
Spatial partitioning algorithms evaluation in

multidimensional peer-to-peer networks

Panagiotis Ainalis

29-8-2009



Contents

1 Introduction 1

1.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 History of peer-to-peer networks . . . . . . . . . . . . . . . . . 2

1.2.1 First P2P-generation: Server-client . . . . . . . . . . . 2
1.2.2 Second P2P-Generation: Decentralization . . . . . . . 3
1.2.3 Third P2P-Generation: Indirect and encrypted . . . . . 3
1.2.4 The fourth P2P-Generation: Streams over P2P . . . . 4

1.3 Classi�cation . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.4 De�nition of the problem and our approach . . . . . . . . . . 5

2 Related work 7

2.1 Distributed Hash Tables . . . . . . . . . . . . . . . . . . . . . 7
2.1.1 CAN . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
2.1.2 Chord . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.1.3 Pastry . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.4 Tapestry . . . . . . . . . . . . . . . . . . . . . . . . . . 11
2.1.5 P-Grid . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2 Range queries . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2.1 Space-�lling curves . . . . . . . . . . . . . . . . . . . . 14
2.2.2 SCRAP-MURK . . . . . . . . . . . . . . . . . . . . . . 15

2.2.2.1 SCRAP . . . . . . . . . . . . . . . . . . . . . 16
2.2.2.2 MURK . . . . . . . . . . . . . . . . . . . . . 17

2.2.3 Range queries on P-Grid . . . . . . . . . . . . . . . . . 17
2.3 Peer-to-peer network simulators . . . . . . . . . . . . . . . . . 19

2.3.1 DHTsim . . . . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 P2PSim . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.3.3 PeerSim . . . . . . . . . . . . . . . . . . . . . . . . . . 20

1



3 Evaluating Protocols for load balancing 22

3.1 Datasets/Querysets . . . . . . . . . . . . . . . . . . . . . . . . 22
3.1.1 Dataset and Queryset - Uniform distribution . . . . . . 23
3.1.2 Dataset and Queryset - Hypersphere . . . . . . . . . . 23
3.1.3 Dataset and Queryset - Greece . . . . . . . . . . . . . 24

3.2 Rangesim++ Framework . . . . . . . . . . . . . . . . . . . . . 24
3.2.1 Cycle-based vs Event-driven simulations . . . . . . . . 24
3.2.2 Rangesim++ design structure . . . . . . . . . . . . . . 25
3.2.3 Classes & Description . . . . . . . . . . . . . . . . . . 26
3.2.4 Simulation process . . . . . . . . . . . . . . . . . . . . 27

3.3 Network construction algorithms with load balancing . . . . . 29

4 Analysis 37

4.1 Metrics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37
4.2 Overall comparison . . . . . . . . . . . . . . . . . . . . . . . . 38
4.3 Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.3.1 Scalability of Volume-balancing protocol . . . . . . . . 42
4.3.2 Scalability of Data-balancing protocol . . . . . . . . . . 43
4.3.3 Scalability of Best-neighbor protocol . . . . . . . . . . 44
4.3.4 Scalability of Until-target protocol . . . . . . . . . . . 45
4.3.5 Scalability of Random-walks protocol . . . . . . . . . . 46
4.3.6 Scalability of Pure-random protocol . . . . . . . . . . . 47

5 Conclusion 48

2



List of Figures

2.1 Simple Can topology. Source: [1] . . . . . . . . . . . . . . . . 9
2.2 Simple Chord topology. Source: [1] . . . . . . . . . . . . . . . 10
2.3 A simple P-Grid trie structure and its graph. Source: Wikipedia 14
2.4 Z-order space �lling curve applied over a two-dimensional unit

square. Source: [1] . . . . . . . . . . . . . . . . . . . . . . . . 15
2.5 The Hilbert curve. Source: [1] . . . . . . . . . . . . . . . . . . 16
2.6 Min-Max traversal algorithm. Source: [1] . . . . . . . . . . . . 18
2.7 Shower algorithm. Source: [1] . . . . . . . . . . . . . . . . . . 19

3.1 An example P-Grid structure and its routing table . . . . . . . 30
3.2 Volume balance algorithm . . . . . . . . . . . . . . . . . . . . 31
3.3 Data balance algorithm . . . . . . . . . . . . . . . . . . . . . . 32
3.4 Best neighbor algorithm . . . . . . . . . . . . . . . . . . . . . 33
3.5 Until target algorithm . . . . . . . . . . . . . . . . . . . . . . 34
3.6 Random-walks algorithm . . . . . . . . . . . . . . . . . . . . . 35
3.7 Random-walks algorithm . . . . . . . . . . . . . . . . . . . . . 36

3



Abstract

Over the Internet today, there has been great interest in rising Peer-to-Peer
network overlays as they provide several bene�ts in comparison to the tra-
ditional client-server model. A major drawback of current p2p protocols is
the uneven distribution of load balance among peers which results in a lower
performance of the network itself. Our research focuses on ameliorating this
problem by studying algorithms, used throughout the construction of the
network, which aim towards superior data balance. We anticipate that these
algorithms will result in an enhanced distribution of load, with better overall
network performance. The protocol of choice for our experiments is P-Grid
whose main characteristics are desirable. Our results highlight the impor-
tance of e�cient network construction algorithms which lead to the ful�lment
of certain criteria and metrics that related research has introduced.



Chapter 1

Introduction

1.1 Introduction

Throughout the last years, there has been a scienti�c turn towards distributed
models and especially p2p technologies. A pure P2P network does not have
the notion of clients or servers but only equal peer nodes that simultaneously
function as both "clients" and "servers" to the other nodes on the network.
This model of network arrangement di�ers from the client-server model where
communication is usually to and from a central server. Such networks are
useful for many purposes. Sharing data of any content (such as audio, video),
realtime data (such as telephony tra�c) and many other types of resources.
Each node provides access to its computing and networking resources in
exchange to participating to the p2p community.

The advantages of p2p networks are numerous. All peers provide re-
sources, including bandwidth, storage space, and computing power. As the
number of peers increases, the total capacity of the system also increases in
contrast with the client-server architecture where a �xed set of servers exists
and adding more clients results in slower data transfer for all users. The dis-
tributed nature of P2P networks also increases robustness in case of failures
by replicating data over multiple peers, or by enabling peers to �nd the data
without relying on a centralized index server. In the latter case, there is no
single point of failure in the system.
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1.2 History of peer-to-peer networks

Peer-to-peer technologies started development due to the �le-sharing needs
of Internet users. Therefore, early research was evolved around structures
and algorithms designed to satisfy these needs.

1.2.1 First P2P-generation: Server-client

The �rst generation of peer-to-peer networks resembles the traditional client-
server model regarding its organization. The system is responsible for con-
trolling tra�c among peers. Ths servers use a centralized database to store
directories of the shared �les of users and are required to update them ac-
cordingly. In this model, the procedure of searching involves sending queries
to the server which replies back with a list of peers ful�lling his criteria
and facilitating the connection in order to start downloading the �les. The
Server-client system is simple and e�cient because the central directory is
constantly updated and all users have to register to use the program. On the
downside, there is only a single point of entry to the system, which might
result in the collapse of the network, in the case of an attack for example.
Another drawback noticed in these networks is the need of powerful servers
and network bandwidth, in order to be able to manage and satisfy the queries
of a massive number of users.

Famous peer-to-peer server-client-protocols are:

� Audiogalaxy1 - Service ended in 2002.

� DirectConnect++2

� Napster3 - The �rst famous p2p network, now changed to a fee-based
service.

� Soulseek4

� TinyP2P5 - The World's Smallest P2P Application, it is written in 15
lines of Python code.

