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Abstract

Network Processors play a major role in computer network infrastructure
and especially in the Internet, since they are embedded in many kinds of
devices critical to the correct operation of these networks, such as routers,
switches, firewalls etc. By being implemented in such devices, they are
responsible for much of the workload these devices have to deal with.

The purpose of this diploma thesis was to develop and implement a
Network Processor in Reconfigurable Logic, supporting a specific instruction
set, capable of handling some of the tasks Network Processors deal with
under normal circumstances. It is capable of operating in 10, 100 and 1000
Mbit/s Ethernet speeds. The design was implemented in an advanced FPGA
board.

Ellhnik�

Oi DiktuakoÐ Epexergastèc apoteloÔn èna shmantikì komm�ti thc ulik c
upodom c diafìrwn diktÔwn upologist¸n, me kuriìtero autì tou DiadiktÔou.
EÐnai enswmatwmènoi se suskeuèc ìpwc routers, switches, firewalls kai sunep¸c
analamb�noun èna meg�lo mèroc apì th doulei� pou epiteloÔn oi parap�nw
suskeuèc.

Sthn paroÔsa diplwmatik  ergasÐa, o skopìc mac  tan na sqedi�soume kai
na ulopoi soume èna Diktuakì Epexergast  se Anadiatassìmenh Logik , o
opoÐoc na uposthrÐzei èna sugkekrimèno set entol¸n, ikanì na ektelèsei mèroc
apì tic basikèc leitourgÐec twn Diktuak¸n Epexergast¸n, uposthrÐzontac
taqÔthtec leitourgÐac 10, 100 kai 1000 Mbit/s Ethernet. H ulopoÐhsh thc
arqitektonik c ègine se mia prohgmènh FPGA.
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Chapter 1

Introduction

A Network Processor (NP) is an Integrated Circuit (IC), with a feature set
designed to tackle the needs of the networking application domain. Typically
NPs are software programmable and have generic functions, which are similar
to general purpose Central Processing Units (CPUs), commonly used in many
different products.

Due to the fact that in modern telecommunication systems informa-
tion is transferred in a packet form instead of the analog signals used in
older systems, a need has arisen to develop ICs optimized to handle such
packet forms of data. These ICs are called NPs and they make use of spe-
cific features or architectures to enhance and optimize packet processing in
computer networks. By evolving over time, NPs have grown to become more
flexible but at the same time more complex ICs. In newer iterations, NPs
are programmable, thus providing the advantage of handling many differ-
ent functions using the same hardware, by only installing the appropriate
software.

NPs are designed with architectures that are aimed to augment network
processing needs and applications. A common set of these architectures is:

• Pipeline of processors, where each pipeline stage consists of an entire
processor

• Parallel processing, making use of multiple processors

• Specialized microcoded engines

A NP supports — as we have already mentioned — a set of generic
functions. Some of those are:

• Pattern matching

1
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• Key lookup

• Computation

• Data field modification

• Queue management

• Control processing

• Recirculation of packets

NPs are employed in many different types of network equipment, includ-
ing, but not limited to:

• Routers — both hardware and software

• Switches

• Firewalls

• Intrusion detection and prevention systems

• Network monitoring systems

Taking advantage of the programmability of NPs, software programs ex-
ecuted on the processors can be used to provide different services. Some of
the most common and generally needed services performed by NPs include:

• Packet/frame discrimination and forwarding — typically needed by
routers or switches

• Quality of Service (QoS) enforcement — handling and processing of
packets/frames according to certain preferences

• Access Control — deciding whether a packet should be accepted on
the network node

• Encryption — processor provided hardware encryption of data

• Transmission Control Protocol (TCP) offload processing

The purpose of this thesis is to develop a custom NP architecture from
scratch, supporting a simple instruction set and capable of handling some
of the aforementioned services and functions. The target platform of this
architecture is the Virtex-5 FPGA board, since it provides a very efficient
and easy to implement in user designs Ethernet MAC wrapper.
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Thesis Organization

The thesis is organized into chapters, each with a distinctive theme that
upon its completion, leads naturally into the following one. We are now
going to present the chapters and describe in a few lines what one can
expect to find in each of them.

In the second chapter, we present the theoretical background necessary
for one to understand the basic concepts behind all the information presented
in this thesis. We begin by describing the Open Systems Interconnection
(OSI) Layers and how they affect network architectures in general and then
proceed to give a short description of all the information about the Ethernet
standard that is needed to get a clear idea on some of the architectural
decisions. Finally, we present a short overview of all the available Physical
layer interfaces in order to justify the choice we made in our design later on.

In the third chapter, we deal with related work concerning NPs in both
the commercial and the academic domain. We present some companies
and their respective work concerning NPs; more specifically, we focus on
products by IBM/Hifn, Intel and Freescale/Motorola. Then we move on to
discuss a certain NP architecture developed in academic research, that of the
Programmable Protocol Processor (PRO3).

In the fourth chapter, we present the architecture designed for this thesis.
We begin by examining the base of the design, which is an Ethernet wrapper
embedded on the Virtex-5 board and then justify some of the choices made
during its generation process. After that, we continue by describing the
design that implements the NP, all its modules and their inner workings;
provided in this chapter are detailed block diagrams, Finite State Machine
(FSM) states and their transitions and each module’s interface.

In chapter five, a short presentation of the software tools used during
the design’s development and verification is given. Following after that is a
step by step description of the verification process. Finally, a presentation
of some benchmarks along with the design’s performance is given.

In the last chapter, we propose some improvements to the design in order
for it to become more efficient and complete.



Chapter 2

Theoretical Background

2.1 OSI Layers

The OSI Model is an abstract description for layered communications and
computer network protocol design that was developed in the late 1970s by
the International Organization for Standardization (ISO). Its purpose is to
provide guidelines for compatibility in newly designed computer networks,
which is of utter importance, since computer networks can be developed in
different architectures, yet need to be compatible with each other in order to
be useful. It divides network architecture into seven layers [2, 3], as shown
in table 2.1.

Table 2.1: OSI Model

Level Layer
7 Application
6 Presentation
5 Session
4 Transport
3 Network
2 Data Link
1 Physical

A layer is considered a collection of conceptually similar functions that
provide services to the layer above and receive services by the layer below.
On each layer, an instance provides services to the instances at the above
layer and requests services from the layers below.

4



2.2. ETHERNET PROTOCOL 5

When different network nodes communicate with each other, each layer
in the transmitting node passes data to the layer below while at the same
time adding layer-specific data. When the Physical layer is reached, it sends
the assembled data to the Physical layer of the receiving node. From there,
each layer passes data to the layer above - each time removing the afore-
mentioned layer-specific data - until the target layer is reached.

Communication in the OSI Model (see figure 2.1) is done with instances
being on the same layer communicating with each other as if they exchange
information directly, since through abstraction, each layer handles its own,
specific part of the data.

Figure 2.1: Communication in the OSI Model

The OSI Model does not specify implementation details nor any pro-
gramming interfaces; it only defines the so-called OSI Service Specifications,
thus allowing for different implementations, as long as they conform to these
Specifications.

2.2 Ethernet Protocol

The Ethernet [5] Protocol (standardized as IEEE 802.3 [4]) is a family of
frame-based computer networking technologies. It defines wiring and sig-
naling standards for the Physical layer (Layer 1) of the OSI Model through
means of network access at the Media Access Control (MAC) — sublayer of
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the Data Link layer (Layer 2) [7] — and a common addressing format. Orig-
inally developed at Xerox PARC in 1973-1975 by Robert Metcalfe, David
Boggs, Chuck Thacker and Butler Lampson and in wide use from 1980 until
today, it has gradually evolved into the de facto standard for wired Local
Area Networks (LANs).

The main varieties of Ethernet are 10 Mbit/s (called simply Ethernet),
100 Mbit/s (Fast Ethernet), 1000 Mbit/s (Gigabit Ethernet), 10 Gbit/s
(10-Gigabit Ethernet) and — still in development at the time of writing —
100 Gbit/s (100-Gigabit Ethernet). These varieties differ not only in the
bandwidth they provide, but also in the physical medium they use, with the
most common being twisted pair cables and more demanding applications
using fibre optic cables.

2.2.1 Frame types

When data packets are transferred through the physical medium, they are re-
ferred to as frames. Ethernet frames have variations of their own: there is the
Ethernet Version 2 Frame (Ethernet II Frame) or DIX Frame (DIX stands
for DEC, Intel, Xerox) which is the most common today since it is used by
the Internet Protocol (IP); IEEE’s 802.3 Frame, Novell’s non-standard frame
variation of IEEE 802.3 without an IEEE 802.2 Logical Link Control (LLC)
header, IEEE 802.2 LLC Frame and the IEEE 802.2 LLC\Subnetwork Access
Protocol (SNAP) Frame. Optionally, all the aforementioned frame types can
contain a IEEE 802.1Q tag which is used for Virtual Local Area Network
(VLAN) identification and prioritization (QoS).

At the Physical layer, when a frame is transmitted, it is preceded by a
preamble of 7 bytes — each with the hexademical value of AA — and a Start-
of-Frame-Delimiter, 1 byte with the value AB (hex). After the frame follows
the Interframe Gap (IFG), which consists of 12 bytes of idle characters. All
of the aforementioned bytes are removed by network adapters before being
passed to the Data Link layer.

2.2.2 Parts of a frame

Since it is the most common, we are going to present the Ethernet II Frame
format [6]. By examining figure 2.2, we can see that the frame consists of 3
parts; a MAC Header, Data and the Frame Checksum.

The Maximum Transmission Unit (MTU) of standard Ethernet II Frames
is 1500 bytes [9], which when added with the MAC Header and Frame Check-
sum parts, totals to a maximum frame size of 1518 bytes, while for VLAN
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Figure 2.2: Ethernet II Frame Format

tagged frames, it is extended to 1522 bytes. On the other hand, the mini-
mum frame size is 64 bytes.

The MAC Header contains the Destination MAC Address field, 6 bytes
identifying in a unique way [8] the network adapter that is to receive the
frame, the Source MAC Address field, 6 bytes to identify the network adapter
transmitting the frame and the EtherType field, 2 bytes used to identify the
type of data carried by the frame. It is worth mentioning that the Ether-
Type field is what differentiates the Ethernet II Frame from the Institute
of Electrical and Electronics Engineers (IEEE) 802.3 Frame, since the latter
uses that field as a length identifier, giving the length of actual data in the
frame. To circumvent such problems, a convention has been made, which
states that values between 64 and 1522 indicate a Length field, while values
greater than 1536 indicate an EtherType field.

The Data part of the frame contains the actual data, which can range
from 46 to 1500 bytes. Since data could be less than 46 bytes, padding
is used in order to make the frame reach the minimum required size of 64
bytes.

Finally, the Frame Checksum part, uses Cyclic Redundancy Checking
(CRC) to calculate 4 bytes used to check the correctness of the frame. The
Checksum is generated by the network adapter before the transmission of
the frame begins and is calculated again upon receival of the frame; if the
calculated code matches the one in the Checksum part, the frame was suc-
cesfully transmitted and so it is passed on the Data Link layer. Otherwise,
the frame is dropped, thus considered to be erroneous and not passed on to
the Data Link layer.

