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ABSTRACT 

 
Over the past few years there has been an increased interest in studying the 

underlying neural mechanism of cognitive brain activity related to memory. In this 

direction, we study the brain activity based on its independent components instead of 

the EEG signal itself aiming towards identifying and analyzing induced responses 

being attributed to oscillatory bursts from local or distant neural assemblies, with 

variable latency and frequency, in an auditory working memory paradigm. The 

significance of the components is determined via intertrial coherence measures. The 

contribution and functional coupling of independent components to evoked and/or 

induced oscillatory activities is investigated through the concept of the recently 

introduced partial directed coherence method, which can also reveal the direction of 

the statistically significant relationships. The results on real data from an oddball 

experiment are in accordance with previous psychophysiology studies suggesting 

increased phase locked activity most prominently in the delta/ theta band, while alpha 

is also apparent in measures of non phase-locked activity. Dynamic synchronization is 

inferred between the alpha and delta bands, whereas some influence of the theta band 

is also detected. This study indicates that functional connectivity during cognitive 

processes may be successfully assessed using spectral power measures applied on 

independent components, which reflect distinct spatial patterns of activity. 
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PREFACE 

 

At this point we will give a preface of the thesis structure: 

 

 Chapter 1: Introduction: In the introduction we explain this thesis 

scope, the need for this work and its novelties. We also give a brief 

summary of this thesis. 

 Chapter 2: Electrophysiology, AD Pathology and Experimental 

Tests: In the second chapter of this thesis, there are presented the main 

definitions of important aspects of the analysis such as the brain, the 

EEG, and many more. Also the pathology of AD is briefly described so 

as to understand the differences an AD patient has from a person who 

does not have this pathology, as we also have AD cases in our analysis. 

Finally some experimental tests are introduced such as the popular 

P300. 

 Chapter 3: Mathematical analysis: Background Methods: In this 

chapter we present the mathematical background of this work. 

Mathematical tools and methodologies such as ICA and wavelets are 

demonstrated here. 

 Chapter 4: Proposed Methodology: In the fourth chapter the 

methodology we follow in our analysis is step by step demonstrated. 

Examples and which justify the steps and their necessity are also 

presented. 

 Chapter 5: Results: In chapter five of this thesis, are demonstrated the 

results on real experimental data of our method. In particular, four 

subjects‘ results are analytically presented and there follows a 

statistical analysis on all of the ten subjects of our analysis. Finally, 

there follows a discussion on these results and on the different cases of 

AD patients and control subjects. 

 Chapter 6: Conclusion and Further Work:  In the conclusion we 

close this thesis and we propose alternatives for further improvement 

of this thesis. 
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CHAPTER 1: Introduction 
 

 

During electroencephalographic (EEG) activity time-locked to an event, 

neuronal assemblies at different topographic locations (either local or distant) self-

organize into transient networks, which synchronize in time and frequency to produce 

bursts of oscillations contributing to the observable EEG characteristics [123]. Such 

activity caused by an external or internal event can be categorized to either a phase-

locked evoked response or a phase resetting of ongoing EEG activity, also referred to 

as induced response [30], [124], [98]. Thus, the transient oscillatory event-related 

activity, has been found to reflect the superimposed activity of several evoked and 

induced response sources, each having a distinct topographic organization [39], [99], 

[100]. More specifically, the so called event related potentials (ERPs) have been 

considered as originating from stable phase-locking due to transient synchronization 

of underlying neural substrates. In an event-related single trial it is expressed by an 

evoked response characterized by precise phase-locking to the stimulus onset. 

Consequently, ERPs can be detected by averaging single trial responses, as to increase 

the SNR of the low amplitude response in each single trial [36]. Furthermore, other 

studies have demonstrated the existence of event related oscillations (EROs) as 

responses from different bands that are non phase-locked to the stimulus. These 

induced responses have been attributed to oscillatory bursts from local or distant 

neural assemblies, with variable latency and frequency from trial to trial [30], [36], or 

to a phase resetting of pre-stimulus EEG activity [98], [99], [100]. This non phase-

locked induced activity is quantified differently than that of ERPs, with techniques 

primarily based on power averaging over specific frequency bands of interest or by 

the power of the AM demodulated signal after subtraction of the phase-locked activity 

[29], [35], [93]. This is motivated by the time-locked nature of the envelope of 

induced activity. In particular, an event-triggered decrease (increase) in alpha power 

is termed as event related de-synchronization (synchronization), or alpha ERD/ERS, 

respectively [30]. The events giving rise to such frequency specific band changes of 

amplitude (and power) in the spontaneous EEG can be either externally (any kind of 

stimulation) or internally paced (voluntary movement or visual structure binding) 

[93].  

Because of their neurophysiologic origins, phase-locked (evoked) and non 

phase-locked (induced) responses are different [30] and have different functional roles 

[39], even though they may reflect similar cognitive events and may correlate in their 

various parameters. Several senso-motor or cognitive tasks produce a variety of event 

related activities, both phase-locked and non phase-locked to the event [39], [124], 

[98]. For instance, periodic visual stimulation with object recognition experiments 

have demonstrated the induction of alpha rhythm and alpha non-phase locked activity 

(event related de-synchronization) maximized at central and lateral posterior regions 

[30], [98], [93],  early visually evoked ERP component at gamma band localized in 

central regions [36], [39], a visual short-memory ERP component at occipito-temporal 

regions (possibly linking vision with working memory) , object-binding gamma 

oscillations that are not phase-locked to the event and express wide spread 

topographies [39], theta band oscillations contributing to P300 ERP for oddball 

experiments [39], [25], [29], just to mention a few of the reported components. 
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Furthermore, due to their different neurophysiological origin, phase-locked evoked 

activity (ERP) and ongoing EEG rhythms of induced oscillations (such as ERD/ERS) 

may be considered as coupled processes progressing in time with different spatial 

localization of activated neuronal assemblies and partially overlapping frequency 

content [30]. In essence, pre-stimulus EEG activity may remain on post-stimulus 

response and can affect the characteristics (amplitude, latency, frequency) of the 

evoked and induced responses. 

It becomes obvious that event related brain dynamics entail a variety of 

activations and oscillations, from phase resetting of ongoing EEG activity in the alpha 

and theta bands [99] to phase-locked evoked and non phase-locked induced 

oscillations especially in delta, theta and gamma bands [30], [36]. Their origins relate 

to multiple task conditions and many stimulus types engaged during the event 

presentation and execution of its consequent actions [100], which define distinct brain 

functions, some operating independently and some being coupled. Thus, the 

separation and analysis of independent activities of different nature and origin is of 

primary importance in considering alterations in EEG recordings sue to brain 

pathologies or in developing algorithms for brain-computer interfaces. The separation 

of EEG components has been approached through several signal decomposition 

methods, including time-frequency [39], time-space [98], or even three way (time-

frequency-space) techniques [123]. Efficient decomposition frameworks include 

wavelet analysis and independent component analysis (ICA) [125] followed by a 

variety of methods to characterize the nature of derived components in terms of their 

time/frequency activity and topographic origin [123], [100]. 

As already mentioned, the analysis of averaged ERPs has been preferred for 

the consideration of phase-locked activities, since the averaging increases the signal to 

noise ratio. Furthermore, the analysis of band-pass power content averaged over trials 

has been extensively used for the study of event induced but not phase-locked 

activities. Independent Component Analysis (ICA) [98] has been successfully applied 

on continuous or event related EEG to decompose it into a sum of spatially fixed and 

temporally independent components that can lead in different spatial distribution 

patterns, which in turn may be directly attributed to underlying cortical activity. 

Single-trial ERP analysis is gaining grounds over other methods for the analysis of 

evoked phenomena on an individualized basis, despite the problems of low SNR and 

instability of algorithms due to the small number of training samples [39], [98]. 

Single-trial ERP component analysis has been used primarily for relating a specific 

task (sensory, motor or cognitive) with the topography and/or frequency content of its 

components [126]. However, little research effort has been directed towards 

annotating the contribution of components to phase or non phase-locked phenomena, 

which can trigger the characterization of sub-activities involved in the performance of 

a task (e.g. attention, visual cortex organization, binding effects, working memory, 

etc.) [39], [98] and further facilitate brain-computer interfaces. Even less effort has 

been devoted to the functional synchronization of these components, which may 

provide a means of brain organization and synchronization of neural assemblies 

during the performance of a task [127]. Studies with more detailed MEG signals have 

revealed local synchronization patterns and cortico-cortical interactions involved in 

several cognitive operations [38], with composite subtasks being triggered within 

different brain regions by unitary brain sources and subsequently synchronize to 

complete the task. Thus, the dynamics of interaction among independent components 

(rather than among channels, as it is often considered) may be used for indexing 
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neural synchrony of such local or distant brain sources [128]. An additional reason in 

support of evaluating synchronization on independent components relates to artifacts 

produced on electrodes by the volume conduction effect [127]. The EEG recordings 

on the scalp electrodes form mixings or superpositions of the true source signals, 

which can lead to fictitious (spurious) synchronization. The components of ICA 

instead, derived from linear un-mixing transforms, remove such spurious 

synchronization but preserve the real synchronization of the sources, which act as 

coupled oscillators [129]. Synchronization among stimulus-locked components can be 

studied using pair-wise linear (cross-coherence or phase-coherence) [128], [130] or 

nonlinear dynamics and models [131].  

The above considerations necessitate new directions of analysis, besides the 

study of components in terms of their spatial, temporal and oscillatory nature. In this 

paper we study the involvement of several brain sources in performing a working 

memory cognitive task. Our working assumption is that the performance of the task 

triggers certain evoked and induced responses, as expressed by synchronization 

between different neural assemblies. Since we are interested in identifying distinct 

signal components and analyzing their coupling, we focus on decomposing the EEG 

signal into ICA components and then analyzing their time-frequency content along 

with their spatial distribution. In addition, besides the study of their content, we 

consider their phase-locking characteristics across the experimental trials. After the 

characterization of significant components, we consider their dynamic coupling 

(synchronization) by deriving and exploiting information on the ―driver and response‖ 

relationship between observations [132]. The first aspect of component 

characterization has been partially addressed with measures that can reveal phase 

locking effects [39], [98]. Besides these measures, we introduce a metric for 

considering stimulus-locked but not phase-locked activity.  The second aspect related 

to synchronization is addressed through both linear and nonlinear synchronization 

measures to reveal coupling characteristics.  

For the purpose of this analysis we use an auditory oddball experiment. This 

experimental set-up is expected to produce both phase-locked oscillations, especially 

in the theta and delta bands related to P300 activity (including P3a and P3b 

components [85]), and non phase-locked (induced) oscillatory activity, particularly 

related to alpha-range event related desynchronization (ERD). The P300 ERP wave is 

elicited after novel or task relevant stimuli requiring cognitive effort from the 

participant. It is composed of multiple temporally-overlapping components related to 

orientation of attention to the stimuli (P3a) and recognition with memory processes 

(P3b) [133]. It has shown remarkable promise as an indicator of human cognition in 

normals, as well as clinical populations [30]. Furthermore, non phase-locked ERD is 

elicited by oddball experiments in various frequency bands [20], [29], with most 

prominent activity in the alpha band. Thus, we expect to recover a variety of 

components, consistently contributing to the recorded single-trial signals. Altogether 

alpha, theta and delta bands represent the set of processes that activate in sequence 

during oddball processing. 
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CHAPTER 2: Electrophysiology, AD 

Pathology and Experimental Tests 
 

 

Brain is considered to be one of the most complicated parts of the body. It 

would not be an exaggeration to say that it is the seat of intelligence, interpreter of the 

senses, initiator of body movement, and controller of behaviour. Lying in its bony 

shell and washed by protective fluid, the brain is the source of all the qualities that 

define our humanity.  

Scientists are for centuries trying to explore the secrets of the brain, which 

though until recently seemed to be incomprehensible. Now, however, modern 

technology‘s achievements have been very helpful because the researchers have the 

opportunity to ―observe‖ the brain and its functionalities through different kinds of 

brain scans. Some of the most important technologies used for brain scan are 

Electroenchephalogram (EEG), Magnetic Resonance Imaging (MRI), Functional 

Magnetic Resonance Imaging (fMRI), Magnetoencephalography (MEG), 

Computerized Axial Tomography (CAT) and Positron Emission Tomography (PET). 

The EEG is the recording of the electrical activity derived from the brain with 

electrodes placed on the skull. The signals recorded can be used for clinical and 

research reasons. EEG can also be used for diagnostic purposes in pathological cases 

(Alzheimer disease (AD), epilepsy, etc.) and brain-computer interfaces (BCI). 

 

2.1 Brief Brain Anatomy 

 
1.5 kilograms and several thousand miles of interconnected nerve cells (about 

100 billion) control every movement, thought, sensation, and emotion that comprises 

the human experience. Within the brain and spinal cord there are ten thousand distinct 

varieties of neurons, trillions of supportive cells, a few more trillion synaptic 

connections, a hundred known chemical regulating agents, miles of minuscule blood 

vessels, axons ranging from a few microns to well over a foot and a half in length, and 

untold mysteries of how -almost flawlessly- all these components work together [1], 

[2]. 

The main parts of a brain can be observed in the following figure: 

 

Fig.2.1: A brain anatomy [15]. 
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The parts of the brain which can be clearly distinguished are the followings: 

 

 

 Frontal lobe 

 Parietal lobe              Cerebrum 

 Occipital lobe 

 Temporal lobe 

 Cerebellum 

 Pons                  Brainstem 

 Medula 

 Frontal lobe: It is located at the front of each cerebral hemisphere and 

positioned anterior to (in front of) the parietal lobes and above and 

anterior to the temporal lobes. The frontal lobe reaches full maturity 

around age 25, marking the cognitive maturity associated with 

adulthood. The executive functions of the frontal lobe involve the 

ability to recognize future consequences resulting from current actions, 

to choose between good and bad actions (or better and best), override 

and suppress unacceptable social responses, and determine similarities 

and differences between things or events. Therefore, it is involved in 

higher mental functions. It also plays an important part in retaining 

longer term memories which are not task-based [3]. More specifically 

it is associated with reasoning, motor skills, higher lever cognition, and 

expressive language [5].  

 Parietal lobe: It is positioned above (superior to) the occipital lobe and 

behind (posterior to) the frontal lobe. The parietal lobe integrates 

sensory information from different modalities, particularly determining 

spatial sense and navigation. It also plays important roles in integrating 

sensory information from various parts of the body such as pressure, 

touch, and pain, knowledge of numbers and their relations, and in the 

manipulation of objects. Portions of the parietal lobe are involved with 

visuospatial processing [4], [5], [6].  

 Occipital lobe: The occipital lobe is located in the rearmost portion of 

the skull. The occipital lobe is the smallest of four lobes in the human 

cerebral cortex and is defined as the part of the cerebral cortex that lies 

underneath the occipital bone. The most important functional aspect of 

the occipital lobe is that it contains the primary visual cortex. The 

occipital lobe is divided into several functional visual areas. Each 

visual area contains a full map of the visual world. Although there are 

no anatomical markers distinguishing these areas, physiologists have 

used electrode recordings to divide the cortex into different functional 

regions [5], [7], [8]. 

 Temporal lobe: It is a region of the cerebral cortex that is located 

beneath the Sylvian fissure (Sylvian fissure divides the frontal lobe and 

parietal lobe above from the temporal lobe below) on both the left and 

right hemispheres of the brain. The temporal lobe is involved in 

http://en.wikipedia.org/wiki/Cerebral_hemisphere
http://en.wikipedia.org/wiki/Parietal_lobe
http://en.wikipedia.org/wiki/Temporal_lobe
http://en.wikipedia.org/wiki/Executive_function
http://en.wikipedia.org/wiki/Occipital_lobe
http://en.wikipedia.org/wiki/Frontal_lobe
http://en.wikipedia.org/wiki/Sensory
http://en.wikipedia.org/wiki/Sensory_modality
http://en.wikipedia.org/wiki/Cerebral_cortex
http://en.wikipedia.org/wiki/Sylvian_fissure
http://en.wikipedia.org/wiki/Sylvian_fissure
http://en.wikipedia.org/wiki/Frontal_lobe
http://en.wikipedia.org/wiki/Parietal_lobe
http://en.wikipedia.org/wiki/Temporal_lobe
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auditory processing and is home to the primary auditory cortex. It is 

also important for the processing of semantics in both speech and 

vision. The temporal lobe plays a key role in the formation of long-

term memory and control of spatial memory and behavior [9]. 

 Cerebellum: The cerebellum (Latin for little brain) is a region of the 

brain that plays an important role in the integration of sensory 

perception, coordination and motor control. In order to coordinate 

motor control, there are many neural pathways linking the cerebellum 

with the cerebral motor cortex (which sends information to the muscles 

causing them to move) and the spinocerebellar tract (which provides 

proprioceptive feedback on the position of the body in space). The 

cerebellum integrates these pathways, like a train conductor, using the 

constant feedback on body position to fine-tune motor movements 

[10]. Modern research shows that the cerebellum has a broader role in 

a number of key cognitive functions, including attention and the 

processing of language, music, and other sensory temporal stimuli 

[11]. 

 Pons: It is above the medulla and anterior to the cerebellum. The pons 

relays sensory information between the cerebellum and cerebrum, aids 

in relaying other messages in the brain, controls arousal, and regulates 

respiration. In some theories, the pons has a role in dreaming [12].  

 Medula: It is the last portion of the brain before the spinal cord. It 

refers to the middle of something, and derives from the Latin word 

‖marrow‖ (the Latin equivalent of the Greek stem myelo). It contains 

nerve tracts of the motor and sensory pathways. It also contains 

autonomic centers for regulating heart rate, vasomotion, and 

respiratory rhythmicity [13].  
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http://en.wikipedia.org/wiki/Marrow


14 

 

2.2 Evolution of EEG Research 

 
After the brief introduction, we can understand that it is of great importance to 

record and decode the complicated brain activity from the different parts of the brain 

so as to understand which parts of the brain are activated in which activity, what kind 

of activations we have so as to recognize pathological cases, create brain-computer 

interfaces (BCI) and try to understand the way the brain reacts in different 

circumstances. The EEG is one of the most sufficient methods so as to record the 

brain activity. 

A first course on the EEG covers its origins and evolution throughout time. A 

physician named Richard Caton in 1875 was the first to describe sensory evoked 

response and observed ‗continuous spontaneous electrical activity‘ from the brain 

surface. In 1912 Pravdich-Neminsky, a Russian physiologist, recorded EEG and 

evoked potentials on photographs and coined the term ‗electrocerebrogram‘. German 

physiologist and psychiatrist Hans Berger (1873–1941) began his studies of the 

human EEG in 1920. He gave the device its name and is sometimes credited with 

inventing the EEG, though others had performed similar experiments. His work was 

later expanded by Edgar Douglas Adrian. In 1934, Fisher and Lowenback first 

demonstrated epileptiform spikes. In 1935 Gibbs, Davis and Lennox described 

interictal spike waves and the 3 cycles/s pattern of clinical absence seizures, which 

began the field of clinical electroencephalography. Subsequently, in 1936 Gibbs and 

Jasper reported the interictal spike as the focal signature of epilepsy. The same year, 

the first EEG laboratory opened at Massachusetts General Hospital. Franklin Offner 

(1911–1999), professor of biophysics at Northwestern University developed a 

prototype of the EEG which incorporated a piezoelectric inkwriter called a 

Crystograph (the whole device was typically known as the Offner Dynograph). In 

1947, The American EEG Society was founded and the first International EEG 

congress was held. In 1953 Aserinsky and Kleitmean describe REM sleep. In the 

1950s, William Grey Walter developed an adjunct to EEG called EEG topography 

which allowed for the mapping of electrical activity across the surface of the brain. 

This enjoyed a brief period of popularity in the 1980s and seemed especially 

promising for psychiatry. It was never accepted by neurologists and remains primarily 

a research tool. 

It was though in the 1990s when the increasing use of EEG combined with 

neuroimaging techniques emerged. Real-time digital EEG monitoring for critical care 

became increasingly important in intensive care units, operating rooms and 

emergency rooms [14].  

