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Introduction 

 

 

 

  There are many techniques for studying and analyzing stability of linear and non 

linear control systems. In this study we shall focus on linear systems but we can show 

that nonlinear, when are amenable to local linearization, can also be studied as if they 

were linear systems. Over the last ten years many techniques have been used for 

analyzing stability. 

  When the state space representation of linear systems was established in the late 

1960s, the study of stability focused on more modern techniques as it is the Lyapunov 

Criterion, which we shall see later. 

  The Lyapunov criterion, however, leads to a solution of matrix equations which in 

many cases as in the case of discrete time linear system is nonlinear. Solving 

nonlinear matrix equations require the usage of .sophisticated and considerable 

computational processing and must be done before hand if the knowledge of stability 

of the system is of importance in the problem under consideration. We are, therefore, 

tempted to seek techniques which could lead to on line analyses. Those are a class of 

Neural networks which are based on various minimization methods [1] ,  [12] – [21]. 

In this study we shall show that these types of  Neural networks can lead to an 

acceptable analyses for the case of Lyapunov based stability [1], [2], [4] – [11], [22], 

[23]. Chapter 1 analyzes the analog Neural Networks, Chapter 2 covers the theoretical 

basis of Lyapunov stability and the chapter 3 includes implementations of some 

models according to Lyapunov stability theory using Neural Networks. 
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Chapter 1 

 

Unconstrained Optimization Algorithms 

And 

Neural Network Model  

 

 

1.1 Necessary and Sufficient Conditions For an Extremum 

 

  Let us consider the following unconstrained optimization problem [1]: 

  Find a vector  x ∈ Rn   that minimizes the real valued scalar function 

   E = E(x) 

   The function above is called the cost, objective or energy function and  x  is a non-

dimensional vector called the design vector. Minimizing a function, is the same as 

maximizing the negative of the function, so there is no loss of  generality in our 

considerations. 

The point x
* 

is a global minimum for E(x)  if  E(x
* 

) E(x) for all x ∈ Rn  , and a strict 

local minimum if the relation E(x
*
) E(x) holds for a ball B(x

*
; ε). 

   Assuming that the first and second derivatives of E(x) exist, a point x
* 

is a strict 

local minimum of E(x) if the gradient is zero ( E(x
*
) = 0) and the Hessian matrix is 

positive definite. 
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  The above statement can be formulated as a theorem on necessary and sufficient 

conditions for a strict local minimum. 

   Theorem 1: Let  
2
E(x) be nonsingular for point x

*
. Then we have E(x

*
) < E(x) for 

every x in  neighborhood     0 < || x – x
*
|| < ε with some ε > 0 if  ( E(x

*
) = 0) and 

2
E(x

*
) is symmetric and positive definite. 

 

 

1.2 Dynamic Gradient Systems 

 

   A very broad and perhaps the most important class of methods for unconstrained 

optimization is that which is based on the so called gradient descent methods. 

Virtually all of the gradient descent methods have their origin in standard methods 

known as methods of steepest descent (also called dynamic gradient systems) and 

Newton’s methods. These methods transform the minimization problem into an 

associated system of first order ordinary differential equations 

                                                                     (1.2-1)                                                              

  With initial conditions xj(0) =x
(0) 

(starting point) which can be written in the compact 

matrix form 

                                         

                                                                                                                               (1.2-2) 

   where  

                                                                             

 

   And µ(x,t) is a symmetric positive definite matrix on the time t and the vector x(t). 

In order to find the desired vector x
* 

 that minimizes the function E(x) we need to 

solve the system of ordinary differential equations with initial conditions. This means 
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that the minimum of the energy  function is determined by the following solution 

curve of the gradient system with 

                                                                                                   

 

   In order to show that the above system of differential equations(1.2-1,1.2-2) leads to 

stable solutions, we will determine the time derivative of the energy (Lyapunov) 

function which has to be less or equal to zero. 

 

  

                                                                                                                            (1.2-3) 

 

   The above relation guarantees that the energy function E(x) decreases in time and 

converges to a local minimum as  . When the vector dx / dt = 0, then this 

implies that  E(x) = 0  for the system of differential equations. Therefore, it follows 

that the equilibrium point coincides either with the minimum or with the inflection 

point of energy function E(x). Obviously the speed of convergence to the minimum 

depends on the choice of the entries of the matrix µ(x, t).  In the simplest and best 

known form of this method (steepest descent method) the matrix µ(x, t) is reduced to 

the unity matrix multiplied by a positive constant µ0. In this case the system simplifies 

to the form   

 

                                          (1.2-4) 

 

  Where the positive coefficient µ0 is called the learning parameter. It is interesting to 

note that the vectors dx/dt and   E(x) are opposite. Thus the time evaluation of x(t) 

will cause the minimization of E(x) as time goes on. The trajectory x (t) moves along 

the direction which has the sharpest rate of decrease and is called the direction of 
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steepest-descent. This concept is used to derive algorithms on which we can base 

Neural Networks designs. 

 

 

1.3 Newton’s Methods 

 

   The idea behind Newton’s methods is that the energy function E(x) is approximated 

locally by a quadratic function when the former tends to be minimized.  

  The function E(x) near the point x
(k)

 (k = 0,1, 2, ….) can be approximated by the  

Taylor series: 

 

                                       (1.3-1) 

 

The point x
(k+1)

 that minimizes this series must satisfy the equation: 

 

                                                    (1.3-2) 

 

   Since θE(x) / θx ( E(x)) at a minimum point is equal to zero. If the inverse matrix 

of Hessian exists then the above equation can be written as follows: 

 

                                                       (1.3-3) 

 

This equation is the standard form of the discrete-time Newton method. 

   The continuous time dynamical system corresponding to the above discrete time 

algorithm takes the following form as compared to (1.3-4): 
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                                                                  (1.3-4) 

  Where µ0 > 0. 

We observe that in 1.3-4,we require that the inverse of the Hessian exists.  

