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Preface

Fuzzy sets were introduced by Zadeh (1965) as a means of representing

and manipulating data that was not precise, but rather fuzzy.

Fuzzy logic provides an inference morphology that enables approximate

human reasoning capabilities to be applied to knowledge-based systems.

The theory of fuzzy logic provides a mathematical strength to capture

the uncertainties associated with human cognitive processes, such as

thinking and reasoning. The conventional approaches to knowledge

representation lack the means for representating the meaning of fuzzy

concepts. Artificial neural systems can be considered as simplified

mathematical models of brain-like systems and they function as

parallel distributed computing networks. However, in contrast to

conventional computers, which are programmed to perform specific

task, most neural networks must be taught, or trained.

Perhaps the most important advantage of neural networks is their adaptivity.

Neural networks can automatically adjust their weights to optimize their

behavior as pattern recognizers, decision makers, system controllers,

predictors, etc. Adaptivity allows the neural network to perform well

even when the environment or the system being controlled varies over time.

The success of the adaptive fuzzy system representations in approximating

the nonlinear function f(x) depends on the careful selection of the fuzzy

partitions of input and output variables, the selected type of the membership

functions and the proper number of fuzzy rules.
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1 Abstract

The direct adaptive regulation of unknown nonlinear dynamical systems is considered
in this DIPLOMA THESIS.

The method is based on a new Neuro-Fuzzy Dynamical Systems definition, which
uses the concept of Fuzzy Dynamical Systems (FDS) operating in conjunction with
High Order Neural Network Functions (F-HONNFs).

Figure 1. Fuzzy Dynamical System

Since the plant is considered unknown, we first propose its approximation by a
special form of a fuzzy dynamical system (FDS) and in the sequel the fuzzy rules are
approximated by appropriate HONNFs.

Thus the identification scheme leads up to a Recurrent High Order Neural Network,
which however takes into account the fuzzy output partitions of the initial FDS.

The proposed scheme does not require a-priori experts’ information on the number
and type of input variable membership functions making it less vulnerable to initial
design assumptions.

Once the system is identified around an operation point, it is regulated to zero
adaptively.
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Weight updating laws for the involved HONNFs are provided, which guarantee that
both the identification error and the system states reach zero exponentially fast, while
keeping all signals in the closed loop bounded.

The existence of the control signal is always assured by introducing a method of
parameter hopping,which is incorporated in the weight updating law.



Part II

Introduction
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2 Introduction

Nonlinear time invariant dynamical systems can be represented by general nonlinear
dynamical equations of the form

ẋ = f(x, u) (1)

The mathematical description of the system is required, so that we are able

to control it.

Unfortunately, the exact mathematical model of the plant,especially when this is

highly nonlinear and complex, is rarely known and thus appropriate identification

schemes have to be applied which will provide us with an approximate model

of the plant.

It has been established that neural networks and fuzzy inference systems are

universal approximators [(1)], [(2)], i.e., they can approximate any

nonlinear function to any prescribed accuracy provided that sufficient hidden

neurons and training data or fuzzy rules are available.

Recently, the combination of these two different technologies has given rise to fuzzy

neural or neuro fuzzy approaches, that are intended to capture the advantages of

both fuzzy logic and neural networks.

Numerous works have shown the viability of this approach for system modeling

[(3)] - [(4)].

The neural and fuzzy approaches are most of the time equivalent, differing between

each other mainly in the structure of the approximator chosen.
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Figure 2. Neural Network

Indeed, in order to bridge the gap between the neural and fuzzy approaches several

researchers introduce adaptive schemes using a class of parameterized functions

that include both neural networks and fuzzy systems [(5)] - [(9)].

Regarding the approximator structure, linear in the parameters approximators are

used in [(9)], [(12)], and nonlinear in [(13)], [(14)], [(15)].

In the neuro or neuro fuzzy control approaches, most of the already presented works

[(9)] - [(15)] deal with indirect adaptive control (trying first to identify

the dynamics of the systems and then generating a control input according

to the certainty equivalence principle), whereas few authors

[(16)] and [(12)] face the direct approach (directly generating

the control input to guarantee stability), because it is not always clear how

to construct the control law without knowledge of the system dynamics.

Recently [(18)], [(19)], high order neural network function approximators

(HONNFs) have been proposed for the identification of nonlinear

dynamical systems of the form (1), approximated by a Fuzzy Dynamical System.
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This approximation depends on the fact that fuzzy rules could be identified

with the help of HONNFs. In this diploma thesis HONNFs are also used for the

neuro fuzzy direct control of nonlinear dynamical systems, which comprises of

two interrelated phases:

First the identification of the model and second the control of the plant.

The identification phase usually consists of two categories:

Structure identification and Parameter identification.

Structure identification involves finding the main input variables out of all possible,

specifying the membership functions, the partition of the input space

and determining the number of fuzzy rules which is often based on a

substantial amount of heuristic observation to express proper strategy’s knowledge.

Most of structure identification methods are based on data clustering, such as

fuzzy C-means clustering [(8)], mountain clustering [(10)],

and subtractive clustering [(11)]. These approaches require that all

input-output data are ready before we start to identify the plant.

So these structure identification approaches are off-line.

In the proposed approach structure identification is also made off-line

based either on human expertise or on gathered data.

However, the required a-priori information obtained by linguistic

information or data is very limited.

The only required information is an estimate of the centers

of the output fuzzy membership functions.
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Information on the input variable membership functions and on the

underlying fuzzy rules is not necessary because this is automatically

estimated by the HONNFs.

This way the proposed method is less vulnerable to initial design assumptions.

The parameter identification is then easily addressed by HONNFs, based on

the linguistic information regarding the structural identification of

the output part and from the numerical data obtained from the actual system

to be modeled.

We consider that the nonlinear system is affine in the control and could

be approximated with the help of two independent fuzzy subsystems.

Every fuzzy subsystem is approximated from a family of HONNFs, each

one being related with a group of fuzzy rules.

In this thesis HONNFs are also used for the neuro fuzzy direct control

of nonlinear dynamical systems in Brunovsky canonical form with modeling errors.

In the proposed approach the underlying fuzzy model is of Mamadani type.

The structure identification is also made off-line based either on human

expertise or on gathered data.

However [(20)], the required a-priori information obtained by

linguistic information or data is very limited. The only required information

is an estimate of the centers of the output fuzzy membership functions.

Information on the input variable membership functions and on the underlying

fuzzy rules is not necessary because this is automatically estimated by the HONNFs.

This way the proposed method is less vulnerable to initial design assumptions.

The parameter identification is then easily addressed by HONNFs, based on the
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Figure 3. Mamadani’s Fuzzy model

linguistic information regarding the structural identification of the output

part and from the numerical data obtained from the actual system to be modeled.

We consider that the nonlinear system can be expressed in Brunovsky

canonical form. We also consider that its unknown nonlinearities could

be approximated with the help of two independent fuzzy subsystems.

We also assume the existence of disturbance expressed as modeling error

terms depending on both input and system states.

Every fuzzy subsystem is approximated from a family of HONNFs, each one

being related with a group of fuzzy rules.

Weight updating laws are given and we prove that when the structural

identification is appropriate and the modeling error terms are within a

certain region depending on the input and state values, then the error

reaches zero very fast.

Also, an appropriate state feedback is constructed to achieve asymptotic
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regulation of the output, while keeping bounded all signals in the closed loop.