2.3 Physical Layer Interfaces

There is a selection of interfaces available to achieve data transfer between
the Physical and the Data Link layers, and these are:
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• Media Independent Interface (MII)

• Reduced Media Independent Interface (RMII)

• Serial Media Independent Interface (SMII)

• Gigabit Media Independent Interface (GMII)

• Reduced Gigabit Media Independent Interface (RGMII)

• Serial Gigabit Media Independent Interface (SGMII)

2.3.1 MII

MII [10, 36] is a standard interface used to connect Ethernet and Fast Ether-
net MAC sublayers to the Physical layer. The media independent part means
that the same interface can be used to connect to different types of Physical
layer devices without the need to redesign or replace the MAC hardware.
It is a parallel interface, transferring 4-bit words, operating at 2.5 MHz for
Ethernet and 25 MHz for Fast Ethernet, that uses 16 pins to connect the
Physical layer with the MAC sublayer.

2.3.2 RMII

The RMII [11] also supports Ethernet and Fast Ethernet MAC sublayers to
Physical layer interfacing, differentiating itself from MII by reducing the pin
count from 16 to a variable number of 6 to 10 (hence the reduced part of the
title), by operating at a constant clock rate of 50 MHz and by transferring
2-bit words.

2.3.3 SMII

SMII is a serial implementation of MII.

2.3.4 GMII

GMII [12, 36] was developed in order to support Gigabit Ethernet, uses 8-bit
data words, can operate at a maximum clock rate of 125 MHz and increases
the pin count to 24. It is backwards compatible with MII, since it can operate
at its offered speeds of 2.5 MHz and 25 MHz, thus making it able to connect
to Ethernet and Fast Ethernet MAC sublayers as well. This of course renders
the MII an actual subset of the GMII, making the latter a better choice, since
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by a small increase in pins, a ten-fold increase in the supported Ethernet
operating speed is achieved.

2.3.5 RGMII

RGMII [13, 36] is once again a reduced — concerning pin count, which is
only half (12) compared to that of GMII — version of the GMII, which was
introduced by Hewlett Packard. Performance is on par though and this
is achieved by transferring data on both positive and negative clock edges
(Double Data Rate (DDR)). This fact makes RGMII a much better alternative
to GMII.

2.3.6 SGMII

The SGMII [14, 36] Physical layer interface was defined by Cisco Systems [15],
a market leader in the networking domain. It converts the parallel nature
of the GMII into a serial format using 2 data and 2 clock signals for each
data direction (receive and transmit), thus exchanging frame data between
the Physical layer and the MAC sublayer with a total pin count of 8. The
data signals operate at a rate of 1.25 Gbps, while the clock signals operate
at a 625 MHz rate (DDR). Due to these speeds, differential pairs are used
in order to provide signal integrity and at the same time minimize system
noise. Because of the increased performance and the low pin count, SGMII

is usually preferred by manufacturers [36].



Chapter 3

Related Work

NPs have been an important subject in both commercial and academic re-
search. In the following section we are going to present some companies and
their respective work concerning NPs and in the next section we are going
to present the work done in an academic research about a NP architecture.

3.1 Commercial Solutions

In the commercial domain, the companies developing NPs are many and
some of them are listed in table 3.1.

Table 3.1: Network Processor Manufacturers

Agere Altera AMD
Analog Devices Applied Micro Circuits Corporation Bay Microsystems

Broadcom Cavium Networks Conexant
EZchip Freescale Hifn
Infineon LSI Corporation Mindspeed
Motorola Netronome Raza Microelectronics Inc
SiberCore Wintegra Xelerated
Greenfiled Ubicom Xilinx

IBM Intel

By examining table 3.1, we can see that there is a large number of
companies researching, developing and manufacturing NPs.

10
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In the rest of this section, we are going to focus on three manufacturers,
IBM/Hifn, Intel and Motorola/Freescale.

3.1.1 IBM/Hifn

IBM is a company with major presence in the computer industry, that ven-
tures both in software and in hardware. It has a NP line, dubbed PowerNP
that has been acquired in 2004 by Hifn [16, 17], a company which specialises
in integrated circuits and software for network infrastructure developers.
IBM is still producing the NPs, though they are being distributed by Hifn
as part of their product line. Nevertheless, the architecture remains an
intellectual property of IBM.

The PowerNP line is currently represented by a single product according
to the website of Hifn [18], the 5NP4G NP, which uses the NP4GS3 [19,
20]. The NP4GS3 is an advanced, robust, programmable, high-performance
NP optimized for packet processing which integrates a switching engine, a
search engine, frame processors and multiplexed MACs. It is designed to
satisfy enterprise, core and edge networking and Internet requirements at
wire speed. Being scalable, the NP4GS3 can meet increasing bandwidth
and functional demands. Thus, it can offer a wide selection of services,
including but not limited to QoS, scheduling and flow control.

It features an embedded IBM PowerPC microprocessor, 16 programmable
picoprocessors and multiple hardware accelerators. With the above hard-
ware characteristics it can process up to 32 frames in parallel. The hardware
accelerators can perform tree searches, frame forwarding, frame filtering,
frame alteration and other functions, while the embedded PowerPC allows
manufacturers to support their own custom functions, such as enhanced
frame processing and higher-layer protocols.

Continuing on the features list, the NP4GS3 offers advanced flow control
in order to prevent TCP collapse, hardware support for port mirroring and
multi-threads support to improve performance.

The available interfaces are an integrated Peripheral Component Interconnect
(PCI) interface that allows peripheral devices to be attached to it as well as
OC-3, OC-12 and OC-48 Packet Over Sonet (POS) interfaces.

Its integrated MACs can support up to 4 Gigabit Ethernet or 40 Fast Eth-
ernet ports, that can be accessed through SMII, GMII and Ten Bit Interface
(TBI).

The NP4GS3 does not lack in programmability, since it is supported by
software tools available for Windows, Solaris and Linux environments. These
software tools include an assembler, a full-function simulator, a Graphical
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User Interface (GUI) debugger, a test case generator, demonstration picocode
and test case scripts. Its simulation environment supports a distributed
software model, which enables flexible testing configurations from software
unit test to system test, even before having the actual hardware at hand.
These tools enable using the NP4GS3 for rapid development and deployment
of new services which can be applied as software upgrades, without altering
the underlying hardware.

The packaging of the NP4GS3 is a 1088-pin Bottom Surface Metallurgy
- Ceramic Column Grid Array (BSM-CCGA).

Some of the NP4GS3’s applications, include:

• Multi-layer Chassis Switch-Router

• Server Load Balancer

• Network Edge QoS Traffic Manager

• Storage Area Network (SAN) Switch

• Core/Edge Router

• Digital Subscriber Line Access Multiplexer (DSLAM)

• Web Caching Server

• Wide Area Network (WAN) IP Switch

• Firewall and Virtual Private Network (VPN) Appliances

• IP Service Blade

3.1.2 Intel

Intel is a renowned processor manufacturer and has had a long line of NPs
in its product briefcase. Their IXP NP range is discontinued, yet it is worth
mentioning, as it has evolved greatly since its incubation.

3.1.2.1 IXP12xx

The first NP family developed by Intel was the IXP12xx [21, 22]. It was
meant to be used in web switches, broadband access platforms and network
appliances and could offer Layer 2 and Layer 3 forwarding, protocol conver-
sion, QoS, filtering, firewalling, handling of VPNs, load balancing, Remote
Monitoring (RMON) and intrusion detection.
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They featured an integrated Intel StrongARM processor core, compati-
ble with the ARM architecture, 6 integrated programmable multi-threaded
microengines, an open IX bus architecture, an integrated PCI interface and
integrated high-performance memory controllers for Static Random Access
Memory (SRAM) and Synchronous Dynamic Random Access Memory (SDRAM).
Also in the list of features are CRC and Error Correction Code (ECC) mem-
ory.

Lastly, the processor family delivered extensive programmability in soft-
ware through the provided Intel Internet Exchange Architecture (IXA) Soft-
ware Development Kit (SDK) 2.0, which could be used to extend their range
of applications. Also provided were the Intel IXDP1200 Advanced Devel-
oper Platform, a Windows NT Integrated Development Environment (IDE)
for Embedded Linux and example designs for an ATM/OC-3 to Fast Eth-
ernet IP router and a WAN/LAN access switch.

The NPs in the IXP12xx family were available with core speeds of 166,
200 and 232 MHz, with a low power consumption of a typical value of 5 W
or less. The package form of this family was a 432-pin HL-Ball Grid Array
(BGA).

3.1.2.2 IXP24xx

The architecture of the IXP24xx [23] NP family consists of an integrated
Intel XScale Core (32-bit Reduced Instruction Set Computer (RISC)), 8 in-
tegrated fully programmable multi-threaded microengines (second genera-
tion), integrated PCI interface, receive and transmit interfaces supporting
Utopia, SPI-3 or CSIX, integrated high-performance memory controllers for
DDR Dynamic Random Access Memory (DRAM) and Quad Data Rate (QDR)
SRAM and hardware support for memory access queuing.

This NP family was accompanied by the Intel IXA SDK 3.0 complemented
by a hardware development platform with supporting software and tools,
which account for its flexibility and extension of its capabilities. Included are
Intel’s own Microengine C compiler and Microengine C Networking library.
Also included was the very important capability to retarget code developed
for the 12xx family in order to make it compatible with the 24xx family.

The IXP24xx family was available at core speeds of 400 and 600 MHz,
with a typical power consumption of 10 W. The packaging is a 1356-pin
Flip-Chip Ball Grid Array (FCBGA).

Since it supports OC-48 line rates, these NPs are used in a wide selection
of applications such as WAN multi-service switches, DSLAMs, Cable Modem
Termination System (CMTS) equipment, 2.5G and 3G wireless infrastruc-



14 CHAPTER 3. RELATED WORK

ture base station controllers and gateways and Layer 4 to Layer 7 switches
with content-based load balancing and firewalls. Their programmability
also allows them to be used in Voice over Internet Protocol (VoIP) gateways,
multi-service access platforms, high-end routers, remote access concetrators
and VPN gateways. Their usage models include:

• Aggregation, Asynchronous Transfer Mode (ATM) Segmentation and
Reassembly (SAR), traffic shaping, policing, forwarding and protocol
conversion in DSLAM equipment

• Aggregation, forwarding and protocol conversion in CMTS equipment

• ATM SAR, encryption and forwarding in base station controllers/radio
network controllers

• General Packet Radio Service Tunneling Protocol (GTP) and Internet
Protocol version 6 (IPv6) forwarding in wireless infrastructure

• ATM SAR, traffic shaping, policing, protocol conversion and aggrega-
tion for multi-service switches

• Content-aware load balancing, forwarding and policing

3.1.2.3 IXP28xx

The IXP28xx [24] NP family’s architecture is comprised of an integrated In-
tel XScale Core, 16 integrated programmable multi-threaded microengines
(second generation), a PCI interface, two unidirectional 16-bit Low Volt-
age Differential Signaling (LVDS) data interfaces programmable to be Sys-
tem Packet Interface (SPI)-4.2 or Common Switch Interface (CSIX), an 8-bit
asynchronous control interface, 5 industry-standard high-performance mem-
ory controllers for Rambus Dynamic Random Access Memory (RDRAM) and
QDR SRAM memory and hardware support for memory access queuing.

The family’s life is extended through the provided IXA SDK 3.0 and the
hardware development platform, since it allows for great programmability
and thus extension of the NPs’ functionality.

The XScale core is clocked at 700 MHz, while the microengines are
clocked at 1.0 and 1.4 GHz, while the family’s power performance is at a
typical 14 W.

