datasets
Format Name Software

Platform
Type Developer Comments

Arc Export ARC INFO Transfer Environmental
Systems Research
Institute, Inc. (ESRI)

Transfers data across
ARC/INFO platforms.

AutoCAD Drawing Files AutoCAD Internal Autodesk

Digital Line graphs (DLG) Many Transfer United States Geologi-
cal Survey (USGS)

Used to publish USGS
digital maps.

Hewlett-Packard Graphic Lan-
guage

Many Internal Hewlett-Packard Used to control HP
plotters.

MapInfo Data Transfer Files MapInfo Transfer MapInfo Corp.

MapInfo Map Files MapInfo Internal MapInfo Corp.

MicroStation Design Files
(DGN)

MicroStation Internal Bentley Systems, Inc.

Spatial Data Transfer System
(SDTS)

Many Transfer US Government New US standard for
vector and raster geo-
graphic data.

TIGER Many Transfer US Census Bureau Used to publish US
Census Bureau maps.

data transfer format between CAD software packages and became a popular GIS data

format.

Another popular format with extensive application throughout web–mapping applica-

tions is the ESRI Shapefiles; A “shapefile” commonly refers to a collection of files with

“.shp”, “.shx”, “.dbf”, and other extensions on a common prefix name (e.g., “lakes.*”).

The actual shapefile relates specifically to files with the “.shp” extension, however this

file alone is incomplete for distribution, as the other supporting files are required. Shape-

files spatially describe geometries: points, polylines, and polygons. These, for example,

could represent water wells, rivers, and lakes, respectively. Each item may also have

attributes that describe the items, such as the name or temperature. Extensive infor-

mation concerning the ESRI shapefiles can be found in the ESRI Shapefile Technical

Description [7].

Table 3.2.1 contains a listing and the associative descriptions on some of the most pop-

ular vector formats in the market today.

3.2.2 Raster data model

[8]Raster data models incorporate the use of a grid-cell data structure where the geo-

graphic area is divided into cells identified by row and column. This data structure is

commonly called raster. While the term raster implies a regularly spaced grid, other tes-

sellated data structures do exist in grid based GIS systems. In particular, the quadtree

data structure has found some acceptance as an alternative raster data model.

Chapter 3. GIS concepts and web–mapping 35

The size of cells in a tessellated data structure is selected on the basis of the data ac-

curacy and the resolution needed by the user. There is no explicit coding of geographic

coordinates required since that is implicit in the layout of the cells. A raster data struc-

ture is in fact a matrix where any coordinate can be quickly calculated if the origin

point is known, and the size of the grid cells is known. Since grid-cells can be handled

as two-dimensional arrays in computer encoding many analytical operations are easy to

program. This makes tessellated data structures a popular choice for many GIS soft-

ware. Topology is not a relevant concept with tessellated structures since adjacency and

connectivity are implicit in the location of a particular cell in the data matrix.

Several tessellated data structures exist, however only two are commonly used in GIS’s.

The most popular cell structure is the regularly spaced matrix or raster structure. This

data structure involves a division of spatial data into regularly spaced cells. Each cell is

of the same shape and size. Squares are most commonly utilized. Different tessellated

data structures can use different tessellation modes such as:

• Grid squares of same size

• Hexagonal cells of same size

Irregural tesselations can include:

• Cadastral zones

• Thiessen polygons

Since geographic data is rarely distinguished by regularly spaced shapes, cells must be

classified as to the most common attribute for the cell. The problem of determining the

proper resolution for a particular data layer can be a concern. If one selects too coarse a

cell size then data may be overly generalized. If one selects too fine a cell size then too

many cells may be created resulting in a large data volumes, slower processing times,

and a more cumbersome data set. As well, one can imply an accuracy greater than that

of the original data capture process and this may result in some erroneous results during

analysis.

As well, since most data is captured in a vector format, e.g. digitizing, data must be

converted to the raster data structure. This is called vector-raster conversion. Most GIS

software allows the user to define the raster grid (cell) size for vector-raster conversion.

It is imperative that the original scale, e.g. accuracy, of the data be known prior to con-

version. The accuracy of the data, often referred to as the resolution, should determine

the cell size of the output raster map during conversion.

It is important to understand that the selection of a particular data structure can provide

advantages during the analysis stage. For example, the vector data model does not

Chapter 3. GIS concepts and web–mapping 36

handle continuous data, e.g. elevation, very well while the raster data model is more

ideally suited for this type of analysis. Accordingly, the raster structure does not handle

linear data analysis, e.g. shortest path, very well while vector systems do.

3.2.3 Image data

Image data is most often used to represent graphic or pictorial data. The term image

inherently reflects a graphic representation, and in the GIS world, differs significantly

from raster data. Most often, image data is used to store remotely sensed imagery, e.g.

satellite scenes or orthophotos, or ancillary graphics such as photographs, scanned plan

documents, etc. Image data is typically used in GIS systems as background display

data (if the image has been rectified and georeferenced); or as a graphic attribute.

Remote sensing software makes use of image data for image classification and processing.

Typically, these kinds of data must be converted into a raster format (and perhaps

vector) to be used analytically with the GIS.

Image data is typically stored in a variety of de facto industry standard proprietary

formats. These often reflect the most popular image processing systems. Other graphic

image formats, such as TIFF, GIF, PCX, etc., are used to store ancillary image data.

Most GIS software will read such formats and allow you to display these kinds of data.

Figure 3.2: Image data is most often used for remotely sensed imagery such as satellite
imagery or digital orthophotos.

It is common, that both image data and raster datasets are required to be self–descriptive

concerning their existance in the physical space. That is, to establish relations between

imagery to map projection and coordinate system, in other words to georeference their

contents. When data from different sources need to be combined and then used in a GIS

Chapter 3. GIS concepts and web–mapping 37

Table 3.2: Vector data: Pros and Cos
Advantages Data can be represented at its original resolution and form

without generalization.
Graphic output is usually more aesthetically pleasing.
Since most data is in vector form no data conversion is re-
quired.
A vector dataset is easily maintaned in terms of inserting
and updating features.
Accurate geographic location of data is maintained.
Allows for efficient encoding of topology, and as a result more
efficient operations that require topological information.

Disadvantages The location of each vertex needs to be stored explicitly.
For effective analysis, vector data must be converted into a
topological structure. This is often processing intensive and
usually requires extensive data cleaning. As well, topology
is static, and any updating or editing of the vector data
requires re-building of the topology.
Algorithms for manipulative and analysis functions are com-
plex and may be processing intensive.
Continuous data, such as elevation data, is not effectively
represented in vector form.

application, it becomes essential to have a common referencing system. This is brought

about by using various georeferencing techniques. Using the GPS technology, a user can

georeference a spatial point of interest using the latitute/longitude pair.

In order to georeference imagery, desktop GIS application (ArcMap, ERDAS Imagine,

GRASS) provide the essential toolboxes; one first needs to establish control points,

input the known geographic coordinates of these control points, choose the coordinate

system and other projection parameters and then minimize residuals. Residuals are

the difference between the actual coordinates of the control points and the coordinates

predicted by the geographic model created using the control points. They provide a

method of determining the level of accuracy of the georeferencing process.

Raster formats like GeoTIFF can internally contain georeferencing information, while

bitmaps and JPEG imagery need to be accompanied with files like the world file which

contains the required information in order to be used in spatial analysis and overlays.

3.2.4 Data accuracy and quality

The quality of data sources for GIS processing is becoming an ever increasing concern

among GIS application specialists. With the influx of GIS software on the commercial

market and the accelerating application of GIS technology to problem solving and de-

cision making roles, the quality and reliability of GIS products is coming under closer

Chapter 3. GIS concepts and web–mapping 38

Table 3.3: Raster data: Pros and Cos
Advantages The geographic location of each cell is implied by its position

in the cell matrix. Accordingly no geographic coordinates
are stored.
Due to the nature of the data storage technique data analysis
is usually easy to program and quick to perform.
Discrete data, e.g. forestry stands, is accommodated equally
well as continuous data, e.g. elevation data, and facilitates
the integrating of the two data types.
Grid-cell systems are very compatible with raster-based out-
put devices, e.g. electrostatic plotters, graphic terminals.

Disadvantages The cell size determines the resolution at which the data is
represented.
It is especially difficult to adequately represent linear fea-
tures depending on the cell resolution. Accordingly, network
linkages are difficult to establish.
Raster maps inherently reflect only one attribute or charac-
teristic for an area.
Since most input data is in vector form, data must undergo
vector-to-raster conversion. Besides increased processing re-
quirements this may introduce data integrity concerns due
to generalization and choice of inappropriate cell size.
Most output maps from grid-cell systems do not conform to
high-quality cartographic needs.

scrutiny. Much concern has been raised as to the relative error that may be inherent in

GIS processing methodologies. While research is ongoing, and no finite standards have

yet been adopted in the commercial GIS marketplace, several practical recommendations

have been identified which help to locate possible error sources, and define the quality

of data. The following review of data quality focuses on three distinct components, data

accuracy, quality, and error.

Accuracy

The fundamental issue with respect to data is accuracy. Accuracy is the closeness of

results of observations to the true values or values accepted as being true. This implies

that observations of most spatial phenomena are usually only considered to estimates

of the true value. The difference between observed and true (or accepted as being true)

values indicates the accuracy of the observations.

Basically two types of accuracy exist. These are positional and attribute accuracy. Po-

sitional accuracyis the expected deviance in the geographic location of an object from

its true ground position. This is what we commonly think of when the term accuracy

is discussed. There are two components to positional accuracy. These are relative and

Chapter 3. GIS concepts and web–mapping 39

absolute accuracy. Absolute accuracy concerns the accuracy of data elements with re-

spect to a coordinate scheme, e.g. UTM. Relative accuracy concerns the positioning of

map features relative to one another.

Often relative accuracy is of greater concern than absolute accuracy. For example, most

GIS users can live with the fact that their survey township coordinates do not coincide

exactly with the survey fabric, however, the absence of one or two parcels from a tax

map can have immediate and costly consequences.

Attribute accuracy is equally as important as positional accuracy. It also reflects esti-

mates of the truth. Interpreting and depicting boundaries and characteristics for forest

stands or soil polygons can be exceedingly difficult and subjective. Most resource spe-

cialists will attest to this fact. Accordingly, the degree of homogeneity found within such

mapped boundaries is not nearly as high in reality as it would appear to be on most

maps.

Quality

Quality can simply be defined as the fitness for use for a specific data set. Data that

is appropriate for use with one application may not be fit for use with another. It is

fully dependant on the scale, accuracy, and extent of the data set, as well as the quality

of other data sets to be used. The recent U.S. Spatial Data Transfer Standard (SDTS)

identifies five components to data quality definitions. These are :

Lineage The lineage of data is concerned with historical and compilation aspects of the

data such as the source of the data and their content

Positional Accuracy The identification of positional accuracy is important. This in-

cludes consideration of inherent error (source error) and operational error (intro-

duced error). A more detailed review is provided in the next section.

Attribute Accuracy Consideration of the accuracy of attributes also helps to define

the quality of the data. This quality component concerns the identification of the

reliability, or level of purity (homogeneity), in a data set.

Logical Consistency This component is concerned with determining the faithfulness

of the data structure for a data set. This typically involves spatial data inconsis-

tencies such as incorrect line intersections, duplicate lines or boundaries, or gaps

in lines. These are referred to as spatial or topological errors.

Completeness The final quality component involves a statement about the complete-

ness of the data set. This includes consideration of holes in the data, unclassified

areas, and any compilation procedures that may have caused data to be eliminated.

Chapter 3. GIS concepts and web–mapping 40

3.3 Important GIS issues

3.3.1 Organizing non–spatial data

GIS use raster and vector representations to model location, but they must also record

information about the real-world phenomena positioned at each location and the at-

tributes of these phenomena. That is, the GIS must provide a linkage between spatial

and non-spatial1 data. These linkages make the GIS “intelligent” insofar as the user can

store and examine information about where things are and what they are like.

A separate data model is used to store and maintain attribute data for GIS software.

These data models may exist internally within the GIS software, or may be reflected

in external commercial Database Management Software (DBMS). A variety of different

data models exist for the storage and management of attribute data [1] [9]. The most

common are:

• Tabular

• Hierarchical

• Network

• Relational

• Object-Oriented

3.3.1.1 Tabular models

The simple tabular model stores attribute data as sequential data files with fixed formats

(or comma delimited for ASCII data), for the location of attribute values in a predefined

record structure. This type of data model is currently outdated in the GIS arena.

All records in this data base have the same number of “fields”. Individual records have

different data in each field with one field serving as a key to locate a particular record.

For example, a social security number may be the key field in a record of a name, address,

phone number, sex, ethnicity, place of birth, date of birth of a person, and so on.

For a person there could be hundreds of fields associated with the record. When the

number of fields becomes lengthy a flat file is cumbersome to search. Also the key field

is usually determined by the programmer and searching by other determinants may be

difficult for the user.

This method lacks any means of checking data integrity, as well as being inefficient with

respect to data storage, e.g. limited indexing capability for attributes or records, etc.
1Non–spatial data are also called attribute or characteristic data

Chapter 3. GIS concepts and web–mapping 41

3.3.1.2 Hierarchical models

Hierarchical files store data in more than one type of record. This method is usually

described as a ”parent-child, one-to-many” relationship. One field is key to all records,

but data in one record does not have to be repeated in another. This system allows

records with similar attributes to be associated together. The records are linked to each

other by a key field in a hierarchy of files. Each record, except for the master record, has

a higher level record file linked by a key field ”pointer”. In other words, one record may

lead to another and so on in a relatively descending pattern. An advantage is that when

the relationship is clearly defined, and queries follow a standard routine, a very efficient

data structure results. The database is arranged according to its use and needs. Access

to different records is readily available, or easy to deny to a user by not furnishing that

particular file of the database. One of the disadvantages is one must access the master

record, with the key field determinant, in order to link ”downward” to other records.

3.3.1.3 Network models

The network database organizes data in a network or plex structure. Any column in a

plex structure can be linked to any other. Like a tree structure, a plex structure can be

described in terms of parents and children. This model allows for children to have more

than one parent.

Network DBMS have not found much more acceptance in GIS than the hierarchical

DBMS. They have the same flexibility limitations as hierarchical databases; however,

the more powerful structure for representing data relationships allows a more realistic

modelling of geographic phenomenon. However, network databases tend to become

overly complex too easily. In this regard it is easy to lose control and understanding of

the relationships between elements.

3.3.1.4 Relational models

The relational database organizes data in tables. Each table, is identified by a unique

table name, and is organized by rows and columns. Each column within a table also has

a unique name. Columns store the values for a specific attribute, e.g. cover group, tree

height. Rows represent one record in the table. In a GIS each row is usually linked to a

separate spatial feature, e.g. a forestry stand. Accordingly, each row would be comprised

of several columns, each column containing a specific value for that geographic feature.

The following figure presents a sample table for forest inventory features. This table

has 4 rows and 4 columns. The forest stand number would be the label for the spatial

Chapter 3. GIS concepts and web–mapping 42

feature as well as the primary key for the database table. This serves as the linkage

between the spatial definition of the feature and the attribute data for the feature.

UNIQUE STAND NUMBER AVG. TREE HEIGHT STAND SITE INDEX STAND AGE

001 3 G 100

002 4 M 80

003 4 M 60

004 4 G 120

Data is often stored in several tables. Tables can be joined or referenced to each other

by common columns (relational fields). Usually the common column is an identification

number for a selected geographic feature. This identification number acts as the pri-

mary key for the table. The ability to join tables through use of a common column is

the essence of the relational model. Such relational joins are usually ad hoc in nature

and form the basis of for querying in a relational GIS product. Unlike the other previ-

ously discussed database types, relationships are implicit in the character of the data as

opposed to explicit characteristics of the database set up.

There are many different designs of DBMSs, but in GIS the relational design has been

the most useful. In the relational design, data are stored conceptually as a collection of

tables. Common fields in different tables are used to link them together. This surpris-

ingly simple design has been so widely used primarily because of its flexibility and very

wide deployment in applications both within and without GIS.

Figure 3.3: In the relational design, data are stored conceptually as a collection of
tables. Common fields in different tables are used to link them together.

Chapter 3. GIS concepts and web–mapping 43

In fact, most GIS software provides an internal relational data model, as well as support

for commercial off-the-shelf (COTS) relational DBMS’. COTS DBMS’ are referred to

as external DBMS’. This approach supports both users with small data sets, where

an internal data model is sufficient, and customers with larger data sets who utilize a

DBMS for other corporate data storage requirements. With an external DBMS the GIS

software can simply connect to the database, and the user can make use of the inherent

capabilities of the DBMS. External DBMS’ tend to have much more extensive querying

and data integrity capabilities than the GIS’ internal relational model. The emergence

and use of the external DBMS is a trend that has resulted in the proliferation of GIS

technology into more traditional data processing environments.

The relational DBMS is attractive because of its:

• simplicity in organization and data modelling.

• flexibility - data can be manipulated in an ad hoc manner by joining tables.

• efficiency of storage - by the proper design of data tables redundant data can be

minimized

• the non-procedural nature - queries on a relational database do not need to take

into account the internal organization of the data.

The diagram 3.4 illustrates the basic linkage between a vector spatial data (topologic

model) and attributes maintained in a relational database file.

3.3.1.5 Object–oriented models

he object-oriented database model manages data through objects. An object is a collec-

tion of data elements and operations that together are considered a single entity. This

approach has the attraction that querying is very natural, as features can be bundled

together with attributes at the database administrator’s discretion. To date, only a few

GIS packages are promoting the use of this attribute data model. However, initial im-

pressions indicate that this approach may hold many operational benefits with respect

to geographic data processing.

3.3.2 Map projections in overview

A map projection is a way to represent the curved surface of the Earth on the flat

surface of a map. Strictly speaking, a map projection can be viewed as a method or a

Chapter 3. GIS concepts and web–mapping 44

Figure 3.4: Basic linkages between a vector spatial data (topologic model) and at-
tributes maintained in a relational database file.

function defined on the earth’s surface and with values on the plane, and not necessarily

a geometric projection.2

Flat maps could not exist without map projections, because a sphere cannot be laid

flat over a plane without distortions. One can see this mathematically as a consequence

of Gauss’s Theorema Egregium3. Flat maps can be more useful than globes in many

situations: they are more compact and easier to store; they readily accommodate an

enormous range of scales; they are viewed easily on computer displays; they can facilitate

measuring properties of the terrain being mapped; they can show larger portions of the

earth’s surface at once; and they are cheaper to produce and transport.

3.3.2.1 Metric properties of maps

Many properties can be measured on the earth’s surface independently of its geography.

Some of these properties are:

• Area

• Shape
2Extensive information concerning this section can be found at [10] [11] [12] [13]
3Theorema Egregium is a foundational result in differential geometry proved by Carl Friedrich Gauss

that concerns the curvature of surfaces. Informally, the theorem says that the Gaussian curvature of
a surface can be determined entirely by measuring angles and distances on the surface itself, without
further reference to the particular way in which the surface is situtated in the ambient 3-dimensional
Euclidean space. Thus the Gaussian curvature is an intrinsic invariant of a surface.

Chapter 3. GIS concepts and web–mapping 45

• Direction

• Bearing

• Distance

• Scale

Map projections can be constructed to preserve one or some of these properties, though

not all of them simultaneously. Each projection preserves or compromises or approxi-

mates basic metric properties in different ways. The purpose of the map, then, deter-

mines which projection should form the base for the map. Since many purposes exist

for maps, so do many projections exist upon which to construct them.

Another major concern that drives the choice of a projection is the compatibility of

data sets. Data sets are geographic information. As such, their collection depends on

the chosen model of the earth. Different models assign slightly different coordinates to

the same location, so it is important that the model be known and that chosen projection

be compatible with that model. On small areas (large scale) data compatibility issues

are more important since metric distortions are minimal at this level. In very large areas

(small scale), on the other hand, distortion is a more important factor to consider.

3.3.2.2 Construction of a map projection

The overview of the construction of a map projection involves three basic steps:

• Selection of a model for the shape of the earth or planetary body (usually choosing

between a sphere or ellipsoid)

• Transformation of geographic coordinates (longitude and latitude) to plane coor-

dinates (eastings and northings or x,y)

• Reduction of the scale

Because the real earth’s shape is irregular, information is lost in the first step, in which

an approximating, regular model is chosen. Reducing the scale may be considered to be

part of transforming geographic coordinates to plane coordinates.

Most map projections, both practically and theoretically, are not ”projections” in any

physical sense. Rather, they depend on mathematical formulae that have no direct

physical interpretation. However, in understanding the concept of a map projection it is

helpful to think of a globe with a light source placed at some definite point with respect

to it, projecting features of the globe onto a surface.

Chapter 3. GIS concepts and web–mapping 46

3.3.2.3 Different projection surfaces and their “development”

A surface that can be unfolded or unrolled into a flat plane or sheet without stretching,

tearing or shrinking is called a ’developable surface’. The cylinder, cone and of course

the plane are all developable surfaces. The sphere and ellipsoid are not developable

surfaces. Any projection that attempts to project a sphere (or an ellipsoid) on a flat

sheet will have to distort the image (similar to the impossibility of making a flat sheet

from an orange peel).

One way of describing a projection is to project first from the earth’s surface to a

developable surface such as a cylinder or cone, followed by the simple second step of

unrolling the surface into a plane. While the first step inevitably distorts some properties

of the globe, the developable surface can then be unfolded without further distortion.

Once a choice is made between projecting onto a cylinder, cone, or plane, the orientation

of the shape must be chosen. The orientation is how the shape is placed with respect to

the globe. The orientation of the projection surface can be normal (inline with the earth’s

axis), transverse (at right angles to the earth’s axis) or oblique (any angle in between).

These surfaces may also be either tangent or secant to the spherical or ellipsoidal globe.

Tangent means the surface touches but does not slice through the globe; secant means

the surface does slice through the globe. Insofar as preserving metric properties go, it is

never advantageous to move the developable surface away from contact with the globe,

so that practice is not discussed here.

Below we provide an overview of some of the most popular projection along with images

that respond to the develepment phase from the sphere to the flat surface.

Cylindrical Projection

The term ”cylindrical projection” is used to refer to any projection in which meridi-

ans are mapped to equally spaced vertical lines and circles of latitude (parallels) are

mapped to horizontal lines. One can imagine it as the projection of the spherical earth

on a cylinder that is wrapped around it. Figure 3.5 shows a graphical representation of

this projection.

Conical Projection

The term ”conical projection” is used to refer to any projection in which Earth’s surface

is projected onto a tangent or secant cone, which is then cut from apex to base and laid

flat. Figure 3.6 shows a graphical representation of this projection.

Chapter 3. GIS concepts and web–mapping 47

Figure 3.5: The cylindrical projection.

Figure 3.6: The conical projection.

Azimuthal Projection

Given a reference point A and two other points B and C on a surface, the azimuth

from B to C is the angle formed by the minimum-distance lines AB and AC. In other

words, it represents the angle one sitting on A and looking at B must turn in order to

look at C. The bearing from A to C is the azimuth considering a pole as reference B.

Figure 3.7 shows a graphical representation of this projection.

Figure 3.7: The azimuthal projection.

Chapter 3. GIS concepts and web–mapping 48

3.3.2.4 Projection definitions

It is obvious, that each projection, no matter the selected surface, has numerous unique

attribute associated with it. Therefore, there are many standardized ways to define

a projection along with its properties. Below is a representation of US national atlas

equal area projection with its definition using the ”human–readble” Open Geospatial

Concortium’s (OGC) Well–Known–Text (WKT).

PROJCS["US National Atlas Equal Area",

GEOGCS["Unspecified datum based upon the Clarke 1866 Authalic Sphere",

DATUM["Not_specified_based_on_Clarke_1866_Authalic_Sphere",

SPHEROID["Clarke 1866 Authalic Sphere",6370997,0,

AUTHORITY["EPSG","7052"]],

AUTHORITY["EPSG","6052"]],

PRIMEM["Greenwich",0,

AUTHORITY["EPSG","8901"]],

UNIT["degree",0.01745329251994328,

AUTHORITY["EPSG","9122"]],

AUTHORITY["EPSG","4052"]],

UNIT["metre",1,

AUTHORITY["EPSG","9001"]],

PROJECTION["Lambert_Azimuthal_Equal_Area"],file:///home/motley/Desktop/Thesis/mythesis/Chapters/Chapter4.tex

PARAMETER["latitude_of_center",45],

PARAMETER["longitude_of_center",-100],

PARAMETER["false_easting",0],

PARAMETER["false_northing",0],

AUTHORITY["EPSG","2163"],

AXIS["X",EAST],

AXIS["Y",NORTH]]

Of course, each software vendor can define its own method of defining projections as long

as it supports the standard options. In sake of simplicity there exist a special definition

for each projection, based on a simple European Petroluem Survey Group (EPSG) code.

The EPSG code is just a number which acts as a “primary” key to each software’s

database of map projection defiitions. For example, the above projection definition is

assigned a EPSG code of 2163.

Chapter 3. GIS concepts and web–mapping 49

3.3.3 Geocoding principles

Geocoding is the process of finding associated geographic coordinates (often expressed as

latitude and longitude) from other geographic data, such as street addresses, or zip codes

(postal codes). With geographic coordinates the features can be mapped and entered

into Geographic Information Systems, or the coordinates can be embedded into media

such as digital photographs via geotagging. Reverse Geocoding is the opposite: finding

an associated textual location such as a street address, from geographic coordinates. A

geocoder is a piece of software or a (web) service that helps in this process.

A simple method of geocoding is address interpolation. This method makes use of data

from a street geographic information system where the street network is already mapped

within the geographic coordinate space. Each street segment is attributed with address

ranges (e.g. house numbers from one segment to the next). Geocoding takes an address,

matches it to a street and specific segment (such as a block, in towns that use the

“block” convention). Geocoding then interpolates the position of the address, within

the range along the segment. As an example[14] we can use the 742 Evergreen Terrace

address; Let us assume that this segment (for instance, a block) of Evergreen Terrace

runs from 700 to 799. Even-numbered addresses would fall on one side (e.g. west side)

of Evergreen Terrace, with odd-numbered addresses on the other side (e.g. east side).

742 Evergreen Terrace would (probably) be located slightly less than halfway up the

block, on the west side of the street. A point would be mapped at that location along

the street, perhaps offset some distance to the west of the street centerline.

Difficulties arise when:

• Distinguishing between ambiguous addresses such as 742 Evergreen Terrace and

742 W Evergreen Terrace.

• Geocoding new addresses for a street that is not yet added to the geographic

information system database.

A very common error is to believe the accuracy ratings of a given map’s geocodable

attributes. Such ”accuracy” currently touted by most vendors has no bearing on an

address being attributed to the correct segment, being attributed to the correct ”side”

of the segment, nor resulting in an accurate position along that correct segment. With

the geocoding process used for U.S. Census TIGER datasets, 5-7.5% of the addresses

may be allocated to a different census tract, while 50% of the geocoded points might be

located to a different property parcel. [15]

Chapter 3. GIS concepts and web–mapping 50

3.3.4 Topological overlays

The combination of several spatial datasets (points, lines or polygons) creates a new

output vector dataset, visually similar to stacking several maps of the same region and

is the most required and common technique in geographic data processing. These over-

lays are similar to mathematical Venn diagram overlays. A union overlay combines the

geographic features and attribute tables of both inputs into a single new output. An

intersect overlay defines the area where both inputs overlap and retains a set of attribute

fields for each. A symmetric difference overlay defines an output area that includes the

total area of both inputs except for the overlapping area.

Topological overlay is predominantly concerned with overlaying polygon data with poly-

gon data, e.g. soils and forest cover. However, there are requirements for overlaying

point, linear, and polygon data in selected combinations, e.g. point in polygon, line in

polygon, and polygon on polygon are the most common. Vector and raster based soft-

ware differ considerably in their approach to topological overlay; In raster data analysis,

the overlay of datasets is accomplished through a process known as local operation on

multiple rasters or map algebra, through a function that combines the values of each

raster’s matrix. This function may weight some inputs more than others through use

of an index model that reflects the influence of various factors upon a geographic phe-

nomenon [5].

Generally, GIS software implements the overlay of different vector data layers by com-

bining the spatial and attribute data files of the layers to create a new data layer. Again,

different GIS software utilize varying approaches for the display and reporting of over-

lay results. Some systems require that topological overlay occur on only two data layers

at a time, creating a third layer. Figure 3.8 illustrates a typical overlay requirements

where several different layers are spatially joined to created a new topological layer.

By combining multiple layers in a topological fashion complex queries can be answered

concerning attributes of any layer [1].

3.4 WebGIS and Web mapping

The synergy of Geographical Information Systems and Web Technology allows access

to dynamic geospatial information without burdening the users with complicated and

expensive software. The World Wide Web provides GIS users easy access to spatial

data through a simple browser interface or sometimes by a lightweight client side appli-

cation. The concept of WebGIS is based on how the map is produced and responds

to users’ interactions over the Web. The publication and distribution of spatial data

Chapter 3. GIS concepts and web–mapping 51

Figure 3.8: Sample overlaying.

are increasingly important activities enabling organizations to share domain-specific dy-

namic spatial information over the Web.

Web mapping is the process of designing, implementing, generating and delivering

maps on the World Wide Web. WebGIS is similar to web mapping but with an emphasis

on analysis, processing of project specific geodata and exploratory aspects. Often the

terms webGIS and web mapping are used synonymously, even if they don’t mean exactly

the same. In fact, the border between web maps and web GIS is blurry. Web maps

are often a presentation media in webGIS while they are increasingly gaining analytical

capabilities. In the current work, we present GeoMoin which is originally a web–mapping

application, but due to its ability of supporting analytical operations either natively or

by building extensions via scripting, allows for a classification within the more general

realm of WebGIS applications. Thus, throughout the document, the two terms, will be

used synonymously.

The use of the web as a dissemination medium for maps can be regarded as a major

advancement in cartography and opens many new opportunities, such as realtime maps,

cheaper dissemination, more frequent and cheaper updates of data and software, per-

sonalized map content, distributed data sources and sharing of geographic information.

It also implicates many challenges due to technical restrictions (low display resolution

and limited bandwidth, in particular with mobile computing devices, many of which are

physically small, and use slow wireless Internet connections) and security issues, relia-

bility issues and technical complexity. While the first web maps were primarily static,

due to technical restrictions, today’s web maps can be fully interactive and integrate

multiple media. This means that both web mapping and web cartography also have to

deal with interactivity, usability and multimedia issues.

Chapter 3. GIS concepts and web–mapping 52

3.4.1 Types of web–mapping

4A first classification of web maps has been made by Kraak5. He distinguished static

and dynamic web maps and further distinguished interactive and view only web maps.

However, today in the light of an increased number of different web map types, this

classification needs some revision. Today, there are additional possibilities regarding

distributed data sources, collaborative maps, personalized maps, etc.

The following graphic lists potential types of web maps. While the graphic shows in

principle an order of increasing sophistication, the allocation within the order is not

explicit. Many maps fall into more than one category and it is not always clear that a

personalized web map is more complex or sophisticated than an interactive web map.

Individual web map types and their application within GeoMoin are discussed below.

Figure 3.9: Web mapping applications’ classification.

Static Static web pages are view only with no animation and interactivity. They are

only created once, often manually and infrequently updated. Typical graphics

formats for static web maps are PNG, JPEG, GIF, or TIFF (e.g., drg) for raster

files, SVG, PDF or SWF for vector files. Often, these maps are scanned paper

maps and had not been designed as screen maps. GeoMoin can be configured to

present static maps without any interaction with the end user.

Dynamic These maps are created on demand each time the user reloads the webpages,

often from dynamic data sources, such as databases. The webserver generates the

map using a web map server or a self written software. The use of MapServer
4The following information are presented from the Wikipedia article on web mapping.
5Kraak, Menno Jan (2001): Settings and needs for web cartography, in: Kraak and Allan Brown

(eds), Web Cartography, Francis and Taylor, New York, p. 34.

Chapter 3. GIS concepts and web–mapping 53

and dynamic web development allow the presentation of dynamic spatial content

within GeoMoin.

Distributed These maps are created from distributed data sources. The WMS proto-

col offers a standardized method to access maps on other servers. WMS servers

can collect these different sources, reproject the map layers, if necessary, and send

them back as a combined image containing all requested map layers. One server

may offer a topographic base map, while other servers may offer thematic layers.

GeoMoin makes extensive use of distributed OGC web services (OWS) and espe-

cially WMS and WFS, while every map can be configured to act as a client for the

distributed content, or as a server of the above web–services.

Animated Animated Maps show changes in the map over time by animating one of

the graphical or temporal variables. End–user browsers usually need to support

third–party software like Quicktime, Flash player, Java applets. This feature is

not developed within GeoMoin.

Realtime Realtime maps show the situation of a phenomenon in close to realtime (only

a few seconds or minutes delay). Data is collected by sensors and the maps are

generated or updated at regular intervals or immediately on demand. Examples

are weather maps, traffic maps or vehicle monitoring systems. This feature is not

developed and tested within GeoMoin, but the extensive use of the PostgreSQL

spatially–enabled database could easily provide means of implementing realtime

features like GPS tracking, or traffic information announcements.

Personalized Personalized web maps allow the map user to apply his own data filtering,

selective content and the application of personal styling and map symbolization.

The OGC (Open Geospatial Consortium) provides the SLD standard (Styled Layer

Description) that may be sent to a WMS server for the application of individual

styles. The fact the every user can create or manage maps and geospatial content

allows for high personalization within GeoMoin.

Interactive Interactivity is one of the major advantages of screen based maps and

web maps. It helps to compensate for the disadvantages of screen and web maps.

Interactivity helps to explore maps, change map parameters, navigate and interact

with the map, reveal additional information, link to other resources, and much

more. Technically, it is achieved through the combination of events, scripting and

DOM manipulations. Using GeoMoin, users have full control of the rendering of

a map including panning, zooming, querying, displaying and creating annotations

along with many other features.

Chapter 3. GIS concepts and web–mapping 54

Analytic These web maps offer GIS analysis, either with geodata provided, or with

geodata uploaded by the map user. As already mentioned, the borderline between

analytic web maps and web GIS is blurry. Often, parts of the analysis are carried

out by a serverside GIS and the client displays the result of the analysis. GeoMoin’s

native components and extension via the use of mapplets allow GeoMoin to be used

as a mean of light–weight spatial analysis.

Collaborative Collaborative maps are still new, immature and complex to implement,

but show a lot of potential. The method parallels the Wikipedia project where

various people collaborate to create and improve maps on the web. Technically, an

application allowing simultaneous editing across the web would have to ensure that

geometric features being edited by one person are locked, so they can’t be edited

by other persons at the same time. Also, a minimal quality check would have to

be made, before data goes public. GeoMoin was primarily developed to serve as a

collaborative mean of distributing spatial content over the web. Users can upload

and install spatial content, create or manage maps and improve existing maps and

spatial information contributed by other users.

3.4.2 Advantages of web–mapping and WebGIS

• Web maps can easily deliver up to date information. If maps are generated auto-

matically from databases, they can display information in almost realtime. They

don’t need to be printed, mastered and distributed. Examples:

• Software and hardware infrastructure for web maps is cheap. Web server hardware

is cheaply available and many open source tools exist for producing web maps.