The existence of the control signal is always assured by introducing a

method of parameter hopping, which is incorporated in the weight updating law.
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3 Neuro-Fuzzy Adaptive Systems

3.1 Fuzzy Systems-Theory-Historical Background

Fuzzy sets were introduced by Zadeh (1965) as a means of representing

and manipulating data that was not precise, but rather fuzzy.

Fuzzy logic provides an inference morphology that enables approximate

human reasoning capabilities to be applied to knowledge-based systems.

The theory of fuzzy logic provides a mathematical strength to capture

the uncertainties associated with human cognitive processes, such as

thinking and reasoning. The conventional approaches to knowledge

representation lack the means for representating the meaning of fuzzy concepts.

As a consequence, the approaches based on first order logic and classical

probablity theory do not provide an appropriate conceptual framework for

dealing with the representation of commonsense knowledge, since such knowledge

is by its nature both lexically imprecise and noncategorical.The developement of

fuzzy logic was motivated in large measure by the need for a conceptual framework

which can address the issue of uncertainty and lexical imprecision.

Some of the essential characteristics of fuzzy logic relate to the following :

• In fuzzy logic, exact reasoning is viewed as a limiting case of approximate reasoning.

• In fuzzy logic, everything is a matter of degree.

• In fuzzy logic, knowledge is interpreted a collection of elastic or, equivalently,
fuzzy constraint on a collection of variables.
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• Inference is viewed as a process of propagation of elastic constraints.

• Any logical system can be fuzzified.

• There are two main characteristics of fuzzy systems that give them better

performance for specific applications.

• Fuzzy systems are suitable for uncertain or approximate reasoning, especially for
the system with a mathematical model that is difficult to derive.

• Fuzzy logic allows decision making with estimated values under incomplete or un-
certain information.

3.2 Neural Systems

While fuzzy logic performs an inference mechanism under cognitive uncertainty,

computational neural networks offer exciting advantages, such as learning,

adaptation, fault-tolerance, parallelism and generalization. A brief comparative

study between fuzzy systems and neural networks in their operations in the context

of knowledge acquisition, uncertainty, reasoning and adaptation is presented in

figure 4

Artificial neural systems can be considered as simplified mathematical models

of brain-like systems and they function as parallel distributed computing

networks. However, in contrast to conventional computers, which are programmed

to perform specific task, most neural networks must be taught, or trained.

They can learn new associations, new functional dependencies and new patterns.

The study of brain-style computation has its roots over 50 years ago in the work

of McCulloch and Pitts (1943) and slightly later in Hebbs famous Organization of

Behavior (1949). The early work in artificial intelligence was torn between those
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Figure 4. Properties of fuzzy systems and neural networks

who believed that intelligent systems could best be built on computers modeled

after brains, and those like Minsky and Papert who believed that intelligence was

fundamentally symbol processing of the kind readily modeled on the

von Neumann computer.For a variety of reasons, the symbol-processing approach

became the dominant theme in artifcial intelligence.

The 1980s showed a rebirth in interest in neural computing:

• Hopfield (1985) provided the mathematical foundation for understanding

the dynamics of an important class of networks.

• Rumelhart and McClelland (1986) introduced the backpropagation learning

algorithm for complex, multi-layer networks and thereby provided an answer to one

of the most severe criticisms of the original perceptron work.

To enable a system to deal with cognitive uncertainties in a manner more

like humans, one may incorporate the concept of fuzzy logic into
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the neural networks. The resulting hybrid system is called fuzzy

neural, neural fuzzy, neuro-fuzzy or fuzzy-neuro network.

Figure 5. Fuzzy-Neuro network

Neural networks are used to tune membership functions of fuzzy systems

that are employed as decision-making systems for controlling equipment.

Although fuzzy logic can encode expert knowledge directly using rules

with linguistic labels, it usually takes a lot of time to design and

tune the membership functions which quantitatively define these linquistic

labels. Neural network learning techniques can automate this process and

substantially reduce development time and cost while improving performance.

In theory, neural networks, and fuzzy systems are equivalent in that they

are convertible, yet in practice each has its own advantages and disadvantages.

For neural networks, the knowledge is automatically acquired by the

backpropagation algorithm, but the learning process is relatively slow and
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analysis of the trained network is difficult (black box). Neither is it possible

to extract structural knowledge (rules) from the trained neural network, nor can

we integrate special information about the problem into the neural network in order

to simplify the learning procedure. Fuzzy systems are more favorable in that

their behavior can be explained based on fuzzy rules and thus their performance

can be adjusted by tuning the rules. But since, in general, knowledge acquisition

is difficult and also the universe of discourse of each input variable needs to be

divided into several intervals, applications of fuzzy systems are restricted to the

fields where expert knowledge is available and the number of input variables is small.

To overcome the problem of knowledge acquisition, neural networks are extended to

automatically extract fuzzy rules from numerical data. Cooperative approaches use

neural networks to optimize certain parameters of an ordinary fuzzy system, or to

preprocess data and extract fuzzy (control) rules from data.

Figure 6. Neural fuzzy system
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1 Translate experts knowledge into a symbolic representation.

2 Initialize the neural net by symbolic representation.

3 Decrease errors between actual system and neural net by learning.

4 Translate the distributed representation based upon the structure
of neural net.

5 Acquire knowledge from the modified symbolic representation.

The basic processing elements of neural networks are called artificial neurons,

or simply neurons. We emphasize here that all inputs, outputs and the weights

of a hybrid neural net are real numbers taken from the unit interval [0, 1].

Figure 7. A discrete membership function for x is close to 1

A processing element of a hybrid neural net is called fuzzy neuron.

It is well-known that regular nets are universal approximators,i.e. they can

approximate any continuous function on a compact set to arbitrary accuracy.

In a discrete fuzzy expert system one inputs a discrete approximation to the fuzzy



20

Figure 8. A membership function for x is close to 1

sets and obtains a discrete approximation to the output fuzzy set.

Usually discrete fuzzy expert systems and fuzzy controllers

are continuous mappings. Thus we can conclude that given a continuous fuzzy

expert system, or continuous fuzzy controller, there is a regular net that

can uniformly approximate it to any degree of accuracy on compact sets.

The problem with this result that it is non-constructive and does not tell you

how to build the net.

A fuzzification operator has the effect of transforming crisp data into fuzzy sets.

In most of the cases we use fuzzy singletons as fuzzifiers

fuzzifier(x0) := x0

where x0 is a crisp input value from a process.

Hybrid neural nets can be used to implement fuzzy IF-THEN rules in a constructive

way. Though hybrid neural nets can not use directly the standard error

backpropagation algorithm for learning, they can be trained by steepest
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Figure 9. Fuzzy Logic Controller

Figure 10. Fuzzy singleton as fuzzifier
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descent methods to learn the parameters of the membership functions

representing the linguistic terms in the rules. The direct fuzzification

of conventional neural networks is to extend connection weigths

and/or inputs and/or fuzzy desired outputs (or targets) to fuzzy numbers.

The computational process envisioned for fuzzy neural systems is as follows.

It starts with the development of a fuzzy neuron based on the understanding

of biological neuronal morphologies, followed by learning mechanisms.This leads

to the following three steps in a fuzzy neural computational process development

of fuzzy neural models motivated by biological neurons, models of synaptic

connections which incorporates fuzziness into neural network, development of

learning algorithms (that is the method of adjusting the synaptic weights).