1.4 The Quasi-Newton Methods 

 

    In some problems only the gradient of the objective function E(x) can explicitly be 

determined. For such problems quasi-Newton methods can be used. The sequential quasi-

Newton methods elaborate the differences of two successive iteration points and the 

difference of the corresponding gradients to approximate the inverse Hessian matrix. Thus 

these methods take advantage of the Newton method while using only first order information  

about the objective function. One of the most well known as well as powerful quasi-Newton 

methods is the Broyden-Fletcher-Goldfrab-Shanno(BFGS) algorithm, which can be 

formulated as: 

 

                                                                                       (1.4-1α) 

 

                                                                   (1.4-1b) 

 

                                                                            (1.4-1c) 

 

                                               (1.4-1d) 

 

Where the learning rate
 
 is determined from one dimensional line search: 
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   And Hk denotes the current approximation to  and the iterative 

procedure starts at an arbitrary point x
(0)

 with an initial approximation H0, usually with 

the identity matrix I. 

 

   In such a case, we can present another formula for the updating matrix Hk, which is 

the Barnes-Rosen formula [1]. 

 

                                                (1.4-2) 

 

    The variable metric methods associated with Quasi-Newton method provide many 

advantages over the Newton method by saving us from the trouble of deriving second 

order derivatives. 

 

 

1.5 The conjugate Gradient Method 

 

   The conjugate gradient algorithm of Fletcher and Reeves requires a relatively simple 

modification of the discrete time steepest descent method and often enables us to 

dramatically improve the convergence rate. The conjugate gradient algorithm in its 

simplest form can be formulated as [1]: 

 

                                                                     (1.5-1) 

 



 14

   Where: 

                 

And 

                         

 

  It can be  noticed that the algorithm above utilizes information about the direction 

search dk-1 from the previous iteration in order to accelerate the convergence, and each 

search direction is conjugate if the objective function is quadratic. Theoretically the 

algorithm above will minimize a quadratic function in  n  or less iterations[1]. Using 

the theoretical background presented so far, we can show that these algorithms can be 

used to develop Neural Networks, which in terms can be used to analyze and solve 

Lyapunov Stability problem. Based on the above algorithm we can implement Neural 

Networks to solve complex problems on a quasi-on-time basis, which otherwise 

would require sophisticated computational techniques.   

 

 

1.6 Basic Neuron Model -- McCulloch-Pitts Model 

 

  The basic artificial neuron can be modeled as a multi-input nonlinear device with 

weighted interconnections  wji , also called synaptic weights or strengths (cf.fig 1.6a). 
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  The cell body is represented by a non linear limiting or threshold function ψ(uj). The 

simplest model of an artificial neuron sums the  n  weighted inputs and passes the 

result through a nonlinearity according to the equation 

 

                                                                 (1.6-1) 

 and  

                              

    

Where  ψ is a limiting or threshold function, called an activation function, θj  ( ∈ R
n
) 

is the external threshold also called an offset or bias, wji ,are the synaptics weights or 

strengths, xi  are the inputs (i = 1,2,3,…,n) is the number of inputs and  yj  represents 

the output. Note that a threshold value θj   may be introduced by employing an 

additional input x0 equal to ‘ 1’ and the corresponding weight wj0 equal to the 

threshold value. So we can write the above equation  as: 

 

                                            

                         where 

                                                                                  (1.6-2) 

 

  The graphical implementation of the above equation is shown in the figure (1.6.a) 

below: 
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                                                            (1.6.a) 

 

          

 

 

The basic artificial neuron is characterized by its nonlinearity and the threshold  θj .   

 

 

   For example the early McCalloch-Pitts model of the neuron used only the binary 

function (cf. 1.6b) where a weighted sum of all inputs is compared with a threshold   

θj  . If this sum exceeds the threshold, the neuron output is set to the high value “1”, 

otherwise is set to the low value or logic “0”. 

 

   Generally the threshold (step) function can be replaced by a more nonlinear function 

(cf. fig 1.6b and fig 1.6c) [1]. and consequently the output of the neuron  yi   can either  

assume a value of a discrete  set (-1 ,1) or vary continuously (between -1 and 1 or 

generally  between  ymin  and  ymax>ymin). The activation level or the state of the neuron 

is measured by the output signal yj (if  yj = 1, then the neuron is firing (activate), if     

yj = 0 then the neuron is quiescent). Various non linear ….  Have been used over the 

year depending on the problem under consideration as shown in figures (1.6.b) and 

(1.6.c). 
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   In the basic neural model the output signal is usually determined by a monotonically 

increasing sigmoid function of a weighted sum of the input signals. Such a sigmoid 

function can be mathematically described by 

 

                                                             (1.6-3) 

For a symmetrical (bipolar) representation or 

                                                                          (1.6-4) 

For an unsymmetrical unipolar representation with : 

 

                                                                                       (1.6-5) 

Where γ is a positive constant or variable which controls the ‘’steepness ‘’ (slope) of 

the sigmoidal function. 

 

1.7 Widrow-Hoff Delta Rule or LMS Algorithm 

 

   Having defined the general architecture of the Neural Network that fits our problem 

under consideration, we then need a way to determine the weights wji. Various tools 

have been used, but the most useful especially when we deal with nonlinear problems, 

are adaptive ones. These adaptive algorithms as we will show below, lead to 

formulations which are amenable to gradient methods applications. Many possible 

adaptive algorithms, represent a mechanism-procedure by which the synaptic weights 

can properly be adjusted to achieve correct values. The most popular one is the 

Widrow-Hoff Delta Rule, also called the LMS (least mean squares) algorithm. The 

purpose of this algorithm is to adjust the synaptic weights wji (i=o,1,2,…,n) to assure a 

minimization of the error function. 
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                                                                     (1.7-1) 

 

   Which is an instantaneous estimate of the mean-square error. Applying the gradient 

descent approach, (mentioned in previous chapter), we obtain the system of 

differential equations   

 

                                                                        (1.7-2a) 

 

 

 

 

 where µ > 0. Hence, taking into account that 

                                                                               

We get 

                                                (1.7-2b) 

  

  Where µ > 0 is the adaptive gain, xi is the i-th input associated with the weight wji, dj 

is the desired output and ej, is the output error (cf. fig 1.7.1) [1]. Equation (1.7-2b) can 

be implemented as a continuous-time LMS algorithm employing analog multipliers as 

shown below. This algorithm will be used in the sequel to study Lyapunov-based 

stability problem,.  
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Chapter 2 

 

 

Lyapunov Stability Theory 

 

   Lyapunov’s contribution to the study of stability systems is of great importance, 

especially for the stability of non linear systems. Lyaponov’s methodology is 

analytical (not graphical), and is based on the differential equation which describes 

the system and provides information about the stability of the system without 

requiring a solution of the differential equation that describes the  mathematical model 

of the system under study. Results of the lyapunov theory can be separated in two (2) 
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techniques (methods): the first method of Lyapunov and the second method of 

lyapunov (direct method).  