• Product updates can easily be distributed. Because web maps distribute both logic

and data with each request or loading, product updates can happen every time the

web user reloads the application. In traditional cartography, when dealing with

printed maps or interactive maps distributed on offline media (CD, DVD, etc.), a

map update caused serious efforts, triggering a reprint or remastering as well as a

redistribution of the media. With web maps, data and product updates are easier,

cheaper, and faster, and can occur more often.

• They work across browsers and operating systems. If web maps are implemented

based on open standards, the underlying operating system and browser do not

matter.

• Web maps can combine distributed data sources. Using open standards and docu-

mented APIs one can integrate (mash up) different data sources, if the projection

Chapter 3. GIS concepts and web–mapping 55

system, map scale and data quality match. The use of centralized data sources

removes the burden for individual organizations to maintain copies of the same

data sets. The down side is that one has to rely on and trust the external data

sources.

• Web maps allow for personalization. By using user profiles, personal filters and

personal styling and symbolization, users can configure and design their own maps,

if the web mapping systems supports personalization. Accessibility issues can be

treated in the same way. If users can store their favourite colors and patterns

they can avoid color combinations they can’t easily distinguish (e.g. due to color

blindness).

• Web maps enable collaborative mapping. Similar to the Wikipedia project, web

mapping technologies, such as DHTML/Ajax, SVG, Java, Adobe Flash, etc. en-

able distributed data acquisition and collaborative efforts. Examples for such

projects are the OpenStreetMap project or the Google Earth community. As with

other open projects, quality assurance is very important however.

• Web maps support hyperlinking to other information on the web. Just like any

other web page or a wiki, web maps can act like an index to other information on

the web. Any sensitive area in a map, a label text, etc. can provide hyperlinks to

additional information. As an example a map showing public transport options

can directly link to the corresponding section in the online train time table.

• It is easy to integrate multimedia in and with web maps. Current web browsers

support the playback of video, audio and animation (SVG, SWF, Quicktime, and

other multimedia frameworks).

3.4.3 Disadvantages and problematic issues

• Reliability issues – the reliability of the internet and web server infrastructure is not

yet good enough. Esp. if a web map relies on external, distributed data sources,

the original author often cannot guarantee the availability of the information.

• Geodata is expensive – Unlike in the US, where geodata collected by governmental

institutions is usually available for free or cheap, geodata is usually very expensive

in Europe or other parts of the world.

• Bandwidth issues – Web maps usually need a relatively high bandwidth.

• Limited screen space – Like with other screen based maps, web maps have the

problem of limited screen space. This is in particular a problem for mobile web

Chapter 3. GIS concepts and web–mapping 56

maps and location based services where maps have to be displayed in very small

screens with resolutions as low as 100100 pixels. Hopefully, technological advances

will help to overcome these limitations.

• Quality and accuracy issues – Many web maps are of poor quality, both in sym-

bolization, content and data accuracy.

• Complex to develop – Despite the increasing availability of free and commercial

tools to create web mapping and web GIS applications, it is still a complex task

to create interactive web maps. Many technologies, modules, services and data

sources have to be mastered and integrated.

• Immature development tools – Compared to the development of standalone ap-

plications with integrated development tools, the development and debugging en-

vironments of a conglomerate of different web technologies is still awkward and

uncomfortable.

• Copyright issues – Many people are still reluctant to publish geodata, esp. in

the light that geodata is expensive in some parts of the world. They fear copy-

right infringements of other people using their data without proper requests for

permission.

• Privacy issues – With detailed information available and the combination of dis-

tributed data sources, it is possible to find out and combine a lot of private and

personal information of individual persons. Properties and estates of individuals

are now accessible through high resolution aerial and satellite images throughout

the world to anyone.

3.4.4 WebGIS and Spatial Desicion Support

A Spatial Decision Support System (sDSS)6 is an interactive, computer-based

system, designed to support a user or group of users in achieving a higher effectiveness

of decision making while solving a semi-structured spatial problem. It is designed to

assist the spatial planner with guidance in making land use decisions. For example,

when deciding where to build a new airport many contrasting criteria, such as noise

pollution vs. employment prospects or the knock on effect on transportation links,

which make the decision difficult. A system which models decisions could be used to

help identify the most effective decision path.

A spatial decision support system typically consists of the following components 7.
6An sDSS is sometimes referred to as a Policy Support System
7This concept fits dialog, data and modelling concepts outlined in Sprague, R. H. and H. J. Watson

(1996) Decision support for management. Upper Saddle River, N.J.: Prentice Hall.

Chapter 3. GIS concepts and web–mapping 57

1. A database management system – This system holds and handles the geographical

data. A standalone system for this is called a Geographical Information System,

(GIS).

2. A library of potential models and methods that can be used to forecast the possible

outcomes of decisions.

3. An interface to aid the users interaction with the computer system and to assist

in analysis of outcomes.

An sDSS usually exists in the form of a computer model or collection of interlinked

computer models, including a land use model while various techniques are available to

simulate land use dynamics. An sDSS typically uses a variety of spatial and nonspatial

information, like data on land use, transportation, water management, demographics,

agriculture or climate. By using two (or, better, more) known points in history the

models can be calibrated and then projections into the future can be made to analyze

different spatial policy options. Using these techniques spatial planners can investigate

the effects of different scenarios, and provide information to make informed decisions. To

allow the user to easily adapt the system to deal with possible intervention possibilities,

an interface allows for simple modification to be made.

Spatial decision support applications is leaning towards WebGIS applications, as they

allow researchers and stakeholders to benefit from sharing, analyzing and visualizing

large, up-to-date geospatial data sets with minimal effort and cost. Moreover, the inte-

gration of open-source, open-standards software packages and web design technologies

result in a powerful tool for the developing of interactive web mapping portals for spatial

analysis. FOSS offers a level of flexibility, availability and lowered cost that is typically

unavailable with commercial software, while an architecture and design based on open

standards ensures system interoperability and data reusability.

Chapter 4

The MapServer Package

4.1 What is MapServer

MapServer is an Open Source development environment for building spatially-enabled

internet applications [16]. It was originally developed by the University of Minnesota

(UMN) in collaboration with NASA, due to the NASA’s need to make its satellite

imagery available to the public. Later the project was hosted by the TerraSIP project,

a NASA sponsored project between the UMN and a consortium of land management

interests. MapServer is now a project of OSGeo [4.2.2], and is maintained by a growing

number of developers (nearing 20) from around the world. It is supported by a diverse

group of organizations that fund enhancements and maintenance, and administered

within OSGeo by the MapServer Project Steering Committee made up of developers

and other contributors. Mapserver is lead–developed by Stephen Lime and by the time

this work is written, its release version is 5.2.0.

It is important to state that MapServer is not a full–featured GIS system in terms of

spatial analysis and data processing, nor does it aspire to be. Instead, MapServer

excels at rendering spatial data (maps, images, and vector data) for the web.

Beyond browsing GIS data, MapServer allows a developer to create “geographic image

maps”, that is, maps that can direct users to content. For example, the Minnesota

DNR Recreation Compass1 provides users with more than 10,000 web pages, reports

and maps via a single application. The same application serves as a ”map engine” for

other portions of the site, providing spatial context where needed.
1http://www.dnr.state.mn.us/maps/compass.html

58

Chapter 4. The MapServer Package 59

Slighty altering Stephen Lime’s foreward on Bill Kropla’s book “Beginning MapServer:

Open Source GIS Development” we could note that, at its essence, MapServer is con-

ceptually very simple, but unless someone shares the thought processes of the core

developers, the learning curve can be a bit steep. For many open source projects, docu-

mentation is a weak point, and MapServer is no exception. That is, the documentation

is scattered loosely across mailing lists, sample applications and reference web–pages.

Therefore, it is important to dedicate some sections describing the fundamental aspects

of MapServer, addressing its features and some important “work–arounds”.

4.2 Setting the terrain for FOSS GIS development

4.2.1 The Open Geospatial Consortium

[17]The Open Geospatial Consortium, frequently refered as OGC, is an international

voluntary consensus standards organization. In the OGC, many commercial, govern-

mental, nonprofit and research organizations worldwide collaborate in an open process,

encouraging development and implementation of standards for geospatial content and

services, GIS data processing and exchange. It was previously known as Open GIS

Consortium.

Most of the OGC specifications are based on a generalized architecture captured in a set

of documents collectively called the Abstract Specification, which describes a basic data

model for geographic features to be represented. Atop the Abstract Specification is a

growing number of specifications, or standards, that have been (or are being) developed

to serve specific needs for interoperable location and geospatial technology, including

GIS.

Below we provide a list of the most important OGC specification up–to–date:

OGC Reference Model a complete set of reference models.

WMS Web Map Service: Provides map images.

WFS Web Feature Service: For retrieving or altering feature descriptions. Provides information

in the Geography Markup Language (GML) format.

WCS Web Coverage Service: Provide coverage objects from a specified region.

WPS Web Processing Service: Remote processing service.

CSW Web Catalog Service: Access to catalog information.

SFS Simple Features - SQL

GML Geography Markup Language: XML format for geographical information.

Chapter 4. The MapServer Package 60

KML Keyhole Markup Language: XML-based language schema for expressing geographic an-

notation and visualization on existing or future Web-based, two-dimensional maps and

three-dimensional Earth browsers.

WSC Web Service Common

The OGC has a close relationship with ISO/TC 211 (Geographic Information/Geomat-

ics). The OGC abstract specification is being progressively replaced by volumes from

the ISO 19100 series under development by this committee. Further, the OGC standards

Web Map Service, GML and Simple Features Access are ISO standards.

The OGC works with other international standards bodies including World Wide Web

Consortium (W3C) and Organization for the Advancement of Structured Information

Standards (OASIS).

4.2.2 The Open Source Geospatial Foundation

[18]The Open Source Geospatial Foundation (OSGeo), is a non-profit non-governmental

organization whose mission is to support and promote the collaborative development of

open geospatial technologies and data. The foundation was formed in February 2006

to provide financial, organizational and legal support to the broader Free and open

source geospatial community. It will also serve as an independent legal entity to which

community members can contribute code, funding and other resources, secure in the

knowledge that their contributions will be maintained for public benefit. OSGeo projects

include:

• Geospatial Libraries:

– FDO

– GDAL/OGR

– GeoTools

• Desktop Applications:

– GRASS GIS

– OSSIM

– Quantum GIS

• Web Mapping:

– Mapbender

– Mapserver

Chapter 4. The MapServer Package 61

– Mapbuilder

– Mapguide OpenSource

– OpenLayers

4.3 Intoducing MapServer capabilities

[19] MapServer creates maps from spatial information stored in digital format, being

able to handle both vector and raster data. Using the OGR library it can access over

20 different vector type formats including shapefiles, PostGIS and ArcSDE geometries,

OPeNDAP, Mitab/MapInfo and USGS TIGER datasets.

Additionally a map rendered by MapServer can simultaneously use both vector and

raster formats. For example, an aerial or satellite photo of a region can be overlayed be-

low rendered vector data to provide a clearer picture or “background” of how these vector

elements relate to real–world features. Natively, MapServer suppports two raster/image

formats: GeoTIFF and EPPL7, but using the GDAL library can expand its abilities to

a large number of formats including Windows bitmap, GIF and JPEG.

Mapserver can operator in two different modes: CGI and MapScript. In CGI mode,

mapserver function in a web server environment as a CGI script, accepting requests

and generating responses. Being a fact that a CGI implementations are particularly

slow due to the creation of many different processes each timee the script is called,

this modes serves for easy set–up and producing of an easy–to–build and straightfor-

ward low–traffic application. On the contrary in MapScript mode, a programmer has

access to MapServer’s API through Perl,Python or PHP. This interface allows for a flex-

ible, feature–rich application giving the programmer the ability to access MapServers’

advanced features. The requirements for a project like GeoMoin, set the selection of

mapscript as mandatory.

Natively2, MapServer is a template–based application. When first executed in response

to a HTTP request, it reads a configuration file,described later, the mapfile which con-

tains the layer definitions and other components of a map. Next, it reads one or more

HTML templates identified in the map. Each template consist of the traditional HTML

tags and some special Mapserver substitution strings. These strings specify, for example,

the path where the rendered image is stored or the zoom level and direction. Thus, after

MapServer substitutes the strings with the correct values, it sends the data stream to

the web–server which afterwards forwards it to the user–agent. When the user–agent
2With the word “natively” we mean that the templating capabilities are crucial when MapServer

operates in CGI mode, although MapScript can still take advantage of it.

Chapter 4. The MapServer Package 62

Figure 4.1: Mapserver architecture (source: UMN MapServer documentation)

changes any HTML form elements on the page and submits the results, MapServer re-

cieves a new request and the cycle of events starts again.

The use of mapscript exposes the programmer to a more advanced interface allowing

access to every function and data type used to built the cgi version itself. In case of

mapscript programming, the mapserver libraries are being imported, mapserver objects

are instantiated using mapfiles and script–specific needs. After the business logic of

the application is executed the output can be either provided with a web–programming

interface (PHP,python etc) to the web–client or even a linux shell as a standalone ap-

plication.

Mapserver automatically performs several tasks when generating a map. It labels fea-

tures and prevents collisions between neighboring labels. It provides for the use of

bitmapped or TrueType fonts. Label sizes can be fixed or configured to scale with the

scale of the map. It can also create legends and scalebars or reference maps.

Mapserver builds map, by stacking layers on top of each other. As each is rendered,

it is placed on top of the stack. Every layer displays features selected from a single

data set. Features to be displayed can be selected by using Regular Expressions, string

comparisons or logical expressions. Because of the similarity of data and the similarity

Chapter 4. The MapServer Package 63

of the styling parameters (like scale,color and labels), one can think of a layer definition

as a theme. The display of layers is under user control, allowing him to decide which

layers will be rendered. With the use of MapScript, layers can be generated on the fly

and can be populated with dynamic data.

MapServer additionally provides query capabilities which will be described later in detail,

but in CGI mode it lacks the tools that allow the kind of analysis provided by a true GIS.

It is important to note, that a mapserver programmer, may not only rely on the native

tools supported by the mapscript library. On the contrary, one can import libraries

like GDAL and GEOS, which in conjuction to mapscript introduce a highly advanced

framework for GIS developement.

This overview described some of MapServer’s features and also shown why it is not

a full GIS: it provides no integrated DBMS tools, in it’s native mode the analytical

capabilities are limited, and it has not tools for georeferencing. But since MapServer’s

function can be accessed via an API, it can serve as the foundation of a powerful spatially

aware application that has many analytical and reporting functions like a typical GIS.

In addition, while there are no integrated means of manilupating spatial data, there are

third–party tool set that perform these kinds of actions.

Summarizing, when a run as CGI in a web environment, MapServer can render maps,

display attribute data and perform rudimentary spatial queries. When accessed via

the API, the application becomes significantly more powerful. In this environment,

MapServer can perform the same task it would as CGI, but it also has access to external

databases via program control, as well as more complex logic and a larger repertoire of

possible behaviours.

4.4 Mapserver’s configuration: The Mapfile

In this section, we will describe the most important element of a MapServer application,

the mapfile. The mapfile defines a collection of mapping objects that together determine

the appearance and behaviour of a map as displayed in the web–browser. Based on the

same datasets, an application can provide different mapfiles which respond differently

to user actions. Although it might seem that the use of a static configuration file would

have limited functionality, the design of MapServer and the format of the mapfile allow

the development of powerful applications.

Mapfile definitions follow the typical “keyword–value pair” parsing styling. Some values

are lists of items separated by white space and frequently enclosed in quotes. Single

quotes and double quotes are both acceptable. It is important to note that the mapfile

is partially–case–sensitive, that is, for example some database access methods require

Chapter 4. The MapServer Package 64

case–sensitivity. A complete reference to mapfile directives is provided by the MapServer

community here [20] while important tutorials are provided here [21].

4.4.1 A simple mapfile

Let’s present a simple mapfile as a “Hello World” application with a line–by–line de-

scription, which is helpful for the reader to get an insight of how things work, before

presenting more complex mapfile directives:

01 # This is a comment

02 NAME "Helloworld"

Line 01 is a single line comment, which can exist even after a mapfile directive. Note

that MapServer does not support multi–line comments. Line 02 defines the name of the

map. In a CGI mode, the NAME acts as the prefix for the rendered images filenames,

so it is a good practise to be kept short and without spaces.

03 SIZE 400 300

04 IMAGECOLOR 250 0 0

05 IMAGETYPE png

06 EXTENT -1.00 -1.00 1.00 1.00

Line 03 defines the length and width of the rendered image in pixels. Line 04 defines the

background color of the map in a R G B (red green blue) fashion, in that case using a red

background. Line 05 instructs MapServer to create a rendered image of type “PNG”.

The geographic extent, the rectangular area covered in real coordinates, is crucial to a

mapfile design. Along with the map scale and the output size, some computations take

place to define what will be rendered. For example, if a dataset is used consisting of the

capital cities in the world and the extent is “136 30 150 45”, the rendered output will be

an image of 400 pixels length and 300 pixels width, consisting of cities spatially–included

in the rectangle defined using those coordinates. This example though will not have any

real–world association, so an arbitrary extent can be used provide that if follows the

rule below:

The EXTENT format is of type: minx miny maxx maxy, with the first pair

of coordinates describing the minimum point in the map which is the lower

left corner and the second pair describing the maximum point of the map

which is the upper right corner.

Chapter 4. The MapServer Package 65

07 WEB

08 TEMPLATE "/var/www/hello.html"

09 IMAGEPATH "/var/www/tmp/"

10 IMAGEURL "/tmp/"

11 END

In order for a user–agent to display a map, it must be embed in a web–page or a

template. A WEB object defines the name of this template and its crucial parameters.

MapServer afterwards uses these parameters to compute the string substitutions which

were mentioned earlier. Lines 07 and 11 begin and end a web object as a parsing

directive. Line 08 defines the name of the template file along with its path in the

filesystem. Line 09 shows where the rendered images will be stored in the filesystem.

This folder must be accessible via the web–server so that the CGI application can have

access to the rendered image. Thus, IMAGEURL on line 10 defines its web location

with respect to the web server’s DocumentRoot.

Now MapServer knows what type of image to produce, what size and how to embed it

in a HTML page to send it to the user–agent. But it doesn’t know what to render.

This role is attributed to a special mapfile object, the Layer.

A layer is referencing a single dataset and contains a set of elements tat will be rendered

in a particular scale, using a particular projection.

12 LAYER

13 STATUS default

14 TYPE point

Line 12 starts a layer definition. Line 13 defines that the layer will always be rendered.

STATUS keyword can also be “off” or “on”, specifying if the layer will be visible or not,

as long as the user does not change its status, that is, the user can set which layer will

be visible or not within the application. A “default” is always on.

Each layer has a geometric type associated with it. This means that the dataset elements

will be treated by MapServer as a point, or polygon or whatever the “TYPE” directive

defines. Thus, if a geometry is created to be used as line (a list of points) and the

mapfile’s layer definition commands this geometry to be treated as point, it is obvious

that the rendered image will contain only points and NOT lines connecting the line

coordinates. In our example, the geometry will be of type “point”.

Now that MapServer knows the type of the data of the layer, the next step is to provide

them. Data can be contained in many format, as well as, in many sources. For this

Chapter 4. The MapServer Package 66

example we will use a special source of data, the inline data. These data are enclose

between the FEATURE parsing instruction as shown below:

15 FEATURE

16 POINTS 0.0 0.0 END

17 TEXT "Hello World"

18 END

Line 16 defines where the point will be draws in respect to the map extent. Having as

extent: -1 -1 1 1, this point will be drawn in the middle of the map. Line 17 defines a

text label associated with this point, which can be rendered on the image.

The only thing that MapServer is still not aware, is how the data will be rendered. For

example, what color the point will have, will it be a point or a symbol or how what font

the label will use. These tasks are governed by the CLASS object.

19 CLASS

20 STYLE

21 COLOR 0 255 0

22 SIZE 10

23 END

24 LABEL

25 TYPE bitmap

SIZE 4

COLOR 120 0 0

26 END

27 END

28 END #end layer

29 END #end mapfile

In line 19 a CLASS object is being created. Lines 20–23 declare a STYLE object

which the defines the color and the size of the dot that wil represent the point on the

rendered image. Line 24–26 declare a LABEL object which defines how the label will

be rendered, in that case using bitmap fonts. Finally, the layer object and the mapfile

object are closed.

4.4.2 Associating datasets to a LAYER object

In the previous example we saw that a layer object can be populated with inline elements

using the FEATURE directive. Although straight–forward, this methodology doesn’t

Chapter 4. The MapServer Package 67

work for real–world problems that MapServer was created to solve. For example, if a

designer wants to reference all the restaurants in a single town, he comes across the

following issues:

• There is probably a large number of features to be referenced.

• There is a need for manipulating those features in the future.

• It is common that these features should be available to many different maps.

Georeferencing real–world features is a process commonly done using full GIS frame-

works like GRASS. These GIS provide a dataset in a particular format contained these

features along with the non–spatial attribute they contain. A typical example, is ESRI

shapefiles or TIGER/Line datasets. This formats gathers a set of files containing the

georeferenced features, the non–spatial attributes and optionally the projection param-

eter and a precompiled data indexing.

MapServer is natively aware of some formats used in the industry, but, as we mentioned

before, using OSGeo’s library GDAL/OGR it can support many off–the–shelf raster or

vector formats.

In order to add an ESRI dataset as input to a layer object, some directives must be

added. Let’s assume that the ESRI dataset’s file consist of the following:

countries.shp The main shapefile file. Maps the geographic features to the tables

containg the attribute information.

countries.dbf The database of the feature attribute, resembling a relational model.

countries.shx This file provided the indexing of the features for faster update and

retrieval.

First of all, in the global MAP object a directive defining the path where the dataset is

located can be declared:

SHAPEPATH "/var/www/shapefolder"

Finally in the layer level (the layer object):

LAYER

DATA "countries"

Chapter 4. The MapServer Package 68

The SHAPEPATH directive can be ommited provided that the DATA directive will

include the full path to the .shp file:

LAYER

DATA "/var/www/shapefolder/countries.shp"

As a second example, we will add a layer definition using a MapInfo (MITAB) dataset.

MapServer does not provide native support for this type of datasets, but it can through

the OGR3 library. In this case a layer definition should look like this:

LAYER

NAME "mitab_layer"

TYPE POLYGON

CONNECTIONTYPE OGR

CONNECTION "/var/www/mitabfolder/countries.tab"

STATUS ON

CLASS

...

END

...

END

The new directive CONNECTIONTYPE defines a connection through the OGR library,

while the CONNECTION directive defines the name of the main MapInfo file.

Finally, we must provide an example of a connection to a DBMS holding the dataset. As-

suming that the spatially–aware DBMS is PostgreSQL and is equipped with the PostGIS

extension which will be explained later, a layer definition should look like this:

LAYER

NAME postgis_layer

STATUS ON

TYPE POLYGON

CONNECTIONTYPE POSTGIS

CONNECTION "host=127.0.0.1 dbname=mydb port=5433 user=user1 pass=qwerty"

DATA "wkb_geometry FROM countries"

CLASS
3The OGR Simple Features Library is a C++ open source library (and commandline tools) providing

read (and usually write) access to a variety of vector file formats including ESRI Shapefiles, and MapInfo
mid/mif and TAB formats.

Chapter 4. The MapServer Package 69

...

END

END

The CONNECTIONTYPE defines that a connection to a PostGreSQL database will be

established. The CONNECTION defines the connection string which must be provided

with the appropriate option like the host and port on which the DBMS is serving, the

database name and the credential. Finally in the DATA directive an SQL statement must

be provided that returns a table of a Well–Known–Binary (WKB) geometry, described

later, derived from the table which holds the dataset. The name “wkb geometry” along

with the name “the geom” is a very typical naming convention for a spatial column in

a database 4.

4.4.3 Using projections within the mapfile

Earlier, we described projections as a mean of transfering the three dimensional earth’s

surface to a two dimensional flat surface. Many projection surfaces exist while each one

can have different attributes. For example there can exist a unique Azimuthal projection

for the area covering Cyprus island located in the Mediterranean sea.

To render a map using MapServer, both the map designer and the application itself must

be aware of the projection which was used to create the spatial information. It is common

that the spatial information are unprojected, that is, they use latitute/longitude pairs

in degrees describing the spheroid earth’s surface. This representation is called WGS84

and uses the unique EPSG code of 4326. The mapping to an image follows a simple

transformation of the geographic coordinates to pixel values. A world map as a flat

surface based on WGS84 can be visualized on feature 4.2.

The application can be aware of what projection was used to create data by adding a

PROJECTION directive in the LAYER level as shown below:

PROJECTION

"proj=latlong"

"ellps=WGS84"

"datum=WGS84"

END
4The reason behind that is that if a PostGIS table was created using the shp2pgsql tool a column

named “the geom” would emerge and if the ogr2ogr tool was used, a column named “wkb geometry”
would emerge. There exists a quick workaround to grab all the geometry columns contained in a table
by issueing this SQL command: “SELECT column name FROM information schema.columns WHERE
table name=’[TABLE]’ and data type=’USER-DEFINED”’

Chapter 4. The MapServer Package 70

Figure 4.2: World map overlaid with latitute/longitude lines

Alternatively the EPSG code can be used as shown below:

PROJECTION

"init=epsg:4326"

END

As long as a mapfile can have multiple layer objects, if all layers contain spatial data

in the same projection there in no need for PROJECTION objects to be declared.

MapServer will assume that all data are on the same projection.

MapServer can also support an output projection defined on the MAP level. This method

can be used to reproject a map using a user–defined projection. It is a good practice

to always define map level projection whenever possible. A map level definition should

look this:

PROJECTION

This is the definition of Lambert Azimuthal Equal-Area

projection for the Continental U.S.

"proj=laea"

"ellps=clrk66"

"lat_0=45"

"lon_0=-100"

END

PROJECTION

Chapter 4. The MapServer Package 71

Alternatively, an EPSG code can be specified.

This is the EPSG code for Lambert Azimuthal Equal-Area

projection for the U.S.

#

"init=epsg:2163"

END

If a LAYER level projection is now defined, the PROJ.4 library (described in Appendix

A) will be used to reproject the spatial data to the MAP level projection. It is importand

to note that if a MAP–level projection is specified, and then only one other LAYER

projection object, MapServer will assume that all of the other layers are in the specified

MAP-level projection. So it is a good practice to define LAYER level projections (also

refered to as “input projections”) to all the layers in the mapfile in order to avoid

misconceptions caused by the MapServer or to avoid future problems while editing a

huge mapfile.

Below we provide two images [4.3] of the Wisconsin area with the first being unprojected

and the later, being projected using the Lambert Azimuthal Equal-Area projection for

the Continental U.S. The pictures have the same size, but the difference between the

two projections is clearly noticable. These images are produced using MapServer.

It is crucial to note that when a map is reprojected to a new MAP level projection

(also refered to as output projection), the MAP extents must also be reprojected to the

new coordinate system. A workaround to achieve this is to use the cs2cs utility provide

by the Proj.4 library. Issuing the command

cs2cs +proj=latlong +datum=WGS84 +to

+proj=laea +ellps=clrk66 +lat_0=45 +lon_0=-100

the user can type the first coordinate pair (in the example, it is the minx miny of the map

extent) and afterwards the second one (in the example, it is the maxx maxy of the map

extent) and the program will output the reprojected values for the extent coordinates.

Specifically, the minx/miny coordinate for the area covered in the pictures is -97.5

41.619778 unprojected. Running the command it outputs the following coordinates:

208398.01 -372335.44 0.000 5. Afterwards the map extent can be substituted using the

new coordinates.

Usually there exists some distortion while projecting from one system to another, so

the map is not centered as someone would expect. Using Desktop GIS application like

ArcMAP, manual edits can happen in order to align the data in great detail.

5The third number is the altitude and can be ignored if it is not needed.

Chapter 4. The MapServer Package 72

Figure 4.3: Satellite images of Wisconsin area unprojected and projected using the
LAEA projection respectively.

Chapter 4. The MapServer Package 73

4.5 Introducing MapScript

As we stated earlier MapServer was natively created to act as a CGI executable. But the

reduced abilities caused by a single pre–compiled program cannot match today’s needs

for a web–mapping application, even to the degree of capabilities that MapServer was

designed to offer. Thus, the MapServer team introduces MapScript, a more powerful

way to use MapServer. MapScript provided access to all of MapServer’s underlying

functionally, making it available as a convenient API.

MapScript is based on an object oriented architecture, so the API is more properly

characterized as a collection of class, methods and attributes. The API is available

through the following programming languages:

• PHP

• Python

• Perl

• C#

• Tcl

• Ruby

• Java

Since different languages have different structures and syntax, the API exhibits some

language–specific differences. In addition to this there are two parallel maintenance

efforts. For example, PHP/MapScript is maintained manually, while Perl and Python

versions make use of a software interface generator (SWIG) to auatomate the process.

In this work we are interested and make exclusive use of the Python/MapScript. The

reason behind this is that the software we created is based on the MoinMoin wiki engine

which is written in Python.

In this section we will describe the basic MapScript functionalities, in order to achieve a

degree of abstraction between the GeoMoin’s specific workarounds and the more “low–

level” details and standard methodologies MapScript offers. Thus this section is not a

complete guide to MapScript features, nor it was intended to be. However with those

demonstrations, a programmer can dig into the details of the API and broaded his

understanding of MapScript.

Chapter 4. The MapServer Package 74

4.5.1 MapScript objects discussion

In the previous section we discussed some issues surrounding the basic MapServer con-

figuration script, the mapfile. We have seen the mapfile’s parsing elements are based on

clearly separated parsing logic. For example, the whole mapfile’s contents are included

in a structure named MAP, whereas each layer containing spatial data is included in its

own structure called LAYER, which is included in the MAP structure itself. Feature 4.4

gathers the basic elements of a mapfile and show the parent–child connections between

them.

MapScript is based to this particular relationship between the MapServer elements to

Figure 4.4: The basic structure of a mapfile.

provide its object oriented relationships between these elements. Thus, there exists an

object called mapObj and an object called layerObj whose member attribute layer-

Obj.map, returns the mapObj.

In addition to the elements of the mapfile that are directly associated with MapScript

obejct, mapscript offers objects in order to create new features and facilities. Object

derived by these classes include the pointObj, lineObj and rectObj, describing a

geographic point, polyline and rectangle respectively.

4.5.2 Rendering a map

The basic function MapScript can perform is to render maps based on a given mapfile.

The following python script uses a mapfile and saves the created image in the filesystem.

01 import mapscript

02 try:

03 map = mapscript.mapObj("/tmp/mapfile.map")

04 except:

05 print "Error occured while reading the mapfile"

06 image = map.draw()

Chapter 4. The MapServer Package 75

07 image.save("/tmp/render.png")

In line 01 the mapscript library is being imported to give access to its members. Lines

02–05 create a map object,feeding the constructor with the path to the mapfile, while

wrapping the whole call inside a try directive to catch possible exception [6]. Line 06

uses the map object’s draw() function to render the map. This function call returns an

imageObj whose save([path]) function creates and stores the rendered image in the

filesystem. Of course, a web–gis application, upon instantiation of the mapObj, includes

its business logic in order to drive the rendering to a particular state.

4.5.3 Accessing the features of a layer

In order for a MapServer developer to add extensive analytical capabilities to an applica-

tion, it is crucial that there is a method of accessing the underlying geographic features

within a layer. In terms of MapScript, to access the features of a layerObj.

For this example, let’s assume that there exist a mapfile consisting of one layer that

holds the cities of USA georeferenced as points. Assuming that the dataset is in the

ESRI shapefile format we could have a mapfile that looks like this:

NAME "usa_cities"

UNITS DD

EXTENT -180 0 -60 90

SIZE 640 480

IMAGECOLOR 255 255 255

IMAGETYPE PNG

SYMBOL

NAME "Circle"

FILLED true

TYPE ellipse

POINTS 1 1 END

END

WEB

IMAGEPATH "/var/www/tmp/"

IMAGEURL "/tmp"

END
6Generally, leaving the exception to occur is, of course, a method to debug problems associated with

the parsing ofthe mapfile.

Chapter 4. The MapServer Package 76

LAYER

NAME "cities"

DATA "/var/www/mapdata/citiesx020.shp"

STATUS default

TYPE point

CLASS

NAME "US Cities"

STYLE

SYMBOL "Circle"

SIZE 6

COLOR 0 255 0

END

END

END

END # mapfile

The above mapfile would be rendered as white image, consisting of green circles of 6

degrees size. Of course such a rendering would be meaningless because the particular

dataset contains 35432 features (enough to create a green image). But this example

addresses the use of MapScript to analyse these features.

According to the previous example we get the map object like that:

01 import mapscript

02 map = mapscript.mapObj("/tmp/mapfile.map")

The next thing that needs to be done is to access the layers contained in the map object:

03 num_of_layers = map.numlayers

04 for i in range(num_of_layers):

05 layer = map.getLayer(i)

Line 03 returns the number of layers which were parsed. In this example the variable

num of layers will hold a value of 1. Now we use the python’s range function which

returns a list of numbers up to the number given as a paramater but not including it.

Thus the call range(num of layers) will return [0]. Finally, the map object’s member

function getLayer(int index) is called which returns a reference to the layer at particular

index, starting from 0 which is fine because the range function includes the 0. Thus, the

variable layer now holds a reference to a layerObj.

Chapter 4. The MapServer Package 77

Now that we have a reference to a particular layer, we must try to iterate through all

the features it includes as we did before with the layers:

06 result = layer.whichShapes(map.extent)

07 layer.open()

08 while (1):

09 shape = layer.nextShape()

10 if shape==None:

11 break

Line 06 is crucial because it opens the underlying layer. This is required before operations

like getFeature() will work, but is not required before a draw call. Line 07 is a little

more complicated. We discussed earlier that a map extent is the whole geographic region

that will be covered by the next render of a map. In fact the map extent, in terms of

MapScript is a rectangle object or rectObj consisting of the lower–left and upper–right

coordinates. One thing that needs special attention is that during the usage of a mapping

application showing a particular map, the map extent is not static, on the contrary, when

the user zooms in or pans after a zoom, the map extent is altered to fit the new rectange

the user requested to view. Layer object’s member function whichShapes(rectObj rect)

does the handy job of creating a structure that will allow access to the features contained

inside and only inside the rectange given as a parameter.

In our example, as the parameterized rectangle, we use the whole extent of the map,

which is returned using the call map.extent. The result of the function call in line 07 is

MS SUCCESS or MS FAILURE, containing the values 0 and 1 respectively 7.

The internal structure, preprocessed by whichShape(rectObj) gives the ability to use

the layer object’s function call nextShape(). This function uses this internal structure

to return the next feature that is ready to be accessed. In MapScript the geographic

features are handled by the shapeObj class, which can handle all types of geometric

types including points, polylines, rectangles. If the reference to the shapeObj return ny

nextShape() is null (or None), it means that the iteration has already accessed all the

features contained in the current map extent.

In our example, we know that the geometry type of the layer is POINT, so the last thing

left to do, is to access the point object itself:

10 lineobj = shape.get(0)

11 pointobj = lineobj.get(0)

12 print " | " + repr(point.x) + " " + repr(point.y) + " | "

7These variable are accessed using for example, mapscript.MS SUCCESS

Chapter 4. The MapServer Package 78

In line 10 we can see that the shapeObj has a member function called get(idx) which

returns the line in the particular index given as a parameter. The line returned is handled

by MapScript’s lineObj. In line 11, same as above, the lineObj’s get(idx) function return

a reference to a MapScript pointObj in the particular index given as a parameter. This

structure is not peculiar if we think of the representation of the spatial object in the

vector model discussed in section 3.2.1, where the points act as vetrices within the line

work. Line 12 prints the point coordinates on the output stream.