Two possible models of fuzzy neural systems are :

• In response to linguistic statements, the fuzzy interface block provides an input

vector to a multi-layer neural network. The neural network can be adapted (trained)

to yield desired command outputs or decisions.

• A multi-layered neural network drives the fuzzy inference mechanism.
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Figure 11. The first model of fuzzy neural system.

Figure 12. The second model of fuzzy neural system.

3.3 Applications of artificial neural networks

There are large classes of problems that appear to be more amenable to solution

by neural networks than by other available techniques. These tasks often

involve ambiguity, such as that inherent in handwritten character recognition.

Problems of this sort are difficult to tackle with conventional methods

such as matched filtering or nearest neighbor classification, in part because
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the metrics used by the brain to compare patterns may not be very closely

related to those chosen by an engineer designing a recognition system.

Likewise, because reliable rules for recognizing a pattern are usually

not at hand, fuzzy logic and expert system designers also face the

difficult and sometimes impossible task of finding acceptable descriptions

of the complex relations governing class inclusion. In trainable neural

network systems, these relations are abstracted directly from training data.

Moreover, because neural networks can be constructed with numbers of inputs

and outputs ranging into thousands, they can be used to attack problems that

require consideration of more input variables than could be feasibly utilized by

most other approaches. It should be noted, however, that neural networks will not

work well at solving problems for which sufficiently large and general sets of

training data are not obtainable:

• The telecommunications industry :

Many neural network applications are under development in the telecommunications

industry for solving problems ranging from control of a nationwide switching

network to management of an entire telephone company. Other aplications at

the telephone circuit level turn out to be the most significant commercial

applications of neural networks in the world today.Modems, commonly used

for computer-to-commputer communications and in every fax machine, have

adaptive circuits for telephone line equalization and for echo cancellation.

• Control of sound and vibration :

Active control of vibration and noise is accomplished by using an adaptive actuator

to generate equal and opposite vibration and noise.This is being used in
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air-conditioning systems, in automotive systems, and in industrial applications.

• Particle accelerator beam control:

The Stanford linear accelerator Center is now using adaptive techniques

to cancel disturbances that diminish the positioning accuracy of opposing

beams of positrons and electrons in a particle colloder.

• Quality control in manufacturing :

Neural networks are being used in a large number of quality control and quality

assurance programs throughout industry.Applications include contaminant-level

detection from spectroscopy data at chemical plants and loudspeaker defect

classification by CTS Electronics.

• Medical applications :

Commercial products by Neuromedical Systems Inc. are used for cancer screening

and other medical applications. The company markets electrocardiograph and pap

smear systems that rely on neural network technology. The pap smear system.

Papnet,is able to help cytotechnologists spot cancerous cells, drastically

reducing false/negative classifications.

• Automobile applications :

Ford Motor Co., General Motors, and other automobile manufacturers are

currently researching the possibility of widespread use of neural networks

in automobiles and in automobile production. Some of the areas that are

yielding promising results in the laboratory include engine fault detection

and diagnosis, antilock brake control, active-suspension control, and

idle-speed control. General Motors is having preliminary success using

neural networks to model subjective customer ratings of automobiles
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based on their dynamic characteristics to help engineers tailor

vehicles to the market.

• Biomedical applications :

Neural networks are rapidly finding diverse applications in the

biomedical sciences. They are being used widely in research on

amino acid sequencing in RNA and DNA, ECG and EEG waveform classification,

prediction of patients reactions to drug treatments, prevention of

anesthesia-related accidents, arrhythmia recognition for implantable

defibrillators patient mortality predictions, quantitative cytology,

detection of breast cancer from mammograms, modeling schizophrenia,

clinical diagnosis of lowerback pain, enhancement and classification

of medical images, lung nodule detection, diagnosis of hepatic masses,

prediction of pulmonary embolism likelihood from ventilation-perfusion

lung scans, and the study of interstitial lung disease.

3.4 Adaptivity of Neural Networks

Perhaps the most important advantage of neural networks is their adaptivity.

Neural networks can automatically adjust their weights to optimize their

behavior as pattern recognizers, decision makers, system controllers,

predictors, etc. Adaptivity allows the neural network to perform well

even when the environment or the system being controlled varies over time.

There are many control problems that can benefit from continual nonlinear

modeling and adaptation.While fuzzy logic performs an inference mechanism

under cognitive uncertainty, computational neural networks offer exciting
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Figure 13. Direct Adaptive Control System

advantages, such as learning, adaptation, fault-tolerance, parallelism

and generalization. Self-optimization allows the neural network to design itself.

The system designer first defines the neural network architecture, determines how

the network connects to other parts of the system, and chooses a training

methodology for the network. The neural network then adapts to the application.

Neural networks, such as those used by Pavilion in chemical process control,

and by Neural Application Corp. in arc furnace control, are ideally suited to

track problem solutions in changing environments. Additionally, with some

programmability, such as the choices regarding the number of neurons per

layer and number of layers, a practitioner can use the same neural network

in a wide variety of applications. Engineering time is thus saved.

Another example of the advantages of self-optimization is in the field of

Expert Systems. In some cases, instead of obtaining a set of rules through

interaction between an experienced expert and a knowledge engineer, a neural
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system can be trained with examples of expert behavior.

A good understanding of adaptive control involves good knowledge of control design

for linear time-invariant systems, basic stability theory of nonlinear systems,

and some mathematical maturity. Several books and research monographs

as well as numerous papers on the theory and application of adaptive control

already exist. Despite the maturity of the field and the numerous publications,

the field of adaptive control appears to many as a collection of unrelated techniques,

intelligent tricks, and fixes, and very few researchers can really follow the long and

technical stability proofs. On the implementation side, designing stable

adaptive control systems and simulating them on a digital computer to demonstrate

their theoretical properties could also be an adventure if one does not have

a good understanding of the basic theoretical properties and limitations of

adaptive control.

The performance, complexity, and adaptive law of an adaptive fuzzy system

representation can be quite different depending upon whether the representations

is linear or nonlinear in its adjustable parameters. Adaptive fuzzy controllers

depend also on the type of the adaptive fuzzy subsystems they use.

According to [(2)], we classify adaptive fuzzy controllers into two types:

• If the fuzzy logic systems used in an adaptive fuzzy controller are linear in their
adjustable parameters, this adaptive fuzzy controller is called a first -type adaptive
fuzzy controller

• If the fuzzy logic systems used in an adaptive fuzzy controller are nonlinear in their
adjustable parameters, this adaptive fuzzy controller is called a second -type adap-
tive fuzzy controller
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Notice that both first and second types of adaptive fuzzy controllers are nonlinear
adaptive controllers.

Suppose that the adaptive fuzzy system is intended to approximate the nonlinear
function f(x).

In the first-type adaptive fuzzy controller, Wang [(1)] uses the following fuzzy logic
representation:

f(x) =
M∑
l=1

θlξl(x) = θT ξ(x) (2)

where M is the number of fuzzy rules, θ = (θ1, ..., θM )T , ξ(x) = (ξ1(x), ..., ξM (x))T

and ξl(x) is the fuzzy basis function defined by

ξl(x) =

∏n
i=1 µF l

i
(xi)∑M

l=1

∏n
i=1 µF l

i
(xi)

θl are adjustable parameters, and µF l
i

are given membership functions of the in-
put variables (can be Gaussian, triangular, or any other type of membership functions).