This family supports OC-192 line rates, which makes it ideal for high-
performance applications such as Metropolitan Area Network (MAN) switches
and routers, Internet edge and core switches and routers, multi-service
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switches, 10 Gbps enterprise switches and routers for advanced data centers,
SAN and content-aware server off-load/web switches. Its programmability
allows it to be used to provide Internet Protocol Security (IPsec) and VPN

solutions. It is also great in wireless infrastructure equipment. Its function-
ality includes:

• Ethernet/POS/ATM Layer 4 forwarding in core, MAN and edge appli-
cations

• Protocol conversion, forwarding and aggregation for multi-service switches,
cable headends and DSLAM aggregation

• ATM SAR and forwarding with advanced traffic shaping

• Content-aware load balancing, forwarding and policing

• Encryption for VPNs and IPsec applications

• GTP and IPv6 in wireless infrastructure applications

• TCP/IP termination for enterprise data center and SANs

• Secure Socket Layer (SSL)/Transport Layer Security (TLS) acceleration

3.1.2.4 IXP42x

Architecturally, the IXP42x [25] NP family changes quite a bit when com-
pared to the previously mentioned IXP families. This one, features an Intel
XScale processor along with up to 3 Network Processing Engines (NPEs)
which are basically processors of their own. Also integrated are a PCI in-
terface, a Universal Serial Bus (USB) 1.1 interface, a Utopia interface, 2 in-
tegrated 10/100 Ethernet MACs (MII), a high-performance SDRAM memory
controller and hardware support for Data Encryption Standard (DES), Triple
Data Encryption Standard (3DES), Advanced Encryption Standard (AES),
Secure Hash Algorithm 1 (SHA-1) and Message-Digest Algorithm 5 (MD5)
encryption and hashing algorithms. The latter hardware support is provided
through the aforementioned NPEs.

Once again, a SDK supporting Windows and Linux as well as a hardware
development platform are provided, thus gracing this NP family with great
extensibility and longevity.

This family has outstanding energy efficiency, since it has a typical sys-
tem power consumption of 1-1.5 W while operating at a clock speed of up
to 533 MHz. The package is a 492-pin Plastic Ball Grid Array (PBGA).
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Its applications include, but are not limited to, high-performance Digital
Subscriber Line (DSL) modems, high-performance cable modems, residential
gateways, Small and Medium Enterprises (SME) routers, Integrated Access
Devices (IAD), set-top boxes, DSLAMs, wireless access points in accordance
with the IEEE 802.11a/b/g protocols, industrial controllers, network printers
and the control plane. The capabilities of this family, in more detail, include:

• Layer 2, Layer 3 forwarding

• ATM, Time-Division Multiplexing (TDM), Ethernet MAC filtering

• Asynchronous Transfer Mode Adaptation Layers (AAL) SAR, TDM

framing, High-Level Data Link Control (HDLC) processing

• Hardware supported DES, 3DES data encryption

• Hardware supported SHA-1, MD5 hashing algorithms

3.1.2.5 IXP43x

The IXP43x [26] NP family differentiates itself from the IXP42x by providing
up to 2 NPEs that support double the amount of integrated instruction and
data memory when compared to the NPEs in the IXP42x line, while at the
same time adding support for DDR1 and DDR2 memory with ECC and USB

2.0.
The packaging is now a 460-pin PBGA and the available operating clock

speeds are 400, 533 and 667 MHz, with a typical power consumption of
3.44 W.

3.1.2.6 IXP45x

The IXP45x [27] NP family offers support only for DDR1 memory and inte-
grates up to 3 10/100 Ethernet MACs (MII).

The packaging once again changes to a 544-pin PBGA and the available
clock speeds are 266, 400 and 533 MHz.

3.1.2.7 IXP46x

The IXP46x [28] NP family differentiates itself from the other IXP4xx fam-
ilies by integrating up to 3 10/100 Ethernet MACs (MII or SMII) and by
offering integrated hardware support for IEEE 1588 protocol.

The core this time operates at a selection of 266, 400, 533 and 667 MHz
while being packaged in 544-pin PBGA.
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3.1.3 Motorola/Freescale

Motorola is a company specialised in communications, manufacturing prod-
ucts ranging from mobile phones to Radio-Frequency Identification (RFID)
solutions. Among their products of course, lies a NP family, the C-Port fam-
ily, consisting of processors C-3e, C-5 and C-5e. These NPs are manufactured
through its spinoff company, Freescale Semiconductor.

3.1.3.1 C-3e

The first member of the C-Port line of NPs is the C-3e [29, 30]. Its archi-
tecture consists of 17 programmable RISC cores, where one is used as the
Executive Processor (XP) and the other 16 as Channel Processors (CPs). The
CPs have 2 Serial Data Processors (SDPs) each, and 8 of them implement
external programmable interfaces, while the other 8 are used internally, as
Services Processors (SPs).

Also part of the architecture are an integrated Table Lookups Unit (TLU)
coprocessor, a Queue Management Unit (QMU) coprocessor, a Buffer Man-
agement Unit (BMU) coprocessor, and a Utopia interface Fabric Processor
(FP).

Integrated in the architecture are interfaces such as PCI, serial, 10/100
Ethernet MACs (RMII), 1000 Ethernet MAC (GMII, TBI), FibreChannel MACs
(TBI) and Utopia. It supports OC-3 and OC-12 line rates.

The C-3e NP also provides complete programmability using a standard
Application Programming Interface (API) and C programming language,
which we need to state that are fully software compatible with the rest of
the C-Port NP family.

Its operating frequency is up to 180 MHz with a typical power consump-
tion of 5.5 W, and it comes in a highly-integrated 728-pin BGA package.

3.1.3.2 C-5

The C-5 [31, 32] is the next NP of the C-Port family. This NP’s archi-
tecture is comprised of 16 CPs and 5 coprocessors responsible for supervi-
sory tasks (XP), high-speed fabric interface management (FP), networking
lookups (TLU), queue control (QMU) and payload storage (BMU). Each of
the CPs contains a RISC programmable core and 2 SDPs, the one to receive,
the other to transfer.

The integrated interfaces are PCI, serial, Utopia, 10/100 Ethernet MACs
(RMII), 1000 Ethernet MAC (GMII, TBI) and FibreChannel MAC. The line
rates supported by the C-5 are OC-3, OC-12 and OC-48.
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This NP supports extensive programmability, through the provided API

and using C/C++ as programming languages.
The C-5’s operating frequencies are 166, 180, 200 and 233 MHz with

a respective typical power consumption of 15, 16, 17.5 and 20 W. The
packaging of this NP is an 838-pin BGA.

A small list of C-5’s breadth of applications follows:

• Multiservice Access Platforms (MSAPs)

• DSLAM

• Cable and wireless head-end systems

• Ethernet/IP/Frame Relay/ATM interworking

• Internet access switch/routers

• Load balancing web server switches

• Optical edge switch/routers and add/drop multiplexers

• IP Gigabit/Terabit routers

• WAN Customer Premises Equipment (CPE)

• MAN CPE and head-end equipment

3.1.3.3 C-5e

The last member of the C-Port NP family we are presenting is the C-5e [33,
34]. The architecture is quite similar to its aforementioned siblings, since it
also consists of 16 CPs (with a programmable RISC core and 2 SDPs each), an
XP responsible for supervisory tasks and management of host processing, a
FP for high-speed fabric interface management, a TLU for networking lookups
and classification, a QMU for queue control and traffic management and a
BMU for payload storage.

The interfaces integrated into C-5e’s architecture are 10/100/1000 Eth-
ernet MACs (RMII for 10/100, GMII and TBI for 1000), FibreChannel, PCI,
serial and Utopia while the line rates supported are OC-3, OC-12 and OC-
48.

Programming the C-5e is accomplished through the use of the C pro-
gramming language and the provided standard API.

The C-5e NP comes in an 840-pin BGA package, with the available oper-
ating frequencies being 266 and 300 MHz, with a typical power consumption
of 9.2 and 10.6 W respectively.
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3.2 Academic Research

In the academic domain, a lot of research has been conducted concerning NPs
and their applications in security and routing and of course their processing
capabilities. We are going to focus on the PRO3[35] architecture.

3.2.1 The PRO3 Architecture - Overview

The PRO3 is a novel hybrid Network Processing Unit (NPU) architecture,
which uses sophisticated interface hardware modules specifically designed
from the ground up, special-purpose programmable processors with a low
hardware complexity, high-performance general-purpose processors optimized
for fast context switching and an on or off-chip control processor. As an
overview, the aforementioned hardware modules and special-purpose pro-
cessors are responsible for handling most of the computation-intensive and
real-time protocol functions, while the general-purpose processors handle all
the remaining functions, including the higher layer protocols. The on or off-
chip control processor is responsible for all the computations that are not
on the fast path, such as control-plane or exception processing. The main
benefit of this architecture is that it combines wire-speed processing up to
the Network layer with best-effort processing for higher layer protocols.

The PRO3 targets systems with requirements such as the following:

• Traffic concetrators supporting enhanced per-flow services, such as se-
curity systems performing packet filtering and protocol-aware connec-
tion tracking

• Signaling controllers

• Traffic-policing

• Traffic-metering

• Statistics-collecting

It has been designed taking into consideration that a number of func-
tions frequently used in common protocols cannot be executed in an efficient
manner using generic RISC processors. These functions are classified as fol-
lows:

• Bit and byte-level operations for header parsing and modification

• Efficient memory management
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• Complex task and traffic-scheduling algorithms supporting QoS

• Context switching that occurs more frequently than in desktop pro-
cessors

• Interconnecting a number of different processing modules avoiding the
introduction of bottlenecks

The PRO3 resolves these issues by using its special-purpose processors,
which are responsible for the header field’s exctraction and modification,
a sophisticated memory management hardware block and 2 very efficient
hardware scheduling modules responsible for fair and balanced packet pro-
cessing and for controlling data streams generated by the internal modules.
In addition, the 2 general-purpose processors are used to complement the
special-purpose processors and the hardware modules in the protocol pro-
cessing parts that they cannot handle in an efficient manner. Communica-
tion between the aforementioned hardware parts of the architecture occurs
using a 12.8 Gbps internal bus, which is coordinated by a central arbiter.

The PRO3 is implemented in 0.18 µm technology, operates at 200 MHz
and is packaged in a 1,096-pin Fine-Line Ball Grid Array (FLBGA).

3.2.2 The PRO3 Architecture - In depth look

Now we are going to take a closer look at the building blocks in PRO3’s
architecture. These are:

1. The packet preprocessor,

2. the Data Memory Management (DMM) unit,

3. the Task Scheduler (TSC),

4. the Traffic Scheduler (TRS) and

5. the Reprogrammable Pipeline Module (RPM).

The packet preprocessor, the DMM unit and both of the schedulers are
optimized for handling a very large number of independent queues while
the RPM is very efficient at executing the majority of the required network
protocol processing. Concerning the modules’ bandwidth, the packet prepro-
cessor, the DMM unit and both of the schedulers can all support a constant
rate of 2.5 Gbps of traffic processing under any circumstances, while the
RPM supported network rate is application-dependent.

At the following sections we are going to examine each of the aforemen-
tioned building blocks.
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3.2.2.1 Packet Preprocessor

The Packet Preprocessor block is responsible for looking up of address or
other fields used by most network applications. It takes advantage of the
features of the programmable field-processing engine which in fact are iden-
tical to the ones of the Protocol Processing Engine (PPE) although they are a
different entity; it also makes extensive use of an external Ternary Content-
Addressable Memory (TCAM) which is used for classification of incoming
Protocol Data Units (PDUs).