 

 

 

 

 

 

 

 

 

 

 

http://en.wikipedia.org/wiki/Hans_Berger
http://en.wikipedia.org/wiki/Edgar_Douglas_Adrian
http://en.wikipedia.org/wiki/Absence_seizure
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2.3 EEG Procedure 

 
In order to take the final EEG signal there is a procedure which has to be 

followed. In conventional scalp EEG, the recording is obtained by placing electrodes 

on the scalp with a conductive gel or paste, usually after preparing the scalp area by 

light abrasion to reduce impedance due to dead skin cells. 

 

     

Fig. 1.2: EEG Electrodes on the   Fig. 1.3: EEG electrode types. 

scull. 

 

Electrode locations and names are specified by the International 10–20 system 

for most clinical and research applications (except when high-density arrays are used). 

This system ensures that the naming of electrodes is consistent across laboratories. 

The ―10‖ and ―20‖ refer to the fact that the actual distances between adjacent 

electrodes are either 10% or 20% of the total front-back or right-left distance of the 

skull. In most clinical applications, 19 recording electrodes (plus ground and system 

reference) are used. A smaller number of electrodes are typically used when recording 

EEG from neonates. Additional electrodes can be added to the standard set-up when a 

clinical or research application demands increased spatial resolution for a particular 

area of the brain. High-density arrays (typically via cap or net) can contain up to 256 

electrodes more-or-less evenly spaced around the scalp [17]. 

 

  

Fig. 1.4 a,b; 10-20 International electrode location system [16]. 

http://en.wikipedia.org/wiki/Electrode
http://en.wikipedia.org/wiki/Electrical_impedance
http://en.wikipedia.org/wiki/10-20_system_(EEG)
http://en.wikipedia.org/wiki/Infant
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Each electrode is connected to one input of a differential amplifier (one 

amplifier per pair of electrodes). The naming of the electrodes has the following 

reasoning (according to the place of the scalp the electrodes are localized): 

 

 F - Frontal 

 T - Temporal 

 C - Central 

 P – Parietal 

 O – Occipital 

 

The electrodes placed in the midline are followed by the letter ―z‖ (zero). Also, even 

numbers (2,4,6,8) refer to electrode positions on the right hemisphere, whereas odd 

numbers (1,3,5,7) refer to those on the left hemisphere [17]. 

 A common system reference electrode is connected to the other input of each 

differential amplifier. These amplifiers amplify the voltage between the active 

electrode and the reference (typically 1,000–100,000 times, or 60–100 dB of voltage 

gain). In analog EEG, the signal is then filtered, and the EEG signal is output as the 

deflection of pens as paper passes underneath. Most EEG systems these days, 

however, are digital, and the amplified signal is digitized via an analog-to-digital 

converter, after being passed through an anti-aliasing filter. Analog-to-digital 

sampling typically occurs at 256-512 Hz in clinical scalp EEG, though sampling rates 

of up to 20 kHz are used in some research applications [18]. 

  

Fig. 1.5: Berger Examples of EEG.  Fig. 1.6:Berger's system for recording  

EEG, 1926. 

Usually, during the recording, a series of activation procedures are used. These 

procedures may induce normal or abnormal EEG activity that might not otherwise be 

seen. These procedures include hyperventilation, photic stimulation, eye closure, 

mental activity, sleep and sleep deprivation. 

 

http://en.wikipedia.org/wiki/Differential_amplifier
http://en.wikipedia.org/wiki/Decibel
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Analog-to-digital_converter
http://en.wikipedia.org/wiki/Anti-aliasing_filter


17 

 

 
Fig. 1.7: An 1.27sec. EEG recording consisted of 27 channels. 

 

For each electrode we have a recording which contains information in the time 

domain for the brain activity, in the specific location the electrode is placed. So as to 

have a full ―picture‖ of the brain activity, we have to examine the recordings of all the 

electrodes. It has to be noted that the information taken from the electrodes most of 

the times has artifacts. Artifacts give information not relative to the events examined 

in the EEG and are produced by eye closure, heart beating etc. Often there is a 

confusion in EEG analysis because of the artifacts, though nowadays methods for the 

recognition and rejection/reconstruction of artifact components have been introduced. 
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2.4 EEG Artifacts 

 
As it has been noted before in most of the EEG signals artifact patterns can be 

recognized. Artifacts are electrical signals detected along the scalp by an EEG, but 

that originate from non-cerebral origin. The amplitude of artifacts can be quite large 

relative to the size of amplitude of the cortical signals of interest. This is one of the 

reasons why it takes considerable experience to correctly interpret EEGs clinically. 

Artifacts can be divided into physiologic and extraphysiologic artifacts. While 

physiologic artifacts are generated from the patient, they arise from sources other than 

the brain (body), extraphysiologic artifacts arise from outside the body (equipment, 

environment, etc). 

  

2.4.1 Physiologic Artifacts 

Physiologic artifacts are those caused by normal functional activities of the 

subject. Some of the most common physiologic artifacts are the followings: 

 Eye artifacts: On all EEGs eye movements are observed and are useful 

in identifying sleep stages. The eyeball acts as a dipole with a positive 

pole oriented anteriorly (cornea) and a negative pole oriented 

posteriorly (retina). When the globe rotates about its axis, it generates a 

large-amplitude alternate current field, which is detectable by any 

electrodes near the eye. The other source of artifacts comes from 

electromyelogram (EMG) potentials from muscles in and around the 

orbit. Vertical eye movements typically are observed with blinks (Bell 

phenomenon). A blink causes the positive pole to move closer to 

frontopolar electrodes, producing symmetric downward deflections. 

During downward eye movement the positive pole of the globe moves 

away from frontopolar electrodes, producing an upward deflection best 

recorded in channels 1 and 5 in the bipolar longitudinal montage [19]. 

 Electrocardiogramm (ECG) artifacts: The field of the heart potentials 

over the surface of the scalp often causes some individual variations in 

the amount and persistence of ECG artifact. Generally, people with 

short and wide necks have the largest ECG artifacts on their EEGs. 

The voltage and apparent surface of the artifact vary from derivation to 

derivation and, consequently, from montage to montage. The artifact is 

observed best in referential montages using earlobe electrodes A1 and 

A2. ECG artifact is recognized easily by its rhythmicity and 

coincidence with the ECG tracing. The situation becomes difficult 

when cerebral abnormal activity (eg, sharp waves) appears intermixed 

with EEG artifact, and the former may be overlooked. The EEG 

technologist should apply electrodes routinely to record the ECG [19]. 

 Electromyogramm (EMG) artifacts: Myogenic potentials are also 

common artifacts. Frontalis and temporalis muscles such as muscles of 

the face, the neck or the scull are common causes. Generally, the 

potentials generated in the muscles are of shorter duration than those 

generated in the brain and are identified easily on the basis of duration, 

morphology, and rate of firing (frequency). Particular patterns of 
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electromyogram (EMG) artifacts can occur in some movement 

disorders. Rhythmic 4 to 6Hz sinusoidal artifacts that may mimic 

cerebral activity can be produced Essential tremor and Parkinson 

disease [19]. 

 Glossokinetic artifacts: In addition to muscle activity, the tongue 

functions as a dipole. In this case, the tip of the tongue is the most 

important part because it is more mobile. The artifact produced by the 

tongue has a broad potential field that drops from frontal to occipital 

areas, although it is less steep than that produced by eye movement 

artifacts [19]. 

 Respiration artifacts: Two kinds of artifacts can be produced by 

respiration. One type is in the form of slow and rhythmic activity, 

synchronous with the body movements of respiration and mechanically 

affecting the impedance of one electrode. The other type can be slow 

or sharp waves that occur synchronously with inhalation or exhalation 

and involve those electrodes on which the patient is lying [19]. 

 Skin artifacts: Biological processes and defects on the skin surface 

may alter impedance and cause artifacts. Sweat is a common cause 

because sodium chloride and lactic acid from sweating may react with 

metals of the electrodes and produce huge slow baseline sways. Skull 

defects also can be the source of asymmetry. In this situation, 

amplitudes are greater in derivations from electrodes overlying or 

adjacent to skull defects [19]. 

 

 
Fig. 1.7: Eye Artifact. [19]. 

 

In the figure 1.7 we have a left frontal artifact in the fourth second. This is not 

limited to a single electrode and has the morphology of an eye movement, but it is 

unilateral. This is an eye movement in a patient who has a glass left eye. 
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2.4.2 Extraphysiologic Artifacts 

 Extraphysiologic artifacts are those caused by the environment of the 

examination. Some of the most common extraphysiologic artifacts are the followings: 

 Electrodes artifacts: The most common electrode artifact is the 

electrode popping. Morphologically this appears as single or multiple 

sharp waveforms due to abrupt impedance change. It is identified 

easily by its characteristic appearance and its usual distribution, which 

is limited to a single electrode [19]. 

 Altering current artifact: Adequate grounding on the patient has 

almost eliminated this type of artifact from power lines. The problem 

arises when the impedance of one of the active electrodes becomes 

significantly large between the electrodes and the ground of the 

amplifier. In this situation, the ground becomes an active electrode 

that, depending on its location, produces the 60-Hz artifact [19]. 

 Other artifacts: Movement of other persons around the patient, 

electrostatic changes on the drops, or interference from high-frequency 

radiation from radio, television, hospital paging systems, and other 

electronic devices can also cause artifacts on the EEG. Those artifacts 

though are not specific and easily recognised so they are usually 

omitted [19].  

 

 

Fig. 1.8: Sweat artifact. [19]. 

 

In the figure above we have the effect of sweat in some electrodes of the EEG. 

This is characterized by very low-frequency (here, 0.25- to 0.5-Hz) oscillations. The 

distribution here (midtemporal electrode T3 and occipital electrode O1) suggests 

sweat on the left side. 
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2.5 EEG Signal Patterns Classification 

 
The EEG contains frequency components that can be measured and analyzed, 

and these frequency components have interesting and valuable properties. A great 

deal of history is involved in the definition, naming, and use of these frequency bands. 

They are named using Greek letters, a convention that was begun by Hans Berger. He 

observed all of the rhythms known today (except the 40 Hz ―gamma‖ band), and 

described many of their basic properties. Since then, our definitions and 

understandings of the rhythms have been refined.  

Nowadays, the patterns seen in the EEG, initiating from changes in the 

frequency amplitude with respect to time, have been classified into the internationally 

standard bands of delta, theta, alpha, beta, gamma which are more or less empirical 

frequency limits. Since the arousal of EEG analysis these patterns have been related 

with different brain arousal states, functions or pathologies. In different individuals 

these patterns are found to vary, though the frequency seems to remain the same. This 

note was the reason why the frequency bands were defined in a strict way. A more 

detailed description of the frequency bands follows. 

 

 Delta band (0-3Hz): It tends to be the highest in amplitude and the 

slowest waves. It is seen normally in adults in slow wave sleep. It is 

also seen normally in babies. Past developmental studies showed that 

delta percentage gradually decreases and, at the same time, faster 

rhythms increase with age. Instead, in healthy adults, delta band is 

strongly reduced during awaking states, is typically observed in the 

deepest stages of sleep and is considered a marker of brain sufferance or 

pathological condition when it appears in the waking brain [134]. 

Several studies found that slow wave activity, particularly in the range 

of delta frequencies, marks pathological brain abnormality resulting 

from neurological damage, such as cerebral infarct, contusion, local 

infection, tumor or subdural hematoma [134]. It is usually most 

prominent frontally in adults and posteriorly in children [18]. 

 Theta band (3-7Hz): Theta is seen normally in young children. It may 

be seen in drowsiness or arousal in older children and adults; it can 

also be seen in meditation [24]. Theta activity has been associated with 

reports of relaxed, meditative, and creative states [18]. Theta band 

seems to associate with working memory functions and correlates with 

memory load, task demand and episodic (short-term) memory 

processes [21]. It also relates to successful encoding of new 

information and attention. In increasing task demands phasic power 

increase in Theta ERS and ERD is observed [22]. Frontal Theta 

correlates with mental tasks requiring attention (arithmetic, reasoning). 

On the contrary excess theta for age represents abnormal activity. It 

can be seen as a focal disturbance in focal subcortical lesions; it can be 

seen in generalized distribution in diffuse disorder or metabolic 

encephalopathy or deep midline disorders or some instances of 

hydrocephalus [18]. Moreover, language problems relate to working 

memory and Theta ERD/ERS. Background Theta increases in epilepsy 

and more specifically children with epilepsy and dyslexia seem to have 

alterations on Theta response suggesting problems in audio or visual 

short-term memory encoding [23]. 

http://en.wikipedia.org/wiki/NREM
http://en.wikipedia.org/wiki/Meditation
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 Alpha band (7-12Hz): Hans Berger named the first rhythmic EEG 

activity he saw, the ―alpha wave‖. This is activity in the 8-12 Hz range 

seen in the posterior regions of the head on both sides, being higher in 

amplitude on the dominant side. It is brought out by closing the eyes 

and by relaxation. It was noted to attenuate with eye opening or mental 

exertion. This activity is now referred to as ―posterior basic rhythm‖, 

the ―posterior dominant rhythm‖ or the ―posterior alpha rhythm‖ [18]. 

Alpha band has been associated with attention and cognitive processes 

requiring access and retrieval of information from long term memory 

(semantic memory) [31]. Event related Alpha response is auditory 

stimuli. Encoding of auditory material such as learning produces Alpha 

event-related synchronization (ERS) [32]. Auditory recognition or 

comparison (retrieval) as well as cognitive processes such as mental 

arithmetic, reading, tasks conditions requiring attention and memory 

processes brinks out Alpha event-related desynchronization (ERD) 

[30]. Alpha ERD (suppression) is also induced by sensory (auditory 

visual and somatosensory) stimulation. Lower Alpha reflects phasic 

alertness and has ERD in warning signal. Intermediate Alpha reflects 

expectancy and desynchronizes seconds before target or non-target 

appears [29]. Upper Alpha ERD appears only after the target 

something which reflects performance of task (counting of targets). 

Thus upper Alpha ERD is associated with processing of sensory-

semantic information [26] and lower Alpha ERD reflects attentional 

processes [27], [28]. Alpha can be abnormal, for example, an EEG that 

has diffuse alpha occurring in coma and is not responsive to external 

stimuli is referred to as "alpha coma". An alpha asymmetry always 

implies brain damage in young subjects or remote infraction in older 

subjects [18]. 

 Beta band (12-30Hz):  It is seen usually on both sides in symmetrical 

distribution and is most evident frontally. Low amplitude beta with 

multiple and varying frequencies is often associated with active, busy 

or anxious thinking and active concentration [18]. More specifically 

increased Beta is observed in reading and subtraction and Beta 

oscillatory activity in movement related tasks [33]. Rhythmic beta with 

a dominant set of frequencies is associated with various pathologies 

and drug effects, especially benzodiazepines. Activity over about 25 

Hz seen in the scalp EEG is rarely cerebral (most often artifactual). It 

may be absent or reduced in areas of cortical damage. It is the 

dominant rhythm in patients who are alert or anxious or who have their 

eyes open [18]. Lower background Beta increases in epilepsy [34]. 

 Gamma band (30-100Hz):  Because of the filtering properties of the 

skull and scalp, Gamma rhythms are usually recorded by 

electrocorticography or possibly magnetoencephalography. Gamma is 

seen in occipital sites in visual tasks (posterior sites), in central sites in 

motor tasks, in posterior sites in reading, in occipital, temporal, parietal 

sites in word reading and in frontal, central sites in subtraction/mental 

task. High frequency oscillations (Gamma) are usually low voltage and 

short lived (100-300 ms) and except an early component they are not 

http://en.wikipedia.org/wiki/Hans_Berger
http://en.wikipedia.org/wiki/Benzodiazepines
http://en.wikipedia.org/wiki/Magnetoencephalography
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phase-locked to stimulus. These stimulus   induced oscillations are 

probably generated internally via a self-organizing process among 

stimulus-driven local oscillators that are mutually connected [35]. 

They are complementary to stimulus-locked evoked oscillations that 

are directly driven by stimulus transients and which are likely to play a 

role at the primary information processing stages. Synchronized neural 

firing in the Gamma band is associated with the binding problem 

(bottom-up process) [38]. Demonstrated involvement of Gamma band 

activity in a wider range of top-down driven cognitive processes is 

suggesting that Gamma synchronization of cortical cell assemblies are 

involved in cognitive functions. Rhythmic synchronization of neural 

discharges in Gamma may provide the necessary spatial and temporal 

links that bind together the processing in different brain areas to build a 

coherent percept and more generally for the construction of object 

representations [36].  Induced Gamma activity is observed in response 

to sensory stimuli and during motor task [37]. Visual attention (as 

compared to not paying attention to a picture) also increases Gamma 

band [39]. 

 

In the following figures (fig. 1.9a, b, c, d, e, f), we have a real EEG signal (fig. 

1.9a), which then has been filtered so as to take its delta (fig. 1.9b), theta (fig. 1.9c), 

alpha (fig. 1.9d), beta (fig. 1.9e) and gamma (fig. 1.9f) activity.  
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a) 

 
b) 

 
c) 

 
d) 

 
e) 

 
f) 

Fig. 1.9: a) An original eeg signal. b)delta band activity, c) theta band activity, d) 

alpha band activity, e) beta band activity, f) gamma band activity. 
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SYNOPTIC TABLE FOR THE CHARACTERISTICS OF EACH FREQUENCY 

BAND 

 

 

Band 
Freq. 

(Hz) 
Location Normal behaviour Pathogenic behaviour 

Delta 0-3 
Frontally in adults, 

posteriorly in children. 

In adults in slow wave sleep, 

normal in neonates. 

Neurological damage, 

such as cerebral infarct, 

contusion, local 

infection, tumor or 

subdural hematoma 

Theta 3-7 

In drowsy normal adults, 

in frontal and temporal 

regions. 

Normal in young children, 

drowsiness or arousal in older 

children and adults, idling. 

Associates with working memory 

functions, memory load, task 

demand and episodic (short-term) 

memory processes, successful 

encoding of new information, 

attention. 

Focal subcortical 

lesions, metabolic 

encephalopathy, deep 

midline disorders, 

some instances of 

hydrocephalus, 

problems in audio or 

visual short-term 

memory encoding, 

background Theta 

increases in epilepsy. 

Alpha 7-12 
Mostly found in occipital 

and parietal electrodes. 

In relaxation, reflecting and 

closing the eyes. Attention and 

cognitive processes requiring 

access and retrieval of 

information from long term 

memory. Alpha ERS encoding 

of auditory material. Alpha 

ERD Auditory recognition or 

comparison (retrieval), cognitive 

processes (mental arithmetic, 

reading, tasks). 

Coma. 

Beta 12-30 

Usually on both sides in 

symmetrical distribution 

and is most evident 

frontally. 

Observed in alertness, 

working, 

active, busy or anxious thinking 

and in active concentration. 

Expectancy tension. 

Gamma 30-100 

Occipital sites in visual 

tasks, central sites in 

motor tasks, posterior 

sites in reading, occipital, 

temporal, parietal sites in 

word reading, frontal, 

central sites in 

subtraction /mental tasks. 

In certain cognitive or motor 

functions. 
 

http://en.wikipedia.org/wiki/NREM
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2.6 Alzheimer’s Disease  

 
Alzheimer‘s disease (AD) is a progressive disease, which means that gradually 

over time, more parts of the brain are damaged. As this happens, the symptoms 

become more severe. There is often confusion between the relationship of AD and 

dementia. The word dementia is a term which describes a serious deterioration in 

mental functions, such as memory, language, orientation and judgment. AD is one 

cause of dementia, but several other diseases can cause it too. Alzheimer's disease is 

the most common cause of dementia, accounting for around two thirds of cases in the 

elderly [42].  

In AD, as in other types of dementia, increasing numbers of nerve cells 

deteriorate and die. A healthy adult brain has 100 billion nerve cells, or neurons, with 

long branching extensions connected at 100 trillion points. At these connections, 

called synapses, information flows in tiny chemical pulses released by one neuron and 

taken up by the receiving cell. Different strengths and patterns of signals move 

constantly through the brain‘s circuits, creating the cellular basis of memories, 

thoughts and skills. In AD, information transfer at the synapses begins to fail, the 

number of synapses declines and eventually cells die. Brains with advanced 

Alzheimer‘s show dramatic shrinkage from cell loss and widespread debris from dead 

and dying neurons [43], [44]. 