 

2.1 Introduction-Definitions 

 

 

2.1.1 Basic 

 

Consider a dynamical system which satisfies 

 

x˙ = f(x, t)   x(t0) = x0    x ∈ Rn                                                            (2.1-1) 

   We will assume that f(x, t) satisfies the standard conditions for the existence and 

uniqueness of solutions. Such conditions are, for instance, that f(x, t) is Lipschitz 

continuous with respect to x, uniformly in t, and piecewise continuous in t. A point   

x* ∈ Rn
  is an equilibrium point of (2.1-1) if  f(x*, t) ≡ 0 

  Intuitively, we say an equilibrium point is locally stable if all solutions which start 

near x* ( meaning that the initial conditions are in a neighborhood of x* ) remain near 

x* for all time. The equilibrium point x* is said to be locally asymptotically stable if 

x* is locally stable and, furthermore, all solutions starting near x* tend towards x*  as  

t → ∞.  

 

  The time-varying nature of equation (2.1-1), however, introduces all kinds of 

additional subtleties. Nonetheless, it is intuitive that a pendulum has a locally stable 

equilibrium point when the pendulum is hanging straight down and an unstable 

equilibrium point when it is pointing straight up. If the pendulum is damped, the 

stable equilibrium point is locally asymptotically stable. 

  

  By shifting the origin of the system, we may assume that the equilibrium point of 

interest occurs at x* = 0. If multiple equilibrium points exist, we will need to study 

the stability of each by appropriately shifting the origin. 

 

 

2.1.2 Stability in the sense of  Lyapunov 

 

  The equilibrium point x* = 0 of (2.1-1) is stable (in the sense of Lyapunov) 

at t = t0  if for any ε > 0 there exists a  δ(ε,t0) > 0 such that 

                              (2.1-2) 
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   Lyapunov stability is a very mild requirement on equilibrium points. In particular, it 

does not require that trajectories starting close to the origin tend to the origin 

asymptotically.  

 

   Also, stability is defined at time instant t0. Uniform stability is a concept which 

guarantees that the equilibrium point is not losing stability. We insist that for a 

uniformly stable equilibrium point x*, δ not be a function of  t0, so that equation   

(2.1-2)  may hold for all t0. 

 

 

2.1.3 Asymptotic stability 

 

  An equilibrium point x* = 0 of (2.1-1) is asymptotically stable at t = t0  if 

1. x* = 0 is stable, and 

2. x* = 0 is locally attractive; i.e., there exists δ(t0) such that 

 

                                                (2.1-3)  

  As in the previous definition, asymptotic stability is defined at t0. 

 

Uniform asymptotic stability requires: 

1. x* = 0 is uniformly stable, and 

2.   x* = 0 is uniformly locally attractive; i.e., there exists δ independent 

     of t0 for which equation (2.1-3) holds.   

 

    Further, it is required that the convergence as defined by equation (2.1-3) is 

uniform.                                                                                            . 

 

   Finally, we say that an equilibrium point is unstable if it is not stable. This is less of 

a tautology than it sounds and we should be sure if we can negate the definition of 

stability in the sense of Lyapunov to get a definition of instability. [22] Figure (2.1) 

illustrates the difference between stability in the sense of Lyapunov and asymptotic 

stability. 
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   Definitions 2.1.2 and 2.1.3 are local definitions.  They describe the behavior of a 

system near an equilibrium point. We say an equilibrium point x* is globally stable if 

it is stable for all initial conditions x0 ∈ R
n
. Global stability is very desirable, but in 

many applications it can be difficult to achieve. We will concentrate on local stability 

theorems and indicate where it is possible to extend the results to the global case. 

 

   Notions of uniformity are only important for time-varying systems. Thus, for time-

invarying systems, stability implies uniform stability and asymptotic stability implies 

uniform asymptotic stability.  It is important to note that the definitions of asymptotic 

stability do not quantify the rate of convergence. 
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2.2 Lyapunov’s First Method   

                                                                             

   The first method of Lyapunov [2] is based on the linearization and replacement of 

the non linear differential equation, which describes the system, with a linear 

differential equation. This approximation takes place for every equilibrium condition 

separately and the stability results of the non linear system respond only for a small 

area around of the equilibrium condition. 

 Consider  a linear system: 

                                          x˙ = f(x)                                                                            (2.2-1) 

and xe  an equilibrium condition. We analyze the above equation (2.2-1) to a Taylor 

series in the point x=xe,  so we take  the follow: 

 

                 

  

                 

   where 

            

   The matrix B(x-xe) contains terms which come from bigger rank derivatives than the 

first. Because of the fact that the xe is an equilibrium point, it means that : 

f(xe) = 0     

If we now set z = x-xe   then the above equation can be written as 

   z ˙ = Az + B(z)z + …                                                                                         (2.2-3)  
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The first approach, which means the linear part of (2.2-3) will be 

   z ˙= Az                                                                                                    (2.2-4)    

Generally the lyapunov’s first approximation is based on the follow theorem: 

   Theorem 2: If every factor of matrix A has a not zero(0)  real part, then the 

conclusions concerning the stability of the non linear system in the area of xe  can be 

exported by the study of the linear system stability (2.2-4).  