The tasks performed by this block are header parsing, checksum calcula-
tion, classification and generation of a unique flow ID for the incoming PDUs.
That flow ID specifies in which queue the packet belongs to — information
that is handled by the DMM unit — as well as the internal processing unit
needed to handle it and the corresponding software needed by that unit to
accomplish the requested task.

3.2.2.2 Data Memory Management unit

The DMM unit implements per-flow queuing for up to 512,000 flows and
provides efficient queue handling, variable-length packet storage and access
to specific packet segments by the processing engines to the PRO3 architec-
ture. Its main functions are storing incoming traffic, receiving packet data
and forwarding that data either to the processing modules or the output
interface. It is able to handle both fixed and variable length packets.

Its interface consists of 4 ports, 2 incoming and 2 outgoing with a band-
width of 2.5 Gbps each. One port is used to receive data from the network,
one to transmit data to the network, and a bidirectional port for exchanging
data from and to the internal bus.

In order to achieve the total aggregate througput of 10 Gbps, the DMM

unit employs an optimized free list organization and memory access reorder-
ing. By using 2 separate free lists the memory accesses are reduced during
buffer releasing by 70% during writes and 46% during reads. Also, by re-
ordering the read and write commands — and subsequently their corre-
sponding memory accesses — a 30% reduction in mean access latency is
achieved.

3.2.2.3 Scheduler modules

A need for scheduling arises since the RPM engines sometimes process pack-
ets at a lower rate than that of the packet arrival rate. To face this issue, the
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packets need to be stored and scheduled for processing once the target pro-
cessing module is available. Concerning incoming traffic, the TSC maintains
priority queues in order to schedule the forwarding of packets for processing
according to a configurable priority per flow, which is set by the adminis-
trator. On the other hand, handling the scheduling of outgoing traffic is
the TRS, which shapes transmitted traffic according to traffic management
specifications. The overall scheduling is controlled by command and status
messages issued by the DMM, the CPU and the Packet Preprocessor. These
commands are routed to the appropriate scheduler through the Service and
Redirect block.

Multiple flows are multiplexed round-robin in one scheduling queue. The
TSC supports a total of 32 hierarchical scheduling queues, where the first
queue is treated with highest priority than the others. The rest of the
queues can be treated equally or by dividing them into 2 groups with dif-
ferent priorities. The TSC uses a connection table to store per-flow state
information and connection-specific parameters such as the flow’s priority
weight. When flows map to the same scheduling queue, they are stored in
a linked list. The TRS supports 32 scheduling queues as well and uses the
same data structures as the TSC.

3.2.2.4 Reprogrammable Pipeline Module

This is the block that is mainly responsible for protocol processing in the
PRO3 architecture. It is comprised of 3 units: the PPE, the Field Exctraction
Engine (FEX) and the Field Modification Engine (FMO). These units form
a 3-stage pipeline that constitutes the PRO3’s software-processing heart.

The PPE lies in the core of the RPM and contains a RISC-CPU core and
external control logic. The RISC-CPU core is a Hyperstone E1-32XS which
is modified by partitioning its registers into two sets, where the first one is
accesible by the CPU while the other by the PPE control logic. The processor
switches register sets and informs the external logic — via a special instruc-
tion — once it has finished processing a packet. Direct Input/Output (I/O)
is feasible through the processor’s dual-port data memory. Network process-
ing is substantially accelerated since I/O operations and packet processing
can be performed concurrently, thus these actions’ latency is partly hidden.

The FEX is responsible for parsing packet headers and subsequently load-
ing the required protocol fields to the PPE in order to be processed. Its in-
struction set consists of 9 basic instructions and 4 commands (instructions
with no arguments) which operate on a First-In, First-Out (FIFO) buffer
of 32-bit words. Supported by the instruction set are variable-length field
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extraction, backward and forward movement in the data FIFO, conditional
branches — which are based on extracted fields and header parsing — and
addition.

The FMO is tasked with packet construction or reconstruction and header
modification. Its own instruction set includes 16 instructions and 6 com-
mands, which support field extraction and insertion/modification.

The FEX and FMO use only 4 and 5 generic registers respectively, and
additionaly a special-purpose register and a Data Pointer. Their instructions
can be combined and executed in parallel with any of the commands, thus
reducing code size and increasing performance. It is also worth mentioning
that the FEX and FMO are optimized for bit and byte processing.

3.2.3 The PRO3 Architecture - Development Tools

On the software development side, the PRO3 is accompanied by a develop-
ment suite used for configuring registers, initializing memory locations and
loading software modules into the PRO3. The user is provided with a config-
uration GUI, which contains a separate page for each of the PRO3’s hardware
modules. On these pages, the user is able to configure or develop code for
that specific module.

In its core, the development suite contains a Configuration Library (CL)
which maintains an internal register map of the whole chip. The aforemen-
tioned GUI utilizes a set of functions implemented and exported by the CL

in order to read and write the values of configuration registers and inter-
nal memory locations. The CL is also responsible for reading, parsing and
compiling the configuration files and software programs for all of PRO3’s pro-
cessing units. Lastly, it maintains a TCP-based session with a configuration
server which is running either on the on-chip or on-board control processor.

The development suite can be used to configure either the actual PRO3

chip, when connected with a development board, or a hardware description
language model or netlist.
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Architecture

4.1 Virtex-5 FPGA Embedded Tri-mode Ethernet
MAC

The Xilinx Virtex-5 (V5) FPGA board has an embedded Tri-mode Ethernet
MAC (TEMAC) Wrapper [36, 37, 38], which is the base of our design and
provides us with fully-fledged Physical and Data Link layers (see figure 4.1).

Its key features [36] are:

• Fully integrated 10/100/1000 Mbps Ethernet MACs

• Designed to the IEEE standard 802.3-2002 specification

• Configurable full-duplex operation in 10/100/1000 Mbps

• Configurable half-duplex operation in 10/100 Mbps

• Management Data Input/Output (MDIO) interface to manage objects
in the Physical layer

• User-accesible raw statistic vector outputs

• Support for VLAN frames

• Configurable IFG adjustment in full-duplex operation

• Configurable in-band Frame Check Sequence (FCS) field passing on
both transmit and receive paths

• Auto padding on transmit and stripping on receive paths

24
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Figure 4.1: Virtex-5 Tri-mode Ethernet MAC-supplied OSI Layers

• Configured and monitored through a host interface

• Hardware-selectable Device Control Register (DCR) bus or generic host
bus interface

• Configurable flow control through Ethernet MAC PAUSE frames; sym-
metrically or assymetrically enabled

• Configurable support for jumbo frames of any length

• Configurable receive address filter for unicast, general and broadcast
addresses

• Media Independent Interface (MII), Gigabit Media Independent Interface
(GMII) and Reduced Gigabit Media Independent Interface (RGMII)

• 1000BASE-X Physical Coding Sublayer (PCS) and Physical Medium
Attachment (PMA) sublayer included for use with the Virtex-5 Rock-
etIO serial transceivers to provide a complete on-chip 1000BASE-X
implementation
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• Serial Gigabit Media Independent Interface (SGMII) supported through
the RocketIO serial transceivers’ interfaces to external copper Physical
layer for full-duplex operation

It is able to provide 2 Ethernet MACs, which can be configured indepen-
dently. A comprehensive list of some of the available configuration options
along with all the possible choices for each of them is given in table 4.1.

Table 4.1: Selection of configuration options for Virtex-5 FPGA Tri-mode
Ethernet MAC

Option Choices

Ethernet Speed
Tri-Speed
1000 Mbps

10/100 Mbps

Physical Layer Interface

MII

GMII

RGMII

SGMII

1000BASE-X PCS/PMA (fibre)
Transmit (Tx) Flow Control Enable True/False
Receive (Rx) Flow Control Enable True/False

Jumbo Frame Enable True/False
In-band FCS Enable True/False

VLAN Enable True/False
IFG Adjust Enable (Tx only) True/False
Rx Disable Length (Rx only) True/False

Address Filter Enable True/False; if True, specify MAC Address

Using Xilinx’s CORE Generator software, the V5 TEMAC is configured
and the VHDL files that are needed in order to use it are generated; apart
from the VHDL files, an example design is also generated, so one can use
the TEMAC immediately. This example design connects the TEMAC with
a client interface consisting of a Rx and a Tx FIFO, which are connected
through a LocalLink Interface (LL) with an Address Swap Module (ASM).
The example design functions as a loopback that receives frames from the
TEMAC, stores them in the Rx FIFO, sends them through the LL to the ASM,
which after exchanging the Destination MAC Address with the Source MAC
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Address, sends the modified frame to the Tx FIFO, which in turn sends the
frame to the TEMAC for transmission back through the board’s network
adapter.

The LL is especially useful, since it renders communication with the
TEMAC quite easier when compared to directly interfacing with the TEMAC

component. The LL is described in table 4.2, where signals ending with “ n”
are active low.

Table 4.2: LocalLink Interface

Path Port Name Type Size (bits)

Receive (Rx)

rx ll clock in 1
rx ll reset in 1
rx ll data out 8
rx ll sof n out 1
rx ll eof n out 1

rx ll src rdy n out 1
rx ll dst rdy n in 1
rx ll fifo status out 4

Transmit (Tx)

tx ll clock in 1
tx ll reset in 1
tx ll data in 8
tx ll sof n in 1
tx ll eof n in 1

tx ll src rdy n in 1
tx ll dst rdy n out 1



28 CHAPTER 4. ARCHITECTURE

To get a better understanding of the way the LL operates, we are going
to present a simple example (see figure 4.2). In order to exchange data
through the LL, both src rdy n and dst rdy n have to be asserted at the
same time; only then is data transferred across the LL. Should one of these
two signals be deasserted at any time, transfer is paused, thus achieving flow
control. The sof n signal is asserted only at the beginning of the frame and
respectively, the eof n signal only at the end of the frame.

Figure 4.2: Frame Transfer with Flow Control across LocalLink Interface

4.2 Our Design

4.2.1 Configuration of the Tri-mode Ethernet MAC

The TEMAC used in our design is configured to have a single MAC, Tri-
speed setting for the Ethernet speed, a SGMII Physical Layer interface, flow
control for both Rx and Tx and an Address Filter set to a MAC address of
“AA:BB:CC:DD:EE:FF”.

The reason we selected a Tri-speed setting, is mainly to be compatible
with any network adapter we connect the design to, without the need to re-
generate the TEMAC for a different speed setting. The SGMII Physical layer
interface was selected since it radically reduces I/O count when compared
to the other choices and of course because regular copper Ethernet cables
are widely available when compared to fibre optic cables (thus ruling-out
the 1000BASE-X PCS/PMA interface). Finally, the Address Filter is used
so that our design will only process frames containing the specified MAC

Destination address.
By selecting not to enable In-band FCS passing, we let the TEMAC check

the CRC field of the frame and if it is erroneous, it will not pass it along to
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our design. Moreover, this makes the TEMAC calculate the CRC field and add
it to the frame before transmission. By not disabling the Rx length checking,
the TEMAC is responsible for determining whether we have a length or type
field and if it is a length field, to check if the value found in that field is
consistent with the actual length of data in the frame. If it is not, then the
frame is erroneous and so it is not passed from the TEMAC to our design.
The latter choices take care of the necessary frame checks.