It was not until 1901 that German psychiatrist Alois Alzheimer identified the 

first case of what became known as Alzheimer's disease in a fifty-year-old woman he 

called Auguste D. Alzheimer followed her until she died in 1906, when he first 

reported the case publicly. During the course of the disease, ―plaques‖ and ―tangles‖ 

develop in the structure of the brain, leading to the death of brain cells [41]. Plaques 

build up between nerve cells. They contain deposits of a protein fragment called beta-

amyloid. Tangles are twisted fibers of another protein called tau. Tangles form inside 

dying cells. Though most people develop some plaques and tangles as they age, those 

with Alzheimer‘s tend to develop far more. The plaques and tangles tend to form in a 

predictable pattern, beginning in areas important in learning and memory and then 

spreading to other regions. People with Alzheimer also have a shortage of some 

important chemicals in their brains. These chemicals are involved with the 

transmission of messages within the brain [44]. 

 

 
a) 

 
b) 

 

Fig. 1.10: a) German psychiatrist Alois Alzheimer, b) The first known AD 

patient Auguste D. [45]. 
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2.6.1 AD Hallmarks 
Some of the most characteristic events taking place in an AD patient‘s brain 

are: abundance of two abnormal structures amyloid plaques and neurofibrillary 

tangles that are made of misfolded proteins especially in certain regions of the brain 

that are important in memory and  loss of connections between cells which leads to 

diminished cell function and cell death. 

 

 Amyloid plaques: Amyloid plaques are found in the spaces between 

the brain‘s nerve cells. They were first described by Dr. Alois 

Alzheimer in 1906. Plaques consist of largely insoluble deposits of an 

apparently toxic protein peptide, or fragment, called beta-amyloid. It is 

know that some people develop some plaques in their brain tissue as 

they age. However, the AD brain has many more plaques in particular 

brain regions. It is under investigation whether amyloid plaques 

themselves cause AD or whether they are a by-product of the AD 

process. However it is known that genetic mutations can increase 

production of beta-amyloid and can cause rare, inherited forms of AD 

[44].  

 Neurofibrillary tangles: The second hallmark of AD, also described by 

Dr. Alzheimer, is neurofibrillary tangles. Tangles are abnormal 

collections of twisted protein threads found inside nerve cells. The 

chief component of tangles is a protein called tau. Healthy neurons are 

internally supported in part by structures called microtubules, which 

help transport nutrients and other cellular components, such as 

neurotransmittercontaining vesicles, from the cell body down the axon. 

Tau, which usually has a certain number of phosphate molecules 

attached to it, binds to microtubules and appears to stabilize them. In 

AD, an abnormally large number of additional phosphate molecules 

attach to tau. As a result of this ―hyperphosphorylation,‖ tau 

disengages from the microtubules and begins to come together with 

other tau threads. These tau threads form structures called paired 

helical filaments, which can become enmeshed with one another, 

forming tangles within the cell. The microtubules can disintegrate in 

the process, collapsing the neuron‘s internal transport network. This 

collapse damages the ability of neurons to communicate with each 

other [44]. 

 Neuron damage: The third major feature of AD is the gradual loss of 

connections between neurons. Neurons live to communicate with each 

other, and this vital function takes place at the synapse. Since the 

1980s, new knowledge about plaques and tangles has provided 

important insights into their possible damage to synapses and on the 

development of AD. The AD process not only inhibits communication 

between neurons but can also damage neurons to the point that they 

cannot function properly and eventually die. As neurons die throughout 

the brain, affected regions begin to shrink in a process called brain 

atrophy. By the final stage of AD, damage is widespread, and brain 

tissue has shrunk significantly [44]. 
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2.6.2 AD Stages and Symptoms 

 
The following seven stages were developed by researchers and physicians to 

describe how a subject having AD changes over time. Many times the seven stages of 

AD are summed up in three main stages: early, middle, late or mild, moderate and 

severe. 

 

 Stage 1(Absence of Impairment): There are no problems with 

memory, orientation, judgment, communication, or daily activities 

[46], [47], [43].  

 Stage 2 (Minimal Impairment): AD patient might be experiencing 

some lapses in memory or other cognitive problems not detectably by 

medical exam [46], [47], [43]. 

 Stage 3 (Noticeable Cognitive Decline): Mild changes in memory, 

communication patterns, or behaviour can be recognized. Sometimes 

mild Alzheimer's disease can be diagnosed. Common symptoms in this 

stage include, problems producing people's names or the right words 

for objects, noticeable difficulty functioning in employment or social 

settings, forgetting material that has just been read, misplacing 

important objects with increasing frequency and decrease in planning 

or organizational skills [46], [47], [43]. 

 Stage 4 (Early-Stage/Mild Alzheimer's): Cognitive decline is more 

evident. AD patient becomes forgetful of recent events or personal 

details. Other problems include impaired mathematical ability (for 

instance, difficulty counting backwards from 100 by 9s), a diminished 

ability to carry out complex tasks like throwing a party or managing 

finances, moodiness, and social withdrawal [46], [47], [43]. 

 Stage 5 (Middle-Stage/Moderate Alzheimer's): At this stage some 

assistance with daily tasks is required. Problems with memory and 

thinking are quite noticeable, including symptoms such as an inability 

to recall one's own contact information or key details about one's 

history, disorientation to time and/or place and decreased judgment and 

skills in regard to personal care. Even though symptoms are worsening, 

people in this stage usually still know their own name and the names of 

key family members and can eat and use the bathroom without 

assistance [46], [47], [43]. 

 Stage 6 (Middle-Stage/Moderate to Late-Stage/Severe Alzheimer's): 

At this stage AD patient has many personality and behaviour changes. 

In addition, memory continues to decline, and assistance is required for 

most daily activities. The most common symptoms associated with this 

stage include: Reduced awareness of one's surroundings and of recent 

events, problems recognizing one's spouse and other close family 

members, although faces are still distinguished between familiar and 

unfamiliar, increased restlessness and agitation in the late afternoon 

and evening, difficulty using the bathroom independently, bowel and 

http://alzheimers.about.com/od/glossary/g/orientation.htm
http://alzheimers.about.com/od/symptomsofalzheimers/f/commstages.htm
http://alzheimers.about.com/od/caregiving/qt/agitation.htm
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bladder incontinence, suspicion, repetitive behaviour and wandering 

[46], [47], [43]. 

 Stage 7 (Late-Stage/Severe Alzheimer's): In the final stage, it is 

usually no longer possible to respond to the surrounding environment. 

Basic functions begin to shut down, such as motor coordination and the 

ability to swallow. The patient starts to have weight loss, seizures and 

skin infections and reacts by groaning, moaning, or grunting. Although 

the stages provide a blueprint for the progression of Alzheimer's 

symptoms, not everyone advances through the stages similarly. Still, 

the stages are helpful so as to understand AD symptoms [46], [47], 

[43].  

 

a) b) 

c) d) 

Fig. 1.12: The figures above show the brain evolution as AD expands. a) 

Preclinical AD, b) Mild to moderate AD, c) Severe AD, d) Comparison between 

healthy brain and Severe AD [44]. 

In fig. 1.12 we have the brain evolution as AD expands. There are 

demonstrated the stages from a normal brain (fig. 1.12a) to severe AD‘s effect on the 

brain (fig. 1.12c). It has to be mentioned that the last figure (fig. 1.12d) has the real 

scale correspondence of the healthy brain to the damaged from severe AD brain. 
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2.6.3 AD Causes and Risk Groups 

 
It has not been possibly to understand what causes AD, but it is believed that it 

develops because of a complex series of events that take place in the brain over a long 

period of time. Many studies are exploring the factors involved in the cause and 

development of AD. Researchers have discovered that AD: 

 Is not a part of normal aging. 

 Affects both men and women.  

 Is more common in people as they age -- most people with the disease are over 

65. 

 Is not caused by hardening of the arteries. 

 Is not caused by stress.  

Those data lead scientists to three different directions, family history (genetic 

inheritance) and internal environment. 

 Age: Age is the greatest risk factor for dementia. Dementia affects one 

in 14 people over the age of 65 and one in six over the age of 80. The 

likelihood of developing Alzheimer‘s approximately doubles every 

five years after age 65. After age 85, the risk reaches nearly 50 percent. 

However, AD is not restricted to elderly people [48]. 

 Genetic inheritance: In the vast majority of cases, however, effect of 

inheritance seems to be small. If a parent or other relative has AD, the 

descendant‘s chances of developing the disease are only a little higher 

than someone‘s whose family has no history of AD [48]. 

 Environmental factors: The environmental factors that may contribute 

to the onset of Alzheimer's disease have yet to be identified [48].  

 Other factors: Research has shown that people who smoke, and those 

who have high blood pressure or high cholesterol levels, increase their 

risk of developing Alzheimer's [48]. 

One promising line of research suggests that strategies for overall healthy 

aging may help keep the brain healthy and may even offer some protection against 

Alzheimer‘s. These measures include eating a healthy diet; staying socially active, 

avoiding tobacco and excess alcohol and exercising both body and mind. 

Some reports show that women tend to be infected more frequently than men, 

though women tend to live longer than men. 
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2.6.4 AD Diagnosis and Treatment 

 The only definite way to diagnose AD is with an autopsy, which is an 

examination of the body done after a person dies. However, doctors can determine 

fairly accurately whether a person who is having memory problems has ―possible 

AD‖ (the symptoms may be due to another cause) or ―probable AD‖ (no other cause 

for the symptoms can be found). To diagnose AD, doctors: 

 Ask questions about a person‘s overall health, past medical problems, 

ability to carry out daily activities, and changes in behaviour and 

personality conduct tests of memory, problem solving, attention, 

counting, and language skills [49]. 

 Carry out medical tests, such as tests of blood, urine, or spinal fluid 

[49]. 

 Perform brain scans, such as a computed tomography (CT) scan or 

magnetic resonance imaging (MRI) test, single proton emission 

computed tomography (SPECT) which shows how blood is circulating 

to the brain, positive electron tomography (PET) which shows how the 

different areas of the brain respond during certain activities such as 

reading and talking and other tests such as X-rays and EEG may be 

used to determine the source of the problem [49]. 

These tests may be repeated to give doctors information about how the 

person‘s memory is changing over time. Sometimes these tests help doctors find other 

possible causes of the person‘s symptoms. For example, thyroid problems, drug 

reactions, depression, brain tumors, and blood-vessel disease in the brain can cause 

AD-like symptoms. Some of these other conditions can be treated successfully. 

One of the most exciting areas of ongoing diagnostic research is 

neuroimaging. Scientists have developed sophisticated imaging systems that may help 

measure the earliest changes in brain function or structure to identify people in the 

very first stages of AD well before they develop apparent signs or symptoms.  

The National Institute on Aging‘s AD Neuroimaging Initiative is a large study 

that uses MRI and Positron Emission Tomography (PET) scans to learn when and 

where in the brain changes occur as memory problems develop. These types of 

neuroimaging scans are still primarily research tools, but one day they may be used 

more commonly to help physicians diagnose AD at very early stages. 

Nevertheless there is currently no cure for AD, but scientific research is 

bringing us closer to a cure every day. Outstanding progress has already been made in 

unraveling the mysteries of AD, including what causes it and what happens in the 

brain as the disease progresses. New understandings about these processes have 

already provided critical information about how doctors might prevent, delay, stop or 

even reverse the nerve cell damage that leads to the devastating symptoms of AD. All 

around the world, scientists and pharmaceutical companies are now racing to develop 

treatments that address the underlying disease processes, some of which (or a 

combination of which) might effectively solve the AD puzzle [44]. 
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2.7 Event Related Potentials 

 
Originally, Evoked Related Potentials (ERPs) were called Evoked Potentials 

(EPs) because they were electrical potentials that were evoked by stimuli. The term 

―EP‖ is no longer sufficiently general because cerebral processes may be related to 

voluntary movement or relatively stimulus-independent psychological processes. The 

term ―ERP‖ was proposed (by Vaughan, 1969) to designate the general class of 

potentials that display stable time relationships to a definable reference event. 

An evoked potential (or ―evoked response‖) is an electrical potential recorded 

from a human or animal following presentation of a stimulus, as distinct from 

spontaneous potentials as detected by electroencephalograms or electromyograms. An 

event-related potential (ERP) is any stereotyped electrophysiological response to an 

internal or external stimulus. More simply, it is any measured brain response that is 

directly the result of a thought or perception. 

 Evoked potential amplitudes tend to be low, ranging from less than a 

microvolt to several microvolts, compared to tens of microvolts for EEG. To resolve 

these low-amplitude potentials against the background of ongoing EEG and other 

biological signals and ambient noise, signal averaging is usually required. The signal 

is time-locked to the stimulus and most of the noise occurs randomly, allowing the 

noise to be averaged out with averaging of repeated responses.  
 

 

2.7.1 Evoked Potential Types 

 
According to the type of stimulation the scientist uses so as to activate the 

brain circuits of a subject, there are different types of evoked potentials recordings. 

The most common evoked potentials are sensory and motor evoked potentials. The 

sensory evoked potentials depending on the kind of the external stimulus are 

categorized as: visual, auditory and somatosensory. 

 

 Visual Evoked Potentials (VEP): Visual evoked potentials are very 

useful in detecting blindness in patients that cannot communicate, such 

as babies or animals. If repeated stimulation of the visual field causes 

no changes in EEG potentials, then the subject's brain is probably not 

receiving any signals from his/her eyes. Other applications include the 

diagnosis of optic neuritis, which causes the signal to be delayed. Such 

a delay is also a classic finding in Multiple Sclerosis. Visual evoked 

potentials are furthermore used in the investigation of basic functions 

of visual perception. VEPs are also sometimes used to determine if 

someone is fraudulently alleging blindness.The stimuli are light, 

pictures projection, colour alternation, etc [64].  

 Auditory Evoked Potentials (AEP): For AEPs, the ―event‖ is a sound. 

AEPs (and ERPs) are very small electrical voltage potentials 

originating from the brain recorded from the scalp in response to an 

auditory stimulus. The stimuli are different frequency, volume or 

duration sounds, words, signals, etc [65].  

 Somatosensory Evoked Potentials (SSEP): Somatosensory Evoked 

Potentials (SSEPs) are used in neuromonitoring to assess the function 

http://dic.academic.ru/dic.nsf/enwiki/107399
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of a patient's spinal cord during surgery. They are recorded by 

stimulating peripheral nerves, most commonly the posterior tibial 

nerve, median nerve or ulnar nerve, typically with an electrical 

stimulus. The stimuli are short duration and amplitude currents which 

stimulate specific nerves [64]. 

 

EPs can also be categorized according to their latency: 

 

 Early-fast potentials: They are observed 2-12 msec after the stimulus. 

The peaks which are observed in this duration are counted as I-VII 

[66], [67]. 

 Middle potentials: They are observed 12-50 msec after the stimulus. 

The peaks which are observed in this duration are counted as N0, P0, 

Na, Pa, Nb, Pb. The peaks N0, P0 are observed before 20 msec and Na, 

Pa, Nb are observed 30, 40 and 50 msec after the stimulus onset 

considerably [66], [67].  

 Late potentials: They are observed 50-800 msec after the stimulus. 

Those potentials‘ components are reported as N100, P100, N200, P200, 

N300, P300 for 100, 200 and 300 msec after the stimulus onset 

considerably [66], [67].  

 
 

Fig. 1.13: An auditory evoked potential and its components [90]. 

 

In figure 1.13 we illustrate an auditory evoked potential and its components. 

From 1-10ms we can see the early components I-VI, from 10-50ms the middle 

potentials N0-Nb and from 50-200ms we can see the late potentials N100-N200. 

It should be noticed that as the latency of the potential observation becomes 

greater, the signal‘s frequency becomes lower, whereas its amplitude becomes 

greater. 

 Early-fast potentials: Amplitude (0.1-0.5 μV), frequency (100-1000 

Hz) [66], [67]. 

 Late potentials: Amplitude (1-20 μV), frequency (0.1-5 Hz) [66], [67]. 

 

The early potentials are related to the nerve reduction across the acoustic nerve 

(or the visual nerve if it is a VEP). On the other hand late potentials show the brain 

activity‘s reaction to external information. 
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2.7.2 Important ERP Components 
 

Most ERP components are referred to by a preceding letter indicating polarity 

followed by the typical latency in milliseconds. Thus, the P300 component describes a 

positive voltage peak 300ms after stimulus onset (N300 for a negative voltage peak). 

The amplitude and the latency of the peaks of the ERP components and also the 

latency between two different peaks are very important and under research so as to try 

to identify pathological cases such as Alzheimer, schizophrenia or depression. Some 

of the most important ERP components are the followings: 

 

 N100: It is a negative peak usually observed 70-140 msec after the 

stimulus. While most research focuses on auditory stimuli, the N100 

also occurs for visual [68], olfactory [69], heat [70], pain [70], balance 

[71], respiration blocking [72], and somatosensory [73] stimuli. The 

N100 is preattentive and involved in perception because its amplitude 

is strongly dependent upon such things as the rise time of the onset of a 

sound [74], its loudness [75], interstimulus interval with other sounds 

[76], and the comparative frequency of a sound as its amplitude 

increases in proportion to how much a sound differs in frequency from 

a preceding one [77]. Neuromagnetic research has linked it further to 

perception by finding that the auditory cortex has a tonotopic 

organization to N100 [78]. However, it also shows a link to a person's 

arousal [79] and selective attention [80]. N100 disappears when a 

person controls the creation of auditory stimuli [81], such as their own 

voice [82]. 

  P300: It is a positive peak observed 240-500 msec after the stimulus. 

The P300 was discovered originally by Samuel Sutton, Margery 

Braren, Joseph Zubin, and E. R. John as noted in Science magazine 

from November 26, 1965 to unpredictable stimuli presented in an 

oddball paradigm [83]. The P300 wave itself is thought to be 

comprised of two ―wavelets‖ known as P3a and P3b signals. These 

components respond individually to different stimuli, and it has been 

suggested that the P3a wave originates from stimulus-driven frontal 

attention mechanisms during task processing, whereas P3b originates 

from temporal–parietal activity associated with attention and appears 

related to subsequent memory processing. The two wavelets are 

sometimes referred to as ―non-target‖ (P3a) and ―target‖ (P3b) ERPs 

[84], [85]. 

 N400: It is characterized as a negative deflection, peaking 

approximately 400ms (300-500ms) after the presentation of the 

stimulus [86]. The N400 plays a significant role in language 

processing. It was ―discovered‖ in 1980 by Marta Kutas and Steven 

Hillyard, in a study that is considered to have first introduced the 

concept of using ERPs to study language processing, and one of the 

first studies in what is now the field of neurolinguistics [87]. The N400 

response is often elicited by semantically inappropriate words in an 

otherwise acceptable sentential context [88], and has also been shown 

to occur in response to words at the end of a sentence when there was a 
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problem earlier in the sentence. In general, the more difficult it is to 

―integrate‖ a word into the preceding context, the bigger an N400 that 

word will elicit. In models of speech comprehension, N400 is often 

associated with the semantic integration of words in a sentence context 

and general ―wrap-up‖ and decision-making processes at the end of a 

sentence. The N400 remains a common topic of study in 

neurolinguistics and psycholinguistics [87]. 

 P600: It is a positive peak observed peaking around 500ms after the 

stimulus. It is thought to be elicited by hearing or reading grammatical 

errors and other syntactic anomalies. Therefore, it is a common topic 

of study in neurolinguistic experiments investigating sentence 

processing in the human brain. The P600 can be elicited in both visual 

(reading) and auditory (listening) experiments and can last several 

hundred milliseconds. The P600 was first reported by Lee Osterhout 

and Phillip Holcomb in 1992. It is also sometimes called the Syntactic 

Positive Shift (SPS), since it has a positive polarity and is usually 

elicited by syntactic phenomena [89]. 