 

 

 2.3 Lyapunov’s Second Method (Direct Method) 

 

   Lyapunov’s second method which is also called as  Lyapunov’s direct method 

allows us to determine the stability of a system without explicitly integrating the 

differential equation (2.2-1). The method is a generalization of the idea that if there is 

some “measure of energy” in a system, then we can study the rate of change of the 

energy of the system to ascertain stability. To make this precise, we need to define 

exactly what one means by a “measure of energy.” Let Bε   be a ball of size (ε)  around 

the origin, 

 

 

 

2.3.1 Basics of Direct Method  

 

   A Lyapunov function is not necessarily the energy of a dynamical system. However, 

the term Lyapunov  function is often used instead of the energy function, cost 

function or objective function and vice versa in the neural networks community. 

Strictly speaking, the Lyapunov function denoted by V(x) is positive definite. The 

energy function is always bounded from below, so the relation holds                       

V(x) = E(x) – E(x
*
). 

  Let us consider a dynamical system, described by a set of coupled differential 

equations 

                                                         (2.3-1) 
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                                                                                                                            (2.3-2)      

                         

   Where x = [x1(t), x2(t),…., xn (t)]
T 

 is the activation state space vector,                  

W(x) = [wij(t)]n x n is the weight matrix and Θ = [ θ1, θ2,…., θn]
T
 is the external time 

independent pattern vector. Such systems of differential equations describe a general 

model of the neural network. The first of the above equations is called the generalized 

neural network state equation and the second differential equation is the general 

learning equation. 

   The energy function E = E (x, W, Θ) is a function defined on the state space which 

is non increasing along the trajectories and it is bounded from below. The function E 

will be called a Lyapunov function if it is decreasing on all non constant trajectories 

and thus the Lyapunov function forces every trajectory to a stable equilibrium point. 

   The Lyapunov theorem can be stated as follows: 

   Theorem 3: If for a given system of differential equations an energy function E 

exists, called a Lyapunov function satisfying the following relation: 

 

                               (2.3-3) 

   with 

                

 

  Then the system is stable, the trajectories xj(t) and wij(t) converge to stationary 

points as . 

   In such a case, it is of paramount importance to refer to the fact that since E is 

bounded monotonically decreasing function of time, it converges to a  limit and its 

time derivative converges to (0). The time derivative dE/dt is strictly less than zero 

except at the equilibrium points where it vanishes. 

    Obviously the Lyapunov theorem(3) doesn’t say anything about the form of the 

function E or how to construct it. It gives only a sufficient condition for the 

convergence for and is not concerned with a finite time of convergence. 
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Unfortunately there is no general method for constructing Lyapunov functions. In the 

following we shall define some characteristics of the Lyapunov funtions and then 

show how we can construct them for linear systems.  

 

 

 2.3.2 Locally Positive Definite Functions  

 

   A continuous function  is a locally positive definite function 

if for some ε > 0 and some continuous, strictly increasing function 

 
 

(2.3-4) 

   A locally positive definite function is locally like an energy function. Functions 

which behave globally as energy functions are called positive definite functions: 
 

 

2.3.3   Positive Definite Functions  

 

   A continuous function  is a positive definite function if 

it satisfies the conditions of Definition 2.3.1 and, additionally, α(p) → ∞ as p→∞. 

2.3.4   Decreasing  Functions  

 

   A continuous function  is a decreasing function if for some 

ε>0 and some continuous, strictly increasing function  

 

 

                                                    (2.3-5) 

 

   Using these definitions, the following theorem allows us to determine 

stability for a system by studying an appropriate energy function. 

 

   (Theorem) :Roughly, this theorem states that when V (x, t) is a locally positive 

definite function and  V˙ (x, t) ≤ 0 then we can conclude stability of the equilibrium 

point. The time derivative of V is taken along the trajectories of the system: 
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 Where lpdf means locally positive definite function. 

 

2.3.5  Basic Theorem Of  Lyapunov 

 

   Theorem 4: Let V(x,t) be a non negative function with derivative V˙ along the 

trajectories of a system: 

1. If  V(x,t) is locally positive definite and  V˙ (x, t) ≤ 0 locally in  x  and for all t, 

then the origin of the system is locally stable 

 

2. If  V(x,t) is locally positive definite and decreasing, and V˙ (x, t) ≤ 0 locally in 

x and for all t, then the origin of the system is uniformly locally stable.  

 

3. If  V(x,t) is locally positive definite and decreasing, and -V˙ (x, t) ≤ 0 is locally 

positive definite , then the origin of the system is uniformly locally 

asymptotically stable. 
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4. If  V(x,t) is  positive definite and decreasing, and -V˙ (x, t) ≤ 0 is positive 

definite , then the origin of the system is globally uniformly asymptotically 

stable.  

 

 

 The conditions in the theorem are summarized in Table 2.2 

 

 

   Theorem 2.3.4  gives sufficient conditions for the stability of the origin of a system. 

However, the former doesn’t give a prescription for determining the Lyapunov 

function V (x, t). Since the theorem only gives sufficient conditions, the search for a 

Lyapunov function establishing stability of an equilibrium point could be difficult. 

However, it is a remarkable fact that the converse of Theorem 2.3.4 also exists. If an 

equilibrium point is stable, then there is a function V (x, t) satisfying the conditions of 

the theorem. However, the utility of this and other converse theorems is limited by the 

lack of a computable technique for generating Lyapunov functions. 

 
 

 

2.4 Finding Lyapunov Functions 

 

 

   From the text above comes to surface the fact that the problem of studying the 

stability of a system through the second method of Lyapunov consists of finding a 

Lyapunov’s function for the specific system under consideration. That function may 

not be the only one and simultaneously can be difficult to be found. So far we haven’t 

invented a systematical way of finding a Lyapunov function for all the specific 

categories of systems. It must be noticed that when there is no possibility of finding a 

Lyapunov function for a system, it means that we just can’t conclude about the 

stability of a system. It doesn’t mean that the system is unstable.  

 

   There are many different types of Lyapunov theorems. The key in all cases is to find  

a Lyapunov function and verify that it has the required properties. 

 

 

2.4.1 Theorem 

 

   For the case of the time invarying linear systems we have the following theorem: 
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 Theorem 5: Consider the linear time invarying system: 

 

                                                  x˙=Ax , |A| 0 and xe=0 

 

  Consider the Lyapunov function V(x) = x
T
Px, where P is a positive definite real 

symmetric matrix. 

