
Optimization of Heuristic Search using Recursive

Algorithm Selection and Reinforcement Learning

Vasileios C. Vasilikos

Department of Electronic and Computer Engineering

Technical University of Crete

Thesis committee:

Michail G. Lagoudakis, Supervisor

Vasileios Samoladas

Nikolaos Vlassis (Department of Production Engineering and Management)

A thesis submitted in partial fulfillment for the Diploma degree of

Electronic and Computer Engineering

Chania, July 2009

Vasileios C. Vasilikos 2 Diploma Thesis - July 2009

POLUTEQNEIO KRHTHS

BeltistopoÐhsh Euristik c

Anaz thshc mèsw Anadromik c

Epilog c AlgorÐjmou kai

Enisqutik c M�jhshc

BasÐleioc Q. Basilikìc

Tm ma Hlektronik¸n Mhqanik¸n kai Mhqanik¸n Upologist¸n

Qani�, IoÔlioc 2009

Vasileios C. Vasilikos 4 Diploma Thesis - July 2009

This work is dedicated to my parents, who made my choices come

true by supporting at me every step of the way.

Vasileios C. Vasilikos ii Diploma Thesis - July 2009

Acknowledgements

This work took almost an entire year to complete, and a lot of things

happened in my life during that time, things that made working on

this thesis harder than I expected. I would like to take some time

here and thank the people who made completion of this work possible

despite of all that happened.

I’d like to thank all my colleagues at TU Crete, who made these years

in Chania what is possibly the best years in my life so far. Their help

during my studies was invaluable to me, and I will always be grateful

for it.

I would also like to thank my Greek colleagues at TU Delft for their

understanding and support during my first year there, who made

working on my thesis at the same time as my Master’s degree a lot

easier.

Of course, it goes without saying that tremendous help was provided

by my supervisor, professor Lagoudakis. From the undergraduate

courses all the way to the diploma thesis, he was always open to new

ideas, providing his knowledge and experience to make what we had

in mind possible.

Most importantly, I would like to thank my family, my parents and

sister, for their help, support, guidance and love that made my life

and my choices clear, easier, and most importantly: possible.

Finally, I would like to thank the person that made these past years

truly the best years of my life; my girlfriend Valia. Thank you for

bearing with me during my good times and my bad times, I don’t

know if I could have made it without you!

Vasileios C. Vasilikos iv Diploma Thesis - July 2009

Abstract

The traditional approach to computational problem solving is to use

one of the available algorithms to obtain solutions for all given in-

stances of a problem. However, typically not all instances are the

same, nor a single algorithm performs best on all instances. This

thesis investigates a more sophisticated approach to problem solving,

called Recursive Algorithm Selection, whereby several algorithms for a

problem (including some recursive ones) are available to an agent who

makes an informed decision on which algorithm to select for handling

each sub-instance of a problem at each recursive call made while solv-

ing an instance. Reinforcement learning methods are used for learning

decision policies that optimize any given performance criterion (time,

memory, or a combination thereof) from actual execution and profiling

experience. This thesis focuses on the well-known problem of state-

space heuristic search and combines the A* and RBFS algorithms to

yield a hybrid search algorithm, whose decision policy is learned using

the Least-Squares Policy Iteration (LSPI) algorithm. Our benchmark

problem domain involves shortest path finding problems in a real-

world dataset encoding the entire street network of the District of

Columbia (DC), USA. The derived hybrid algorithm exhibits better

performance results than the individual algorithms in the majority

of cases according to a variety of performance criteria balancing time

and memory. It is noted that the proposed methodology is generic,

can be applied to a variety of other problems, and requires no prior

knowledge about the individual algorithms used or the properties of

the underlying problem instances being solved.

Vasileios C. Vasilikos vi Diploma Thesis - July 2009

PerÐlhyh

O paradosiakìc trìpoc epÐlushc upologistik¸n problhm�twn eÐnai h

qr sh enìc ek twn diajèsimwn algorÐjmwn prokeimènou na brejoÔn

lÔseic gia ìla ta dedomèna stigmiìtupa k�poiou probl matoc. Wstìso,

sun jwc den eÐnai ìla ta stigmiìtupa Ðdia, oÔte ènac sugkekrimènoc

algìrijmoc apodÐdei bèltista gia ìla ta stigmiìtupa. Aut h diplwma-

tik ergasÐa ereun� mia pio ekleptismènh prosèggish tou probl matoc,

gnwst wc Anadromik Epilog AlgorÐjmwn (Recursive Algorithm

Selection), ìpou di�foroi algìrijmoi gia k�poio prìblhma (k�poioi

ex aut¸n anadromikoÐ) eÐnai diajèsimoi se ènan pr�ktora o opoÐoc a-

pofasÐzei poion algìrijmo ja epilèxei gia na qeiristeÐ to k�je upo-

stigmiìtupo enìc probl matoc se k�je anadromik kl sh pou gÐnetai

kat� thn epÐlush enìc stigmiotÔpou. Gia th m�jhsh politik¸n l yhc a-

pof�sewn pou beltistopoioÔn opoiod pote dedomèno krit rio apìdoshc

(qrìnoc, mn mh, sunduasmìc touc) qrhsimopoioÔntai mèjodoi eni-

squtik c m�jhshc (Reinforcement Learning)pou k�noun qr sh empei-

rik c plhroforÐac apì pragmatikèc ektelèseic kai metr seic. H sug-

kekrimènh ergasÐa esti�zei sto gnwstì prìblhma thc euristik c a-

naz thshc se q¸ro katast�sewn (state-space search)kai sundu�zei

touc algorÐjmouc A* kai RBFS gia na par�gei ènan ubridikì algìrijmo

anaz thshc, ìpou h politik l yhc apof�sewn majaÐnetai qrhsimo-

poi¸ntac ton algìrijmo Least-Squares Policy Iteration (LSPI). To

pedÐo problhm�twn sto opoÐo doulèyame perilamb�nei probl mata eÔreshc

suntomìterou monopatioÔ se mia b�sh dedomènwn me pragmatik� stoi-

qeÐa pou kwdikopoieÐ ìlo to odikì dÐktuo thc PoliteÐac District of

Columbia (DC) , HPA. O telikìc ubridikìc algìrijmoc parousi�zei

kalÔterh apìdosh se sqèsh me touc memonwmènouc algorÐjmouc sthn

pleionìthta twn peript¸sewn sÔmfwna me mia plhj¸ra krithrÐwn apìdoshc

pou stajmÐzoun qrìno kai mn mh. Shmei¸netai ìti h proteinìmenh me-

jodologÐa eÐnai genik , mporeÐ na efarmosteÐ se pl joc problhm�twn,

kai den apaiteÐtai prìterh gn¸sh sqetik me touc arqikoÔc algorÐjmouc

pou qrhsimopoioÔntai tic idiìthtec twn stigmiotÔpwn tou probl matoc

pou epilÔontai.