 

 

 
a) 

 
b) 

 

Fig. 1.14: a) A P400 example [92], b) a P300 example [91]. 

Except the characterization of the peaks as N100, P300, etc., there are also 

specific experiments which evoke the specific peaks. For example auditory oddball 

experiments can be designed in order to produce P300 activity. Experiments that evoke 

such activity take the name of the activity, so an experiment which produces a 300ms 

peak can be characterized as P300 experiment. It is not certain that in every experiment 

we will have all of the peaks we previously considered. 

 In figure 1.14 we illustrate two such experiments that produce certain peaks. 

In figure 1.14a there is an experiment which produces a P400 peak. This experiment 

shows the response of the brain on electrode Cz in a semantically correct and a 

semantically wrong phrase. In the semantically wrong phrase we see that we have a 

peak 400ms after stimulus. This is why the specific experiment can be characterized 

as a P400 experiment. In the second figure (fig. 1.14b) there is a corresponding P300 

example. In this case the peak is found around 300ms after stimulus. 
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CHAPTER 3: Mathematical Analysis: 

Background Methods 

In this chapter we analyze the mathematical methods and algorithms which we 

use in our work. Independent component analysis, Partial Directed Coherence, Time-

Frequency transform and Event Related Potentials Processing are some of the most 

important tools in our method. In this chapter, we will give a brief introduction in 

these methods in order to make some of their main aspects clear.   

 

3.1 Blind source separation 

Considering the wealth of information embedded in EEG recordings, it is quite 

important to provide efficient means of decomposing the multi-channel EEG signal 

into meaningful components by means of a suitable transformation. Let us denote by 

x an m-dimensional random variable. The problem is then to find a function f so that 

the n-dimensional transform: 
T

n21 )s,...,s,(ss  defined by  xfs  has some desirable properties. 

 In most cases, the representation is sought as a linear transform of the 

observed variables, i.e: s=Wx where W is a matrix to be determined. 

Using linear transformations makes the problem computationally and 

conceptually simpler, and facilitates the interpretation of the results. Thus we deal 

with only linear transformations here.  

Several principles and methods have been developed to find a suitable linear 

transformation. These include principal component analysis, factor analysis, 

projection pursuit, independent component analysis, and many more. Usually, these 

methods define a principle that tells which transform is optimal and also the 

assumptions in each method are important so as to decide which one to use. The 

optimality may be defined in the sense of optimal dimension reduction, statistical 

significance of the resulting components is , simplicity of the transformation W, or 

other criteria, including application-oriented ones.  

The method of independent component analysis (ICA) provides a tool of EEG 

decomposition into spatially fixed, timely localized, maximally independent 

components. As the name implies, the basic goal of ICA is to find a transformation in 

which the components si are statistically as independent from each other as possible. 

ICA can be applied, for example in our case, for blind source separation, in which the 

observed values of x correspond to a realization of an m-dimensional discrete-time 

signal x(t), t=1,2,…,n. Then the components si(t) are called source signals, which are 

usually original, uncorrupted signals or noise sources. Often such sources are 

statistically independent from each other, and thus the signals can be recovered from 

linear mixtures xi by finding a transformation in which the transformed signals are as 

independent as possible, as in ICA. This decomposition is also compliant with the 

neurophysiological attributes of brain sources and has received significant attention in 

ERP analysis [50]. 

Several principles have been developed in statistics, neural computing, and 

signal processing to find a suitable linear representation of a random variable. Here, 
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we discuss classical methods for determining the linear transformation. All the 

methods discussed are based on using centered variables, which means that the mean 

of the random vector is subtracted. It is henceforth assumed that the variable x has 

already been centered, which means that it has already been transformed by: 

 00 xExx  , where 0x is the original non-centered variable. 

 

3.1.1 Second-order Methods  

The most popular methods for finding a linear transform are second-order 

methods. This means methods that find the representation using only the information 

contained in the covariance matrix of the data vector x. The use of second-order 

techniques is to be understood in the context of the classical assumption of 

Gaussianity. If the variable x has a normal, or Gaussian distribution, its distribution is 

completely determined by this second-order information. Thus it is useless to include 

any other information. Another reason for the popularity of the second-order methods 

is that they are computationally simple, often requiring only classical matrix 

manipulations. 

The two classical second-order methods are principal component analysis and 

factor analysis. One might roughly characterize the second-order methods by saying 

that their purpose is to find a faithful representation of the data, in the sense of 

reconstruction (mean-square) error. This is in contrast to most higher-order methods 

which try to find a meaningful representation. Of course, meaningfulness is a task-

dependent property, but these higher-order methods seem to be able to find 

meaningful representations in a wide variety of applications. 

3.1.1.1 Principal Component Analysis 

Principal Component Analysis, or PCA, is widely used in signal processing, 

statistics, and neural computing. In some application areas, this is also called the 

(discrete) Karhunen-Loève transform, or the Hotelling transform. PCA is 

mathematically defined as an orthogonal linear transformation that transforms the data 

to a new coordinate system such that the greatest variance by any projection of the 

data comes to lie on the first coordinate (called the first principal component), the 

second greatest variance on the second coordinate, and so on. PCA is theoretically the 

optimum transform for given data in least square terms [53]. For a data matrix, X
T
, 

with zero mean, where each row represents a different repetition of the experiment, 

and each column gives the results from a particular probe, the PCA transformation is 

given by: 

Y
T
=X

T
W=VΣ 

Where VΣW
T
 is the singular value decomposition (svd) of X

T
 . Given a set of points 

in Euclidean space, the first principal component (the eigenvector with the largest 

eigenvalue) corresponds to a line that passes through the mean and minimizes sum 

squared error for those points. The second principal component corresponds to the 

same concept after all correlation with the first principal component has been 

subtracted out from the points. Each eigenvalue indicates the portion of the variance 

that is correlated with each eigenvector. Thus, the sum of all the eigenvalues is equal 

to the sum squared distance of the points with their mean divided by the number of 

dimensions. PCA essentially rotates the set of points around their mean in order to 
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align with the first few principal components. This moves as much of the variance as 

possible (using a linear transformation) into the first few dimensions. The values in 

the remaining dimensions, therefore, tend to be highly correlated and may be dropped 

with minimal loss of information. PCA is often used in this manner for dimensionality 

reduction. PCA has the distinction of being the optimal linear transformation for 

keeping the subspace that has largest variance. This advantage, however, comes at the 

price of greater computational requirement if compared, for example, to the discrete 

cosine transform. Nonlinear dimensionality reduction techniques though, tend to be 

more computationally demanding than PCA. 

The basic idea in PCA is to find the components n21 ,...,s,ss so that they explain 

the maximum amount of variance possible by n-linearly transformed components. 

PCA can be defined in an intuitive way using a recursive formulation. Define the 

direction of the first principal component, say 1w , by: 

  2

1
Emaxarg xww T

1



w

 

Where w is the matrix of the basis vectors and has one vector per column, and 1w  is 

of the same dimension m as the random data vector x. (Let the vectors be column 

vectors). Thus the first principal component is the projection on the direction in which 

the variance of the projection is maximized. Having determined the first k-1 principal 

components, the k-th principal component is determined as the principal component 

of the residual:  
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The principal components are then given by x
T

ii ws  . In practice, the computation of 

the iw  can be simply accomplished using the (sample) covariance matrix   CxxE T  . 

The iw  are the eigenvectors of C that correspond to the n largest eigenvalues of C.  

The basic goal in PCA is to reduce the dimension of the data. Thus one usually 

chooses n<<m. Indeed, it can be proven that the representation given by PCA is an 

optimal linear dimension reduction technique in the mean-square sense. Such a 

reduction in dimension has important benefits. First, the computational overhead of 

the subsequent processing stages is reduced. Second, noise may be reduced, as the 

data not contained in the n first components may be mostly due to noise. Third, a 

projection into a subspace of a very low dimension, for example two, is useful for 

visualizing the data. Note that often it is not necessary to use the n principal 

components themselves, since any other orthonormal basis of the subspace spanned 

by the principal components (called the PCA subspace) has the same data 

compression or denoising capabilities [53].  

 

3.1.1.2 Factor Analysis 

A method that is closely related to PCA is factor analysis. In factor analysis, the 

following generative model for the data is postulated:  
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nAsx   

where x is the vector of the observed variables, s is the vector of the latent variables 

(factors) that cannot be observed, A is a constant (m x n) matrix, and the vector n is 

noise, of the same dimension, m, as x. All the variables in s and n are assumed to be 

Gaussian. In addition, it is usually assumed that s has a lower dimension than x. Thus, 

factor analysis is basically a method of reducing the dimension of the data, in a way 

similar to PCA. 

Suppose we have a set of p observable random variables, pxx ,...,1 with 

means p ,...,1 .Suppose for some unknown constants ijl  and k  random variables 

f , where pi ,..,1  and kj ,..1 , where pk  , we have: 

ikikiii flflx   ...11  

Here i is the independently distributed error term with zero mean and finite variance 

which may not be the same for all of them. In matrix terms, we have 

1111   pkkppp εflμx , or omitting the matrix dimensions for clarity, 

εLfμx  . 

 

Also we will impose the following assumptions on F . 

1. f and ε are independent. 

2. 0)( fE  

3. kkCov  IF)(  

Any solution for the above set of equations following the constraints for f is defined 

as the factors, and L as the loading matrix [135]. 

There are two main methods for estimating the factor analytic model. The first 

method is the method of principal factors which is basically a modification of PCA. 

The idea is here to apply PCA on the data x in such a way that the effect of noise is 

taken into account. In the simplest form, one assumes that the covariance matrix of 

the noise  TnnΣ E  is known. Then one finds the factors by performing PCA using 

the modified covariance matrix C-Σ, where C is the covariance matrix of x. Thus the 

vector s is simply the vector of the principal components of x with noise removed. A 

second popular method, based on maximum likelihood estimation, can also be 

reduced to finding the principal components of a modified covariance matrix [51], 

[52]. 

Nevertheless, there is an important difference between factor analysis and 

PCA, though this difference has little to do with the formal definitions of the methods.  

Equation x = As + n does not define the factors uniquely, but only up to a rotation 

[51]. This indeterminacy should be compared with the possibility of choosing an 

arbitrary basis for the PCA subspace, i.e., the subspace spanned by the first n principal 

components. Therefore, in factor analysis, it is conventional to search for a 'rotation' 

of the factors that gives a basis with some interesting properties. The classical 

criterion is parsimony of representation, which roughly means that the matrix A has 

few significantly non-zero entries. This principle has given rise to such techniques as 

the varimax, quartimax, and oblimin rotations. Such a rotation has the benefit of 
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facilitating the interpretation of the results, as the relations between the factors and the 

observed variables become simpler [51], [52].  

3.1.2 Higher-order Methods  

Higher-order methods use information on the distribution of x that is not 

contained in the covariance matrix. In order for this to be meaningful, the distribution 

of x must not be assumed to be Gaussian, because all the information of (zero-mean) 

Gaussian variables is contained in the covariance matrix. For more general families of 

density functions, however, the representation problem has more degrees of freedom. 

Thus much more sophisticated techniques may be constructed for non-Gaussian 

random variables. Indeed, the transform defined by second-order methods like PCA is 

not useful for many purposes where optimal reduction of dimension in the mean-

square sense is not needed. This is because PCA neglects such aspects of non-

Gaussian data as clustering and independence of the components (which, for non-

Gaussian data, is not the same as uncorrelatedness). Three conventional methods 

based on higher-order statistics are: projection pursuit, redundancy reduction, and 

Independent Component Analysis (ICA) [50]. Due to its significance ICA is 

extensively presented in section 3.2. 

3.1.2.1 Projection Pursuit 

 
Projection pursuit [136] is a technique developed in statistics for finding 

―interesting‖ projections of multidimensional data. Such projections can then be used 

for optimal visualization of the clustering structure of the data, and for such purposes 

as density estimation and regression. In one-dimensional projection pursuit, we try to 

find directions w such that the projection of the data in that direction, w
T
x, has an 

―interesting‖ distribution, for example, it displays some structure. In projection 

pursuit, one thus wants to reduce the dimension in such a way that some of the 

―interesting‖ features of the data are preserved. This is in contrast to PCA where the 

objective is to reduce the dimension so that the representation is as faithful as possible 

in the mean-square sense. 

The central theoretical problem in projection pursuit is the definition of the 

projection pursuit index that defines the ―interestingness‖ of a direction. Usually, the 

index is some measure of non-Gaussianity. A most natural choice is using differential 

entropy [137], [138]. The differential entropy H of a random vector y whose density is 

f(.), is defined as: 

 yyyy d))log(f()f()H(  

Now, consider zero-mean variables y of different densities f, and constrain the 

covariance of y to be fixed. Then the differential entropy H(y) is maximized when f is 

a Gaussian density. For any other distribution, entropy is strictly smaller. Thus one 

might try to find projection pursuit directions by minimizing H(w
T
x)with respect to w, 

constraining the variance of w
T
x to be constant. 

 

3.1.2.2 Redundancy Reduction 

 
According to Barlow [140] and several other authors [139], an important 

characteristic of sensory processing in the brain is redundancy reduction. One aspect 
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of redundancy reduction is that the input data is represented using components 

(features) that are as independent from each other as possible (similar to ICA). Such a 

representation seems to be very useful for later processing stages. Theoretically, the 

values of the components are given by the activities of the neurons, and x is 

represented as a sum of the weight vectors of the neurons, weighted by their 

activations. This leads to a linear encoding like the other methods we previously 

discussed. 

One method for performing redundancy reduction is sparse coding [140]. Here 

the idea is to represent the data x using a set of neurons so that only a small number of 

neurons is activated at the same time. Equivalently, this means that a given neuron is 

activated only rarely. If the data has certain statistical properties (it is 'sparse'), this 

kind of coding leads to approximate redundancy reduction. A second method for 

redundancy reduction is predictability minimization [139]. This is based on the 

observation that if two random variables are independent, they provide no information 

that could be used to predict one variable using the other one.  

  

3.2 Independent Component Analysis  

 
In the literature, at least three different basic definitions for linear ICA can be found: 

 

1) General definition:   ICA of the random vector x consists of finding a linear 

transform so that the components si are as independent as possible, in 

the sense of maximizing some function F(s1,...,sm) that measures 

independence. 

2) Noisy ICA model:   ICA of a random vector x consists of estimating the 

following generative model for the data: x=As+n where the latent variables 

(components) si in the vector s=(s1,…,sn)
T
 are assumed independent. The 

matrix A is a constant m x n ―mixing‖ matrix, and n is a m-dimensional 

random noise vector.This definition reduces the ICA problem to ordinary 

estimation of a latent variable model. However, this estimation problem is not 

very simple, and therefore the great majority of ICA research has concentrated 

on the following simplified definition. 

3) Noisy-free ICA model: Nevertheless the great majority of ICA research has 

concentrated on the following simplified definition [54]: Let 

 Tm21 x,...,x,xx  be the observed m-dimensional random vector. ICA of x 

consists of estimating the following generative model for the data: x=As 

where the latent variables (components) is  in the vector  Tn21 s,...,s,ss  are 

assumed independent and the matrix A is a constant (m x n) ―mixing‖ matrix. 

In this case we do not take into consideration the noise vector, so as to make 

the estimation problem simpler. This is also the model introduced by Jutten 

and Hérault in their seminal paper ―Blind separation of sources, part I: An 

adaptive algorithm based on neuromimetic architecture‖. In this thesis the 

noise-free ICA model will be considered. 

 

 The mutually independent components are produced by:  
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where W (―unmixing‖ matrix) has to be estimated.  W can be computed as W= 1Α  

when A is invertible or else W can be estimated as the pseudo-inverse of A. 

If we are talking about EEG the elements w’ij of the columns of the inverse matrix of 

W reflect the projection intensity of the j
th

 IC sj back to each electrode. 

 

It is essential to define the restrictions for the ICA model.  

 

1) All the independent components si, with the possible exception of one 

component, must be non-Gaussian.  

2) The ―sources‖ have to be truly independent.  

3) The number of observed linear mixtures m must be at least as large as the 

number of independent components n, i.e., nm  . 

4) The matrix A must be of full column rank. 

 

3.2.1 ICA Relation to Classical Methods  
 

Previously, we presented some second-order and high-order methods. At this 

point we will correlate those methods with ICA. 

By definition, ICA can be considered a method for achieving redundancy 

reduction. Indeed, there is experimental evidence that for certain kinds of sensory 

data, the conventional ICA algorithms do find directions that are compatible with 

existing neurophysiological data, assumed to reflect redundancy reduction [141]. In 

the noise-free case, the estimation of the ICA model means simply finding certain 

―interesting‖ projections, which give estimates of the independent components. Thus 

ICA can be considered, at least using Definitions 1 and 3, a special case of projection 

pursuit. Comparing Eq. x=As+n in Definition 2 of ICA with the definition of factor 

analysis, the connection between factor analysis and ICA becomes clear. Indeed, ICA 

may be considered a non-Gaussian factor analysis. The main difference is that 

usually in ICA, reduction of dimension is considered only as a secondary objective, 

but this does not need to be the case. Indeed, a simple combination of factor analysis 

and ICA can be obtained using factor rotations. 

Using the first definition we gave for ICA, the relation to principal component 

analysis is also evident. Both methods formulate a general objective function that 

define the ―interestingness‖ of a linear representation, and then maximize that 

function. A second relation between PCA and ICA is that both are related to factor 

analysis, though under the contradictory assumptions of Gaussianity and non-

Gaussianity, respectively. The relation between PCA and ICA may be, however, less 

important than the relation between ICA and the other methods discussed previously. 

This is because PCA and ICA define their objective functions in quite different ways. 

PCA uses only second-order statistics, while ICA is impossible using only second-
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order statistics. PCA emphasizes dimension reduction, while ICA may reduce the 

dimension, increase it or leave it unchanged. 

 

Fig. 3.1: The relations between ICA and some other methods. [50]. 

 

In figure 3.1 we illustrate the relations between the different methods. The lines show 

close connections, and the texts next to the lines show the assumptions needed for the 

connections. 

 

3.2.2 ICA Applications in BSS 

 
ICA model is used in many different applications, the most classical of which 

is blind source separation. Other applications in which the ICA model is used are; 

feature extraction and blind deconvolution. Here we present the aspects of blind 

source separation: 

In blind source separation, the observed values of x correspond to a realization 

of an m-dimensional discrete-time signal x(t), t=1,2,…n. Then the independent 

components si(t) are called source signals, which are either uncorrupted signals or 

noise sources. The cocktail party problem [80] is considered a classical example of 

blind source separation. Assuming that several people are speaking simultaneously in 

the same room, as in a cocktail party, the problem is to separate the voices of the 

different speakers, using recordings of several microphones in the room. In principle, 

this corresponds to the ICA data model, where x is the recording of the i-th 

microphone, and the si(t) are the waveforms of the voices. A more practical 

application is noise reduction. If one of the sources is the original, uncorrupted source 

and the others are noise sources, estimation of the uncorrupted source is in fact a 

denoising operation [55]. 

A simulated example on blind source separation of four linearly mixed source 

signals is presented in the following figures: 
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a) b) 

c) d) 

Fig. 3.2: 4 source signals .a) a sinusoidal signal, b) a tangent signal, c) a triangle 

signal, d) Gaussian noise. 

 

  

  
 Fig. 3.3: Linear mixture of the former source signals. 
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Fig. 3.4: Retrieval of the source signals using ICA. 

 

In the figures above we have step by step the procedure followed so as to 

―unmix‖ linearly ―mixed‖ signals. In figure 3.2 we have the four initially ―unmixed‖ 

original signals. These signals are a sinusoidal signal, a tangent signal, a triangle 

signal and Gaussian noise. In the next figure 3.3 we have four new signals coming 

from the linear mixture of the former signals. Finally in the last figure (fig. 3.4) we 

have the unmixed signals after applying ICA. The horizontal axis in the figures is for 

time and the vertical for amplitude. 