As soon as a reference to a shapeObj exists, instead of accessing its geometry, the function

call shapeObj.getValue(index) can be used to access a non–spatial value (or attribute)

at the index given as a parameter. Mapscript layerObj’s function getItem(int i) and

attribute numitems can be used to return a particular fieldname8 and the number of

fields respectively.

4.5.4 Computations on spatial features

Using mapscript, developers have access to functions available to analyse and compute

geographic relationships between geographic features. The mapscript object ShapeObj

(described above) can be seen as an abstaction object between the different types of

geometries being points, lines, polygons, or multipolygons. Thus, the object gives a

very useful collection of function which are either native in mapserver, or supported

through GDAL or GEOS. Spatial operations include:

contains(pointObj—shapeObj) Returning true, if the shape or point is within the

object calling the member function

crosses(shapeObj) Returning true, if the shapes are crossing each other

difference(shapeObj) Returning the difference between the supplied and existing

shape

disjoint(shapeObj) Returning true, if the shapes are disjoint

distanceToPoint(pointObj) Returning the distance from a point object in specified

map or layer units

distanceToShape(shapeObj) Returning the minimum distance from a shape object

in specified map or layer units

equals(shapeObj) Returning true if the two shapes are equals in terms of geometry

only
8With the name fieldname we refer to the name of a single column containing non–spatial information.

Chapter 4. The MapServer Package 79

intersects(shapeObj) Returning true if the supplied shape intersects the existing one

intersection(shapeObj) Calculates the spatial intersection between the two shapes

overlaps(shapeObj) Returning true if the supplied shape overlaps the existing one

touches(shapeObj) Returning true if the supplied shape touches the existing one

based on the arcs defined by the vertices

Union(shapeObj) Returns the union of the existing and supplied shape.

4.6 OGC web–services within MapServer

Web Services, in general, reflect the advantages of the Web as a mean that provides

services, not just information. By the term “services” we do not refer to monolithic

web applications, but, rather, to component services that can be plugged together to

build larger, more comprehensive services and systems. For example, OpenID offers

an authentication service exported on the Web and MoinMoin supports it in order to

authenticate a user.

Within the broader context of web services, OGC Web Services (OWS) represent an

evolutionary, standards–based framework that enables seamless integration of a variety

of online geoprocessing and location services. OWS allows distributed geoprocessing sys-

tems to communicate with each other using familiar technologies like XML and HTTP.

Thus, OWS are self–contained, self–describing, modular services that can be published,

located and invoked across the Web. An OGC Web Service can be treated as a “black

box” that performs a task, such as providing driving directions. As long as OGC web

services can describe the operation they perform in Metadata (Capabilities), it is possi-

ble to search the services and understand what a particular web accessible service can

perform.

OWS architecure is multi–tier and attention can be drawn to the Information Manage-

ment Services tier that contains services designed to store and provide access to data,

with each server normally handling multiple separate datasets. In addition, metadata

describing multiple datasets can be stored and searched. In GeoMoin, we are interested

in two types of services included in the OWS specification: WMS and WFS.

Chapter 4. The MapServer Package 80

4.6.1 The WMS service overview

WMS is a service that dynamically reproduces spatially referenced maps of client–specific

ground rectangles from one or more client–selected geographic datasets, returning pre-

defined pictorial renderigs of maps in an image format. As an example, we will use the

WMS service provided by www.geosignal.org. First of all, the user or an application can

issue a GetCapabilities query of the WMS service that will return an XML by issuing

the following HTTP GET query string:

http://www.geosignal.org/cgi-bin/wmsmap?version=1.1.1& \

service=WMS&request=GetCapabilities

The result of the previous query is reflected in an XML document containing metadata

about the service, and the layers that are accessible through it. Some accessible layer of

France look like that:

<Layer queryable="0" opaque="0" cascaded="0">

<Name>RASTER1000k</Name>

<Title>Raster France 1/1 000 000</Title>

<SRS>EPSG:27582</SRS>

<ScaleHint min="280.633" max="935.443"/>

</Layer>

<Layer queryable="0" opaque="0" cascaded="0">

<Name>RASTER500k</Name>

<Title>Raster France 1/500 000</Title>

<SRS>EPSG:27582</SRS>

<ScaleHint min="140.316" max="280.633"/>

</Layer>

<Layer queryable="0" opaque="0" cascaded="0">

<Name>RASTER250k</Name>

<Title>Raster France 1/250 000</Title>

<SRS>EPSG:27582</SRS>

<ScaleHint min="65.481" max="140.316"/>

</Layer>

Issuing a HTTP GET query string like:

Chapter 4. The MapServer Package 81

http://www.geosignal.org/cgi-bin/wmsmap?

SERVICE=WMS&VERSION=1.1.1&

REQUEST=GetMap&

BBOX=-6.062580,41.163200,10.878300,51.291800&

SRS=EPSG:4326&LAYERS=RASTER4000k

Results in the map shown in figure 4.5

Figure 4.5: Map retrieved using the OWS WMS service.

4.6.2 The WFS service overview

WFS is a service that retrieves spatial features and feature collections stored that meet

client–specific selection criteria. WFS returns results in the GML format. The Geog-

raphy Markup Language (GML) is the XML grammar defined by the Open Geospatial

Chapter 4. The MapServer Package 82

Consortium (OGC) to express geographical features. GML serves as a modeling lan-

guage for geographic systems as well as an open interchangable format for geographic

transactions on the Internet. As an example for the WFS service we will use the WFS

provided by the DMSolutions group. The corresponding URL containing access to the

GetCapabilities request is featured below:

http://www2.dmsolutions.ca/cgi-bin/mswfs_gmap?SERVICE=WFS&VERSION=1.1.1&

REQUEST=GetCapabilities

The GetCapabilities request results in an XML document describing the service’s fea-

tures and the datasets that it provides:

<FeatureType>

<Name>prov_land</Name>

<Title>Canadian Land</Title>

<SRS>EPSG:42304</SRS>

<LatLongBoundingBox minx="-173.537" miny="35.8775"

maxx="-11.9603" maxy="83.8009"/>

</FeatureType>

<FeatureType>

<Name>land_fn</Name>

<Title>US Land</Title>

<SRS>EPSG:42304</SRS>

<LatLongBoundingBox minx="-178.838" miny="31.8844"

maxx="179.94" maxy="89.8254"/>

</FeatureType>

<FeatureType>

<Name>park</Name>

<Title>Parks</Title>

<SRS>EPSG:42304</SRS>

<LatLongBoundingBox minx="-173.433" miny="41.4271"

maxx="-13.3643" maxy="83.7466"/>

</FeatureType>

Drawing our attention to the park dataset, we can get the first feature issuing the

following HTTP GET query string:

Chapter 4. The MapServer Package 83

http://www2.dmsolutions.ca/cgi-bin/mswfs_gmap?

SERVICE=WFS&VERSION=1.0.0&

REQUEST=GetFeature&TYPENAME=park&

MAXFEATURES=1

The above query result in the following GML:

<wfs:FeatureCollection>

<gml:boundedBy>

<gml:Box srsName="EPSG:42304">

<gml:coordinates>

-2261310.750000,-67422.421875 2840366.000000,3830124.250000

</gml:coordinates>

</gml:Box>

</gml:boundedBy>

<gml:featureMember>

<myns:park>

<gml:boundedBy>

<gml:Box srsName="EPSG:42304">

<gml:coordinates>

245524.015625,3585946.750000 504494.156250,3830124.250000

</gml:coordinates>

</gml:Box>

</gml:boundedBy>

<myns:msGeometry>

<gml:Polygon srsName="EPSG:42304">

<gml:outerBoundaryIs>

<gml:LinearRing>

<gml:coordinates>

389366.843750,3791519.750000 419768.875000,3775503.000000

503425.843750,3765282.250000 503337.593750,3764874.500000

504494.156250,3756882.500000 504296.625000,3753103.750000

498288.875000,3743100.500000 497375.906250,3740939.250000

.....

</gml:coordinates>

</gml:LinearRing>

</gml:outerBoundaryIs>

</gml:Polygon>

Chapter 4. The MapServer Package 84

</myns:msGeometry>

<myns:AREA>38346293248.000</myns:AREA>

<myns:PERIMETER>1357483.000</myns:PERIMETER>

<myns:PARK_>2</myns:PARK_>

<myns:PARK_ID>40</myns:PARK_ID>

<myns:NAME_E>Ellesmere Island National Park Reserve</myns:NAME_E>

<myns:NAME_F>R?serve de parc national de I’?le-d’Ellesmere</myns:NAME_F>

<myns:YEAR_EST>1986</myns:YEAR_EST>

<myns:REG_CODE>61</myns:REG_CODE>

<myns:AREA_KMSQ>39500.000</myns:AREA_KMSQ>

</myns:park>

</gml:featureMember>

</wfs:FeatureCollection>

4.6.3 Integration with MapServer

Mapserver is able to take advantages of the architectures provided above either by using

online OWS resources as datasets to build maps (client) or providing such services for

remote applications (server). Thus MapServer can be parameterized to be used as:

• WMS client

• WMS server

• WFS client

• WFS server

Below, we will describe the steps needed to achieve the above modes, excluding the WFS

server.

4.6.3.1 Mapserver as WMS client

In order to use MapServer as a WMS client, the only parameterizing that takes place is

to import the online resource as a LAYER in the mapfile used to build a map. WMS

layers are accessed via the WMS connection type in the Mapfile. Here is an example of

a layer using this connection type:

LAYER

NAME "prov_bound"

Chapter 4. The MapServer Package 85

TYPE RASTER

STATUS ON

CONNECTION "http://www2.dmsolutions.ca/cgi-bin/mswms_gmap?"

CONNECTIONTYPE WMS

METADATA

"wms_srs" "EPSG:42304"

"wms_name" "prov_bound"

"wms_server_version" "1.1.1"

"wms_format" "image/gif"

END

END

We can see that the type of the layer is RASTER as we refer to WMS imagery while the

CONNECTIONTYPE is WMS in order that the mapserver business logic understands

that the URL provided within the CONNECTION string is used to locate the remote

WMS server. The METADATA is the key element to a successful WMS integration as

it is the place where the whole configuration is taking place. In the example above, the

wms srs is used to declare that the projection used, will match the one presented in

the Capabilities document of the WMS server’s response. The wms name identifies the

layer whose data the imagery will depict. The last two options define the remote WMS

server’s version and the output format of the image that will be generated by the server.

Of course, setting options that are not equivelant to the ones presented in the server’s

Capabilities document will result in mapserver exception, thus a fault in the application.

That is, the building of mapfile layers using WMS must be carefully created, examining

and learning what a remote WMS service exactly has to offer.

4.6.3.2 Mapserver as WMS client

Parameterizing mapserver to act as a WMS server requires more than adding directives

to the mapfile. In case of MapScript, a proper script must be create which will be part of

the URL that remote clients connect to in order to request the imagery. Beginning with

the mapfile requirements, the mapfile will be parameterized to act a “server” mapfile.

This is accomplished using the WEB object of the mapfile:

WEB

...

METADATA

"wms_title" "WMS Demo Server"

"wms_onlineresource" "http://my.host.com/mapserv.py?"

Chapter 4. The MapServer Package 86

"wms_srs" "EPSG:4269 EPSG:4326"

END

END

The first option declares the name of the particular WMS server instance, the second

is the URL that will be presented to client in order to know how to access the imagery.

The last option is the projections that are supported by the server, that is, only EPSG

of 4269 and 4326 are allowed.

Finally, within every layer contained in the mapfile, a directive “DUMP TRUE” must

be added in order to inform the server that the layer is subject to remote WMS requests.

Additionally, the METADATA of every layer can contain options that declare the name

and the description of each layer presented.

The last part of the WMS configuration is to create the script that will be used by the

remote WMS client to request the imagery:

01 map = mapscript.mapObj("WMStest.map")

02 req = mapscript.OWSRequest()

03 mapscript.msIO_installStdoutToBuffer()

04 req.loadParams()

05 map.OWSDispatch(req)

06 content_type = mapscript.msIO_stripStdoutBufferContentType()

07 content = mapscript.msIO_getStdoutBufferBytes()

08 if content_type == ’application/vnd.ogc.se_xml’:

09 content_type = ’text/xml’

10 print ’Content-type: ’ + content_type

11 print

12 print content

In line 01, the map is accessed and a map object is instantiated. Line O2 forms an

object that will hold and parse the HTTP request options passed to the server script.

This is done by issuing a loadParams() execution, presented in line 04. Line 05 involves

the actual processing of the request within the context of the mapfile internally, while

the content type as a MIME type and the content itself as a binary representation of

the image can be fetched using line 06 to 07 respectively. Finally, a proper document

must be returned to the client containing the MIME type and the binary so that the

client can use the imagery provided.

Chapter 4. The MapServer Package 87

4.6.3.3 Mapserver as WFS client

MapServer can retrieve and display data from a WFS server. The following document

explains how to display data from a WFS server using MapServer. A WFS layer is a

regular mapfile layer, which can use CLASS objects, with expressions, etc.

As of MapServer 4.4, the suggested method to define a WFS Client layer is through the

CONNECTION parameter and the layers METADATA. The necessary mapfile param-

eters are defined below:

CONNECTIONTYPE Must be “wfs”

CONNECTION The URL to the WFS Server. e.g. http://www2.dmsolutions.ca/cgi-

bin/mswfs gmap?

METADATA The LAYERs must contain a METADATA object with the following

parameters:

wfs typename The name of the layer found in the GetCapabilities.

wfs version WFS version, currently 1.0.0

wfs maxfeatures (opt.) Limits the number of GML features to return.

wfs latlongboundingbox The bounding box of this layer in geographic coor-

dinates in the format “lon min lat min lon max lat max”. If it is set then

MapServer will request the layer only when the map view overlaps that bound-

ing box.

wfs filter This can be included to include a filter encoding parameter in the

getFeature request. The content of the wfs filter is a valid filter encoding

element. For example a filter like:

METADATA

"wfs_filter" "<PropertyIsGreaterThan>

<PropertyName>POP_RANGE</PropertyName>

<Literal>4</Literal>

</PropertyIsGreaterThan>"

END

will provided GML features where the population range is greated than 4.

Thus, a properly described WFS layer can be te following:

LAYER

NAME "park"

Chapter 4. The MapServer Package 88

TYPE POLYGON

STATUS ON

CONNECTIONTYPE WFS

CONNECTION "http://www2.dmsolutions.ca/cgi-bin/mswfs_gmap?"

METADATA

"wfs_typename" "park"

"wfs_version" "1.0.0"

"wfs_request_method" "GET"

"wfs_connectiontimeout" "60"

"wfs_maxfeatures" "1"

END

PROJECTION

"init=epsg:42304"

END

CLASS

NAME "Parks"

STYLE

COLOR 200 255 0

OUTLINECOLOR 120 120 120

END

END

END # Layer

Chapter 5

The GeoMoin Web Application

5.1 Overview

GeoMoin is an open–source web–gis application mainly developed in order to assist GIS

communities to provide their spatial information to the public. In those terms, it is be-

ing developed at the Technical University of Crete (TUC), issued under General Public

Licence (GPL).

GeoMoin, in its essense, is a wiki that can handle geo–spatial information. In order to

explain the need of a merging between the wiki and GIS technology we can provide the

well–known Wikipedia as an example. Wikipedia is an online encyclopedia, based on the

MediaWiki, where its contributors are allowed to post, update, comment or delete arti-

cles which consitute the pages of the wiki system. That is, Wikipedia is a collaboration

between many users of the Web providing a centralized point that serves information.

Therefore, GeoMoin itself, was created in order to become such a collaboration, where

users (or communities) can upload, render, manipulate geospatial information.

While GeoMoin is an on–going developing effort we can list some situations where it can

be proved useful:

• A community that collects spatial information in regard to a particular region of

the earth’s surface may need to provide its datasets to the public so that they are

easily accessible and used.

• The same community needs to render these spatial information and provide a

graphical representation to the web, allowing user interaction.

• A web user wants to find ESRI datasets containing elevation information for a

particular region. It is easier to search a centralized location specializing in spatial

information, than digging through the web.

89

Chapter 5. The GeoMoin Web Application 90

• The fact that the application is being developed with user–interaction and inter-

operability in mind, allows GeoMoin to serve as an educational tool.

• A restaurant chain wants to provide its costumers with an interactive map showing

its restaurants in a particular region. It can eliminate the web–design cost of adding

spatial content to its webpages by using a map of that region and annotate the

points of interest. Each annotation of course can link to a particular page in the

company’s web–site.

• A GIS programmer wants to use the GPS technology to geotag locations and offer

the results for online navigation. GeoMoin can be used as a framework for the

development of an application like that.

It is important to state that MapServer is not a full–featured GIS system in terms of

spatial analysis and data processing, nor does it aspire to be. Desktop GIS applications

such as ArcGIS and GRASS excel in providing highly specialized tools for such interac-

tions with spatial information. GeoMoin serves as a mean of providing the result of these

computational and analytics operations to the web, in an interactive and user–friendly

manner.

Of course, viewed as a web developing framework, GeoMoin can be enhanced with fea-

tures that can be found in a desktop GIS application as it gives the programmer access

to libraries like GDAL, but its nature as a web application does not allow the cost–

effectiveness of such interactions, with huge datasets, in terms of network bandwidth,

server CPU and memory requirements.

5.2 Design and implementation in overview

[22]WebGIS applications can be classified as fat-client and thin-client. In fat-client

systems, a significant proportion (often, the bulk) of data processing happens at the

client, whereas the server is primarily responsible for data storage (e.g. Tsou, 2004).

By contrast, thin-client systems strive to minimize processing on the client; except for

presentation and user interaction, data processing occurs at the server. For GeoMoin,

the thin-client approach was adopted, based on the following criteria:

• The system must be accessible on the internet, where users may have in–sufficient

network resources to download and process massive data locally. Only visualization

data should be transmitted to the client (rendered graphics, query results e.t.c.).

Chapter 5. The GeoMoin Web Application 91

• The system must be accessible from different platforms and environments, such

as UNIX and Windows operating systems, as well as all popular web browsers,

without dependence on additional software (specialized plug-ins, local applications,

etc.) and with almost–zero configuration. An exception to this rule applies to

the rendering part which is delivered through Asynchronous Javascript and XML

(AJAX), as long as web clients that do not support this architecture still exist and

are being used.

• GeoMoin should be portable across a broad range of server platforms and tech-

nologies, with the lowest possible dependence on proprietary software, in order to

allow for deployment to servers with maximum versatility and minimum cost.

• GeoMoin servers must be scalable, both with respect to the number of concur-

rent users and in terms of storage capacity and computational performance. At

the same time, server administration should be simple, and require only modest

technical expertise.

The design that is outlined in this section demonstrates that, by using state-of-the-art

web programming facilities, combined with a server that integrates a broad range of

open-source tools and applications, it is possible to achieve all of the above goals with

currently available WebGIS technology.

Of course without organized stressing of the web–application it is not clear that the

above criteria can be satisfied without serious compromises to application functionality

and user-interface quality.

5.2.1 Application architecture

GeoMoin is architected as a 3-tier system, as shown in figure 5.1, thus the whole func-

tionality is distributed in 3 levels of abstraction. The user services, the business services

and the data services.

The user services tier provides the graphical user interface through which the user

interacts with the web–application. The technology used here is Dynamic HTML

(DHTML) and AJAX (Asynchronous Javascript And XML). AJAX (which is discussed

in more detail later) is a state-of-the-art approach to web application design, which

provides superior user-interface functionality and interactivity compared to traditional

(i.e. form-based) web applications, based solely on standard web browser features. By

adopting AJAX, a portable, friendly, functional, highly-interactive user interface, with-

out resorting to proprietary applet technologies (including Java applets) were provided.

Chapter 5. The GeoMoin Web Application 92

Figure 5.1: The 3-Tier architecture of GeoMoin

MoinMoin, viewed as a framework for building web applications in the Python program-

ming language, provides a convenient and high–level method for generating server side

HTML and can match the capabilities of developing a WebGIS using PHP or JSP.

It is very important to highlight that GeoMoin, while considered a web–application,

it nests into a higher–level web–application – the MoinMoin wiki – whose interactions

between the user and the server are based on the traditional HTML form methodol-

ogy using submit actions that refresh the web page. On the contrary, using the AJAX

technology, submitting user information is achieved in a partial, asynchronous manner,

meaning that the page will submit only the required information while the page will

not be refreshed. It is clear, that it becomes very important for the application to be

carefully built in a manner that will not compromise user–navigation and web–design

practices while confusing the user. Thus, the following guideline is being adopted:

Chapter 5. The GeoMoin Web Application 93

The AJAX functionally is being used only in occasions of demanding com-

putational requirements such as the rendering of a map, in order to avoid

multiple reinvocations of the same operations. Additionally AJAX interac-

tions are clearly stated to the end user.

In other cases of low computational requirements, such as the generation of a mapfile,

traditional web–design is adopted.

The business services tier encapsulates the business logic for the entire application.

The user and session management system is embedded in the MoinMoin wiki providing

user registration, authentication using local accounts or OpenID1, and personalization

functionality. In addition the pages of the wiki which are stored in the filesystem are

accessible through MoinMoin’s file management and indexing service. Focusing solely

on the GeoMoin application, we can describe three subsystems:

• The Spatial Visualization System, which is based on MapServer and GDAL, is

responsible for image representation of geospatial data, the management of an-

notations and the querying of the spatial data amongst other capabilities. The

spatial visualization system will be described in detail later in the chapter.

• The Dataset/Map/Metadata Controlling System is reflected to the end user through

two main applications: the LayerManager and the MapManager. The LayerMan-

ager is responsible for the management of the layers that contain geo–spatial infor-

mation either the reside in the filesystem or in PostGIS. The MapManager accesses

the filesystem to retrieve, parse, create or update the users’ mapfiles. The meta-

data are information stored in PostGIS which have non–spatial nature and are

responsible for identifying and characterizing datasets in order to provide them

through search queries. The Dataset/Map/Metadata Controlling System will be

described in detail later in the chapter.

• The Spatial Analysis System implements the spatial decision support capabilities

in the form of a number of spatial analysis services, such as spatial query processing

over geographic databases, and is available through the use of GeoMoin mapplets.

An effort is being made to provide a common API in order to allow the indepented

development and contribution of the mapplets which can be considered as add–ons

to the GeoMoin capabilities.

The data services tier provides services that store, retrieve and update information

through a simple data model. The main storage mechanisms are (a) the file system
1OpenID eliminates the need for multiple usernames across different websites, providing a centraliced

secure authentication service. Location: openid.net

http://openid.net

Chapter 5. The GeoMoin Web Application 94

and (b) the PostgreSQL database management system (DBMS) through the use of the

PostGIS spatial extension. The file system is used for storing spatial (vector or raster)

datasets and mapfiles in a variety of formats, managing per-user directories. The spatial

database has a dual role; it stores metadata related to datasets stored in the file system,

and it can be used to manage (store, update, search, process) vectorized2 spatial content

for application-specific purposes. Finally, as Data Services in GeoMoin application, the

OGC’s open web–services (OWS) are included and specifically the web mapping service

(WMS) and web feature service (WFS). Details concerning the Data Services tier will

be available in the following sections.

5.2.2 Overview of system components

Currently GeoMoin is mainly based on the following open–source software packages:

Apache2 The web–server hosting the system.

MoinMoin The wiki system providing the web–site desing and a framework for devel-

opment.

UMN Mapserver Mapserver’s mapscript is behind use cases such as the rendering

and the querying of geospatial information.

GDAL library The library that is used to interact with the geospatial information.

PostgreSQL The database management system (DBMS) used in GeoMoin.

PostGIS An extension for PostgreSQL DBMS that provides the support for spatial

data types. Moreover, it provides spatial analysis functions to the database.

In addition to the main packages, the following ones should be considered:

pgdb This package acts as a driver in order to communicate with the DBMS. In addi-

tion, it provides a complete level of abstraction between the different DBMSs.

Geopy An on–going python library that handles the connection to various online GeoCoder

such as GoogleMaps, Yahoo Maps, Virtual Earth etc. Geocoders can be viewed as

databases of mappings between real–world locations (eg. roads,states) and their

coordinates.
2An attempt is being made to include raster datasets in PostGIS through the PGCHIP library which

will in the Appendix.

Chapter 5. The GeoMoin Web Application 95

OverlibMWS The DHTML javascript library specialized in the generation of popups.

Based on Erik Bosrup’s overLIB, this is an enhanced version attributed to Fo-

teos Macrides and is available through the Artistic License, Version 2.0 which is

compatible with GPL.

OWSLib OWSLib is a Python package for working with OGC web map (WMS) and

feature services (WFS). It provides a common API for accessing service metadata

and wrappers for GetCapabilities, GetMap, and GetFeature requests. It is initially

developed by Sean Hussein Gillies and is available under GPL.

Cheetah Cheetah is a template management system that is extensively used for the

generation of mapserver mapfiles within the application.

The above packages are integrated using Python, a mature and highly portable scripting

language. Although MapServer and GDAL in natively written in C++, the existing

SWIG bindings are readily available and can be easily integrated. Please note that

the current choice of third–party packages is not binding, for example we could rely

on different web–server hosting the application or in different wiki modes (eg FastCGI)

instead of the CGI default. In addition, there exist spatial–extensions for every popular

DBMSs including MySQL and Oracle.

When it comes to describing a system like GeoMoin a down–top approach needs to be

adopted, because the lower tier level of the architecture contains indepented components

and associations between the upper tiers that can be confusing if they are introduced

from the top.

In general, with the term Data Services we refer to whole subsystem that provides the

stored information to the higher level mechanism. Those mechanisms do not only include

the GeoMoin application, but additionally the MoinMoin wiki itself.

As it was described above, three sources of information can be identified: the filesystem,

the DBMS and the remote OWS services.

5.3 Filesystem data services: Requirements and Imple-

mentation

The filesystem as source of information contains four important elements, the wiki pages,

the user information, the spatial data and the mapfiles. The wiki pages are stored in

the filesystem under specific directories accessible by MoinMoin and each page is a file

that contains the wiki markup language. In MoinMoin these directories’ contents are

Chapter 5. The GeoMoin Web Application 96

indexed using Xapian3 in order to be efficiently accessible. Details of the page storage

subsystem is out of the scope of this document. The user information are stored in the

filesystem too under a special directory called “user”. They contain all the information

for a user account including its password while MoinMoin takes care of the security

of access. Different wiki implementations store the user information in DBMS’s while

MoinMoin is leaning towards this direction in the future. It is not important to dive

into the details of the user management as it is handled successfully by MoinMoin.

5.3.1 Spatial data in the Filesystem and retrieval requiremenents

The spatial data, managed by the GeoMoin application, are stored in a special directory

named by each user’s unique ID. The parent directory can be easily changed by editing

the GeoMoin’s configuration files.

Spatial datasets that can be installed in GeoMoin include:

Vector Data

• ESRI Shapefile

• Mapinfo mitab

• Geographic Markup Language (GML)

Raster Data

• GeoTiff

• Portable Network Graphics (PNG)

• JPEG

• BMP

This list can be easily enhanced to include every different spatial dataset distribution as

long as the respective module (described later) is updated to include them.

The main problem an application that manages spatial datasets has to overcome is the
3Xapian is a highly adaptable toolkit which allows developers to easily add advanced indexing and

search facilities to their own applications. It supports the Probabilistic Information Retrieval model and
also supports a rich set of boolean query operators. Xapian is an Open Source Search Engine Library,
released under the GPL. It’s written in C++, with bindings to allow use from Perl, Python, PHP, Java,
Tcl, C# and Ruby.

Chapter 5. The GeoMoin Web Application 97

lack of description embedded in the various formats. Different vendors apply differ-

ent methods of adding metadata in their datasets, while some formats do not contain

metadata at all. There are two approaches to this problem:

• Feature extraction

• Human annotation

As far as feature extraction is concerned, this approach is still vendor depended. GDAL

library ships with a utility called ogrinfo which accesses and displays information over

every type of dataset that it can support. A sample output of this utility can be:

root@jack-daniels:/var/www/GeoMoin/mapdata/1214071817.69.30350# \

ogrinfo countries.shp countries -al -so

INFO: Open of ‘countries.shp’

using driver ‘ESRI Shapefile’ successful.

Layer name: countries

Geometry: Polygon

Feature Count: 609

Extent: (-180.000000, -90.000000) - (180.000000, 83.623596)

Layer SRS WKT:

(unknown)

COUNTRY: String (254.0)

STATE: String (254.0)

REGION: String (254.0)

CONTINENT: String (254.0)

The fact is that when it comes to retrieval of information, we are not solely concerned

about the technical spatial metadata. Every dataset must be additionally characterized

by a full description, a date of installation, the user that provided it, etc. These kinds

of metadata have to do with human annotation, and as soon as each spatial dataset

has a specific role of existance as a multimedia type, those metadata should be not only

accurate, but as complete as possible. In GeoMoin, the following methodology is used:

Specific types of metadata that describe the installed layers are solely stored in the Ge-

oMoin database while full description and usage examples can be optionally included in

an independent wikipage. Moreover, metadata for this layer can include the link to the

page.

Thus, the retrieval methods, which will be described later on this chapter, communicate

Chapter 5. The GeoMoin Web Application 98

with the DBMS in order to complete a retrieval query.

5.3.2 Mapfiles storage and retrieval

In chapter 4 we explained that a mapfile is a script that given as an input to MapServer

cgi or mapscript, it contains all the directives which are needed in order to render and

query the spatial datasets that are assigned to it. These mapfiles in GeoMoin are created

by its users and are stored by default under a specific directory in the filesystem. This

directory can be easily changed by editing the GeoMoin configuration. As long as the

mapfile is a single–file configuration mean there is no need for a per–userid directory,

on the contrary, they are stored in a filename consisting of the userid and the specific

name that the user selected for the map (eg. 1214071817.69.30350 world.map). The

userid part is crucial in order to prohibit two different users create a map under the

same name, although it prohibits a user create a map with the same name twice.

The creation of a mapfile is based on a templating mechanism created for Python which

is called Cheetah. Cheetah is a very powerful open source template engine and code

generation tool but it is out of the scope of this document to introduce the reader

to its capabilities4. Altough the filling of the directives in a mapfile is a matter of a

higher–level subsystem – called MapManager –/, the reason that Cheetah templating

is described here is because it gives the ability to hide specific directory information

from the end–user, as long as security is concerned. There exist mapfile directives that

require the complete path of a directory in which an action is required to be performed.

For example when a layer is defined, its DATA directive contains the complete path to

the dataset, in case of filesystem access. One more important security issue is the one

that concerns the access to the DBMS in order to populate a layer from there. The

CONNECTION string could be:

CONNECTION "host=zeppelin dbname=gisdb user=gis-user

password=431ro1489 port=5433"

Thus templating variables are used and Cheetah, in case of mapfile usage, substitutes

them with the values contained in the config script. Moreover, this approach allows for

quick migration of the directories or the database credentials, avoiding any batch editing

in the mapfile repository. A Cheetah’ed CONNECTION string could be:

CONNECTION "host=$db_host dbname=$db_name user=$db_user

4For a high-level introduction to Cheetah please refer to the User’s Guide at
http://cheetahtemplate.org/learn.html

Chapter 5. The GeoMoin Web Application 99

password=$db_pass port=$db_port"

DATA "wkb_geometry FROM ${db_schema}citiesx020"

Retrieving the mapfiles is achieved using the os python library and as long as the

access controls of the mapfile repository are correctly set, no security leaks should exist.

Moreover, the business logic incorporated disallows users to manage mapfiles owned by

others.

5.3.3 Markfiles and their usage

The HTTP is a state–less protocol meaning that the server doesn’t keep information

on previous HTTP requests. Thus, unlike desktop development, information which is

generated by the web–applications and reside in the server memory segments must be

stored somewhere else to achieve consistency. One method of storing information is to

use the session memory space which is unique for every user connected and authenticated

to the server. MoinMoin provides the session object as a python dictionary which can

be updated with new values. The pitfall of that approach is that upon client logout

the session object is destroyed and information are lost and moreover two identical

operations may share the same session field between them, something that leads to

obvious inconsistencies.

A web–application like GeoMoin may possibly create loads of information that need to

be stored safely to maintain state. There are two possible approaches:

• Store information in a DBMS

• Store information in the filesystem

In GeoMoin the second approach was chosen; when a sub–system generates information

that needs to be stored, it makes use of Python’s Pickle module. Pickle is an approach of

storing and loading serializable python data types in simple text files using the methods

pickle() and unpickle() respectively. For example a python dictionary containing serial-

izable elements can be stored quickly and efficiently. GeoMoin’s pickled information are

called markfiles. Markfiles are stored under a special directory named usermarks and,

specifically, the files created include the user id thus overwrite problems are resolved.

For example, information about the layers that a user selected to create a mapfile are

stored in a unique markfile.

Chapter 5. The GeoMoin Web Application 100

5.4 DBMS data services: Installation and Implementation

5.4.1 DBMS architecture in GeoMoin

GeoMoin is developed in order to be highly depended on a DBMS system. Currently

the DBMS serving GeoMoin is PostgreSQL. DBMS is used for managing the following:

• The metadata that are linked to the datasets installed in the system.

• The vector datasets that are installed in the DBMS itself using PostGIS.

• The support for creating, inserting, updating and deleting spatial annotations and

annotation tables.

• Information about the OGC Web Services that are identified.

Figure 5.2 shows the interaction between the elements of GeoMoin and the DBMS.

Figure 5.2: Graphical view of the DBMS interaction in GeoMoin

Chapter 5. The GeoMoin Web Application 101

5.4.2 PostGIS extension for PostgreSQL

[23]PostGIS is developed by Refractions Research Inc, as a spatial database technol-

ogy research project. Refractions is a GIS and database consulting company in Vic-

toria,British Columbia, Canada, specializing in data integration and custom software

development. Refractions Research Inc plans on supporting and developing PostGIS

to support a range of important GIS functionality, including full OpenGIS support,

advanced topological constructs (coverages, surfaces, networks), desktop user interface

tools for viewing and editing GIS data, and web-based access tools.

The GIS objects supported by PostGIS are a superset of the “Simple Features” defined

by the OpenGIS Consortium (OGC). As of version 1.1 [24], PostGIS supports all the

objects and functions specified in the OGC “Simple Features for SQL” specification.

The purpose of the above specification is to define a standard SQL schema that sup-

ports storage, retrieval, query and update of simple geospatial feature collections via the

ODBC API. A simple feature is defined by the OpenGIS Abstract specification to have

both spatial and non-spatial attributes. Spatial attributes are geometry valued, and

simple features are based on 2D geometry with linear interpolation between vertices.

Simple geospatial feature collections will conceptually be stored as tables with geometry

valued columns in a Relational DBMS (RDBMS), each feature will be stored as a row in

a table. The non-spatial attributes of features will be mapped onto columns whose types

are drawn from the set of standard ODBC/SQL92 data types. The spatial attributes of

features will be mapped onto columns whose SQL data types are based on the underlying

concept of additional geometric data types for SQL. A table whose rows represent Open

GIS features shall be referred to as a feature table. Such a table shall contain one or

more geometry valued columns. Feature table implementations are described for two

target SQL environments: SQL92 and SQL92 with Geometry Types. In case of PostGIS,

SQL92 with Geometry Types is adopted.