Clearly, Eq. (2) is equivalent to the following equation assuming that µF l
i

are given:
that is, µF l

i
will not change during the adaptation procedure.

f(x) =

∑M
l=1 y

l
(∏n

i=1 µF l
i
(x)
)

∑M
l=1

(∏n
i=1 µF l

i
(x)
) (3)

In the second-type adaptive fuzzy controller, the following fuzzy logic system is used:

f(x) =

∑M
l=1 y

l
(∏n

i=1 exp(−(xi−xl
i

σl
i

)2)
)

∑M
l=1

(∏n
i=1 exp(−(xi−xl

i

σl
i

)2)
) (4)

where yl, xli, σ
l
i are the adjustable parameters.

From the above definitions it is apparent that the success of the adaptive

fuzzy system representations in approximating the nonlinear function f(x)

depends on the careful selection of the fuzzy partitions of input and output variables,

the selected type of the membership functions and the proper number of fuzzy rules.
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In approximating complex nonlinear functions, this number may become

very large [(2)] leading to parameter explosion.
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4 Indicator Functions for Fuzzy Systems

Let us consider the system with input space u ⊂ Rm and state - space x ⊂ Rn ,

with its i/o relation being governed by the following equation

zt = f(xt, ut) (5)

where f(·) is a continuous function and the superscript t denotes the

temporal variable.

In case the system is dynamic the above equation could be replaced by the following
difference equation

xt+1 = f(xt, ut) (6)

where the superscript t denotes the temporal variable, t = 1, 2, ....

By setting y = [x, u] and omiting superscript t, Eq. (26) may be rewritten as follows

z = f(y) (7)

In many practical situations, we are unable to measure accurately the states

and inputs of a system of the form in (26);

In most cases, we are provided with cheap sensors, expert’s opinions, e.t.c which

provide us with imprecise estimations of the state and input vectors.

Thus, instead of vectors x and u we are provided with some linguistic variables x̃i

and ũi, respectively.

Let now ỹ := (x̃, ũ) and suppose that each linguistic variable ỹi belongs to a finite
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set Li with cardinality ki, i.e. ỹi takes one of ki variables.

Let also ỹij denotes the ith element of the set Li.

Then we may define a function h̃i : R→ Li to be the output function of the system

in Eq. (28) in the case that

ỹi = h̃i(yi) (8)

Note that h̃i(·) maps the real axis into a set of linguistic variables Li , and thus
h̃i(·) is not defined in the usual way.

In order to overcome such a problem we define the function h̃i : R → {1, 2, ..., ki}
as follows

h̃i(yi) = ỹij ⇐⇒ hi(yi) = j (9)

Since hi(·) is very similar to h̃i(·) , we will call the function hi(·) the ith output of
the system in Eq. (28).

Also, h̃i(·) and consequently hi(·) is related with the structural identification part

mentioned in section 2 and arrive after using an automatic procedure based on

system operation data or after consulting human experts advising on how

to partition the system variables.

Following the standard approach in fuzzy systems theory we associate with each ỹij

a membership function µ̃ij(yi) ∈ [0, 1] which satisfies

µ̃ij(yi) = max
l
µ̃il(yi)⇐⇒ hi(yi) = j (10)

From the definition of the functions h̃i(·) [or hi(·)] we have that the space y = x×u
is partitioned in the following way: let yij be defined as follows

yij = {yi ∈ R : hi(yi) = j} (11)
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i.e. yij denotes the set of all the variables yi that output the same linguistic variable
ỹij .

Thus y is partitioned into disjoint subsets yj1,j2,...,jn+m
defined as follows

yj1,j2,...,jn+m
:= y1j1

× · · · × y(n+m)jn+m
, ji ∈ {1, 2, ..., ki} (12)

In a similar way we may define the sets xij , uij , zij and the sets xj1,j2,...,jn ,
uj1,j2,...,jn and zj1,j2,...,jn .

Note now the following fact:

for two vectors (x(1), u(1)) ∈ yj1,j2,...,jn+m
and (x(2), u(2)) ∈ yj1,j2,...,jn+m

there maybe

hi(fi(x(1), u(1))) 6= hi(fi(x(2), u(2))) (13)

for some i ∈ {1, 2, ..., n} , i.e. two input vectors belonging to the same subset
yj1,j2,...,jn+m

may point - through the vector - field f(·) , to different subsets zl1,l2,...,ln
.

Let now Ωl1,l2,...,lnj1,j2,...,jn+m
be defined as the subset of yj1,j2,...,jn+m

that points - through
the vector - field f(·) , to the subsets zl1,l2,...,ln ,

i.e
Ωl1,l2,...,lnj1,j2,...,jn+m

:= {(x, u) ∈ yj1,j2,...,jn+m
: h1(z1) = l1, ..., hn(zn) = ln}

and define the transition possibilities πl1,...,lnj1,...,jn+m
as follows

πl1,...,lnj1,...,jn+m
:=

∫
(x,u)∈Ωl1,...,ln

j1,...,jn+m

dXdU∫
(x,u)∈yj1,...,jn+m

dXdU
(14)

where πl1,...,lnj1,...,jn+m
is a number belonging to a set [0,1] that represents the fraction

of the vectors (x,u) in yj1,...,jn+m
that points - through the vector field f(·)

to the set χl1,...,ln .
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Obviously ∑
l1,...,ln

πl1,...,lnj1,...,jn+m
= 1 (15)

In order to present the lemma , we define the indicator function:

Let I l1,l2,...,lnj1,j2,...,jn+m
denote the indicator function of the subset Ωl1,l2,...,lnj1,j2,...,jn+m

, that is,

I l1,...,lnj1,...,jn+m
(x, u) =

{
1 if (x, u) ∈ Ωl1,...,lnj1,...,jn+m

0 otherwise
(16)

Using the above definitions, we can see that the system in Eq. (28) is described by
fuzzy rules of the form

Rl1,...,lnj1,...,jn+m
⇔


IF y1 is ỹ1j1 AND...

AND yn+m is ỹ(n+m)jn+m

THEN
z1 is z̃1l1 AND...AND zn is z̃nln

with possibility πl1,...,lnj1,...,jn+m

 . (17)

where obviously ỹiji = h̃i(yti) and z̃ili = h̃i(zi) = h̃i(fi(x, u)).

In the above notation, if j1 = l1, j2 = l2 and . . . and jn = ln, then these points
participate to the definition of the same fuzzy rule.

If j1 6= l1 or j2 6= l2 or or jn 6= ln, then these points define alternative fuzzy rules
describing this transition.

4.1 Describing Fuzzy Systems

A Fuzzy System - (FS) is a set of Fuzzy Rules of the form (Rl1,l2,...,lnj1,j2,...,jn+m
);

the system in Eq. (26) is called the Underlying System - (US) of the previously
defined FS.

Alternatively, the system in Eq. (26) will be called a Generator of the FS that is
described by the rules

(Rl1,l2,...,lnj1,j2,...,jn+m
).

Due to the linguistic description of the variables of the FS it is not rare to have
more than one systems of the form in Eq. (28) to be generators for the FS that is
described by the rules
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(Rl1,l2,...,lnj1,j2,...,jn+m
).