 In this thesis, we exploit the application of ICA on the EEG data, so as to find 

the unmixed, maximally independent sources which correspond to the observed, 

mixed EEG data. In this way a decomposition of the content of the EEG data is 

accomplished. Also by applying ICA on EEG data, artifacts (or noise sources) not 

corresponding to brain activity are succeeded to de separated.  
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3.2.3 ICA Cost Functions and Algorithms 
 

 A cost function for the ICA should be defined as any function whose 

optimization (by minimizing or maximizing it) enables the estimation of the 

independent components. The choice of the ICA method should be a parameter of 

both the cost function which has certain statistical properties (e.g., consistency, 

asymptotic variance, robustness) as well as the algorithm used to optimize it which 

also has different properties (e.g., convergence speed, memory requirements, 

numerical stability) [50]. 

 

ICA Method  Cost Function + Optimization Algorithm 
  

 In this essay ICA methods are not the main concern as ICA is used as an 

intermediate tool for the further analysis. Thus, a thumbnail description of ICA cost 

functions and algorithms follows. 

The ICA cost function could be either multi-unit or one-unit. In the multi-unit 

cost functions the problem of estimating all the independent components, or the whole 

data model, at the same time is to be treated. On the other hand in the one-unit cost 

functions optimization which enables estimation of a single independent component is 

desired. Thus, instead of estimating the whole ICA model, we try to find here simply 

one vector, say w, so that the linear combination xwT equals one of the independent 

components si. This procedure can be iterated to find several independent 

components.  

The most commonly used multi-unit cost functions could be synopsised in: 

likelihood and network entropy, mutual information and Kullback-Leibler divergence, 

non-linear cross correlation, non-linear PCA criteria, weighted covariance matrix and 

high-order cumulant tensors. As far as one-unit cost functions are concerned, they 

could be synopsised in: negentropy, higher-order cumulants and other general cost 

functions. 

 

3.2.3.1 Likelihood and network entropy 

Denoting by T

nwww ),...,,( 21w the matrix 1A , the log-likelihood takes the form 

[56]: 

 
 


T
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1i

T

ii detTln(t)logfL Wxw  

where the fi are the density functions of the si (here assumed to be known), and the 

x(t), t=1,2,…,T are the realizations of x.  

Another related contrast function was derived from a neural network 

viewpoint and was based on maximizing the output entropy (or information flow) of a 

neural network with non-linear outputs [58]. Assume that x is the input to the neural 

network whose outputs are of the form )( xw
T

iig , where the gi are some non-linear 

scalar functions, and the iw are the weight vectors of the neurons. The goal is to 

maximize the entropy of the outputs: 

  

))(),...,(( 112 xwxw
T
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If the gi are well chosen, this framework also enables the estimation of the 

ICA model. Indeed, several authors proved the surprising result that the principle of 

network entropy maximization, or ―infomax‖, is equivalent to maximum likelihood 

estimation [57].  

 

3.2.4 ICA Optimization Algorithms 
 

After choosing a cost function for ICA, one needs a practical method for its 

implementation. Some of the most commonly used algorithms for the ICA 

implementation are: infomax estimation, Jutten-Herault algorithm, non-linear 

decorrelation algorithms, non-linear PCA algorithms, neural one-unit algorithms, the 

FastICA algorithm and so forth. In this essay the ICA tool which is used implements 

the infomax algorithm so some analysis will be given on that particular algorithm. 

Usually infomax estimations (or maximum likelihood algorithms) are based 

on (stochastic) gradient ascent of the cost function. For example the following 

algorithm: 
TTW xWxW )tanh(2][ 1  

 

where the tanh function is applied separately on every component of the vector Wx. 

The algorithm in this equation though converges slowly, and it may be improved by 

whitening the data, and especially by using the natural gradient. The natural (or 

relative) gradient method simplifies the gradient method considerably, and makes it 

better conditioned. The principle of the natural gradient is based on geometrical 

structure of the parameter space, and is related to the principle of relative gradient that 

uses the Lie structure of the ICA problem. In the case of basic ICA, both of these 

principles amount to multiplying the right hand of the equation by WW T . Thus: 

Wyy ))tanh(2( TIW   

with y=Wx [58].  
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3.3 Time-Frequency Representation 

 
A signal, as a function of time, may be considered as a representation with 

perfect time resolution. In contrast, the magnitude of the Fourier transform (FT) of the 

signal may be considered as a representation with perfect spectral resolution but with 

no time information because the magnitude of the FT conveys frequency content but 

it fails to convey when, in time, different events occur in the signal. TF analysis 

provides a bridge between these two representations in that they provide some 

temporal information and some spectral information simultaneously. Thus, TF is 

useful for the analysis of signals containing multiple time-varying frequencies. 

There are many ways in which we can have a time-frequency representation 

such as the short time FT and the wavelet transforms. In general, such representations 

are implemented as linear transforms. They include and generalize the Fourier 

transform, fractional Fourier transform, and others, thus providing a unified view of 

these transforms in terms of their action on the time–frequency domain [59]. 

Furthermore, there are other ways of representing a time-frequency mapping such as 

the popular quadratic form and the Cohen‘s class of functions, with most commonly 

used the Wigner-Ville transform.  

 

 Linear forms: In linear forms we have comparison of the signal with a 

different function. Such representations are known as linear TF 

because the representation is linear in the signal. The short-time 

Fourier transform localizes the signal by modulating it with a window 

function, before performing the Fourier transform to obtain the 

frequency content of the signal in the region of the window [59]. 

Mathematically, this is written as: 




 dtewSTFT jωt
ttωt )()f(),(   

The STFT implements signal projection on the time-frequency domain. 

The detailed TF energy distribution function is referred to as 

―Spectrogram‖. 

 Wavelet transforms: Wavelet transforms, in particular the continuous 

wavelet transform, expand the signal in terms of wavelet functions 

which are localized in both time and frequency. Thus the wavelet 

transform of a signal may be represented in terms of both time and 

frequency [59]. The WT can be defined as:    

. The WT implements signal projection on 

the time-scale domain, where the detailed TS energy distribution 

function is referred to as ―Scalogram‖. Both the spectrogram and the 

scalogram distributions are effectively approximated by the WV 

transform. 

 Quadratic form: One form of TF can be formulated by the 

multiplicative comparison of a signal with itself, expanded in different 

directions about each point in time. Such formulations are known as 

quadratic TF representations because the representation is quadratic in 

the signal. This formulation was first described by Eugene Wigner in 

1932 in the context of quantum mechanics and, later, reformulated as a 

general TF representation by Ville in 1948 to form what is now known 

http://en.wikipedia.org/wiki/Magnitude_(mathematics)
http://en.wikipedia.org/wiki/Quadratic
http://en.wikipedia.org/wiki/Quantum_mechanics
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as the Wigner–Ville distribution [59]. The Wigner distribution 

WV(t,ω) is defined as: 




 


dηj* e)
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η
(f)
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η
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2

1
),WV( ω

ttωt   

where f is the original time signal and t and ω are the time and the 

frequency realizations. The WV transform has been extensively used 

for the approximation of the time-frequency and time-scale energy 

distributions. 

 

3.4 Wavelets 
In this essay the wavelet transform (WT) is used due to its better frequency 

resolution compared to Wigner –Vielle distribution, as it can be observed in the 

previous figures and we discussed. The word wavelet is due to Morlet and Grossmann 

in the early 1980s. They used the French word ondelette, meaning ―small wave‖. 

Soon it was transferred to English by translating ―onde‖ into ―wave‖, giving 

―wavelet‖. Wavelets are purposefully crafted to have specific properties that make 

them useful for signal processing. A wavelet transform is the representation of a 

function by wavelets. The wavelets are scaled and translated copies (known as 

―daughter wavelets‖) of a finite-length or fast-decaying oscillating waveform (known 

as the ―mother wavelet‖). Wavelet transforms have advantages over traditional 

Fourier transforms for representing functions that have discontinuities and sharp 

peaks, and for accurately deconstructing and reconstructing finite, non-periodic and/or 

non-stationary signals. Such signals are the EEG data, for which wavelet transform is 

a very efficient way to show their frequency content during time pass. 

Wavelet transforms are broadly divided into three classes: continuous, discrete 

and multiresolution-based. We focus on continuous wavelet transform. 

 

3.4.1 Continuous Wavelet Transform 
 

The wavelet transform (WT) or wavelet analysis is probably the most recent 

solution to overcome the shortcomings of the Fourier transform. In wavelet analysis 

the use of a fully scalable modulated window solves the signal-cutting problem. The 

window is shifted along the signal and for every position the spectrum is calculated. 

Then this process is repeated many times with a slightly shorter (or longer) window 

for every new cycle. In the end the result will be a collection of time-frequency 

representations of the signal, all with different resolutions. Because of this collection 

of representations we can speak of a multiresolution analysis. In the case of wavelets 

we normally do not speak about time-frequency representations but about time-scale 

representations, scale being in a way the opposite of frequency, because the term 

frequency is reserved for the Fourier transform [61]. 

 The WT can be defined as: 

 

 
 

where * denotes complex conjugation. This equation shows how a function ƒ(t) is 

decomposed into a set of basis functions υs,η(t), called the wavelets. The variables s 

and η are the new dimensions, scale and translation, after the wavelet transform. 
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The wavelets are generated from a single basic wavelet υ(t), the so-called mother 

wavelet, by scaling and translation: 

 

 
In this equation s is the scale factor η, is the translation factor and the factor s

-1/2
 is for 

energy normalization across the different scales. 

 For the Complex Morlet Wavelet we use in our analysis we have the following 

wavelet function: 

bc F

t

tFi

b eeFtCMWT

2

22
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depending on two parameters: Fb is a bandwidth parameter, Fc is a wavelet center 

frequency. 

 

 
a) 

 
b) 

 
c) 

Fig. 3.5: Three examples for “mother wavelets”. a) Morlet wavelet, b) Mexican 

hat, c)Meyer wavelet. 

 

In the figures above we illustrate some examples of popular functions which can be 

used as mother wavelets. Those are the Morlet wavelets, the Mexican hat and the 

Meyer wavelets. 
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a) 

 
b) 

 
c) 

Fig. 3.6: Two different TF representations of a)a sinusoidal signal : b) Wavelet, 

c)Wigner-Ville. 

 

In figure 3.6 we have a sinusoidal signal which is consisted of sin(2*π*fi*t) 

i=1,..,3 where f1=2Hz, f2=5Hz and f3=9Hz. Those sinusoidals are concatenated in 

time in figure 3.5a and then in figures 3.6b and 3.6c we have their  Morlet Complex 

Wavelet TF representation and Wiegner-Vielle TF representation respectively. We 

can see that each transform has other advantages. For the wavelet we see that it has 

leaks in time though shows more efficiently and limited the frequency content of the 

signal. We can also see that the higher the frequency is, the more efficient the result 

is. On the other hand, Wigner-Ville has an excellent time analysis as it ―catches‖ 

every peak of the sinusoidal signal, though it does not have a good frequency analysis. 

 

3.4.2 Continuous Wavelets vs Fourier Transform 
 

The wavelet transform is often compared with the Fourier transform, in which 

signals are represented as a sum of sinusoids. The main difference is that wavelets are 

localized in both time and frequency whereas the standard Fourier transform is only 

localized in frequency. The Short-time Fourier transform (STFT) is also time and 

frequency localized but there are issues with the frequency time resolution and 

wavelets often give a better signal representation using Multiresolution analysis. 

An advantage of wavelet transforms is that the windows vary. In order to 

isolate signal discontinuities, one would like to have some very short basis functions. 
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At the same time, in order to obtain detailed frequency analysis, one would like to 

have some very long basis functions. A way to achieve this is to have short high-

frequency basis functions and long low-frequency ones. This happy medium is 

exactly what we get with wavelet transforms [63]. 

The discrete wavelet transform is also less computationally complex, taking 

O(N) time as compared to O(N log N) for the fast Fourier transform. This 

computational advantage is not inherent to the transform, but reflects the choice of a 

logarithmic division of frequency, in contrast to the equally spaced frequency 

divisions of the FFT [62]. 

 

3.5 Partial Directed Coherence 
 

In order to find the relations between different independent components we 

use the method of partial directed coherence. Partial directed coherence (PDC) was 

recently introduced as a linear frequency-domain quantifier of the multivariate 

relationship between simultaneously observed timeseries for application in functional 

connectivity inference in neuroscience. Conceptually, PDC is a generalization to the 

case of multiple time-series of Saito and Harashima‘s ―directed coherence‖ (DC) 

which was also introduced in the context of analysing neural data and which was 

aimed at pinpointing the direction of information flow between isolated pairs of time 

series in a frequency domain representation of the notion of Granger Causality to the 

scenario when more than just pairs of time series are simultaneously analyzed. A 

time-series x2(n) is said to Granger cause x1(n) if consideration of x2(n)‘s past 

implies significant improvement in the mean-squared prediction error x1(n). Granger 

causality is not reciprocal. If x1(k) Granger causes x2(k) then it does not necessarily 

follow that x2(k) Granger causes x1(k). Or equivalently the distinctive fact about 

Granger causality is its unreciprocal nature [96], [97]: 

 

 
 

does not imply 

 

  
 

Because PDC is based on the notion of partial coherence its chief property is 

to provide a description of the mutual interaction between pairs of time series after 

deducting the effect of other simultaneously observed time series.  

If one assumes that a set of simultaneously observed time series: 

  

 
 

is adequately represented by a Multivariate Autoregressive Model of order p 

(MVAR(p)): 

 

 



53 

 

,where Ak comprise the coefficients aij (k) that link the signal (time series) xi(n) with  

xj(n) at lag k (describing the interactions between time series pairs over time) and 

where: 

 

 
 

,is the vector of model innovations (zero mean and with covariance matrix Σw). This 

leads to PDC between signals i and j expressed as: 

 

 
,where f is the normalized frequency in the interval [−0.5, 0.5] where: 

 

 
,for δij=1 whenever i=j and δij=0 otherwise. 

 To circumvent the numerical problem associated with time series scaling, a 

new partial directed coherence estimator is defined as: 

 

 
whence it follows that 

 
and 

 

 
 

 

3.6 Common Processing of ERP 
 

As the EEG reflects thousands of simultaneously ongoing brain processes, the 

brain response to a single stimulus or event of interest is not usually visible in the 

EEG recording of a single trial. To see the brain response to the stimulus, the 

experimenter must conduct many trials and average the results together, causing 

random brain activity to be averaged out and the relevant ERP to remain. This 

averaging procedure enhances the signal to noise ratio (SNR).  

Suppose, we have the i-th trial of an EEG signal ri(t). It can be considered that 

this signal is consisted of the desirable signal and noise. 

 

ri(t) = si(t) + ni(t) i = 1,...,N 

where N is the number of iterations. Taking the average of all the recordings we have: 

http://en.wikipedia.org/wiki/Ongoing_brain_activity
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Supposing that the evoked potential is produced the same way in every trial we have: 

si(t) = sj(t) = s(t)  N,..,1 ji,  

On the other hand noise can be considered as uncorrelated white Gaussian noise  so: 
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In that way the signal related to the stimulus can be retrieved. 

 

 
Fig. 3.7: ERP averaging procedure. 

 

3.6.1 ERD-ERS 
 

Several kinds of events, the most notably being sensory stimuli, can induce 

time-locked changes in the activity of neuronal populations that are generally called 

event-related potentials (ERPs). We previously discussed that in order to detect such 

ERPs, averaging techniques are commonly used. The basic assumption is that the 

evoked activity, or signal of interest, has a more or less fixed time-delay to the 

stimulus, while the ongoing EEG activity behaves as additive noise. The averaging 

procedure will enhance the signal-to-noise ratio. However, this simple and widely 

used model is just an approximation of the real situation. Indeed it is known that 

evoked potentials (EPs) can be considered to result from a reorganization of the 

phases of the ongoing EEG signals. In addition it was also shown that visual stimuli 

can reduce the amplitude of the ongoing EEG amplitude, thus demonstrating that the 

model assuming that an ERP can be represented by a signal added to uncorrelated 

noise does not hold in general. Furthermore, it is known since Berger (1930) that 

certain events can block or desynchronize the ongoing alpha activity. These types of 

changes are time-locked to the event but not phase-locked, and thus cannot be 

extracted by a simple linear method, such as averaging, but may be detected by 

frequency analysis. This means that these event-related phenomena represent 

frequency specific changes of the ongoing EEG activity and may consist, in general 

terms, either of decreases or of increases of power in given frequency bands. This 

may be considered to be due to a decrease or an increase in synchrony of the 

underlying neuronal populations, respectively. The former case is called event-related 
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desynchronization or ERD, and the latter event-related synchronization (ERS) [93], 

[142]. 

 

 
a) 

 
b) 

Fig. 3.8: ERD/ERS on two EEG signals for alpha band. 

 

In figure 3.8 we can two different signals analysis of their ERD/ERS activity 

in alpha band. So as to take the signals‘ alpha activity we bandpass filter the signal, 

because an EEG signal has many frequencies within it. The ERD/ERS measure 

actually estimates the power of the signal first and then takes its intertrial average so 

as to preserve its non-phase locked activity. The ERD/ERS measure is shown by the 

blue lines in the two figures and the black vertical line shows the stimulus onset. In 

figure 3.8a we can see that we first have an ERD (purple arrow) and then an ERS 

(green arrow) in contrast to figure 3.8b where we have the exact opposite. The red 

signal in the figures above shows the intertrial variance of the EEG signal and what 

we can see is that it follows the ERD/ERS measure. What we do in order to estimate 

the intertrial average of the signal is that we take for every signal trial its variance 

from the average of a chosen channel‘s mean value and then we add the trials. 
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a) 

 
b) 

 
c) 

 
d) 

Fig. 3.9: In 3.9a,c we have an EEG’s epochs and in 3.9b,d we have the 

corresponding ERPs.  
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In figure 3.9 we demonstrate the trials and the ERPs of the two subjects EEG‘s 

whose ERD/ERS we estimated in figure 3.8. In 3.9a we show ten trials (out of forty) 

one after the other (concatenated) for the 27 seven channels of the EEG and in 3.9c 

we show the first five trials, in order to have a clearer result. In the other two figures 

we have the ERPs of the corresponding subjects‘ EEGs on the 27 channels. In 3.9b 

the results can be seen clearly because the range of the values is small (minus twelve 

to eleven) while in 3.9d the ERPs cannot be seen clearly because we have a big range 

of values (minus one hundred and thirty five to twenty). From those figures one can 

understand that the EEG analysis is a complex and demanding procedure because we 

have many channels, many trials and the signals are not simple to analyze.  
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CHAPTER 4: Proposed Methodology 
 

Over the past few years there has been an increased interest in studying the 

underlying neural mechanism of cognitive brain activity related to memory. In this 

direction, we study the brain activity based on its independent components instead of 

the EEG signal itself aiming towards identifying and analyzing induced responses 

being attributed to oscillatory bursts from local or distant neural assemblies, with 

variable latency and frequency, in an auditory working memory paradigm. The 

contribution and functional coupling of independent components to evoked and/or 

induced oscillatory activities is investigated through the concept of the recently 

introduced partial directed coherence method, which can also reveal the direction of 

the statistically significant relationships. The results on read data from an oddball 

experiment are in accordance with previous psychophysiology studies suggesting 

increased phase locked activity most prominently in the delta/ theta band, while alpha 

is also apparent in measures of non phase-locked activity. Dynamic synchronization is 

inferred between the alpha and delta bands, whereas some influence of the theta band 

is also detected. This study indicates that functional connectivity during cognitive 

processes may be successfully assessed using spectral power measures applied on 

independent components, which reflect distinct spatial patterns of activity. 

Event related brain dynamics entail a variety of activations and oscillations, 

from phase resetting of ongoing EEG activity in the alpha and theta bands [99] to 

phase-locked evoked and non phase-locked induced oscillations especially in delta, 

theta and gamma bands [36], [102]. Their origins relate to multiple task conditions 

and many stimulus types engaged during the event presentation and execution of its 

consequent actions [100], which define distinct brain functions, some operating 

independently and some being coupled [101]. 