Vasileios C. Vasilikos viii Diploma Thesis - July 2009

Contents

1 Introduction 1

1.1 Problem Solving today . 1

1.2 A real world example . 2

1.3 What this work is about . 3

1.4 How it is done . 4

1.5 Overall picture . 5

1.6 Thesis outline . 5

2 Background 7

2.1 Searching . 7

2.1.1 The search tree . 7

2.1.2 Tree-Search algorithms . 8

2.1.3 Heuristics . 8

2.1.4 A* . 10

2.1.5 RBFS . 13

2.2 Learning . 17

2.2.1 Markov Decision Process 17

2.2.2 Policies . 19

2.2.3 Reinforcement Learning 20

2.2.4 Q Learning . 21

2.2.5 LSPI . 21

3 Problem Statement 25

3.1 Algorithm Selection: A meta-problem 25

3.2 Recursive Algorithm Selection . 26

3.3 Recursive Algorithm Selection in Tree-Search 26

Vasileios C. Vasilikos ix Diploma Thesis - July 2009

CONTENTS

3.4 Related Work . 27

4 The Proposed Approach 29

4.1 The problem used . 30

4.2 The Framework . 30

4.2.1 Class outline . 30

4.2.2 The Fringe . 31

4.2.3 The Expand Function . 31

4.2.4 The Heuristic . 32

4.2.5 The Algorithms . 32

4.3 Interleaving algorithms . 32

4.3.1 Recursive Interference . 33

4.3.2 Scope and Internal Knowledge 33

4.3.3 An Example . 33

4.4 The Learning Process . 33

4.4.1 The Penalty Function . 36

4.4.2 Base Functions . 38

4.4.3 Logging . 39

4.4.4 LSPI . 39

4.4.5 Policy implementation . 40

4.5 Benchmarking . 40

4.5.1 Comparison Validity . 40

4.5.2 Performance Definition . 40

5 Implementation Details 43

5.1 Language of Choice and Reasoning 43

5.2 Operating System, Hardware Specifications and their impact . . . 43

5.3 Debugging and Profiling . 44

5.4 Code structure, memory management, function pointers 44

6 Results 47

6.1 The benchmarking process . 47

6.2 Comparisons . 47

6.2.1 Training Instance Set . 48

6.2.2 Testing Instance Set . 53

Vasileios C. Vasilikos x Diploma Thesis - July 2009

CONTENTS

6.3 Overall Figures . 60

7 Discussion, Conclusions and Future Work 67

7.1 Importance of results and implications 67

7.2 Future work . 68

7.3 Conclusions . 68

References 70

Vasileios C. Vasilikos xi Diploma Thesis - July 2009

CONTENTS

Vasileios C. Vasilikos xii Diploma Thesis - July 2009

List of Figures

2.1 The general Tree-Search algorithm 9

2.2 The A* algorithm . 11

2.3 A* Example: Step 1 . 12

2.4 A* Example: Step 2 . 12

2.5 A* Example: Step 3 . 12

2.6 A* Example: Step 4 . 12

2.7 A* Example: Step 5 . 13

2.8 A* Example: Step 6 . 13

2.9 A* Example: Step 7 . 14

2.10 The RBFS algorithm . 15

2.11 RBFS Example: Step 1 . 15

2.12 RBFS Example: Step 2 . 16

2.13 RBFS Example: Step 3 . 16

2.14 RBFS Example: Step 4 . 16

2.15 RBFS Example: Step 5 . 17

2.16 RBFS Example: Step 6 . 17

2.17 RBFS Example: Step 7 . 18

2.18 The Q Learning algorithm . 22

2.19 The LSPI algorithm . 23

4.1 The Hybrid creation algorithm . 34

4.2 Hybrid Example: Step 1 . 34

4.3 Hybrid Example: Step 2 . 34

4.4 Hybrid Example: Step 3 . 35

4.5 Hybrid Example: Step 4 . 35

Vasileios C. Vasilikos xiii Diploma Thesis - July 2009

LIST OF FIGURES

4.6 Hybrid Example: Step 5 . 36

4.7 Hybrid Example: Step 6 . 36

4.8 Hybrid Example: Step 7 . 37

4.9 Hybrid Example: Step 8 . 37

6.1 Training instance set paths on the Washington DC graph 48

6.2 Testing instance set paths on the Washington DC graph 48

6.3 Absolute cost, 0% time - 100% memory, training instance set . . . 49

6.4 Percentage gain, 0% time - 100% memory, training instance set . 49

6.5 Absolute cost, 10% time - 90% memory, training instance set . . . 49

6.6 Percentage gain, 10% time - 90% memory, training instance set . 49

6.7 Absolute cost, 20% time - 80% memory, training instance set . . . 50

6.8 Percentage gain, 20% time - 80% memory, training instance set . 50

6.9 Absolute cost, 30% time - 70% memory, training instance set . . . 50

6.10 Percentage gain, 30% time - 70% memory, training instance set . 50

6.11 Absolute cost, 40% time - 60% memory, training instance set . . . 51

6.12 Percentage gain, 40% time - 60% memory, training instance set . 51

6.13 Absolute cost, 50% time - 50% memory, training instance set . . . 52

6.14 Percentage gain, 50% time - 50% memory, training instance set . 52

6.15 Absolute cost, 60% time - 40% memory, training instance set . . . 52

6.16 Percentage gain, 60% time - 40% memory, training instance set . 52

6.17 Absolute cost, 70% time - 30% memory, training instance set . . . 53

6.18 Percentage gain, 70% time - 30% memory, training instance set . 53

6.19 Absolute cost, 80% time - 20% memory, training instance set . . . 54

6.20 Percentage gain, 80% time - 20% memory, training instance set . 54

6.21 Absolute cost, 90% time - 10% memory, training instance set . . . 54

6.22 Percentage gain, 90% time - 10% memory, training instance set . 54

6.23 Absolute cost, 100% time - 0% memory, training instance set . . . 55

6.24 Percentage gain, 100% time - 0% memory, training instance set . 55

6.25 Absolute cost, 0% time - 100% memory, testing instance set . . . 56

6.26 Percentage gain, 0% time - 100% memory, testing instance set . . 56

6.27 Absolute cost, 10% time - 90% memory, testing instance set . . . 56

6.28 Percentage gain, 10% time - 90% memory, testing instance set . . 56

6.29 Absolute cost, 20% time - 80% memory, testing instance set . . . 57

Vasileios C. Vasilikos xiv Diploma Thesis - July 2009

LIST OF FIGURES

6.30 Percentage gain, 20% time - 80% memory, testing instance set . . 57

6.31 Absolute cost, 30% time - 70% memory, testing instance set . . . 57

6.32 Percentage gain, 30% time - 70% memory, testing instance set . . 57

6.33 Absolute cost, 40% time - 60% memory, testing instance set . . . 58

6.34 Percentage gain, 40% time - 60% memory, testing instance set . . 58

6.35 Absolute cost, 50% time - 50% memory, testing instance set . . . 59

6.36 Percentage gain, 50% time - 50% memory, testing instance set . . 59

6.37 Absolute cost, 60% time - 40% memory, testing instance set . . . 59

6.38 Percentage gain, 60% time - 40% memory, testing instance set . . 59

6.39 Absolute cost, 70% time - 30% memory, testing instance set . . . 60

6.40 Percentage gain, 70% time - 30% memory, testing instance set . . 60

6.41 Absolute cost, 80% time - 20% memory, testing instance set . . . 61

6.42 Percentage gain, 80% time - 20% memory, testing instance set . . 61

6.43 Absolute cost, 90% time - 10% memory, testing instance set . . . 61

6.44 Percentage gain, 90% time - 10% memory, testing instance set . . 61

6.45 Absolute cost, 100% time - 0% memory, testing instance set . . . 62

6.46 Percentage gain, 100% time - 0% memory, testing instance set . . 62

6.47 training instance set, average absolute cost 62

6.48 training instance set, average percentage gain 62

6.49 Training instance set, average percentage gain detail 63

6.50 testing instance set, average absolute cost 64

6.51 testing instance set, average percentage gain 64

6.52 Testing instance set, average percentage gain detail 64

6.53 Hybrid algorithm composition over the Time-Memory spectrum . 65

6.54 Training instance set, hybrid composition 65

6.55 Testing instance set, hybrid composition 65

Vasileios C. Vasilikos xv Diploma Thesis - July 2009

LIST OF FIGURES

Vasileios C. Vasilikos xvi Diploma Thesis - July 2009

Chapter 1

Introduction

Problem solving is a central and well defined concept of Computer Science in

general. After formulating a computational problem, an algorithm is used to

solve the problem. Algorithms are formal and methodic approaches to a certain

problem that returns a solution within finite (and reasonable) time and space. A

problem may be (and is often) approached by more than one algorithms. Much

research has been invested into analyzing the properties of algorithms and their

efficiency in problem solving, in order to be able to understand the impact of

choosing a particular algorithm.

1.1 Problem Solving today

So far the field of problem solving has been dominated by single algorithm ap-

proaches, leaving the choice of the appropriate algorithm to the developer. It is

the developer’s responsibility to study the problem, analyze requirements, comply

with platform constraints and choose the algorithm that best fits these constraints

while fulfilling the necessary requirements. Unfortunately, the choices available

always come with trade-offs. Each choice allows for advantages in some areas,

while having inherent disadvantages in others. These trade-offs, at the algorith-

mic level, can be execution speed versus memory consumption, parallelization

versus synchronization overhead, solution accuracy versus overall complexity, etc.

Making the right choice is what an engineer is expected to do, after meticulous

Vasileios C. Vasilikos 1 Diploma Thesis - July 2009

1. INTRODUCTION

analysis of the problem, the choices, and the available resources. Since the prob-

lem itself and the resources available are usually out of the engineer’s control, the

choices available are critical to their job and the final outcome of their work.

While there has been significant research in the development of new algorithms

that try to compensate for the disadvantages of existing algorithms as technol-

ogy evolves, research has shifted focus to implementation optimizations as well

as hardware optimizations, that allow for further compensation of algorithm-

inherent disadvantages. It is often the case that despite the variety of available

choices, improvements in hardware as well as in the process of bringing an algo-

rithm from the theoretical level to the actual implementation that will be used,

the trade-offs that are inherent to the algorithm that was chosen do not fulfill the

intentions in a satisfactory way.

1.2 A real world example

To illustrate this point, consider a possible real-world scenario, where a developer

is called upon to choose an algorithm to use in a GPS unit that will display a

path from point A to point B. GPS units do not have the memory capacity or

computational power of a modern PC, but they need to produce results fast and

accurately, given the circumstances in which they are used. The lead developer

would have to choose the algorithm that is best for fast results, possibly increasing

memory requirements, which would lead to either a need for more memory in the

design of the device or perhaps the reduction of memory consumption on other

parts of the application, possibly at the expense of features that would otherwise

improve the usability of the device. Extra cost would be induced to spend more

work hours to optimize other levels of the development process due to lack of

options at the algorithmic level.

There has been some research to aid the developer in choosing the algorithm

that will end up solving the problem out of a given set of available algorithms. All

these solutions however make use of a single algorithm solving the problem from

beginning to end, which means that all inherent advantages and disadvantages

as well will be carried on in the final implementation.

Vasileios C. Vasilikos 2 Diploma Thesis - July 2009

1.3 What this work is about

1.3 What this work is about

What we propose in this thesis is in the direction of dynamic algorithm selection,

using different algorithms on different sub-instances of the original problem, in

a way that ends up making use of the best aspects of each available algorithm,

by applying to each sub-instance the most appropriate algorithm to yield the

minimum possible cost. In other words, we interleave available algorithms during

the problem solving process. Naturally, the way that this dynamic selection works

has to be generic, and not specific to a particular problem or to a given set of

algorithms, otherwise the re-usability value of this work would be minimal, if any.

We focused on Tree-Search algorithms, designing and implementing a frame-

work, where the available algorithms can be re-defined, new algorithms added,

and to some extend the entire problem class re-defined as well, without inducing

extended extra work. The system is designed in a generic fashion, such that the

developer can define the problem, add algorithms to the selection set, train the

decision policy and eventually get a hybrid algorithm that will allow for improved

performance given the cost definition that was provided. Once the system has

been setup for a specific problem, it can be trained and produce different hybrid

algorithms rapidly, in case the cost definition needs to change.

The way hybrid algorithms are created is by allowing for a choice during the

recursive step of each algorithm. Instead of calling itself, a recursive algorithm

calls a decision making function that has been trained, and is responsible for

choosing the specific algorithm to use on the next recursive call. That way, at

each recursive call we can have a different algorithm, and the solution will not be

produced by any single algorithm alone, but by a the combination of the available

algorithms.

One of the most important aspects of this dynamic selection process is of

course the decision making procedure, as it is this part that eventually produces

the specific hybrid algorithm, and it is this part that will make the difference

between a hybrid algorithm and the individual ones. This is where Reinforcement

Learning (RL) comes in, to train this decision making procedure so that the

choices it makes eventually produce favorable results. We use the Least-Squares

Policy Iteration (LSPI) algorithm [1], which is an off-line Reinforcement Learning

Vasileios C. Vasilikos 3 Diploma Thesis - July 2009

1. INTRODUCTION

algorithm, meaning it works independently of the problem-solving itself. The

input for this algorithm is a set of samples that represent different choices and

their observed impact. The LSPI algorithm processes this input and returns a

policy for making decisions based on the definition of cost/gain that the developer

gives (penalty/reward function).

1.4 How it is done

Our implementation used two algorithms for Tree-Search: A* and RBFS. They

are both informed-search algorithms, meaning that they both need a heuristic

function. The choice of these two specific algorithms illustrates our original point;

A* is an algorithm that performs very well when speed is the main concern, but

has a great memory consumption, and RBFS is an algorithm that performs very

well when memory is important, but is significantly slower. As described above,

developers are rarely faced with a trade-off choice that one of the opposing factors

can be neglected. In our case, there will rarely be a Tree-Search problem case

where speed is irrelevant and only memory matters, or vice versa. Usually both

are a concern, so even though there are choices available that perform very well

for speed or memory, there is no choice available that performs well for both

speed and memory.

We attempted to achieve a hybrid version of these two algorithms using the

method described above, and measured the performance of the hybrid algorithm

produced against the best of the two original algorithms, for different definitions

of cost based on memory and speed.

The algorithms were applied to a shortest-path finding domain. In particular,

we consider several instances of the problem involving different paths, encoding

a map of the complete road network of Washington, D.C., in a weighted undi-

rected graph format. Each node represents an actual point on the map, with

real latitude (f) and longitude (l) coordinates from TIGER/Line data files pro-

vided to the public by the US government [2]. A simple Straight-Line-Distance

heuristic was used for both algorithms. The Straight-Line-Distance heuristic cal-

culates distance in meters from f/l coordinates based on approximations that

compensate for earth’s oblate spheroid shape.

Vasileios C. Vasilikos 4 Diploma Thesis - July 2009

1.5 Overall picture

An initial run was made on this set of instances with random algorithm choices

at each recursive step to collect training samples. This sample set was fed as the

input to LSPI, which in turn produced a decision policy, effectively creating the

desired hybrid algorithm. Different hybrid algorithms were created for different

definitions of the penalty function, all using the same sample set. This means

that only one training run was performed. Subsequently, the hybrid algorithms

were benchmarked and compared against the original algorithms according to

the definition of cost used to create each hybrid algorithm, both on the original

training instances, but also on new unknown instances.