Define now the following system

z =
∑

z̄l1,...,lnj1,...,jn+m
× I l1,...,lnj1,...,jn+m

(χ, u) (18)

Where z̄l1,...,lnj1,...,jn+m
∈ Rn be any vector satisfying hi(z̄

l1,...,ln
j1,...,jn+m

(i)) = li

where z̄l1,...,lnj1,...,jn+m
(i) denotes the ith entry of z̄l1,...,lnj1,...,jn+m

Then, according to [(1)], [(2)] the system in (30) is a generator for the FS

(Rl1,l2,...,lnj1,j2,...,jn+m
).

It is obvious that Eq. (30) can be also valid for dynamic systems. In its dynamical
form it becomes

χt+1 =
∑

x̄l1,...,lnj1,...,jn+m
× I l1,...,lnj1,...,jn+m

(χt, ut) (19)

Where x̄l1,...,lnj1,...,jn+m
∈ Rn be any vector satisfying hi(x̄

l1,...,ln
j1,...,jn+m

(i)) = li

where x̄l1,...,lnj1,...,jn+m
(i) denotes the ith entry of x̄l1,...,lnj1,...,jn+m
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5 Using High Order Neural Network Functions in order to
approximate the indicator functions

The main idea in presenting the main result of this section lies on

the fact that functions of high order neurons are capable of approximating

discontinuous functions; thus, we use high order neural network functions in order
to approximate the indicator functions

I l1,...,lnj1,...,jn+m
.

However, in order the approximation problem to make sense the space y := x×u

must be compact. Thus, our first assumption is the following:

(A.1) y := x×u is a compact set.

Notice that since y ⊂ <n+m the above assumption is identical to

the assumption that it is closed and bounded. Also, it is noted that even if y

is not compact we may assume that there is a time instant T such that (xt, ut)

remain in a compact subset of y for all t < T ;

i.e. if yT := {(xt, ut) ∈ y, t < T}

We may replace assumption (A.1) by the following assumption

(A.2) yT is a compact set.

It is worth noticing, that while assumption (A.1) requires the system in Eq. (27)

solutions to be bounded for all ut ∈ U and x0 ∈ X,assumption (A.2)

requires the system in Eq. (27) solutions to be bounded for a finite time period;

thus, assumption (A.1) requires the system in Eq. (27) to be BIBS stable

while assumption (A.2) is valid for systems that are not BIBS stable and, even more,
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for unstable systems and systems with finite escape times.

We are now ready to show that high order neural network functions are capable of

approximating the indicator functions I l1,...,lnj1,...,jn+m

Let us define the following high order neural network functions (HONNFs).

N(x, u;w,L) =
L∑
k=1

wk
∏
j∈Ik

Φ
dj(k)
j (20)

Where {I1, I2, ..., IL} is a collection of L not-ordered subsets of {1, 2, ...,m+ n},

dj(k) are non-negative integers, Φj are sigmoid functions of the state or the input,

which are the elements of the following vector

Phi =



Phi1
.
.
.

Phin
Phin+1

.

.

.
Phim+n


=



S(x1)
.
.
.

S(xn)
S(u1)
.
.
.

S(um)


(21)

where

S(u) or S(x) = a
1

1 + e−βx
− γ (22)

and w := [w1 · · · wL]T are the HONNF weights.

Eq. (32) can also be written

N(x, u;w,L) =
L∑
k=1

wksk(x, u) (23)

Where sk(x, u) are high order terms of sigmoid functions of the state and/or input.
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The next lemma [(3)] states that a HONNF of the form in Eq. (35)

can approximate the indicator function I l1,...,lnj1,...,jn+m
.

Lemma 1. Consider the indicator function I l1,...,lnj1,...,jn+m
and the family of the HONNFs

N(x, u;w,L).

Then for any ε > 0 there is a vector of weights wj1,...,jn+m;l1,...,ln

and a number of Lj1,...,jn+m;l1,...,ln high order connections such that

sup
(x,u)∈ȳ{I

l1,...,ln
j1,...,jn+m

(x, u)−N(x, u;wj1,...,jn+m;l1,...,ln , Lj1,...,jn+m;l1,...,ln)} < ε

where ȳ ≡ y if assumption (A.1) is valid

and ȳT ≡ y if assumption (A.2) is valid.

Let us now keep Lj1,...,jn+m;l1,...,ln constant, i.e. let us preselect the number of

high order connections, and let us define the optimal weights of the HONNF

with Lj1,...,jn+m;l1,...,ln high order connections as follows

w̄j1,...,jn+m;l1,...,ln := arg min
w∈Rj1,...,jn+m;l1,...,ln

×
{

sup
(x,u)∈ȳ

∣∣∣I l1,...,lnj1,...,jn+m
(x, u)−N(x, u;w,Lj1,...,jn+m;l1,...,ln)

∣∣∣}
and the modelling error as follows

νl1,...,lnj1,...,jn+m
(x, u) = I l1,...,lnj1,...,jn+m

(x, u)−N(x, u;wj1,...,jn+m;l1,...,ln , Lj1,...,jn+m;l1,...,ln)

It is worth noticing that from Lemma 1 we have that

sup
(x,u)∈ȳ

∣∣∣νl1,...,lnj1,...,jn+m
(x, u)

∣∣∣
can be made arbitrarily small by simply selecting appropriately the number of

high order connections. Using the approximation Lemma 1

it is natural to approximate system in Eq. (31) by the following dynamical system

zt+1 =
∑
x̄l1,...,lnj1,...,jn+m

(x, u)××N(zt, ut;wj1,...,jn+m;l1,...,ln , Lj1,...,jn+m;l1,...,ln)

Let now χt(χ0, ut) denote the solution in Eq. (31) given that the initial state

at t = 0 is equal to χ0 and the input is ut. Similarly we define zt(z0, ut).
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Also let

ν(zt, ut) =
∑

(x̄l1,...,lnj1,...,jn+m
(x, u)× νl1,...,lnj1,...,jn+m

(zt, ut)) (24)

Then, it can be easily shown that

zt(z0, ut) = χt(z0, ut) + ν(zt, ut) (25)

Note now that from the approximation Lemma 1 and the definition of ν(zt, ut)

we have that modeling error can be made arbitrarily small provided that (zt, ut)

remain in a compact set (e.g. ȳ).

Theorem 1 ((3)). ,[(4)] Consider the FDS (Rl1,...,lnj1,...,jn+m
) and suppose that system in

Eq. (27) is its underlying system.

Assume that either assumptions (A.1) or (A.2) hold.

Also consider the RHONN in [(4)].

Then, for any ε > 0 there exists a matrix Θ∗

and a number L∗ high order connections and Θ = Θ∗ is a generator for the FDS

described by the rules

Rl1,...,lnj1,...,jn+m
⇔


IF y1 is ỹ1j1 AND...

AND yn+m is ỹ(n+m)jn+m

THEN χ1 is ỹ1l1 AND...AND χn is ỹnln

with possibility
_
π
l1,...,ln
j1,...,jn+m

where

max
∣∣∣πl1,...,lnj1,...,jn+m

− _
π
l1,...,ln
j1,...,jn+m

∣∣∣ < ε
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5.1 Fuzzy system description using rule firing indicator functions and
HONNF

In this section, we are briefly introducing the representation of fuzzy systems using the

rule firing indicator functions (RFIF),or simply indicator functions (IF),

which is used for the development of the proposed method.

Let us consider the system with input space u ⊂ Rm and state - space x ⊂ Rn ,

with its i/o relation being governed by the following equation

z(k) = f(x(k), u(k)) (26)

where f(·) is a continuous function and k denotes the temporal variable.