1http://www.audiogalaxy.com/
2http://dcplusplus.sourceforge.net/
3http://free.napster.com/
4http://www.slsknet.org/
5http://www.freedom-to-tinker.com/tinyp2p.html
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1.2.2 Second P2P-Generation: Decentralization

After the legal implications Napster had due to its content, the community
focused on a network without a cetral index server and Gnutella6 was born.
Gnutella's attempt to invent the 'all-equal' scheme experienced severe prob-
lems from bottlenecks as the network grew from disappointed Napster users.
FastTrack7 solved this problem by giving some users the role of super nodes.
By selecting some more powerful nodes to be indexing nodes, with lower
capacity ndoes branching o� from them, FastTrack allowed for a network
that could scale to a bigger network size. Gnutella and any new peer-to-peer
network adopted this technique as it allows for large and e�cient networks
without centralization.

The second generation includes distributed hash tables (DHTs), which
help solve the scalability problem by selecting several nodes to index certain
hashes (which in turn are used to identify �les), allowing for fast and e�cient
searching for all instances of a �le on the network. The main drawback of
this technology is that it cannot support keyword searching, as opposed to
exact-match searching.

1.2.3 Third P2P-Generation: Indirect and encrypted

The third generation of peer-to-peer networks involves the addition of anonymity
features built in. The FSF (Free Software Foundation) created GNUnet8, a
promising peer-to-peer network which aims to provide maximum security
and anonymity in contrast to most popular networks. Other attempts of
such networks are Freenet9, Entropy10, ANts P2P11.

A technique to maintain anonymity is to forward all packets through other
users' clients in order to make it more di�cult to identify who is downloading
or who is o�ering �les. In Addition, most of these programs use strong
encryption to avoid packet sni�ng. Another technique involves the "friend-
to-friend" networks which only allow trusted users to connect to the user's
computer, then each node can forward requests and �les between its own
friends providing extra anonymity.

6http://gnufu.net/
7http://developer.berlios.de/projects/gift-fasttrack/
8http://gnunet.org/
9http://freenetproject.org/
10http://www.anonymous-p2p.org/entropy.html
11http://antsp2p.sourceforge.net/
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Third generation networks have not reached mass usage due to their com-
plicated implementations requiring too much overhead in their anonymity
features, making them too slow or hard to use. For example, in GNUnet's
implementation there are no points of entry into the network available in
public locations as opposed to other networks. The procedure an entering
node requires to make is, scanning the Internet using heuristics and sta-
tistical analysis tools in order to "hit" a host already inside the GNUnet
network which helps to initiate the bootstrap process. This implementation
obviously aims to superior anonymity of the GNUnet users but this extreme
overhead needed looks less appealing to the vast proportion of peer-to-peer
users nowadays.

1.2.4 The fourth P2P-Generation: Streams over P2P

Apart from the traditional �le sharing there are services that send streams
instead of �les over a P2P network. Therefore, one can hear radio and watch
television without any server involved (the streaming media is distributed
over a P2P network). It is important that instead of a tree-like network
structure, a swarming technology known from BitTorrent12 is used. Best
examples are IPTV13, Miro14, Joost15.

1.3 Classi�cation

Based on how the nodes in the overlay16 network are linked to each other we
classify the p2p networks as unstructured and structured:

Unstructured: An unstructured P2P network is formed when the over-
lay links are established arbitrarily. Such networks can be easily con-
structed as a new peer that wants to join the network can copy existing

12http://www.bittorrent.com/
13http://www.itu.int/ITU-T/IPTV/
14http://www.getmiro.com/
15http://www.joost.com/
16An overlay network is a computer network which is built on top of another network.

Nodes in the overlay can be thought of as being connected by virtual or logical links, each
of which corresponds to a path, perhaps through many physical links, in the underlying
network. For example, many peer-to-peer networks are overlay networks because they run
on top of the Internet. Dial-up Internet is an overlay upon the telephone network.
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links of another node and then form its own links over time. In an un-
structured P2P network, if a peer wants to �nd a desired piece of data
in the network, the query has to be �ooded through the network to �nd
as many peers as possible that share the data. The main disadvantage
with such networks is that the queries may not always be resolved.
Popular content is likely to be available at several peers and any peer
searching for it is likely to �nd the same thing. But if a peer is looking
for rare data shared by only a few other peers, then it is highly unlikely
that search will be successful. Since there is no correlation between a
peer and the content managed by it, there is no guarantee that �ooding
will �nd a peer that has the desired data. Flooding also causes a high
amount of signaling tra�c in the network and hence such networks
typically have very poor search e�ciency. Most of the popular P2P
networks such as Gnutella and FastTrack are unstructured.

Structured: Structured P2P network employ a globally consistent protocol
to ensure that any node can e�ciently route a search to some peer that
has the desired �le, even if the �le is extremely rare. Such a guarantee
necessitates a more structured pattern of overlay links. By far the
most common type of structured P2P network is the distributed hash
table (DHT), in which a variant of consistent hashing is used to assign
ownership of each �le to a particular peer, in a way analogous to a
traditional hash table's assignment of each key to a particular array
slot. Some well known DHTs are P-Grid, Pastry, Tapestry, CAN, and
Chord

1.4 De�nition of the problem and our approach

Blanas et al.[1], present a verbose comparison of the most promising peer-
to-peer protocols regarding range queries; that is, P-Grid, Can, Murk, VBI-
trees. In two dimensions, P-Grid shows the best maximum throughput17

results as the network size scales. A major drawback in the P-Grid-Z topol-
ogy, which the authors implemented, is that volume-balanced selection re-
sults in uneven data distribution, with 10% of the peers storing 70�85% of
the dataset. As might be expected, uneven data balancing induces uneven

17Maximum throughput de�nition is explained in Chapter 3
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distribution of query accesses (that is, the percentage of query processes in
which a peer participates).

The purpose of this work is to propose and study algorithms that lead to a
more �fair� data distribution among peers while evaluating their performance
using metrics like maximum throughput or latency. We anticipate that a
more uniform distribution of datakeys in peers will result in increased network
performance and scalability overall, especially during range queries. Our
analysis occurs in two phases; a) during network construction, and, b) during
range queries conducted after the construction is completed.

DHTs have shown great performance in equality searches, but the sci-
enti�c work in range queries, especially in multiple dimensions, is far from
complete. Many peer-to-peer protocols have been proposed in literature to
solve the aforementioned challenges with ambiguous results. P-Grid's desir-
able features and, additionally, the encouraging results from related work,
make it an ideal candidate to study the problem.

We studied the proposed algorithms and the results are interesting. None
of the proposed solutions is the best in all aspects, each one has pros and cons
depending mainly on the uniformity of datakeys distribution in the volume
space. Some of our algorithms (random-walks) perform extremely well in
uniform environments, whereas the cause of poor performance they present
in non-uniform environments is not yet understood.
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Chapter 2

Related work

2.1 Distributed Hash Tables

The design of Gnutella was the �rst attempt to create a decentralized in-
dexing scheme using a peer-to-peer network. Each node of this network
maintains a list of neighbors which uses in order to route messages across
the peers. When a query is instantiated at a peer, the query is forwarded to
every node in the neighbor list, recursively in the subsequent nodes, which
requires a linear bandwidth to the number of total network peers. Addi-
tionally, the search requests have high probability to be dropped before the
whole network has been contacted, therefore the results cannot be reliable.
Unfortunately, this �ooding scheme is the only valid way to locate data in
networks with such infrastructure.