Our own design is implemented on the top level of the example design, as
shown in figure 4.3, since we take advantage of the LocalLink Interface (see
table 4.2) in order to communicate in a more high-level and understandable
manner with the TEMAC.

Figure 4.3: Design Overview Block Diagram

4.2.2 Architecture - Overview

The Network Processor that we designed is implemented in a modular ar-
chitecture with the datapath flow being as follows: connected with the Rx
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Client FIFO of the example design is the Rx2Mem module (an abbreviated
version of Receive-to-Memory), whose main objective is to pass along frame
data as it is received from the FIFO to the Control module, to provide the
frame’s length, once it has finished transmission and to provide the num-
ber of the currently received frame. The Control module is essentially the
module where we store data and information about the frames we have re-
ceived and processed, before forwarding them to either the Process module
or the Tx client FIFO. The Process module is the heart of our Network
Processor, since it is the module where frame processing occurs, according
to the software program loaded in its instruction memory. After processing
has finished, frame data is sent from the Process module back to the Con-
trol module, where it is stored either to be processed furthermore or to be
transmitted to the Tx FIFO.

The commands supported by our NP are listed in table 4.3, showcasing
their syntax and their corresponding opcode.

Table 4.3: Command Syntax and Opcodes

Instruction Syntax Opcode
Add FrameNumber, Address1, Data 000

Change FrameNumber, Address1, Data 001
Compare FrameNumber, Data 100
Exchange FrameNumber, Address1, Address2 101

Remove FrameNumber, Address1 010
Report FrameNumber, Address1 011

Transfer FrameNumber 110

The functions performed by each command are:

Add adds Data in position Address1 in the frame FrameNumber

Change replaces data in position Address1 of frame FrameNumber with
Data

Compare compares (searches) frame FrameNumber for Data and returns
byte number, if found

Exchange exchanges data from position Address1 with data from position
Address2 in frame FrameNumber

Remove removes data in position Address1 from frame FrameNumber
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Report reports data in position Address1 from frame FrameNumber

Transfer commences the transmission of frame FrameNumber

Commands refer to frames in a sequential manner and a Non-Transfer
policy is followed. In order to make things a little bit clearer, the sequen-
tial manner of commands refers to the fact that commands are structured
in a way that FrameNumbers are sequential: if a batch of commands refer
to frame five, all subsequent commands must refer to either frame five or
greater. The Non-Transfer policy means that a frame is transferred exclu-
sively with the use of the Transfer command. So, if a frame does not have a
Transfer command associated with it, no transmission of this frame’s data
is going to occur, regardless of whether other commands have processed it
or not.

4.2.3 Architecture - In-depth

Now we are going to provide an in-depth look at each of the modules of the
architecture, their interfaces, their inside structure and their operation.

4.2.3.1 Rx2Mem

The Rx2Mem module is the first module of our design, whose purpose is
to forward frame data received through the LL to the Control module, to
calculate the length of each frame and to keep a count of all the frames it has
received. Presented in table 4.4 is the module’s interface, while in figure 4.4
a block diagram is given.

The FSM in figure 4.4 has a total of 5 states and is responsible for control-
ling the byte and frame counters, generating the start addr, addr inc and
frame done outputs of the Rx2Mem module and finally detecting whether
we have a back-to-back frame transmission — this occurs when immediately
after the eof n signal has been asserted, the sof n signal is asserted. The byte
counter is capable of properly keeping count of the number of bytes a frame
has, even in back-to-back transmission of frames, thus being capable of pro-
viding valid information about each frame. The frame counter increases its
output each time a new frame begins transmission. To get a detailed view of
the way the FSM in the Rx2Mem module operates, consult figure 4.5, where
states and transitions are presented.
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Table 4.4: Rx2Mem Interface

Name Type Length
clk in 1

reset in 1 Module
sof n i in 1

Rx FIFO

eof n i in 1
data i in 8

src rdy n i in 1
dst rdy n o out 1
dst rdy n i in 1

Control

start addr out 1
data o out 8

frame num out 10
frame len out 11

frame done out 1
addr inc out 1
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Figure 4.4: Rx2Mem Block Diagram

Figure 4.5: Rx2Mem FSM
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4.2.3.2 Control

This module is the heart of our architecture. It is heavily dependent on
FSMs to accomplish its task, which is the management of all the frame data,
whether they be incoming from the Rx FIFO, outgoing to process, incoming
from process or finally outgoing to Tx FIFO. It can be abstractly divided into
4 parts: the R2M part (Rx-to-Memory), the M2P part (Memory-to-Process),
the P2M part (Process-to-Memory) and the M2T part (Memory-to-Tx). In
between the aforementioned parts, lies the data core of our NP. That is,
three Block RAMs (BRAMs) of 64 kB each that hold frame data, two BRAMs
of 27 kB each that hold information about the frames we have received and
the frames we have finished processing and finally a FIFO used to queue
outgoing frame information.

In the first data BRAM we store incoming frame data, and it is called
data ram Rx. The second (called data ram Tx) and third (data ram processed)
BRAMs actually contain mirrored data, as they are both used to store pro-
cessed data. The reason behind this data mirroring is the fact that we are
using simple dual port BRAMs, where the first port is used exclusively for
writing while the second exclusively for reading. Subsequently, in order to
avoid delays if a frame is to be transferred and another to be processed at the
same time — and since we have no space issue on the V5 development board
— we chose to instantiate 2 BRAMs for storing processed data and mirror
their content. In that way, the first can be used to transfer frame data to
the output, while the second can be used to send data to be processed. All
the aforementioned BRAMs have a word size of 8 bits.

We have two BRAMs used to store information about frames. These
BRAMs can store information for up to 1024 frames in total. With a word
size of 27 bits, the information stored about each frame is the address where
the frame’s data starts in the data BRAM and the length of this frame’s data.

Finally, the FIFO is used as a queue of the frames that are waiting to be
transmitted to the MAC. In it we store information regarding those frames
and not actual frame data, since the information provided is the frame’s first
byte address in data ram Tx and its length in bytes. Using these pieces of
information, the M2T FSM takes care of the transfer of data from the BRAM

to the output.
In table 4.5 we give the interface of this module, while in figure 4.6 we

present its complete block diagram. In that block diagram the 4 FSMs of the
module are visible, yet their full presentation is done using some detailed
figures. Specifically, figure 4.7 presents the R2M FSM, figure 4.8 the M2P
FSM, figure 4.9 the P2M FSM and finally figure 4.10 presents the M2T FSM.
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Table 4.5: Control Interface

Name Type Length
clk in 1

reset in 1 Module
dst rdy n o out 1

Rx2Mem

r2m starting addr in 1
data from fifo in 8

frame num in 10
frame len in 11

r2m frame done in 1
r2m wr addr inc in 1
m2p frame done out 1

Process

p2m frame done in 1
req frame in 1

req frame number in 10
req byte in 1

req byte number in 11
wr req byte in 1

wr req byte now in 1
frame check ok in 1

select memory block in 1
just need byte in 1

instr code in 3
transfer in 1

increase frame len in 1
cur frame len out 11

cur frame len valid out 1
begin transmission out 1

cur byte num out 11
last frame received out 10

start process out 1
processed frame info out 11
processed frame done out 1

increase processed frame num in 1
p2m wr addr inc in 1

data to proc out 8
data from proc in 8

data to fifo out 8

Tx FIFO
src rdy n o out 1

sof n o out 1
eof n o out 1
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4.2.3.3 R2M

In the following segments we are going to give an in depth look of each of
the 4 abstract parts that make up the Control module, starting with the
R2M part.

In the R2M part, data is received from the Rx2Mem module, along with
signals indicating that the current memory address is the frame’s starting
address, the frame’s number (according to the frame counter in Rx2Mem),
the frame’s length in bytes along with a signal indicating that the frame is
finished. Finally a last signal is used to increment the memory address as
each new byte is transferred from Rx2Mem. All the aforementioned signals
originate from the Rx2Mem module and are used to control the proper
memory allocation of data, along with correct handling of frame information.

The write address of data ram Rx is incremented using the r2m wr addr inc
signal, which is also used as the write enable signal of data ram Rx, after
passed through a register in order to synchronize it with the actual data
of the frame. Using the r2m starting addr signal which indicates that this
is the frame’s first byte, we store the frame’s starting address in a register
in order to use it later on in the assembly of the frame’s information, con-
catenating it with the frame’s length — provided by the frame len signal —
upon the completion of its transfer, indicated by the r2m frame done signal.
These two pieces of information concatenated form the frame’s information
which is registered and then input to the corresponding BRAM. Addressing
this BRAM is the frame’s number, provided by the frame num signal, while
enabling the write port is accomplished by using the r2m frame done signal.
The aforementioned signal is passed along to the Process module through
the interface’s start process port, to indicate that the first frame has been
accepted into the BRAM and thus the processing can commence. Also passed
to the Process module is the frame num in order for it to be aware of the last
frame number we have received. This is done using the last frame processed
output port of the interface, which is updated for each frame we receive.

Its FSM (see figure 4.7) is quite simple, since it only needs 2 states, one
to receive data and one to pause the transferring of data from the Rx2Mem
module. The latter state is used in order to protect the overwriting of data
in the data ram Rx memory, since frames could be received at a very fast
rate.

Taking into consideration the fact that we process frames sequentially,
memory management is essential. This is achieved using a register that
holds the so called r2m wr addr limit, that is the limit the r2m wr addr
pointer is allowed to reach when writing new data. To make it clearer,
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Figure 4.7: R2M FSM

the address pointer is incremented with each new byte of data and since
it is allowed to wrap — if it reaches all ones and incremented once more,
it turns into all zeroes thus wrapping and starting over — it can overwrite
pre-existing bytes. These bytes can sometimes be needed, since for example,
we could be processing frame number five and while at it, new frames have
been written in memory and have caused wrapping of the address pointer.
In such a case, we could continue writing new data and then reach the
starting address of frame number five, which is still under process. We
cannot allow the Rx2Mem module to continue increasing the address pointer
and overwrite data belonging to frame five. In order to achieve this we use
the limit register by checking the current address pointer’s value against
the one in the aforementioned register. Should it be within 3 bytes of that
register’s value, we pause the transfer of data from the Rx2Mem module
(using dst rdy n o output port of Control), by transitioning to the pause
state displayed in figure 4.7. In that way, we cause the Rx FIFO in the
example design to store data without passing it directly onto our design, in
that way gaining some time to finish processing frame five and change the
limit register to the starting address of frame six.

4.2.3.4 M2P

After that, the M2P part begins. Here we have the most complex function
of the module, which is to pass the requested frame data to the Process
module after determining from which BRAM we shall take the data from,
along with setting up the address pointers to the correct place, according to
the requested frame’s corresponding start address. Furthermore, if a frame
has already been processed, we can set the address pointer to a specific
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byte’s address, in order to minimize latency of commands such as Change,
Exchange and Report. To do that, a register is initialized every time we
want to process a frame to the value of either the frame’s starting address
or the frame’s starting address plus the requested byte’s offset. The re-
quested frame’s number along with the requested byte number is provided
by the Process module, along with signals indicating that we do want a
frame (req frame) or byte (req byte). At the cases where we have a Change,
Exchange or Report commands and the frame has already been processed,
we intend to alter/request only a specific byte; this is indicated through the
just need byte signal, also originating from the Process module. Another
useful signal is the wr req byte signal, which is used to determine whether
we need to write a byte to the memory or not.