In case the system is dynamic the above equation could be replaced by the following
differential equation

ẋ(k) = f(x(k), u(k)) (27)

By setting y(k) = [x(k), u(k)] , Eq. (26) may be rewritten as follows

z(k) = f (y(k)) (28)

with y ⊂ Rm+n

In case f in (28) is unknown we may wish to approximate it by using

a fuzzy representation. In this case both y(k) = [x(k), u(k)] and z(k) are initially

replaced by fuzzy linguistic variables.

Experts or data depended techniques may determine the form of the membership

functions of the fuzzy variables and fuzzy rules will determine the fuzzy

relations between y(k) and u(k).

Sensor input data, possibly noisy and imprecise,enter the fuzzy system, are fuzzified,

are processed by the fuzzy rules and the fuzzy implication engine and are

in the sequel defuzzified to produce the estimated z(k) [(1)], [(2)].
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We assume here that a Mamadani type fuzzy system is used.

Let now Ωl1,l2,...,lnj1,j2,...,jn+m
be defined as the subset

of (x, u) pairs, belonging to the (j1, j2, ..., jn+m)th input fuzzy patch

and pointing - through the vector field f(·) - to the subset of z(k),

which belong to the (j1, j2, ..., jn+m)th output fuzzy patch.

In other words, Ωl1,l2,...,lnj1,j2,...,jn+m
contains input value pairs that are associated

through a fuzzy rule with output values.

According to the above notation the Indicator Function (IF) connected toΩl1,l2,...,lnj1,j2,...,jn+m

is defined as follows:

I l1,...,lnj1,...,jn+m
(x(k), u(k)) =

{
α if (x(k), u(k)) ∈ Ωl1,...,lnj1,...,jn+m

0 otherwise
(29)

where α denotes the firing strength of the rule.

Define now the following system

z(k) =
∑

z̄l1,...,lnj1,...,jn+m
× I l1,...,lnj1,...,jn+m

(x(k), u(k)) (30)

Where z̄l1,...,lnj1,...,jn+m
∈ Rn be any constant vector consisting of the centers of

the membership functions of each output variable zi and I l1,...,lnj1,...,jn+m
(x(k), u(k))

is the IF.

Then, according to [(3)], [(4)] the system in (30) is a generator for

the fuzzy system (FS).

It is obvious that Eq. (30) can be also valid for dynamic systems.

In its dynamical form it becomes

ẋ(k) =
∑

x̄l1,...,lnj1,...,jn+m
× I l1,...,lnj1,...,jn+m

(x(k), u(k)) (31)
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Where x̄l1,...,lnj1,...,jn+m
∈ Rn be again any constant vector consisting of

the centers of fuzzy partitions of every variable xi and I l1,...,lnj1,...,jn+m
(x(k), u(k))

is the IF.

Based on the fact that functions of high order neurons are capable of

approximating discontinuous functions [(3)] and [(4)]

use high order neural network functions HONNFs in order to approximate the

IF I l1,...,lnj1,...,jn+m
.

A HONNF is defined as:

N(x(k), u(k);w,L) =
L∑

hot=1

whot
∏

j∈Ihot

Φ
dj(hot)
j (32)

where Ihot = {I1, I2, ..., IL} is a collection of L not-ordered subsets

of {1, 2, ...,m+ n}, dj(hot) are non-negative integers, Φj are sigmoid functions

of the state or the input, which are the elements of the following vector :

Φ =
[
Φ1 . . . Φn Φn+1 . . . Φm+n

]T =

=
[
S(x1) . . . S(xn) S(u1) . . . S(um)

]T (33)

where

S(x) = a
1

1 + e−βx
− γ (34)

and w := [w1 · · · wL]T are the HONNF weights.
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Eq. (32) can also be written

N(x(k), u(k);w,L) =
L∑

hot=1

whotShot(x(k), u(k)) (35)

where Shot(x(k), u(k)) are high order terms of sigmoid functions of

the state and/or input.
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6 Direct adaptive neuro-fuzzy control

6.1 Problem formulation and neuro-fuzzy representation

Problem formulation

We consider nonlinear dynamical systems of the Brunovski canonical form

ẋ = Acx+ bc[f(x) + g(x) · u] (36)

where the state x ∈ Rn is assumed to be completely measured,

the control input u ∈ R, f and g are scalar nonlinear functions of the state

being only involved in the dynamic equation of xn.

Also,

Ac =


0 1 0 · · · 0
0 0 1 0 · · ·
· · · · · · 0 · · · 0
0 0 · · · 0 1
0 0 · · · 0 0


and

bc =
[
0 · · · 0 1

]T
The state regulation problem is known as our attempt to force the state to zero

from an arbitrary initial value by applying appropriate feedback control to the plant
input.

However, the problem as it is stated above for the system (36), is very difficult

or even impossible to be solved since the f , g are assumed to be completely unknown.

To overcome this problem we assume that the unknown plant can be described by

the following model arriving from a neuro-fuzzy representation described below.

ẋ = Acx+ bc[XW ∗S(x) +X1W
∗
1 S1(x)u] (37)

where the weight values W ∗ and W ∗1n are unknown.
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Therefore, the state regulation problem is analyzed for the system (37)

instead of (36). Since, W ∗ and W ∗1 are unknown, our solution consists of

designing a control law u(W,W1, x) and appropriate update laws for W and W1,

X and X1 to guarantee convergence of the state to zero and in some cases,

which will be analyzed in the following sections, boundedness of x and of all

signals in the closed loop.

The following mild assumptions are also imposed on (36), to guarantee

the existence and uniqueness of solution for any finite initial condition and u ∈ U .

Given a class U of admissible inputs, then for any u ∈ U and any finite

initial condition, the state trajectories are uniformly bounded for any finite T > 0 .

Hence, |x(T )| <∞.

The f, g are continuous with respect to their arguments and satisfy

a local Lipchitz condition so that the solution x(t) of (36) is unique

for any finite initial condition and u ∈ U .

Neuro-fuzzy representation

We are using a fuzzy approximation of the system in (36), which uses two

fuzzy subsystem blocks for the description of f(x) and g(x) as follows

f(χ) =
∑

f̄ l1,...,lnjn
× I l1,...,lnjn

(χ) (38)

g(χ) =
∑

ḡl1,...,lnjn
× I1l1,...,lnjn

(χ) (39)

where the summation is carried out over the number of all available fuzzy rules,

I, I1 are appropriate IF and the meaning of indices •l1,...,lnj1,...,jn
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has already been described in Section 4.

According to Section 4, every IF can be approximated with the help

of a suitable HONNF.

Therefore, every I, I1 can be replaced with a corresponding HONNF as follows

f(χ) =
∑

f̄ l1,...,lnjn
×N l1,...,ln

jn
(χ) (40)

g(χ) =
∑

ḡl1,...,lnjn
×N1

l1,...,ln
jn

(χ) (41)

where N, N1 are appropriate HONNFs.

In order to simplify the model structure, since some rules result to the same

output partition, we could replace the NNs associated to the rules having the same

output with one NN and therefore the summations in (40),(41)

are carried out over the number of the corresponding output partitions.