The term SQL92 with Geometry Types is used to refer to a SQL92 environment that

has been extended with a set of Geometry Types. In this environment a geometry-

valued column is implemented as a column whose SQL type is drawn from the set of

Geometry Types. “Simple Features for SQL” specification describes a standard set of

SQL Geometry Types based on the OpenGIS Geometry Model, together with the SQL

functions on those types. This specification does not attempt to standardize any part

of the mechanism by which the Geometry Types are added to and maintained in the

SQL environment: The standard SQL3 mechanism for extending the type system of a

SQL database is through the definition of user defined Abstract Data Types. In figure

5.3 the class hierarchy for the Geometry Types can be seen.

Chapter 5. The GeoMoin Web Application 102

Figure 5.3: Class hierarchy of the geometry types.

The OpenGIS specification defines two standard ways of expressing spatial objects:

the Well-Known Text (WKT) form and the Well-Known Binary (WKB) form. The

Well-known Text Representation of Spatial Reference Systems provides a standard tex-

tual representation for spatial reference system information. The Well-known Binary

Representation for Geometry (WKBGeometry), provides a portable representation of

a Geometry value as a contiguous stream of bytes. It permits Geometry values to be

exchanged between an ODBC client and an SQL database in binary form. Both WKT

and WKB include information about the type of the object and the coordinates which

form the object.

Examples of the text representations (WKT) of the spatial objects of the features are

as follows:

• POINT(0 0)

• LINESTRING(0 0,1 1,1 2)

• MULTIPOINT(0 0,1 2)

• MULTILINESTRING((0 0,1 1,1 2),(2 3,3 2,5 4))

• MULTIPOLYGON(((0 0,4 0,4 4,0 4,0 0),(1 1,2 1,2 2,1 2,1 1)), ((-1 -1,-1 -2,-2 -2,-2

-1,-1-1)))

Chapter 5. The GeoMoin Web Application 103

• GEOMETRYCOLLECTION(POINT(2 3),LINESTRING((2 3,3 4)))

The OpenGIS specification also requires that the internal storage format of spatial ob-

jects include a spatial referencing system identifier (SRID). The SRID is required when

creating spatial objects for insertion into the database.

Input/Output of these formats are available using the following interfaces:

bytea WKB = asBinary(geometry);

text WKT = asText(geometry);

geometry = GeomFromWKB(bytea WKB, SRID);

geometry = GeometryFromText(text WKT, SRID);

For example, a valid insert statement to create and insert an OGC spatial object would

be:

INSERT INTO geotable (the_geom, the_name)

VALUES (GeomFromText(POINT(-126.4 45.32), 312), A Place);

As it is obvious, the fact that PostGIS adopts SQL92 with Geometry Types allows for

creation of a standard SQL table and adding a geometry column like:

CREATE TABLE parks (

park_id INTEGER,

park_name VARCHAR,

park_date DATE,

park_type VARCHAR

);

SELECT AddGeometryColumn(parks, park_geom, 128, MULTIPOLYGON, 2);

The sql function AddGeometryColumn of the Simple Features for SQL specification is

parameterized with the table that will be spatially enabled, the name of the geometry

column that will be created, the SRID of the spatial reference system used and the

number of dimensions.

5.4.3 PygreSQL PGDB module for DBMS access

Continuing the description of the components presented in figure 5.2, PygreSQL’s PGDB

module is a implementation of the DB-API 2.0 specification targeting on PostgreSQL.

DB-API 2.0 defines standard methods of accessing and managing the DBMS. The usage

Chapter 5. The GeoMoin Web Application 104

of this module is very simple and can be described with an example.

Before any sql query is issued a pgdbCnx object must be instantiated defining the

connection to the DBMS. This is done by executing the following function:

pgdbCnx = pgdb.connect(user=’gisuser’,password=’gispass’,\

host=’localhost’,database=’gisdb’)

Upon connection a cursor must be instantiated that will handle the SQL queries:

cursor = pgdbCnx.cursor()

After defining the cursor an sql query can be issued and the results can be captured.

Finally the cursor is closed and the connection is terminated:

cur.execute ("SELECT road_id, AsText(road_geom) \

AS geom, road_name FROM roads;")

row = cur.fetchall()

cur.close()

pgdbCnx.close()

In conjuction with PostGIS the above query will return the unique id and the text

representation of the geometry of a spatially enabled table called roads.

In case of an SQL insert, create, delete or update query a commit command must be

issued:

pgdbCnx.commit()

It is important to note that many PostGIS functions alter geometry information while

returning results and are issued using SQL SELECT statements. That fact that infor-

mation is altered within the DBMS, requires a commit() even while issuing a SELECT

statement.

5.4.4 GeoMoin database schema specification

As we described earlier, in GeoMoin the need for a DBMS is targeting on providing

management for the following:

• The metadata that are linked to the datasets installed in the system.

Chapter 5. The GeoMoin Web Application 105

• The vector datasets that are installed in the DBMS itself using PostGIS

• The support for creating, inserting, updating and deleting spatial annotations and

annotation tables

• Information about the OGC Web Services that are identified.

Thus the following needs for the very basic database schema are specified5:

1. A table must exist under the default name “filesystem” which stores information

about the datasets that are installed in the filesystem. It must consist of the

following fields:

id The sequential primary key, unique for each dataset.

name The name of the dataset.

type The format of the dataset e.g. ESRI for ESRI shapefiles, GML for Geogra-

phy markup language etc.

path The path where the dataset can be found in the filesystem, include the user’s

unique id as part of the path.

owner The unique user id of the registered MoinMoin user that installed the

dataset.

description A short description of the dataset provided by its owner.

wikipage This field acts as a link to a wiki page that fully describes the contents

and the usage for the dataset.

creation date The date in which the dataset was installed to the system.

All the fields in the above listing act as metadata for dataset installed in the

filesystem.

2. A table must exist under the default name “postgis” which stores information

about the datasets that are installed in PostGIS. In addition, this table stores

information about the annotation tables that are created and managed by the

business–tier of the GeoMoin architecture. The PostGIS tables referenced by the

tuples of this table are, of course, spatially–enabled containing one or more geom-

etry columns.

The table must consist of the following fields:

id The sequential primary key, unique for each dataset.
5With the term “very basic”, we refer to features that are important in order that the higher levels

of the architecture can operate. Additional features can be added in future versions of the software.

Chapter 5. The GeoMoin Web Application 106

name The name of the dataset.

owner The unique user id of the registered MoinMoin user that installed the

dataset.

viewable A boolean value that flags if the current dataset can be viewable by

other wiki users in addition to the owner.

editable A boolean value that flags if the current dataset can be editable by other

wiki users in addition to the owner in terms of updating or inserting tuples.

type The type of the dataset can either be “ANNOTATION” describing a spatially–

enabled table that can act as an annotation layer or “POSTGIS” describing

a spatially–enabled table that was created by a third–party group and is

provided as–is.

directlink Used only if the table is an annotation; it flags whether the annotation

table will be rendered as a group of links point to predefined webpages. If

false, it marks the display of a popup containing the annotation information.

description A short description of the dataset provided by its owner.

wikipage This field acts as a link to a wiki page that fully describes the contents

and the usage for the dataset.

creation date The date in which the dataset was installed to the system.

3. A table must exist under the default name “wms” which stores information about

the wms servers registered in the system.

id The sequential primary key, unique for each wms server.

wmsname A name for the server.

url The url pointing to the cgi on the remote server

immut A boolean value that flags whether the dataset can be deleted or edited.

description A description for the server. For example, if it is currently down.

owner The unique id of the user that added the server.

4. A table must exist under the default name “wfs” which stores information about

the wfs servers registered in the system.

id The sequential primary key, unique for each wfw server.

wmsname A name for the server.

url The url pointing to the cgi on the remote server

immut A boolean value that flags whether the dataset can be deleted or edited.

description A description for the server. For example, if it is currently down.

Chapter 5. The GeoMoin Web Application 107

owner The unique id of the user that added the server.

5. For every spatially–enabled table, a Generalized Search Tree (GiST) must be cre-

ated to index the main geometry column that is contains. Information about GiST

indexing and PostGIS performance can be found in the appendix.

6. For every spatially–enabled table that is not an annotation table there must exist

the ability to cluster the geometry indices to achieve reordering of all the data rows

in the same order as the index criteria yielding performance advantages. Excluding

annotation tables, we are left with the read–only tables produced by installing

spatial datasets in PostgreSQL. It is important to highlight that clustering tables

that contain features with NULL geometry cannot happen. Eventually, indexing

using GiST tables with NULL geometries is allowed. Thus, it is recommended

that a mechanism should exist that checks whether a dataset can be installed

in PostgreSQL setting a NOT NULL constraint in its geometry field, allowing

clustering. Otherwise, clustering can be ommited.

7. An annotation table in GeoMoin is a spatially–enabled PostGIS dataset that can

be created by any authenticated user, where every authenticated user can add to

or edit the spatial information contained to it. By the time this work is written

an annotation table consists of only one geometry column of the geometry type:

point or polygon. Details on how these spatial features are obtained, managed

and inserted can be found in the later sections. An annotation table must consist

of the following fields:

id A sequential primary key, unique for every spatial feature contained.

owner The unique user id of the registered MoinMoin user that added this feature.

editable A boolean value that flags whether the current feature can be editable

by other wiki users in addition to the owner.

directlink A boolean value that flags whether the feature annotation will be

handled as a direct link to a web–page by the business logic.

geometry column A geometry column presented in Well–Known–Binary (WKB)

format that defines the spatial attributes of the feature

1..* fieldnames One or more fieldnames defined by the creator of the annotation

table, that act as the non–spatial information of the feature. Types supported

up till now: integer, float, text, date.

Each unique [id] of an annotation tuple can act as a foreign key to another spatial

or non–spatial table in the RDBMS. Thus with the development of the essential

business logic the relational aspects of the database can be utilised to achieved

Chapter 5. The GeoMoin Web Application 108

more complex integration between spatial and non–spatial features. One simple

example of such integration could be the developement of a comment board for

each annotation on a map.

8. The DBMS’s encoding must be UTF–8

5.4.4.1 Implementing the schema on PostgreSQL

In this section, the above requirements will be converted in sql and the required database

and schema will be created using a unix shell and the console–based psql utility that

ships with PostgreSQL.

Requirements:

• PostgreSQL must be installed

• The PostGIS extensions that must be available in their sql format are: lwpostgis.sql

and spatial ref sys.sql.

• The default user “postgres” must exist in order to manage the DBMS.

In the unix shell the su command must be issued to change the active user to postgres

su postgres

The following commands will create a template database and define the procedural

language format:

createdb postgistemplate

createlang plpgsql postgistemplate

The PostGIS extension sql scripts must now be installed in the template database using

the psql utility:

psql -d postgistemplate -f lwpostgis.sql

psql -d postgistemplate -f spatial_ref_sys.sql

Upon successful installation of the sql script, the spatial extension to PostgreSQL is now

available. Now the roles and access controls to the template must be defined consisting

of a group and a user to whom permissions are assigned:

Chapter 5. The GeoMoin Web Application 109

psql

CREATE ROLE gisgroup NOSUPERUSER NOINHERIT CREATEDB NOCREATEROLE

CREATE ROLE gis LOGIN PASSWORD ’password’ NOINHERIT;

GRANT gisgroup TO gis;

\q

Before creating the actual database the geometry columns and spatial ref sys tables

which were created using PostGIS must be owned by the gis role created above:

psql -d postgistemplate

ALTER TABLE geometry_columns OWNER TO gis;

ALTER TABLE spatial_ref_sys OWNER TO gis;

Still in the psql command–line terminal, now the database will be created under a new

PostgreSQL schema:

CREATE SCHEMA gis_schema AUTHORIZATION gis;

quit to terminal

\q

createdb -T postgistemplate -O gis gisdb

Now we can either use psql or the pgAdmin III6 to review the changes that happened

to the PostgreSQL.

Finally the tables that are defined under the [1], [2], [3] and [4] requirements of the above

specification must be created:

psql -d gisdb

CREATE TABLE gis_schema.postgis (

id serial NOT NULL,

name text NOT NULL,

owner text NOT NULL,

viewable boolean NOT NULL DEFAULT true,

editable boolean NOT NULL DEFAULT true,

type text NOT NULL,

directlink boolean NOT NULL DEFAULT false,

description text DEFAULT ’Not Defined’::character varying,

wikipage text DEFAULT ’Not Defined’::character varying,

6PgAdmin III is a GUI tool that can be used to manage a PostgreSQL DBMS.

Chapter 5. The GeoMoin Web Application 110

creation_date date NOT NULL,

CONSTRAINT postgis_pkey PRIMARY KEY (id)

) WITH (OIDS=FALSE);

ALTER TABLE gis_schema.postgis OWNER TO gis;

CREATE TABLE gis_schema.filesystem (

id serial NOT NULL,

name text NOT NULL,

type text NOT NULL,

path text NOT NULL,

owner text NOT NULL,

description text DEFAULT ’Not Defined’::character varying,

wikipage text DEFAULT ’Not Defined’::character varying,

creation_date date NOT NULL,

CONSTRAINT filesystem_pkey PRIMARY KEY (id)

) WITH (OIDS=FALSE);

ALTER TABLE gis_schema.filesystem OWNER TO gis;

CREATE TABLE gis_schema.wms

(

id serial NOT NULL,

wmsname text,

url text,

immut boolean,

owner text,

description text,

CONSTRAINT wms_pkey PRIMARY KEY (id)

)

WITH (OIDS=FALSE);

ALTER TABLE gis_schema.wms OWNER TO gis;

CREATE TABLE gis_schema.wfs

(

id serial NOT NULL,

wfsname text,

url text,

immut boolean,

owner text,

description text,

Chapter 5. The GeoMoin Web Application 111

CONSTRAINT wfs_pkey PRIMARY KEY (id)

)

WITH (OIDS=FALSE);

ALTER TABLE gis_schema.wfs OWNER TO gis;

In order to create a generalized search tree (GiST) to index a geometry column, the

following SQL statement must be executed:

CREATE INDEX [tablename]_[geom_column]_gist

ON gis_schema.[tablename]

USING gist ([geom_column])

In order to cluster a non–editable (read–only) spatially enabled table using the GiST

index:

ALTER TABLE gis_schema.[tablename]

ALTER COLUMN [geom_column] SET not null;

CLUSTER [tablename]_[geom_column]_gist

ON gis_schema.[tablename];

Requirement [7] concerning annotation table generation is a subject of the business tier

and will be discussed in the appropriate section.

5.4.5 GeoMoin DBMS Wrapper: pgUtils

In GeoMoin, database access between the data services and the business services can

be achieved either by using OSGeo’s GDAL/OGR library (if MapServer functions are

performed or high–level management of the spatial data is needed) or by accessing the

DBMS using PygreSQL’s PGDB module. The second approach is preferred when it

comes to accessing the “filesystem” and “postgis” tables or there is a need to edit an

PostGIS annotation table. In the last occasion, between the PGDB module and the

business services in the 2nd level tier, GeoMoin’s module pgUtils is responsible for the

following tasks:

• Builds the actual SQL queries that manage the above parts of database content.

• Manipulates the calls to the PGDB interface in order to prevent SQL injection

attacks.

Chapter 5. The GeoMoin Web Application 112

• Acts accordingly in terms of access control, checking if the user that sent the query

fullfills the appropriate access limitiations in order to manage the content.

The main call that the business services make, is to the executeQuery function which

is responsible to call an appropriate handler depending on the sql query type. execute-

Query is parameterized with the following arguments:

queryType The sql query type to be performed. It can be an insert,update,delete,drop

or select statement

moinUser The MoinMoin’s user’s unique id that issued the call.

tables A list of the sql tables included in the call.

viewColumns A list of the table fieldnames that the query spots on.

constraint The string that follows the SQL’s WHERE clause.

dict A dictionary which contains a mapping between fieldnames and values when an

query is processed. It also contains the mappings in order to substitute the con-

straint string with values.

isReg A boolean value that flags whether the call was made by an authenticated user.

In case the user issuing the call is an unauthenticated user, he is only allowed to perform

SQL SELECT queries. Every query performed, whether a user is authenticated or not,

is filtered through a flexible access control mechanism which is query–type–depended.

Illustrating it with an example, let us suppose that a user requires to view the details

of a particular annotation depicted on a map. First of all, the required information

are gathered in order to form a SQL SELECT statement. In GeoMoin DBMS schema

specification 5.4.4 it was defined that if an annotation table included in the “postgis”

registration table is marked as viewable, then all its tuples are viewable (tuples in an

annotation table contain fields that constraint only the editability of themselves). Thus

the following flowchart [5.4] shows the roll of access control events when a SELECT

query is performed.

As it is shown in the flowchart, the table owner has an over–all access to the table.

If the query is consisting of an INSERT statement, then the access control mechanism

has to evaluate the editability of the tables checking their registrations in the “postgis”

table. Flowchart [5.5] shows the access control procedure for these types of queries. In

case of an SQL DROP query, the trigger of the drop sequence is one of the following:

• The user wants to drop a PostGIS annotation table.

Chapter 5. The GeoMoin Web Application 113

Figure 5.4: Access control flowchart for a SELECT query.

Figure 5.5: Access control flowchart for an INSERT query.

Chapter 5. The GeoMoin Web Application 114

• The user wants to drop a PostGIS table which is NOT an annotation table.

• The user wants to remove a filesystem dataset

In the first two cases, GeoMoin allows only the owner of the PostGIS table or a

GeoMoin administrator to execute the DROP query, evaluating the ownership by

checking the registration in the “postgis” table.

In the third case, GeoMoin allows only the owner of the filesystem dataset or a

GeoMoin administrator to execute the DROP query, evaluating the ownership by

checking the registration in the “filesystem” table. It must be noted that in case a

filesystem dataset is evaluated to be deleted, pgUtils wrapper accesses the filesystem

and deletes the files consisting of the name of the dataset and every possible extension.

For example, if an ESRI shapefile dataset is registered in the “filesystem” table with

the name “countries”, it will be associated with filesystem elements like: countries.shp,

countries.dbf, countries.prj.

The last SQL statement that is processed by pgUtils is the UPDATE. An update query

intents to access and update specific tuples in an database table, thus GeoMoin defines

access controls that handle each tuple access. In the GeoMoin DBMS schema specifica-

tion [5.4.4] it was defined that every annotation table, for each of its tuples must contain

metadata that define the user that created the specified tuple and whether this tuple

can be edited by the public or not. Thus the flowchart [5.6] shows the access control

checks that take place when an update is performed. It is important to note that the

registration tables “filesystem” and “postgis” are also managed using pgUtils, in order

to update or insert data in them. The only difference is that they are not subjective to

access control restriction as they must be editable by every user of the wiki. Of course,

the business logic of application prohibits direct access, on the contrary, it allows op-

erations that are solely targeting to the datasets attributed to the user that installed

them.

In order to pass query strings to pgUtils, they must be edited in order to prevent

malicious users from executing SQL injection attacks. The manipulation of the query

string can be illustrated using the following example.

SELECT query to be executed:

select adm,years

from gis_schema.postgis

where name=’indiana’ and pop<=12000;

The above query, if we assume that the “name” and “pop” values in the WHERE clause

are filled by the user using an HTML form, then a “pop” value of: “12; DROP TABLE

Chapter 5. The GeoMoin Web Application 115

Figure 5.6: Access control flowchart for an UPDATE query.

postgis; –” instead of “12000” could easily drop the postgis registration table. Thus

before executing the query using the PGB module, the following manipulation must

take place:

SELECT query to be executed:

select adm,years

from gis_schema.postgis

where name=%(name)s and pop<=%(pop)s;

Additionally the following python dictionary must be provided:

dict={"name":"indiana","pop":"12000"}

The pgdb module is responsible for substituting the values after they are sanitized to

exclude SQL injection possibilities.

Chapter 5. The GeoMoin Web Application 116

5.5 OWS data services

In Chapter 4 we discussed the ability of mapserver to render resources based on remote

WMS or WFS services. In GeoMoin we make use of those services in order to give the

ability to the users, to create maps based on remote datasets that do not exist within

a GeoMoin installation. In the specification presented above, two tables are responsible

for storing information about the current WMS and WFS servers and are called “WMS”

and “WFS” respectively. Thus, these tables can be considered as keepers of metadata

concerning datasets that are stored to remote locations. The users can select particular

layers from within each server and use the exactly as if they selected layers stored in the

filesystem or the Postgresql DB.

Summing up the discussion about the Data Services, we described GeoMoin’s support

for spatial datasets including datasets contained in the filesystem, PostgreSQL and OGC

web–services. It must be noted, that currently GeoMoin does not support all the types

of datasets (vector,raster) that are accessible through OGR/GDAL and in addition, it

does not support all the OGC Web Services including the Web Coverage Service (WCS).

GeoMoin, though, can be easily expanded to include many of the features that does not

exist in the current release.

5.6 Business tier

In the following two sections, the Business tier of the GeoMoin architecture will be

described, and in particular, the Map/Dataset Controlling System.

5.6.1 InstallManager

In order to install spatial information to GeoMoin the user must upload the datasets

and install them to the system. The component dealing with these particular functions

is called InstallManager. This feature is a MoinMoin action module that it can be

accessible from every page in the wiki. The nature of the installer as an action was

selected in order to faciliate the binding between a wiki page and the dataset; a page

that contains an attached dataset is supposed to contain information about the author,

origin or a sample usage of it. The procedure that takes place in order a dataset to be

installed is:

1. Uploading of the dataset in an archived format (currently only .zip archive is

supported).

Chapter 5. The GeoMoin Web Application 117

2. Selection of the installer action in order to install the dataset.

3. Selection whether a dataset should be installed in the filesystem or database.

4. Dataset installation takes place.

Below, the elements of the above listing are described in detail.

5.6.2 Uploading a dataset

In MoinMoin, every page created, support its own attachements to be uploaded. That

is, the attachments are bound to that specific page. A user, in order to upload spatial

information can use the default MoinMoin Attachments action. In order to maintain as

much consistency as possible, a dedicated uploading module for spatial information was

not created, but some restrictions concerning the nature of the attachment were applied;

the user must package the datasets in format accessible using GeoMoin7 and add the

directive “DATASET ” in front of the package name. Thus the user can package the

following ESRI shapefiles,

usa_states.shp

usa_states.dbf

usa_states.shx

usa_cities.shp

usa_cities.dbf

usa_cities.shx

in a archive named: “DATASET usasimple.zip”. Finally, the archive can be uploaded

to the server.

Limitations concerning the types of spatial dataset that GeoMoin can process, also exist.

Currently GeoMoin support the following types:

• ESRI Shapefiles

• Mapinfo

• Geography Markup Language (GML)

• Various raster formats

It is importand to note that, currently, an archive cannot contain different types of

datasets.
7Currently only the zip archive format is supported.

Chapter 5. The GeoMoin Web Application 118

5.6.3 Invoking the installer action

When the uploading of the datasets in the wiki page is complete, the user can select the

InstallSpatial action in order to install them to the system.

When InstallSpatial is executed a listing of all the spatial attachements is gathered and

presented to the user along with the following options concerning the installation.

• The user can select to install all the datasets contained in the attachement, or a

specific one.

• The user can select whether the datasets should be installed in the filesystem or

PostGIS.

In case they are installed in PostGIS the user can enforce a geometry type. This method

solves installation problems where a dataset created using a polygon geometry is rejected

by PostGIS which recognises it as multipolygon. That is, different GIS products, support

different vector models.

The type of the dataset contained in an attachement is recognised using the extension

of the files. For example, an ESRI dataset will always contain a file with the extension

“.shp”, while the other files associated to this particular dataset will have always the

same name with different extensions. Using the method presented above, all the ESRI

datasets contained in an attachment can be isolated, just by checking the extension and

keeping the rest of the filename, thus the user can be presented with a listing on which

dataset will be installed.

5.6.4 Installing the datasets using OgrTypes

OgrTypes is a GeoMoin module that acts as a “driver” for the spatial formats that

GeoMoin supports. Every python class implemented in OgrTypes is, in fact, a driver for

every type of spatial dataset. Along with an on–going number of facilities that the drivers

provide to GeoMoin’s higher level functions, each one contains a unique installation

method for the dataset format it manages. For example, the ESRI driver contains two

functions called install filesystem and install postgis which install the dataset to the

filesystem and the postgis respectively.

Figure 5.7 shows the flowchart that describes the events that take place when the at-

tachement is going to be stored to the filesystem. The extraction and gathering of the

archived datasets in the install list is a subject of the InstallManager, which, for each

Chapter 5. The GeoMoin Web Application 119

Figure 5.7: Installing a spatial attachment to the filesystem.

datasets, instantiates the correspondive driver and executes the appropriate function.

In order to move the datasets to the filesystem the os python module is used, which

copy the required files from the temporary space to the current user’s unique space in

the filesystem. The registration of the table in the PostgreSQL table “filesystem” is a

INSERT query handled using the pgutils module described in a previous section. More

insformation can be found directly in the source code of the application.

It is important to note that every different dataset format may have a specific installation

routine, although the majority require the same processing steps. For example, GML

datasets can contain multiple layers within a single gml file. Thus, the OGR library

must be used to extract the layer names and check whether they exist in the registration

table. If not, the multiple layers must be solely registered in the “filesystem” table.

After the installation script has finished executing, a detailed listing of the results is

presented to the user, showing the datasets that were successfully installed and those

that generated problems.

Chapter 5. The GeoMoin Web Application 120

Installing a dataset to the PostgreSQL database is a more complicated routine and addi-

tionally, error prone. The reason behind this, is the need of an intermediate translation

of a dataset to the sql language equivelant, which is accomplished with the execution

of the OGR/GDAL utility ogr2ogr. The following command can be used to install an

ESRI dataset to PostgreSQL:

ogr2ogr -append -update -f PostgreSQL PG:"host=localhost dbname=gisdb \

user=gis password=qwerty port=5433"\

-lco SCHEMA=gis_schema /tmp/usa_datasets/statebounds.shp

A spatially enabled table is created in the DBMS under the name of the layer processed.

Below, we present two possible errors that can make PostgreSQL reject a particular

dataset:

• The geometry of source dataset does not match the geometry constraints (for that

particular source geometry) applied by the PostGIS extension due to different

vector model adopted. For example, a polygon source geometry, may be recognized

as a multipolygon one.

• The database encoding8 does not match the encoding of the byte sequences con-

taining in the source dataset.

The first problem can be bypassed, by solely installing the particular dataset while

enforcing a geometry conversion. This conversion can be done by adding “-nlt en-

forced type” in the arguments of ogr2ogr utility, for example, adding “-nlt multipoly-

gon” converts a geometry to multipolygon. Of course a user may intentionally enforce

a geometry conversion in order to achieve polygon geometries to be converted to mul-

tipoint ones etc. In both cases, it is mandatory the user that contributes the spatial

content is completely aware of information and the datatype contained within, if not,

the user can upload the dataset and possibly notify the administrator or another user

to install it.

The second problem cannot be fixed by GeoMoin; it requires the removal or the replacing

of the suspected byte sequences to ones that match the encoding of PostgreSQL.

Figure 5.8 shows the flowchart that describes the events that take place when the at-

tachement is going to be stored to the database. The registration of the table in the

PostgreSQL table “postgis” is a INSERT query handled using the pgutils module de-

scribed in a previous section. More insformation can be found directly in the source code

of the application. Likewise datasets installed in the filesystem, different datasets have
8GeoMoin’s PostgreSQL uses the UTF-8 encoding.

Chapter 5. The GeoMoin Web Application 121

Figure 5.8: Installing a spatial attachment to the database.

different install procedures; GML for example, must be opened using the OGR library

to check whether multiple layers exist thus checking for duplicates can take place.

After the installation script has finished executing, a detailed listing of the results is

presented to the user, showing the datasets that were successfully installed and those

that generated problems.

5.7 Dataset controlling system: LayerManager

The lower logical levels of the business logic in GeoMoin include a sub–system that is

responsible for managing that spatial data contained in Data Service tier and it goes

with the user–friendly name LayerManager. It is developent as a MoinMoin macro,

which gives the ability to be included in many pages of the wiki.

Chapter 5. The GeoMoin Web Application 122

In general, interaction between the user and LayerManager is HTML form–based, mean-

ing that upon submission the page will reload and the macro will be reinvocated, this

time accessing the submitted form elements.

LayerManager is particularly useful in the following use case because it allows the user

to:

• Query the spatial datasets’ metadata in the database and get a listing of those,

matching the query criteria.

• Update the metadata of the spatial datasets that he installed.

• Delete the spatial datasets that he installed.

• View spatial attributes about every dataset using the OGR/GDAL.

• Create a markfile containing layer definitions of the spatial datasets selected, in

order to be used with the MapManager.

• Create a new annotation tables in PostGIS, with an unlimited number of field-

names and only one geometry column.

• Add,edit,delete WMS/WFS servers.

• Connect to WMS/WFS servers in order to access the layers they offer. The user

can add layer definition for the WxS layers in his markfile, in order to use them

with the MapManager.

5.7.1 Querying and managing the installed datasets

Using the LayerManager the user is able to query the metadata contained in the reg-

istration tables “filesystem” and “postgis” in order to view the installed datasets that

match the query criteria. Connection to the DBMS is established through the PgUtils

wrapper issuing the appropriate viewquery commands. A query execute could look like

this:

select *

from gis_schema.filesystem

where type=’ESRI’ and (creation_date>2008-02-01 and creation_date<2008-06-01)

The above query will return all the ESRI shapefiles installed in the system between

those dates.

The user can choose from the following query criteria:

Chapter 5. The GeoMoin Web Application 123

• The dataset name

• A date range as in the above example

• Datasets installed by a particular user

• The dataset type

• A part of the description of the dataset

Of course all the above query criteria can be combined with each other to construct very

specific queries. Spatial query capabilities are not implemented yet, but such queries

are demanding in terms of computing resources.

The results presented to the user are divided in three basic categories; the datasets

installed in the filesystem, the dataset installed in PostGIS which are not annotation

layers and the annotation layers in the PostGIS.

For every spatial dataset the query has returned, the user can use an appropriate con-

trol which opens the layer information of the particular dataset. In the previous section

we described the role of the OgrTypes module, which depending on the type of the

dataset, dispatches the control to the appropriate sub–class that can handle the par-

ticular dataset. Almost every OgrTypes sub–class contains a function called ogrInfo

which is responsible to present spatial information about a dataset using the OSGeo’s

GDAL/OGR library. The information that are presented to the user are the following:

• Internal layer name

• Number of features contained

• The geographic extent

• The geometry type according to GDAL (not mapserver)

• The fieldnames of the non–spatial information included

• The WKT projection definition along with the Proj.4 represention

• The geometry columns contained

• A sample layer definition which can be used in order to add this dataset as a UMN

mapfile layer

Through the LayerManager the user has the ability to manage the datasets that were

installed in the system by his account. The registration tables “filesystem” and “post-

gis”, which contain the datasets’ metadata, can be updated to include the user requested

values. In addition, the user can delete any dataset that he contributed to GeoMoin.

Chapter 5. The GeoMoin Web Application 124

5.7.2 Generation a UMN mapfile layer definition

GeoMoin gives the ability to create a dynamic layer definition of a spatial dataset,

provided that the type of the dataset is supported by the system. OgrTypes module is

responsible for this type of requests. Feature 5.9 shows the flowchart of the actions that

need to be performed in order to create the layer definition.

Figure 5.9: OgrTypes and layer definitions.

The request for a layer definition contains information about the type of the dataset,

the name and its location if it stored in the filesystem. The re–invocation of the Layer-

Manager (after the submit) can use the HTTP request object to get these information

and call the appropriate functions. According to the type of the dataset the appropriate

driver class is instantiated from the ogrtypes modules. Each driver contains the following

functions:

Chapter 5. The GeoMoin Web Application 125

connectToOgr Use the OGR library (for vectors) and GDAL (for rasters) in order to

extract feature information for the layer being accessed. We are interested in the

following elements:

• The layer name

• The extent its features cover

• The name of the non spatial columns

• The geometry type

• The number of features in the layer

• If it is a PostgreSQL layer, the name of the geometry column. (This is actually

accessed by a query in the “postgis” registration table)

The values returned from the feature extraction procedure are used to set the

member variables of the driver instance, in order that other functions can have

access to them.

compute layer Creates a pre–defines dictionary, wrapping the information gathered

by the connectToOgr function, along with a draft generation of a mapfile CLASS

directives that will be used to render the layer.

After the dictionary is created, the following use–case can take place:

If the user requested information on a dataset, the above procedure can take place, and

the generated dictionary can be used to create a mapserver mapfile definition of the

layer and be presented to user. Additionally, the function ogr info displays various

information about the dataset.

If the user requested that the dataset should be used to create a map, the above proce-

dure can take place, and the generated dictionary will be pickled in a special markfile.

This markfile will be later used by the MapManager to generate the actual mapfile layer

definition.

5.7.3 Creating an annotation layer

The LayerManager gives the ability to create and install new annotation layers in the

PostGIS DBMS. An annotation layer constists of only one spatially–enabled column,

which holds the geometry of the element annotated, and an unlimited number of non–

spatial fields that can keep the following types of information:

• text

Chapter 5. The GeoMoin Web Application 126

• integer

• float

• date

Additionally, the user is requested to fill the metadata of the new annotation table which

includes:

• The annotation name

• An optional description

• The wiki page associated to the annotation layer

• Selections concerning whether the table can be editable and viewable by other

GeoMoin users.

• The geometry type of the annotation; It can be a point or a polygon.

Upon submitting the request, the new annotation table is installed in the DBMS and can

be accessed through the LayerManager. The installation procedure creates a transaction

declaring a PGDB cursor and the following procedure is executed using SQL statements:

1. The table is created using the non–spatial fieldnames defined in 7th requirement

in 5.4.4.

2. The ownership is set to the database user responsible for GeoMoin requests.

3. A geometry columns is generated and added to the table using the postgis function

AddGeometryColumn

4. A GiST index is created on the the geometry columns generated above.

5. A registration for the new annotation table is added to the postgis registration

table.

6. If one of the above statements fail the cursor is used to rollback the transaction.

7. If everything is successfull the cursor is succefully commited.

At any time, the owner of the annotation table can edit the registration information

such as the decription of the table, or its access controls or even delete the whole table.

Chapter 5. The GeoMoin Web Application 127

5.7.4 WMS/WFS access through LayerManager

Remote servers providing WMS and WFS content can be accessible through the Lay-

erManager. GeoMoin’s users can contribute, registering new WMS/WFS servers which

can be accessible by everyone. As far as the managing of the WxS servers is concerned,

the user can:

• Add a new server to the system inserting the following information: a name for

the WxS server, a description and the url of the online resource.

• Update the above information or delete a registration

• Connect to a WxS server. The layers will be listed so the user can select which

one to use.

All the information about the WxS servers installed in the system are stored in a special

registration table in the DBMS called “wms” and “wfs” respectively. The calls to the

pgdb module are passed through the pgUtils [5.4.5] module in access any access control

restrictrions are needed in the future.