  Then the function V(x) = x
T
Px  is the Lyapunov function of the system if only for a 

matrix P there is a  positive definite real symmetric matrix Q satisfying the following 

 

                                                   A
T
P + PA = - Q                                                  (2.4-1) 

 

  Moreover for the time varying systems which are described by the differential 

equation    

                             x˙(t)=A(t)x 

        

the equation that we take, is the following: 

 

                     P˙(t) + AT(t)P(t) + P(t)A(t) = - Q(t)                                         (2.4-2) 

 

   On the other hand for the non linear systems have already suggested some methods 

for finding the Lyapunov function. One of the dominants methods is either the 

Schultz-Gibson or the gradient method. The latter is going to be analyzed thoroughly 

in the following. 

 

 Consider a function V(x) which is a possible Lyapunov function[2]. Then : 

                         

  where 
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 and 

                                                                                        (2.4-3) 

 

 

If the function V is known, then the function V is obtained by the integral: 

 

 

  

                                                                                                                             

 

                                               (2.4-4) 

  

 

  For the scalar function V to be unique, which means independent from the way it is 

obtained through integration, the equation (2.4-5) has to be satisfied[2]: 

                                                                                                          (2.4-5) 
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  Where x  means the operation ‘curl’ , and for the three (3) dimension example for 

cartesian coordinates x1, x2, x3 becomes : 

 

                        

 

   Where A = A1 i1  + A2 i2 + A3 i3 , and i1, i2, i3, are unary vectors to the direction of 

axis x1, x2, and x3.  

Consider A = V. Then 

 

  

For  the equation (2.4-5) to be satisfied we require the following conditions to exist . 

 

                          (2.4-6) 

 

The general form of  the above relations must be put in the form of a matrix B as 

follows: 
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                                             (2.4-7) 

 

 

 

   So far, we have converted the problem of finding a V Lyapunov function to a 

problem of finding a V , which is * V = 0 and of course V satisfies the 

δ. 

 

  The main steps of determing counting a Lyapunov function using the gradient 

method are: 

 

1. we consider  V = G(x,t)x   where  G is a steady matrix    (2.4-8)                                                                                                                           

2. we calculate the v˙, and we notice to either  be positive definite or to be at 

least negative semi-definite 

3. we bound the v˙ to meet constraints (2.4-5)- (2.4-7) 

4. we check if after  applying  step 3, V still satisfies the step 2 

5. we derive the V according to relation (2.4-4) 

6. we check if the V satisfies the δ 

 

   Here, we can highlight the fact that if we are not able to find the Lyapunov 

function with the method mentioned above, then it doesn’t mean that the system is 

unstable. In this study we shall concentrate on how Neural Networks can be 

implemented to study Lyapunov based stability linear time invarying problems.  
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Chapter 3 

 

 

Neural Networks for Matrix Algebra Problems  

 

 

3.1 introduction 

 

   Researchers in modern scientific and engineering computing are actively searching 

for fast, efficient and robust algorithms which are parallel in nature. Neuron- like 

networks enable us to construct massively parallel algorithms in the sense that a 

system of differential equations describing specific algorithms is solved 

simultaneously by an associated circuit consisting of highly interconnected processing 

units. 

  The main purpose of statements mentioned above is to describe a class of such 

massively parallel algorithms for solving in real time a large variety of important 

matrix algebra problems[1] such as matrix inversion, LU decomposition, QR 

factorization, the eigenvalue problem, singular value decomposition (SVD), solving 

the Lyapunov equation, and principal component analysis (PCA). The algorithms are 

associated with neuron-like adaptive systems and are based mostly on error back-

propagation techniques. In the following, we will be occupied with solving of 

Lyapunov based stability problem. As we mentioned before there exist many 

Lyapunov based stability problems, the analysis of which results in the solution of a 

matrix equation as shown in (2.4-1). In the following we shall show how we can solve 

these problems using Neural Networks  

 

 

 

3.2 Neural Networks for Solving Generalized Matrix Equations 
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        Especially Lyapunov’s Equation 

 

   In some applications, especially in mathematical control theory, that involves 

Lyapunov based stability problems (2.4-1), it is required to find an unknown matrix X 

which is involved in linear matrix equations containing several matrices. Such 

equations are called generalized matrix equations: 

A X + X B + C = 0                                                                                                (3.2-1) 

Where the matrices A, B, C are known and the matrix X is unknown  (see equation 

2.4-1). 

In that point we will be occupying with the Lyapunov equation 

A X + X A
T
 = - C                                                                                               

The problem is formulated as follows: 

 

   For given matrices A ε R
n x n

, and C ε R
n x n

 we will find a symmetric matrix X which 

satisfies the equation (3.2-1). 

 

   To solve the problem the first step will be to implement the latter equation by an 

appropriate network shown in figure (3.2.1) [1]. For such a network we can formulate 

the Error (cost) function as: 

 

                                                                           (3.2-2) 

Where 
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The equation    A X + X A
T
 = - C  is shown in a block diagram form in figure (3.2.1) 

below. 

 

 

 

 

A direct minimization of the error function E(t) in equation (3.2-2) leads to the 

learning algorithm: 

 

 

                          

                                                                                                                               (3.2-3) 

 

Where µ > 0. 

 

   Unfortunately such an algorithm will not satisfy the symmetry condition of matrix    

X (xij = xji). 
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 In order to meet the symmetry constraints the above algorithm (3.2-3) can be 

modified as: 

 

                     (3.2-4) 

 

An analog implementation of the above algorithm is shown in figure (3.2.2) [1]. 
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3.3 The Problem of Solving the Lyapunov Equation 

 

Let us consider the problem of solving the Lyapunov equation [1]. 
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AX + XA
T
 = - C , where the matrices A, C are known 

 

                      

 

Using the Neural Network of figure (3.2.2), in other words, we seek to find the 

symmetric matrix  X knowing matrices A,C. 

  The network depicted in figure (3.2.2) has been simulated in Matlab in order to solve 

the problem. Actually the point is to approximate as much as possible the real values 

of X, something which will not be that easy because of the error possibility and the 

complexity of the algorithm presented above. 