Extensive research has led to to structured networks which employ a
globally consistent protocol to ensure that any node can e�ciently route a
search to some peer that has the desired data. Such a guarantee necessitates
a more structured pattern of overlay links. The most common type of such
networks are DHTs ( Distributed Hash Tables ) which provide a mapping of
keys onto values on extremely large, Internet-scale systems. DHTs are a class
of decentralized distributed systems that provide a lookup service similar to
a hash table: pairs are stored in the DHT, and any participating node can
e�ciently retrieve the value associated with a given name. 1

1It can be observed that the DHT interface follows the conventions used for retrieving
and storing data in regular hash tables and that the distribution of data to the appropriate
peers is completely transparent to the application.
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Responsibility for maintaining the mapping from names to values is dis-
tributed among the nodes, in such a way that a change in the set of partic-
ipants causes a minimal amount of disruption. This allows DHTs to scale
to extremely large numbers of nodes and to handle continual node arrivals,
departures, and failures. DHTs form an infrastructure that can be used to
build more complex services, such as distributed �le systems, peer-to-peer �le
sharing and content distribution systems, cooperative web caching, multicast,
anycast, domain name services, and instant messaging. Notable distributed
networks that use DHTs include BitTorrent, Yacy2 or CCDN3 (Coral Content
Distribution Network). Distributed hash tables use a more structured key
based routing in order to attain both the decentralization of Gnutella and
Freenet, and the e�ciency and guaranteed results of Napster. One drawback
is that, like Freenet, DHTs only directly support exact-match search, rather
than keyword search, although that functionality can be layered on top of a
DHT.

DHTs characteristically emphasize the following properties:

Decentralization: the nodes collectivelly form the system without any cen-
tral coordination.

Scalability: the system should function e�ciently even with thousands or
millions of nodes.

Fault-tolerance: the system should be reliable even with nodes continu-
ously joining, leaving, and failing.

2.1.1 CAN

In [4], Ratnasamy introduces the Content Addressable Network (CAN) which
is a distributed, decentralized P2P infrastructure that provides hash table
functionality on an Internet-like scale. CAN was one of the original four dis-
tributed hash table proposals, introduced concurrently with Chord, Pastry,
and Tapestry.

Like other distributed hash tables, CAN is designed to be scalable, fault
tolerant, and self-organizing. The architectural design is a virtual multi-
dimensional Cartesian coordinate space on a multi-torus. This d-dimensional

2http://yacy.net/
3http://www.coralcdn.org/
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Figure 2.1: Simple Can topology. Source: [1]

coordinate space is a virtual logical address, completely independent of the
physical location and physical connectivity of the peers. The entire coor-
dinate space is dynamically partitioned among all the peers (N number of
peers) in the system such that every peer possesses its individual, distinct
zone within the overall space. A CAN peer maintains a routing table that
holds the IP address and virtual coordinate zone of each of its neighbor co-
ordinates. A peer routes a message towards its destination using a simple
greedy forwarding to the neighbor peer that is closest to the destination
coordinates.

Typical CAN topology: the shaded region is the responsibility area of the
peer and the arrows indicate the peers which the shaded peer knows.

2.1.2 Chord

Using the Chord lookup protocol, node keys are arranged in a circle. The
circle cannot have more than 2m nodes. The ring can have ids/keys ranging
from 0 to 2m = 1.

Fig. 1 : Typical Chord topology: the shaded region is the responsibility
area of the shaded peer and the arrows indicate the entries in the �nger table.

IDs and keys are assigned an m-bit identi�er using what is known as

9



Figure 2.2: Simple Chord topology. Source: [1]

consistent hashing. The SHA-1 algorithm is the base hashing function for
consistent hashing. The consistent hashing is integral to the probability of
the robustness and performance because both keys and IDs (IP addresses) are
uniformly distributed and in the same identi�er space. Consistent hashing
is also necessary to let nodes join and leave the network without disrupting
the network.

Each node has a successor and a predecessor. The successor to a node or
key is the next node in the identi�er circle when you move clockwise. The
predecessor of a node or key is the next node in the id circle when you move
counter-clockwise. If there is a node for each possible ID, the successor of
node 2 is node 3, and the predecessor of node 1 is node 0; however, normally
there are holes in the sequence, so, for example, the successor of node 153
may be node 167 (and nodes from 154 to 166 will not exist); in this case, the
predecessor of node 167 will be node 153. Since the successor (or predecessor)
node may disappear from the network (because of failure or departure), each
node records a whole segment of the circle adjacent to it, i.e. the K nodes
preceding it and the K nodes following it. One successor and predecessor are
kept in a list to maintain a high probability that the successor and predecessor
pointers actually point to the correct nodes after possible failure or departure
of the initial successor or predecessor.
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2.1.3 Pastry

Although the distributed hash table functionality of Pastry is almost identical
to other DHTs, what sets it apart is the routing overlay network built on top
of the DHT concept. This allows Pastry to realize the scalability and fault
tolerance of other networks, while reducing the overall cost of routing a packet
from one node to another by avoiding the need to �ood packets. Because the
routing metric is supplied by an external program based on the IP address
of the target node, the metric can be easily switched to shortest hop count,
lowest latency, highest bandwidth, or even a general combination of metrics.

The hash table's keyspace is taken to be circular, like the keyspace in the
Chord system, and node IDs are 128-bit unsigned integers representing posi-
tion in the circular keyspace. Node IDs are chosen randomly and uniformly
so peers who are adjacent in node ID are geographically diverse. The routing
overlay network is formed on top of the hash table by each peer discovering
and exchanging state information consisting of a list of leaf nodes, a neigh-
borhood list, and a routing table. The leaf node list consists of the L

2
closest

peers by node ID in each direction around the circle.
In addition to the leaf nodes there is also the neighborhood list. This

represents the M closest peers in terms of the routing metric. Although it is
not used directly in the routing algorithm, the neighborhood list is used for
maintaining locality principals in the routing table.

Finally there is the routing table itself. It contains one entry for each
address block assigned to it. To form the address blocks, the 128-bit key is
divided up into digits with each digit being b bits long, yielding a numbering
system with base 2b. This partitions the addresses into distinct levels from
the viewpoint of the client, with level 0 representing a zero-digit common
pre�x between two addresses, level 1 a one-digit common pre�x, and so on.
The routing table contains the address of the closest known peer for each
possible digit at each address level, except for the digit that belongs to the
peer itself at that particular level.

2.1.4 Tapestry

The �rst generation of peer-to-peer applications, including Napster and Gnutella,
had restricting limitations such as a central directory for Napster and scoped
broadcast queries for Gnutella limiting scalability. To address these problems
a second generation of P2P applications were developed including Tapestry.
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This overlay implements a basic key-based routing mechanism. This allows
for deterministic routing of messages and adaptation to node failures in the
overlay network. Tapestry is an extensible infrastructure that provides de-
centralized object location and routing focusing on e�ciency and minimizing
message latency. This is achieved since Tapestry constructs locally optimal
routing tables from initialization and maintains them in order to reduce rout-
ing stretch. Furthermore, Tapestry allows object distribution determination
according to the needs of a given application. Similarly Tapestry allows
applications to implement multicasting in the overlay network.

Each node is assigned a unique nodeID uniformly distributed in a large
identi�er space. Tapestry uses SHA-1 to produce a 160-bit identi�er space
represented by a 40 digit hex key. Application speci�c endpoints GUID's
are similarly assigned unique identi�ers. NodeID's and GUID's are roughly
evenly distributed in the overlay network with each node storing several dif-
ferent ID's. From experiments it is shown that Tapestry e�ciency increases
with network size so multiple applications sharing the same overlay network
increases e�ciency. To di�erentiate between applications a unique applica-
tion identi�er is used.

2.1.5 P-Grid

Our work focuses on the P-Grid protocol, a structured DHT which was in-
troduced by Karl Aberer. P-Grid is a self-organizing structured peer-to-peer
system, which can accommodate arbitrary key distributions (and hence sup-
port lexicographic key ordering and range queries), still providing storage
load-balancing and e�cient search by using randomized routing. Its salient
features are:

� Good storage load-balancing despite arbitrary load-distribution over
the key-space.