Concerning the client connection to a WxS online resource GeoMoin uses the OWSLib9

module, which provides a common API for accessing the services’ metadata and wrappers

for GetCapabilities, GetMap, and GetFeature requests. Connecting to a WMS server

using OWSLib is straightforward:

>>>from owslib.wms import WebMapService

>>>wms = WebMapService(’http://wms.jpl.nasa.gov/wms.cgi’, version=’1.1.1’)

>>>print wms.capabilities.service

’OGC:WMS’

>>>print wms.capabilities.title

’JPL Global Imagery Service’

>>> print ",".join(layer.name for layer in wms.capabilities.contents)

[’global_mosaic’, ’global_mosaic_base’, ’us_landsat_wgs84’]

Issuing the above commands, a list for the layers contains in the WMS is returned

to the user. Of course every layer can have many styles associated to it, thus every

possible style option is returned. Selecting a layer from the listing described above, the

user can generate a UMN mapfile layer definition using the WFS or the WMS driver of

MoinMoin’s OgrTypes module. The current MapServer version defines that the majority
9OWSLib is created by Sean Gillies and distributed under GPL.

Chapter 5. The GeoMoin Web Application 128

of the information needed to render a WxS layer must be include in the METADATA

directive of the layer definition. For example a mapfile layer acting as a client for NASA’s

WMS service could look like:

LAYER

NAME "BMNG"

CONNECTIONTYPE WMS

CONNECTION "http://wms.jpl.nasa.gov/wms.cgi?"

STATUS ON

TYPE raster

METADATA

"wms_srs" "EPSG:4326"

"wms_transparent" "TRUE"

"wms_name" "BMNG"

"wms_format" "image/jpeg"

"wms_server_version" "1.1.1"

"wms_style" "default"

END

END

Thus the information gathered using OWSLib, concerning the service metadata, are

passed using an HTTP request to OgrTypes and the layer definition is created. Finally,

the user can use the MapManager to import the layer to a mapfile.

5.8 Map controlling system: MapManager

The business logic in GeoMoin includes a sub–system that is responsible for managing

the MapServer mapfiles that are created by the users of the web application and it goes

with the user–friendly name MapManager. Strictly speaking, MapManager is a GUI

where the GeoMoin user can manage almost every directive that a mapfile consists of.

5.8.1 Creating and editing a mapfile

There are two possible ways for a mapfile to be edited:

• Accessing the mapfile’s content in a raw form using a text editor.

• Accessing the mapfile’s content in a GUI where every directive can be indepentently

managed.

Chapter 5. The GeoMoin Web Application 129

Mapfiles are part of the Data Services and are stored in the filesystem under directories

unique for every user and named under their MoinMoin unique userid. Using this ap-

proach, two mapfiles sharing the same name, created by different users will not override

each other.

MapManager is implemented as a MoinMoin macro, thus it can be loaded in every page

in which the macro directive is appended. The logic of the macro execution is HTML

form–based, meaning that the user is presented with forms and upon submission the

page is reloaded. The macro will be executed again and will check the query string in

order to dispatch the control to the appropriate functions.

When the macro is first executed it checks whether the user is a MoinMoin authenticated

user. If the user has successfully logged in, the following elements are presented:

• A listing of the user’s mapfile in order to load them to the text or the GUI editor.

Additionally the user can delete the map he selected.

• A form where the user can create a new mapfile.

• A form where the user can manage the layers that were selected in the LayerMan-

ager.

If the user selects a text edit, the next invocation of the macro outputs a HTML

TEXTAREA containing the mapfile’s contents where he make the appropriate changes

and the submit the edit. The last invocation rewrites the current mapfile and presents

the elements listed before.

In case a GUI edit is needed, the mapfile must be properly parsed and displayed to

the user along with controls in order to change the directives. The first design of the

MapManager was instantiating a mapscript Map Object from the mapfile and used the

associated getter/setter methods to access the directives. This method was a hands–on

approach concerning the parsing of the mapfile as it is left to mapserver library. The

drawback was the lack of support for many directives using Python Mapscript. In ex-

ample, the GRID directive as soon as the map object is instantiated, is embedded in the

layer object that contains it, leaving no accessors to the GRID directives. Also, some

directives have values, although they are not defined in the mapfile, that is, they are

attributed initial values.

Thus, currently, a unofficial parser was created and is being used for the needs of Map-

Manager. Although there exist some serious limitations:

• Commentation is not supported. When the map is saved the comments are lost.

Chapter 5. The GeoMoin Web Application 130

• Every directive must be contained in its own line. Native mapfile parsing allows

multiple directives to be declared in a single line, although it is not a recommended

practice as far as the readability of the mapfile’s content is concerned.

this method is far more convenient than relying on mapserver objects just to parse and

update a text mapfile. The parsing is done using the module mapparser and it is better

left to the commentation of the module itself to describe the methods used to analyse

the mapfile syntax.

When the parsing has finished, the information are stored in a Python dictionary which

has the structure shown in figure 5.10:

Figure 5.10: A python dictionary containing the parsed map object.

Moreover, as soon as the parsing of all the mapfile directives has taken place, the macro

creates two markfiles (defined in section 5.3.3) and stores the LAYERS list separately

Chapter 5. The GeoMoin Web Application 131

from the rest Map Object elements. The role of the markfiles is that they maintain data

consinstency between many invocations of the macro. Thus in the next invocations the

mapfile will not be parsed again, instead, the markfiles are read and the dictionary will

be loaded. Another reason for keeping markfiles is that the updating of the directives

can occur within many invocations before submitting the new map file, whereas, in case

of a re–parsing, the previous changes would be lost.

The markfile holding the layers that were parsed from the mapfile populates the first

HTML FORM that is presented to the user. Using that form the following can be

accomplished:

• A specific layer definition can be update or deleted

• A class can be created,updated,deleted for a specific layer

• A style can be created,updated,deleted for a specific class

• A label can be created,updated,deleted for a specific class

• An inline feature can be created,updated,deleted for a specific layer

• A grid object can be created for the layer

Upon submission the markfile holding the mapfile’s layer information will be rewritten

in order to contain the new directive values.

The markfile holding the layers that were generated from the LayerManager populates

the first HTML FORM that is presented to the user. Using that form the following can

be accomplished:

• A specific layer definition can be update or deleted

• A class can be created,updated,deleted for a specific layer

• A style can be created,updated,deleted for a specific class

• A label can be created,updated,deleted for a specific class

• An inline feature can be created,updated,deleted for a specific layer

• A grid object can be created for the layer

Upon submission the markfile holding the LayerManager’s layer information will be

rewritten in order to contain the new directive values.

The markfile holding the map elements populates the second HTML FORM that is

presented to the user. Actions that can be submitted are:

Chapter 5. The GeoMoin Web Application 132

• Save the map using information from the markfiles

• Update the map object

• Create or update a legend object

• Create or update a scalebar object

• Create or update a reference object

• Create or update a web object

• Create or update an inline symbol

• Create or update an output format object

Upon submission the markfile holding the map information will be rewritten in order to

contain the new directive values.

The central html form that is presented to the user, is populated with the contents of

the map dictionary. The HTML FORM elements that are used vary from checkboxes

and textboxes to drop–down lists according to the requirements of the mapfile elements.

More information about the specific mapfile elements can be found in commentation of

the source code inside the macro. Additional information about the interaction between

a GeoMoin user and the HTML forms will be described when the User Services tier is

explained.

When the user finishes the update of specific mapfile elements he can:

• Cancel the whole operation, deleting the current markfiles.

• Save the map information as a new mapfile in the filesystem.

If the user selects to save the map in the filesystem, the python dictionaries for the map,

the mapfile layers, and the LayerManager layers, must be used to generate native mapfile

definitions. The best approach to problem like that, is the deployment of a templating

engine and specifically Python’s Cheetah10. The template map.tmpl is responsible for

generating all the mapfile directives and objects (eg. scalebar, web) except the layers.

Respectively, the template layer.tmpl is responsible for building layer definitions for the

layers in the mapfile itself or the LayerManager, including the generation of the class

objects, grid object, etc which are generated using their own templates.
10Cheetah is an open source template engine and code generation tool, written in Python. It can be

used standalone or combined with other tools and frameworks. Web development is its principle use,
but Cheetah is very flexible and is also being used to generate C++ game code, Java, sql, form emails
and even Python code.

Chapter 5. The GeoMoin Web Application 133

5.9 Spatial visualization system

The spatial visualization system, is the most important part in GeoMoin’s business ser-

vices tier, implemending the rendering of the spatial information in the form of an image

which is presented to the end user through the web browser. Strictly speaking, the term

“visualization system” does not only refer to a subsystem responsible for image render-

ings, but also to all the functions that can be supported through mapscript including

the querying of the spatial information illustrated by the rendered map.

It is important to note that the spatial visualization system is not responsible for the

output of the information in an output format11. It produces the results and gathers the

required information which will be later send to the appropriate scripts for an HTML

output.

The native features supported by the renderer are the following:

• Graphical output of the map

• User tools for controlling the map rendering (pan,zoom,layer ordering e.t.c)

• Managing of annotation tables

• Spatial and attribute queries

• Tools providing integration between the application and the whole wiki

The feature listing can be enhanced by the use of mapplets (described later) which add

to the functionality of the system.

In the section below various aspects of the renderer implementation will be described,

starting from the nature of the renderer as a MoinMoin plugin.

5.9.1 Definition and implementation of the renderer

The rendering and navigation in a GeoMoin map can be considered as a three–step

process with the last two steps being repeated as long as the user navigates through

the map. Throughout this process information are being logically exchanged between

the business and user tier of the GeoMoin architecture. Five building blocks can be

identified throughout the whole process:

• A parser that initializes the map rendering information.
11Output of the information to the user browser through the web–server is attributed to the user–

services tier [5.1].

Chapter 5. The GeoMoin Web Application 134

• The main application that handles the spatial visualization and all the various

spatial routines. For the rest of the document this application will be refered to

as MapRenderer.

• The AJAX framework, that serves as an intermediate between the main application

and the user request through the browser.

• XML-RPC scripts following the WikiRPC specification, used to connect and man-

age the wiki through the main application for various business logic purposes.

• The Mapplets, which that can be considered as MapRenderer plugins.

First of all, when the wiki page containing a map is requested by the client, a MoinMoin

parser is executed which resides in the wiki markup. The parser is responsible for

initializing the map while gathering the required information needed for rendering and

creating the initialization HTML markup that will be delivered to the user browser.

In the body of the MoinMoin parser, the user can parameterize many aspects of the

rendering procedure. Below we define a list of the options available to the user:

mapfile The name of the mapfile that will be processed and rendered.

owner The name of the user that owns this mapfile. The mapfile and the owner direc-

tives will be used to fetch the mapfile from the filesystem.

minimal Flags whether the output of the rendering procedure will be a minimal subset

of the whole, including only the rendered image along with some navigational tools.

need reference Flags whether a reference image must be generated.

reference image A reference image name, included in the wiki page that contains the

parser, as an attachment.

need legend Flags whether a legend must be generated.

need scalebar Flags whether a scalebar must be generated.

debug Debugging on/off.

override projection The proj.4 definition that can be used to render a map using a

different projection than the one defined in the mapfile.

annotation (0..*) Defines the name of the layers in the mapfile that should be man-

aged using the annotation controls. Of course, the layer defined here must be

actual annotation tables installed in PostgreSQL,

Chapter 5. The GeoMoin Web Application 135

mapplet (0..*) Name of the mapplet that will be included in application displayed to

the user.

The above list will be enhanced in future versions to include more rendering options.

When the parser is executed, the above information are parsed by the class named

PageDataProcessor (PDP) while notification messages are presented to the user in case

of any misconfiguration. A projector object is finally instantiated, which, having access

to PDP’s member variables, outputs a draft HTML output to the user browser using

the appropriate MoinMoin formatter, in particular, rawHTML.

As long as, the HTML output is sent to the user browser, the user, using AJAX controls

can navigate through the map. It is important to note that during the initialization of

the map when the wiki page loads, the MapRenderer should be automatically called in

order to create an initial rendering of the map and engage the navigation tools. Thus

using the event onLoad on the body of the page, the AJAX functions are called and the

initial rendering is taking place.

In the following sections, the building blocks of the spatial visualization system are

expanded and described, while the AJAX functionality is discussed at the end in order

to natively move to the user–tier of the architecture.

5.9.2 The map rendering process

The main role of the spatial visualization system is to render a map in a graphic format

and to deliver it to the end–user. The MapRenderer is the building block responsible

for this operation as well as many others, managing spatial content.

Rendering a map using Mapscript is a process which follows a predefined workflow as

far as a simple image presentation of the map is concerned. On the other hand, in

case special handling of the information rendered is needed, the implementation can be

complicated. In the current section, we will describe the standard procedure excluding

the feedback from the user controls or the querying rendering results.

The name of the map specified in the parser’s body, along with the owner of the map

itself, define the absolute path of the mapfile in the filesystem. Before instantiating

an mapscript mapObj object, the map must be filtered through the Cheetah template

mechanism in order to substitute the system–specific details that are included in the

mapfile as template definitions. For example, a layer in the filesystem included in the

mapfile should not be presented by its full path to avoid the exposure of the server’s

filesystem structure as much as possible. The resulting map is saved in a temporary file

Chapter 5. The GeoMoin Web Application 136

and can be used to instantiate the mapObj which will drive the rendering procedure.

The whole operation is implement as follows:

namespace={}

namespace["default_fontset"]=DefaultConfig.font_path

namespace["default_symbolset"]=DefaultConfig.symbol_path

namespace["default_imagepath"]=DefaultConfig.img_path

namespace["default_imageurl"]=DefaultConfig.img_path

namespace["default_attach_path"]=DefaultConfig.attach_path

namespace["default_log"]=DefaultConfig.mapserver_log_path

namespace["db_host"]=DefaultConfig.db_host

namespace["db_user"]=DefaultConfig.db_user

namespace["db_pass"]=DefaultConfig.db_pass

namespace["db_name"]=DefaultConfig.db_name

namespace["db_port"]=DefaultConfig.db_port

namespace["db_schema_exp"]=DefaultConfig.db_schema_exp

mapfile=DefaultConfig.map_path+pdp.mapfile

t = Template(file=str(mapfile),searchList=[namespace])

Here we create the temporary map with the substituted values

fd, tmap = tempfile.mkstemp(suffix=’.map’)

f = os.fdopen(fd, ’wb’)

f.write(t.respond())

f.close()

The map can now be parsed by mapscript and a mapObj can be returned:

map = mapscript.mapObj(tmap)

The map object can be used in order to alter all the elements of the map rendering or

to query the map. While these option will be discussed in the following section, now the

actual rendering procedure is presented.

Depending on whether the user selected additional rendering of a scalebar, legend and

reference image, these objects must be drawn and saved in the filesystem with unique

filenames in order to be used by the HTML displayer. The code snippet of the above

actions is:

self.map_id = str(random.randrange(999999)).zfill(6)

map_id=self.map_id

image_name = pdp.mapfile[:-4] + map_id + ".png"

Chapter 5. The GeoMoin Web Application 137

self.image_url="/tmp/" + image_name

if pdp.need_reference==True:

ref_name = pdp.mapfile[:-4] + "ref" + map_id + ".png"

self.ref_url="/tmp/" + ref_name

image=map.draw()

if pdp.need_reference==True:

ref = map.drawReferenceMap()

ref.save(DefaultConfig.img_path + ref_name)

The scalebar and legend object are created the same way as the reference image. It

should be noted that if a query is executed then mapObj’s function draw() must be sub-

stituted with drawQuery() in order to render a map with the query results highlighted.

The member variables, image url, ref url, leg url, scalebar url depicting the map, the

reference image, the legend and the scalebar respectively, are returned using AJAX

responses along with the map id. Map id will be used in the next invocation of the

application, in order to delete the images created in the current one which will be, of

course, updated.

5.9.3 Managing the layer status and position before rendering

When the map is initialized using the parser, the map rendering will be executed using

the mapfile and the parser body directives. In terms of layer display, currently the parser

body contains no relative directives, thus leaving these information only to be managed

through the mapfile. In the mapfile, the status of the layer can be flagged with the

values ON,OFF and DEFAULT under the directive STATUS. The DEFAULT turns the

layer on permanently while the other two value define the initial status. Additionally,

the layer order definition in the mapfile defines the drawing layer order, with the first

layer defined, being drawn in the bottom of rendering queue. These mapfile directives

define the initial corresponding member variables’ values of the mapObj. The following

flowchart [5.11] depicts the events that take place in order to compute the layer status

within the renderer while considering the user input. The first time the maprenderer

is executed, it uses the default layer status defined in the mapfile and outputs a listing

of the layers along with the appropriate controls where the user can submit manual

changes. In the next invocation of the MapRenderer, the HTTP request object will

contain the new layer status. We would note that if the user turns all the layers off,

Chapter 5. The GeoMoin Web Application 138

Figure 5.11: Setting the layer status.

then automatically the status is set to the mapfile defaults.

Using the map object, the layers’ status can be accessed as below:

for elem in range(mapobj.getLayerOrder()):

layerobj = mapobj.get(elem)

print layerobj.status

The member variable layerobj.status is mutable and can be set to e.g mapscript.MS ON,

for the layer to be rendered.

The last element that needs to be described in this section is the layer ordering, which

defines the order in which the layers are drawn in the image. Access to the drawing

order within mapscript is implemented through the function getLayersDrawingOrder()

and setLayersDrawingOrder() respectively [12].When the map is initialized, the layer

order is accessed from the map object and is included in the HTML page as an HTML

HIDDEN field. Later invocations of MapRenderer read the HTTP Request element

produced by this hidden field, thus the application state, as far as the layer ordering is

concerned, is maintained. In addition, the user can select to move a layer up or down

the layer hierarchy, thus resulting in a different rendering, with the layer that was moved

to be shown in the appropriate ordering position. Below we present in pseudo-code the

steps used to calculate layer ordering:
12Up till Mapserver version 2.10 the documented function getLayersDrawingOrder didn’t include the

proper SWIG typemap, thus access to these functions returned an unusable SWIG pointer to an integer
array. Thus the typemaps were implemented unofficially.

Chapter 5. The GeoMoin Web Application 139

Read the state maintenance Hidden field

if HTTP_REQUEST contains layer_order:

layer_order = LAYER_ORDER_FROM_HTTP_REQUEST(layer_order)

Convert list to python tuple

mapObj.setLayerOrder(tuple(layer_order))

Check if the layer is checked to be moved

if HTTP_REQUEST contains "moveup":

layer= INTEGER_HTTP_REQUEST("moveup")

resCode = mapObj.moveLayerUp(layer)

if HTTP_REQUEST contains "movedown":

layer= INTEGER_HTTP_REQUEST("movedown")

resCode = map.moveLayerDown(layer)

Get the resulting drawing order

self.orderList = map.getLayerOrder()

Wrap it in a string to send to the HTML page

for application maintenance

self.orderList = "_".join(["%d" % (i) for i in self.orderList])

5.9.4 Defining the extent and navigation tools

The most important user controls over a digital map are the panning and the zoom tool.

The pan tool moves the center of the map to the specified click point while the zoom

tools enlarges the map in a specified scale. Practically all these operations on a digital

map alter only one element, and this is the displayed map extent. Map extent stands for

the rectangle defined by the lower left and upper right geographical coordinates which

define the geographic region displayed in the rendered map. Thus, a pan action to the

left alters the horizontal part of those coordinates and a 2x zoom action to the center of

the map divides the coordinate pairs by 2. Also, observing the mapfile we can see that

the only directive existing that can alter the scale of the map is the EXTENT directive

which can be accessible through mapscript too.

In Mapscript, the extent is defined as a rectangle object with the member variables

minx,miny,maxx,maxy. Thus, the state of the web application in terms of the rendering

scale can be maintained by exporting the current extent to HTML and returning it to

the next invocation along with the user control options. The basic navigation controls

on a GeoMoin map are:

• Panning by mouse click on the map

Chapter 5. The GeoMoin Web Application 140

• Zooming in or out in the map by defining the zoom size

• Zooming in by drawing a rectange on the image

• Recenter at a specified geographic point by defining the geographic coordinates

• Pan using the reference map

• Zoom to a rectangle defined using the mouse drag action

Before any user action is performed, the renderer must set the extent of the map to

match the one contained in the HTTP request (if it exists). This can be accomplished

by the following lines:

if parms.getfirst(’extent’):

extent = parms.getfirst(’extent’).split(’ ’)

try:

map.setExtent(float(extent[0]),float(extent[1]),

float(extent[2]),float(extent[3]))

except:

map.setExtent(max_extent.minx, max_extent.miny,

max_extent.maxx, max_extent.maxy)

If the extent is somehow malformed, it returns to the original one defined in the mapfile.

When a mouse click is issued within the rendered image, an appropriate javascript func-

tion is executed that computes the exact pixel coordinates of the click. The coordinates

are included in the AJAX call that will execute the new invocation of the MapRenderer.

Mapscript defines a very useful function called zoomPoint(int zoomfactor, pointObj img-

point, int width, int height, rectObj extent, rectObj maxextent). This function zooms by

zoomfactor to imgpoint in pixel units within the image of height and width dimensions

and georeferenced extent while zooming can be constrained to a maximum maxextent.

One important thing to note about this function is that there is no need to geo–transform

the image click coordinates to real coordinates, having to deal with the different map

projections and the distortions of such convertions. Also, as max extent, the extent

defined in the mapfile is set. One last thing to note is that the zoomfactor is set to 1;

the function will produce as a panning result.

So the first two actions listed above can be accomplished by using the zoomPoint func-

tion with a zoomfactor of 1 and greater than 1 respectively. The zooming to the center

of the map is done by dividing the image width and height by 2 and using the results as

the click coordinates. For a recentering at a specified geographical coordinate we must

take care of the following issues:

Chapter 5. The GeoMoin Web Application 141

• The geographical coordinates issued must be unprojected using the lat/lon coor-

dinate pairs, thus a conversion to the current map projection must take place.

• Finally, a conversion between the geographical coordinates and image coordinates

must take place.

In order to convert coordinate pairs between projections, OSGeo’s osr python module

must be used. The following lines do this conversion:

\label{proj2lat}

from osgeo import osr

We create the source and destination projections object

src = osr.SpatialReference()

dst = osr.SpatialReference()

The input projection is the user issued

one and is using the EPSG 4326 (latlon)

src.ImportFromEPSG(4326)

Below we define a sample projection in

order to transform the coordinate pairs.

The projection is defined in the proj4 format

projection="+proj=laea +ellps=clrk66 +lat_0=45 +lon_0=-100

+a=6370997 +b=6370997 +units=m"

Set the projection definition to initialize the object

dst.ImportFromProj4(projection)

coords=(-104,41)

Now we must check if the projections are the same thing

#if dst.IsSame(src):

if dst.IsSameGeogCS(src):

return coords

else:

We instantiate an osr Coordinate Transformation object

transformer = osr.CoordinateTransformation(src,dst)

result=transformer.TransformPoint(coords[0],coords[1])

print (result[0],result[1])

Of course, a geographic reprojection can be accomplished if the input coordinate pair

is residing in the region defined by the output projection. For example, the LAEA

Chapter 5. The GeoMoin Web Application 142

projection in the above script, defines the area of USA, thus a latlon pair of (63,45)

would have no meaning and if a result is returned, the distortion would be enormous.

Having the reprojected coordinates, they must be converted to image coordinates. For

this issue we use the following function:

def map2img (width, height, x, y, ext):

ppd_x=0 # pixel per degrees on horizontal axis

ppd_y=0 # pixel per degrees on vertical axis

new_x=0 # The horizontal image coordinate

new_y=0 # The vertical image coordinate

The horiz pixel per degree is the image width

divided by the horizontal extent

ppd_x = width / (ext.maxx - ext.minx)

ppd_y = height / (ext.maxy - ext.miny)

(pixel/degrees) * degrees --> pixels

new_x=ppd_x * (x - ext.minx)

Same idea as above, but the vertical pixel position

is counted from the top of the image

new_y=height - ppd_y * (y - ext.miny)

return (new_x,new_y)

Of course, the above calculations introduce a degree of distortion when the scale de-

nominator of the map is set to a high value. Thus, in smaller extents the resulting

coordinates are more accurate.

After the image coordinates are calculated, the map object’s zoomPoint can be used to

zoom or recenter the map at the specified geographic coordinate pair. Finally, we should

note that in case of a zoom using the drawing of a rubber-band box on the image, a

special javascript is engages which follows the mouse MouseDown, MouseUp, Mouse-

Move javascript events. After the mouse button is released the image coordinates of the

rubber–band box are translated to geographic coordinates and the new extent is used

to draw a new instance of the map.

The last navigation method to discuss is the reference image panning. While the map

is at a particular zoom level, a mouse click on the image map transfers the viewpoint

of the new rendered image to a new extent defined by the previous zoom size and the

mouse click coordinates in pixels. Please note that in general, a reference image is much

smaller than the digital map it generalizes. In detail the computations are the following:

Chapter 5. The GeoMoin Web Application 143

• If the mouse click was on the rendered map, which would be the coordinates

in analogy to the reference image click coordinates? This is a percentage factor

implemented as:

clkpoint.x = map.width * clkpoint.x / reference_image.width

clkpoint.y = map.height * clkpoint.y / reference_image.height

• Currently the center coordinates of the rendered map can be computed as (map.width/2,

map.height/2). These coordinates must be translated in analogy to the original

map extent. Firstly, the image coordinates of the current extent are calculated:

(imgxmin_curext,imgymin_curext) = utils.map2img(map.width,map.height,

map.extent.minx,map.extent.miny,max_extent)

(imgxmax_curext,imgymax_curext) = utils.map2img(map.width,map.height,

map.extent.maxx,map.extent.maxy,max_extent)

And the center is:

imgxcenter_curext=(imgxmax_curext+imgxmin_curext)/2

imgycenter_curext=(imgymin_curext+imgymax_curext)/2

• Now a percentage of the difference between the requested click point and the above

image point in comparison to the image size must be calculated. A positive percx

means that the click was on the West, while a positive percy means that the click

was on the South, because image pixels count for UL corner of the image.

percx = (clkpoint.x - imgxcenter_curext)/map.width

percy = (clkpoint.y - imgycenter_curext)/map.height

• The new extents are calculated based on the above percentages (the same percent-

age generated above using the pixel coordinates, applies to geographic coordinates

too):

map.extent.minx = map.extent.minx + (percx*max_extent.maxx)*2

map.extent.miny = map.extent.miny - (percy*max_extent.maxy)*2

map.extent.maxx = map.extent.maxx + (percx*max_extent.maxx)*2

map.extent.maxy = map.extent.maxy - (percy*max_extent.maxy)*2

• Check if the rectangle defined by the new extent, is contained within the rectangle

specified by the maximum extent and in that case, reset the extents to the valid

values defined by the maximum extent.

Chapter 5. The GeoMoin Web Application 144

5.9.5 Query capabilities

In addition to its rendering capabilities, Mapserver provides a powerful query facility,

supporting both spatial queries (which select features based on their geographic loca-

tion) and attribute queries (which selects features based on attribute values). The cgi

version of Mapserver supports the query mode where the querying capabilities are en-

abled. In the case of GeoMoin we are interested in the Mapscript API for issuing the

query commands. The particular API provides many types of query functions which

can be used in conjuction to each other, in order to implement more complex queries.

Before a layer is queried, the user creating the mapfile must ensure that for every layer,

to produce results, a TEMPLATE directive must be included in its definition or, alter-

natively, in a class definition of the layer. The second approach, sets as queriable, only

the layer features represented by the particular class definition. This method of turning

a layer queriable can be identified as a Mapserver “quirk” and relies on the mapserver

mode as a CGI, containing templating mechanisms and is important for backwards com-

patibility. In the next Mapserver version, hopefully, a more specific directive could turn

on/off the query facilities for a layer. Additionally, each queriable layer must define two

directives named TOLERANCE and TOLERANCEUNITS. The first defines the sensi-

tivity for point and line based queries, meaning that a feature is returned if a spatial

query is at most within TOLERANCE units far from the feature. The TOLERANCE-

UNITS directive defines the unit types for the previous value and it can be one the

following types: pixels, feet, inches, kilometers, meters, miles, dd (decimal degrees) and

defaults to pixels. For example, a layer definition containing the above requirements

could be:

LAYER

NAME "cities"

DATA "\${default_attach_path}1214071817.69.30350/cities.shp"

STATUS ON

TYPE point

PROJECTION

"+init=epsg:4326"

END

TOLERANCE 10.0

TOLERANCEUNITS miles

CLASS

TEMPLATE "ttt"

NAME "cities"

Chapter 5. The GeoMoin Web Application 145

STYLE

SYMBOL "Circle"

SIZE 5

COLOR 234 25 14

END

END

END

It is obvious that the TEMPLATE directive does not need to contain a valid url.

The mapscript objects that can be queried are both the layers and map itself, meaning

that both objects contain specific query functions. Using the map object querying

functions the following queries can be defined:

• Return the layers’ features that intersect a geographic point within a tolerance

buffer

• Return the layers’ features that intersect a particular polygon

• Return the layers’ features that intersect the results of a previous result set on a

polygon layer

• Return the layers’ features that intersect a given feature

Alternatively, using the layer object, provides access to a richer selection of queries

• Return the layer’s features that intersect a geographic point within a tolerance

buffer

• Return the layer’s features that intersect a particular rectangle

• Return the layer’s features that intersect the results of a previous result set on a

polygon layer

• Return the layer’s features that intersect a given feature of type polygon

• Return a layer feature at the particular index

• Return the layer’s features matching the results of a query on their non–spatial

fields

Chapter 5. The GeoMoin Web Application 146

These basic query types, in Mapscript, are supported by specific functions which can be

combined to built more specific and complicated queries.

In GeoMoin those functions integrated resulted in the following query types:

Query by point Returns specific layers’ or all the layers’ features that contain a geo-

graphic point within a tolerance buffer. For each layer single or multiple results

can be displayed. Different tolerances for every layer can be specified. The query

is issued by a mouse click.

Query by item Query a specific layer using a query string on its non–spatial at-

tributes. For each layer, single or multiple results can be displayed.

Query by feature Return specific layers’ or all the layers’ features that intersect a

polygon based on the previous point query result of the polygon layer that pro-

duced this result. For each layer, single or multiple results can be displayed.

Query by itemfeature Return specific layers’ or all the layers’ features that intersect

a polygon based on the previous item query results of the polygon layer that

produced this result. For each layer, single or multiple results can be displayed.

Query by real coordinates Return specific layers’ or all the layers’ features that in-

tersect a rectangle specified by its geographic lower left and upper right coordi-

nates.

Query by image coordinates Return specific layers’ or all the layers’ features that

intersect a rectangle specified by its image upper left and lower right coordinates.

Of course, it is a relatively simple task to add new query cappabilities to GeoMoin by

enhancing the above or creating new. In that case it is important to address some issues

concerning the Mapscript query API. The most often–used function is queryByPoint(

pointObj point, int mode, float buffer). This function can either be accessible through

a map object resulting in the querying of all the layers or through the layer object

resulting in the querying of the particular layer. mode can be set to MS SINGLE or

MS MULTIPLE resulting in single or multiple results for every layer. The last two

parameter: buffer and point are worth mentioning.

With buffer, the function refers to the radius of an imaginery circle, centered by the

geographic coordinates of the query point, within which, the query produces results.

The diagram [5.12] below describes the interaction between the TOLERANCE value

mentioned above and the buffer parameter. It is obvious that if the result margin is

bigger that zero then the feature is returned. Attention must be particularly paid to

Chapter 5. The GeoMoin Web Application 147

Figure 5.12: Interaction between the tolerance value and the buffer parameter.

the correspondance of the units that the buffer and the tolerance values are expressed;

while tolerance units type is set by the TOLERANCEUNITS directive described earlier,

the buffer parameter of the query functions (in mapscript) was observed that is not

internaly converted to the type specified by the mapfile definition and it defaults to

decimal degrees. This results in a comparison between decimal degrees and the type

specified by TOLERANCEUNITS. Thus a conversion must be made to turn the user–

specified buffer to the type defined by TOLERANCEUNITS. This is done manually

using the following function:

def compute_tolerance(tolerance,layer):

if layer.toleranceunits==mapscript.MS_MILES:

return tolerance/69.04 # Convert DD to miles with distortion

elif layer.toleranceunits==mapscript.MS_FEET:

return tolerance/69.04*5280

elif layer.toleranceunits==mapscript.MS_INCHES:

return tolerance/69.04*63360

elif layer.toleranceunits==mapscript.MS_KILOMETERS:

return tolerance/69.04*1.609344

elif layer.toleranceunits==mapscript.MS_METERS:

return tolerance/69.04*1609.344

Below the dpp function calculates the decimal degrees

per pixel considering the map image size and the current extent

elif layer.toleranceunits==mapscript.MS_PIXELS:

return toler*dpp(map.width,map.height,map.extent)

Chapter 5. The GeoMoin Web Application 148

elif layer.toleranceunits==mapscript.MS_DD:

return tolerance

From the above, it is assumed that the user should set the buffer to an appropriate value

considering the units set by the TOLERANCEUNITS directive. Below we will discuss

the different GeoMoin query type indepedently.

Query by POINT

The point query performs the simplest spatial query: a point query. The image co-

ordinates of a mouse click in the rendered image are returned to the renderer. These

coordinates are used to search the specified layers one after another until Mapserver

finds the feature within the specified tolerance from the click point. For every layer

queried, single or multiple results can be returned containing the non–spatial attributes

of every features involved. The mapscript function perfomed for this query is based on

the layer object and its usage is illustrated in the following pseudo–algorithm:

for all queried layers selected by user

Mode can be MS_SINGLE or MS_MULTIPLE

buffer is the tolerance specified by the user for

the particular layer involved

layer.queryByPoint(pointObj point, int mode, float buffer)

layer.open()

result = layer.get_Results()

output_Results(result)

It could be possible to use the map object’s queryByPoint function with the drawback

of setting a global tolerance buffer for all the layers involved in the query.

Query by ITEM

This kind of query tells Mapserver to check the attribute table of a user–selected layer

to match a user–defined query string. Let us assume that a layer named Countries

contains a non–spatial fieldname by the name Countryname. The user can select the

particular layer, set as Query Attribute the word Countryname and as Query String

the word Germany. The result set will contain the feature corresponding to the coun-

try of Germany. The Query String follows the same syntax as the mapfile FILTER

directive and can also be a Regular Expression like “/Ger./ ”.It is important to outline

that for shapefiles and connections through OGR, queries like the one above are valid,

but for connections through SDE,OracleSpatial and PostGIS, the query string is only

consulted by Mapserver and should be a native SQL WHERE clause. A pseudocode of

this interactions with mapscript:

Chapter 5. The GeoMoin Web Application 149

for all queried layers selected by user

Mode can be MS_SINGLE or MS_MULTIPLE to produce

single or multiple results

layer.queryByAttributes(mapObj,Query Attribute,Query String,mode))

layer.open()

result = layer.getResults()

outputResults(result)

Query by FEATURE

Feature query performs a spatial query that uses a feature from one layer, the slayer

to query another layer. In Mapserver only polygon layers can be selected as an slayer.

The whole operation is issued by a mouse click to the slayer from which the polygon

geometry selected is extracted. The result set is internally saved by mapserver, so issuing

the actual queryByFeature(slayer) on the map object, the internal result set is consulted

and a query is being made to all the queriable layers. Every layer having features that

intersect the polygon will be returned. A pseudocode of this interaction with mapscript:

slayer.queryByPoint(mapObj map, pointObj point, MS_SINGLE))

map.queryByFeatures(slayer)

for all layers selected by user

layer.open()

result = layer.getResults()

outputResults(result)

It is important to note in case of overlapping polygons within the same layer, the first

one resulting is selected to continue the query. Additionally in the current Mapscript

version if the mode is set to MS MULTIPLE resulting in more that one polygon, the

queryByFeatures function breaks the stability of the application and is currently reported

as a bug.