 

                     

 

                             

 

   Through function eig() in Matlab, we were able to find the eigenvalues of matrix A 

in order to see if the system was asymptotically stable. The results are shown below:  

 

    λ = -2.0113 

           11.4534 

           4.5580 
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    Hence with a quick look the system is not asymptotically stable, since the 

eigenvalues of matrix A are not in the closed left half plane. In order to succeed 

asymptotical stability the eigenvalues of the matrix A should be negative (in the 

closed left half plane).  

 

    Now we will apply the Lyapunov method taking into consideration our Matlab 

code. We chose a positive definite matrix C (all the eigenvalues of C are positive,       

λ= 2.3134, 4.4072, 11.2794), in order to apply our method. 

 

   The simulation results using Matlab for the matrices A and C given above yield the 

values of the elements x11,  x12 =x21  , x22 , x23 =x32  , x33, x13= x31 of   the matrix X. Our 

code was able to find the graphical representations of matrix X (3*3) and the E(t) 

which is the Error (cost) function, as they can be seen below in figures (3.3.1)-(3.3.2) 

 

 

 

                                               Fig .3.3.1: graphical representation of matrix X (3*3). 
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   Where the X-axis presents the number of iterations and the Y-axis presents the 

matrix X-values. The first line from above is the value x33  ,   the second line is the x11 , 

the third line is the x12 =x21 ,the fourth line is the  x22 ,   the fifth line is the x23 =x32  ,   

and finally the sixth line is the x13= x31. 

 

   In order for the system to be stable, all the eigenvalues of matrix X (values of X are 

shown in the above graphical representation) must be positive according to theorem 5. 

Matlab, through its function eig(), gave us the following results 

 

  λ =   -0,18157 

          -0,042606 

           0,01319 

 

   As we can see the theorem 5 is not confirmed, because all the eigenvalues of matrix 

X are not in the closed right half plane (which means that the eigenvalues are not all 

positives). Hence X is not positive definite and the Lyapunov test indicates that the 

system under consideration is not stable. 

 

 

  Concerning the Error (cost) function graphical representation, it takes the following 

form: 
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                                  Fig. 3.3.2: graphical representation of error (cost) function. 

 

   Where the X-axis presents the number of iterations and the Y-axis presents the 

error. 

   What we see above is that the Error function E(t) decreases while t increasing until 

the stored energy reaches a value. The above Error function is very small and 

converges after some iterations (between 40-50 iteration we succeed the 

convergence).  

 

  Now we will present another example for Lyapunov stability. The example is a 

linearized model that describes the dynamics of an aircraft that possesses vertical take 

off and landing. The equation of the model is: 

                                          x’ = Ax + B1u1 + B2u2 

                                                                                                                               (3.3-1) 

Where:  
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And 

  

  

The elements of the state vector are: i) x1 which corresponds to the horizontal 

component of the velocity, ii) x2 which corresponds to the vertical component of the 

velocity, iii) x3 which corresponds to rate of change of the inclination angle 

(degrees/seconds), iv) x4 which corresponds to the inclination angle 

(degrees/seconds). The input u1 is used mainly for the motion control of vertical axis, 

while u2 is used for the control of the motion of the horizontal axis. 

The matrix C is positive definite, where C=I. So we have : 

 

 

  



 45

   

       

 

   Through function eig() in Matlab, we were able to find the eigenvalues of matrix A 

in order to see if the system was asymptotically stable. The results are shown below:  

 

  λ=  0.2758 + 0.2576i 

        0.2758 - 0.2576i 

        -0.2325 

        -2.0727 

 

    Hence with a quick look the system is not asymptotically stable, since the 

eigenvalues of matrix A are not in the closed left half plane (the eigenvalues are in the 

right half plane). In order to achieve asymptotical stability the eigenvalues of the 

matrix A should be negative (in the closed left half plane). However, the system under 

consideration is controllable from either u1 or u2. If the aircraft loses somehow the 

control of the vertical motion through u1, then the control u2 can be used to control 

both vertical and horizontal motion and vice versa. 

 

    Now we will apply the Lyapunov method (AX + XA
T
 = - C) taking into 

consideration our Matlab code, as we did in the previous example. We chose a 

positive definite matrix C=I as it can be seen above, in order to apply our method. 

 

   The simulation results using Matlab for the matrices A and C given above, yield the 

values of the elements x11, x22, x33, x44, x12=x21 , x13=x31 , x14= x41, x24= x42, x23= x32, x43= x34   

of   the matrix X. Our code was able to find the graphical representations of matrix X 

(4*4) and the E(t) which is the Error (cost) function, as they can be seen below in 

figures (3.3.3)-(3.3.4). 

 



 46

 

                                     Fig .3.3.3: graphical representation of matrix X (4*4). 

 

   Where the X-axis presents the number of iterations and the Y-axis presents the 

matrix X-values. 

   In order for the system to be stable, all the eigenvalues of matrix X must be positive 

according to theorem 5. Matlab, through its function eig(), gave us the following 

results 

  λ =  -0,034316 

          0.00093076 

          0.015528 

          0.048074 

   As we can see the theorem 5 is not confirmed, because all the eigenvalues of matrix 

X are not in the closed right half plane (which means that they are not all positives). 

Hence X is not positive definite and the Lyapunov test indicates that the system under 

consideration is not stable. But as we mentioned above the system under 

consideration is controllable from either u1 or u2, something which is very important 

for the safety of the airplane and its passengers. Hence if the aircraft loses, for any 



 47

reason, its control of the vertical motion through u1, then the control u2 will be used to 

control both vertical and horizontal motion and vice versa. 

   In this point we will proceed with an analysis of the problem above, concerning its 

stability. The stability theorem in [23](which can be seen in Appendix) is so powerful, 

where someone would like to seek, depending on the same theorem, what it could 

happen, if the system was unstable in a specific sense as we explained below.  

   The above question is already been examined and proved by [23]. Hence if the 

solution of the equation A
T
P + PA = -C gives a matrix P to be positive definite as well 

as eigenvalues of matrix A are discrete and in the left half plane except for one, then 

the system is proved to be unstable. From that theorem we can conclude, however it is 

not the target of this dissertation, that the instability of the system is further confirmed 

when the matrix P is not positive definite, like in our case.  