1.5 Overall picture

Overall, the results are very encouraging, as the hybrid versions, on average,

out-performed the original algorithms, with varying amounts of gain depending

on the definition of cost. This will hopefully provide a springboard for further

research in this field.

1.6 Thesis outline

This thesis is organized as follows: In Chapter 2 we will provide the necessary

theoretical background, which includes Tree-Search, heuristics, the algorithms

used (A* and RBFS), Reinforcement Learning and LSPI in particular. In Chapter

3 we provide a more detailed problem statement and an overview of the related

work in the area. In Chapter 4 we describe our approach to Recursive Algorithm

Selection in Tree-Search in detail. In Chapter 5 we present the most important

aspects of the implementation of our approach. In Chapter 6 we provide the

results of our work, and finally in Chapter 7 we discuss the significance of our

results, suggest future work directions and draw some conclusions.

Vasileios C. Vasilikos 5 Diploma Thesis - July 2009

1. INTRODUCTION

Vasileios C. Vasilikos 6 Diploma Thesis - July 2009

Chapter 2

Background

2.1 Searching

2.1.1 The search tree

In the field of Artificial Intelligence, it is quite common for the solution of a

problem to be a sequence of successive states, from some initial state to a goal

state where the problem has been solved. In algorithmic terms, the procedure of

finding such a sequence or path can be modeled by searching a tree, where each

node represents a state, and its successor nodes represent the states to which an

action on that node will lead to. Traversing this tree is the equivalent of taking

actions in the world to which these states belong. Eventually what is sought is

the sequence of actions that needs to be taken in order to reach a goal state from

the initial state. A Tree-Search algorithm is an algorithm that traverses a tree

using a certain strategy, looking for a goal state, and returns the sequence of

actions that led to that state when it finds it.

Obviously, what discriminates problems from each other, other than the de-

scription of states themselves, is the set of specific rules that apply to the succes-

sion of states. This is what is known as the successor function or node expansion

function. When we expand a node, we are applying the rule set that describes

our problem to a specific state that is represented by that node. The effect is a

set of new nodes that represent different states that would be the result of all the

possible actions that can be taken in the current node/state.

The set of nodes that have been generated but have not yet been expanded

Vasileios C. Vasilikos 7 Diploma Thesis - July 2009

2. BACKGROUND

is what is called the fringe. As such, each node in the fringe is a leaf node of

the traversed part of the tree. The afore-mentioned strategy that a Tree-Search

algorithm uses is the strategy that picks a node from the fringe to expand. This

is called the search strategy.

2.1.2 Tree-Search algorithms

Figure 2.1 shows the general Tree-Search algorithm. In general, a search algo-

rithm is characterized by the following features:

• Completeness: Is the algorithm guaranteed to find a solution if there is one?

• Optimality: Is the algorithm guaranteed to find an optimal solution?

• Time complexity: How much time does it take to find a solution?

• Memory complexity: How much memory is needed to find a solution?

When talking about Tree-Search algorithms in particular, complexity, time

and memory depend on the tree’s branching factor b, the depth of the shallowest

goal node d, and the maximum length of any path in the state space m.

2.1.3 Heuristics

There are two main types of search algorithms: Uninformed or blind search al-

gorithms and informed or heuristic search algorithms [3]. The difference between

them is the absence or presence respectively of additional information about the

problem other than the problem definition itself. A blind search algorithm can

only generate states and distinguish goal states from non-goal states. A heuristic

search can use the additional information that it has to distinguish between states

that are more likely to lead to a goal state than others. In this work we focused

on heuristic search, so blind search will not be discussed further.

Heuristic search makes use of an evaluation function f(n), where n is a node.

This function returns a value for that node, and based on that value and the

search strategy, the algorithm decides which node it will expand next. The general

approach is expanding the node with the best evaluation. It is important to stress

the fact that this is an evaluation and not actual measurement of exactly how

Vasileios C. Vasilikos 8 Diploma Thesis - July 2009

2.1 Searching

GeneralTreeSearch.

Input: Problem, fringe. Returns: Solution/Failure

fringe← insert(makeNode(initialState[problem]), fringe)

loop

if fringe.empty = true then

return failure

end if

node← selectNode(fringe) //Search Strategy

if node.isGoal = true then

return success(node)

end if

fringe← insertAll(expand(node, problem), fringe)

end loop

Figure 2.1: The general Tree-Search algorithm

much value a certain node holds; if the exact value was known, there would not

be a need for searching and the path to the solution would simply be following the

best node each time. But, since only evaluation is possible, there is no guarantee

that when a node receives a favorable result from evaluation that this node will

necessarily be a good choice.

Part of the evaluation function is the heuristic function. It is this function

that conveys most the additional (external) information that is available to the

algorithm. The search strategy dictates how the algorithm will make use of that

additional information when making a decision. A heuristic function h(n) works

in the same way the evaluation function works. It takes as input a state or node

and returns a value for that node. That value is an informed guess on the actual

value of that node. For example, when searching for shortest paths, a hypothetical

heuristic might return a value that is an informed guess on the actual distance

between the input node and the goal. The quality of the heuristic is just how

accurate this informed guess is; the more accurate a heuristic function is, the

better the algorithm will perform, since it will lead the search mostly towards the

goal rather than away from it.

Vasileios C. Vasilikos 9 Diploma Thesis - July 2009

2. BACKGROUND

Heuristics are categorized depending on their behavior. An admissible heuris-

tic is a heuristic that never overestimates cost (or underestimates gain). This

means that by definition, admissible heuristics are always optimistic. If a heuris-

tic’s return value consistently increases or decreases for successive states as input,

then this heuristic is called consistent. Consistent heuristics are always admissi-

ble, however not all admissible heuristics are consistent [3].

As mentioned in the introductory part of this thesis, the two algorithms that

we used were A* and RBFS. They are both heuristic, complete, optimal search

algorithms. We will describe both algorithms in this section in order to demon-

strate the point that was made earlier, namely the fact that A* has a high memory

complexity compared to RBFS, but much better time complexity, and vice versa.

2.1.4 A*

The most widely known form of best-first search is called A* search [4]. It eval-

uates nodes by combining g(n), the actual cost to reach the node, and h(n), the

estimated cost to get from the node to the goal:

f(n) = g(n) + h(n)

Since g(n) gives the path cost from the start node to node n, and h(n) is the

estimated cost of the cheapest path from n to the goal, we have:

f(n) = estimated cost of the cheapest solution through node n

Thus, if we are trying to find the cheapest solution, a reasonable thing to try

first is the node with the lowest value of g(n) + h(n). It turns out this strategy

is more than just reasonable: provided that the heuristic h(n) is admissible, A*

is both complete and optimal. Since g(n) is the exact cost to reach n and h(n)

is admissible, f(n) will never overestimate the true cost of a solution that goes

through n.

It is worth noting that A* is also optimally efficient. This means that it

expands no more nodes than the exact amount of nodes it needs in order to ensure

optimality. Any algorithm that expands less nodes runs the risk of missing the

optimal solution. Any algorithm that expands more nodes, is producing excess

sub-trees that are irrelevant to the search.

Vasileios C. Vasilikos 10 Diploma Thesis - July 2009

2.1 Searching

That A* search is complete, optimal, and optimally efficient among all such

algorithms is rather satisfying. Unfortunately, it does not mean that A* is the

answer to all our searching needs. The catch is that, for most problems, the

number of nodes within the goal contour search space is still exponential in the

length of the solution.

Because it keeps all generated nodes in memory, A* usually runs out of space

long before it runs out of time. For this reason, A* is not practical for many

large-scale problems. Recently developed algorithms have overcome the space

problem without sacrificing optimality or completeness, at the cost of execution

time.

Figure 2.2 shows a basic implementation of the A* algorithm. The evaluate

function used is the one described above.

A*. Input:node, fringe. Returns: Solution

if node.isGoal = true then

return success(node)

end if

fringe← insertAll(expand(node), fringe)

best←∞
for each n in fringe do

if evaluate(n) < best then

best← n

end if

end for

A*(best, fringe)

Figure 2.2: The A* algorithm

The following sequence of figures shows an example of how A* would solve a

problem on a hypothetical tree.

Vasileios C. Vasilikos 11 Diploma Thesis - July 2009

2. BACKGROUND

Figure 2.3: A* Example: Step 1

Figure 2.4: A* Example: Step 2

Figure 2.5: A* Example: Step 3

Figure 2.6: A* Example: Step 4

Vasileios C. Vasilikos 12 Diploma Thesis - July 2009

2.1 Searching

Figure 2.7: A* Example: Step 5

Figure 2.8: A* Example: Step 6

2.1.5 RBFS

Recursive Best First Search (RBFS) [5] is a simple recursive algorithm that at-

tempts to mimic the behavior of A* but using only linear space. The algorithm

is shown in Figure 2.10. Its structure is similar to that of a recursive depth-first

search, but rather than continuing indefinitely down the path, it keeps track of

Vasileios C. Vasilikos 13 Diploma Thesis - July 2009

2. BACKGROUND

Figure 2.9: A* Example: Step 7

the f -value of the best alternative path from any ancestor of the current node. If

the current node exceeds this limit, the recursion unwinds back to the alternative

path. As the recursion unwinds, RBFS replaces the f -value of each node along

the path with the best f -value of its children. In this way, RBFS remembers the

f -value of the best leaf in the forgotten subtree and can therefore decide whether

it’s worth reexpanding the subtree at some later time.

It is this changing of opinion that can occur during RBFS searching that

induces a great cost in execution time. Each time RBFS changes opinion about

the optimal path, it needs to backtrack and collapse the current sub-tree it is

looking at, and re-expand the alternative sub-tree.

Like A*, RBFS is an optimal algorithm if the heuristic function h(n) is admis-

sible. Its space complexity is linear in the depth of the deepest optimal solution,

but its time complexity is rather difficult to characterize: it depends both on

the accuracy of the heuristic function and on how often the best path changes

as nodes are expanded. RBFS is subject to the potentially exponential increase

Vasileios C. Vasilikos 14 Diploma Thesis - July 2009

2.1 Searching

RBFS.

Input:node, fringe, fLimit.

Returns: Solution or Failure and new fLimit

if node.isGoal = true then

return success(node)

end if

successors← expand(node, fringe)

for each s in successors do

f [s]← max(g(s) + h(s), f [node])

end for

loop

best← minNode(successors, f)

if best < fLimit then

return failure, f [best]

end if

alternative← secondLowestNode(successors, f)

result, f [best]← RBFS(best, fringe,min(fLimit, alternative))

if result! = failure then

return result

end if

end loop

Figure 2.10: The RBFS algorithm

in complexity associated with searching on graphs, because it cannot check for

repeated states other than those on the current path. Thus, it may explore the

same state many times.

The following sequence of figures shows an example of how A* would solve a

problem on a hypothetical tree.