Query by ITEMFEATURE

The idea of the ITEMFEATURE query combines the logic of the FEATURE and the

ITEM query. The attribute part of the operation is a non–spatial query which results

in the polygon geometry. This polygon will be compared against all the features of all

the layers in order to check for intersection. The features intersecting are returned. A

pseudocode of this interaction with mapscript:

slayer.queryByAttributes(mapObj,Query Attribute,Query String,MS_SINGLE))

map.queryByFeatures(slayer)

Chapter 5. The GeoMoin Web Application 150

for all layers selected by user

layer.open()

result = layer.getResults()

outputResults(result)

Query by Real Rectangle

Using this query, a user can define a rectangle based on lower left and upper right

georeferenced coordinates and submit it, ordering Mapserver to return all the layers’

features that interesect it. Mapscript offers the very useful queryByRect function on

both the map and the layer level. In GeoMoin the map’s function is used in order to

query all the layers.

Query by Image Rectangle

Using this query, the user can draw a rubber–band box on top of the image using

Javascript whose coordinates will be transalted to the desired query bounding box,

ordering Mapserver to return all the layers’ features that interesect it. Mapscript does

not natively support rectangle queries based on image coordinates, thus georeferenced

coordinates must be manually exported. In a previous section, we defined the map2img

function which converts an image coordinate pair to a georeferenced one. The following

function named img2map convert georeferenced cordinate pairs to image ones:

def img2map (width, height, x, y, ext):

dpp_x = 0

dpp_y = 0

dpp_x = (ext.maxx-ext.minx)/width # degrees per pixel

dpp_y = (ext.maxy-ext.miny)/height

x = minx + dpp_x*x # degrees from left

y = maxy - dpp_y*y # degrees from top because

pixels count down from top

return (x, y)

After the coordinate pairs are calculated, the query is issued using the queryByRect

function on the map object level.

An important issue concerning the queries in mapscript, is the optical representation

of the query result; in addition to the queries being returned in a text form (return

of the computed information is accomplished through AJAX responces), the user is

introduced to a graphical output of the query results. This is achieved using a different

rendering function than the one discussed in 5.9.2, the mapObj.drawQuery() function.

This function does completely the same job as the mapObj.draw() while highlighting

Chapter 5. The GeoMoin Web Application 151

the features included in the result set. The highlighting color can be set in the mapfile

within the mapfile under the object named QUERYMAP.

5.9.6 Annotating a rendered map

One of the most important tools that Geomoin offers, is the ability to link pairs of

coordinates with annotations containing information about the particular geographic

feature that they describes. Through the use of annotations, the users can, in loose

terms, create their own spatial datasets or contribute to already created ones by adding

or editing particular features. That is, an annotation is nothing more or nothing less

than a dynamically generated dataset that has its unique methods of displaying the

contents included in it. GeoMoin supports an unlimited number of annotation datasets

with each of them having its unique characteristics along with a unique role of existence.

The annotation information, provided by the user, are stored in special PostgreSQL

tables updated to include a spatial PostGIS column. Using the LayerManager [5.7],

a user can create a brand new annotation table defining an unlimited number of non–

spatial columns, enough to fully describe a geographic feature. Up till now, the supported

types of columns in an annotation table can be:

• text

• integer

• float

• date

In order to present an example of an annotation table, let’s assume that the user created

it using the LayerManager. In the “postgis” registration table the addition could look

like 5.13

The type field is setting the table type to be managed as annotation. The viewable field

Figure 5.13: Registration of an annotation table.

describes if the table can be viewable by all the users of GeoMoin, while the editable

Chapter 5. The GeoMoin Web Application 152

disallows users from inserting or managing annotation, unless they are the particular

annotation or the table owners (owner field contains the user id of the table owner).

Additionally, a description exists, describing the contents of the annotation table13, while

a wikipage will act as a link to a wiki page that fully describes the dataset.

5.9.6.1 Enabling an annotation layer in the MapRenderer

Adding an annotation layer to a mapfile follows the same principles like any other

postgis–enabled database table; the user can select it in the LayerManager in order to

create a layer definition in his markfile, and afterwards use the MapManager to import

the layer in a map. Thus a mapfile layer definition of the above annotation can be 14:

LAYER

NAME "goodies"

CONNECTIONTYPE POSTGIS

CONNECTION "host=\$db_host dbname=\$db_name

user=\$db_user password=\$db_pass port=\$db_port"

DATA "wkb_geometry FROM \${db_schema_exp}goodies"

STATUS ON

TYPE point

TOLERANCE 10.0

TOLERANCEUNITS miles

CLASS

TEMPLATE "ttt"

NAME "goodies"

STYLE

SYMBOL "Pin"

SIZE 26

OFFSET 13 -13

END

END

END
13It is preferable that the users creating annotation tables, provide a complete and accurate description

of the contents
14It is interesting to note that the querying capabilities are independent of the layer’s type as anno-

tation and can be used as described in the previous section.

Chapter 5. The GeoMoin Web Application 153

After the registration is inserted and the annotation layer definition is added to the

mapfile, it is ready to be included in a map rendering. In order the layer, to be treated

as an annotation layer, it must be additionally defined in the renderer’s parser body,

otherwise, the annotation controls will not be available to the user the layer will

be displayed as a typical PostGIS layer. This is done by adding the line 05 while editing

the MoinMoin wiki page containing the parser:

01 {{{

02 #!renderer ,

03 mapfile=demo2.map

04 owner=user1

05 annotation=goodies # Include this line

.

.

}}}

5.9.6.2 Annotation table structure

Before explaining an annotation table structure, the sample contents of the “goodies”

layer are presented below: The columns named: id, owner, editable and wkb geometry

Figure 5.14: Contents of an annotation table.

are assumed to be system columns. The first two define the primary key and the userid

of the user that created a particular annotation. The editable field is a boolean value

that flags whether the tuple can be editable, even if the whole table is marked as non–

editable. Figures 5.4, 5.5, 5.6 presented on previous section provide the flowchart of the

SQL operations considering the access controls.

The last system column named wkb geometry contains the Well–Known–Binary rep-

resentation of the geographic point or polygon annotated. It is very important to distin-

guish between these two types of annotation geometries because they are handled very

differently by the GeoMoin annotation subsystem.

A GeoMoin user, while creating an annotation layer, can select the geometric type of

Chapter 5. The GeoMoin Web Application 154

its geographic content, whether it is a polygon or a point. The difference between the

management of these two types is that when a user (using the MapRenderer) wants to

add a new point annotation, this annotation is created by the coordinates of the mouse

click on the rendered image. On the contrary, creating a polygon annotation, requires

the selection of a pre-existing polygon feature which will act as the anno-

tation geometry source. For example, in a rendering of a world map containing a

polygon layer of the countries’ borders, the user can annotate Germany by selecting the

appropriate tool and source layer while clicking anywhere within the polygon rendering

of the country. Both methods are discussed later.

5.9.6.3 Creating an annotation

In order to create a new GeoMoin annotation, two steps must be considered; first of

all, the details of the annotation layer, that will hold the annotation, must be gathered

in order to create an HTML form, and secondly, upon filling the required details, the

annotation must be stored and rendered. While the second step is common for both

point and polygon annotation types, the first one requires different handling.

Every time the MapRenderer is executed, a list of all the annotations included in the

parser body is gathered. A check is being made to ensure that every annotation layer

included in the parser body exists in the PostgreSQL DBMS and if the mapfile has a

definition for that layer. Each element of the list contains a pointer to an object named

AnnotationLayer which holds as member variables:

• The name of the annotation layer, which should be an exact match of the mapfile

layer name and PostGIS name.

• The geometric type of the annotation whether it is point or polygon. This value

is gathered from the mapscript layer object.

• A boolean value flagging whether this annotation table is viewable. This value is

gathered using the pgUtils module for the particular database table.

• A boolean value flagging whether this annotation table is editable. This value is

gathered using the pgUtils module for the particular database table.

• A boolean value flagging whether this annotation will act as a direct link to a web

page or a popup containing the details will be rendered. This value is gathered

using the pgUtils module for the particular database table.

Every AnnotationLayer contains the following member functions concerning the inser-

tion of a new annotation:

Chapter 5. The GeoMoin Web Application 155

CreateAnnotationForm This function collects the information that will be used by

the user–services tier in order to display a form that handles point annotation

insertions.

CreatePolygonAnnotationForm This function collects the information that will be

used by the user–services tier in order to display a form that handles polygon

annotation insertions.

AddAnnotation This function is executed when the submission of one of the above

forms happens, in order to add the new annotation to PostgreSQL.

In order to create an annotation, the user must select either the point or the polygon

annotation tool from the user interface. Additionally, the annotation layer that will hold

the user information must be selected in case multiple annotation layers were declared15.

When the user issues a mouse click on the rendered image of the map, the above in-

formation are sent using an HTTP request to the MapRenderer along with the image

coordinates of the click point. Upon receiving the input, MapRenderer calls either Cre-

ateAnnotationForm or CreatePolygonAnnotationForm in regard to the geomtry type of

the annotation layer selected.

First of all the image coordinates of the mouse click must be converted to geographic

coordinates using the function img2map. Afterwards, the user field names16 of the an-

notation tables are collected using the pgUtils module. These field names will be used

by the user–services tier to output the HTML TEXT elements in order to insert the

new annotation details.

Finally, the geometry of the annotation feature must be generated; if the annotation

layer is of type point the following steps must take place in order to create the geome-

try:

• The geographic coordinates produced by the img2map function are converted to

their correspondive latitude/longitude pair using the function proj2LATLONG

from osgeo import osr

def proj2LATLONG(projection,x,y):

"""

@param projection: the proj4 definition of the imput projection

@param x,y: the coordinates projected using the input projection

15The polygon annotation tool is only valid for annotation layers of point geometry, while the polygon
tool is valid for annotation layers of polygon geometry

16As user field names we refer to the PostgreSQL table field names that are managed by the end–users.
In the contrary system field names refer to fieldnames which control the annotation in regard to the
business logic (eg. “editable” and “owner” are system field names

Chapter 5. The GeoMoin Web Application 156

@rtype: tuple

@return: the latlon coordinate pair """

Create the source and destination projections

src = osr.SpatialReference()

dst = osr.SpatialReference()

The projection paramater is "encoded" in proj4 wkt definition

thus it is imported using:

src.ImportFromProj4(projection)

The output projection is the annotations projection which is always

latlon, thus EPSG 4326

dst.ImportFromEPSG(4326)

Check if the two projections are the same

if dst.IsSameGeogCS(src):

return (x,y)

else:

A coordinate transformation object is created

to handle the reprojection

trans = osr.CoordinateTransformation(src,dst)

result=trans.TransformPoint(x,y)

return (result[0],result[1])

• An SQL call of the GeoMoin SQL function geomoin wkb that will create the

Well–Known–Binary representation of the coordinates is formulated. It is impor-

tant to highlight that the SQL function is not executed at this particular step. An

example of an SQL call formulation could be:

sqlcall = "gis_schema.geomoin_wkb(10.662,47.507,4326)"

Below the implementation of the geomoin wkb function is presented:

CREATE OR REPLACE FUNCTION

-- parameters: latitude, longitude, projection EPSG

gis_schema.geomoin_wkb(double precision, double precision, integer)

-- Return the well-known-binary representation

RETURNS geometry AS

$BODY$

DECLARE

point public.geometry;

Chapter 5. The GeoMoin Web Application 157

wkb public.geometry;

BEGIN

-- Postgis function that creates a point using a pair of coordinates

select into point st_makepoint from public.ST_MakePoint(\$1,\$2);

-- Postgis function to convert a point object to its Well-Known-

-- Binary representation using the specified projection EPSG

select into wkb * from public.geomfromwkb(point,\$3);

return wkb;

END;

$BODY$

LANGUAGE ’plpgsql’ VOLATILE

ALTER FUNCTION gis_schema.geomoin_wkb OWNER TO postgres;

As long as the above information are collected, they are formulated into an XML docu-

ment and are sent to the user–services tier as a response to the AJAX call of MapRen-

derer.

If the annotation layer is of polygon type, the generation of the geometry is very

different. In addition to the user selection of the polygon annotation layer that will hold

the information, the user should also select a polygon layer that will act as the source

of the polygon geometry.

• The geographic coordinates produced by the img2map function are converted to

their correspondive latitude/longitude pair using the function proj2LATLONG

exactly as in point annotations.

• The source layer selected by the user is instantiated using mapscipt:

layer = map.getLayerByName(sourceLayer)

if layer.type != mapscript.MS_LAYER_POLYGON:

return (False,"Only polygon source layers allowed")

• A mapscript point object is instantiated and a point query is executed at the

particular source layer:

point = mapscript.pointObj(clickpoint[0],clickpoint[1])

One result is permitted thus MS_SINGLE is parameterized

Tolerance is 0

resCode = layer.queryByPoint(map, point, mapscript.MS_SINGLE, 0)

if resCode == mapscript.MS_FAILURE:

return (False,"No polygon was returned. Is the layer queryable?")

Chapter 5. The GeoMoin Web Application 158

• Afterwards, the query results must be opened and the geometry features must be

extracted. It is very common, that a polygon layer in MapServer can contain fea-

tures that are viewed as multipolygon in the representations of other GIS packages.

Thus a point query in the area of Philippines can result in a single mapscript

feature object which contains multiple mapscript line objects (closed lines) repre-

sent the Philippines individual islands. Thus in MapRenderer, all the line objects

contained in the features are serially scanned and the particular closed line that

contains the click coordinates is returned:

resultSet=layer.getResults()

layer.open()

the MS_SINGLE parameter result in only one feature

result = resultSet.getResult(0)

shapeobj = layer.getFeature(result.shapeindex, result.tileindex)

If the real geometry is multipolygon, we must check in which lineObj

the click point is contained

for i in range(shapeobj.numlines):

Create a temporary shape object

tempshape = mapscript.shapeObj(mapscript.MS_SHAPE_POLYGON)

Get the line object of the source shape

lineobj = feature.get(i)

tempshape.add(lineobj)

If the click point is contained

if tempshape.contains(point):

...

...

• As soon as the mapscript line object that contains the click point is tracked,

the Well–Known–Text representation of the geometry can be returned using map-

script’s shapeObj.toWKT(). The polygon shape contained in the WKT can consist

of four coordinates pairs representing a simple rectangle, up to an unlimited num-

ber of coordinate pairs defining high resolution polygons. In later section, it is

mentioned that a polygon annotation is presented in the map rendering as an

HTML AREA. Thus in case of a large number of coordinate pairs, a simplification

must take place so that the HTML output is not overloaded with a huge number

of image coordinate pairs per polygon annotation. Simplification stands for sets of

operations that reduce the number of vertices of a polygon feature preserving as

much as possible vertices that make the resulting polygon resemble the original.

Chapter 5. The GeoMoin Web Application 159

PostGIS extension contains a function called simplify 17 that takes as input a

Well–Known–Binary representation and a simplification factor. A possible value

for this simplification factor can be the map units per pixel multiplied by 2 or 3.

simplify_factor = 2 * utils.dpp(map.width,map.height,map.extent)

Finally, the GeoMoin SQL function geomoin simplify is executed that takes as

input the WKT of the geometry and the simplification factor. The function stores

the simplified WKB is a temporary PostgreSQL table returning the primary key

of the insert value to be used later. A sample SQL call to this function could be:

SELECT id FROM gis_schema.geomoin_simplify(

TEXT(’POLYGON ((39.155 -6.586, 39.167 -6.61, ...))’) , 1.117875

)

The implementation of the geomoin simplify is presented below:

CREATE OR REPLACE FUNCTION gis_schema.geomoin_simplify(text, double precision)

-- returns the primary key of the temporary table

RETURNS bigint AS

$BODY$

DECLARE

id bigint;

wkb public.geometry;

wkbsimpl public.geometry;

BEGIN

-- Postgis function. Create geometry from WKT and particular EPSG

select into wkb * from public.geomfromtext($1,4326);

-- Postgis function. Simplify a geometry by a factor

select into wkbsimpl * from public.simplify(wkb,$2);

-- Insert simplified data in the temporary table

insert into gis_schema.geomtemp(wkb_geometry) values (wkbsimpl);

-- Get the current value of the table primary key sequence

select into id * from currval(’gis_schema.geomtemp_id_seq’);

return id;

END;

$BODY$

17The PostGIS simplify function is using the Douglas Peuker algorithm for simplifying polygons.

Chapter 5. The GeoMoin Web Application 160

• Finally, an SQL call of the GeoMoin SQL function geomoin gettempgeom is

made that will read the temporary table’s tuple defined by the above id. It is

important to highlight that the SQL function is not executed up to this particular

step. The execution will actually happen when the insertion of the annotation will

be made in a later stage (later invocation of MapRenderer).

Just like in the case of a point annotation, the information collected above are formulated

into an XML document and are sent to the user–services tier as a response to the AJAX

call of MapRenderer and the HTML form in rendered.

When the user submits the required information after filling the user field names of

the annotation, MapRenderer is re–executed and handles the annotation insertion using

function AddAnnotation of the particular AnnotationLayer object. This function gathers

the field names of the annotation table and searches the HTTP Request object to get

the correspondive values. The SQL call created above that will return the geometry of

the annotation is also included in the HTTP request. From these information a SQL

INSERT statement is formulated using the GeoMoin’s pgUtils module. A sample SQL

INSERT statement for adding a point annotation could be:

INSERT INTO

gis_schema.pointannot (name,surname,wkb_geometry,editable,owner)

VALUES

(john, doe, gis_schema.geomoin_wkb(-41.393, 21.781, 4326), False, user1)

5.9.6.4 Displaying and managing annotations

Upon each execution of the MapRenderer, the annotation layers included in the parser

body must be opened and their information must be returned to the user–services tier

in order to create the popup that contain the annotation details. The triggering of

the popup view is done via a mouse click inside the HTML AREA that surrounds the

geographic region or point annotated. Using the popup view the user can view, update or

delete a particular annotation provided that he has the appropriate access controls over

the annotation table or the tuple holding the annotation. In order to view an annotation,

MapRenderer should return only the values contained in the user field names of every

annotation in the tables. In order to update an annotation, MapRenderer should return

the above values which will be contained in specific HTML TEXT controls along with

the primary key of each annotation tuple. Finally. deleting an annotation requires

only the primary key of the annotation. For every update or delete action, MapRenderer

will be re–invocated and will call the appropriate handling functions discussed later.

Chapter 5. The GeoMoin Web Application 161

In order to collect the information required for user–services to output the annotation

details, every AnnotationLayer object has the following member functions:

CreateTTimagemap This function opens the point annotation layer and gathers the

features. MarkSpot function is called for each feature.

CreateTTimagemapPolygon This function opens the polygon annotation layer and

gathers the features. MarkSpot function is called for each feature.

MarkSpot This function opens a particular feature and collects the required informa-

tion in order to view/manage/delete the annotation specified by the particular

feature.

In CreateTTimagemap and CreateTTimagemapPolygon functions, the following steps

must take place:

1. First of all, the user field names of the annotation table are gathered by a call to

pgUtils function GetFieldNames.

2. A mapscript layer object must be instantiated using the layer name in order to

get the features. The layer is afterwards opened and the STYLE object is also

instantiated.

layer=map.getLayerByName(layername)

layer.open()

Get the first class of the layer, then

get the first style and the size

stylesize =(layer.getClass(0)).getStyle(0).size

3. An appropriate handling must take place in order to avoid annotations outside the

currently displayed extent to be rendered. This is achieved using the mapscript

function whichShapes. As an input to this function a mapscript rectangle object

must be provided which in this case is the specific extent of the map. There exists

a particular implication where in case the map is projected using a particular

projection while the source layer is projected using a different projection, the

correct result are not returned. This possibly happens because the extent provided

in whichShapes is not reprojected to the projection defined by the source layer.

Thus this must be done manually using the following code:

(minx,miny)=utils.proj2LATLONG(map.getProjection(),

map.extent.minx, map.extent.miny)

Chapter 5. The GeoMoin Web Application 162

(maxx,maxy)=utils.proj2LATLONG(map.getProjection(),

map.extent.maxx, map.extent.maxy)

newextent=mapscript.rectObj(minx,miny,maxx,maxy)

status = layer.whichShapes(newextent)

4. Next, each shape returned is accessed and the non–spatial fields are included in

a list named “values” that will be provided to the MarkSpot function discussed

later. Furthermore, for the reason that GeoMoin support only point and polygon

annotation, each shape object contains only one line object which can be accessed:

while (1):

Get the shape object

shape = layer.nextShape()

if shape==None: break

values=[]

for i in range(shape.numvalues):

values.append(shape.getValue(i))

lineobj=shape.get(0)

From this point, each line object returned can contain either a point or a polygon.

Using the geometry of each annotation the HTML AREA pixel coordinates must be

generated. For point annotations where a single coordinate pair define the position of

the annotation, CreateTTimagemap function continues the procedure:

1. A mapscript point contained in the line object is returned:

hotSpot = lineobj.get(0)

2. The point object returned above, must be reprojected from latlon to the map

projection in order to be useful:

newspot = utils.LATLONG2proj(map.getProjection(),

hotSpot.x,hotSpot.y)

3. The pixel coordinates that correspond to the particular point in regard to the

current extent must be calculated:

position=utils.map2img(map.width, map.height,

newspot.x, newspot.y, map.extent)

Chapter 5. The GeoMoin Web Application 163

4. Particularly for point annotations in GeoMoin, the HTML AREA coordinates

generated are consisting the upper–left and bottom–right pixel coordinates of the

rectangle which has as a center the point annotation coordinates and as a vertice

size, the size of the mapscript style object divided by two. The horizontal and the

vertical coordinates are stored in the lists names “hor” and “ver” in order to be

used by the function MarkSpot:

x=position[0]

y=position[1]

newsize=stylesize/2

xm and ym: coords of the UL pixel

xp and yp: coords of the LR pixel

xm=x-newsize

if (xm<0): xm=0

ym=y-newsize

if (ym<0): ym=0

xp=x+newsize

if (xp>map.width): xp=map.width

yp=y+newsize

if (yp>map.height): yp=map.height

hor = [xm,xp]

ver = [ym,yp]

5. Finally, the MarkSpot function is executed, parameterized with the field names of

the annotation table, the values for the field name and the horizontal and vertical

list created above:

MarkSpot(values,fieldnames,hor,ver)

Some additional parameters are also included in the call, but do not worth men-

tioning and they are documented in the source code.

If the annotation layer is of type polygon the following steps must take place:

1. The point objects contained in the line object define the vertices of the polygon

geometry and will be used to produce the polygonal HTML AREA that will trigger

the annotation:

Chapter 5. The GeoMoin Web Application 164

for i in range(lineobj.numpoints):

point=lineobj.get(i)

2. As in point layers, the point object must be reprojected to the map projection and

converted to pixel coordinates in regard to the current extent:

newpoint=utils.LATLONG2proj(map.getProjection(),hotSpot.x,hotSpot.y)

position=utils.map2img(map.width,map.height,

newpoint.x,newpoint.y,map.extent)

3. The image coordinates are appended to the horizontal and vertical lists as above.

4. Finally the MarkSpot function is executed as above.

The MarkSpot function is responsible for creating the XML part for each of the anno-

tations. The elements included in the XML output of each annotation:

• The values of the user field names of the feature. In many cases the contents

are parsed and a resulting value is finally returned. For example, if the value is

”PHOTO:world.jpg”, the result is a HTML IMG element pointing to the image

included in the wiki page attachements

• The above values are also include, unparsed.

• The editability of the feature. Locks editing and deleting functions.

• The primary key of the annotation tuple within the annotation table.

• The coordinates that were calculated by the CreateTTimagemap and CreateTTim-

agemapPolygon functions.

A screenshot of the resulting HTML popup rendering is shown below:

In case the user selects the update or delete actions the MapRenderer is re–invocated

and the function UpAnnotation or DelAnnotation is called respectively. Both function

read the HTTP request; in case of updating the annotation the user field names of

the annotation layer updated are requested along with the integer primary key that

is used to locate the annotation tuple in the PostgreSQL annotation table, whereas in

case of deleting an annotation only the primary key in need. Both functions use the

PgUtils module to formulate SQL UPDATE and DELETE queries in order to manage

the requested annotations. A sample SQL UPDATE statement could be:

UPDATE gis_schema.polyannot SET

description=’A description’,number=32 where id=16

Chapter 5. The GeoMoin Web Application 165

Figure 5.15: Sample annotation.

5.9.7 Using XML-RPC to manage the WIKI content

In chapter 2 we described the main sequence of the events that are happening within the

MoinMoin application, when a request from a user is issued. In order to interconnect

the different modules and provide a maintenance of the application state, the MoinMoin

request object exists. This object is important in order to access the wiki through the

MoinMoin API, in terms of editing pages, uploading attachments, getting link structures

e.t.c. When the MapRenderer is called using the AJAX interface, variables derived from

the parser are passed in form of an HTTP POST request, while the MoinMoin request

object is impossible to be transfered to the MapRenderer in order to control various

aspects of the wiki instance. Thus the only clean and documented solution to this

problem is to use MoinMoin’s ability to access the wiki instance through the use of

XML–RPC calls in terms of WikiRPC described in Chapter 2.

When MapRenderer is called through AJAX, an authentication token of the particular

session is formulated and passed within the HTTP request. MapRenderer, using this

token can authenticate to MoinMoin within the context of the session that created

the particular token. Thus, using this token, the following abstracted code can upload

an attachment to a wiki page using XML–RPC:

token = ReadHTTPRequest("token")

rpcwiki = xmlrpclib.ServerProxy("http://localhost/wiki?action=xmlrpc2")

mcall = MultiCall(rpcwiki)

mcall.applyAuthToken(token)

mcall.putAttachment(pagename,attachmentname,base64object)

results = mcall()

Chapter 5. The GeoMoin Web Application 166

Not only MapRenderer, but every application called through AJAX, in order to manage

the wiki, can be provided with an authentication token. Using MoinMoin’s multicall

function, various XMLRPC calls can be formulated, assigned to a particular session

token and finally executed using the mcall() function. Member functions of the multicall

object are either the native MoinMoin wikirpc functions, or the functions created by the

user. GeoMoin defines its own method to be included in the multicall object. Native

MoinMoin wikirpc function include the function proposed in the WikiRPC specification

along with custom MoinMoin functions.

5.10 GeoMoin mapplets

In many occasions, GeoMoin’s built–in functionalities may be considered limited, com-

pared to the needs of a particular use case of the software. For example, a GeoMoin

administrator could need the ability to incorporate geocoding functionallity to the in-

teractive navigation. In particular, he would like to allow the users input an address

and return the correspondive results, allowing them to zoom to a road listed within the

result set. Manipulating the source code of the application could add such a function-

ality, but it can become cumbersome as far as future updates of the application must

be incorporated. Thus, a mechanism of creating user–specific add–on was created and

these add–ons are called mapplets.

Mapplets, strictly speaking, are structured python functions that are executed in certain

places within the GeoMoin flowchart. GeoMoin mapplets are created and installed by

the administrators of a GeoMoin installation and not from users (unlike GoogleMaps)

because they give access to the complete python interface including system and spatial

libraries. Thus, careful design must take place in order to prohibit unauthorized access

to information held in the server’s filesystem.

In order to discuss how the mapplets fit in the event flowchart, the two types of map-

plets are presented along with their correspondive examples that will be developed for

demonstration later in the section.

5.10.1 Synchronous mapplets

Synchronous mapplets are mapplets that directly alter the business logic of the Spatial

Visualisation System, and particularly the rendering process of a map. With the term

synchronous we refer to a situation where the mapplet is presented as an HTML FORM

and upon submission of the information an AJAX call to the MapRenderer is being made,

thus a new rendering is computed according to the previous information. A flowchart

of these operations is presented in figure 5.16. As it is shown in the diagram, when the

Chapter 5. The GeoMoin Web Application 167

Figure 5.16: Synchronous mapplet flowchart.

MoinMoin parser geoparser is executed, the mapplet’s HTML interface is generated by

calling the suitable function. Likewise, when the maprenderer is executed, the mapplet

is executed too, altering the rendering procedure.

As a demonstration mapplet we will create a mapplet that displays a Tissot indicatrix
18 over the current map rendering.

In order to faciliate the user in creating a mapplet, a mapplet template is included that

contains the parameters to be changes and the function declarations to be implemented.
18Tissots indicatrix, or ellipse of distortion, is a concept developed by French mathematician Nicolas

Auguste Tissot, in 1859 and 1871, to measure and illustrate distortions due to map projection. It is the
theoretical figure that results from the orthogonal projection of an infinitesimal circle with unit radius,
defined in a geometric model of the Earth (a sphere or an ellipsoid), on the projection plane. Tissot
proved that this figure is normally an ellipse, whose axes indicate the two principal directions of the
projection at a certain point, i.e., the directions along which its scale is maximum and minimum. When
the Tissots indicatrix reduces to a circle it means that, at that particular point, the scale is independent
of direction.

Chapter 5. The GeoMoin Web Application 168

We will run through the step by step creation of the mapplet from the template. First

of all the module import part is presented:

############ START IMMUTABLE #############

-*- coding: iso-8859-1 -*-

import mapscript

import urllib

from MoinMoin.GeoBase.config import DefaultConfig

############ END IMMUTABLE #############

from osgeo import ogr,osr

import os

Additional modules can be included after the immutable tag, in our case the OGR

module is included. Afterwards, the following paramaters must be filled:

Name of the mapplet

mappletname = "tissot"

description = "This mapplet displays a Tissot Indicatrix over the current rendering."

Remote AJAX application to run

ajaxscript = "maprender.py"

AJAX function to handle the call

ajaxfunction = "ajaxRunMapplet"

Mapplet HTML names needed for execution

inputvars = []

The mappletname defines the name of the mapplet, which must be kept as short and

simple as possible, as it defines the name of the HTML elements that will be sent using

the HTTP request. The description is self–explanatory. Using ajaxscript, the remote

script that will be executed using an AJAX call is declared. In synchronous mapplets

this script is always the MapRenderer addressed by the maprender.py module. The

ajaxfunction parameter defines the javascript function that implements the call to the

above script (defined via ajaxscript). Again, in synchronous mapplets the function is

built–in the GeoMoin javascript codebank and called ajaxRunMapplet. For customizing

purposes, different AJAX functions can be implemented. Finally, the inputvars con-

tains the names of the HTML controls that are used to execute the mapplet (in this

example, no controls are defined as a simple button will engage the Tissot indicatrix

rendering).

Following, the templated functions for the output of the interface and the execution of

the mapplet are presented:

Chapter 5. The GeoMoin Web Application 169

############ START IMMUTABLE #############

def formvar(name):

return mappletname + "_" + name

def execute(map,httpreq,options):

inputdict={}

for elem in inputvars:

if utils.existHttp(httpreq,formvar(elem))==False:

return "Please provide a %s"%elem

inputdict[elem] = httpreq.getfirst(formvar(elem))

(code,message) = userexecute(map,options,inputdict)

return (code,message)

def output(parms):

#ajaxscript = "geocoderAJAX.py"

ajaxapp = "%s/%s"%(DefaultConfig.geomoincgi,ajaxscript)

ajaxcall = "%s(’%s’,’%s’,’%s’)\""%(ajaxfunction,ajaxapp,parms,mappletname)

output = "<form name=\"%s\" method=\"POST\">"%mappletname

output+="<fieldset><legend style=\"background-color:#E7E7E7;\" >

Description</legend>%s</fieldset>"%description

output+=useroutput(ajaxcall)

output+="<hr>"

output+=’<div name="%s" id="%s"></div>’%(formvar("results"),formvar("results"))

output+="</form>"

return output

############ END IMMUTABLE #############

It the output function, the ajax call is formed along with the HTML form that will

be send to the user. The useroutput function is user–implements and contains the

mapplet specific HTML controls. The DIV TAG before the form closing is used to host

the results of the mapplet interactions.

Moving to the execute function, first of all, the information contained in the HTTP

request object must be gathered and included in a python dictionary. The inputvars list

contains the names of the variables to be checked (of course they must agree with the

HTML controls created in the custom output function). As stated above, the mapplet

execution is done within the maprenderer execution thus it gives access to the mapscript

map object and to other variables that drive the rendering procedure. In the execute

function the map object is named map and the miscellaneous variables are in form of

a python dictionary which is populated within the maprenderer and is called options.

Chapter 5. The GeoMoin Web Application 170

Along with the inputvars dictionary, the user can create a custom execute function

that has unlimited options over the rendering procedure. It is important to note that

currently the options dictionary contains:

max extent The maximum extent, or initial extent of the map.

userid The user’s unique id.

layerlist The list of the layers that was computed. Each element of the list is a list

itself containing information about every layer.

Finally, the custom functions for the output of the interface and the execution of the

mapplet must be created. Respectively they are called useroutput and userexecute. The

useroutput function below:

def useroutput(ajaxcall):

output=""

output+="
 <input type=\"button\" name=\"%s\" value=\"Enable\"

onClick=\"%s\">"%(formvar("enable"),ajaxcall)

output+="<input type=\"hidden\" name=\"MAPPLET_COMMAND\"

value=\"%s\">"%mappletname

return output

This example has two HTML controls, first is a button that upon mouse click engages the

Javascript call that will make the ajax call to the remote script. Secondly, an essential

HIDDEN variable with the mapplet name as value, named MAPPLET COMMAND,

must always be included.

The userexecute is the most important function of the mapplet as it defines its business

logic. In the current example, the computation of the Tissot Indicatrix will be presented

as pseudocode:

def userexecute(map,options,inputdict):

userid = options["userid"]

path = DefaultConfig.temp_path+"tissot_"+userid+".shp"

Now we must grab the projection. If no map level

projection is specified, assume it is latlong

projection=""

try:

projection = map.getProjection()

except:

Chapter 5. The GeoMoin Web Application 171

projection = "+init=epsg:4326"

pass

% Open OGR driver for ESRI Shapefiles and create shapefile

% Create a polygon layer within the datasource

% Use OSR to create spatial reference object

for latlong and map projection

% Use FOR to create a logical grid over the latlong extent

-180 to 180 and -90 to 90, step by 30

% Create a OGR point feature to every x,y grid point

% Reproject point using orthogonal projection

% Buffer it by 390 kilometers

% Reproject to latlong

% Save ESRI shapefile

% Create a new MapScript map layer and assign the datasource

% Define a style for printing the polygon contents

return (True,"OK")

Later in chapter, where the Spatial Visualization System GUI is presented, the interac-

tions between this sample mapplet and the rendering are presented in screen captures.

5.10.2 Asynchronous mapplets

In many occasions, a particular idea for a mapplet may require a preprocessing that is

usually time–consuming or (requires) multiple user interactions, before the map render-

ing of the mapplet–driver process is executed. The idea behind asynchronous mapplets

is using AJAX ability to make asynchronous calls to remote scripts, independently of

any other AJAX call used to navigate through the map. Suppose we want to create a

mapplet where the user inputs a name of a city or address and as a final result we require

a map rendering that contains an graphical arrow pointing to this place. Analysing the

requirements, it is important that a database of real–life world locations exists so that

it can be queried. These databases are called Geocoders and exist as services in the

Internet provided by different vendors like Google, Yahoo, Microsoft etc. The fact that

we depend on external resources in order to gather information, introduces time depen-

dencies that are not known before–hand. Thus a mechanism should allow connections

to these archives independently, allowing the user to navigate through the map or do

any other processing (like executing another mapplet), without having to wait for the

remote server to respond with the results.