� Range queries can be naturally supported and e�ciently processed on
P-Grid because of P-Grid abstracts a trie-structure, and supports a
rather arbitrary distribution of keys as observed in real life scenarios.

� A gossip primitive based update mechanism for keeping replicated con-
tent up-to-date.

� Easy merger of multiple P-Grids, and hence decentralized boostrapping
of the P-Grid network.
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� Query-adaptive caching is easy to realize on P-Grid to provice query
load-balancing where peers have restricted capacity.

Overview: P-Grid abstracts a trie and resolves queries based on pre�x
matching. The actual topology has no hierarchy. Queries are resolved
by matching pre�xes. This also determines the choice of routing table
entries. Each peer, for each level of the trie, maintains autonomously
routing entries chosed randomly from the complementary sub-trees. In
fact, multiple entries are maintained for each level at each peer to pro-
vide fault-tolerance (as well as potentially for query-load management).
For diverse reasons including fault-tolerance andn load-balancing, mul-
tiple peers are responsible for each leaf node in the P-Grid tree. These
are called replicas. The replica peers maintain an independent replica
sub-network and uses gossip based communication to keep the replica
group up-to-date. The redundancy in both the replication of key-space
partitions as well as the routing network together is called structural
replication.

In P-Grid, the data items hash to m-bit identi�ers. Each peer is assigned
all identi�ers which begin with a given pre�x, in such a way that each peer
is responsible for a partition of the entire data space. For routing purposes,
each peer maintains a link to a peer in the other side of the virtual binary
tree, for every bit of its pre�x. Lookup messages are forwarded to the peer
which has the longest common pre�x with the destination.

2.2 Range queries

Most P2P systems support only simple lookup queries. However, many new
applications, such as photo sharing or massive multiplayer games, would
greatly bene�t from support for multidimensional range queries. Important
research has been done in the �eld of range queries, also known as orthogonal
range search queries. According to de�nition, a range query is supposed to
return all keys in an interval de�ned by 2 bounds. Range queries are non-
trivial search predicates for structured overlay networks. The Distributed
Hash Tables we have described ful�l several desirable criteria such as time
e�cience in key searching, due to the logarithmic number of messages routed
in order to retrieve information. Nevertheless, they also yield a major disad-
vantage. The uniform hashing functions they use to achieve probabilistically
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Figure 2.3: A simple P-Grid trie structure and its graph. Source: Wikipedia

good load balance is disastrous for range queries. Range queries are based on
spatial locality which is however destroyed when keys are uniformly hashed
before entering the network. As a results, DHTs cannot handle natively this
kind of queries.

Numerous solutions have been proposed to solve this problem. These
solutions tend to keep the good characteristics that DHTs have established
while experimenting on novel network infrastructures and algorithms which
can handle the additional complexity of range queries.

Most notable are illustrated in following sections.

2.2.1 Space-�lling curves

Space-�lling curves or Peano curves are curves whose ranges contain the
entire 2-dimensional unit square, or the entire 3-dimensional unit cube, or
for more dimensions the entire k-dimensional unit hypercube. Intuitively, a
"continuous curve" in the 2-dimensional plane or in the 3-dimensional space
can be thought of as the "path of a continuously moving point". A curve
(with endpoints) is a continuous function whose domain is the unit interval
[0,1]. Space-�lling curves are a valuable tool for mapping multi-dimensional
data down to a single dimension.
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Figure 2.4: Z-order space �lling curve applied over a two-dimensional unit
square. Source: [1]

Z-ordering: One of the most often used space-�lling curves in computer sci-
ence is z-ordering. The z-value of a point in multidimensions is simply
calculated by interleaving the binary representations of its coordinate
values. Once the data are sorted into this ordering, any one-dimensional
data structure can be used such as binary search trees, B-trees, skip
lists or (with low signi�cant bits truncated) hash tables.

Hilbert-curve: A major drawback of z-order curves is that it does not pre-
serve spatial locality. A more satisfying curve on this matter is the
hilbert curve shown in the �gure below. On the downside, the algorith-
mic complexity of mapping K-dimensional points to 1 dimension using
the Hilbert curve makes z-ordering usually a more desirable choice.

2.2.2 SCRAP-MURK

Ganesan et al.[3], present two popular spatial-database solutions, and com-
pare them experimentally in a peer-to-peer environment. The �rst solution,
named SCRAP, uses space-�lling curves with range partitioning. The second
solution, named MURK, uses kd-trees.
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Figure 2.5: The Hilbert curve. Source: [1]

2.2.2.1 SCRAP

The SCRAP approach uses two steps to partition the data:
a) All data is usually mapped down into a single dimension using a space-

�lling curve, either z-ordering or the Hilbert curve.4

b) The single-dimensional data is then ranged-partitioned across the avail-
able nodes. To make things clearer, let's suppose each data gets converted
into a z-value through z-ordering. After the range-partitioning each node
manages data in one contiguous range of z values. It is easy to maintain the
range-partitioning through churn: When a new node enters the network, it
splits the range of an existing node; when a node leaves, one of its neighbors
takes over its range5 .

This approach has shown positive results in experiments such as good
locality and load balancing between the participant nodes. However, a major
problem of space-�lling curves is that its 1-dimensional range may actually
map to peers irrelevant to the initial query. A desirable characteristic would
be to con�ne the number of peers only to those which contribute to the initial
search query, and SCRAP does not ful�l this criteria e�ciently.

4It should be noted that this mapping is bijective: every 2-dimensional point maps to
a unique single-dimensional value and vice versa.

5In the real world nodes leave the network randomly. In order to avoid data loss,
replication of data may need to be implemented.
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2.2.2.2 MURK

MURK partitions the data directly in the high-dimensional space, breaking
up the data space into hypercubes (or �rectangles�), with each peer managing
one hypercube. This is achieved using a kd-tree structure whose leaves corre-
spond to a hypercube stored by a peer. This kind of partitioning looks similar
to an existing peer-to-peer system called CAN[4] with one decisive di�erence:
In CAN, a new node that enters the network splits an existing node's data
space equally, whereas, in MURK, the data load is splitted equally.

In the MURK network, each peer knows his neighboring peers in all
dimensions, that is, the peers that share a boundary with this peer. For
greater e�cience, skip pointers have been used which is a random list of
�extra� neighbors per peer obtained from techniques such as random walks.
When a query is initialized at peer P, the following procedure will happen:
the query is sent to the neighboring peer that is minimizing the distance to
the query range centroid, where the distance from a peer P to a hypercube R
is de�ned as the minimum Manhattan distance from any point in P's area to
any point in R. Once the query reaches a relevant peer, the query is �ooded
to all relevant neighbors recursively.

The experiments, performed in [1], show that the MURK topology, al-
though maintaining good results regarding the rate of responsiveness in
queries, does not scale well as network size increases while exhibiting reduced
maximum throughput in contrast to P-Grid.

2.2.3 Range queries on P-Grid

P-Grid partitions the key-space in a granularity adaptive to the road at
that part of the key-space. Consequently, it is possible to realize a P-Grid
overlay network where each peer has similar storage load even for non-uniform
load distributions. This network provably provides as e�cient search of keys
as traditional Distributed Hash Tables do. In contrast to P-Grid, DHTs
work e�ciently only for uniform load-distributions. Hence we can use a
lexicographic order preserving function, i.e.,

∨
s1,s2 : s1< s2 ⇒ h(s1) <

h(s2) , instead of uniform hashing to generate the keys, and still realize a
load-balanced P-Grid network which supports e�cient search of exact keys.
Moreover, because of the preservation of lexicographic ordering, range queries
can be done e�ciently and precisely on P-Grid. The trie structure of P-Grid
allows di�erent range query strategies, processed serially or parallely, trading
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Figure 2.6: Min-Max traversal algorithm. Source: [1]

o� message overheads and query resolution latency.
Datta et al.[2]describe two classes of algorithms for queries: the min-

max traversal algorithm which is sequential and the shower algorithm which
parallelizes the execution of range queries. In our protocol we have used the
shower algorithm.