Figure 2.11: RBFS Example: Step 1

Vasileios C. Vasilikos 15 Diploma Thesis - July 2009

2. BACKGROUND

Figure 2.12: RBFS Example: Step 2

Figure 2.13: RBFS Example: Step 3

Figure 2.14: RBFS Example: Step 4

Vasileios C. Vasilikos 16 Diploma Thesis - July 2009

2.2 Learning

Figure 2.15: RBFS Example: Step 5

Figure 2.16: RBFS Example: Step 6

2.2 Learning

2.2.1 Markov Decision Process

A Markov Decision Process (MDP) is a discrete-time mathematical modeling

framework for decision making, particularly useful when the outcome of a pro-

Vasileios C. Vasilikos 17 Diploma Thesis - July 2009

2. BACKGROUND

Figure 2.17: RBFS Example: Step 7

cess is in part a result of the agents actions and in part random. They have found

extensive use in areas such as economics, control, manufacturing, and Reinforce-

ment Learning.

An MDP can be described as a 4-tuple (S,A,P,R), where:

• S = {s1, s2, . . . , sn} is the (finite) state space of the process. The state s is

a description of the status of the process at a given time.

• A = {a1, a2, . . . , am} is the (finite) action space of the process. The set of

actions are the possible choices an agent has at a particular time.

• P is a Markovian transition model, where P(s, a, s′) is the probability of

making a transition to state s’ when taking action a in state s. A Markovian

transition model, means that the probability of making a transition to state

s’ when taking action a in state s depends only on s and a and not on the

history of the process.

Vasileios C. Vasilikos 18 Diploma Thesis - July 2009

2.2 Learning

• R is the reward function (scalar real number) of the process. It is Markovian

as well and can be the immediate or the expected immediate reward (for

stochastic rewards) at each time step. The expected reward for a state-

action pair (s, a), is defined as:

R(s, a) =
∑
s′∈S

P(s, a, s′)R(s, a, s′)

An MDP is often augmented to include γ and D as (S,A,P,R, γ,D), where:

• γ ∈ (0, 1] is the discount factor. When g=1 a reward retains its full value

independently of when it is received. As g becomes smaller, the importance

of rewards in the future is diminished exponentially by γt.

• D is the initial state distribution. It describes the probability that each

state in S will be the initial state. On some problems most states have

a zero probability, while few states (possibly only one) are candidates for

being an initial state.

The optimization objective in an MDP is the maximization (or minimization

depending on the problem) of the expected total discounted reward, which is

defined as:

Es∼D;at∼?;st∼P

(
∞∑
t=0

γtrt | s0 = s

)

2.2.2 Policies

A policy p is a mapping from states to actions. It defines the responce (which

may be deterministic or stochastic) of an agent in the environment for any state

and it is sufficient to completely determine its behavior. In that sense,π(s) is the

action chosen by the agent following policy π.

An optimal policy π∗ also known as an ”undominated optimal policy” is a pol-

icy that yields the highest expected utility. That is, it maximizes the expected

total discounted reward under all conditions (over the entire state space). For

every MDP there is at least one such policy although it may not be unique (mul-

tiple policies can be undominated; hence yielding equal expected total discounted

reward through different actions).

Vasileios C. Vasilikos 19 Diploma Thesis - July 2009

2. BACKGROUND

The state-action value function Qπ(s, a) for a policy p is defined over all pos-

sible combinations of states and actions and indicates the expected, discounted,

total reward when taking action a in state s and following policy p thereafter:

Qπ(s, a) = Eat∼π;st∼P

(
∞∑
t=0

γtrt | s0 = s, a0 = a

)

2.2.3 Reinforcement Learning

Reinforcement Learning is learning in an environment by interaction [6, 7, 3].

It is usually assumed that the agent knows nothing about how the environment

works (has no model of the underlying MDP) or what the results of its actions

are. In addition, the environment can be stochastic, yielding different outcomes

for the same situation. In contrast to supervised learning there is no teacher to

provide examples of correct or bad behavior. It is very similar to unsupervised

learning, except that one of the percepts is ”hardwired” to be recognized as a

reward.

The goal of an agent in such a setting is to learn from the consequences of its

actions, in order to maximize the total reward over time. Rewards are in most

cases discounted, in the sense that a reward early in time is ”more valuable” than

a reward later. This is done mainly in order to give an incentive to the agent to

move quickly towards a solution, rather than wasting time in areas of the state

space where there is no large negative reward.

Two related problems fall within Reinforcement Learning: Prediction and

Control. In prediction problems, the goal is to learn to predict the total reward

for a given policy, whereas in control the agent tries to maximize the total reward

by finding a good policy. These two problems are often seen together, when a

prediction algorithm evaluates a policy and a control algorithm subsequently tries

to improve it.

The learning setting is what characterizes the problem as a Reinforcement

Learning problem. Any method that can successfully reach a solution, is consid-

ered as a Reinforcement Learning method. This means that very diverse algo-

rithms coming from different backgrounds can be used; and that is indeed the

case. Most of the approaches can be distinguished into Model-Based learning and

Vasileios C. Vasilikos 20 Diploma Thesis - July 2009

2.2 Learning

Model-Free learning. In Model Based learning, the agent uses its experiences in

order to learn a model of the process and then find a good decision policy through

planning. Model Free learning on the other hand tries to learn a policy directly

without the help of a model. Both approaches have their strengths and draw-

backs (guarantee of convergence, speed of convergence, ability to plan ahead, use

of resources).

2.2.4 Q Learning

Q-learning [8] is a model-free, off-policy, Reinforcement Learning control algo-

rithm that can be used in an online or off-line setting. It uses samples of the form

(s, a, r, s′) to estimate the state-action value function of an optimal policy. The

simple temporal difference update equation for Q-learning is:

Q(a, s) = Q(a, s) + α(R(s) + γmax
a′

Q(a′, s′)−Q(a, s))

Essentially, it is an incremental version of dynamic programming techniques,

which imposes limited computational demands at every step, with the drawback

that it usually takes a large number of steps to converge. It learns an action-

value representation, allowing the agent using it to act optimally (under certain

conditions) in domains satisfying the Markov property. Figure 2.18 shows the Q

learning algorithm.

2.2.5 LSPI

Least-Squares Policy Iteration (LSPI) [1] is a relatively new, model-free, approx-

imate policy iteration Reinforcement Learning algorithm for control. It is an

off-line, off-policy, batch training method that exhibits good sample efficiency

and offers stability of approximation. LSPI has met great success in the last few

years, applied in domains with continuous or discrete states and discrete actions.

LSPI iteratively learns the weighted least-squares fixed-point approximation of

the state-action value function of a sequence of improving policies π, by solving

the (kxk) linear system

Awπ = b

Vasileios C. Vasilikos 21 Diploma Thesis - July 2009

2. BACKGROUND

Q Learning.

Input: D, γ,Q0, α0, σ, π. Learns Q̂∗ from samples

// D: Source of samples (s, a, r, s′)

// γ: Discount factor

// Q0: Initial value function

// α0: Initial learning rate

// σ: Learning rate schedule

// π: Exploration policy

Q̃← Q0;α← α0; t← 0

for each (s, a, r, s′) in D do

Q̃(s, a)← Q̃(s, a) + α

(
r + γmaxa′∈A Q̃(s′, a′)− Q̃(s, a)

)
α← σ(α, α0, t)

t← t+ 1

end for

return Q̃

Figure 2.18: The Q Learning algorithm

where wπ are the weights of k linearly independent basis functions. Once all

weights have been calculated, each action-state pair is mapped to a Q value, as

such:

Q(s, a) =
k∑
i=0

wiφi(s, a)

and the improved action choice in each state s is given by

π′(s) = arg max
a′′∈A

Q(s, a)

Figure 2.19 summarizes the LSPI algorithm.

Vasileios C. Vasilikos 22 Diploma Thesis - July 2009

2.2 Learning

LSPI.

Learns a policy from samples.

Input: samples D, basis φ, discount factor γ, error ε

Output: weights w of learned value function

Initialize w′ ← 0

repeat

w ← w′, A← 0, b← 0

for each (s, a, r, s′) in D do

a′ = arg maxa′′∈Aw
>φ(s′, a′′)

A← A + φ(s, a)
(
φ(s, a)− γφ(s′, a′)

)>
b← b+ φ(s, a)r

end for

w′ ← A−1b

until (‖w − w′‖ < ε)

Figure 2.19: The LSPI algorithm

Vasileios C. Vasilikos 23 Diploma Thesis - July 2009

2. BACKGROUND

Vasileios C. Vasilikos 24 Diploma Thesis - July 2009

Chapter 3

Problem Statement

3.1 Algorithm Selection: A meta-problem

As described in the introductory section, the main issue this work is trying to

address is that of algorithm selection. Selecting the right algorithm for a problem

is a choice that depends on more things than just the theoretical expectations

for time and memory complexity of each algorithm. Details and specifications of

the hardware are important, as well as the expected distribution of input from

a statistical point of view. Inner details of an algorithm are also important, in

combination with the above. This makes algorithm selection a complex problem

in itself, a sort of meta-problem. As such, it deserves the same amount of research

and experimentation as any regular computational problem. Solutions should be

formulated in a generic, methodic way, so that they can be applied with minimal

modification to every instance of this meta-problem.

A per-instance solution from scratch for any problem is usually not cost ef-

fective, especially when there has already been solutions proposed that apply to

the general nature of that problem. This is why there are generic algorithms that

apply to general formulations of problems, such as sorting algorithms, search al-

gorithms, constraint satisfaction algorithms, etc. Since we have established the

procedure of selecting the correct algorithm as a problem, it would be rational

to try to create solutions for that problem that apply in the general case rather

than a per-instance method, where each instance is treated like a completely new

problem.

Vasileios C. Vasilikos 25 Diploma Thesis - July 2009

3. PROBLEM STATEMENT

This directly implies that the solution will not be the same for each instance,

which is why we will refer to this as dynamic algorithm selection. This means

that a decision will be made according to the specifics of the instance, but will

be made so based on a set of general rules that will apply, rules that have been

defined in order to make the best decision based on the specifics.

3.2 Recursive Algorithm Selection

Recursive algorithms work exactly by breaking down their input problem into a

sub-problem until they reach a base problem of much smaller complexity, and

gradually reconstruct the solution by composing the final solution out of the

solutions of all the base sub-problems that the original problem was broken down

to. Essentially, each recursive call is equivalent to the original one, only applied to

a smaller problem. So, the algorithm selection problem appears at each recursive

step, when we consider recursive algorithms.

In this work, we take this one step further. Why treat algorithm selection as

a problem whose solution should apply to an entire instance? Why not consider

that a sub-instance of a specific instance could, potentially, be solved better by

another algorithm than the one that seemingly seems the better choice for an

instance overall?

To put it plainly, why should an algorithm be chosen to solve an entire in-

stance, even if the choice has been made in a methodic, regulated way? Problems

usually can be broken down into sub-problems, and it can be the case that cer-

tain sub-problems can be better solved by another algorithm than the one that

was chosen to solve the entire problem. This is what this thesis attempted to

investigate and implement.

3.3 Recursive Algorithm Selection in Tree-Search

We consider the problem of algorithm selection for Tree-Search algorithms, which

are recursive algorithms. During Tree-Search, an algorithm begins at the root of

a tree and traverses through the tree in search of a solution. This traversal is

recursive. Like we described above, recursive algorithms break down the original

problem into sub-problems. In Tree-Search, the original tree is broken down

Vasileios C. Vasilikos 26 Diploma Thesis - July 2009

3.4 Related Work

into sub-trees during each recursive step. We treat each sub-problem and the

algorithms associated with it as a new algorithm selection problem that needs

to be treated based on its specific characteristics, rather than treating the entire

search tree as one problem and selecting an entire algorithm to solve it.