When the results are ready, they must be presented to user, which chooses the one

Chapter 5. The GeoMoin Web Application 172

matching his requirements. Afterwards, with a click of a button, the rendering process

is re–invocated and the result is presented in the map image as an arrow. It is clear

enough that the last requirement is closely reminding of a synchronous mapplet. That

is, asynchronous mapplets are mapplets that incorporate an asynchronous AJAX call to

a remote script in order to do a pre–processing and, finally, a call to the maprenderer

(like every synchronous mapplet) in order to execute the rendering logic of the mapplet

within the Spatial Visualization System.

The flowchart of the operations described above is shown in figure 5.17.

Figure 5.17: Asynchronous mapplet flowchart.

Below, the same template as synchronous mapplets is used to create the first building

block of the Geocoder mapplet.

Name of the mapplet

Chapter 5. The GeoMoin Web Application 173

mappletname = "geocoder"

description = "This mapplet connects to a remote geocoder,

queries with a given string and returns locations."

Remote AJAX application to run

ajaxscript = "geocoderAJAX.py"

AJAX function to handle the call

ajaxfunction = "geoCoder"

Mapplet HTML names needed for execution

inputvars = ["coordinates"]

The name and description of the mapplet are found in the first two line of the parameter

section of the template. This time, the script that is going to be executed is not the

maprender.py but custom built geocoderAJAX.py which is described later in the section.

Subsequently, the javascript function the creates the AJAX call is a custom built one

and is named geoCoder. After the geocoderAJAX.py and the user selects the appropriate

location to draw the arrow, a HTML FORM element containing the coordinates of the

location is included in the HTTP Request. This variable will be used by the userex-

ecute function (described in Synchronous mapplets) to include the arrow in the map

rednering process.

The useroutput function is used to create the initial interface of the mapplet (and is

execute when the MoinMoin parser is engaged) is presented below:

def useroutput(ajaxcall):

output=""

output+= "
Location:"

output+= ’<input type="text" name="%s"

style="width:30%%">’%(formvar("location"))

output+= ’<input type=button name="%s" value="Search"

onClick="%s">
’%(formvar("submit"),ajaxcall)

output+= ’’’
Geocoder:

<select name="%s">

<option value="Google">Google</option>

<option value="Yahoo">Yahoo</option>

<option value="GeoNames">GeoNames</option>

<option value="VirtualEarth">VirtualEarth</option>

<option value="GeocoderDotUS">GeocoderDotUS</option>

<option value="Wikipedia" DISABLED>Wikipedia</option>

</select>

’’’%(formvar("geoserver"))

Chapter 5. The GeoMoin Web Application 174

return output

The first form element is named location and is a textbox where the user inputs the

name of the location to be geocoded. Secondly, a button the engages the Javascript

call is included. Finally, using the SELECT box, the user can choose between different

online geocoders to query for the particular location.

When the javascript call is made, geocoderAJAX.py is executed and the results are

presented to the user using additional HTML form elements. These interactions will

be addressed later. Supposing the user chooses a location matching his criteria, upon

submission, maprender.py will be executed, which will call the userexecute function

of the mapplet. This function draws the arrow in the map rendering and is presented

below (containing pseudocode to hide unnecessary details):

def userexecute(map,options,inputdict):

point = inputdict["coordinates"].split("_")

zoom = 1

res=utils.LATLONG2proj(map.getProjection(),eval(point[0]),eval(point[1]))

% Create a new mapscript point layer object in the map

% Create a class and a style for this layer

% Set a particular symbol depicting an arrow

% Create a point feature and add the coordinates

% Assign this feature to the layer

% Get the image coordinates from the geographic coordinates

% Zoom to the particular image coordinates

return (True,"OK")

The remote script used to geocode the location submitted using the initial mapplet form

resembles the templated script for creating the basic mapplet. The first part of the script

is presented below:

#!/usr/bin/env python

-*- coding: iso-8859-1 -*-

############ START IMMUTABLE #############

import cgi,time

import cgitb; cgitb.enable(display=0, logdir="/tmp")

from MoinMoin.GeoBase.config import DefaultConfig

############ END IMMUTABLE #############

from MoinMoin.GeoBase import utils

Chapter 5. The GeoMoin Web Application 175

from geopy import geocoders

HTML variables from the initial mapplet interface

inputvars = ["location","geoserver"]

The first line allows the module to run as a script. After the module imports, the user–

defined import are declared, including geopy, a open–source library for accessing various

geocoders using Python. Finally, the inputvars define the names of the variables which

are expected to be included in HTTP Request.

The following templated part of the script contains some functions needed to maintain

consistency between different mapplets:

############ START IMMUTABLE #############

def setOutputXML(output):

print "Content-type: text/xml"

print ""

print "<?xml version=\"1.0\"?>"

print output

def setOutputText(output):

print "Content-type: text/plain"

print ""

print output

def AJAXexecute():

AJAX script to run

ajaxscript = "%s/maprender.py"%DefaultConfig.geomoincgi

The event is used to submit the form using AJAX

ajaxcall = "ajaxRunMapplet(’%s’,’%s’,’%s’)\""%(ajaxscript,"{includeparms}",mappletname)

inputdict={}

for elem in inputvars:

if utils.existHttp(httpreq,mappletname+"_"+elem)==False:

return "Please provide a %s"%elem

inputdict[elem] = httpreq.getfirst(mappletname+"_"+elem)

result = userAJAXexecute(ajaxcall,inputdict)

return result

def formvar(name):

return mappletname + "_" + name

Chapter 5. The GeoMoin Web Application 176

httpreq = cgi.FieldStorage()

mappletname = httpreq.getfirst("mappletname")

results = AJAXexecute()

############ END IMMUTABLE #############

The output can be XML or TEXT

setOutputText(results)

The setOutputXML is used in order that the script returns an XML document to

the Javascript function that called it. This xml document can be accessed in Javascript

using the XMLHttpRequest().responseXML object.

The setOutputText is used in order that the script returns a plaintext document to the

Javascript function that called it. This plaintext document can be accessed in Javascript

using the XMLHttpRequest().responseText object.

The AJAXexecute defines that after the remote execution of the script has taken

place and the results are presented to the user, the maprenderer.py should be invocated

using an AJAX call in order to “fit” the results within the rendering procedure. All the

variables contained in the inputvars list are read from the HTTP request and a call to

the custom–built userAJAXexecute function is taking place.

The final line is executed as soon as the script is invoked. A call to AJAXexecute is

being made and the results can be wrapped either in XML or Text representation, based

on which function is called. For our example, text output is send back which contains

the HTML code that will be produced from the userAJAXexecute presented below:

def userAJAXexecute(ajaxcall,inputdict):

execOut=""

geoserver = inputdict["geoserver"]

location = buffer(inputdict["location"])

if geoserver=="Google":

g = geocoders.Google(api_key=DefaultConfig.g_api)

% Do the analogous task for all the geocoders available

results = g.geocode(str(location),exactly_one=False)

% Create an HTML table

for place, (lng, lat) in results:

% Add a row to the table containing the place and coordinates

% Add a radio button and set as value the string created by

combining the latitude and the longitude

% Close the HTML table

execOut = ’<input type=button name="%s" value="Zoom" onClick="%s">’

Chapter 5. The GeoMoin Web Application 177

%(formvar("submit"),ajaxcall)

execOut = ’<input type="hidden" name="MAPPLET_COMMAND" value="%s">’

%(mappletname)

return execOut

The Javascript function that is handling the AJAX call will check the AJAX response

object and create an HTML form including the HTML code from userAJAXexecute

above. When the user inputs the required information (in this example, select the

geocoded address to be shown in the map), an AJAX call to the MapRenderer will

take place and the rendering procedure will include the instructions calling the function

userexecute of the first script we analysed.

A careful reader would point out that many different AJAX calls can be incorporated

before the control returns to the main mapplet script. Thus mapplets can become

as complicated as possible. But it is recommended that a simple execution path is

maintained until a better mapplet API would be built. It is visualized that mapplet

generation would be achieved through a user friendly graphical interface with different

mapplet components that can be incorporated to create new advanced mapplets in a

very standardized and effective way.

Chapter 5. The GeoMoin Web Application 178

5.11 User services and AJAX

In GeoMoin, the user services tier, is the logic, defined to act as an intermediate between

the end–user and the business logic of the system. Architecturally, the definition of the

user services, along with their level of abstraction from the other lower layers, is clear

and straight–forward; upon user request and within the context of the currently viewed

application state, certain functions can be executed in order to process and modify in-

formation. As soon as the results of the involved operations are generated, the user

must be informed of these results and the new application state.

Implementing the above specification, involves the adoptation of a web–design method-

ology; The fact that GeoMoin is a web mapping application, implies that the execution

time for rendering or querying large vector or raster datasets, does not allow the imple-

mentation of the user services using the classic HTML form methodology; reloading the

complete web–page upon user interaction is both time consuming and annoying to the

end–user.

In order to address the issue of partially reloading specific elements of the page, through-

out the Spatial Visualization System, the AJAX technology is being used. Ajax (Asyn-

chronous JavaScript and XML) is a group of interrelated web development techniques

used for creating interactive web applications or rich Internet applications. With Ajax,

web applications can retrieve data from the server asynchronously in the background

without interfering with the display and behavior of the existing page. Data is retrieved

using the XMLHttpRequest object or through the use of Remote Scripting in browsers

that do not support it. Despite the name, the use of XML, or its asynchronous use is

not required.

The term Ajax has come to represent a broad group of web technologies that can be

used to implement a web application that communicates with a server in the background,

without interfering with the current state of the page. In the article that coined the term

Ajax, Jesse James Garrett explained that it refers specifically to these technologies:

• XHTML and CSS for presentation

• the Document Object Model for dynamic display of and interaction with data

• XML and XSLT for the interchange and manipulation of data, respectively

• the XMLHttpRequest object for asynchronous communication

• JavaScript to bring these technologies together

Chapter 5. The GeoMoin Web Application 179

Figure 5.18: Classic Web Application Model versus AJAX Model.

Since then, however, there have been a number of developments in the technologies used

in an Ajax application, and the definition of the term Ajax. In particular, it has been

noted that:

• JavaScript is not the only client-side scripting language that can be used for imple-

menting an Ajax application. Other languages such as VBScript are also capable

of the required functionality.

• XML is not required for data interchange and therefore XSLT is not required

for the manipulation of data. JavaScript Object Notation (JSON) is often used

as an alternative format for data interchange, although other formats such as

preformatted HTML or plain text can also be used.

JavaScript is the scripting language that nearly all browsers support, which will fetch

data behind the scenes from the server, and XML is the popular language that can be

used to store data in an easy format. Heres an overview of how Ajax works:

1. The user interacts with the web page by submitting an action.

Chapter 5. The GeoMoin Web Application 180

2. The particular javascript function associated with the action submmited is called.

The function creates the XMLHttpRequest object and uses it to send the HTTP

request to the server script or application.

3. Asynchronous data retrieval of the default ajax implementation allows the above

two steps to happen multiple times before any results are returned

4. As soon as the XMLHttpRequest object returns a final state (e.g. 200 means

Successfull), data in form of XML or plain text can be exported from the object.

These information are the server script’s responses to HTTP request that was

posted.

5. Using the Document Object Model of the initial HTML web page, partial content

can be updated using the information gathered above.

The AJAX technology, is influencing a growing rate of web sites and particularly web

sites that are implementing complex kinds of applications (e.g GoogleMaps, PassPack).

In order to faciliate the development process of such state–of–the–art web design, various

packages called Ajax Frameworks have emerged. These frameworks provide imple-

mentations of AJAX methodologies that can be used with moderate or, in some cases,

non at all, interaction with the AJAX specific functions; that is, the developer can be

primarily concerned with the web application design. Such frameworks include and are

not limited to packages like Backbase, Dojo Toolkit, Ext, JQuery.

The GeoMoin application is depended and developed using the MoinMoin wiki as a Web

Development Framework. MoinMoin, currently, does not support or provide AJAX func-

tionality to applications developed within it. Moreover, the fact that MoinMoin follows

a form–based design strategy, does not allow the overuse of custom AJAX functionality;

a uniformity of web–design practice must exist, in order not to confuse the end–user.

Thus, as far as, the GeoMoin business logic components, they are provided to the user

services as such:

MapManager The subsystem that manages the mapfiles is following a form–based

web design strategy.

LayerManager The subsystem that manages the installed spatial datasets is following

a form–based web design strategy.

InstallManager The subsystem that installs spatial datasets is following a form–based

web design strategy.

Spatial Visualization System The main component of the GeoMoin web application

is using AJAX. Moderate to high rendering execution times, should be handled

with proper web interaction between the system and the user.

Chapter 5. The GeoMoin Web Application 181

The following sections, deal with the above subsystems in terms of the interaction with

the end–user. The business logic behind the subsystem was extensively desribed in

previous section while the source code of the application in properly comment to act as

a reference.

5.11.1 MapManager

When the wiki page containing the MapManager is loaded, the user is presented with a

list of the maps he attributed to the system. [5.19].

Figure 5.19: Panel for map selection.

The user has can perform the following actions:

• Delete a map.

• Manage the map using a text box. [5.20]

• Load the map to the graphical editor. The user can view the map level directives

of a map 5.21 and a list of the layers included [5.22]

The layers that were generated using the LayerManager, are presented to the user right

below the mapfile layers using the same method and controls. Using the GUI editor the

user has access to controls in order to:

• Modify19 the map settings.

• Modify the web, legend, reference, scalebar.

• Create and modify symbols and output formats.

• Modify the layers’ parameter.

• Insert inline features to a layers.
19Modifying, includes the action of deleting an element.

Chapter 5. The GeoMoin Web Application 182

Figure 5.20: Editing a raw version of the map.

Figure 5.21: Editing using the gui editor.

Chapter 5. The GeoMoin Web Application 183

Figure 5.22: The layers contained in the map.

• Modify and create new classes for a layer.

• Modify and create new labels and styles for a layer.

• Add the layers that were generated from the LayerManager to the current map.

• Save the resulting map.

In order to display information about particular elements, GeoMoin makes extensive use

of the javascript popup library overlibMWS. For example, using this library, the user

can access the WEB element’s options as shown in figure 5.23. Of course, using the

Figure 5.23: Popup showing web element.

MapManager, the user can create a new map; the layers for the map can be obtained

using the LayerManager, while all the options and controls are the same as in the event

of editing a map.

Chapter 5. The GeoMoin Web Application 184

5.11.2 LayerManager

The LayerManager provides a centralised place where GeoMoin datasets can accessed

in order to extract information or import the to mapfiles. Additinally, annotation layers

can be created and OGC OWS services can be contacted.

5.11.2.1 Querying and extracting dataset information

As soon as the macro implement the LayerManager is executed by MoinMoin, search

panel [5.24] is displayed to the user in order to query the datasets installed in the system.

Using the panel displayed above the user can:

Figure 5.24: Search query panel.

• Query the database using the predefined query controls.

• Manage the datasets the currently authenticated user installed in GeoMoin

• Create new annotation layers

• Connect to OGC’s OWS online servers and capture the datasets they offer.

Providing a demostration query provides the results shown in figure 5.25. In addition

to providing the metadata associated with the resultin datasets, the user can click on

the layer name in order to get a detailed description of the dataset information using

feature extraction [5.26](achieved through the GDAL library[20]). Using the MARK

control, the user can select particular layers from the listing and create MapServer

mapfile definitions automatically. These definitions are stored in user–specific special

files called markfiles (discussed in previous section). Using MapManager, the user can

import these definitions in new or existing maps. It is important to note that the same
20Feature extraction using the gdal library takes considerable time when feature information as ac-

cessed. Additionally, in later version of GeoMoin, more extensive analysis on the spatial datasets will
be possible.

Chapter 5. The GeoMoin Web Application 185

Figure 5.25: Search query results.

Figure 5.26: Layer information.

Chapter 5. The GeoMoin Web Application 186

layer can be marked multiple times, thus using MapManager different options for every

definition can be defined.

In this first GeoMoin version, managing the user–installed datasets, is the simple pro-

cess of updating the metadata information used to link the datasets with the GeoMoin

business logic. The user can modify the description of the layers along with the wiki

page or the url associated to them. As far as annotation layers are concerned, addi-

tional management can take place, shown in figure 5.27. The following HTML SELECT

Figure 5.27: Modifying layer info.

controls manage the following features:

Viewable The user can select whether the annotation layer will be viewable by other

users of the wiki. Note that if other users contributed in the layer, inserting new

features, they will not be abled to access them even while they are owners of the

tuples.

Editable The user can select whether the annotation layer will be editable by other

users in terms of inserting new features. This means that if the editability is

turned off, users that already created content will be able to manage it, but will

not be able to create new.

DirectLink The user can select whether this annotation layer will react as a direct link

to a web site or wiki page.

5.11.2.2 Creating annotation layers

Creating new annotation layers, is a process of generating a user–defined PostgreSQL

table containing a PostGIS geospatial column. In order to create an annotation layer,

the user must define fieldnames that will the non–spatial information of the layer [5.28].

The PostgreSQL datatypes that are currently supported by GeoMoin are:

• text

• integer

Chapter 5. The GeoMoin Web Application 187

Figure 5.28: Adding annotation fieldnames.

• double precision

• Date

In order to create the annotation layer the following information must be provided:

Name The name of the annotation layer which will be used as the name of the Post-

greSQL table. It will also act as the layer name when the annotation is embedded

in a mapfile.

Description This metadata information must describe the layer’s content in order to

be easily accessible using the search queries.

Wikipage The wikipage associated with datasets, that includes detailed information

about the layer’s contents

Viewable/Editable/Directlink These features where described previously, in the

part discussing the dataset management.

Geometry type The user can set the geometry type of the annotation features, cur-

rently in GeoMoin point and polygon geometries are supported. The form con-

trols are displayed in the figure 5.29:

5.11.2.3 WMS managing

Using the LayerManager the user can import remote WMS servers in GeoMoin, access

the datasets they offer and create mapfile layer definitions in order to use them within

the MapManager. Unlike the LayerManager tools described above, the GeoMoin’s OWS

section relies completely on AJAX in order to provide a more usable interface due to

Chapter 5. The GeoMoin Web Application 188

Figure 5.29: Creating annotation table.

Figure 5.30: Annotation layer creation.

the time durations needed to remotely connect to the OWS services or preview the

layers they offer. Following the conventional HTML submit architecture, the user would

have been introduced to a blank web browser image, waiting for the GeoMoin server to

connect to the remote WMS and provide the results.

The widget featured in [5.31] allows the user to:

• Connect to a WMS.

• Register a new WMS.

• Edit the settings for an existing WMS registration.

• Delete an existing WMS registration.

Creating or editing an existing WMS registration displayed the HTML controls shown

in feature [5.32]. The user can add/edit the following options:

Chapter 5. The GeoMoin Web Application 189

Figure 5.31: WMS widget.

Figure 5.32: WMS registration.

• The name of the WMS service; should be kept short and descriptive.

• The url used to connect to the service.

• A detailed description of the services the WMS offers.

Upon connection to the Nasa JPL WMS, some general information about the service are

displayed along with widgets that control each layer that is provided. In figure [5.33],

the CONUS mosaic layer is expanded and a preview of the image provided, is requested,

based on the options selected. The user can choose between creating a layer definition to

use within the MapManager by clicking the “Grab Layer” button or preview the spatial

image using the “Preview” button. Each of these controls are based on the options

selected by the user which are, of course, provided by the capabilities of the current

WMS:

LatLon box The maximum latitude/longitude bounding box the resulting image will

cover. In the future the user will be able to select a particular extent in order to

minimize the load of the server and the network.

Proj4 options The Proj4 definition (usually EPSG codes) used to project the geospa-

tial extent with.

Style Different styles provided for the particular layer. Found in the capabilities XML

document of the WMS.

Image type Different type for the encoding of the returned image.

Chapter 5. The GeoMoin Web Application 190

Figure 5.33: WMS demo connection.

Transparent Boolean control, requesting the service to provide an transparent image

wherever “neutral” pixel values exist. It can be overrided by setting the mapfile’s

OFFSITE directive afterwards.

It is important to note that previewing a layer in a client–side process; GeoMoin creates

the url that will point the browser in displaying the parameterized image and appends

it in the HTML of the popup window as an HTML IMG tag. It is common that a

preview may not be displayed due to misconfigurations in the remote WMS, service

denials due to overload of requests or possible bugs within the OWSLib used to access

WMS services. Continuous testing of the WMS services within GeoMoin will hopefully

provide a stable interface for these types of requests.

Chapter 5. The GeoMoin Web Application 191

5.11.3 Spatial Visualization System

The spatial visualization system (SVS) provides the rendering of the mapfiles along with

the controls in order to perform spatial and non–spatial operations. The user–services

part of the SVS is extensively using the AJAX technology to call the server script and the

DOM and DHTML/javascript in order to manage the displayed information in the web

page containing the rendering. The layout 5.34 depicts the separation of the different

web components within the HTML document. Starting from the map rendering (the

Figure 5.34: Layout of the SVS.

center of the layout, feature 5.35 provides a demonstration of a world map using NASA’s

JPL WMS service along with some other layers. Feature 5.36 shows the toolbox the user

Figure 5.35: Demonstration of map rendering.

has access too.

Chapter 5. The GeoMoin Web Application 192

Figure 5.36: Toolbox

5.11.3.1 Navigation tools and queries

Using the navigation tools, the user can pan,zoom in or zoom out the map. Using the

javascript slider below, particular zoom level can be selected in a scale from 1 to 20. The

above tools, as soon as they are selected, are activated using a mouse click on the map

rendering. Using javascript, the pixel coordinates of the mouse click event are calculated

using the following method21:

pos_x = event.offsetX ? (event.offsetX) :

event.pageX - document.mapform.maprender.x;

pos_y = event.offsetY ? (event.offsetY) :

event.pageY - document.mapform.maprender.y;

Below the zoom tools, the query tool is used to enable the query mode on a map. Strictly

speaking, “query mode” is a state that is linked to the cgi version of the mapserver

package. The term “query mode” is used here to describe the situation where activation

options like a mouse click on the image or the pressing of the refresh button, result in

the processing of a particular query, as long as the query tool is selected. In order

to perform a query, certain query type and options must be selected. [5.37] In the list

below we describe the different query options:
21Thus, there is no need in defining the image as a server–side imagemap using the HTML IsMap

directive.

Chapter 5. The GeoMoin Web Application 193

Figure 5.37: Query options.

Query type The different query types that are supported by GeoMoin. Details can be

found in section 5.9.5. The most of the query type require a spatial activation; a

mouse click on the map, while others (like attribute queries) require a refreshing

of the map.

Query layers The layers checked in this section will be included in the query results.

Tolerances For every activated layer, a tolerance buffer can be defined along with the

unit type of the buffer. Features that fall within the tolerance buffer are returned.

Selection layer Many query types require that querying function should be performed

on a particular layer. For example, feature queries return all the features con-

tained in the polygon pointed by a mouse click, thus the source layer must be

defined. Additionally, attribute queries (performing on non–spatial data) must be

performed on a particular layer.

Query attribute Used in attribute (non–spatial) queries. Defines the name of the

attribute that will be included in an SQL WHERE–like query. For PostgreSQL

layers this field can be omitted.

Query string This controls is used in conjuction with the query attribute and defines

the value that will be used to search against the dataset. Can be a regular expres-

sion. For PostgreSQL selection layers a native WHERE clause must be defined.

Real Coordinates Using this controls a rectangle of real coordinates (LL,UR) can be

defined and all the features that are within or intersect that geographic region are

returned.

Image Coordinates Basically it is the same as the above control while the image coor-

dinates defined are transformed to real coordinates before the query is performed.

Chapter 5. The GeoMoin Web Application 194

Finally, after the appropriate options are defined, the query can be performed either by

a mouse click or by clicking the refresh icon according to the query type requirements.

On submitting, the appropriate AJAX function is called passing the control to the

MapRenderer, which will execute the query and return the results in an XML form.

Afterwards the appropriate javascript function will read the results and modify the

DOM. A demonstration of an FEATURE query is shown in image 5.38. The query is

defined to return all the cities in TEXAS,US.

Figure 5.38: Demonstration of query results.

5.11.3.2 Annotation interactions

Continuing the discussion concerning the toolbox, new geographic features can be dy-

namically insert using the annotation tools; the first tool is used to draw point annota-

tions while the second is used in order to draw polygon annotation based on a existing

polygon. Activation of the annotation insert form is performed by a mouse click on the

rendered map, while the image coordinates are calculated using the same commands

as above. In order to describe the annotation interactions, the panel containing the

annotation options must be presented. Thus, in feature 5.39 the following controls can

be listed:

Toggle This controls enables or disables the action performed if a mouse click is issued

over an annotation. By default, the annotations are toggled and on mouse click, a

popup is displayed containing the annotation details. Particulary useful, if a zoom

is needed near the annotation.

Chapter 5. The GeoMoin Web Application 195

Figure 5.39: Annotation options.

Edit mode This controls toggles on or off the edit mode on the annotation. If the user

does not have the appropriate access controls to handle the annotations, then this

control does not alter anything.

Point Annots Selects which annotation layer will hold the new point annotations.

Poly Annots The first select box defines the layer that will hold the new polygon

annotations while the second defines the source polygon layer that will be used to

capture the geometry.

Simplification factor For polygon annotations, the simplification function provides

good results. In case an override in needed, this is done by using this control.

The annotation of Greece will be demonstrated in the following example. Feature 5.40

shows the insertion form, while feature 5.41 depicts the annotation after it was inserted

and selected. From the popup diplaying the annotation details, it is obvious that

the user demonstrating the popup interaction has complete access over the annotation

table, as he is able to insert new annotation and manage existing ones. The controls

associated with the annotation management are the removal of the annotation using the

Delete button and the updating of the annotation as long as all the controls are filled

out. The same principle of operation, applies also to point annotations.

5.11.3.3 Layer management and general information

The right section of the layout of the web page displaying the map includes a tab that

displays information about the current state of the rendering along with a tab that can be

Chapter 5. The GeoMoin Web Application 196

Figure 5.40: Inserting a new polygon annotation.

Figure 5.41: Viewing a polygon annotation.

used to manage the layers. Figure 5.42 depicts the info tab which provides information

on the following issues:

• The reference map displaying the current extent in rectangle. The user can click

anywhere in the reference map in order to move the viewpoint accordingly without

changing the size of the geographic bounding box.

• The current map scale, defined in association with the map units defined in the

mapfile.

• The geographic coordinates of the last click point on the map.

• The current geographic extent the rendering is displaying.

• The legend graphic show the layers (in strict terms, the classes) displayed along

with the symbol used to render the features contained in the datasets.

Chapter 5. The GeoMoin Web Application 197

Figure 5.42: Information tab.

Below, figure 5.43 displayed the layer managing tab. Using the layer managing, the user

Figure 5.43: Layer managing tab.

has access to the following actions and information:

View Using this control, layers can be excluded from the mapserver rendering queue,

thus not rendered. The action does not require refreshing the map, because the

appropriate AJAX function is called while listesting on the onClick event of the

checkbox.

Order Displays the initial ordering number of each layer, while the position in respect

to the other layers define the current layer order.

Name The name of the layer defined in the mapfile that was used to render the current

map.

Chapter 5. The GeoMoin Web Application 198

Wikilink The link to wiki page associated with a particular layer. Information about

the link address are captured from the layer’s metadata directive ”wikilocation”

Type The mapserver internal type of the layer rendered. For GeoMoin annotation

layers a pen defines their ability to hold annotation information.

Move These controls move a particular layer up or down within the layers’ drawing

order. It is importand to note that move a layer up means that it will be rendered

earlier, thus it will de hidden behind the layer it was swapped with.

5.11.3.4 Mapplet interactions

In this section we will provide some images depicted the interactions between the user

and the mapplets. Starting with a synchronous mapplet that displays a Tissot indicatrix

over the current rendering: When the “enable” button on the mapplet is pressed the

Figure 5.44: Synchonous mapplet example.

rendering take place immediately producing the desired result.

Moving on to asynchonous mapplets, the geocoding example presented earlier is visu-

alised below: The user is required to input the desired location eg. “Abbey Ln, Maltby,

Rotherham, UK” along with a geocoder (in this case Google) and press “Search”. Ajax

Chapter 5. The GeoMoin Web Application 199

Figure 5.45: Asynchonous mapplet part 1.

will partially alter the HTML page to present the result, leaving the rest of the page

intact. This means that while the geocoding query is taking place, the user can inde-

pendently zoom, pan or create annotations. As soon as the results are fetched and the

user selects the one that matches his criteria, he can press “Zoom” so that the map is

panned/zoom to the particular location:

Figure 5.46: Asynchonous mapplet part 2.

Chapter 5. The GeoMoin Web Application 200

5.11.4 Interactions between text and maps

A geospatial wiki does not solely targets to the development of tools that will display

and manage spatial content. These tools should serve as a mean of incorporating this

multimedia type along with various other types the wiki supports, such as text, sound,

image or video. This subject clearly separates GeoMoin from a web application de-

signed to specialize in spatial rendering such as GoogleMaps. In order to achieve an

ideal integration, both GeoMoin must support and enhance MoinMoin’s services, while

MoinMoin can be enhanced support GeoMoin’s service. For example, when a user cre-

ates an account in the wiki, he could be prompted with a map where he can annotate the

location where he stays. There are no limitations to what can be achieved by combining

the base wiki system and GeoMoin, as far as spatial support is concert. In this section,

we will present some examples and tools that can be used to enhance a wiki page with

the services GeoMoin offers.

In previous sections it was clearly stated that the Spatial Visualization System can be

engaged from every wiki page of the system. That is, a wiki page can incorporate a fully

interactive rendering of a map the user has created. While the user navigates through

the map, it would be possible that a particular rendering worths to be saved either as

an image or as a “bookmark”. Saving the rendering as an image could be used to in-

clude it in wiki page as image within text. Saving a “bookmark” could be used in order

to continue allow future navigation starting from this particular rendering. GeoMoin

supports both actions by using the tools shown in figure 5.47.

Figure 5.47: Wiki tools

The first tool, allows the current rendering to be saved as an image within the attach-

ments of a particular wiki page. This allows the wiki page to contain this rendering

Chapter 5. The GeoMoin Web Application 201

regardless of whether the page containing the map would be deleted in the future (5.48).

The attachment can be embedded within the wiki text of the page:

Figure 5.48: Attaching a rendering to a page

’’’Here you can see an image of the earth’s surface:’’’

{{attachment:whole_earth.png}}

The resulting output can be seen in figure 5.49.

Figure 5.49: Displaying the attached map

Chapter 5. The GeoMoin Web Application 202

The second tools, creates a bookmark called BookMap, which is attached to a particular

wikipage. The BookMap is a file that contains the required information in order to

create a link to the page that generated it, as well as information used to roll back to

the particular rendering which generated it (5.50). The BookMap is now part of the

Figure 5.50: Attaching a BookMap to a page

attachment of the wikipage that was defined. In order to use the book to create a link

to the wiki page that hosts the map, the wiki text can include the following GeoMoin

macro:

Click this link to <<BookMap(northdakota,navigate in North Dakota)>>

The first argument is the name of the BookMap attached. The second argument, is the

text that will be displayed as the link. The macro can also be configured to display an

image instead of text by issuing:

Click the image below to navigate to through North Dakota:

<<BookMap(northdakota,north.png,1)>>

Now the second argument is the attached image (could be a rendering created using

the tool described before) while the third argument flags whether the second argument

should be treated as an image or text. Thus, we can incorporate the above tools and

the MoinMoin syntax to generate a image gallery that directly links to the displayed

renderings for further navigation (5.51):

Chapter 5. The GeoMoin Web Application 203

Figure 5.51: A gallery using BookMaps

Chapter 6

Conclusion

The last chapter of the report is dedicated to the outcomes of the development effort

within GeoMoin. The best way to demonstrate the resulting elements is to provide

a complete case–study including the installation of datasets and the generation of a

particular map. This is the subject of the first section of the chapter. The next section

is dedicated to a discussion concerning the goals that can be achieved using GeoMoin in

relevance to the motivations presented in the first chapter of this work. Finally, in the

last section, directions for future research and development are provided in an effort to

address important issues that are not yet part of GeoMoin.

6.1 Case–study: A map of greece

The case study presented is the generation of a interactive map of the geographic region

covered by the country of greece. First of all, in order to create a map, some datasets

are selected and uploaded to the wiki.:

• A vector dataset of polygon type, showing both greece and divisions within it.

• A raster image depicting the island of Crete and the south Peloponisos.

First of all we will create an empty wiki page named GreeceMap which will be used to

upload the datasets and host the map. Using the wiki attachements we can upload the

above datasets [6.1] (for each dataset a unique archive is created and the part dataset

is always used as prefix). After the datasets are attached, the action InstallSpatial

from the list of actions is selected, resulting in the output shown in figure 6.2. In order

to install the datasets in this example, the raster is installed in the filesystem while the

vector is installed in PostgreSQL database. It is important to note the geometry must

204

Chapter 6. Results 205

Figure 6.1: Case study: Attaching datasets.

Figure 6.2: Case study: Installing datasets.

be enforced to MULTIPOLYGON (as shown in the figure) because PostGIS includes

constraints concerning the correct type of geometry included within the feature tables.

As soon as each dataset is installed, the system will notify the user for the successful

operation (Figure 6.1). By now, LayerManager must be visited for the following tasks:

Chapter 6. Results 206

• To check if the dataset was installed successfully.

• To get information on the dataset, particularly the geographic extent.

• To create layer definitions, in order to make the mapfile.

Within LayerManager, we can query the database of dataset registrations using the

name of the vector dataset (in this case “gr”), along with the user name that installed

the dataset in order to avoid duplicate names (in this case “user1”). The vector dataset

will be returned and its named can be click to provide the details shown in figure 6.3.

The geographic extent along with the fieldnames can be seen. This extent will be used

Figure 6.3: Case study: Dataset information.

in the MapManager to create the map.

In order to create the layer definitions for both the vector and the raster dataset, the must

be properly returned using the appropriate queries and afterwards marked as shown in

figure 6.1. By now the layer definitions are created and we are ready to proceed to the

MapManager in order to create the actual mapfile. Within MapManager, clicking the

LayerManager tab, shows the two layer that where imported from the LayerManager

previously. The raster will be maintained as–is, but as far as the vector is concerned,

two operation must take place:

Chapter 6. Results 207

• Make the layer queryable.

• Add a label for a particular fieldname.

In order to make the layer queryable, the name of the layer must be click to show the

basic layer options, and the attribute named queryable must be set to true (shown in

Fig.6.4).

Figure 6.4: Case study: Make layer queryable.

In order to create a label, the item “Label Object” must be selected from the drop–down

box, resulting the generation of a draft label object as shown in figure 6.5. The first

icon popups a windows that can be used to define the general label options such as

the fieldname to be labeled, whereas the second icon popups a windows that contains

attribute managing the label’s position and colorising options.

As soon as the layer options are filled, the tab containing the map options can be used

to insert the map details. Some basic parameters that are used in this example are:

• The name of the map.

• The size of the map in pixels.

Chapter 6. Results 208

Figure 6.5: Case study: Creating a label.