In the Min-Max traversal algorithm, queries can be enacted sequen-
tially by starting at the node holding data items belonging to the one bound
of the range and forwarding the query to a peer responsible for the next
partition of the key space, until a peer responsible for the other bound of the
range is encountered. There are two problems using this approach. First of
all, the underlying network does not always have the information belonging
to the next neighboring range partition. The second problem is that the
sequential nature of the algorithm creates a possible point of failure in case
one of the intermediate peers fails.

In the Shower algorithm, the initial query is forwarded in parallel to
peers who have a part of the query result. and then this query is forwarded
recursively to the other partitions in the interval using each peer's routing
table.In the course of forwarding, it is possible that the query is forwarded to
a peer responsible for keys outside the range. However, it is guaranteed that
this peer will forward the range query back to a key-space partition within
the range. This technique gives faster results and less susceptible to node
failures but it requires more message exchanges than the min-max algorithm
in average.
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Figure 2.7: Shower algorithm. Source: [1]

2.3 Peer-to-peer network simulators

Most peer-to-peer networks are consisted of thousands of heterogeneous com-
puters, each one with di�erent bandwidth, computing power and typically
peers join and leave randomly. There exist global research platforms that
support the development of new network technologies such as PlanetLab.
PlanetLab is a group of computers throughout the Internet available as a
testbed for computer networking and distributed systems research but it has
some disadvantages. First of all, it is composed of (at best) a few hundred
nodes , a number not large enough to test the scalability of a protocol and
secondly, the nodes are rather powerful and homogeneous with good network
connectivity which is not representative of the Internet community.

Consequently, experiments and evaluation of networks and algorithms
can be a tedious and error-prone process. The techniques used to avoid
this, include analytical solutions, simulators and experiments with the ac-
tual system. There is no single widely accepted framework for performing
experiments on peer-to-peer networks; each individual solution has its own
strengths and weaknesses and often focuses on di�erent aspects of the prob-
lem.

2.3.1 DHTsim

DHTSim6 is a discrete event simulator for structured overlays, speci�cally
DHTs. It is intended as a basis for teaching the implementation of DHT

6http://www.informatics.sussex.ac.uk/users/ianw/teach/dist-sys/dht-sim-0.3.tgz
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protocols, and as such it does not include much functionality for extract-
ing statistics. RPC is implemented as discrete event based message passing
within the JVM. Identi�ers are assigned randomly. It does not support dis-
tributed simulation, nor does it allow for nodes to fail. Simulator scenarios
are speci�ed using a simple script �le. Churn can be simulated with two
script commands which allow a number of nodes to join over a period of time
or a number of randomly selected nodes to leave over a period of time. It is
written in Java.

2.3.2 P2PSim

P2PSim7 is a discrete event packet level simulator that can simulate struc-
tured overlays only. It contains implementations of six candidate protocols:
Chord, Accordion, Koorde, Kelips, Tapestry and Kademlia.

Event scripts can be setup to simulate churn but neither the churn nor
the node failure statistics are exhaustive. P2PSim can simulate node failures
and both iterative and recursive lookups are supported. Node IDs are gen-
erated by consistent 160-bit SHA-1 hashing. Distributed simulation, cross
tra�c and massive �uctuations of bandwidth are not supported. The C++
API documentation is poor, but implementation of other protocols can be
built by extending certain base classes. Custom event generators can also be
implemented by extending a base class. The P2PSim code suggests support
for a wide range of underlying network topologies such as end-to-end time
graph, G2 graph, GT-ITM, random graph and Euclidean graph, which is the
most commonly used. P2PSim developers have tested its scalability with a
3,000- node Euclidean ConstantFailureModel topology.

2.3.3 PeerSim

PeerSim is an event-based P2P simulator written in Java, partly developed
in the BISON project8 and released under the GPL open source licence. It
is designed speci�cally for epidemic protocols with very high scalability and
support for dynamicity. It can be used to simulate both structured and un-
structured overlays. Since it is exclusively focused on extreme performance
simulation at the network overlay level of abstraction, it does not regard

7http://pdos.csail.mit.edu/p2psim/
8http://www.cs.unibo.it/bison
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any overheads and details of the underlying communication network, such as
TCP/IP stack, latencies, etc. Its extendable and pluggable component char-
acteristics allow almost all prede�ned entities in PeerSim to be customised or
replaced with user-de�ned entities. For �exible con�guration, it uses a plain
ASCII �le composed of key-value pairs.

Rangesim++: Rangesim++ is a simulator based on PeerSim that sup-
ports cycle-driven and event-based simulations. It is implemented by
V. Samoladas in C++ , which greatly improves the time of experi-
ments (about 100 times faster than its predecessor which is written in
Java). We have used this simulator to get our experimental results for
our proposed algorithms. Rangesim++ is described more thoroughly
in the next chapter.
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Chapter 3

Evaluating Protocols for load

balancing

In order to evaluate the performance of our proposed algorithms, we reimple-
mented some parts of the Rangesim simulator in order to satisfy our needs.
In this chapter, we will describe the input data for the simulations, the struc-
ture of Rangesim and the alterations we had to make and lastly an extensive
discussion on our proposed algorithms.

3.1 Datasets/Querysets

Uniform: This dataset is composed of points distributed uniformly in the
whole volume space.

Hypersphere: This dataset contains points distributed on a hypersphere.

Greece: This dataset was generated from real geographic data retrieved
from R-treeportal1. It contains random points distributed throughout
the road network of Greece.

For each of these datasets, three querysets were created respectively contain-
ing 30000 queries. Each query returns approximately 50 keys as an answer.
A query is a rectangle, centered around a randomly chosen point of the

1http://www.rtreeportal.org/
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dataset. Thus, the distribution of query ranges is similar to the distribu-
tion of datasets. Graphical representations (generated using gnuplot) of the
datasets and querysets we used are shown below:

3.1.1 Dataset and Queryset - Uniform distribution

3.1.2 Dataset and Queryset - Hypersphere
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3.1.3 Dataset and Queryset - Greece

3.2 Rangesim++ Framework

Rangesim++ is the C++ ported version of Rangesim[1], which is respectively
based on PeerSim. It supports some DHTs, including a version of the P-Grid
protocol which we used as a basis in our experiments. This framework o�ers
a valuable API with features which are illustrated below:

� A command line parser to feed input to the simulator

� A convenient logging library to export information and results.

� Data point, Range and Queryset classes for Multi Dimensional Range
Search.

� Statistical and random number generation facilities.

3.2.1 Cycle-based vs Event-driven simulations

In synchronous analysis, we consider that all peers of the network run inde-
pendently and operate in cycles (unit time) using a global clock . A process
can be enacted from any peer in the network and at each cycle, peers may
receive messages from other peers as part of this process. After processing
an incoming message, the peer produces a number of outgoing messages to
continue the process. In synchronous analysis, the processing capabilities
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of every peer are considered homogeneous and contention between peers for
resources is not taken into account. This quite simple model is studied by
cycle-based simulations. Intuitively, when simulating queries, we keep the
network in a �xed state (nodes cannot join or leave the network) and run
the processes sequentially. It is a valuable tool to extract information and
evaluate algorithms in a straightfoward manner avoiding a more complex
environment.