The problem we attempt to solve is finding a decision policy that would choose

an algorithm at each recursive step of the Tree-Search procedure. Since there

has not been any related work in the field of Tree-Search, we also had to solve

the problem of modeling Tree-Search in such a way that solving the algorithm

selection problem at each recursive step is possible to begin with.

3.4 Related Work

Treating algorithm selection as a problem in itself is not a completely new idea. It

was first stated formally by J.R. Rice in 1976 [9] as a computational problem. The

Algorithm Portfolio was introduced as a paradigm to treating algorithm selection

as a formal computational problem [10].

Since algorithm selection has been established as a computational problem,

there have been a few approaches as to how it should be solved. Those include

studying the instance to be solved and selecting a proper algorithm for it [11],

running multiple algorithms from the portfolio in parallel and terminating as soon

as one solution is obtained by the fastest algorithm, [12] and runtime switching

of algorithms [13].

The work of Lagoudakis, Littman, and Parr [14, 15, 16] is the one closest

to ours, since they consider learning decision policies for Recursive Algorithm

Selection. In particular, they have shown that efficient hybrid algorithms can be

obtained for the problems of sorting, order-statistic selection, and branching rule

selection in the DPLL procedure for satisfiability.

Vasileios C. Vasilikos 27 Diploma Thesis - July 2009

3. PROBLEM STATEMENT

Vasileios C. Vasilikos 28 Diploma Thesis - July 2009

Chapter 4

The Proposed Approach

We propose a recursive algorithm selection system which refines its decision mak-

ing policy through the LSPI Reinforcement Learning algorithm in order to make

the choices that will allow for optimum performance.

As described in the Problem Statement section of this document, we treat

each recursive step of a Tree-Search as a new instance of the algorithm selection

problem. We use Reinforcement Learning and the LSPI algorithm in specific to

solve each instance of this problem.

The implementation, however, and the design do not restrict themselves to

these problem classes and domains; They are general and with little to no modi-

fication can support different problem classes and domains. We use Tree-Search

and shortest-path as a specific running example, a way to showcase the features.

We implemented a basic Tree-Search framework that would support any Tree-

Search algorithm. As described in the background section, the general Tree-

Search algorithm makes use of a fringe, needs a goal test, and an expand func-

tion. Since we are performing heuristic search, a heuristic function was also

provided. We then proceeded to add two different algorithms to this framework.

The framework was designed and implemented in such a way that it can sup-

port any number of different algorithms attempting to solve the problem at any

given time, so that interleaving of the available algorithms is possible with as

little modification to the original algorithms needed as possible. No knowledge

of the internal workings of the algorithms is embedded in the framework, to keep

the generic nature of the framework. Once algorithms have been added to the

Vasileios C. Vasilikos 29 Diploma Thesis - July 2009

4. THE PROPOSED APPROACH

framework and their interleaving made possible, a training dataset is collected,

by making random algorithm choices to solve a few problems. LSPI is used to

process this dataset and find a policy that minimizes the penalty function. Once

this policy has been found by LSPI, it is implemented into the original framework,

and the hybrid algorithm is benchmarked against the original algorithms using

the penalty function.

4.1 The problem used

The problem we decided to use for our Tree-Search algorithms was a simple

shortest-path problem. We used a graph generated from real world data, with

nodes in the graph representing points on the map. The points are all within the

state of Washington D.C., with geographical coordinates provided by TIGER/Line.

The edges of the graph are also provided by TIGER/Line and are weighted and

undirected. They represent the distance in meters between two nodes, and an

edge exists between two nodes when these two nodes are directly connected on

the map with a street, a road, a highway etc. An instance is created when a start

and finish node is selected from that graph. The solution asked for is one of the

shortest paths from the start node to the finish node.

4.2 The Framework

We designed and implemented a framework that will support problem definitions

of any kind and different Tree-Search algorithms that can be applied on the

problem defined. The framework also supports more than one heuristic. Based

on the general Tree-Search algorithm described in section 2.1.2, all the necessary

structures and methods are available for all Tree-Search algorithms, and with the

presence of heuristics, any heuristic search algorithm can be implemented on the

framework with everything provided for.

4.2.1 Class outline

The main concept behind allowing multiple algorithms to run on the same prob-

lem instance at the same time is to separate data and data structures from the

Vasileios C. Vasilikos 30 Diploma Thesis - July 2009

4.2 The Framework

algorithms themselves; the search tree is not part of the algorithm, and the same

goes for the other structures and methods described in the general Tree-Search

algorithm, like the fringe, the expand function and the goal test function. These

are all part of the problem definition and modeling/representation. So they can

be separated from the algorithm, and once separated, they can be used by any

number of algorithms. So the framework consists of an N-ary Tree class, with all

the necessary methods to traverse it, modify it, without destroying it when the

algorithm has finished. It also includes an initially empty set of algorithms, and

an initially empty set of heuristics. Algorithms and heuristics can be added by a

simple instruction. The framework includes of course the necessary data to rep-

resent the problem - in our specific example, an adjacency matrix that represents

the original Washington DC graph. Finally, it also includes necessary functions

and data for benchmarking and logging.

4.2.2 The Fringe

The fringe of the search tree is not duplicated, it is simply pointed to. All nodes

in the fringe are linked to each other, in a double linked list that can be traversed

forwards or backwards. The current recursive step is always called on a node

that is on the fringe when the recursive step begins. All internal tree methods

are designed to comply with these constraints: Maintaining the fringe, making

sure that recursion begins at a node on the fringe each time etc.

4.2.3 The Expand Function

The expand function is part of the problem definition and not of the tree, as

described in section 2.1.1. In our case, the shortest path problem, expanding a

tree node means generating all tree nodes that represent adjacent graph nodes to

the graph node that is represented by the tree node we are expanding. Adjacent

nodes can be found by looking through the adjacency matrix that represents the

graph.

Vasileios C. Vasilikos 31 Diploma Thesis - July 2009

4. THE PROPOSED APPROACH

4.2.4 The Heuristic

As described in sections 2.1.5 and 2.1.4, both RBFS and A* are optimal when

the heuristic used is admissible. In our shortest-path problem, an obvious choice

for an admissible heuristic is the straight line distance between two nodes. Since

the smallest possible distance between two points in any dimensional space is the

straight line distance, it will always be smaller or equal to the actual distance of

the two points.

Since we have geographical coordinates available, calculating distance in me-

ters is not straightforward. Latitude (f) and longitude (l) coordinates are coor-

dinates on the spheroid plane of earth, not a flat Cartesian plane. Hence, some

conversion is needed that will approximate the spheroid plane into a flat plane.

The formula used to calculate the distance d in meters between 2 points (a, b)

with f and l coordinates is:

d = 60 ∗ 1.1515 ∗ 1.609344 ∗ 1000 ∗ 180

π
∗

arccos
(

sin(
π

180
φa) sin(

π

180
φb) + cos(

π

180
φa) cos(

π

180
φb) cos(

π

180
λa − λb)

)
For distances in the order of a few kilometers, this approximation does not com-

promise accuracy when we need distances expressed in meters with no decimal

digits.

4.2.5 The Algorithms

The algorithms are as described in sections 2.1.5 and 2.1.4. There are some

minor changes to allow for improved performance, such as not generating the

parent node when expanding a node, and completely removing a node from the

tree when it does not generate any nodes if expanded (ie, a dead-end node).

RBFS uses Quick Sort to sort the successors of the current node.

4.3 Interleaving algorithms

Interleaving different algorithms is no simple task. Each of the two algorithms

is designed with certain assumptions made. In the case of recursive algorithms,

the main assumption is that the same algorithm is making all the recursive calls,

Vasileios C. Vasilikos 32 Diploma Thesis - July 2009

4.4 The Learning Process

and that the arguments passed on from recursive step to recursive step follow the

internal dictations of the algorithm. Certain modifications need to be made in

order to keep the algorithms consistent even if the algorithm making the recursive

calls is not always the same one.

4.3.1 Recursive Interference

This still leaves the question of how the actual interleaving works. The idea

was first introduced in [16]. We intercept every recursive call with a call to an

internal function of the framework. This function will decide which algorithm

will be called on the next recursive step. The sequence of decisions made by this

function will eventually form the hybrid algorithm, as it will not always call the

same algorithm over and over, but rather make a different decision each time

based on a certain policy.

4.3.2 Scope and Internal Knowledge

Since we are trying to keep the framework generic, we do not want to incorporate

any knowledge of the internal workings of the algorithms in the framework itself.

This is why we need to separate the problem from the algorithm in terms of

scope, as described above. Everything that an algorithm needs that is outside of

the general algorithm definition needs to be added.

4.3.3 An Example

Figure 4.1 shows the hybrid creation algorithm, ie the decision making function

that intercepts recursive calls.

Using this function, we present the following set of figures that demonstrate

how the example used in sections 2.1.4 and 2.1.5 would be handled by our frame-

work.

4.4 The Learning Process

As explained above, we intercept all recursive calls and replace them with a

function that decides which algorithm will be responsible for the next recursive

Vasileios C. Vasilikos 33 Diploma Thesis - July 2009

4. THE PROPOSED APPROACH

Hybrid creation. Input: AbstractArg.

Called at each recursive step and decides next algorithm

// w: The set of weights provided by LSPI

// φ: The base functions

for each a in portfolio do

q[a]←
∑Φ

i=0w(a)iφ(s)i

end for

best← min(q)

AbstractReturn← portfolio[best](AbstractArg) //Recursive call.

//portfolio[best] is a function pointer.

return AbstractReturn

Figure 4.1: The Hybrid creation algorithm

Figure 4.2: Hybrid Example: Step 1

Figure 4.3: Hybrid Example: Step 2

step. This decision is made based on a policy that we provide. This policy comes

from the learning process, which takes place offline.

In practice, what takes place during the decision making is that this decision

making function calculates two functions: The Q function for A* and RBFS.

Since our problem, the shortest-path route, is a cost minimization problem, the

algorithm that gets chosen is the one that has the lowest Q function value.

In order to calculate the Q function (see section 2.2.5 for the definition of Q

Vasileios C. Vasilikos 34 Diploma Thesis - July 2009

4.4 The Learning Process

Figure 4.4: Hybrid Example: Step 3

Figure 4.5: Hybrid Example: Step 4

function) a data set needs to be collected. A data set that will log decisions and

their impact. By impact we mean their penalty function value. We define the

penalty function as a linear combination of time and memory.

Once this data set has been collected, LSPI works on converging to a policy

that will minimize the penalty function. This policy is a set of weights for the

different base functions, for each of the actions available. These weights are coded

in the decision making function to calculate Q values for all actions and make

the decision.

Vasileios C. Vasilikos 35 Diploma Thesis - July 2009

4. THE PROPOSED APPROACH

Figure 4.6: Hybrid Example: Step 5

Figure 4.7: Hybrid Example: Step 6

4.4.1 The Penalty Function

As stated above, we need a measure for how well or how bad certain choices are.