• The ground units (usually relative to the projection used).

• The image type of the resulting renderings (e.g. png, tiff).

• The extent, the map covers (can be found using the layer info from the LayerMan-

ager).

• The background color of the image.

• The map projection.

A completed form of the above element is presented in figure 6.8.

Finally, the layers must be imported to the map and the map must be saved in the

filesystem (Fig. 6.6).

Figure 6.6: Case study: Importing layers.

By now, the map is created and is ready to be embedded in any wiki page of the system.

Thus, we open the page created before (named “greecemap”) and the parser that engages

the Spatial Visualisation System is defined as shown in figure 6.7.

Finally the page revision must be saved and the resulting fully navigational map is shown

in figure 6.9.

Chapter 6. Results 209

Figure 6.7: Case study: Adding the map to wiki page.

Figure 6.8: Case study: Setting the map options.

Chapter 6. Results 210

Figure 6.9: Case study: Visualizing the map.

6.2 Summary of theoritical results

In this section, the goals which have been theoritically achieved, through the develop-

ment of GeoMoin, will be addressed in reference to Chapter 1: “Motivations”.

Using spatially–enabled wiki applications, the world of collaborative web and GIS comes

together. GeoMoin is such an application, providing ease of access and contribution of

geographic information by a whole community of its users. The users can visualize

the contributed content within the Spatial Visualization system of the application, or,

optionally, download it, to use it in Desktop GIS applications 1. Additionally, online

OWS servers can be registered and used as local datasets, with usability limited only to

the network throughput between the OWS server and the GeoMoin server. Institutions

could also buy spatial datasets and install them in a GeoMoin server allowing users to

create maps and interactive wiki pages disabling the right to download them by using

MoinMoin access controls or by simply not posting the dataset archives in the wikipage

attachments, thus online users could benefit from datasets they would not have access

to by other means.

The fact that GeoMoin is a ready–to–use collaborative mapping application allows or-

ganizations or simple users to add it in their wikis. No expertise in needed to operate a
1It is important to note that the handling of copyrighted geospatial information without the explicit

terms set by the owner, within a public GeoMoin server, is not encouraged by any means.

Chapter 6. Results 211

working GeoMoin installation and, apparently, no specialized personel. Thus, enhanced

maps can be created that can hold information of any kind in regard to the needs of

the users. For example, a group dedicating an effort to create a web–site dealing with

the World War II, could plan the use of wiki instead of another static or dynamic web

architecture and use GeoMoin to add spatial content. In that scenario, maps can be

generated depicting various concepts of the subject or incorporating today information

in regard to this era.

As far as, education advances is concerned, GIS software and libraries like MapServer,

GDAL, GEOS spatial libraries are open–source solutions that are increasingly being used

by universities worldwide. Providing an easy to use application like GeoMoin, users can

take advantages of the features these packages offer and learn the various aspects of the

Web–GIS technology without being concerned about technical issues which are handled

as much transparently as possible. In a developer level, GeoMoin can act as a frame-

work where users and students can build additional components either by modifying

the open–source code or by implementing new mapplets to incorporate new features.

For example, creating a mapplet, the user can visualise a GPS tracklog or waypoint file

within the current map rendering. By creating a new driver in the ogrtypes module,

the user can install GPS logs, in the database or in the filesystem by converting to a

well–known format like ESRI Shapefile.

The opportunities of the collaborative web–mapping applications are countless and

are provided by applications of very different architectures and forms. For example,

WikiMapia is “map–based”, meaning that the users are presented with a shared map

where they can add annotations by drawing features, while, in the other hand, GeoMoin

is more “content–based” as it is a component that enhances a MoinMoin wiki to pro-

vide spatial support to each page of the wiki system. GeoMoin is a carefully developed

application but not yet “mature” as it is not yet tested against real–world scenarios.

Thus, it is open to future enhancements which is the subject of the final section of this

chapter.

6.3 Future work

We present some open issues for future work in the following sub-sections. It is important

to note that the nature of this project as the developent of a web–mapping framework

typically follows the development procedure of all the open–source projects of this type.

As such, a project management system like trac along with a version control system

can be maintained where users can publish enhancements or defects. Thus, the future

work presented in this document cannot include minor specialized issues.

Chapter 6. Results 212

6.3.1 Global availability of GeoMoin

Up until the submission of this work, there has not been an effort to make an instance

of GeoMoin publically available on the web. While the inner parts that constitute Geo-

Moin like the MoinMoin wiki, MapServer and PostGIS are already recognized for their

ability to handle and serve large scales of information individually, the combination of

these tools to form an online repository of geographic information and interactive maps

within an organization, institute or a dedicated resource (like Wikipedia’s achievement

on encyclopedia content) is highly desirable.

This effort requires testbenches between the different environments that the wiki can

be served within the context of a web server like FastCGI, modpython, ModWSGI or

Twisted to choose the most efficient, less error–prone and easily configurable options.

Additionally, new design concepts or requirements may arise concerning the availability

and reachability of geographic content and maps within the server. For example, in a

large scale scenario the MoinMoin indexing and search modules could be extented to

include information not only for the wikipages and their raw content but also the spatial

content and maps represented within the page.

Summarizing, it is obvious that this effort deals with many different aspects of a collabo-

rative web mapping application in terms of its availability options and the feedback that

arises from the usage scenarios that lead to new design concepts. As such, the multiple

branches can be identified, analysed and provided as specific future enhancements.

6.3.2 GeoMoin within a multi–server environment

In order to get the most of a web mapping application, the application itself should be

able to be provided from within multiple servers, in a scalable manner. The options for

balancing the service falls into three main categories:

• Multiple instances of the wiki serving the same content.

• Decentralization of the modules that provide the spatial operations and rendering.

• Decentralization of the geospatial content

Maintaining multiple instances of the wiki can provide a per–location or a fail–safe ac-

cess to the service. There exist methods for mirroring the content of the wiki using

MoinMoin’s Wiki–RPC interface. One tool, licenced under GPL that perform such a

job can be found in http://www.merten-home.de/FreeSoftware/moinupdate/.

The computational cost of a web–mapping application that is served within a wiki is

http://www.merten-home.de/FreeSoftware/moinupdate/

Chapter 6. Results 213

attributed to the modules the render the geospatial content. GeoMoin’s spatial visual-

ization system is using the MapServer to render maps and provide query results through

mapscript and is called within the AJAX interface as a remote script. Thus, multiple

servers, serving the spatial visualization system can be maintained and selected based

on specific criteria.

Maintaining multiple instances of the wiki or(/and) multiple servers serving the ren-

dering process requires individual study of the methods that mapserver uses to obtain

geographic information. For GeoMoin, these are the local datasets (shapefiles, GML

e.t.c.), the PostgreSQL database and the OWS services. The OWS services excel at

providing spatial content through the internet, while the PostgreSQL is ideal for servers

that are maintained within an intranet. The local datasets are the less flexible source as

they reside in the local server’s filesystem (of course, a network filesystem can be used

to serve these types of datasets to an intranet).

An interesting idea that could provide considerable speedup is the employment of dif-

ferent servers providing the spatial visualization system handling different part of the

total extent that is going to be rendered. Thus, the rendering module can compute the

required extent, divide it in equal parts and distribute it to different servers. The parts

returned can be combined to form the whole rendering or AJAX can be employed to

partially fill the response to the client thus providing a tiling effect.

Appendix A

Technical Issues

A.1 Installation

In this section we will describe the steps needed to perform the installation and configu-

ration of a working GeoMoin instance. Due to the fact that GeoMoin is depended upon

many different packages, the whole operation may appear cumbersome and error–prone.

Thus, each step is presented and analysed as much as possible, in order to prevent frus-

tration. Of course, familiarity with many aspects of a linux distribution is assumed.

Throughout the discussion, each step of the installation procedure was reproduced on

a clean installation of the linux distribution Ubuntu 8.10 Desktop i3861. Ubuntu

is shipped along with a graphical utility called Synaptic and command–line tools like

apt–get which can be used to automatically download and install additional packages

found in online repositories. In many cases, automatic installation of some packages

is encouraged, to avoid conflicts and errors based on in misconfiguration of their depen-

cencies.

The following sections are dedicated to the installation of:

• Pre–required general libraries.

• PostgreSQL DBMS and Postgis.

• Apache web server.

• MapServer and GDAL.

• MoinMoin wiki.
1It is preferable that in order to follow the procedure on a different linux distribution, a request to

the author should be made.

214

Appendix A. Technical Issues 215

When the above requirements are satisfied, installation of GeoMoin can take place. The

installation is divided in three parts:

• Creation the GeoMoin spatial database.

• Installation of a custom MoinMoin wiki instance.

• Installation of GeoMoin modules and shared files within the above instance.

A.1.1 Pre–required general libraries

Using the Linux package managers, the following packages must be installed or ensured

that are installed by default:

g++ This is the GNU C++ compiler, a fairly portable optimizing compiler for C++.

Python2.5 The python programming language in its 2.5 version.

Python-dev Python header files and static libraries

swig SWIG is a compiler that makes it easy to integrate C and C++ code with other

languages. From version 1.3 and above.

python-cheetah Cheetah is a python based template engine. It is used in GeoMoin in

order to generate MapServer mapfiles.

libgd2-xpm GD is graphics library. Mapserver natively uses it to render images. Note

that GD has its own list of dependencies including zlib, libpng, FreeType and

libJPEG. These provide GD with image compression and support for TrueType

fonts. Apparently after its installation the following packages must be ensured:

libfreetype and dev FreeType is a font rendering engine used by GD. libfreetype-

dev is suggested too.

libJPEG and dev Used to render JPEG images.

libPNG and dev Used to render PNG images.

zlib and dev Data compression used by GD.

libgd2-xpm-dev Development files and headers for the GD library.

libcurl3 libcurl is designed to be a solid, usable, reliable and portable multi-protocol

file transfer library. Used by Mapserver for OWS requests including WMS.

libcurl4-gnutls-dev These files (ie. includes, static library, manual pages) allow to

build software which uses libcurl.

Appendix A. Technical Issues 216

fontconfig Fontconfig is a font configuration and customization library. It is designed to

locate fonts within the system and select them according to requirements specified

by applications.

libfontconfig1 This package contains the runtime library needed to launch applications

using fontconfig.

libgeos-c1 Geometry engine for GIS, C library.

libgeos2c2a Geometry engine for GIS, C++ library.

libgeos-dev Geometry engine for GIS, development files.

After the installation of the above packages is successful, some important packages that

Mapserver and GDAL are using, must be manually configured and installed too. These

are: Proj.4, Shapelib, geopy and OWSLib.

Building and Installing Proj.4
Proj.4 is a library of cartographic projection routines. It can be accessed by MapServer

of standalone mode to perform projection on an entire dataset. It is available at

http://trac.osgeo.org/proj/. The following steps are used to built Proj.4:

tar -xvzf proj-4.6.1.tar.gz -C /usr/local/src/

cd /usr/local/src/proj-4.6.1

./configure

make

make install

ldconfig

Building and Installing ShapeLIB
shapelib is a library of C routines for creating and manipulating shapefiles. Several util-

ities are included in the distribution to perform these actions. One can create shapefiles

(which include DBF files), dump the contents of shapefiles or change the projection of

shapefiles. Some of the utilities depend on Proj.4. The shapelib can be accessed through

http://dl.maptools.org/dl/shapelib/. The following steps are used to built Shapelib:

tar -xvzf shapelib-1.2.10.tar.gz -C /usr/local/src/

cd /usr/local/src/shapelib-1.2.10

make

cp dbfadd /usr/local/bin/ (repeat for dbfcreate, dbfdump, shpadd,

shpcreate,shpdump,shprewind,

http://download.osgeo.org/proj/proj-4.6.1.tar.gz
http://dl.maptools.org/dl/shapelib/shapelib-1.2.10.tar.gz

Appendix A. Technical Issues 217

shptest)

make test (ensure it is successful)

make lib (optional library built)

make lib_install

ldconfig

Building and Installing GeoPy
GeoPy makes it easy for developers to locate the coordinates of addresses, cities, coun-

tries, and landmarks across the globe using third-party geocoders and other sources of

data, such as wikis. That is, geopy, is a python module that provides a simple to use

interface, in order to connect to various geocoders. The official site can be found at

http://exogen.case.edu/projects/geopy/. In order to install it, we will use the Cheese-

Shop, an online python repository. Thus the following are needed:

Python-setuptools Binaries that allow the connection and installation from the repos-

itory

BeautifulSoup A simple HTML/XML parser

SimpleJSON An JSON parser

geopy The actual module

The installation procedure is the following:

apt-get install python-setuptools

easy_install BeautifulSoup

easy_install simplejson

easy_install geopy

The installation can be validate by issuing: “import geopy” in a python command–line

like above.

Building and Installing OWSLib
OWSLib is a set of python modules for accessing OWS services. Currently supports

WMS, WFS, WCS. The installation is straight–forward using the easy install tool

described above thus:

easy_install OWSLib

http://exogen.case.edu/projects/geopy/

Appendix A. Technical Issues 218

A.1.2 PostgreSQL and Postgis.

GeoMoin currently uses the PostgreSQL DBMS for its database needs, along with the

Apache web server in order to provide the service to the network. Due to the fact

that the installation of these enviroments is highly depended in each individual linux

distribution and their tuning is the subject of specialised books, we decided that the

installation should be done using the before–mentioned package managers. Apparently,

this approach will minimize problems based on individual configurations. Of course, a

system administrator could easily import the later steps in a working PostgreSQL or

Apache installation.

As far as the DBMS is concerned, the following packages are needed:

postgresql-8.3 The 8.3 version of the PostgreSQL DBMS. Includes the command line

psql and pg config utilities.

postgresql-server-dev-8.3 Header files for compiling SSI code to link into PostgreSQL’s

backend; for example, for C functions to be called from SQL.

python-pygresql PyGreSQL is the Python module that interfaces to a PostgreSQL

database.

libpq-dev Version 8.3 header files and static library for compiling C programs to link

with the libpq library in order to communicate with a PostgreSQL database back-

end.

The configuration of the DBMS can be done using the following configuration file:

/etc/postgresql/8.3/main/postgresql.conf

By default, the server is listening for incoming connections to “localhost” on port 5432

(although it could be 5433). Additionally, the required executables installed, can be

found in /usr/lib/postgresql/8.3/bin. The psql is used from command–line in order

to administer the database. A basic configuration could be the following:

user1@zeppelin:~$ su root

root@zeppelin:~$ passwd postgres # in order to set a password

root@zeppelin:~$ su postgres

postgres@zeppelin:~$ psql # connect to DBMS

postgres=# ALTER user postgres WITH password ’*******’;

postgres=# \q

Appendix A. Technical Issues 219

The graphical frontend pgAdmin3 can be used with the specified password in order to

connect easily to every database created.

As soon as the Postgresql DBMS is installed, the spatial extension called postgis can be

built and imported. Afterwards, the GeoMoin database, schema, functions and tables are

additionally installed. PostGIS can be obtained from http://postgis.refractions.net/download/.

In order to built it, the following command are needed:

tar -xvzf postgis-1.3.5.tar.gz -C /usr/local/src/

cd /usr/local/src/postgis-1.3.5

./configure

make

make install

ldconfig

The Postgresql installation will be identified automatically. We are particularly inter-

ested in the following files contained under the path /usr/share/postgresql/8.3/contrib/:

lwpostgis.sql Contains the required geometry types and functions.

spatial ref sys.sql Contains the spatial reference system, or else, the different projec-

tions supported.

A.1.3 Apache web server

As far as the web server is concerned, the Apache2 package2 is needed. In the directory

/etc/apache2, the following files are worth–mentioning:

apache2.conf Provides the majority of tuning options available using the web server.

ports.conf Defines the port the web server is listening to. Default is 80.

envvars Sets the default connected user for the system. Default is www-data for both

name and group.

There are two different place where aliases and scriptaliases can be set, under /etc/a-

pache2/:

httpd.conf This is the general configuration file.
2Specifically, 2.2.8 version was tested.

http://postgis.refractions.net/download/postgis-1.3.5.tar.gz

Appendix A. Technical Issues 220

sites–available/default This configuration is subject to each unique virtual host run-

ning within the web server

In the current installation, we will use the first option to install the document root and

the cgi executables of GeoMoin and MoinMoin.

Finally, it is important to mention that the webserver can be managed using the following

command:

apache2ctl -k [start/stop/restart]

Opening a browser and pointing to http://localhost will respond successfully.

A.1.4 MapServer and GDAL

In this section, we will move to the build and installation of GDAL geospatial library,

Mapserver and mapscript. GDAL (Geospatial Data Abstraction Library), strictly speak-

ing, is a translator library for raster data. It provides the ability to import and project

georeferenced raster images. Generally, the GDAL contains OGR Simple Features Li-

brary which provides abstracted access to reading and some writing of a variety of vector

formats.

Building and Installing GDAL
GDAL can be found at http://trac.osgeo.org/gdal/wiki/DownloadSource. In order to

build the library, the following command must be issued (during the configure, the path

to pg config and geos-config may be required, so ensure the output of the configure step):

tar -xvzf gdal-1.5.3.tar.gz -C /usr/local/src/

./configure --with-python --with-pg --with-geos

make

make install

ldconfig

The –with-python and –with-pg options provide the python typemaps and the postgis

driver. To test the installation:

user1@localhost:~\$ python

> from osgeo import gdal

> from osgeo import ogr

> exit()

http://download.osgeo.org/gdal/gdal-1.5.3.tar.gz

Appendix A. Technical Issues 221

Building and Installing Mapserver
Mapserver can be found at http://mapserver.org/download.html. In order to build

mapserver:

tar -xvzf mapserver-5.2.1.tar.gz -C /usr/local/src/

cd /usr/local/src/mapserver-5.2.1/

./configure --with-proj --with-gdal --with-ogr --with-postgis

--with-wfs --with-wms --with-wmsclient --with-wfsclient

--with-geos --with-jpeg --with-png

make

Natively, the make command will output the cgi version of mapserver which is not needed

in GeoMoin. Thus we can move on the essential part of the mapscript installation.

Building and Installing Mapscript
Mapscript source code is shipped within the mapserver package. The installation is

straight–forward and can be done issueing these commands:

cd /usr/local/src/mapserver-5.2.1/mapscript/python

python setup.py build

python setup.py install

ldconfig

To test the installation, open a command–line python and issue: import mapscript.

Additionally the further directory tests/cases contains test units for all the possible

mapscript usages. An experienced user can debug the installation using runalltests.py.

A.1.5 MoinMoin wiki

In this chapter we will leave the GIS software realm, in order to install a fresh instance

of the MoinMoin wiki in the system. We are interested in the CGI version of MoinMoin

which will use the Apache web server as its host enviroment. The following installation

guide, is a summarization of the complete and particularly useful guide found in Moin-

Moin’s website http://moinmo.in. The source code of the release is currently in version

1.8.1 and can be downloaded from http://moinmo.in/MoinMoinDownload. The first

step, is install the package in the desired path. In this guide, this path is /usr/local/.

By default, /usr is used, but it is a cleaner approach to install user–defined packages to

the local folder. Issuing:

http://download.osgeo.org/mapserver/mapserver-5.2.1.tar.gz
http://static.moinmo.in/files/moin-1.8.1.tar.gz

Appendix A. Technical Issues 222

tar -xvzf moin-1.8.1.tar.gz -C /usr/local/src/

cd /usr/local/src/moin-1.8.1

python setup.py install --prefix=’/usr/local’ --record=install.log

The following directory structure was created under /usr/local/:

lib/python2.5/site-packages/MoinMoin Contains the MoinMoin library, that can

be imported using python.

share/moin Contains the shared files of the application (like htdocs for apache)

A.1.6 GeoMoin Installation

The installation of GeoMoin is a procedure that is highly depended to the packages

described above. Issuing,

tar -xvzf geomoin-1.0.0.tar.gz -C /usr/local/src/

cd /usr/local/src/geomoin-1.0.0

the GeoMoin installation files are extracted to the requested path. In order to faciliate

the installation, three shell scripts were created:

installsql Installs the GeoMoin database within the Postgresql DBMS.

installwiki Creates a new MoinMoin wiki instance. This instance will host the Geo-

Moin application.

installbase Installs the GeoMoin specific python modules, MoinMoin plugins and shared

files.

Before executing any of the above scripts, the file named install.conf (located in the

base path) must be edited to reflect the installation options. Parameters for the database

creation, as well as, aliases and scriptaliases for the apache configuration concerning the

wiki should be filled. Leaving the file, as–is, will hopefully achieve a proper installation

but it is highly recommended to review all the changes that will happen to the current

system state.

Installing the GeoMoin database

In order to install the database the user should issue:

Appendix A. Technical Issues 223

su postgres

./installsql

exit

The su is required to execute the script commands as the postgres user who has native

access to psql utility. The following installation step are executed within the script:

1. Create a postgis template database. Useful in order to create more than one

postgis enabled databases.

2. Import lwpostgis.sql and spatial ref sys.sql to the database template.

3. Create the new role for accessing the database through GeoMoin.

4. Create the GeoMoin database.

5. Install the GeoMoin specific sql functions.

6. Install the GeoMoin default tables.

If a postgis–enabled DBMS already exists, only the final two step are required (check

the script), as well as the proper changes in the configuration file.

Installing a MoinMoin wiki instance

In order to install the new wiki instance the user should issue:

sudo ./installwiki

The script copies the appropriate elements from the MoinMoin shared documents and

creates aliases for the Apache environment. The installation procedure for apache cgi is

perfectly described in the MoinMoin web–site under the url:

http://moinmo.in/HelpOnInstalling.

If a MoinMoin wiki already exists in the system, the configuration script must be edited

in order to become aware of the installation. Additionally it must be ensured the Moin-

Moin version is 1.7.3 or above.

Installing the GeoMoin base system

In order to install the database the user should issue:

sudo ./installbase

http://moinmo.in/HelpOnInstalling/ApacheOnLinux

Appendix A. Technical Issues 224

The following installation step are executed within the script:

1. The GeoMoin shared files are installed including the cgi scripts and the javascripts.

2. The Apache aliases for the cgi and the shared files are registered.

3. The GeoMoin python modules are installed within the MoinMoin source package.

4. The configuration module used by all the modules is generated from the install.conf

script.

Completing the installation

By now, the base system including the database, the wiki and the GeoMoin shared files

and libraries is installed. Thus the wiki must be configured to enable GeoMoin. Using

a web–browser, the default url to access the wiki is http://localhost/mywiki3. The

wiki shows up and the user must create a new account. The next step is to set this

account as the superuser of the wiki instance4; this is done manually by editing the

wikiconfig.py5 residing in the folder of the wiki instance which by default is /usr/lo-

cal/share/moin/mywiki/. A commented line like:

#superuser = [u"YourName",]

must be uncomment and include the name of the user that was previously created.

Secondly, it is for security reasons that the XMLRPC facilities are disabled by default in

MoinMoin, thus we need to enable them. Within the multiconfig.py6 around line 725

the actions excluded parameter is declared. This parameter excludes actions unless

an action is removed from the list. Thus the action xmlrpc must be excluded.

Finally, in order that the proper visual styling including css and wiki logo are set, the

user must select settings→preferences→Prefered theme and choose geomoin as

the theme to use. The wikiconfig.py contains an option that sets the default theme that

new or anonymous users get. This is very important and can be set by locating the

following line and changing it to ”geomoin”:

The default theme anonymous or new users get

theme_default = ’modern’ # MUST BE SET TO "GEOMOIN"

3Depending on the aliases set in the config file.
4If a wiki already exists including the superuser, this step should be ommited
5This file reflects the configuration of this unique wiki instance, thus it contains a huge number of

options that more advanced wiki users can utilize.
6The multiconfig.py contains various parameters affecting all the wiki instances and is located by

default at: /usr/local/lib/python2.5/site-packages/MoinMoin/config

Bibliography

[1] David J. Buckey. Introduction to gis. URL http://bgis.sanbi.org/gis-primer/

index.htm.

[2] Wikipedia. Wikipedia entry on wikis. . URL http://en.wikipedia.org/wiki/

Wiki.

[3] Bo Leuf. The Wiki Way: Quick Collaboration on the Web. Addison-Wesley, 2001.

[4] MoinMoin team. Moinmoin code structure help page. URL http://moinmo.in/

MoinDev/CodeStructure.

[5] Wikipedia. Wikipedia entry on geographic information system. . URL http:

//en.wikipedia.org/wiki/Geographic_information_system.

[6] Philippe Rigaux, Michel O. Scholl, and Agnes Voisard. Spatial Databases: With

Application to GIS. Morgan Kaufmann, 2001.

[7] Inc. Environmental Systems Research Institute. Esri shapefile technical description.

Technical report, Environmental Systems Research Institute, Inc., 1998.

[8] Francis Harvey. A Primer of GIS: Fundamental Geographic and Cartographic Con-

cepts. The Guilford Press, 2008.

[9] Shelly Sommer and Tasha Wade. A to Z GIS: An Illustrated Dictionary of Geo-

graphic Information Systems. Esri Press 2nd edition, 2006.

[10] nationalatlas.gov. Map projections: From spherical earth to flat map. URL http:

//nationalatlas.gov/articles/mapping/a_projections.html.

[11] USGS. Map projections. URL http://egsc.usgs.gov/isb/pubs/

MapProjections/projections.html.

[12] Bugayevskly L. Map Projections: A Reference Manual. TAYLOR & FRANCIS,

1995.

[13] Wikipedia. Wikipedia article on map projections. . URL http://en.wikipedia.

org/wiki/Map_projection.

225

http://bgis.sanbi.org/gis-primer/index.htm
http://bgis.sanbi.org/gis-primer/index.htm
http://en.wikipedia.org/wiki/Wiki
http://en.wikipedia.org/wiki/Wiki
http://moinmo.in/MoinDev/CodeStructure
http://moinmo.in/MoinDev/CodeStructure
http://en.wikipedia.org/wiki/Geographic_information_system
http://en.wikipedia.org/wiki/Geographic_information_system
http://nationalatlas.gov/articles/mapping/a_projections.html
http://nationalatlas.gov/articles/mapping/a_projections.html
http://egsc.usgs.gov/isb/pubs/MapProjections/projections.html
http://egsc.usgs.gov/isb/pubs/MapProjections/projections.html
http://en.wikipedia.org/wiki/Map_projection
http://en.wikipedia.org/wiki/Map_projection

Bibliography 226

[14] Wikipedia. Wikipedia article on geocoding. . URL http://en.wikipedia.org/

wiki/Geocoding.

[15] JERRY H. RATCLIFFE. On the accuracy of tiger-type geocoded address data

in relation to cadastral and census areal units. 2001. School of Policing Studies,

Charles Sturt University, NSW Police College.

[16] Wikipedia. Wikipedia article on mapserver. . URL http://en.wikipedia.org/

wiki/MapServer.

[17] Wikipedia. Wikipedia article on open geospatial consortium. . URL http://en.

wikipedia.org/wiki/Open_Geospatial_Consortium.

[18] Wikipedia. Wikipedia article on open source geospatial foundation. . URL http:

//en.wikipedia.org/wiki/Osgeo.

[19] Bill Kropla. Beginning MapServer: Open Source GIS Development. Apress, 2005.

[20] Mapserver mapfile documentation. Technical report, OSGeo and MapServer com-

munity. URL http://mapserver.gis.umn.edu/docs/reference/mapfile.

[21] Pericles S. Nacionales. Mapserver 5.x tutorials. 2007. URL http://biometry.

gis.umn.edu/tutorial/.

[22] Salah Juba, Vasilis Samoladas, Nikos Boretos, Ioannis Manakos, and Christos G.

Karydas. Ims: a web-based map server for spatial decision support. Mediterranean

Agronomic Institute of Chania, Department of Electronic and Computer Engineer-

ing, Technical University of Crete.

[23] Refractions Inc. Postgis 1.3.5 manual. URL http://postgis.refractionds.net/

documentation/manual-1.3/.

[24] Inc. Open GIS Consortium. Opengis simple features specification for sql revision

1.1.

[25] ESRI (2003). Spatial data standards and interoperability. URL http://www.esri.

com/library/whitepapers/pdfs/spatial-data-standards.pdf.

[26] Paul Bolstad. GIS Fundamentals, a First Text on Geographic Information Systems,

3rd Edition. Eider Press, 2008.

[27] Alex Martelli, Anna Ravenscroft, and David Ascher. Python Cookbook. O’Reilly

Media, Inc., 2005.

[28] OSGeo and MapServer Community. Python mapscript documentation. Techni-

cal report. URL http://mapserver.gis.umn.edu/docs/reference/mapscript/

index_html.

http://en.wikipedia.org/wiki/Geocoding
http://en.wikipedia.org/wiki/Geocoding
http://en.wikipedia.org/wiki/MapServer
http://en.wikipedia.org/wiki/MapServer
http://en.wikipedia.org/wiki/Open_Geospatial_Consortium
http://en.wikipedia.org/wiki/Open_Geospatial_Consortium
http://en.wikipedia.org/wiki/Osgeo
http://en.wikipedia.org/wiki/Osgeo
http://mapserver.gis.umn.edu/docs/reference/mapfile
http://biometry.gis.umn.edu/tutorial/
http://biometry.gis.umn.edu/tutorial/
http://postgis.refractionds.net/documentation/manual-1.3/
http://postgis.refractionds.net/documentation/manual-1.3/
http://www.esri.com/library/whitepapers/pdfs/spatial-data-standards.pdf
http://www.esri.com/library/whitepapers/pdfs/spatial-data-standards.pdf
http://mapserver.gis.umn.edu/docs/reference/mapscript/index_html
http://mapserver.gis.umn.edu/docs/reference/mapscript/index_html

	Abstract
	Acknowledgements
	List of Figures
	Abbreviations
	1 Introduction
	1.1 Motivations
	1.2 Contributions
	1.3 Thesis structure

	2 Wikis and MoinMoin
	2.1 Introduction to wiki concepts
	2.1.1 What is a wiki
	2.1.2 Editing, linking and searching in a wiki environment
	2.1.3 Controlling changes
	2.1.4 Trust and security within a wiki
	2.1.5 Architectures of wikis

	2.2 The MoinMoin wiki
	2.3 MoinMoin features
	2.4 MoinMoin architecure
	2.5 Extensions within MoinMoin
	2.5.1 Actions
	2.5.2 Macros
	2.5.3 Parsers
	2.5.4 Formatters
	2.5.5 Themes

	2.6 XML-RPC and WikiRPC
	2.7 MoinMoin event sequence

	3 GIS concepts and web--mapping
	3.1 A GIS overview
	3.2 Spatial data models
	3.2.1 Vector data model
	3.2.2 Raster data model
	3.2.3 Image data
	3.2.4 Data accuracy and quality

	3.3 Important GIS issues
	3.3.1 Organizing non--spatial data
	3.3.1.1 Tabular models
	3.3.1.2 Hierarchical models
	3.3.1.3 Network models
	3.3.1.4 Relational models
	3.3.1.5 Object--oriented models

	3.3.2 Map projections in overview
	3.3.2.1 Metric properties of maps
	3.3.2.2 Construction of a map projection
	3.3.2.3 Different projection surfaces and their ``development''
	3.3.2.4 Projection definitions

	3.3.3 Geocoding principles
	3.3.4 Topological overlays

	3.4 WebGIS and Web mapping
	3.4.1 Types of web--mapping
	3.4.2 Advantages of web--mapping and WebGIS
	3.4.3 Disadvantages and problematic issues
	3.4.4 WebGIS and Spatial Desicion Support

	4 The MapServer Package
	4.1 What is MapServer
	4.2 Setting the terrain for FOSS GIS development
	4.2.1 The Open Geospatial Consortium
	4.2.2 The Open Source Geospatial Foundation

	4.3 Intoducing MapServer capabilities
	4.4 Mapserver's configuration: The Mapfile
	4.4.1 A simple mapfile
	4.4.2 Associating datasets to a LAYER object
	4.4.3 Using projections within the mapfile

	4.5 Introducing MapScript
	4.5.1 MapScript objects discussion
	4.5.2 Rendering a map
	4.5.3 Accessing the features of a layer
	4.5.4 Computations on spatial features

	4.6 OGC web--services within MapServer
	4.6.1 The WMS service overview
	4.6.2 The WFS service overview
	4.6.3 Integration with MapServer
	4.6.3.1 Mapserver as WMS client
	4.6.3.2 Mapserver as WMS client
	4.6.3.3 Mapserver as WFS client

	5 The GeoMoin Web Application
	5.1 Overview
	5.2 Design and implementation in overview
	5.2.1 Application architecture
	5.2.2 Overview of system components

	5.3 Filesystem data services: Requirements and Implementation
	5.3.1 Spatial data in the Filesystem and retrieval requiremenents
	5.3.2 Mapfiles storage and retrieval
	5.3.3 Markfiles and their usage

	5.4 DBMS data services: Installation and Implementation
	5.4.1 DBMS architecture in GeoMoin
	5.4.2 PostGIS extension for PostgreSQL
	5.4.3 PygreSQL PGDB module for DBMS access
	5.4.4 GeoMoin database schema specification
	5.4.4.1 Implementing the schema on PostgreSQL

	5.4.5 GeoMoin DBMS Wrapper: pgUtils

	5.5 OWS data services
	5.6 Business tier
	5.6.1 InstallManager
	5.6.2 Uploading a dataset
	5.6.3 Invoking the installer action
	5.6.4 Installing the datasets using OgrTypes

	5.7 Dataset controlling system: LayerManager
	5.7.1 Querying and managing the installed datasets
	5.7.2 Generation a UMN mapfile layer definition
	5.7.3 Creating an annotation layer
	5.7.4 WMS/WFS access through LayerManager

	5.8 Map controlling system: MapManager
	5.8.1 Creating and editing a mapfile

	5.9 Spatial visualization system
	5.9.1 Definition and implementation of the renderer
	5.9.2 The map rendering process
	5.9.3 Managing the layer status and position before rendering
	5.9.4 Defining the extent and navigation tools
	5.9.5 Query capabilities
	5.9.6 Annotating a rendered map
	5.9.6.1 Enabling an annotation layer in the MapRenderer
	5.9.6.2 Annotation table structure
	5.9.6.3 Creating an annotation
	5.9.6.4 Displaying and managing annotations

	5.9.7 Using XML-RPC to manage the WIKI content

	5.10 GeoMoin mapplets
	5.10.1 Synchronous mapplets
	5.10.2 Asynchronous mapplets

	5.11 User services and AJAX
	5.11.1 MapManager
	5.11.2 LayerManager
	5.11.2.1 Querying and extracting dataset information
	5.11.2.2 Creating annotation layers
	5.11.2.3 WMS managing

	5.11.3 Spatial Visualization System
	5.11.3.1 Navigation tools and queries
	5.11.3.2 Annotation interactions
	5.11.3.3 Layer management and general information
	5.11.3.4 Mapplet interactions

	5.11.4 Interactions between text and maps

	6 Conclusion
	6.1 Case--study: A map of greece
	6.2 Summary of theoritical results
	6.3 Future work
	6.3.1 Global availability of GeoMoin
	6.3.2 GeoMoin within a multi--server environment

	A Technical Issues
	A.1 Installation
	A.1.1 Pre--required general libraries
	A.1.2 PostgreSQL and Postgis.
	A.1.3 Apache web server
	A.1.4 MapServer and GDAL
	A.1.5 MoinMoin wiki
	A.1.6 GeoMoin Installation

	Bibliography