Since we are interested in identifying distinct signal components and 

analyzing their coupling, we focus on decomposing the EEG signal into ICA 

components stemming from different brain regions and then analyzing their time-

frequency content throughout multiple trials. The first aspect of analysis has been 

partially addressed with measures that can reveal phase locking effects [39], [98]. 

Besides these measures, we introduce a metric for considering stimulus-locked but not 

phase-locked activity. The second aspect related to synchronization is addressed 

through the PDC measure to reveal coupling characteristics. 

 

4.1 Data acquisition and test description 
 

The EEG signals used in this work arise from ten representative subjects (5 healthy, 

5 AD) out of eighteen healthy and AD participants (age: 37-74, 9 healthy, 9 AD). The 

measurement involved 27 channels with linked ears (A1-A2) as the recording 

reference and electrode AFz as Ground. The signals were digitally sampled at 

1024Hz, with a high pass filter of cut-off frequency 0.016Hz, a low pass filter of cut-

off frequency 60Hz, and a notch filter at 50 Hz. Recordings were acquired from an 

auditory oddball experiment, where a stimulator provided 40 2 kHz target tones 

(20%) and 160 1 kHz non-target tones (80%). The inter-stimuli interval (ISI) was 

1.29s.  
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4.2 Independent Component Extraction 

 
Instead of directly measuring the synchronization using the actual EEG traces, 

independent components (ICs) were first obtained and then identified based on their 

spatial and frequency properties. To decompose the data into brain source activities, 

we used an Infomax ICA algorithm which minimizes mutual information among the 

data projections in order to achieve independence. Considering the multiple trials of 

an evoked response experiment, the decomposition schemes should be extended to 

reflect some form of consistency throughout the trials. Under the assumption of 

spatially consistent sources, the ICA decomposition can be performed in a 

concatenated trials scheme, with the EEG signal extended by one trial following the 

other, in the same way for each channel. Besides its increased stability and 

generalization capabilities, the concatenated trials approach has the add-on advantage 

of preserving the correspondence of components throughout the trials. Thus, the 

content of each ICA component can be analyzed in several perspectives including its 

topological origin, the time and frequency distribution, as well as its coherence over 

trials. 

 

4.3 Independent Component Selection 

 
Following their derivation, the components of ICA are often organized (or 

clustered) by means of multiple spatiotemporal constraints on their structure [99], 

[100]. Under the assumption of spatially consistent sources, we perform Infomax ICA 

[98] decomposition in a concatenated trials scheme, with the EEG signal extended by 

one trial following the other, in the same way for each channel. Besides its increased 

stability and generalization capabilities, the concatenated trials approach has the add-

on advantage of preserving the correspondence of components throughout the trials. . 

In this way, the content of each ICA component can be analyzed in several 

perspectives including its topological origin, the time and frequency distribution, as 

well as its coherence over trials.  

The ICA decomposition process results in EEG composite signals stemming 

from fixed locations and expressing a distinct temporal activation. Some of these 

components are expected to reflect phase locked activity, some others stimulus or 

response but not phase-locked activity and some others just express noise processes. 

The similarity of components across trials has been initially studied through clustering 

of the latency of maximum activation and identification of similarities in the ―brain 

maps‖ of individual components [98], [126]. Alternatively, similarity of the nature of 

components across trials can be studied using their time-frequency energy distribution 

maps throughout a large number of trials often recorded from the repetition of the 

same experiment. Indeed, the time frequency spectrum of the average 

component/signal over trials reflects a measure of consistency in the phase-locked 

energy. In a related single-trial approach, the authors in [36], [39] search for similar 

patterns of activation (clusters) in the PCA decompositions of all single-trial time-

frequency spectra of components, in order to identify strong and consistent patterns 

along trials.  These methods form indirect approaches to measuring intertrial 

coherence through the spectral energy of an average signal, which might be justified 

only for phase-locked activity. In any case, the measure of spectral energy does not 

necessarily reflect signal synchronization across trials. Indeed, a strong activity in just 
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a few trials can induce significant spectral energy, but without providing any 

indication of synchronization among trials. 

In this thesis, we employ yet another scheme which considers phase 

synchronization of each component across trials. For phase locked synchronization 

we use the intertrial coherence measure [39], whereas for non-phase locked activity 

we introduce the so-called shift-phase intertrial coherence. The former is based on the 

phase similarity of phase-locked components, whereas the latter is based on the power 

similarity of same structure but not phase-locked components across trials, which is 

an extension of the power measure used in ERD/ERS detection [30]. Thus, the 

proposed shift-phase intertrial coherence is based on the energy of single-trial 

decompositions and highlights frequency bands of increased energy in all trials. The 

intertrial coherence measures can be computed for the signal itself, or its time-

frequency decomposition, deriving a trial-synchronization map complementary to that 

of the time-frequency spectrum. In fact the intertrial coherence map is a direct 

reflection of the synchronization pattern of the signal in time and frequency, without 

resorting to average energy measures. 

In our approach, we first label components based on the phase locking 

attributes over trials. Some components may involve phase-locked evoked responses, 

others may capture time but not phase-locked induced responses, while others could 

engage both types. The similarity of components across trials has been studied using 

their time-frequency energy distribution maps. Indeed, the time frequency spectrum of 

the average component over trials reflects a measure of consistency in the phase-

locked energy.  

 

4.3.1 Phase Intertrial Coherence (PIC) 
 

For the i-th trial, the phase shift is reflected as an exponential term in the 

Fourier transform representation, i.e. 
0
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trials are phase locked to the same 0n , then we can define the metric referred to as 

phase-locking factor or Phase Intertrial Coherence (PIC): 
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with equality holding if and only if the trials involve the same basic signal with the 

same shift. This metric is expanded to the time-frequency representation of a signal 

],[ nkX i , with k and n indicating the frequency and time ticks, respectively. 

The intertrial coherence index for a specific band b is defined as the average in time 

and scale of c[k,n], i.e 
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, where Nb the number of frequency (or 

scale) ticks of interest, with equality implying perfect phase locking within the band. 

Summarizing, this measure reaches large values (close to 1) either in its frequency, or 

time-frequency application for phase-locked activity. 
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PIC for all components PIC Time-frequency Map 

 
a) 

 
b) 

 

Fig. 4.1: a) the overall PIC for all the components in delta band, b) the TF map 

of component 6. 

 

PIC for all components PIC Time-frequency Map 

 
a) 

 
b) 

 

Fig. 4.2: a) the overall PIC for all the components in theta band, b) the TF map 

of component 12. 

 

In figures 4.1a and 4.2a above we can see the PIC measure utilized as global 

metrics on 27 components, measuring their intertrial coherence (they are 

demonstrated as bars) in delta and theta bands correspondingly. The horizontal axis in 

TF maps goes up to 700ms after stimulus and the vertical axis goes from 1 to 14Hz of 

the logarithmic scale. It has to be mentioned that the bars represent certain frequency 

bands, though the frequency bands have many frequencies within them. In order to 

have one bar for each component we use the average of the corresponding frequency 

bins. Alternatively, PIC metric can be estimated for each tick in the time-frequency 

representation for specific components in figures 4.1b and 4.2b, in order to provide 

timely localized maps of the component coherence over trials. Thus, it is a reasonable 

thought to depend on the bar diagram (fig. 4.1a and 4.2a, the black arrow shows the 

component which have been chosen to make their TF map) so as to make a first 

choice of the components and then make their TF maps in order to refine this 

selection. In the figures above we can see that the information given by the bar 

diagram that the specific components have a strong activation in the corresponding 

frequency bands was accurate. We decide to choose these components as they have an 
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activation limited to the frequency band limits, in other words they have quite 

unmixed content. 

 

 
a) 

 
b) 

Fig. 4.3: a)Ten trials of an ICA component, b) TF-map of PIC for corresponding 

component. 

 

In figure 4.3a there are illustrated ten out of forty samples for the component 

we made the TF-map of PIC in figure 4.3b. Although the signals in figure is not band 

passed so as to see only the delta band, it can be observed that the slow waves of the 

trials are basically synchronized, which confirms the TF-map result of figure 4.3b.  

 

  
Fig. 4.4: a)Ten trials of an ICA component, b) TF-map of PIC for corresponding 

component. 

 

In contrast to figure 4.4 here the slow waves of the trials are not synchronized 

(fig. 4.4a), which confirms the TF-map result of figure 4.3b where we do not seem to 

have strong phase locked activity. 

 

4.3.2 Phase-shift Intertrial Coherence (PsIC) 
 

In case of the same basic signal with different shifts from trial to trial, there is 

a different exponential term remaining in the Fourier transform of each trial, i.e. 
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 . Similar to metrics defined for ERD/ERS 

activity [2] in time-locked responses, the proposed metric utilizes the power of 

activity instead of the signal‘s value. For phase-shift responses, this metric eliminates 

the complex phase effects and compares the intertrial content only based on its power 

in specific frequency bands. 
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Initially, we tested the second-order measure similar to PIC above in the form of:  
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kc , which holds true due to the triangle inequality. The 

discrimination of this metric, however, is very low for a wide range of signal 

coherence over the trials. In order to utilize the power of the signal over the trials, the 

so-called phase-shift intertrial coherence (PsIC) metric is thus defined as: 
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. 

Similar to PIC, this metric can be expanded to the time frequency domain as c[k,n] 

and for a specific band b the PsIC measure is defined as the average in time and scale 

of c[k,n]. 

 

PsIC for all components PsIC Time-frequency Map 

 
a) 

 
b) 

 

Fig. 4.5: a) the overall PsIC for all the components in alpha band, b) the TF map 

of component 20. 
 

In figures 4.5a above we can see the PsIC measure utilized as global metrics 

on 27 components, measuring their intertrial coherence (they are demonstrated as 

bars) in alpha band. Alternatively, PsIC metric can be estimated for each tick in the 

time-frequency representation for specific components (figure 4.5b), in order to 

provide timely localized maps of the component coherence over trials. Thus, it is a 

reasonable thought to depend on the bar diagram so as to make a first choice of the 

components and then make their TF maps in order to refine this selection. In the 

figures above we can see that the information given by the bar diagram that the 

specific component has a strong activation in the corresponding frequency band was 

accurate.  

 

4.3.3 Utilization of Intertrial Coherence Metrics 
 

Both the phase and the shift-phase locking factors can be utilized as global 

metrics on a component, measuring its intertrial coherence in a specific band. 

Alternatively, these metrics can be computed for each tick in the time-frequency 

representation of the component, in order to provide timely localized maps of the 
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component coherence over trials. In the second form, the intertrial coherence map 

conveys information complementary to the time-frequency spectrum of the average 

component. Indeed, the latter preserves the phase-locked energy of the component 

over all trials, whereas the former reflect the time-locked activity with or without 

phasic coherence across trials. All three maps will be used for the characterization of 

relevant components as each one emphasizes on different aspects of synchronous 

activity. For the selection of components with relevant activity in each band we will 

resort to the global indices of intertrial coherence, which can be plot and compared in 

a single diagram for all derived components. For the detailed analysis of selected 

components, we will consider the two-dimensional maps of the three measures that 

reflect the component consistency (in phase and/or power) along trials. An example 

follows showing inappropriate components, which even though they seem to have 

strong activity in the bar diagram of the global metrics, the TF-map shows mixed 

activity which is not something we want in a component for our analysis. 

 

PIC for all components PIC Time-frequency Map 

  
 

Fig. 4.6: a) the overall PsIC for all the components in delta band, b) the TF map 

of component 24. 

 

In the figure above (4.6a,b) we can see that component 24 has a strong phase-

locked delta activity, so a first thought is that it is ideal to be a delta band 

representative. Though, we can see in its TF map that it also has theta phase locked 

activity. This fact makes this component improper for our analysis as it has mixed 

activity. 
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PsIC for all components PsIC Time-frequency Map 

  
 

Fig. 4.7: a) the overall PsIC for all the components in alpha band, b) the TF map 

of component 25. 

 

In figure 4.7a,b we can see that component 25 has a strong non-phase-locked 

alpha activity, so a first thought is that it is ideal to be an alpha band representative. 

Though, we can see in its TF map that it also has theta and delta non-phase-locked 

activity. This fact makes this component improper for our analysis as it has mixed 

activity. 

 

4.4 Functional Synchronization of Components 

 
Integrated and complex brain activities have been considered as supported by 

single composite tasks, which include anticipation of, attention to the stimulus and 

preparation for its associated actions. Examples include the consideration of bottom-

up visual perception with binding delta activities, visual or auditory oddball 

experiments, motor imagery following a visual trigger, etc. [36], [102], [126]. In 

general, neural assemblies synchronize and interact dynamically in local or distant 

regions in order to accomplish perceptual, motor or cognitive functions [128]. The 

dynamics underlying the coupling of the oscillatory activities among such assemblies 

can highlight the synchronization mechanisms among brain sources during the 

performance of a certain activity, such as visual perception, object recognition and 

categorization, motor activity or motor imagery (as applied to BCI).  Studies with 

more detailed MEG signals have revealed local synchronization patterns and cortico-

cortical interactions involved in several cognitive operations [38]. Since composite 

subtasks are triggered by different brain sources and subsequently synchronize to 

complete the task, the dynamics of interaction among independent components may 

be used for indexing neural synchrony of such local or distant brain sources [128]. 

In this thesis, components of particular interest are examined for their 

functional synchronization within the brain neuronal structure in quest of revealing a 

sequence of distinct brain operations closely coupled in the execution of a single task 

(cognitive, mental or motor, internally or externally triggered). For instance, in the 

auditory oddball task under consideration we expect to distinguish phase locked theta 

and delta activity, as well as non-phase locked alpha activity with temporal activation 

at both P3a and P3b responses. 

 

 
 



66 

 

4.4.1 Partial Directed Coherence (PDC) 
 

Only those components associated with event-related activity (evoked or 

induced) are further analyzed in terms of their dynamic coupling through PDC, which 

is based on the commonsense idea that causes precede their effects in time and is 

formulated in terms of predictability. In a linear framework, Granger-causality is 

commonly evaluated by fitting Vector Autoregressive Models. Suppose that a set of 

N simultaneously observed time series: 
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be the Fourier transform of the coefficient matrices, where λ is the normalized 

frequency in the interval [-0.5,0.5]. Then the PDC is defined as [96]: 
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PDC ranges between 0 (indicating independence) and 1 (maximum coherence). 
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Fig. 4.8: The PDC result graph. 

 

We can see in the figure above the result of PDC. There can be seen the 

―driver and response‖ relations between components of different or same frequency 

bands. The light blue lines imply relations between components of the same 

frequency bands and dark blue lines imply relations between components of different 

frequency bands. The light blue nodes imply early alpha activity and the darkest blue 

ones imply late alpha activity. The orange lines imply relations between delta and 

alpha band which correlate late and early alpha components with delta components.  

  

4.5 Summary of Algorithmic Steps 

 
The EEG signal processing is an extremely complicated procedure itself. In 

our work we tried to organize the EEG principal components according to their 

frequency content and reveal the relationships between them via PDC method. The 

goal of organizing the principal components was succeeded by applying the 

coherence measures we suggested, on the time-frequency content of the components. 

The TF maps of the components gave us the opportunity to choose the components 

which had valuable information for our analysis, cluster them as delta, theta or alpha 

components and then be able to describe and explain the relations which came up 

after applying PDC. 

The previous studies on ERP activations reveal that they are composed of 

different components (others coupled and others oscillating independently) which 

originate from specific brain regions and oscillate at a dominant frequency band, 

which are characteristics of the particular (sub)task that this component is enabling.  

Single-trial ERP component analysis has been used primarily for relating a specific 

task (sensory, motor or cognitive) with the topography and/or frequency content of its 

components [126], rather than associating those components in terms of their phase-

locking or synchronization attributes. 

This thesis attempt was to provide an integrated view of ICA components in 

terms of their organization, their involvement in brain processes and their coupling in 

the time course of activities. Along this direction, the proposed methodology involved 

derivation of ICs, selection of interesting components that preserve either phase-

locked or non phase-locked characteristics related to the event, analysis of content and 

organization of these components in terms of their frequency attributes and, finally, 

study of their dynamic coupling (synchronization) and derivation of an interaction 

map of components per frequency band, which is a new approach in contrast to 

previous studies which only derive components and analyze their content [39], [98], 

[127].  
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Thus, the overall contribution of our study was twofold: i) to identify 

components that express consistent pattern of activation related to the event and ii) to 

derive the synchronization pattern of components oscillating at three specific 

frequency bands (delta, theta, alpha). The first aspect of analysis has been partially 

addressed with measures that can reveal phase locking effects. Besides these 

measures, we introduced a metric for considering stimulus-locked but not phase-

locked activity. The second aspect related to synchronization is addressed through the 

PDC measure to reveal coupling characteristics. In characterizing the components, we 

emphasized more on their frequency attributes than the topography, since the latter 

expresses large variation among subjects and trials. Nevertheless, the general location 

of components in terms of wider brain lobes, and the spatial localization of per-band 

oscillations was also addressed in this work. The various steps of analysis are briefly 

outlined here: 

 

 

Fig. 4.9: The analysis steps. 
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CHAPTER 5: Results 
 

So as to demonstrate the results of our method and the steps of the 

methodology itself, the results of four people will be analytically presented. Two of 

those will be normal people and the other two will be AD patients. The rest of subject 

analysis is presented in the appendix. The statistics for all subjects are presented in 

section 5.2 and the the results analysis in section 5.3 (this analysis refers to all the 

subjects). 

We will try to show the phase and non-phase locked activation of the 

frequency bands of our interest (delta, theta and alpha band) using the coherence 

measures we proposed on the time-frequency maps of the components. According to 

that information we will organize the components and find their relations using the 

PDC method. The procedure which follows shows step by step the process of our 

methodology. 

 

5.1 Application on Real Data 
 

5.1.1 First Control Subject Analysis  
 

Control Subject 1 

Phase Intertrial Coherence (PIC) 

   
Phase-shift Intertrial Coherence (PsIC) 

   
Fig. 5.1: Components bar diagrams for delta, theta and alpha band. 

 

After the ICA is applied on the concatenated trials of the eeg signal for each 

person, we have to decide which components of the signal are important for further 

analysis (TF-representation, PDC). In this direction the measures we previously 

proposed are very helpful. We apply these measures on the FT of the signal of the 

independent components so as to have a view of which components have greater 

phase or non-phase locked activity in the frequency bands of our interest which in 

particular are delta, theta and alpha band. 
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 In figure 5.1 we can see which components are phase or non-phase locked in 

the particular frequency band of our interest. The first row shows Phase Intertrial 

Coherence (PIC) for every channel in delta, theta and alpha frequency band and the 

second row shows Phase-shift Intertrial Coherence (PsIC) for every channel in delta, 

theta and alpha frequency band respectively. In the horizontal axis we can see the 

component and in the vertical axis there is the coherence. By observing the bar 

diagrams we see that some of the components happen to haven activation in more 

than one frequency bands such as the second components which has an alpha non-

phase locked  high activation but it also has a big enough face-locked delta activation. 

Such cases, give an extra difficulty in the organization of the components in delta, 

theta and alpha band and rises up the disadvantage of ICA which is not always 

successful in separating different frequency bands. 

 By observing the bar diagrams above, we can see that we have plenty of 

powerful components in PIC for delta and theta band, and not many powerful 

components in alpha band. On the other hand, we see that one component (component 

no. 22) has an efficient delta non-phase locked activity (PsIC measure) without 

having a corresponding delta phase locked activity (PIC) which refers to an artifact 

component. We do not seem to have special non-phase locked activity in theta band, 

though we have some important non-phase locked components in alpha band.  

 

Control Subject 1 
Energy(Average) Map PIC Coherence  PsIC Coherence  Topography 

    

    

    
Fig. 5.2: The maps of three intertrial coherence measures and their scalp 

topography. First row (cmp. 7), second row (cmp. 6) and last row (cmp. 4). 

  

 

For the components selected from the bar diagram, the next step is to find their 

time-frequency energy distribution maps and use the PIC and PsIC measures on them 

so as to show their activation in the frequency bands of our interest. We have to make 

clear that for the Energy(Average) measure in the first column of the figure above  we 
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mean  

2

i

i[k]X][ kc for a signal Xi[k], which does not preserve the non phase 

locked activity. As we see in the figure 5.2 the components have a quite clear 

activation in the frequency bands they belong to. Though, this is not always the case 

as many times the components have mixed activation in different frequency bands.  