We define cost as a linear combination of time and memory. Time is measured in

microseconds and memory in bytes. To make combination possible, we need to

scale memory and time into comparable magnitudes. By comparing time values

and memory values in the data set, the ratio that we ended up using was 1mc∼ 5

bytes.

That said, there is still the question of just how much importance does time

Vasileios C. Vasilikos 36 Diploma Thesis - July 2009

4.4 The Learning Process

Figure 4.8: Hybrid Example: Step 7

Figure 4.9: Hybrid Example: Step 8

Vasileios C. Vasilikos 37 Diploma Thesis - July 2009

4. THE PROPOSED APPROACH

have against memory. This question has no real answer; it is different each time.

This is why we decided to test a lot of different combinations of time and memory

contribution. Starting from 0% time - 100% memory and ending up to 100% time

and 0% memory in steps of 10%, we defined 11 different penalty functions:

p1 = 0.0T + 1.0M

p2 = 0.1T + 0.9M

p3 = 0.2T + 0.8M

p4 = 0.3T + 0.7M

p5 = 0.4T + 0.6M

p6 = 0.5T + 0.5M

p7 = 0.6T + 0.4M

p8 = 0.7T + 0.3M

p9 = 0.8T + 0.2M

p10 = 0.9T + 0.1M

p11 = 1.0T + 0.0M

Naturally, for each different definition of the penalty function, a different policy

is applied.

4.4.2 Base Functions

The base functions we defined for LSPI were derived from “geometrical” char-

acteristics of the tree. We define the following set of base functions on a given

node:

1. Depth

2. Amount of child nodes

3. Cost of cheapest child node

4. Cost of most expensive child node

5. Average cost of child nodes

Vasileios C. Vasilikos 38 Diploma Thesis - July 2009

4.4 The Learning Process

These values should give a picture of the geometrical characteristics of the

tree around that node. We decided to use these characteristics because the per-

formance of the algorithms greatly depends on geometrical characteristics of the

tree, and with these base functions we should get a good distinction of when to

use which algorithm.

4.4.3 Logging

Since we have no policy to decide actions prior to collecting the initial training

data set, we started with a completely random policy, uniformly choosing from

all available actions, randomly at each recursive step. The application logged the

action taken, the values of the base functions at that point, the time and memory

separately, and then the values of the base functions after the action was taken,

and a true/false value in case the state that resulted was a goal state. This took

place at each recursive step, from start to finish of an instance. This was repeated

for 100 different instances, collecting a total of about 5000 samples.

Logging time and memory separately allowed us to execute a single sample

collecting run. The parsing of the data set by LSPI could create all 11 different

penalty functions from the same data set.

4.4.4 LSPI

We defined a new domain for LSPI, named SEARCH. As described in the LSPI

documentation, we had to define a new set of base functions, which we described

above, and parse the data set to create a sample set for each definition of the

penalty function.

Once the data set has been parsed, a sample set is created. LSPI takes this

sample set and begins iterating in an attempt to converge to an optimal policy

based on the penalty function.

The LSPI learn function was called with a discount factor of 1.0, an epsilon

value of 0.001, and a very high limit of iterations in order to ensure convergence,

but this was not needed as LSPI converged at 4 or 5 iterations each time.

Vasileios C. Vasilikos 39 Diploma Thesis - July 2009

4. THE PROPOSED APPROACH

4.4.5 Policy implementation

Implementing the policy LSPI provides is as easy as typing some fixed values in

the original code. LSPI returns a set of weights that correspond to the set of base

functions. This set of weights was in turn coded by hand in the original applica-

tion. It is this set of weights that defines exactly how much of each algorithm will

be part of the final hybrid algorithm, since these weights affect the final value of

the Q functions of each action.

Since we have 11 different definitions of the penalty function, naturally there

are 11 different policies that needed to be implemented separately.

4.5 Benchmarking

After successfully implementing a policy, the algorithm that was created was

tested against the original algorithms to see if the policy that we found was

worth the extra cost or not.

4.5.1 Comparison Validity

We are comparing algorithms to one another. Since we provide 11 different defi-

nitions for the penalty function, a comparison between the three algorithms (A*,

RBFS, Hybrid) needs to be made separately for each of the 11 definitions of the

penalty function. Comparing performance of one algorithm to another with a

different definition of the penalty function is completely pointless and bears no

actual meaning. The hybrid version was compared against the best of the two

original algorithms at each different penalty function definition.

4.5.2 Performance Definition

Since we are trying to compare two algorithms that are competing against each

other by excelling on the opposing ends of the time/memory trade-off, it is natural

that performance needs to be defined on these two terms. This is why the penalty

function described above is a linear combination of time and memory. Beginning

from favoring one end and gradually shifting to the other means that performance

Vasileios C. Vasilikos 40 Diploma Thesis - July 2009

4.5 Benchmarking

is defined differently each time, favoring the term that has the biggest contribution

in the linear combination.

Vasileios C. Vasilikos 41 Diploma Thesis - July 2009

4. THE PROPOSED APPROACH

Vasileios C. Vasilikos 42 Diploma Thesis - July 2009

Chapter 5

Implementation Details

5.1 Language of Choice and Reasoning

Since we decided to go with a more abstract and generic design for the framework

in order to facilitate re-definition of some of its aspects and algorithm interleaving,

object oriented languages were sort of mandatory. There was also a need for a

more direct memory access and system access as well for benchmarking; therefore

scripting languages and Java were not a good choice. This led to C++ as the

language of choice for this implementation.

LSPI however is implemented in MATLAB, but since it is an offline learning

algorithm, it did not affect the choice for the main application language. LSPI

could even be run on an entirely different system than the one that the application

was running on.

5.2 Operating System, Hardware Specifications

and their impact

The entire application was written with as much platform independency in mind

as possible, but benchmarking needs shifted implementation to be Linux only.

The Eclipse IDE [17] was used which makes use of the gcc compiler for C++

[18], and the Linux libraries for measuring real execution time were used for

benchmarking, and the Debian-based distribution Ubuntu in specific.

Linux also provides a very versatile environment for manipulating various

Vasileios C. Vasilikos 43 Diploma Thesis - July 2009

5. IMPLEMENTATION DETAILS

aspects of the application that are after the compilation. Since we have a lot of

recursive calls, it is sometimes the case that the call stack allocated by default

from the operating system is just not enough. Stack size and other aspects of the

application runtime are easily manipulated in Linux using the terminal command

“ulimits”.

The system on which the application was benchmarked is a 64-bit system,

which allowed for larger integers and longs, possibly needed when calculating the

Q() functions. The processor is dual core with a core frequency of 2GHz on both

cores.

5.3 Debugging and Profiling

The debugger used was gdb [19] from within the Eclipse environment and some-

times the DDD front-end for gdb [20] due to the complexity of debugging large

trees and other data structures.

Since memory management is vital to the application’s performance and

benchmarking, there could be no leaks, mis-allocations or corrupt deallocations.

This made the need for profiling very important. The Valgrind profiler [21] was

used for that purpose, and made proofing the application against bad memory

management a lot easier.

5.4 Code structure, memory management, func-

tion pointers

Following the typical object oriented approach, each class is defined in a separate

pair of .cpp and .h files. Header files contain the declaration and interface of a

class while the source files contain their implementation. The code is arranged in

such a way that the developer only needs to write the main.cpp file, in which they

need to implement the algorithms that they need to add as well as the heuristics if

any. After including the main header of the framework, all the necessary functions

to add the algorithms to the framework and begin working on the problem are

available in a intuitive way that allows for easy use of the classes.

As described above, memory management is vital to the purpose of this work,

Vasileios C. Vasilikos 44 Diploma Thesis - July 2009

5.4 Code structure, memory management, function pointers

so great care and work has been put into it. Every chunk of memory that is

allocated by the framework is deallocated exactly when needed, ensuring data

consistency. The algorithms that were implemented for this work were also im-

plemented with memory management being a high priority.

Finally, it is worth noticing that the entire process of adding algorithms to a set

might sound simple, but it is not something that comes naturally in programming

languages. This is achieved by using function pointers, and using an abstract class

for passing arguments and returning results from algorithms. The developer needs

to extend these abstract classes to fit his own needs. This is so because adding an

unknown number of algorithms to a class can only be achieved by using an array

of function pointers, which implies that their prototype needs to be the same.

Heuristics are also added in the same way.

Vasileios C. Vasilikos 45 Diploma Thesis - July 2009

5. IMPLEMENTATION DETAILS

Vasileios C. Vasilikos 46 Diploma Thesis - July 2009

Chapter 6

Results

6.1 The benchmarking process

The first step is selecting the instances on which the algorithms will be bench-

marked. We tried two different sets of instances, each one having 100 instances of

a shortest path problem from the Washington D.C. graph. The first instance set

was the same set of paths that created the training data set (”Training instance

set”). Figure 6.1 shows these paths on the graph. After that, each algorithm

(A*, RBFS and Hybrid) was called to solve these 100 instances, measuring per-

formance in terms of time and memory. The same was repeated for the second

instance set, which was composed of 100 different instances to the ones in the

original set, for which no learning had been applied (”Testing instance set”).

Figure 6.2 shows the paths from the second instance set on the graph.

6.2 Comparisons

As we have 11 different penalty functions, we benchmarked the 3 algorithms in

all 11 definitions of the penalty function, for each of the two instance sets. What

follows is the comparison charts for each of the two instance sets. For each penalty

function we provide both the absolute penalty function charts over 100 instances,

and the percentage gain over 100 instances.

Vasileios C. Vasilikos 47 Diploma Thesis - July 2009

6. RESULTS

Figure 6.1: Training instance set paths

on the Washington DC graph

Figure 6.2: Testing instance set paths on

the Washington DC graph

6.2.1 Training Instance Set

Here we present the charts for the training instance set, the one from which we

extracted the training samples. The charts are presented per penalty function.