On the other hand, asynchronous analysis takes into account the conges-
tive and competetive nature of realistic networks. In real peer-to-peer net-
works, peers can have heterogeneous networking and processing capabilities.
Thus, their behavior becomes much harder to study and usually requires a
fully detailed event-driven simulation. In our experiments we used the cycle-
driven approach, as it was adequate for evaluating the performance metrics
of our algorithms.

3.2.2 Rangesim++ design structure

The Rangesim++ framework makes use of abstract factories to instantiate
the protocol wanted for simulation. A simple con�guration �le is the argu-
ment to the simulator, which takes cares of all input needed to process the
experiments. Through this factory design pattern and the �exibility it o�ers,
we can avoid hard coding and thus, bene�t from lower recompilation time
and more elegant code structure.

The con�guration �le expects the following input:

� Network protocol to be initialized.

� De�nition of datasets/querysets.

� Network size (total number of peers joined before queries start). Mul-
tiple network sizes can be de�ned.

� Number of repetition for the experiment.

� Network construction algorithm and topology.

� Reports path to extract the results.

� Type of results.
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3.2.3 Classes & Description

Simulation: The Simulation class contains all information needed to control
each experiment. Its data structures contain:

� One vector of Datakeys and one vector of QuerySets.

� A vector named data_index to de�ne a permutation over the Datakeys
vector which takes place during network construction.2

� A pointer to the root node of the trie.

� A vector containing pointers to all peers of the network.

� Miscellaneous information on network size, topology and statistical
tools.

TrieNode: The TrieNode class instantiates nodes in a P-Grid trie. Each node
in a trie has information on:

� A bitstring denoting its path from the root.

� A Range corresponding to the volume space this node occupies.

� Pointers to parent and child nodes.

� Number of peers and Datakeys the node's subtree contains (valuable
for extracting statistics).

Peer: Each peer is associated with a leaf ot the network trie.It contains:

� A pointer to the corresponding node.

� The uid.

� A vector of pointers to neighbors (routing table).

� Statistical variables regarding received messages, sent messages during
build construction and the number of times this peer has been chosen
as boostrap peer (diagnostic purposes).

2The keys coresponding to each node n of the trie are exactly the keys "pointed at"
by range [n.dlow, n.dhigh) of data_index. The author of the framework decided not to
sort the Datakeys vector directly because it is too expensive computationally to swap
Datakeys.
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Process: A Process object is responsible for executing the P-Grid-Z protocol
(P-Grid with z-order space-�lling curves) of search for a query, starting
from the initial peer. It contains a queue of Message objects used for
communication throughout the query process.

Message: A Message is sent in the context of a process. It contains a recip-
ient peer, a receipt time and an lpre�x (used by the shower protocol).

JoinProcess: A JoinProcess object is enacted each time a new peer is trying
to join the virtual network. JoinProcesses are responsible for the con-
struction of the network by routing messages through peers using the
construction algorithms we propose. It contains information of the ID
of the bootstrap peer and the target which the entering peer is trying
to locate.

JoinMessage: A JoinMessage is sent in the context of a JoinProcess. Like
a query message, it contains a recipient peer, a receipt time and an
lpre�x.

Statistics: Statistics collection and reporting facilities.

3.2.4 Simulation process

The original implementation of the P-Grid protocol in Rangesim++ was
consisted of three parts:

1. Network construction: First of all, the whole trie starts constructing
until meeting the requirements of the experiment (splitting the trie
until the required number of nodes is reached), using either volume-
balance selection or data-balance selection. In the next step, the peers
were added to the network and the routing tables for each peer were
generated. When the network construction is �nished, the algorithm
for permutating the Datakeys in the data_index vector is executed.
The network construction described, is executed in an automatic way.

2. Queries execution: All search queries get executed sequentially, each
one enacted at a randomly selected peer. For each query, a process is
instantiated which opens the statistic �les and takes care of the search
and feeds the logger classes.
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3. Reports extraction: In this �nal stage, all information regarding the
performance and metrics of the search queries are exported to the equiv-
alent �les and the simulation is �nalized.

This implementation focuses on the stable state of the system, not on the
trasient state where new peers join or existing peers leave the network. This
work focuses on the transient state which involves the network construction.
In order to evaluate the construction algorithms, we had to reimplement the
network construction phase using features of the P-Grid protocol and make
the needed alterations on the reporting facilities, which resulted at the so-
called PGridJoin protocol. In PGridJoin the steps needed to construct the
network are the following:

1. We made the assumption that the network starts with two peers split-
ting the whole data space in half, each peer having the other one in its
routing table.

2. Peers start joining sequentially using the same procedure. When a new
peer wants to join, a split point is chosen (depending on the spatial-
partioning scheme).

3. A random peer already in the network is chosen to initialize the Join-
Process.

4. JoinMessages are exchanged between peers, using the P-Grid routing
algorithms, until the peer containing the split point is found.

5. When this peer is found, we make use of the techniques proposed in
this thesis to reach the �nal peer(called mate).

6. The trienode is now splitted, the mate peer becomes the left child and
the new peer becomes the right child.

7. They alter their volume space ranges, with each one containing half the
original space.

8. The new peer copies the mate's routing table and each one adds the
other one as a new neighbor at the last level.

9. Data_index is updated appropriately.
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In the 8th step of this procedure, a problem is observed. When a new peer
joins the network, he copies the mate's routing table, therefore, the oldest
peers in the network are likely to appear more often in the routing tables
of peers. Experiments prove that these peers su�er great load during the
network construction and even bigger load during searches, thereupon, we
considered it meaningless to include these results in our thesis. P-Grid has a
way around these, using randomized algorithms. Every time two peers meet
(we do not care why these peers may meet at this point), they exchange their
neighbor lists, therefore randomizing, in some scale, the routing tables.

We have implemented an exchange algorithm that takes place in the con-
struction phase when peers exchange JoinMessages. Initially, both peers
(sender and recipient) add their neighbors in a common list. In accordance
to P-Grid protocol rules, we check sequentially whether a peer is capable
of being a neighbor at each bit-level of the sender and we create a second
list of candidate peers for each level. The server chooses randomly a peer
from this list and substitutes it into the respective level of this routing ta-
ble. The same procedure occurs to the receiver. We anticipate that, even
though the simulations now demand more time to complete (about 7 more
hours for each topology experiment), our approach is algorithmically fast,
accurate and more importantly it is algorithmically trivial to be applied to
a real P-Grid network. In the subsequent experiments, shown in chapter 4,
we have seen remarkable improvement concerning our metrics.

3.3 Network construction algorithms with load

balancing

We used the Rangesim simulator to run experiments on 6 di�erent network
contstruction algorithms. The logic behind these proposed algorithms is
straightforward. Each entering peer wants to locate and split a heavily loaded
peer while keeping the cost as low as possible. We measure the cost in terms
of latency, maximum throughput and message tra�c.

Below, we include some terminology and a brief description of the six
algorithms we implemented:

� Boostrap: Bootstrap is the initial peer known to the entering node
which initiates the JoinProcess. The bootstrap peer is used to pick
at random a point in the volume space (as the traditional volume-
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Figure 3.1: An example P-Grid structure and its routing table

balancing protocol does) and then routes JoinMessages until the peer
responsible for this point is discovered.

� Mate: The node that the entering peer will �nally select and split its
area.

� Intermediary: The Bootstrap peer is used to pick at random a point
in the volume space; the peer responsible for this point will be called
Intermediary. In volume-balanced and data-balanced selection the In-
termediary node is the Mate. Throughout the rest protocols, we will
use the Intermediary to expand the JoinProcess and acquire informa-
tion on other peers' data load. In the �nal step, a Mate will be chosen,
one that contains the maximum number of datakeys, and he will be
splitted.