   Although, even in that case where we study practical applications of the above 

theorem, like in this study, where we deal with an example for Lyapunov stability 

which contains a linearized model that describes the dynamics of an aircraft that 

possesses vertical take off and landing, the methodology that we have already 

developed can help us determine if and in what level our system is controllable. This 

controllability can be used for the safe operation of a system  

   In that case if the system is controllable, we guarantee its safe operation even if the 

mechanical, the operational and the economical design enforced us to select 

parameters which made the matrix A unstable. The alteration of the parameters could 

be the result of system deterioration due to time or other causes.  

   

 

  Concerning the Error (cost) function graphical representation, it takes the following 

form: 
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                                  Fig. 3.3.4: graphical representation of error (cost) function. 

 

   Where the X-axis presents the number of iterations and the Y-axis presents the 

error. 

   What we see above is that the Error function E(t) decreases while t increasing until 

the stored energy reaches the minimum value. The above Error function is very small 

and converges after 20 iterations.  

 

Now we have to analyze the parameters and the vectors of the algorithm (3.2-4).  
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e=d-y 

y=r+p 

r=A*v 

p=x*u 

v=x*z 

u=a
T
*z 

d=-c*z 

 

µ=learning rate=0,026 

z(t)=sin(kw0t)          where         k(1,2,3…) depending on the inputs 

w0=5.00000182*10
6
  

 

t=10
-1 

 

   The parameter t was chosen to be t=10
-1

 cause we obtained quick and effective 

convergence. 
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Conclusion 
 

 

   In this study we have developed a methodology based on neural networks, with 

which we can compute the inverse of a matrix, eigenvalues of a matrix and solve 

linear and non linear matrix equations. This methodology can be applied to control 

systems which have been designed to operate in a stable manner and for some reason, 

through  time, they turn into instability. 

    Our method gives us the means to determine the controllability and stability. If it is 

not possible to change the parameters in order to achieve stability, then we can 

examine in a very fast way if the system is controllable, so that we can maintain its 

safe operation. 

    This method can be applied to airplanes and nuclear reactors where stability is of 

paramount importance. In more revolutionary techniques the same methodology can 

be applied even in the case where the whole changing of all eigenvalues of the matrix 

A is either needed or desired.    
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Appendix  
 

 

Hessian matrix: 

 

   Let  and let   be a real valued function having 2nd-order 

partial derivatives in an open set  containing . The Hessian matrix of  f  is the 

matrix of second partial derivatives evaluated at : 
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   If   f   is in C
2
(U), H(x) is symmetric because of the equality of mixed partials. Note 

that H(x), the jacobian of the gradient of  f .Given a vector , the Hessian of   

f   at  is: 

 

                        

 

   Here we view as a  by  matrix so that is the transponse of . 

The Hessian of   f  at  is a quadratic form, since 

 

                                                

 

   If   f   is further assumed to be in C
2
(U), and is a critical point of   f   such that 

H(x) is positive definite, then is a strict local minimum of   f. 

   This is not difficult to show. Since H(x)  is positive definite, the Rayleigh Ritz 
1) 

theorem shows that there is a c > 0 such that for all , 
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Thus by Taylor’s theorem
2) 

  

 

 

 

   For small ||h|| the first term on the right dominates the second, so that both sides are 

positive for small ||h||. 

1) Theorem : Rayleigh-Ritz 

   Let    be a Hermittian (complex square matrix) matrix. Then its 

eigenvectors are the critical points (vectors) of the ‘Rayleigh quotient’ which is the 

real function  

                            

 

and its eigenvalues are its values at such critical points. 

As a consequence we have : 
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2) Theorem : Taylor’s theorem 

 

   Let be an open subset of a real banach space (X,||*|| is a normed vector space). 

If  is differiantiable n +1 times on , it may be expanded by Taylor's 

formula: 

                  

 

 

Taylor series: 

 

   The resulting infinite series is called the Taylor Series of the function f (x) expanded 

about the point a. If it converges to the value of the function we get 

 

 

   If a = 0 then the series is known as the Maclaurin Series of the function f, which we 

might write as: 

 

               

 

Example  

 

What is the Maclaurin series of f (x) = e
x
?  

   To write down the Maclaurin series we need to know the value at x = 0 of every 

derivative of the function. This is usually the practical problem that we face in 
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working out Taylor series. In this case it is easy since every derivative of e
x
 is e

x
 and 

this has value 1 at x = 0. So the Maclaurin series becomes  

 

                                          

 

   It turns out that this is actually equal to the value of e
x
 for any value of x (I cannot 

prove that here). So we have the famous result that 

 

                            

  

 

Lipschitz condition and Lipschitz continuity:  

 

 

Definition (Lipschitz-continuous function). 

Lipschitz-continuity comes in three different flavours. 

 
 

 

   Given an open set  we say that  f  is Lipschitz-continuous on the open 

subset B if there exists a constant  (called the Lipschitz constant of  f  on 

B) such that 

 

 

            (1) 

 

   The function f is called locally Lipschitz-continuous, if for each  there 

exists an L > 0 such that  f  is Lipschitz-continuous on the open ball of center z and 

radius L 
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                            (2) 

 

 

   If  f  is Lipschitz continuous on all of the space  (i.e. B =  in (1)), then f  is 

called globally Lipschitz-continuous. 

 

Remark (local vs. global) 
 

   Notice the fundamental difference between the local and global versions of the 

Lipschitz-continuity. Whereas in the local version the Lipschitz constant   and 

the open set B depend on each point , in the global version the constant  

is fixed and B = . In particular, a globally Lipschitz-continuous function is 

locally Lipschitz-continuous, but the vice versa is not true. 

 

 
 

Remark (norms and Lipschitz constants) 
 

    In (1) the norm  can be any norm. However, once a norm has been chosen one 

should stick to that single norm, as the Lipschitz constant  depends on the particular 

choice of this norm. Unless otherwise stated, we use the Euclidean norm in all our 

analysis. 