Figure 6.3 shows the absolute cost of the hybrid algorithm against the best

of the original algorithms, over 100 instances. Figure 6.4 shows the percentage

gain of the hybrid against the best of the original algorithms on the same 100

instances. The penalty function for these figures is p1 = 0.0T + 1.0M

Figure 6.5 shows the absolute cost of the hybrid algorithm against the best

of the original algorithms, over 100 instances. Figure 6.6 shows the percentage

gain of the hybrid against the best of the original algorithms on the same 100

instances. The penalty function for these figures is p2 = 0.1T + 0.9M

Figure 6.7 shows the absolute cost of the hybrid algorithm against the best

of the original algorithms, over 100 instances. Figure 6.8 shows the percentage

gain of the hybrid against the best of the original algorithms on the same 100

instances. The penalty function for these figures is p3 = 0.2T + 0.8M

Figure 6.9 shows the absolute cost of the hybrid algorithm against the best

of the original algorithms, over 100 instances. Figure 6.10 shows the percentage

gain of the hybrid against the best of the original algorithms on the same 100

instances. The penalty function for these figures is p4 = 0.3T + 0.7M

Vasileios C. Vasilikos 48 Diploma Thesis - July 2009

6.2 Comparisons

Figure 6.3: Absolute cost, 0% time -

100% memory, training instance set

Figure 6.4: Percentage gain, 0% time -

100% memory, training instance set

p1 = 0.0T + 1.0M

Figure 6.5: Absolute cost, 10% time -

90% memory, training instance set

Figure 6.6: Percentage gain, 10% time -

90% memory, training instance set

p2 = 0.1T + 0.9M

Vasileios C. Vasilikos 49 Diploma Thesis - July 2009

6. RESULTS

Figure 6.7: Absolute cost, 20% time -

80% memory, training instance set

Figure 6.8: Percentage gain, 20% time -

80% memory, training instance set

p3 = 0.2T + 0.8M

Figure 6.9: Absolute cost, 30% time -

70% memory, training instance set

Figure 6.10: Percentage gain, 30% time

- 70% memory, training instance set

p4 = 0.3T + 0.7M

Vasileios C. Vasilikos 50 Diploma Thesis - July 2009

6.2 Comparisons

Figure 6.11 shows the absolute cost of the hybrid algorithm against the best

of the original algorithms, over 100 instances. Figure 6.12 shows the percentage

gain of the hybrid against the best of the original algorithms on the same 100

instances. The penalty function for these figures is p5 = 0.4T + 0.6M

Figure 6.11: Absolute cost, 40% time -

60% memory, training instance set

Figure 6.12: Percentage gain, 40% time

- 60% memory, training instance set

p5 = 0.4T + 0.6M

Figure 6.13 shows the absolute cost of the hybrid algorithm against the best

of the original algorithms, over 100 instances. Figure 6.14 shows the percentage

gain of the hybrid against the best of the original algorithms on the same 100

instances. The penalty function for these figures is p6 = 0.5T + 0.5M

Figure 6.15 shows the absolute cost of the hybrid algorithm against the best

of the original algorithms, over 100 instances. Figure 6.16 shows the percentage

gain of the hybrid against the best of the original algorithms on the same 100

instances. The penalty function for these figures is p7 = 0.6T + 0.6M

Figure 6.17 shows the absolute cost of the hybrid algorithm against the best

of the original algorithms, over 100 instances. Figure 6.18 shows the percentage

gain of the hybrid against the best of the original algorithms on the same 100

instances. The penalty function for these figures is p8 = 0.7T + 0.3M

Figure 6.19 shows the absolute cost of the hybrid algorithm against the best

Vasileios C. Vasilikos 51 Diploma Thesis - July 2009

6. RESULTS

Figure 6.13: Absolute cost, 50% time -

50% memory, training instance set

Figure 6.14: Percentage gain, 50% time

- 50% memory, training instance set

p6 = 0.5T + 0.5M

Figure 6.15: Absolute cost, 60% time -

40% memory, training instance set

Figure 6.16: Percentage gain, 60% time

- 40% memory, training instance set

p7 = 0.6T + 0.4M

Vasileios C. Vasilikos 52 Diploma Thesis - July 2009

6.2 Comparisons

Figure 6.17: Absolute cost, 70% time -

30% memory, training instance set

Figure 6.18: Percentage gain, 70% time

- 30% memory, training instance set

p8 = 0.7T + 0.3M

of the original algorithms, over 100 instances. Figure 6.20 shows the percentage

gain of the hybrid against the best of the original algorithms on the same 100

instances. The penalty function for these figures is p9 = 0.8T + 0.2M

Figure 6.21 shows the absolute cost of the hybrid algorithm against the best

of the original algorithms, over 100 instances. Figure 6.22 shows the percentage

gain of the hybrid against the best of the original algorithms on the same 100

instances. The penalty function for these figures is p10 = 0.9T + 0.1M

Figure 6.23 shows the absolute cost of the hybrid algorithm against the best

of the original algorithms, over 100 instances. Figure 6.24 shows the percentage

gain of the hybrid against the best of the original algorithms on the same 100

instances. The penalty function for these figures is p11 = 1.0T + 0.0M

6.2.2 Testing Instance Set

Here we present the charts for the testing instance set, containing instances dif-

ferent from the ones that were used to collect the training samples. The charts

are presented per penalty function.

Vasileios C. Vasilikos 53 Diploma Thesis - July 2009

6. RESULTS

Figure 6.19: Absolute cost, 80% time -

20% memory, training instance set

Figure 6.20: Percentage gain, 80% time

- 20% memory, training instance set

p9 = 0.8T + 0.2M

Figure 6.21: Absolute cost, 90% time -

10% memory, training instance set

Figure 6.22: Percentage gain, 90% time

- 10% memory, training instance set

p10 = 0.9T + 0.1M

Vasileios C. Vasilikos 54 Diploma Thesis - July 2009

6.2 Comparisons

Figure 6.23: Absolute cost, 100% time -

0% memory, training instance set

Figure 6.24: Percentage gain, 100% time

- 0% memory, training instance set

p11 = 1.0T + 0.0M

Figure 6.25 shows the absolute cost of the hybrid algorithm against the best

of the original algorithms, over 100 instances. Figure 6.26 shows the percentage

gain of the hybrid against the best of the original algorithms on the same 100

instances. The penalty function for these figures is p1 = 1.0T + 0.0M

Figure 6.27 shows the absolute cost of the hybrid algorithm against the best

of the original algorithms, over 100 instances. Figure 6.28 shows the percentage

gain of the hybrid against the best of the original algorithms on the same 100

instances. The penalty function for these figures is p2 = 0.1T + 0.9M

Figure 6.29 shows the absolute cost of the hybrid algorithm against the best

of the original algorithms, over 100 instances. Figure 6.30 shows the percentage

gain of the hybrid against the best of the original algorithms on the same 100

instances. The penalty function for these figures is p3 = 0.2T + 0.8M

Figure 6.31 shows the absolute cost of the hybrid algorithm against the best

of the original algorithms, over 100 instances. Figure 6.32 shows the percentage

gain of the hybrid against the best of the original algorithms on the same 100

instances. The penalty function for these figures is p4 = 0.3T + 0.7M

Figure 6.33 shows the absolute cost of the hybrid algorithm against the best

Vasileios C. Vasilikos 55 Diploma Thesis - July 2009

6. RESULTS

Figure 6.25: Absolute cost, 0% time -

100% memory, testing instance set

Figure 6.26: Percentage gain, 0% time -

100% memory, testing instance set

p1 = 0.0T + 1.0M

Figure 6.27: Absolute cost, 10% time -

90% memory, testing instance set

Figure 6.28: Percentage gain, 10% time

- 90% memory, testing instance set

p2 = 0.1T + 0.9M

Vasileios C. Vasilikos 56 Diploma Thesis - July 2009

6.2 Comparisons

Figure 6.29: Absolute cost, 20% time -

80% memory, testing instance set

Figure 6.30: Percentage gain, 20% time

- 80% memory, testing instance set

p3 = 0.2T + 0.8M

Figure 6.31: Absolute cost, 30% time -

70% memory, testing instance set

Figure 6.32: Percentage gain, 30% time

- 70% memory, testing instance set

p4 = 0.3T + 0.7M

Vasileios C. Vasilikos 57 Diploma Thesis - July 2009

6. RESULTS

of the original algorithms, over 100 instances. Figure 6.34 shows the percentage

gain of the hybrid against the best of the original algorithms on the same 100

instances. The penalty function for these figures is p5 = 0.4T + 0.6M

Figure 6.33: Absolute cost, 40% time -

60% memory, testing instance set

Figure 6.34: Percentage gain, 40% time

- 60% memory, testing instance set

p5 = 0.4T + 0.6M

Figure 6.35 shows the absolute cost of the hybrid algorithm against the best

of the original algorithms, over 100 instances. Figure 6.36 shows the percentage

gain of the hybrid against the best of the original algorithms on the same 100

instances. The penalty function for these figures is p6 = 0.5T + 0.5M

Figure 6.37 shows the absolute cost of the hybrid algorithm against the best

of the original algorithms, over 100 instances. Figure 6.38 shows the percentage

gain of the hybrid against the best of the original algorithms on the same 100

instances. The penalty function for these figures is p7 = 0.6T + 0.4M

Figure 6.39 shows the absolute cost of the hybrid algorithm against the best

of the original algorithms, over 100 instances. Figure 6.40 shows the percentage

gain of the hybrid against the best of the original algorithms on the same 100

instances. The penalty function for these figures is p8 = 0.7T + 0.3M

Figure 6.41 shows the absolute cost of the hybrid algorithm against the best

of the original algorithms, over 100 instances. Figure 6.42 shows the percentage

Vasileios C. Vasilikos 58 Diploma Thesis - July 2009

6.2 Comparisons

Figure 6.35: Absolute cost, 50% time -

50% memory, testing instance set

Figure 6.36: Percentage gain, 50% time

- 50% memory, testing instance set

p6 = 0.5T + 0.5M

Figure 6.37: Absolute cost, 60% time -

40% memory, testing instance set

Figure 6.38: Percentage gain, 60% time

- 40% memory, testing instance set

p7 = 0.6T + 0.4M

Vasileios C. Vasilikos 59 Diploma Thesis - July 2009

6. RESULTS

Figure 6.39: Absolute cost, 70% time -

30% memory, testing instance set

Figure 6.40: Percentage gain, 70% time

- 30% memory, testing instance set

p8 = 0.7T + 0.3M

gain of the hybrid against the best of the original algorithms on the same 100

instances. The penalty function for these figures is p9 = 0.8T + 0.2M

Figure 6.43 shows the absolute cost of the hybrid algorithm against the best

of the original algorithms, over 100 instances. Figure 6.44 shows the percentage

gain of the hybrid against the best of the original algorithms on the same 100

instances. The penalty function for these figures is p10 = 0.9T + 0.1M

Figure 6.45 shows the absolute cost of the hybrid algorithm against the best

of the original algorithms, over 100 instances. Figure 6.46 shows the percentage

gain of the hybrid against the best of the original algorithms on the same 100

instances. The penalty function for these figures is p11 = 1.0T + 0.0M

6.3 Overall Figures

It is of course more easy to see exactly what was achieved in the following charts

that present the results concentrated, averaging the performance of each of the

11 tests over the 100 instances.

Figure 6.47 shows the absolute average performance in the training instance

Vasileios C. Vasilikos 60 Diploma Thesis - July 2009

6.3 Overall Figures

Figure 6.41: Absolute cost, 80% time -

20% memory, testing instance set

Figure 6.42: Percentage gain, 80% time

- 20% memory, testing instance set

p9 = 0.8T + 0.2M

Figure 6.43: Absolute cost, 90% time -

10% memory, testing instance set

Figure 6.44: Percentage gain, 90% time

- 10% memory, testing instance set

p10 = 0.9T + 0.1M

Vasileios C. Vasilikos 61 Diploma Thesis - July 2009

6. RESULTS

Figure 6.45: Absolute cost, 100% time -

0% memory, testing instance set

Figure 6.46: Percentage gain, 100% time

- 0% memory, testing instance set

p11 = 1.0T + 0.0M

set, on all 11 penalty function definitions, and Figure 6.48 shows the percentage

gain that was achieved on all 11 penalty function definitions.