Volume-balance: An entering node picks uniformly at random a point in
the multidimensional search space, and then selects the node already
in the network which is responsible for this point. Practically, the
Boostrap peer picks randomly this point and through JoinMessages
the node that contains this point is �nally found, becomes the Mate
and gets splitted. Thus, existing nodes are selected for splitting with
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Figure 3.2: Volume balance algorithm

probability proportional to the volume of their assigned space partition.
This strategy tends to equalize the volume of space assigned to nodes,
but possibly not the load among peers.

Data-balance: An entering node chooses uniformly at random a point from
the indexed dataset and then selects the node responsible for this
point. Practically, the Boostrap peer picks randomly this point and
through JoinMessages the node that contains this point is �nally found,
becomes the Mate and gets splitted. Thus, existing nodes are selected
for splitting with probability proportional to the amount of data they
store. This strategy tends to equalize the amount of data assigned to
nodes, but is up to inquiries whether it equalizes load as well. Imple-
menting this strategy in practice is not straightforward, as the whole
indexed dataset (or its distribution) is not accessible to the boostrap
peer.
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Figure 3.3: Data balance algorithm
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Figure 3.4: Best neighbor algorithm

Best-neighbor: An entering node picks uniformly at random a point in the
multidimensional search space, and then selects the node responsible
for this point. Practically, the Boostrap peer picks randomly this point
and routes the new peer towards the node that contains the point,
the Intermediary. This Intermediary node will exchange JoinMessages
with all neighbors and will discover the most data loaded neighbor,
which becomes the Mate and will get splitted accordingly. The reason
we implemented this algorithm is to locate peers that exist frequently
on other peers' routing tables and, therefore, receive a high number of
messages. Although there is no proven correlation between the number
of datakeys in a node and how frequently this node appears in other
peers' routing tables, we anticipate that this method will ameliorate the
load on these peers. The advantage of this method is that it improves
the volume-balanced algorithm by adding the cost of an extra hop in
terms of latency (all neighbors receive messages in parallel).

Until-target: An entering node picks uniformly at random a point in the
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Figure 3.5: Until target algorithm

multidimensional search space, and then selects the node responsible
for this point. Practically, the Boostrap peer picks randomly this point
and routes the new peer towards the node that contains the point, the
Intermediary. During this routing procedure, the JoinProcess will keep
track of intersected peers and keep information on the data keys on
each peer. Therefore, the Intermediary peer will have knowledge of the
most data loaded peer during the routing process. This peer becomes
the Mate and will get splitted accordingly. The logic behind this algo-
rithm is simple: we utilize the messages (which are exchanged anyway)
during the routing phase in order to obtain information simultaneously,
therefore eliminating any extra cost.

Random-walks: An entering node picks uniformly at random a point in the
multidimensional search space, and then selects the node responsible
for this point. Practically, the Boostrap peer picks randomly this point
and routes the new peer towards the node that contains the point,
the Intermediary. The search for an e�cient Mate happens in two
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Figure 3.6: Random-walks algorithm

phases; Phase 1 involves the routing until the Intermediate peer is
found and phase 2 involves the random walks using log2n number of
steps. The JoinProcess keeps track of the data keys on each peer it
traverses, during both of these phases. As soon as the random walks are
�nished, the most data loaded peer, the Mate, is chosen and splitted.
The idea is to acquire extra information of the network while requiring
approximately 2log2n steps to complete the JoinProcess. We hope that
the bene�ts of the information gained during the random walks will
outweight the disadvantage of doubling the number of messages needed
during the JoinProcess.

Pure-random: During our elementary experiments, the random-walks al-
gorithm presented good results in uniform environments. Therefore
our instinct has led us to research further the nature of this algorithm.
An entering node picks uniformly at random a point in the multidi-
mensional search space, and then selects the node responsible for this
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Figure 3.7: Random-walks algorithm

point. Practically, the Boostrap peer picks randomly this point and
routes the new peer towards the node that contains the point, the In-
termediary. From the Intermediary, a network traversal will start with
log2n steps (n denotes the network size) using random walks. During
this traversal, the JoinProcess will keep track of intersected peers and
keep information on the data keys on each peer. When the random
walks are completed the most data loaded peer, the Mate, is chosen
and splitted.
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Chapter 4

Analysis

In this chapter we will describe the metrics we used to evaluate the perfor-
mance of our proposed algorithms. Next, we will show the graphs with the
results of our experiments and our comments on these.

4.1 Metrics

1. Fairness Index1: The primary criteria which evalutes the e�ciency of
a network topology is the �amount of fairness� among the peers. The
Fairness Index is a method to quantify the distribution of datakeys
between the network peers and show a metric based on the fairness of

it. De�nition: f(x) =
(
∑n

i=1 xi)
2

n
∑n

i=1 x
2
i

, 0 ≤ f(x) ≤ 1. Equal distribution of

datakeys among peers achieces index of 1. Intuitively, the higher the
fairness index, the more fair the algorithm is.

2. Average number of JoinMessages per JoinProcess needed, in order to
complete the entry of a new peer.

3. Maximum number of JoinMessages for a JoinProcess per network topol-
ogy.

4. Λmax [1] during network construction.

5. Latency: Number of network hops performed by the search.

1http://www.cs.wustl.edu/~jain/papers/ftp/fairness.pdf
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6. Λmax [1] during search, using messages received and sent from the
most overloaded peer.

7. Average message tra�c during search processes.

Blanas et al.[1], introduce a new metric called maximum throughput (Λmax
) . Their experimental results show that network tra�c is inadequate as a
network performance criteria and their proposal is to replace it by this new
metric. Maximum throughput is the maximum rate of queries that a P2P
network can sustain without any peer becoming overloaded. An appealing
feature of maximum throughput is that it only depends on the distribution
of message tra�c among peers, and does not require expensive computation
(such as detailed event- driven simulation).

De�nition: Λmax = 1
maxjµj

, Intuitively, maxjµj is the average per-query

processing time of the �most loaded� peer in the network. In our implemen-
tation, JoinProcesses and Processes are considered queries and we computate
the maximum throughput as: Λmax = Number of processes / Number of
messages (received or sent ) of the most overloaded peer.

4.2 Overall comparison

The following two tables provide to the reader an easier way to compare
the results. The values are taken from the graphical results and correspond
to a network of 50000 peers, which we feel that is a representative sample.
There 3 values for each algorithm with correspond to each dataset: Greece,
Hypersphere and Uniform respectively.

� Fairness index

� Average number of messages per JoinProcess

� Maximum number of messages per JoinProcess

� Λmax during network construction
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Fairness Index Avg. Messages Max. Messages Λmax

Volume 0.07 - 0.06 - 0.65 6.94 - 6.94 - 6.94 16 - 15 - 16 67.9 - 62.9 - 61.34
Data 0.54 - 0.67 - 0.67 7.42 - 7.57 - 6.96 18 - 17 - 16 26.1 - 29.0 - 58.00

BestNeighbor 0.17 - 0.18 - 0.90 7.17 - 6.65 - 8.03 17 - 17 - 16 8.93 - 8.02 - 14.84
UntilTarget 0.26 - 0.34 - 0.87 5.20 - 4.49 - 7.02 16 - 17 - 15 13.9 - 11.8 - 63.93
Pure-Random 0.38 - 0.67 - 0.93 19.6 - 18.8 - 21.7 32 - 32 - 31 4.46 - 4.06 - 94.52
Random-walks 0.54 - 0.82 - 0.92 19.6 - 18.8 - 21.7 32 - 32 - 32 4.40 - 4.01 - 87.87