Therefore, the system of (36) is replaced by the following equivalent

Brunovsky form Fuzzy - Recurrent High Order Neural Network (F-RHONN),

which depends on the centers of the fuzzy output partitions f̄l and ḡl

˙̂χ = Acχ̂+ bc

[
Npf∑
l=1

f̄l ×Nl(χ) +

(
Npg∑
l=1

ḡl ×N1l(χ)

)
u

]
(42)

where Npf and Npg are the number of fuzzy partitions of f and g respectively.

Or in a more compact form

˙̂χ = Acχ̂+ bc[XWS(χ) +X1W1S1(χ)u] (43)
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where X, X1 are matrices containing the centers of the partitions

of every fuzzy output variable of f(x) and g(x) respectively, S(χ), S1(χ)

are matrices containing high order combinations of sigmoid functions of the state χ

and W,W1 are matrices containing respective neural weights according to

(35) and (42).

The dimensions and the contents of all the above matrices are chosen

so that both XWS(χ) and X1W1S1(χ) are scalar. For notational simplicity we also

assume that all output fuzzy variables are partitioned to the same number,

m, of partitions.

Under these specifications X is a 1×m vector of the form

X =
[
f̄1 f̄2 · · · f̄m

]
where f̄p denotes the center or the fuzzy p-th partition of f .

These centers can be determined manually or automatically with the help of a

fuzzy c-means clustering algorithm as a part of the off-line

structural identification procedure mentioned in the introduction.

Also, S(χ) =
[
s1(χ) . . . sk(χ)

]T ,

where each si(χ) with i = {1, 2, ..., k}, is a high order combination

of sigmoid functions of the state variables and W is a m× k

matrix with neural weights.

W can be also written as a collection of column vectors W l,

that is W =
[
W 1W 2 · · · W l

]
,

where l = 1, 2, ..., k.
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Similarly, X1 is a 1 ·m raw vector of the form

X1 =
[
ḡ1 ḡ2 · · · ḡm

]
,

where ḡk denotes the center or the k-th partition of g. W1, S1(χ) have the same

dimensions as W , S(χ) respectively.
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7 Adaptive regulation with modeling error effects

In this section we present a solution to the adaptive regulation problem and investigate

the modeling error effects when the dynamical equations have the Brunovski

canonical form. Assuming the presence of modeling error the unknown system

can be written as (37). The regulation of the system can be achieved by

selecting the control input to be

u = −XWS(x) + υ

X1W1S1(x)
(44)

with
υ = −kx (45)

where k is a vector of the form k = [kn · · · k2 k1] ∈ Rn be such that all roots of the

polynomial h(s) = sn + k1s
n−1 + · · ·+ kn are in the open left half-plane.

Define now, the regulation error as

ξ = −x (46)

After substituting Eq. (44) to the n− th state equation of Eq. (37)

and straightforward manipulations we have that

ẋ = Ax+ bc[X∗W ∗S(x) +X∗1W
∗
1 S1(x)u] (47)

To this end add and subtract to the above error equation the terms bckx and define:

W̃ = W −W ∗ and W̃1 = W1 −W ∗1 .
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ẋ = Ax+ bckx− bckx+ bc[X∗W ∗S(x) +X∗1W
∗
1 S1(x)u]

= [A− bck]x+ bc[X∗W ∗S(x) +X∗1W
∗
1 S1(x)u−X∗1W ∗1 S1(x)u−X∗W ∗S(x)]

= Lcx+ bc[X∗W ∗S(x) +X∗1W
∗
1 S1(x)u−X∗1W ∗1 S1(x)u−XWS(x)]

where Λc = Ac − bck is a matrix with its eigenvalues on the left half plane.

W̃ = W −W ∗ and W̃1 = W1 −W ∗1 . W and W1 are estimates of

W ∗ and W ∗1 respectively and are obtained by update laws which are

to be designed in the sequel.

After substituting Eq. (49), (50) becomes

ẋ = Λcx+ bc[−X∗W̃S(x)− X̃WS(x)−X∗1W̃1S1(x)u− X̃1W1S1(x)u] (48)

= Λcx− bc[X∗W̃S(x) + X̃WS(x)+ X∗1W̃1S1(x)u+ X̃1W1S1(x)u]

Define now, the regulation error as

ξ = −x (49)

So,by manipulating ξ = −x to the previous equation, we have :

−ξ̇ = Λc[−ξ]− bc[X∗W̃S(x) + X̃WS(x) +X∗1W̃1S1(x)u+ X̃1W1S1(x)u] (50)

ξ̇ = Λc[ξ] + bc[X∗W̃S(x) + X̃WS(x)+ X∗1W̃1S1(x)u+ X̃1W1S1(x)u]

To continue, consider the Lyapunov candidate function

V (ξ, x̂, X̃, W̃ , X̃1, W̃1) =
1
2
ξTPξ+

1
2
tr{X̃T X̃}+1

2
tr{W̃T∆W̃}+1

2
tr{X̃T

1 X̃1}+
1
2
tr{W̃T

1 ∆1W̃1}
(51)

Where P > 0 is chosen to satisfy the Lyapunov equation
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PΛc + ΛTc P = −I

and matrices ∆ and ∆1 are both diagonal n ·m× n ·m and defined as follows:

∆ = diag{(|f̄1∗
1 |, |f̄1∗

2 |, . . . , |f̄1∗
m |), (|f̄2∗

1 |, |f̄2∗
2 |, . . . , |f̄2∗

m |), . . . ,

(|f̄m∗1 |, |f̄m∗2 |, . . . , |f̄m∗m |)}

and

∆1 = diag{(|ḡ1,1∗
1 |, |ḡ1,1∗

2 |, . . . , |ḡ1,1∗
m |),

(|ḡ2,2∗
1 |, |ḡ2,2∗

2 |, . . . , |ḡ2,2∗
m |), . . . ,

(|ḡm,m∗1 |, |ḡm,m∗2 |, . . . , |ḡm,m∗m |)}

Thus ∆ ≥ 0 and ∆1 ≥ 0.

Taking the derivative of the Lyapunov function candidate we get

V̇ = 1
2

˙ξTPξ + 1
2 tr{

˙̃XT X̃}+ 1
2 tr{

˙̃WT∆W̃}+ 1
2 tr{

˙̃
1X
T X̃1}+ 1

2 tr{
˙̃

1W
T∆1W̃1}

In this point,we can show that :

˙ξTPξ = 1
2

˙ξTPξ + 1
2 ξ

TP ξ̇

= 1
2 [ξTLTc + [bc[X∗W̃S(x) + X̃WS(x)+

+X∗1W̃1S1(x)u+ X̃1W1S1(x)u]T ]]Pξ+

+ 1
2 [ξTP [Lcξ + bc[X∗W̃S(x) + X̃WS(x)+

+X∗1W̃1S1(x)u+ X̃1W1S1(x)u]]
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So, we have:

˙ξTPξ = 1
2 [ξTLTc Pξ + 1

2 [ξTPLcξ + 1
2 [bc[X∗W̃S(x) + X̃WS(x)+

+X∗1W̃1S1(x)u+ X̃1W1S1(x)u]]TPξ + 1
2 [ξTPbc[X∗W̃S(x)+

X̃WS(x) +X∗1W̃1S1(x)u+ X̃1W1S1(x)u]

= 1
2 [ξT [P  Lc +  LTc P ]ξ + 1

2 [bc[X∗W̃S(x) + X̃

WS(x) +X∗1W̃1S1(x)u+ X̃1W1S1(x)u]]TPξ+

1
2 [ξTPbc[X∗W̃S(x) + X̃WS(x)+

X∗1W̃1S1(x)u+ X̃1W1S1(x)u]