Once we have initialized the address pointers using the start address in
the received or processed frames info (depending on whether the requested
frame has already been processed or not, using signal select memory block),
we begin transmission of the frame’s data (all of them if the frame is being
processed for the first time or if the command executed is one of Add, Com-
pare or Report; one of them if the frame has already been processed and
the executed command is Change, Exchange or Report; a special case exists
concerning the Transfer command, where if the frame has already been pro-
cessed, no data is transmitted to the Process module). The aforementioned
address pointer is used in both the data ram Rx and data ram processed
BRAMs, so we receive the proper data using the same pointer.

Transmission keeps going until we reach the final byte of the frame; this
is accomplished using a byte counter, counting each of the bytes we transfer
up until this number reaches the frame’s length minus one. When we reach
the penultimate byte, we signal to Process that the frame is finished using
the m2p frame done signal, so it knows that it is about to receive the last
byte of the requested frame.

In case we are executing an Add command, we need to increase the
frame’s length, since the length used in the aforementioned check would
cause us to stop transmitting one byte earlier. This is done using the signal
increase frame len. The counter outputs the current byte number to the
Process module, so the latter will be able to execute its command at the
proper byte.

The FSM employed in this part 4.8, is quite complex compared to the
previous one we presented (R2M - figure 4.7). Needed to make some of the
transitions is the opcode of the in execution command, so it is passed by the
Process module through the instr code signal. Also necessary is the signal
indicating that the frame has passed all the necessary checks in the Process
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module; this signal is the frame check ok signal.
The multitude of states concerning the requesting of the frame is ex-

plained by the fact that as we have already mentioned, we need to load in-
formation concerning the requested frame from the proper BRAM and then
we need to initialize the address pointer to the correct position.

After that we send the frame’s length to Process, in order for it to check
whether the bytes requested by the currently loaded command are in range
(for example the command can concern byte number 200 while the frame
only has 100 bytes). For that reason we wait for a confirmation from Process
that these checks have been passed; if not, we return to an Idle state, waiting
for the next request by the Process module.

If succesful, we either begin transmitting data to Process, or proceed to
sending a specific byte; alternatively, we can remain in a state where we
allow data to be written to the proper target memory.

Concerning the signal sel frame or byte shown in figure 4.6, which is
generated by the FSM and used for controlling two multiplexers, it is as-
serted (active high) during states Req Byte, Pre Send Byte, Send Byte and
Write Byte, thus changing the output of the multiplexers according to the
command’s need. The top multiplexer, when the aforementioned signal is
asserted, sets the read address of data ram Rx and data ram processed to be
equal to the starting address of the frame plus a byte offset, thus providing
the requested byte’s data in the next clock cycle. The bottom multiplexer
sets the initialization address equal to the aforementioned sum. When de-
asserted, the value is equal to just the starting address of the frame.



F
ig

ur
e

4.
8:

M
2P

F
SM

41



42 CHAPTER 4. ARCHITECTURE

4.2.3.5 P2M

P2M is the third part comprising our Control module. It is responsible
for receiving the processed frame data from the Process module and stor-
ing them properly in the two BRAMs it controls, data ram processed and
data ram Tx, which as we have already mentioned contain mirrored data.
It also assembles and stores each processed frame’s information — its start-
ing address and its length. Finally, it is responsible for queuing information
about the frames to be transferred to the LL in the FIFO it maintains, in or-
der for them to be processed later on by the fourth and final part of Control,
the M2T part.

P2M employs another frame counter, which keeps track of the number
of frames processed so far. This counter’s output is used for two purposes:
first, it is fed back to the Process module after concatenation with a single 1
as processed frame info, which is used in Process to maintain a frame sub-
stitution BRAM (more on that when we provide a more detailed description
of the Process module). Second, it is used to address the processed frames
information BRAM, in order to store the information about this frame in its
according position.

Its write address can be initialized to the starting address of the frame
(if it has already been processed that is) in order to overwrite processed
frame data — if we execute another command referring to the same (already
processed) frame — or to the frame’s starting address incremented by an
offset if we only want to write a specific byte. Controlling the write address
pointer’s incrementation is the signal p2m wr addr inc which is generated
by the Process module. This signal is also used at the write enable port
of data ram processed and data ram Tx after it has been passed through a
register, in order to synchronize it with the bytes of data, since it precedes
them by a single clock cycle. Alternatively, the aforementioned BRAMs’
write enable port is connected to the signal wr req byte now — also coming
from Process — in order to enable writing to the BRAMs when a single
write is required. The write address value selection is accomplished by the
multiplexer connected to the write address port (port A) of the data BRAMs,
controlled by the signal wr req byte now, while enabling write operations
on these BRAMs is achieved by another multiplexer connected to their write
enable ports.

In this part we have another counter used for counting bytes as we receive
them, in order to produce the processed frame’s length and recalculate it
everytime it is processed again, since its length can be altered by commands
such as Add and Remove.
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The starting address of the currently processed frame is stored in a reg-
ister and after concatenating it with the length of that frame, we store it
in the processed frames’ information BRAM. This information can also be
passed on to the FIFO used to queue frames for transmission, if a transfer
command is executed.

Figure 4.9: P2M FSM

This part’s FSM (shown in figure 4.9) is quite simple; it will wait for the
Process module’s frame check we have already mentioned in the M2P part
to finish and if the command under execution is not a single byte operation,
it will commence its operation by transitioning from the Idle to the Start
state. After that, it waits for the assertion of the p2m wr addr inc signal —
which is an indicator that in the next clock cycle we will have incoming data
from the Process module — to transition to the Sof state and then to the
Data state, where it will remain until it receives the p2m frame done signal,
meaning that the last byte of data is about to be received. After that is
done, it returns to an Idle state. A Pause state is not necessary, since control
of the address pointer of the target memory is done by the Process module,
through its p2m wr addr inc signal.

The FSM generates the output signal processed frame done which is as-
serted high only during Eof state and only if the frame is being processed
for the first time. During the Eof state, another signal used for controlling
a multiplexer is asserted low, the p2m eof n signal. As we can see in fig-
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ure 4.6, that multiplexer is located at the bottom part, next to the FIFO

and is used to control whether the frame information stored in a register is
to be renewed or not.

4.2.3.6 M2T

This is the final part that completes the Control module and its functionality.
It is the only part not directly depending on any other of the modules of our
design, since its actions are purely the initialization of an address pointer on
the read port of the data memory Tx BRAM and the proper transmission of
a frame’s data, along with signalling its beginning and its end. The end of
the frame is recognized through the use of another counter and the frame’s
length; when the counter reaches the penultimate byte number, we know
we are about to transfer the last byte of the frame, thus asserting the eof n
signal (active low).

Figure 4.10: M2T FSM

M2T’s FSM (depicted in figure 4.10) is quite similar to P2M’s FSM, only it
contains three more states, used to get the information concerning the frame
to be transferred and initialize the read address pointer. Transition from its
Idle state occurs when the FIFO is no longer empty or when a frame is in
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queue to be transferred. After that, we get that frame’s information, ini-
tialize the address pointer and then proceed with transferring of the frame’s
data, which is done until the m2t frame done signal is asserted high, thus
indicating that the last byte is to be transmitted. After that, we have two
paths: either proceed to fetch the next frame’s information and begin its
transmission, or return to the Idle state.

4.2.3.7 Process

The Process module is the final component of our design and essentially
the module where all the frame processing occurs. Contained within this
module’s architecture is an instruction Read Only Memory (ROM) holding
all the instructions/commands of the program we want to execute, a frame
substitution BRAM and a FSM that takes care of all the necessary actions
needed to perform the task at hand. Its interface is presented in table 4.7,
while its complete block diagram is given in figure 4.11. The FSM, all its
states and their respective transitions are presented in figure 4.12.

The command ROM has a capacity of 1024 commands, each command
35 bits long, making it a total size of 35 kB.

Besides the command ROM, the Process module also contains a frame
substitution BRAM capable of storing a total of 1024 10 bit words (total size
10 kB) used to substitute frame numbers. Let us justify this BRAM’s exis-
tence. Since we already mentioned that once a frame has been processed it is
no longer acquired from data memory Rx BRAM but from data memory processed
BRAM, the frame number provided with the command executed is valid only
for the first time a command on the specified frame is executed, since the pro-
cessed frame, if processed again, is in a new position in data memory processed,
no longer corresponding to the information found in received frames’ in-
formation BRAM. An example might help to make things clearer: let’s
suppose that the first command we execute is an Add on frame number
five. Data memory processed is going to store its first frame, since it is the
first frame we are processing, thus making subsequent commands on frame
five actually referring to frame one in data memory processed. To counter
that, we introduce the aforementioned frame substitution BRAM, which is
used by the Process module to check if the loaded command’s frame has
already been processed and if so, substitutes it with its new FrameNumber.
This BRAM’s operation is accomplished by using the FrameNumber provided
with each command as an address pointer and the data corresponding to
this address being indication whether the frame has already been processed
or not and if so, its substitute FrameNumber. The tenth bit of each word
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is used as the frame already processed indication while the remaining nine
bits give the substitute frame number. This information is provided by the
Control module upon each frame’s first completed command through the
processed frame info and processed frame done inputs, used at the BRAM’s
data input and write enable ports respectively. To sum up, each time a new
command is fetched by the command BRAM, the FrameNumber provided
is set as the read address in the frame substitution BRAM and the latter’s
output is checked; if that frame has already been processed, the requested
frame number (provided by the req frame number output port) is set as the
subtitute frame number provided. If not, req frame number is set as the
FrameNumber provided by the command. This functionality is achieved by
a multiplexer controlled by the frame already processed signal mentioned
above.

We are now going to give a detailed presentation of the FSM and its
transitions. The Process module is initially in Idle state and remains there
until start process input port is asserted high from Control. This signals
that the first frame has been written in memory and so we can begin the
processing.

Processing begins by initially fetching the next command from the in-
struction BRAM (FSM states Fetch IR 1,2 and 3) and then decoding (Decode
state) its different parts according to table 4.6.

Table 4.6: Command bit decomposition

Signal Bits
Opcode 34 . . . 32

FrameNumber 31 . . . 22
Address1 21 . . . 11
Address2 10 . . . 0

Data 7 . . . 0

In the same state (Decode) it checks if the frame to be processed has been
received or not and if not, it remains in that state until it has. Moreover,
checks are conducted concerning the command’s opcode and only if the
frame is in memory and the opcode is one of the supported ones are we
allowed to continue on to the next state. Should a command contain an
opcode unknown to Process, we transition to the Error Opcode state where
we store the command’s address in a register and fetch the next one.

If all checks are passed, the actual frame is requested from the Control
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module by using the req frame (active high) and req frame number outputs
in Req Frame 1 state. After that we move to Req Frame 2 state, where we
wait while Control sends back the frame’s length. This is necessary in order
to check if the byte address(es) in the command are actually in range for
the requested frame (for example a command could mean to Add to byte
number 100 in frame 5, while frame 5 only has 64 bytes; this would be
erroneous).

A single situation is an exception to the norm when we are in Req Frame 2
state: if the command decoded is a Transfer command and the frame has
already been processed, this means that Control can begin the frame’s trans-
mission to the LL without the need to check the frame’s length, so we transit
to the Transfer state where we activate the transfer output (active high) to
Control and then fetch the next instruction.