 

 

Interpretation 

 

   To see what these definitions mean, let us consider the situation in one dimension. 

Suppose  f  is a Lipschitz function on a neighborhood B of  . This implies 

that,  ,  

 

 
 

 

by putting y = x + h 

 

 

   If we were to let    and if the function  f  were differentiable, then the 

result would mean  

          ,   ( the derivative is bounded by the Lipschitz constant). 
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   However, there is nothing in the definition of Lipschitz-continuity that implies that   

f   is differentiable. So in general we can’t proceed to this limit, since we don’t know 

if   f   is differentiable at  x. But this tells us all we need to know: being Lipschitz just 

means  f  can’t be too steep, the bound on the difference quotient being . 

 

 

 

The Lyapunov Matrix Equation:  

 

                            

                                                                                                                                     (3)  

  

  The derivative can be determined without explicitly solving for the solutions of (3) by 

noting that 

                         

 

 

   If the matrix A is such that u’(x) is negative for all  then it is reasonable to 

expect that the distance of the state of (3) from x=0 will decrease with increasing time 

and that the state will therefore tend to the equilibrium x=0 of (3) with increasing time 

t. 

   In the following discussion we will employ as a ‘’ generalized distance function ‘’ 

the quadratic form given by: 

                                        

                                                                             (4) 

 

   Where P is a real n x n matrix .The time derivative of u(x) along the solutions of       

(3) is determined as:   

 

                                         
 

                                                                                                          (5) 

 

 

       where                   

                                                                                                (6) 
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    Note that C is real and C
T 

= C. The system of equations given in (6) is called the 

Lyapunov Matrix Equation. 

 

   We recall that since P is real and symmetric, all its eigenvalues are real.  

 

   Theorem 1: The equilibrium x=0 of (3) is stable if there exists a real, symmetric, 

and positive definite n x n matrix P such that the matrix C given in (6) is negative 

semidefinite.  

 

Proof. Along any solution   

                                            
 of (3) with 

                                            
  

 we have: 

                        

 

 for all  .Since P is positive definite and C is negative definite we have: 

 

         

 for all  . And there exist: 

                                                       
  such that     

                                                                 

for all  . It follows that 

                                                 

for all   and for any x0 ε R
n
. Therefore the equilibrium x=0 of (3) is stable. 

 

 

  Theorem 2: The equilibrium x=0 of (3) is exponentially stable in the large if there 

exists a real, symmetric, and positive definite n x n matrix P such that the matrix C 

given in (6) is negative definite. 

 

  Proof. We let:      

                                  
 

 

  denote an arbitrary solution of (3) with   
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                                                                     . 

  In view of the hypotheses of the theorem, there exist constants    

                                                                                                       
                                                                                               and     

                                                                                                       
 such that: 

 

                          
       and 

 

                         
 

 

    
 

   Then 

                for all 

   
 

This implies, after multiplication by the appropriate integrating factor, and integrating 

from 0 to t, that   

                             

                        
or 

                       
or 

                       
This inequality holds for all x0 ε R

n
. Therefore, the equilibrium x=0 of (3) is 

exponentially stable in the large. 

 

 

  Theorem 3: The equilibrium x=0 of (3) is unstable if there exists a real, symmetric n 

x n matrix P that is either negative definite or indefinite such that the matrix C given 

in (6) is negative definite. 

 

  Proof: We first assume that P is indefinite. Then P possesses eigenvalues of either 

sign, and every neighborhood of the origin contains points where the function: 

                                                  

                                                 
  is positive and negative. Consider the neighborhood  
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  where   

                    denotes the Euclidean norm and let  

 

                                           
 

  On the boundary of G we have either || x ||=ε or u(x) = 0. In particular, note that the 

origin x=0 is on the boundary of G. Now, since the matrix C is negative definite, there 

exist constants c3 > c4 > 0 such that 

 

                                        
 

for all x ε R
n
. Let      

                                   
                       and 

                                    
      

  Then u(x0) = - α < 0. The solution  starting at x=0 must leave the set G. To see 

this, note that as long as 

                                                 
                                  since   

                                                                in G  . 

  Let –c= sup {u’(x): x ε G and u(x) < -α}. 

 

Τhen c>0 and  

                                
   The inequality shows that Φ(t) must escape the set G in finite time because u(x) is 

bounded from below on G. But Φ(t) cannot leave G through the surface determined by 

u(x) = 0  since  

                         
  

   Hence, it must leave G through the sphere determined by || x || = ε. Since the above 

argument holds arbitrarily small ε > 0, it follows that the origin x=0 of (3) is unstable. 

   Next we assume that P is negative definite. Then G as defined is all of B(ε). The 

proof proceeds as above. 

  

   The proof of the above theorem shows that for ε > 0 sufficiently small when P is 

negative definite, all solutions Φ(t) of (3) with initial conditions x0 ε Β (ε) will tend 

away from the origin. This constitutes a severe case of instability called complete 

instability.   

 

  Theorem 4: Assume that the matrix A [for the system (3)] has no eigenvalues with 

real part equal to zero. If all the eigenvalues of A have negative real parts or if at 
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least one of the eigenvalues of A has a positive real part then there exists a quadratic 

Lyapunov function    

                                
whose derivative along the solutions of (3) is definite (it is either negative or positive 

definite).   

 

    

   This result shows that when A is a stable matrix, then from (3) the conditions of 

Theorem 1 are also necessary conditions for stability. Moreover, in the case when the 

matrix A has at least one eigenvalue with positive real part and no eigenvalues on the 

imaginary axis, then the conditions of Theorem 3 are also necessary conditions for 

instability. 

 

 

 

Controllability: 

 

 

   A system with internal state vector x is called controllable if and only if the system 

states can be changed by changing the system input. 

  x’ = Ax + Bu 

x is the state vector, 

u is the input or control vector, 

A is the state matrix, 

B is the input matrix. 

The controllability matrix is given by: 

R = [ B  AB  A
2
B  …  A

n-1
B]. 

   The system is controllable if the controllability matrix R has a full row rank of p 

where p is the dimension of the matrix A, and p x q is the dimension of matrix B. 

 