But,we know that

PΛc + ΛTc P = −I

so the last equation becomes :

˙ξTPξ = − 1
2 ‖ξ‖

2 + 1
2 [bc[X∗W̃S(x)+

+X̃WS(x) +X∗1W̃1S1(x)u+ X̃1W1S1(x)u]]TPξ+

+ 1
2 [ξTPbc[X∗W̃S(x) + X̃WS(x)+

+X∗1W̃1S1(x)u+ X̃1W1S1(x)u]

Furthermore,we have that:

1
2 [bc[X∗W̃S(x) + X̃WS(x) +X∗1W̃1S1(x)u+

X̃1W1S1(x)u]]TPξ + 1
2 [ξTPbc[X∗W̃S(x)+
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X̃WS(x) +X∗1W̃1S1(x)u+ X̃1W1S1(x)u]]

= 1
2 [bc[X∗W̃S(x)]T + bc[X̃WS(x)]T+

+bc[X∗1W̃1S1(x)u]T + [bc[X̃1W1S1(x)u]T ]]Pξ+

+ 1
2 [ξTPbc[X∗W̃S(x) + X̃WS(x) +X∗1W̃1S1(x)u+

+X̃1W1S1(x)u]]

So, with further manipulations, we have :

= [ 1
2S(x)T W̃TX∗T bTc + 1

2S(x)TWT X̃T bTc +

+ 1
2u

TS1(x)T W̃T
1 X

∗
1
T bTc +

+ 1
2u

TS1(x)TWT
1 X̃1

T
bTc ]Pξ+

+ 1
2 [ξTPbc[X∗W̃S(x) + X̃WS(x)+

X∗1W̃1S1(x)u+ X̃1W1S1(x)u]

= 1
2 [ξTPbc[X∗W̃S(x) + 1

2S(x)T W̃TX∗T bTc Pξ+

+ 1
2 [ξTPbcX̃WS(x) + 1

2S(x)TWT X̃T bTc Pξ+

+ 1
2 [ξTPbcX∗1W̃1S1(x)u+ 1

2u
TS1(x)T W̃T

1 X
∗
1
T bTc Pξ

+ 1
2 [ξTPbcX̃1W1S1(x)u+ 1

2u
TS1(x)TWT

1 X̃1
T
bTc Pξ

= ξTPbcX
∗W̃S(x) + ξTPbcX̃WS(x)+

+ξTPbcX∗1W̃1S1(x)u+ ξTPbcX̃1W1S1(x)u
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So,we finally have that the derivative of V is:

V̇ = − 1
2 ‖ξ‖

2 + ξTPbcX
∗W̃S(x) + ξTPbcX̃WS(x)+

+ξTPbcX∗1W̃1S1(x)u+ ξTPbcX̃1W1S1(x)u

Hence, if we choose:

tr{ ˙̃WT∆W̃} = −ξTPbcX∗W̃S(x)

tr{ ˙̃XT X̃} = −ξTPbcX̃WS(x)

tr{ ˙̃WT
1 ∆1W̃1} = −ξTPbcX∗1W̃1S1(x)u

tr{ ˙̃XT
1 X̃1} = −ξTPbcX̃1W1S1(x)u

and using the fact that whenever tr{ẊT X̃} = AX̃B, where A is a row and B is a
column vector, ⇒ ˙̃X = ATBT , we finally get that the update laws will take the form:



∆Ẇ = −[ξTPbc[X∗]]TS(x)T

Ẋ = −bTc PξS(x)TWT

∆1Ẇ1 = −[ξTPbc[X∗1 ]]T [S1(x)u]T

Ẋ1 = −bTc PξuTS1(x)TWT
1

(52)

We write X∗T = ∆{sgn(X∗)}T and X∗T1 = ∆1{sgn(X∗1 )}T

where:

sgn(X∗) = diag{sgn(X1∗), sgn(X2∗), . . . , sgn(Xn∗)}

where:

sgn(Xi∗) = [sgn(f̄1
i,∗), sgn(f̄2

i,∗), . . . , sgn(f̄m
i,∗)]
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and:

sgn(X∗1 ) = diag{sgn(X1∗
1 ), sgn(X2∗

1 ), . . . , sgn(Xn∗
1 )}

where:

sgn(Xi∗
1 ) = [sgn(ḡ1

i,i,∗), sgn(ḡ2
i,i,∗), . . . , sgn(ḡmi,i,∗)]

Then equations (52) become:

Ẇ = −γ1sgn(X∗)T bTc PξS(x)T

Ẋ = −γ3b
T
c PξS(x)TWT

Ẇ1 = −γ2sgn(X∗1 )T bTc Pξu
TS1(x)T

Ẋ1 = −γ4b
T
c Pξu

TS1(x)TWT
1

(53)

where γ1,γ2,γ3,γ4 are constants related to the bilinear neuro fuzzy

adaptive control problem.These constants are chosen, after careful selection,

to be 0.1 or less.

Proof. The update laws (53) are implementable, provided we know the signs

of the partitions, which is a very reasonable assumption. However the centers of the

partitions are automatically selected by our algorithm optimally.

Using the above Lyapunov function candidate V and proving that

V̇ ≤ 0 all properties of the theorem are assured [(3)].

Hence and since u, ξ̇ ∈ L∞, the sigmoidals are bounded by definition,

W̃ , W̃1 ∈ L∞ , so since

ξ ∈ L2 ∩ L∞ and ξ̇ ∈ L∞, applying Barbalat’s Lemma

we conclude that limt→∞ ξ(t) = 0.

Now, using the boundedness of u, S(x), S1(x), x and the convergence of ξ(t)

to zero, we have that Ẇ , Ẇ1 also converge to zero.
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Hence we have that

limt→∞ x(t) = − limt→∞ ξ(t) = 0

Thus,

limt→∞ x(t) = 0.

Remark 1. We can’t conclude anything about the convergence of the synaptic weights

W and W1 to their optimum values W ∗ and W ∗1 respectively from the

above analysis.

The existence of signal u is associated with conditions which guarantee that

X1W1S1 6= 0. It can be shown that using appropriate projection method

[(3)], the weight updating laws can be modified so that the existence of

the control signal can be assured.

However, this development is not presented in this thesis,but the relevant results

along with the ones given here are to be presented shortly in a forthcoming work.
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A direct adaptive control scheme was considered in this thesis, aiming at

the regulation of non linear unknown plants of Brunovsky canonical form with

the presence of modeling errors.

The approach is based on a new Neuro-Fuzzy Dynamical Systems definition,

which uses the concept of Fuzzy Adaptive Systems (FAS) operating in conjunction

with High Order Neural Network Functions (R-HONNFs).

Since the plant is considered unknown, we first propose its approximation

by a special form of a Brunovsky type fuzzy dynamical system (FDS) where

the fuzzy rules are approximated by appropriate HONNFs.

This practically transforms the original unknown system into a neuro-fuzzy model

which is of known structure, but contains a number of unknown constant value

parameters known as synaptic weights.

The proposed scheme does not require a-priori experts’ information on the number

and type of input variable membership functions making it less vulnerable to

initial design assumptions.

Weight updating laws for the involved HONNFs are provided, which guarantee

that the system states reach zero exponentially fast, while keeping all signals

in the closed loop bounded.
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