Back to the norm now, when the frame length is provided through input
port frame len (and its validity indicated by frame len valid input port), we
transit to the Check Frame Length state, in order to perform the aforemen-
tioned check. If the byte requested by the command is out of range, this
is of course an error, so we transit to the Error Byte state reporting once
again the erroneous command’s address and fetching the next.

If the check is passed however, we have a selection of states to transit
to: if we have any of the commands Add, Change, Remove or Report and
the frame has not been processed before or if the command is a Compare or
a Transfer, we transit to Send OK state, where we acknowledge to Control
that all checks have passed and we can proceed with data transmission after
M2P initializes all its memory address pointers as we have already described
in the respective part of Control. After that we move on to the Start state
and await for regular frame transmission to commence from Control; this
is indicated through input port begin transmission. After that we move on
to Sof state, afterwards Data state and when receiving done input port is
asserted high and the command under execution does not refer to the last
byte of the frame (indicated by internal active high signal last byte action),
we move to Eof state. After the Eof state, we fetch the next command to be
processed, and so return to the beginning of this description, or if a Transfer
command for a non processed frame was executed, the FSM’s current state
transitions to Pre Transfer state and then to Transfer state, in order to
commence the frame’s tranmission after we have succesfully written all the
frame’s data in data memory processed and data memory Tx BRAMs.

Back to Check Frame Length state, if the frame has already been pro-
cessed and the requested command is a Change or a Report, or if we have
an Exchange command, regardless of the frame having already been pro-
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cessed or not, we move to Change Byte 1, Req Min 1 or Req Max 1 states
respectively.

When a Change command is executed and the frame has been pro-
cessed before, transition to the Change Byte 1 state occurs and then to
Change Byte 2 and 3 states where we directly write the specific byte of data
provided with the command to the BRAM in Control. After that execution
of the command has finished and we fetch the next one.

When a Report command is in progress on an already processed frame,
transition to Req Min 1 state occurs, followed by subsequent transitions to
Req Min 2, 3, 4 and 5 states, to end up in state Report, where after that
execution is completed and Process fetches the next command.

When an Exchange command is loaded, the FSM moves from the Check -
Frame Length state to Req Max 1 state and subsequently to Req Max 2, 3,
4, Get Max and Store Max states, in order to get the data residing in byte
number Address2 of the currently processed frame from Control. If the frame
is being processed for the first time (frame already processed=0) then we
go to Start state. If it has been processed before, we move to Req Min 1
(and then 2, 3, 4), Get Min and Store Min states, to get the data from
byte number Address2 of the frame. After that we reuse the Change Byte
states (1 to 3) also used in Change commands to alter the data of byte
number Address1 in memory and after that we continue on to respective
Change Byte 4, 5 and 6 states to alter the data of byte number Address2.
After that the command has finished execution and we proceed to fetch the
next instruction.

Finishing up with the normal state transition description, a careful look
at figure 4.12 will show that once in Start state transitions can occur to
command-specific states depending on a couple of parameters; these pa-
rameters being detection of whether the command is referring to the first
byte of data in the frame (indicated by the first byte action internal signal)
and the command’s opcode. If in Sof or Data states, similar transitions
to command-specific states can occur when the requested byte address is
reached; by checking the command’s opcode yet again, we determine the
target transition state.

When an Add command is in execution, we will transit to the Add state;
Change, Remove, Report and Exchange 1 are the target transition states for
each of the respective commands. While in these states, if the receiving done
input port is equal to 1, transition to Eof state is dictated; if last byte action
signal is equal to 1, this means the command was referring to the last byte
of the frame and thus has finished processing that frame, so we need to fetch
the next command by transitioning to Fetch IR 1 state; finally, if none of
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these conditions apply, we return to Data state. When in Exchange 1 state,
if the second byte to be exchanged is right after the first, we transition to
Exchange 2 state and then the same conditions as mentioned above apply.
Finally, when in Report state, if the frame has already been processed,
we have finished this command’s execution and proceed to fetch the next
command.

That wraps up the description of all the frame transitions of the FSM in
the Process module.

Next we are going to explain some of the inner workings of the module
concerning actual execution of the commands, besides of the state transitions
we have just described.

Inbound data from the Control module (M2P part) is output back to
Control (to the P2M part) as it is received. When a command alters frame
data — the commands that do that are Add, Change, Exchange and Remove
— the required functionality of outputting proper data is accomplished by
the use of the small chain of multiplexers depicted in the lower left part of
the module’s block diagram (see figure 4.11). To have a better understand-
ing of the way each command operates on frame data and the way these
multiplexers come into play, we shall present a detailed look at each of the
commands.

Starting with the Add command, we constantly check the current byte
number (provided by input port byte number), in order to identify when the
position in which we are going to add data to the frame comes. Then, we out-
put the Data provided by the command and after that we keep transmitting
frame data as it is received from Control. To achieve that, we use the two
multiplexers controlled by signals delay sel and change mux sel. The first
multiplexer selects whether we want the actual data or the data delayed by
one clock cycle, using a simple byte register. The second multiplexer is used
to select the incoming frame data or the data provided by the command.
Therefore, when the position to add data to the frame has been reached,
change mux sel is set to 1, thus selecting to output the Data part of the com-
mand and in the next clock cycle, it is set to 0, outputting the frame data.
However, should we just output frame data, we would actually just replace
data in position Address1 and not Add to that position, since by using this
multiplexer alone we would miss the byte located at position Address1. To
counter that, the second multiplexer is used, the one controlled by delay sel.
This signal is set to 0 during an Add command, thus outputting regular
frame data as it is received. Once Address1 has passed though, it is set
to 1, thus outputting delayed (by one clock cycle) frame data; if of course
Address1 is number 1 — the first byte —, then delay sel is set to 1 from the
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beginning of the execution. This allows for proper data insertion — as an
Add command dictates — without missing any byte of data. During an Add
command, the last multiplexer in the data flow following the aforementioned
two multiplexers, has its select signal (perform exchange) constantly set to
0.

In a Change command, data is output in a regular fashion, until byte
number equal to Address1 arrives. To change that byte’s data to the Data
part of the command, we use the same chain of multiplexers yet again.
This time, delay sel and perform exchange are constantly set to 0, while
change mux sel is set to 1 only when we receive byte from Address1, in
order to accomplish the desired change. After that, change mux sel is once
again set to 0 and transmission resumes in a regular fashion.

In a Compare command, frame data is transmitted back to Control as
it is received, so all the multiplexer select signals we have mentioned above
remain set to 0, while a simple process constantly checks incoming data
against the Data part of the Compare command. If a match is found, the
byte number is stored in a register for later use.

When executing an Exchange command, the most complex command
of our instruction set, additional steps are required. To begin with, data
from positions Address1 and Address2 of the frame being processed are
stored in a respective register each, conveniently named address1 data and
address2 data. After that is done, a multiplexer controlled by internal signal
exchange mux sel controls which register to read from (0 for the first, 1
for the second). This multiplexer’s output is sent to the last multiplexer
mentioned above, the one controlled by perform exchange. The latter signal
is set to 0 while the byte number is equal to neither Address1 or Address2.
When it is equal to either of the aforementioned values, it is set to 1 thus
outputting the data contained in the registers we have mentioned just above.
The other two multiplexers’ select signals are constantly set to 0 during an
Exchange command.

During a Remove command, these multiplexers are not used at all, so
all their select signals are constantly 0; this is because the removal of a
particular byte of data is accomplished through the deactivation of the
p2m wr addr inc output port when that byte number is reached; this output
port controls the address pointer incrementation in the P2M part of control,
along with the write enabling of the memories controlled by P2M, so when
it is deactivated no writing occurs, effectively ignoring the byte of data we
want to remove.

While executing a Report or a Transfer command, no alteration of data
occurs and frame data is transmitted back to Control as is, so once again,
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all multiplexer select signals are set to 0.

Table 4.7: Process Unit Interface

Name Type Length
clk in 1

reset in 1 Module
data i in 8

Control

byte number in 11
frame len in 11

frame len valid in 1
begin transmission in 1
last frame received in 10

start process in 1
receiving done in 1

req frame out 1
req frame number out 10

req byte out 1
req byte number out 11

wr req byte out 1
wr req byte now out 1
frame check ok out 1

increase frame len out 1
p2m wr addr inc out 1

increase processed frame num out 1
processed frame info in 11
processed frame done in 1
select memory block out 1

just need byte out 1
instr code out 3
transfer out 1
data o out 8

frame sent done out 1
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Figure 4.11: Process Block Diagram
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4.2.3.8 Top Level

The Top Level is the module that encapsulates our design (see figure 4.13),
connecting all the different modules of the Network Processor into a single
component, allowing for easy integration in other designs.

Figure 4.13: Top Level Block Diagram

The way the Top Level operates is pretty straightforward; it simply
acts as a container for the different modules we have already mentioned,
instantiating them and providing connections between them. Its interface is
given in table 4.8.

Table 4.8: Top Level Interface

Name Type Length
clk in 1

reset in 1 Module
dst rdy n o out 1

Rx FIFO

src rdy n i in 1
sof n i in 1
eof n i in 1
data i in 8

src rdy n o out 1

Tx FIFO
sof n o out 1
eof n o out 1
data o out 8
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4.2.4 Device Utilization

The complete design, when downloaded on the target V5 FPGA board, has
the device utilization presented in table 4.9.

Table 4.9: Device Utilization Summary

Resource Number used Percent used
BRAMs 71 out of 148 47
DSPs 3 out of 64 4

Slice LUTs 2248 out of 69120 4

The clock speed at which our design operates is at a minimum 125 MHz,
thus allowing for proper Gigabit Ethernet operation.
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Verification & Performance

5.1 Hardware used

5.1.1 Virtex-5 Board

The FPGA board we used to implement our design in, was the Xilinx
V5LX110T Evaluation Platform. It employs a Xilinx Virtex-5 XC5VLX110T
FPGA chip, of the Virtex-5 LX family.

Among the features of this board are:

• Memory support for Flash, Compact Flash, SRAM and DDR

• Tri-speed Ethernet Physical layer interface supporting MII, GMII, RGMII

and SGMII

• USB host and peripheral controllers

• Programmable system clock generator

• Stereo AC97 codec

• RS-232 port

• 16x2 character LCD screen

5.1.2 Ethernet Category 5e crossover cable

In order to connect to the FPGA board, we used an Ethernet Category 5e
crossover cable, capable of supporting Gigabit Ethernet. A crossover cable
was used instead of a normal patch cable, since we are connected directly to
the FPGA’s network adapter, without the interference of a switch or a hub.

56
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5.1.3 PC Workstation

The PC we used during the design’s development and verification was a
standard PC, since no special requirements are needed by our design. The
only requirement was a network adapter and our workstation was equipped
with a Gigabit Ethernet one, thus allowing us to operate at 1000 Mbit/s
Ethernet speed, the maximum supported by our design.

5.1.4 Connectivity

The connectivity needed to download the design to the FPGA board was
to power on the board, connect one end of the Xilinx programmer cable
provided with the board to a free USB port on our workstation and the
other end on the board itself.

In order to verify the design’s operation we connected the Ethernet cable
to our workstation’s network adapter and to the board’s Ethernet port.

5.2 Software used during Development

5.2.1 Xilinx ISE

Xilinx’s ISE is the base software used during the development of our archi-
tecture. It is a full featured front-to-back FPGA design solution and offers
tools for HDL synthesis and simulation, implementation and device fitting.