As far as the colour-maps are concerned for PIC and PsIC coherence they 

range from zero to one, the Average Energy Map colour-map ranges from the 

minimum to its maximum value and the brain topography which represents the 

activation in the brain using the ICA unmixing matrix W
-1

 has a colour-map which 

depending to the better visualization result it is from the maximum to the minimum 

value of the component or from –maximum to the maximum value. In every case, 

though the deepest red represents the maximum values and the deepest blue the 

minimum ones. The vertical axis of the frequency maps has the frequencies from one 

to fourteen in logarithmic scale and the horizontal axis has the samples beginning 

from the stimulus onset. Though, because our sample rate is 1024Hz, we can that for 

example the sample 700 corresponds to 700ms. 

In the time-frequency maps represented in figure 5.2, we can see the three 

frequency bands of our interest (delta, theta, alpha) respectively. In the first row we 

can see an extensive phase locked delta activation, though it seems to be stronger 

from 300ms to 700ms which verifies that delta activity follows in time theta activity. 

We can see from the second row from the measure of PIC, that theta activity is mostly 

observed in the first 300ms. In the third row the PsIC measure shows the non-phase 

locked activation of the component, which in the first 300ms seems to be between 7 to 

10Hz (early alpha activity attention) and after that it goes up to 12Hz (late alpha 

activity retrieval).  

 

 

 
 

Fig. 5.3: The PDC result graph which shows the relations between the 

chosen components. 

 

The components which are chosen according to their frequency content are 

further analyzed in terms of their dynamic coupling through PDC. The concluding 

result can be seen in the figure 5.3. In the graph there can be seen the selected 

components as nodes and the arrows between them represent their relations either one 

way or two-ways. The light blue arrows are between components of the same band 

and the darkest blue arrows are between components of different bands. The orange 

arrows show relations between delta and late-early alpha components. The light blue 

nodes are the early alpha components and the darkest blue nodes are the late alpha 
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components. Early and late characterizations concern the time when the activity 

seems to appear. The dashed lines show weak relations between two components. 

By observing the graph we can see that consistently, early alpha components 

lead some theta components and, in turn, theta lead delta components. There are also 

two-way interactions between early alpha and delta pairs, as well as theta and delta 

pairs of components. Furthermore, there is a consistent tendency of early alpha and 

delta components to lead a late alpha component. This pattern is in close agreement 

with the proposed involvement of early alpha and theta bands in alertness and 

attention, followed by the subsequent stimulation of delta band and late alpha 

activations for the completion of cognitive tasks.  

Some more results for three more persons are demonstrated on the following 

figures. 

 

5.1.2 Second Control Subject Analysis 
 

Control Subject 2 

Phase Intertrial Coherence (PIC) 

   
Phase-shift Intertrial Coherence (PsIC) 

   
Fig. 5.4: Components bar diagrams for delta, theta and alpha band. 

 

By observing the bar diagrams above, we can see that we have plenty of 

phase-locked components in PIC for delta and theta band, and less phase locked 

components in alpha band. On the other hand, we see that one component (component 

no. 8) has an efficient non-phase locked delta activity (PsIC measure) though it also 

has a corresponding phase-locked activity which leads us to think that it is not an 

artifact component. We do not seem to have special non-phase locked activity in theta 

band, though we have some important non-phase locked components in alpha band. 
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Control Subject 2 
Energy(Average) Map PIC Coherence  PsIC Coherence  Topography 

    

    

    
Fig. 5.5: The maps of three intertrial coherence measures and their scalp 

topography. First row (cmp. 19), second row (cmp. 10) and third row (cmp. 8). 

 

From the figure above we can see that each component was selected according 

to its frequency content so as to have one representative for each frequency band of 

our interest. In the first row the component we chose has an efficient delta phase 

locked activity which can be seen in the second column of PIC Coherence. Though, as 

we have already mentioned, this component does not only have delta activity as we 

ideally would like. It also has a weak theta phase locked activity (PIC Coherence) as 

well as non phase locked delta and alpha activity. In such cases the topography is also 

very helpful as we can see that it shows a posterior activation which is something that 

characterizes delta band activity. In the second row we have a theta band 

representative component, as both the PIC Coherence map and the topography stand 

to reason this clustering. The topography more specifically is anterior as expected for 

theta band activation. The last row shows an alpha non-phase locked representative 

component, something which is verified by the PsIC Coherence map mostly and the 

topography. It has to be mentioned that we have a quite mixed activation in the 

topography because as we see, there exists a weak activity of delta and theta band 

which is demonstrated by the PIC Coherence map.  
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Fig. 5.6: The PDC result graph which shows the relations between the 

chosen components. 

 

Just like the synchronization graph of the first control subject in this graph we 

can see that consistently, early alpha components lead some theta components and, in 

turn, theta lead delta components. There are also two-way interactions between early 

alpha and delta pairs, as well as theta and delta pairs of components. Furthermore, 

there is a consistent tendency of early alpha and delta components to lead a late alpha 

component. This pattern is in close agreement with the proposed involvement of early 

alpha and theta bands in alertness and attention, followed by the subsequent 

stimulation of delta band and late alpha activations for the completion of cognitive 

tasks. 

  

5.1.3 First AD Subject Analysis 
 

AD Subject 1 

Phase Intertrial Coherence (PIC) 

   
Phase-shift Intertrial Coherence (PsIC) 

   
Fig. 5.7: Components bar diagrams for delta, theta and alpha band. 

In contrast to the control subjects from the bar diagram of the AD patient 

above we can see that very few and weak alpha non phase locked components (PsIC). 

Also we seem to have quite a few theta phase-locked powerful components and less 

delta or alpha phase locked ones.  
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AD Subject 1 
Energy(Average) Map PIC Coherence  PsIC Coherence  Topography 

    

    

    
Fig. 5.8: The maps of three intertrial coherence measures and their scalp 

topography. First row (cmp. 25), second row (cmp. 12) and third row (cmp. 13). 

 

From the figure above we can see that each component was selected according 

to its frequency content so as to have one representative for each frequency band of 

our interest. In the first row the component we chose has an efficient delta phase 

locked activity which can be seen in the second column of PIC Coherence. Its 

topography seems to be posterior, which is something that characterizes delta activity. 

In the second row we have a theta band representative component, with an anterior 

topography activation. The last row shows an alpha phase locked representative 

component, as we do not have a strong enough component to demonstrate (bar 

diagram of alpha band in PsIC measure). In this components topography we also have 

a strong anterior activation which could be an eye artifact. 

 

 

 
Fig. 5.9: The PDC result graph which shows the relations between the 

chosen components. 
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We can observe a close connectivity of theta components and a two-way 

interaction between the delta and theta components, with the theta band mostly 

driving the delta band. The alpha activity appears in this AD subject and though it 

only shows early alpha (lower alpha) oscillations or phase locked alpha activity. The 

alpha band oscillations demonstrate a large phase locked portions, at least appearing 

in the power of the average trial signal, as opposed to the control subjects that 

typically demonstrate non-phase locked oscillations in alpha band.  

 

5.1.4 Second AD Subject Analysis 
 

AD Subject 2 

Phase Intertrial Coherence (PIC) 

   
Phase-shift Intertrial Coherence (PsIC) 

   
Fig. 5.10: Components bar diagrams for delta, theta and alpha band. 

 

For this AD subject we can see that we have no components having efficient 

alpha non phase locked (PsIC) activation. Also we seem to have many theta and delta 

phase-locked powerful components and less alpha phase locked ones. 
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AD Subject 2 
Energy(Average) Map PIC Coherence  PsIC Coherence  Topography 

    

    
Fig. 5.11: The maps of three intertrial coherence measures and their scalp 

topography. First row (cmp. 15), and second row (cmp. 12). 

 

Two components were chosen for this subject as it did not seem to have a 

good enough alpha representative component. In the first row there is a delta band 

component with a posterior activation in its topography. The second row shows a 

component selected for its theta band activity, having a corresponding anterior 

topography. 

 

 

 
Fig. 5.12: The PDC result graph which shows the relations between the 

chosen components. 
 

In the graph of the second AD subject we can observe a close connectivity of 

theta components and a two-way interaction between the delta and theta components, 

with the theta band mostly driving the delta band. We do not have any nodes in the 

graph for alpha band as there no sufficient alpha activation for this patient.  
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5.2 Statistical Analysis of Components 

 
Here is given a more detailed analysis of the results of the graphs. We try to 

take into consideration different parameters such as the number of components for 

each band, for each subject, the differences between normal and AD subjects and the 

different kinds of relations between components. 

 

5.2.1 Components 
For every subject used in the analysis we chose the most important 

components, each expressing (mostly) one of delta, theta or alpha frequency bands. 

The number of components is not the same for each subject because not all the 

subjects have the same activation in the different frequency bands. Also there are 

differences between the activations of an AD patient and a normal subject.  The 

synoptic table which follows shows the number of components taken for each subject 

in each frequency band. 

 

 Components 

Bands delta theta  alpha 

Normal 

 

Subject 1 3 2 3 

Subject 2 1 3 3 

Subject 3 2 3 1 

Subject 4 3 2 4 

Subject 5 2 2 3 

AD 

 

Subject 6 3 5 0 

Subject 7 1 7 1 

Subject 8 3 2 3 

Subject 9 1 3 5 

Subject 10 2 5 0 

SUM 

 

ALL 21 34 23 

CONTROL SUBJECTS 11 12 14 

AD 10 22 9 

Table 5.1 

More specifically, in the following figures we have the percentage of delta, 

theta and alpha components for normal people and AD patients, respectively: 

 

 
a) 

 
b) 
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Fig. 5.13: The percentage of components chosen for each frequency band for a) 

Control subjects and b) AD patients 

 

For the control subjects (subjects who haven‘t got AD) we have almost the 

same percentage of different frequency band components (30% delta components, 

32% theta components, 38% alpha components). On the other hand, for the AD 

patients we have a great deal of theta band components (54% theta components). 

In the following figures there is an analytic visualization of how many 

components we have for each subject (normal or AD) in each frequency band (delta, 

theta and alpha). 

 

 
a) 

 
b) 

 
c) 

Fig. 5.14: In these figures we have a visualization of the number of components 

per subject in a) delta band, b) theta band and c) alpha band.  

 

In the figures above we can observe that for delta band, for both normal and 

AD subjects we have from 1 to 3 components. In theta band, for control subjects we 

have 2 to 3 components and for AD patients we have 2 to 7 components. Here we 

observe that 3 out of 5 AD patients have more than 3 theta components which shows 

that they have a greater theta activation than the control subjects. In alpha band, for 

control subjects we have 1 to 4 components and for AD patients we have 0 to 5 

components. It can be observed that for control subjects 4 out of 5 have more than 2 

alpha components.  In contrast only 2 out of 5 AD patients have more than 2 alpha 

components. Also 2 out of five AD patients have no alpha components. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



80 

 

5.2.2 Component relations analysis 
 

A very important parameter for the analysis which has to be taken under 

consideration is the kind of relations between the components of the different or same 

frequency bands. 

 

5.2.2.1 One way directed coherence 
 

A synoptic table having the one-way directed coherence of the components 

follows. It shows in detail for every subject, the amount of one-way directed relations 

they have. In this case we have a ―driver and response‖ relationship between 

components-observations. 

 

 Number of components 

Relations d->d d->t d->a t->d t->t t->a a->d a->t a->a 

Control 

subjects 

Subject 1 0 0 1 1 0 0 2 3 1 

Subject 2 0 0 0 1 3 0 2 1 1 

Subject 3 1 0 0 3 1 0 0 0 0 

Subject 4 0 0 1 2 0 0 5 1 1 

Subject 5 1 0 1 1 0 0 0 0 2 

AD 

Subject 6 2 1 0 2 3 0 0 0 0 

Subject 7 0 1 0 1 6 1 0 0 0 

Subject 8 2 1 0 2 1 0 0 0 2 

Subject 9 0 1 0 1 0 4 0 1 2 

Subject 10 0 0 0 3 3 0 0 0 0 

SUM 

ALL 6 4 3 17 17 5 9 6 9 

CONTROL 

SUBJECTS 2 0 3 8 4 0 9 5 5 

AD 4 4 0 9 13 5 0 1 4 

Table 5.2 

 

According to the table above, follows the figure which shows for the control 

subjects and the AD patients, the number of components, having each one of the one-

way relations described such as dd, dt, da, etc.   

 

 
Fig. 5.15: Number of components having one-way directed coherence for each 

subject. 
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We can see by observing the figure and the table above that for the control 

subjects most of the one-way directed coherence relations are for theta leading delta 

components and for alpha leading delta components. There is also a considerable 

number of alpha components leading theta components and alpha components leading 

alpha components. For the AD patients we have a great deal of theta components 

leading delta components (just like the control subjects) as well as theta components 

leading theta components. There are also less cases of theta components leading alpha 

components, delta components leading theta components as well as alpha components 

leading alpha components.  

For a more accurate analysis the table which follows shows what percent of 

the normal or AD people having at least one of the specific (previously described) 

directed coherence relations:  

 

 Subjects % 

Relations d->d d->t d->a t->d t->t t->a a->d a->t a->a 

% subjects (all) 
40 40 30 100 60 20 30 40 60 

% Normal 
40 0 60 100 40 0 60 60 80 

% AD 
40 80 0 100 80 40 0 20 40 

Table 5.3 

 

To have a better visualization result, the results of the table above are 

demonstrated in the following figure. It shows for the control subjects and the AD 

patients, the percentage of components, having at least one of the one-way relations 

described such as dd, dt, da, etc.   

 

 
Fig. 5.16: The percentage of the subjects having at least one of the relations 

described. 

We can see that all of the subjects have at least one relation theta leading delta. 

More than 50% of the control subjects have relations such as delta leading alpha, 

alpha leading delta, alpha leading theta and alpha leading alpha. Also no normal 

subject has a relation of delta leading theta or theta leading alpha. On the other hand 

more than 50% of the AD patients have relations such as delta leading theta (no 

normal subject has this kind of relation), and theta leading theta. No AD patient is 

observed to have a relation of delta leading alpha or alpha leading delta something 

which for the most of normal people occurs. 
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5.2.2.2 Both-ways directed (partial-directed) coherence 
 

A synoptic table having the both-ways directed coherence of the components 

follows. It shows in detail for every subject, the amount of both-ways directed 

relations they have. By both-ways directed relations we mean that we cannot say 

which is the ―driver‖ and which is the ―response‖ component, which means that the 

arrow shows both ways. 

 
 Number of components 

Relations d<->d d<->t d<->a t<->t t<->a a<->a 

Control 

subjects 

Subject 1 0 1 2 0 0 1 

Subject 2 0 0 0 0 0 1 

Subject 3 0 1 0 0 1 0 

Subject 4 0 0 0 0 0 2 

Subject 5 0 1 2 0 1 0 

AD 

Subject 6 0 2 0 1 0 0 

Subject 7 0 0 0 1 0 0 

Subject 8 0 1 1 0 0 0 

Subject 9 0 0 0 1 2 1 

Subject 10 1 4 0 1 0 0 

SUM 

ALL 1 10 5 4 4 5 

CONTROL 

SUBJECTS 0 3 4 0 2 4 

AD 1 7 1 4 2 1 

Table 5.4 

 

According to the table above, follows the figure which shows for the control 

subjects and the AD patients, the number of components, having each one of the both-

ways relations described such as dd, dt, da, etc.   

 

 
Fig. 5.17: Number of components having both-ways directed coherence for each 

subject. 

 

We can see by observing the figure and the table above that for the control 

subjects most of the both-way directed coherence relations are between delta-alpha 

components and alpha components. No such relations are observed between delta 

components and theta components. For the AD patients we have a great deal of both-
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way directed coherence relations between delta-theta components as well as theta 

components.  

For a more accurate analysis the table which follows shows what percent of 

the normal or AD people having at least one of the specific (previously described) 

both-ways directed coherence relations (dd, dt, da…):  

 

 Subjects % 

Relations d<->d d<->t d<->a t<->t t<->a a<->a 

% subjects (all) 
10 60 30 40 30 40 

% Normal 
0 60 40 0 40 60 

% AD 
20 60 20 80 20 20 

Table 5.5 

 

To have a better visualization result, the results of the table above are 

demonstrated in the following figure. It shows for the control subjects and the AD 

patients, the percentage of components, having at least one of the both-ways relations 

described such as dd, dt, da, etc.   

 

 
Fig. 5.18: The percentage of the subjects having at least one of the relations 

described. 

 

Observing the figure above, we can see that more than 50% of the normal and 

AD subjects have relations such between delta-theta. More than 50% of the control 

subjects also have both-ways directed coherence between alpha components and 40% 

have delta-alpha and theta-alpha relations.  Also no normal subject has this kind of 

relation between delta components or between theta components. On the other hand 

more than 50% of the AD patients have relations between theta components. Only a 

few AD patients are observed to have the rest kinds of relations. 

 

5.2.2.3 Either-way (one-way or both-ways) directed coherence 

 
A synoptic table having the either-way directed coherence relations of the 

components follows. It shows in detail for every subject, the amount of either-way 

directed relations they have. In this case we do not care for the direction of the 

relation, this is why we name it either-way relation. 
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 Number of components 

Relations dd dt da tt ta aa 

Control 

subjects 

Subject 1 0 2 5 0 3 2 

Subject 2 0 1 2 3 1 2 

Subject 3 1 4 0 1 1 0 

Subject 4 0 2 6 0 1 3 

Subject 5 1 2 3 0 1 2 

AD 

Subject 6 2 5 0 4 0 0 

Subject 7 0 2 0 7 1 0 

Subject 8 2 4 1 1 0 2 

Subject 9 0 2 0 1 7 3 

Subject 10 1 7 0 4 0 0 

SUM 

ALL 7 31 17 21 15 14 

CONTROL 

SUBJECTS 2 11 16 4 7 9 

AD 5 20 1 17 8 5 

Table 5.6 

 

According to the table above, follows the figure which shows for the control 

subjects and the AD patients, the number of components, having each one of the 

relations described such as dd, dt, da, etc.  

 

 
Fig. 5.19: Number of components having either-way directed coherence for each 

subject. 

 

We can see by observing the figure and the table above that for the control 

subjects most of the relations are between delta-alpha components and delta-theta 

components. For the AD patients we also have a great deal delta-theta relations (just 

like the control subjects) as well as theta relationships.  

For a more accurate analysis the table which follows shows what percent of 

the normal or AD people having at least one of the specific (previously described) 

either-way directed coherence relations (dd, dt, da…):  
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 Subjects % 

Relations dd dt da tt ta aa 

% subjects (all) 
50 100 50 70 70 60 

% Normal 
40 100 80 40 100 80 

% AD 
60 100 20 100 40 40 

Table 5.7 

 

To have a better visualization result, the results of the table above are 

demonstrated in the following figure. It shows for the control subjects and the AD 

patients, the percentage of components, having at least one of the either-way relations 

described.   

 

 
Fig. 5.20: The percentage of the subjects having at least one of the relations 

described. 

 

We can see from the figure above that all of the subjects have at least one 

relation between delta-theta components. Also all the control subjects have at least 

one relation between theta-alpha components and all the AD patients have at least one 

relation between theta components. Also more than 50% of the control subjects have 

relations between delta-alpha components and alpha components. On the other hand 

more than 50% of the AD patients have relations between delta components. 