Figure 6.47: training instance set, aver-

age absolute cost

Figure 6.48: training instance set, aver-

age percentage gain

The next figure, Figure 6.49 shows the percentage gain again but zoomed on

Vasileios C. Vasilikos 62 Diploma Thesis - July 2009

6.3 Overall Figures

the last 10 penalty functions to better show the details of the curve.

Figure 6.49: Training instance set, average percentage gain detail

These next two figures, Figure 6.50 and Figure 6.51 show the same concen-

trated average performance results but this time on the testing instance set. They

show absolute penalty function values and percentage gain respectively.

The next figure, Figure 6.52 shows the percentage gain again but zoomed on

the last 10 penalty functions to better show the details of the curve.

One last set of figures that is worth presenting, is the amount of each of the

two algorithms that is included in the final hybrid algorithm, as a function of the

penalty function definition. Figure 6.53 shows that as time is more important,

A*’s contribution in the final hybrid grows and RBFS’s becomes smaller. As

memory becomes more important, A*’s contribution becomes smaller and RBFS’s

becomes larger. This was calculated based on the samples that were collected

during the training phase. Figures 6.54 and 6.55 show the actual composition of

the hybrid algorithm during the process of solving the instances.

This is exactly what we expected since it shows (apart from the fact that this

is indeed a hybrid algorithm) that the learning process has correctly identified the

Vasileios C. Vasilikos 63 Diploma Thesis - July 2009

6. RESULTS

Figure 6.50: testing instance set, average

absolute cost

Figure 6.51: testing instance set, average

percentage gain

Figure 6.52: Testing instance set, average percentage gain detail

characteristics of each algorithm, performance-wise, and has successfully applied

this new knowledge into the algorithm selection policy.

Vasileios C. Vasilikos 64 Diploma Thesis - July 2009

6.3 Overall Figures

Figure 6.53: Hybrid algorithm composition over the Time-Memory spectrum

Figure 6.54: Training instance set, hy-

brid composition

Figure 6.55: Testing instance set, hybrid

composition

Vasileios C. Vasilikos 65 Diploma Thesis - July 2009

6. RESULTS

Vasileios C. Vasilikos 66 Diploma Thesis - July 2009

Chapter 7

Discussion, Conclusions and

Future Work

7.1 Importance of results and implications

We have shown that the hybrid algorithm created with Recursive Algorithm Se-

lection and Reinforcement Learning can and indeed does out-perform the original

algorithms from which it was created.

What is noteworthy is that the problem is solved not by one algorithm appro-

priately chosen, but rather a mix of the original algorithms. We see that as the

definition of the penalty function changes, so does the composition of the hybrid

algorithm, to shift focus in respect to the definition of the penalty function.

Also important is the fact that using a single sample collecting run we managed

to produce as many policies as we liked. We chose to uniformly spread them across

all of the memory-time spectrum, but there is no limitation as to how many re-

definitions of the penalty function there can be. What is more, we managed to

achieve positive results on completely different instances than the ones used for

collecting the sample data. This is very important and implies that possibly, with

a few well spread sample collecting runs, a much larger area of instances can be

covered and still yield positive results.

However, there is still the issue of actual gain. We benchmarked our hybrid

algorithm against the original algorithms, all within the same framework. How-

ever small, some performance overhead is still induced by the framework, when

Vasileios C. Vasilikos 67 Diploma Thesis - July 2009

7. DISCUSSION, CONCLUSIONS AND FUTURE WORK

compared to a stand-alone implementation of the original algorithms. It is pos-

sible that the framework overhead can cancel out the performance gain that is

achieved by the framework. But since this overhead is a one-time cost, it will be

divided over the number of problems it manages to achieve some gain in, lessening

its impact even more.

The same can be said for the off-line learning cost that LSPI introduces; Since

it is a one-time cost, over a large number of uses its cost will become minimal and

will be overcome by the average gain that can be achieved on each of the uses.

7.2 Future work

There are a few aspects of this work that can be extended, improved, or re-

done. In terms of experimentation, there is still a lot to be tested in terms

of performance. Different problems, different algorithms, or even on the same

problem can be tested, with different maps, different heuristics, different systems.

In terms of implementation, the way the application works is still a bit prim-

itive. There is a lot of room for work in terms of interfacing with the end user.

Slipstreaming the entire process of optimizing problem solving is probably the

next step in this work.

7.3 Conclusions

Obviously the results were produced in sort of laboratory conditions, and not

in real world conditions. However, we believe that as this work presents a rela-

tively new approach in problem solving strategies, since the results are positive, it

should provide some incentive for further research in this direction. As hardware

optimization techniques reach a saturation point, and compile-time or run-time

optimizations can only go so far, we believe that research should also return focus

to algorithmic optimizations.

Having achieved a positive result in this research, we have proven that opti-

mizations can still be achieved without necessarily upgrading to better hardware

or a better compiler, or even operating system. Hopefully this will provide the

necessary motive for more research in this area.

Vasileios C. Vasilikos 68 Diploma Thesis - July 2009

References

[1] Michail G. Lagoudakis and Ronald Parr, “Least-squares policy iteration,”

Journal of Machine Learning Research, vol. 4, pp. 1107–1149, 2003. 3, 21

[2] TIGER/Line, “US Road Network Data.” http://www.dis.uniroma1.it/

~challenge9/data/tiger/. 4

[3] Stuart Russel and Peter Norvig, Artificial Intelligence: A Modern Approach.

Prentice Hall, 2 ed., 2003. 8, 10, 20

[4] P.E. Hart, N.J. Nilsson and Raphael B., “A formal basis for the heuristic de-

termination of minimum cost paths,” IEEE Transaction on Systems Science

and Cybernetics, vol. SSC-4(2), pp. 100–107, 1968. 10

[5] R.E. Korf, “Real-time heuristic search,” Artificial Intelligence, vol. 42(3),

pp. 189–212, 1990. 13

[6] Leslie Pack Kaelbling, Michael Littman and Andrew Moore, “Reinforce-

ment learning: A survey,” Journal of Artificial Intelligence Research, vol. 4,

pp. 237–285, 1996. 20

[7] Richard Sutton and Andrew Barto, Reinforcement Learning: An Introduc-

tion. Cambridge, Massachusetts: The MIT Press, 1998. 20

[8] Christopher J. C. H. Watkins, Learning from Delayed Rewards. PhD thesis,

Cambridge University, 1989. 21

[9] J. R. Rice, “The algorithm selection problem,” Advances in Computers,

vol. 15, pp. 65–118, 1976. 27

Vasileios C. Vasilikos 69 Diploma Thesis - July 2009

http://www.dis.uniroma1.it/~challenge9/data/tiger/
http://www.dis.uniroma1.it/~challenge9/data/tiger/

REFERENCES

[10] B. A. Huberman, R.M. Lukose and T. Hogg, “An economic approach to hard

computational problems,” Science, vol. 275, pp. 51–54, 1996. 27

[11] L. Xu, F. Hutter, H. H. Hoos and K. Leyton-Brown, “SATzilla-07: The

Design and Analysis of an Algorithm Portfolio for SAT,” in Proceedings of

the 13th International Conference on Principles and Practice of Constraint

Programming (CP-07), pp. 712–727, 2007. 27

[12] Carla P. Gomes, Bart Selman, Nuno Crato and Henry Kautz, “Heavy-tailed

phenomena in satisfiability and constraint satisfaction problems,” J. Autom.

Reason., vol. 24(1-2), pp. 67–100, 2000. 27

[13] C. P. Gomes and B. Selman, “Algorithm portfolios,” Artificial Intelligence,

vol. 126(1-2), pp. 43–62, 2001. 27

[14] M. G. Lagoudakis and M. L. Littman, “Learning to select branching rules

in the DPLL procedure for satisfiability,” LICS/SAT, vol. 9, pp. 344–359,

2001. 27

[15] M. G. Lagoudakis, M. L. Littman, and R. Parr, “Selecting the right al-

gorithm,” in Proceedings of the 2001 AAAI Fall Symposium Series: Using

Uncertainty within Computation (C. Gomes and T. Walsh, eds.), (Cape Cod,

MA), November 2001. 27

[16] Lagoudakis M. and Littman M., “Algorithm Selection using Reinforcement

Learning,” in Proceedings of the 17th International Conference on Machine

Learning (ICML-00), (Stanford, CA, USA), pp. 511–518, 2000. 27, 33

[17] Eclipse Foundation, “Eclipse IDE.” http://www.eclipse.org/. 43

[18] GNU Project, “GNU Compiler Collection.” http://gcc.gnu.org/. 43

[19] GNU Project, “GNU Debugger.” http://www.gnu.org/software/gdb/. 44

[20] GNU Project, “Data Display Debugger.” http://www.gnu.org/software/

ddd/. 44

[21] The Valgrind Developers, “Valgrind.” http://valgrind.org/. 44

Vasileios C. Vasilikos 70 Diploma Thesis - July 2009

http://www.eclipse.org/
http://gcc.gnu.org/
http://www.gnu.org/software/gdb/
http://www.gnu.org/software/ddd/
http://www.gnu.org/software/ddd/
http://valgrind.org/

	Title Page
	Dedication
	Acknowledgments
	Abstract
	Abstract (in Greek)
	Table of Contents
	List of Figures
	1 Introduction
	1.1 Problem Solving today
	1.2 A real world example
	1.3 What this work is about
	1.4 How it is done
	1.5 Overall picture
	1.6 Thesis outline

	2 Background
	2.1 Searching
	2.1.1 The search tree
	2.1.2 Tree-Search algorithms
	2.1.3 Heuristics
	2.1.4 A*
	2.1.5 RBFS

	2.2 Learning
	2.2.1 Markov Decision Process
	2.2.2 Policies
	2.2.3 Reinforcement Learning
	2.2.4 Q Learning
	2.2.5 LSPI

	3 Problem Statement
	3.1 Algorithm Selection: A meta-problem
	3.2 Recursive Algorithm Selection
	3.3 Recursive Algorithm Selection in Tree-Search
	3.4 Related Work

	4 The Proposed Approach
	4.1 The problem used
	4.2 The Framework
	4.2.1 Class outline
	4.2.2 The Fringe
	4.2.3 The Expand Function
	4.2.4 The Heuristic
	4.2.5 The Algorithms

	4.3 Interleaving algorithms
	4.3.1 Recursive Interference
	4.3.2 Scope and Internal Knowledge
	4.3.3 An Example

	4.4 The Learning Process
	4.4.1 The Penalty Function
	4.4.2 Base Functions
	4.4.3 Logging
	4.4.4 LSPI
	4.4.5 Policy implementation

	4.5 Benchmarking
	4.5.1 Comparison Validity
	4.5.2 Performance Definition

	5 Implementation Details
	5.1 Language of Choice and Reasoning
	5.2 Operating System, Hardware Specifications and their impact
	5.3 Debugging and Profiling
	5.4 Code structure, memory management, function pointers

	6 Results
	6.1 The benchmarking process
	6.2 Comparisons
	6.2.1 Training Instance Set
	6.2.2 Testing Instance Set

	6.3 Overall Figures

	7 Discussion, Conclusions and Future Work
	7.1 Importance of results and implications
	7.2 Future work
	7.3 Conclusions

	References