Using it we created all the code, simulated our design in behavioral
and post-place and route simulation modes and performed miscellaneous
adjustments and optimizations in order to improve the functionality of our
design.

5.2.2 Xilinx CoreGenerator

Xilinx’s CoreGenerator tool is a tool used for instantiating different compo-
nents. It offers an easy to use GUI, providing an efficient way to generate the
desired components and customize them in a variety of ways. We used it to
generate all the BRAMs, the ROM, the FIFO and of course the V5 TEMAC we
used in our design.

5.2.3 Xilinx EDK

Xilinx’s EDK is another tool we used during development. It offers an
easy way to customize a design and download it to the specified FPGA
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board, taking care of the design’s final synthesis, optimization, mapping
and placing for the target device specified. After that, it generates the
bitstream describing the design and uses it to configure the FPGA board.

5.3 Software used during Verification

Initially the design’s verification was accomplished by detailed simulation in
both behavioral and post-place and route modes. For further verification,
we used the following tools:

5.3.1 Xilinx ChipScope Pro

ChipScope Pro was used after downloading the design to the FPGA board,
in order to have a detailed look of the way it operated under real world
conditions and not just on simulation. It offered an outstanding way to
detect possible errors and debug our design, since by using it to view user-
specific signals, we managed to detect some errors and correct them, thus
making the design operate flawlessly.

5.3.2 Wireshark

Wireshark is an open source network protocol analyzer application with a
GUI. It can be used for network troubleshooting, analysis, software and
communications protocol development. It is more widely known with its
original name, Ethereal, but was renamed due to trademark issues. It has
a rich feature set which includes the following:

• Deep inspection of hundreds of protocols

• Live capture and offline analysis

• Standard three-pane packet browser

• Multi-platform: supports Linux, Windows, Mac OS X, Solaris, FreeBSD
etc.

• Captured data can be browsed via GUI or via terminal (through tshark
utility)

• Powerful display filters

• Rich VoIP analysis
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• Read/write many different capture file formats

• Capture files compressed with gzip can be decompressed on the fly

• Live data can be read from a selection of network types, including but
not limited to, Ethernet, IEEE 802.11, Bluetooth, loopback etc.

• Decryption support for many protocols, including IPsec, Kerberos,
SSL/TLS etc.

• Colouring rules can be applied to the packet list to provide quick
analysis

• Exporting of captured data to XML, PostScript, CSV or plain text

We used Wireshark to verify that the commands we had loaded into the
instruction memory of our design had correctly altered the specified frames.

5.3.3 packEth

packEth is an open source packet generator with a GUI which allows the
user to send randomly generated or detailed custom packets of data over a
selection of network interfaces. It was originally developed for Linux and
later ported to Windows through use of the GTK+ library. Its feature list
includes:

• Selection of network interface to use

• Creation and sending of any single Ethernet packet; supported proto-
cols are:

– Ethernet II, Ethernet 802.3, Ethernet 802.1q, QinQ

– ARP, IPv4, user defined network layer payload

– UDP, TCP, ICMP, IGMP, user defined transport layer payload

– RTP (payload with options to send sin wave of any frequency for
G.711)

• Sending a sequence of packets, allowing for customization of:

– delay between packets

– number of packets to send

– speed at which to send — option for maximum speed, thus ap-
proaching the theoretical boundary
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– parameters can be altered while sending packets

• User can save configuration to a file

packEth was used to construct the frames we sent to the design, once it
was downloaded on the FPGA board.

5.4 Verification Process

After downloading the design on the Virtex-5 board and connecting the
Ethernet cable from our workstation to the board, we use Wireshark and
packEth to verify the correct operation of our design.

Specifically, we start Wireshark and begin capturing frames on our work-
station’s Gigabit Ethernet network adapter. After that, packEth is initial-
ized to generate the frame(s) that we want to send to our design. Once the
frame(s) are configured and the interface is set to our workstation’s network
adapter, we begin transferring frames to the board. Back in Wireshark, we
can see the outgoing frames as we send them along to the board and accord-
ing to the commands loaded in the instruction memory we can notice the
incoming processed frames. In that way we can verify whether the program
loaded in our instruction memory performs correctly or not.

5.4.1 Commands loaded in Memory

In the following section we are going to provide a list with all the commands
we have loaded in the instruction memory during the final verification pro-
cess.
Change 1, 1, 0A
Change 1, 3, 0B
Change 1, 15, 0C
Report 1, 1
Report 1, 3
Report 1, 14
Add 1, 1, 09
Add 1, 3, 09
Add 1, 15, 09
Add 1, 16, 09
Compare 1, 99
Compare 1, 09
Remove 1, 1



5.4. VERIFICATION PROCESS 61

Remove 1, 3
Remove 1, 15
Exchange 1, 1, 15
Exchange 1, 3, 8
Transfer 1

Add 2, 31, 0A
Add 2, 31, 0B
Add 2, 31, 0C
Add 2, 31, 0D
Add 2, 31, 0E
Add 2, 31, 0F
Add 2, 31, 10
Add 2, 31, 11
Add 2, 31, 12
Add 2, 31, 13
Change 2, 1, FF
Transfer 2

Change 3, 7, 0A
Change 3, 8, 0C
Change 3, 9, 0D
Change 3, 10, 0E
Change 3, 11, 0F
Change 3, 12, 0B
Transfer 3

Change 6, 1, 0F
Exchange 6, 13, 14
Transfer 6

Add 10, 15, AA
Add 10, 16, BB
Add 10, 17, CC
Remove 10, 15
Remove 10, 16
Remove 10, 15
Transfer 10

Exchange 16, 13, 14
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Add 16, 15, FF
Add 16, 16, EE
Exchange 16, 15, 16
Change 16, 15, 00
Change 16, 16, 11
Transfer 16

5.5 Performance

5.5.1 Loopback mode benchmarks

As we have already mentioned, the example design generated by Xilinx’s
CoreGenerator tool during the generation of the V5 TEMAC implements a
simple loopback function, where data is received from the Rx LL FIFO, passed
through an ASM module and then sent through the Tx LL FIFO back to the
board’s MAC.

We have conducted a simple benchmark with our design, in loopback
mode, by not executing any commands in the Process module and sim-
ply sending frame data from data memory rx to data memory tx and then
through the ASM module to the Tx LL FIFO. This was done in order to get
a better estimate on the maximum bandwidth our design can deliver, since
when executing commands we cannot easily get such a reading. In table 5.1
we show the numbers we have measured from both the example design gen-
erated by CoreGenerator and our own design. During the aforementioned
benchmark, we sent frames of maximum allowed size (1518 bytes, including
all the Ethernet frame parts) for a transmission time equal to 15, 20 and
30 seconds, using packEth and monitored the results using Wireshark. The
numbers we have gathered were provided using Wireshark’s statistics utility.

The total bandwidth provided by each design includes the download and
the upload rates of the board (in Mbit/s), while for a clearer view of the
board’s actual data throughput capability, we also provide the upload rate
alone.

5.5.2 Design Latency and Throughput

5.5.2.1 Latency

In table 5.2 we present a comprehensive look at the latency of each of the
commands supported by our design’s instruction set. These latencies are
dependent on a number of factors, these being firstly the command itself,



5.5. PERFORMANCE 63

Table 5.1: Loopback mode benchmarks (T is for total, U for upload)

Time (secs) 15 20 30

Example Design
394.077 T 337.998 T 257.837 T
197.473 U 170.783 U 139.207 U

Our Design
430.154 T 399.802 T 418.614 T
215.391 U 200.220 U 209.379 U

since each command follows a different path of execution, secondly whether
the frame has already been processed or not and finally the number of bytes
in the frame. However, there is a common latency shared among the in-
structions, that being the instruction fetching (3 clock cycles), its decoding
(1 clock cycle) and the memory address pointer initialization in Control (7
clock cycles). Besides that common latency, each of the commands, accord-
ing to the aforementioned three factors, has a different special latency.

Table 5.2: Instruction Set Latency (N is the number of bytes in a frame)

Instruction
Latency (clock cycles)

Frame not processed Frame processed
Add 16+(N+1) 16+(N+1)

Change 16+N 15
Compare 16+N 16+N
Exchange 21+N 32
Remove 16+N 16+N
Report 16+N 18

Transfer 18+N 12

After examining table 5.2, we can notice that Add and Remove have the
same latency regardless of whether the frame has already been processed or
not. That is because they both follow the same execution in either case,
since when adding or removing a byte to/from the frame we need to shift
the remaining bytes of the frame in memory, in order to keep a correct rep-
resentation of the frame. The same applies to the Compare command, since
we need to compare every byte in the frame with the one in the command,
regardless of the frame having being processed already or not.

The overall worst case latency of our design is the one of the Add com-
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mand, which is equal to 16+(N+1) clock cyles. Assuming the maximum
frame size one Add command takes a total of 12.248 µs, since we have a
clock cycle equal to 8 ns. An indication of our design’s performance is the
VoIP application: in such an application, which is quite intolerant of lagging
performances, a latency up to 150 ms is considered high quality; so our de-
sign is capable of performing a total of approximately 12247 Adds while still
delivering a high quality VoIP performance.

5.5.2.2 Throughput

The maximum throughput our design can provide is equal to the number of
frames it can transfer in a second. Assuming a frame of maximum size (1518
bytes), the time required for our design to transfer a non-processed frame
is equal to (18+1514 clock cycles) · 8 ns=1532 clock cycles · 8 ns=12256 ns.
So our design has a throughput of approximately 81.592 KPPS (thousand
packets/frames per second) when dealing with non-processed frames. In the
aforementioned equation, we have used 1514 instead of 1518 bytes, because
we do not deal with the 4 bytes in the FCS field of the frame, since it is
stripped by the V5 TEMAC wrapper before being passed to our design. It
is also automatically calculated and added to the frame outside our design,
once again by the wrapper.
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Future Work

The design described in this thesis is complete and performs quite efficiently.
Yet there is always room for improvements.

Memory management could be optimized, since modifications could al-
low for better memory allocation.

The instruction set currently implemented by this design could be ex-
tended to support even more commands/instructions, in order to make the
NP more complete and allowing it to offer more services and functions.

The Process module could be separated into different engines, each
specifically tasked with the execution of a certain set of operations, instead
of an all-in-one implementation as the one provided in this design. The con-
trol module could also be divided into separate parts, thus creating more
pipeline stages and possibly providing improvements in speed and handling
of all the operations.

A way for commands to be inserted or updated in a more dynamic man-
ner would really offer a great improvement, since now, everytime the pro-
gram loaded in the instruction memory is to be changed, the instruction
memory’s .coe file has to be altered, the memory has to be regenerated us-
ing the CoreGenerator tool and the whole design needs to be updated before
downloaded again to the board. Such an improvement would offer a major
gain in deployment time. This dynamic manner could very well be through
the RS232 port of the board. This could lead to better error handling, since
it could allow for error correction by on the fly altering the erroneous com-
mand if the user can input a correct byte number or opcode. Furthermore,
by adding RS232 support, we could use the serial port to immediately view
the results of commands such as Compare and Report, along with all the
erroneous command addresses, through a terminal program.
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Finally, software could be developed to take advantage of the board’s
MicroBlaze processor; by doing so, parts of the design could be executed in
software providing parallel execution with the hardware modules and thus
could provide better efficiency and performance.
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