According to the tables presented above, we can see what percentage we have 

for each relation compared to all the other relations. More specifically, we can see, for 

example, the percentage of d a relations compared to all the other relations such as 

t d, tt, etc. This is something we do for every relation, respectively and the results 

are presented in figure 5.21.  
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a) 

 
b) 

 
c) 

 
d) 

Fig. 5.21: Percentage of each relation compared to all the others. 
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In figure 5.21 we have a visualization of the percentage of each relation 

between the same or different frequency bands compared to all the others. In figures 

5.21a,c we have the percentage of relations (having direction) for control and AD 

subjects correspondingly and in figures 5.21b,d we have the percentage of relations 

(no direction information) for control and AD subjects correspondingly. By observing 

the figures, we can see that most of the relations for the control subjects are between 

delta-alpha (33%) and delta-theta (23%) components. Most of delta-alpha relations 

are alpha leading delta components and most of delta-theta relations are theta leading 

delta components. In AD patients‘ case, most of the relations are between delta-theta 

components (36%) and between theta components (30%). Most of delta-theta 

relations are theta leading delta (like in the control subjects‘ case) and most of the 

theta relations are one-way directed (one theta component leading another). 
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5.3 Discussion of Results 

 
Event related oscillatory activity represents different aspects of information 

processing. Oscillations at delta band are related to focused attention, detection, 

recognition and decision making processes. Oscillations in theta band are correlated 

with attention, memory load, task difficulty and recognition of previous stimuli. Theta 

band oscillations also correlate with alpha-band power suppression or enhancement. 

Alpha-band oscillatory responses increase with simple memory tasks and decrease 

with demanding cognitive tasks. 

During an oddball experiment, delta, theta and alpha bands are activated either 

in sequence or with overlap in time and are mapped in different brain locations 

reflecting the different stages of brain processing of the receiving stimuli. Delta and 

theta bands are activated in sequence and correlate with P300 ERP amplitude. Theta 

generally precedes delta in the P300 response and is more anterior in topography, 

while delta has rather posterior response [118],[119]. Theta activity is selectively 

enhanced during novelty stimulus presentations, linking it to the orienting processes 

associated with novelty processing. Delta response is related to target P300 amplitude 

and cognitive processing. In general an anterior theta response, related to orientation 

is followed by a posterior delta response which is related to cognitive processing. 

Delta and theta responses present strong phase locking relative to the event, 

reflecting brain activity directly linked to event processing. With respect to the alpha-

band response, however, recent reports have demonstrated that both phase-locked 

(evoked) and non-phase-locked (induced) alpha oscillations are functionally relevant 

to the oddball task processing and P300 response [112]. Furthermore, both fast and 

slow alpha have been related to specific aspects of cognitive processing indexed by 

P300 [30]. Several studies have also demonstrated that encoding typically induces 

alpha ERS activity, whereas retrieval elicits alpha ERD [106], [107]. Through a more 

detailed consideration of frequency bands in tasks of high mental load, a long lasting 

synchronization of the theta band is observed, along with a desynchronization of the 

upper alpha band (10-12 Hz) [112]. Similar results are reported in other studies, 

where theta and alpha synchronization is observed during the encoding of new items 

in short-term memory [21]. In addition, however, the response of the lower alpha 

band (8-10 Hz) in anterior sites is characterized by an ERS activation, which is 

attributed to a likely excess of attentional capacities during such mentally demanding 

tasks [112].  

The evoked alpha activity is mostly identified at the lower range of the alpha 

band (slow alpha) and synchronizes during the first 100-200ms post-stimulus, 

inhibiting the semantic network, in order to facilitate the attention tasks. The evoked 

part of alpha band has a transient phase locking that can be observed in frontal 

(occipital) sites. It typically coincides with the exogenous ERP components and has 

been related with unspecific attention processes. In contrast, induced alpha activity 

has a damped character at higher frequencies of the alpha band, which is described by 

event related desynchronization (ERD) and is widespread in posterior (parietal) 

electrodes. The semantic network activates 400-500ms after the stimulus, when the 

maximum alpha desynchronization occurs. Alpha ERD reaches its maximum later 

than the P300 response and demonstrates increased cognitive processing during the 

oddball task [120]. Induced activity has been related to cognitive processing and 

episodic memory and increases with cognitive load and stimulus significance, while 

evoked alpha activity acts as an inhibitor of irrelevant processes in order to facilitate 

other, relevant, brain processes. The simultaneous existence of ERS and ERD in 
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distinct scalp areas is explained by accepting that ERD reflects functionally activated 

cortical regions, and ERS manifests temporary deactivation in other cortical fields. In 

agreement with these considerations, the model proposed by [J. Polich ―Updating 

P300: An integrative theory of P3a and P3b,‖ Clin. Neurophys., Vol. 118, pp. 2128–

2148, 2007] for the generation of P300 waveforms comprises an early process (P3a) 

localized in frontal working memory related to attention and a late stimulus-related 

process (P3b) driven by attention that relates to memory processing. Even though the 

relation of P3a to alpha ERD has not been verified, it is clear that P3b related to the 

late alpha frequency of the EEG. 

In summary, delta and theta bands present phase-locked activity contributing 

directly to the ERP waveform, while alpha band contains both evoked and induced 

aspects. In general, the frontal increase in phase-locked slow alpha activity to targets 

is accompanied by a parietal suppression of non-phase locked fast alpha activity. 

More specifically, desynchronizaton of upper alpha band is related to semantic 

processing, whereas synchronization of the lower alpha reflects inhibition. The 

topographic properties of this simultaneous appearance of evoked synchronization 

and induced desynchronization are highly dependent to the nature of stimulus and not 

in task in general. Despite the wide use of event related power measures, it is 

becoming widely accepted that both phase and non-phase locked oscillations are 

contributing to attention and mental tasks [112]. We should note that the traditional 

application of the ERD/ERS measure eliminates the phase-locked power and, as such, 

it does not take into account the evoked part of alpha activity. According to phase-

related considerations, the early alpha synchronization in the lower alpha band is 

attributed to phase locked oscillations, whereas the later desynchronization in the 

higher alpha band is attributed to non-phase locked activity [112].  Our study forms a 

first attempt to address such phase locking issues related to event-related responses. 

Accordingly, the focus of frequency alterations is on the phase or non-phase locked 

nature of oscillations that can lead to synchronization and desynchronization of 

oscillations, rather than the ERD/ERS change in non-phase locked power. Even 

though we do not directly measure power changes, we consider phase synchronization 

that further contributes to ERS and phase desynchronization that is possibly reflected 

in ERD, so that a close agreement of these studies with our results can be established. 

 

5.3.1 Control Subjects 

 
It is observed that the PIC measure expressed the existing phase-locked 

activity differently than the average energy spectrum, indicating an influence of the 

latter on factors irrelevant to phase consistency throughout the trials. The 

synchronization maps of the subjects are organized by means of the directed influence 

of the bands Delta, Theta and Alpha. Besides the strong synchronization among 

bands, these figures elucidate the order of functional activity in terms of the driver 

system. The oddball ERP response is mainly characterized by a positive peak 300ms 

after the stimulus, also known as P300, appearing in the target stimuli. P300 response 

forms a processing sequence that varies in time, topography and frequency. Studies on 

the topography of P300 response reveal both earlier anterior and later posterior 

contributions to P300 responses. Target stimuli involve parietal activations that vary 

with the degree of cognitive engagement. Anterior contributions were found in 

unexpected and novel stimuli; in general, infrequent task irrelevant stimuli produce 

earlier strong anterior activations [85]. A number of investigators have also evaluated 

ERP activity to novel and target stimuli using time–frequency methods, and findings 
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suggest that the anterior to posterior processing sequence also varies in frequency. 

Specifically, the anterior activation is generally higher in frequency (e.g. theta) 

relative to the posterior activation (e.g. delta). Both theta and delta activities have 

been related to oddball target responses [103]. Delta activity (from 0 to 3Hz), has 

been most directly related to target P300 amplitude and the cognition as related to 

memory processing.  

Theta activity (from 3 to 7Hz) has also been strongly implicated in oddball 

processing, related to attention, short-term memory and encoding of new information. 

Theta generally precedes delta in the P300 response, and is more anterior in 

topography, while delta is later and more posterior. Interestingly, theta is selectively 

enhanced during novelty stimulus presentations, linking it to the orienting processes 

associated with novelty processing [85]. Thus, the processing sequence involves an 

anterior theta response first, more closely tied to orienting, and then a posterior delta 

response more closely tied to cognitive processing. Sensory stimulation also induces 

phasic alpha ERD. In accordance to the neuronal inhibition hypothesis of stimulus 

processing, the P300 waveform may originate from a reduction and desynchronization 

of fast (alpha rhythm) non-phase locked oscillations, even though it is composed of 

phase locked delta and theta synchronized oscillations. 

Alpha ERD is induced by task requiring cognitive processing with attention 

and memory components. Task induced alpha rhythms are associated with the above 

functional meaning, with an early slow (8-10Hz) alpha being associated to attention 

and late fast (10-12Hz) alpha linked to memory. The model proposed by [85] for the 

generation of P300 waveforms comprises an early process (P3a) localized in frontal 

working memory related to attention and a late stimulus-related process (P3b) driven 

by attention that relates to memory processing. Even though the relation of P3a to 

alpha ERD has not been verified, it is clear that P3b related to the late alpha frequency 

of the EEG.  

The functional role of frequency components is also verified in this work. The 

independent components identified relate to the alpha, theta and delta bands. The delta 

components (related to cognitive processing) strongly relate to the alpha components. 

In both cases, we can also observe two types of alpha components, an early one at 

lower alpha band and a late one at the fast alpha range, with the early one driving the 

late alpha. The early alpha associated with attention drives a delta component related 

to cognition, which in turn drives the late alpha component that also related to 

memory operations; this relationship is marked with orange arrows. This tendency 

supports the clear relationship of P3b (mostly activated in delta band) to the late alpha 

activity [85]. The theta components (related to episodic short-tem memory and 

attention) are also related to delta activity, with a tendency of theta to drive delta 

components. Instead, there is only weak relation between alpha and theta verifying the 

unclear relation of P3a (mostly associated to theta content) with alpha activity. 

The dynamic synchronization of components, further support the functional 

relationships among band activities. Consistently, early alpha components lead some 

theta components and, in turn, theta lead delta components. There are also two-way 

interactions between early alpha and delta pairs, as well as theta and delta pairs of 

components. Furthermore, there is a consistent tendency of early alpha and delta 

components to lead a late alpha component. This pattern is in close agreement with 

the proposed involvement of early alpha and theta bands in alertness and attention, 

followed by the subsequent stimulation of delta band and late alpha activations for the 

completion of cognitive tasks. 
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5.3.2 AD Patients 
 

In terms of pathological aspects, Alzheimer's disease reduces the ability to 

perform functions related to memory and complex attention, which also influences the 

activity at various bands of the EEG of AD subjects compared to controls. The P300 

ERP paradigm is related directly to mental efficiency and reflects brain processes that 

demand attentional allocation and fast memory processing. Furthermore, the P300 

response has been primarily located in the temporo-parietal cortex, which is the area 

most severely affected by Alzheimer's disease. The amplitude of delta and theta-band 

response increases during an oddball experiment, in response to basic information 

processing mechanisms of attention allocation and immediate memory. In 

Alzheimer's disease, however, memory and complex attention functions are highly 

affected, resulting in reduced delta and theta activity. Delta and theta phase-locking is 

also reduced in Alzheimer's patients compared to control [121], [122]. Furthermore, 

with the use of drug treatment, the activity of the theta band and its phase-locking 

increase and can become comparable to control subjects. This is a crisp indication that 

theta and delta responses originate from different brain processes.  

With respect to the alpha band, there are relevant indications that it is weaker 

or completely absent in AD subjects. In essence, AD responses may attempt to initiate 

the alpha ERS process in order to inhibit other processes to the benefit of attention, 

but completely loose their dynamic coupling afterwards (absence of alpha activity), 

possibly not being able to compensate with the increased difficulty of the task at hand 

[105]. Thus, many studies have generally related AD with alpha-spectral changes of 

the EEG, which include a significant decrease in upper-alpha to beta power, followed 

by a decrease in the entire alpha band activity [108], [109], [110]. Significant group 

differences between controls and ADs have been reported in [105], observed in the 7-

17 Hz frequencies and localized in the areas of frontal, central and left temporal 

electrodes. The alpha/beta band decrease in reactivity has also been shown through 

spectral [117]. Furthermore, the increase in relative theta power has been used to 

predict MCI patients that will progress to AD [116]. 

The experiment considered in this work focuses on the retrieval of events with 

the presentation of an acoustic probe. Processes related to working memory, 

especially during retrieval, have been found to weaken with normal aging, but in 

general they follow the same patterns of activation [104]. Nevertheless, the activation 

pattern is expected to change with the progression of AD, as described above. Indeed, 

in our experiments theta band in the AD cases is reflected in many more independent 

components than in controls. The AD patients considered were all under drug 

treatment, thus explaining the increased theta activity reported in all cases. 

Furthermore, the late (upper) alpha activity is nonexistent in ADs. Only the lower 

alpha activity is observed as an early activation in some AD subjects, but it appears as 

phase locked (synchronized) activity rather than non-phase locked oscillations 

contributing to ERD. This pattern of activation could be attributed to the increased 

effort of ADs for alertness and attention that relates more to the encoding than to the 

retrieval states [105]. Furthermore, the similar activation pattern shared by controls 

and ADs in the delta/theta bands (3-7 Hz) during retrieval is also reported in 

[Karrasch  2006, Hogan 2003], even though theta activity has been reported to 

increase in ADs during spontaneous EEG recording [108]. Our study reflects a more 

clear representation of the theta band in ADs, without however methodologically 

being able to indicate an increase in the total power of this band. 
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The lack of alpha-band activity during the retrieval phase in AD has been 

recently reported in [105] indicating that the pathology possibly affects alpha/beta 

desynchronization during short-term memory processing. Our results indicate a 

similar absence in ADs of the upper alpha band, which is mainly modulated by 

stimulus-induced effects and semantic memory processing. Nevertheless, the early 

activation of the lower alpha band, which relates to attention, indicates an ERS phase-

locked pattern as opposed to the non phase-locked activation in controls. These 

findings further elucidate the changes in alpha-band activities, indicating that AD is 

related to a synchronized effort towards alertness, while it completely eliminates 

alpha activity related to working memory in retrieval. This performance is in close 

correspondence with the ERS increase of theta and lower alpha and the ERD increase 

in upper alpha bands during the experimental condition of demanding mental tasks, 

where the attentional capacities are exceeded and ―alternative‖ cognitive strategies  

are utilized [112]. A similar interpretation of our results indicates that the attentional 

resources are exceeded in ADs, which is reflected by the alpha ERS due to phase 

locked early alpha amplitude increase [112]. Indeed, the alpha-related components in 

ADs reflected in the figures presented if exist, reflect only early alpha activity of 

mostly phase locked nature. 

In the case of AD patients there exists an increased number of theta 

components, with less delta components. We can observe a close connectivity of theta 

components and a two-way interaction between the delta and theta components, with 

the theta band mostly driving the delta band. The alpha activity does not appear in all 

AD subjects and if it does it shows only early alpha (lower alpha) oscillations. The 

alpha band oscillations demonstrate a large phase locked portions, at leat appearing in 

the power of the average trial signal, as opposed to the control subjects that typically 

demonstrate non-phase locked oscillations in alpha band. Furthermore, the functional 

synchronization of the alpha band with lower frequency bands is not clear. In some 

cases alpha is driven by delta, whereas in other cases alpha is driven by theta 

components. 
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CHAPTER 6: Conclusion and Future Work 

 
Our study was able to identify and characterize the intertrial coherence of 

independent components involved in the multiple trials of the auditory oddball 

experiment. Furthermore, it enabled the efficient visualization of established brain 

networks in three frequency bands, by means of the PDC synchrony measure. This 

study considered a population of five control and five AD subjects of which four 

representative activation networks were presented. Denoting the limitations of the 

study, which should be extended to a larger population sample, the initial results 

presented  indicate that the proposed synchronization analysis framework is able to 

reflect not only the brain network topology during a certain mental task (like the 

working memory), but also the directional coupling between related brain regions. 

It has to be mentioned that this work can have even better results with further 

analysis. Some ideas which would help in the progress of this work are discussed 

here. 

 Larger population: It is important for further statistical analysis to be 

accurate, that these measures and methods are applied on more 

subjects so as to make safer conclusions. 

 Stricter subject clustering: We could use subjects for which we know 

more information of the specific age, sex etc. Especially in AD case it 

is important to have a common base because AD alters depending on 

different parameters and has different stages. 

 Better component filtering: Some of the components we use as 

representatives for the different frequency bands have mixed 

activation. We could use filtering methods so as to clear the irrelevant 

activation. 

 TF-representation: We could try different methods of TF transforms 

besides Morlet wavelets so as to compare and contrast the different 

representations. 

 PCA: Another analysis which could alternatively be tried is PCA on 

EEG concatenated trials on the TF domain. 

There are many ways in which our analysis could expand and progress, though 

it has to be mentioned that our method and the results which come up have novelties, 

as most of other researchers used to only examine the components‘ content without 

trying to find out the relations between the components.  
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Appendix 
 

Here we will give some more examples on the subjects we did not in include in the 

main analysis. 

 

Control Subject 3 

Phase Intertrial Coherence (PIC) 

   
Phase-shift Intertrial Coherence (PsIC) 

   
 Fig. 1: Components bar diagrams for delta, theta and alpha band. 

 

Control Subject 3 
Energy(Average) Map PIC Coherence  PsIC Coherence  Topography 
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Fig. 2: The maps of three intertrial coherence measures and their scalp 

topography. First row (cmp. 24), second row (cmp. 1) and last row (cmp. 20). 

 

 
Fig. 3: The PDC result graph which shows the relations between the chosen 

components. 

 

Control Subject 4 

Phase Intertrial Coherence (PIC) 

   
Phase-shift Intertrial Coherence (PsIC) 

   
 Fig. 4: Components bar diagrams for delta, theta and alpha band. 

 

 

Control Subject 4 
Energy(Average) Map PIC Coherence  PsIC Coherence  Topography 

    



96 

 

    

    
Fig. 5: The maps of three intertrial coherence measures and their scalp 

topography. First row (cmp. 11), second row (cmp. 22) and last row (cmp. 24). 

 

 
Fig. 6: The PDC result graph which shows the relations between the chosen 

components. 

 

Control Subject 5 

Phase Intertrial Coherence (PIC) 

   
Phase-shift Intertrial Coherence (PsIC) 

   
 Fig. 7: Components bar diagrams for delta, theta and alpha band. 
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Control Subject 4 
Energy(Average) Map PIC Coherence  PsIC Coherence  Topography 

    

    

    
Fig. 8: The maps of three intertrial coherence measures and their scalp 

topography. First row (cmp. 13), second row (cmp. 16) and last row (cmp. 21). 

 

 
Fig. 9: The PDC result graph which shows the relations between the chosen 

components. 

 

 

 

AD Subject 3 

Phase Intertrial Coherence (PIC) 
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Phase-shift Intertrial Coherence (PsIC) 

   
 Fig. 10: Components bar diagrams for delta, theta and alpha band. 

 

AD Subject 3 
Energy(Average) Map PIC Coherence  PsIC Coherence  Topography 

    

    

    
Fig. 11: The maps of three intertrial coherence measures and their scalp 

topography. First row (cmp. 8) and second row (cmp. 17) . 

 

 

 

 
Fig. 12: The PDC result graph which shows the relations between the chosen 

components. 
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AD Subject 4 

Phase Intertrial Coherence (PIC) 

   
Phase-shift Intertrial Coherence (PsIC) 

   
 Fig. 13: Components bar diagrams for delta, theta and alpha band. 

 

AD Subject 4 
Energy(Average) Map PIC Coherence  PsIC Coherence  Topography 

    

    

    
Fig. 14: The maps of three intertrial coherence measures and their scalp 

topography. First row (cmp. 15), second row (cmp. 9), and last row (cmp. 21). . 
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Fig. 15: The PDC result graph which shows the relations between the chosen 

components. 
 

AD Subject 5 

Phase Intertrial Coherence (PIC) 

   
Phase-shift Intertrial Coherence (PsIC) 

   
 Fig. 16: Components bar diagrams for delta, theta and alpha band. 
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Energy(Average) Map PIC Coherence  PsIC Coherence  Topography 
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Fig. 17: The maps of three intertrial coherence measures and their scalp 

topography. First row (cmp. 8) and second row (cmp. 15) . 

 

 
Fig. 18: The PDC result graph which shows the relations between the chosen 

components. 
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