� Latency

� Λmax during queries based on received messages

� Λmax during queries based on sent messages

� Average number of messages per Query

Latency Λmax-received Λmax-sent Avg. Msg Tra�c

Volume 9.20 - 9.30 - 10.20 61.5 - 74.5 - 129.8 59.1 - 68.0 - 118.9 9.89 - 9.87 - 15.19
Data 10.5 - 10.8 - 10.25 46.8 - 43.0 - 127.0 46.2 - 42.7 - 115.6 14.2 - 15.8 - 15.30

BestNeighbor 9.67 - 9.61 - 10.19 51.3 - 72.8 - 110.1 48.7 - 68.2 - 100.5 12.3 - 13.2 - 15.59
UntilTarget 10.1 - 10.4 - 10.22 52.1 - 58.4 - 140.6 49.5 - 56.6 - 126.9 13.5 - 15.1 - 15.58
Pure-random 10.1 - 11.0 - 10.27 55.6 - 50.3 - 426.5 55.2 - 49.8 - 346.5 14.1 - 15.5 - 15.61
Random-walks 10.6 - 10.7 - 10.27 56.3 - 47.4 - 463.7 56.0 - 47.3 - 380.1 14.2 - 15.5 - 15.61

The experiments present some very interesting results. First of all,
we managed to improve the fairness of data distribution in our topologies.
A remarkable fact is that the Random-walks algorithm has better fairness
index than the data-balance algorithm, regarding all datasets.

Until-target has the lowest average number of messages during network
construction and scales incredibly well. Volume-balance and best-neighbor
algorithms come next in nearly identical results and data-balance is a bit
higher. Random-walks algorithm uses approximately log2n more messages
than the other topologies, as expected.Our third metric, maximum number
of messages per joinprocess show respective results.

Volume-balance exhibits the best maximum throughput during network
construction on greece and hypersphere datasets and data-balance comes
second. The until-target algorithm comes third in non-uniform distributions
and best-neighbor, random-walks algorithms perform much worse. It is quite
interesting though that, until-target algorithm has greater results than the
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data-balance in uniform distributions. Even more surprising are the results
of random-walks and pure-random protocol which surpass the data-balance
topology in uniform distributions.

During queries, volume-balance has the best performance in terms of la-
tency and best-neighbor comes next closely. Another interesting notice is
that, data-balance is the worst topology regarding latency, exhibiting even
worse results than the until-target, random-walks topologies. Additionally,
volume-balanced selection maintains the lowest average message tra�c, re-
gardless of data distribution in volume space. The other topologies achieve
higher average message tra�c per query; neither topology shows any signi�-
cant improvement over another one.

The maximum throughput of the network during queries has ambiguous
results:

In non-uniform distributions, volume-balanced selection achieves again
the best results with best-neighbor topology coming in the second place,
while data-balanced selection and until-target have worse results. In random-
walks and pure-random topology, a low amount of peers becomes even more
disproportionally overloaded, in terms of received and sent messages during
queries. This poor performace makes these topologies the worst choice on
non-uniform distributions. We also notice an interesting fact: although best-
neighbor and until-target topologies exhibit superior fairness index than the
traditional volume-balance, they show worse performance regarding the other
metrics, thus, rejecting our initial hypothesis that superior data distribution
among peers would result in superior network performance as well, in non-
uniform environments.

In uniform distributions, we get the opposite results. Volume-balance
and best-neighbor have poor maximum throughput, while, data-balance and
until-target show minor improvement, therefore in uniform environments our
initial hypothesis is con�rmed. The clear winner, in this criteria, are the
random-walks and pure-random algorithms, as they approximately four times
more e�ciently than the traditional volume-balance and the theoritically
ideal data-balance algorithm.

In order to explain the ine�cient maximum throughput of �more fair�
topologies in non-uniform distributions, we reimplemented the simulations
to evaluate the following hypothesis: In non-uniform distributions, there is
no correlation between volume space and data space. Therefore, we made
the assumption that a peer occupying a large volume space, while containing
a low number of datakeys (or no datakeys) would rarely be chosen as a mate
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by our algorithms. Thus, his volume space remains large and as a result
this peer has a high probability of getting picked as an Intermediate peer at
the initialization of a JoinProcess, ergo more messages received and sent. In
order to validate this hypothesis, we created some statistics on how many
times each peer is chosen as boostrap. Unfortunately, the results reject our
assumptions. It is up to further research to investigate the cause of this
phenomena or present new techniques to overcome the drawbacks of these
solutions.

4.3 Scalability

In this section, we the examine the e�ect of network size on the performance
of the protocols we studied. Each topology is ordered in the following manner:

1. Average number of messages per JoinProcess.

2. Maximum throughput in network construction.

3. Maximum throughput during queries, computing sent and received
messages.

4. Average number of messages per query.

We don't include the plots of the following metrics for the reasons explained:

� Fairness Index: The �fairness� of data distribution among peers is not
a�ected signi�cantly by network size.

� Latency: P-Grid has the property of exhibiting nearly equivalent la-
tency regardless of topology. Our experiments validate this property,
therefore we omit these plots.

� Maximum number of messages per JoinProcess: Plots are omitted,
because this metric can be computed through the maximum throughput
for each network size.(Λmax = Number of JoinProcesses / Number of
messages (received or sent) of the most overloaded peer )
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4.3.1 Scalability of Volume-balancing protocol
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4.3.2 Scalability of Data-balancing protocol
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4.3.3 Scalability of Best-neighbor protocol
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4.3.4 Scalability of Until-target protocol
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4.3.5 Scalability of Random-walks protocol
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4.3.6 Scalability of Pure-random protocol
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Chapter 5

Conclusion

We studied the proposed algorithms and the results are interesting. As dis-
cussed in the previous chapter, no proposed solution is best in all aspects.
All topologies have pros and cons depending mainly on the uniformity of
distribution in the volume space:

� Volume-balanced selection outperforms the other approaches regard-
ing the number of exchanged messages during network construction,
latency, average message tra�c during queries. The load is distributed
well in non-uniform distributions, nevertheless, in uniform distributions
it is the worst choice.

� Data-balance selection while giving a theoretically ideal data load bal-
ance does not perform as well as the other approaches exhibiting only
minor improvements in some metrics. Our initial hypothesis, that data
balance may not be the most desirable feature in a relatively �good�
network, is con�rmed.

� Best-neighbor topology achieves low message tra�c in both network
construction and query phases of the experiments, and low latency. It
also shows good results in non-uniform distributions, nearly as good
as the volume-balance algorithm, whereas in uniform distributions it
behaves poorly.

� Until-target topology performs adequately, on average, regarding all
metrics, without showing signi�cant improments over others on any
speci�c criteria.
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� Random-walk and pure-random topologies achieve the maximum fair-
ness on data distribution among peers, even better than data-balanced
selection. They perform extremely well under uniform data distribu-
tions even though they require more message tra�c and latency on
average than the other topologies. Nevertheless, the cause of poor
performance they present in non-uniform environments is not yet un-
derstood.

The presented topologies can perform e�ciently under speci�c datasets. Until-
target shows good characteristics under all datasets while random-walks
exhibit great improvement under uniform data distribution. The Volume-
balancing algorithm, even though it has the worst �fairness� among the pro-
tocols, is performing better than all other protocols in non-uniform enviro-
ments.

Considering the de�nition of the problem, there are several topics that
are not covered in this thesis and future work will hopefully give a more
complete view of this scienti�c area.

� Event-driven simulation.

� Workloads having more dimensions.

� Research to discover the cause of poor performance in non-uniform
distributions.

� Applying similar techniques to other peer-to-peer protocols like CAN,
Chord, MURK.

All in all, we managed to identify the fact that fairness of data distribution
is not important in non-uniform distributions as opposed to uniform ones.
We have proved that the P-Grid protocol can scale e�ciently in uniform
distributions. However, the biggest challenge remains to develop and exper-
iment on novel techniques which distribute the load evenly in non-uniform
distributions as well.
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