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ABSTRACT

by Tzanoudakis Theodoros

Decades of prophesies have finally come true: programming with multiple
processors has now entered the mainstream and in order to increase performance
and save energy, most future processor chips will contain many processors,
so called cores, that work in parallel. Is it due to Moore’s Law that “the
number of transistors on a reasonably priced integrated circuit tends to
double every approximately 20 months” and now that we are closing to the
size limits the need for multiple-cores has become inevitable? Could it just
be the need for creating a power-efficient and cost-effective high performance
system? The fact is that great hopes are being pinned on multiprocessors
and parallel architecture as the answers for the continuing development of
electronics and computing.

The purpose of this thesis is to port the fingerprint recognition algorithm
used by FBI (”NBIS”) and a multiple sequence alignment program used for
amino acids or nucleotide sequences (“MAFFT”) to the CELL BROADBAND
ENGINE (”CELL”) architecture and try to improve their performance. Cell
is a multi-core processor developed by the alliance “STI” – Sony Computer
Entertainment , Toshiba , IBM. After a 4-year period and a 400 million US $
budget the Cell was finally released on 2005 but the first major commercial
application was in Sony’s Playstation 3 game console (“PS3”). Since then
many applications have used the Cell multiprocessor but the cheapest way
for a developer to get his hands on the powerfull Cell still remains the PS3
game console. As DR. Peter Hofstee –Cell’s Designer– said when asked what
he felt while developing game technologies: “I think games are an interesting
area but quite clearly, Cell is not just for Games. There are many other
areas it can be used. Games are the thing that inspired us to do it”.

After almost a year of studies, tries, experiments, tricks and unexpected
problems this project was completed. Both algorithms were ported to the
PS3 and with the use of threads on the most demanding processes we
managed to achieve a significant improvement on the performance of the
MAFFT program.
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Chapter 1

INTRODUCTION

by Tzanoudakis Theodoros

In the last decade there was an enormous improvement in processors’
speeds without a corresponding improvement in bus or interconnection network
speeds. This led the relative costs of communication and computation in
shared-memory multiprocessors to change dramatically. Moreover, many
parallel applications which depend on a delicate balance between the cost
of communication and computation, do not execute efficiently on today’s
shared- memory multiprocessors. Those needs to break the physical limits
of uniprocessing (by branch prediction or RAW dependencies etc.) while
being cost and power effective at the same time were the motivation for the
scientific and industrial communities to look for alternative architectures.
Therefore, microprocessor engineers agree that multi-core designs will be
the wave of the future, but they differ widely on how to implement them
and surmount the many challenges they pose.

Today’s major trend in computer architecture is the design of multi-core-
systems-on-a-chip processors. The cores are typically integrated onto a
single integrated circuit die (CMP – chip multiprocessor) or they may be
integrated onto multiple dies in a single chip package. As a result, huge
computational power is hold on a single chip and the re-design becomes
an easier task as bigger systems can be built from commodity parts (ex.
ordinary uniprocessors). Thus, the cost of redesigning has dropped while
the fault tolerance increased (on N-processor system if one processor fails
there are still (N-1) processors available). This fundamental change in our
core computing architecture will require a fundamental change in how we
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Chapter 1. INTRODUCTION

program. The art of multiprocessor programming is more complex than
programming uniprocessor machines and requires an understanding of new
computational principles, algorithms and programming tools. All these led
to making the architecture simpler and more streamlined to the software.
This is exactly the purpose of this thesis, initially to port the algorithms
to a multicore processor and furthermore to extract as much computational
power we can.

The processor we used is the multicore-processor Cell Broadband Engine
(Cell BE). The Cell BE processor is the first implementation of the Cell
Broadband Engine Architecture (CBEA), developed jointly by Sony, Toshiba,
and IBM. In addition to Cell BE’s use in the upcoming Sony PlayStation R©
3 console, there is a great deal of interest in using it in Cell BE-based
workstations, media-rich electronics devices, video and image processing
systems, as well as several other emerging applications. The Cell BE includes
one POWERTM Processing Element (PPE) and eight Synergistic Processing
Elements (SPEs). The Cell BE architecture is designed to be well-suited
for a wide variety of programming models, and allows for partitioning of
work between the PPE and the eight SPEs. This thesis shows that Cell
BE can outperform other state-of-the-art processors, and in some cases by
approximately an order of magnitude or more. The easiest way to explore
its features its computational power is the Sony Playstation 3 Game console
(PS3) which provides the developer with 6 128-bit SPEs (one is locked for
testing and one from OS) in addition to a multithreaded 64-bit PPE.

The first application we had to port to the PS3, was the fingerprint
recognition application (NBIS) developed by the National Institute of Standards
and Technology (NIST) for the Federal Bureau of Investigation (FBI) and
the US Department of Homeland Security (DHS). A collection of application
programs, utilities and source code libraries are freely provided in the non-
export (meaning not export controlled) package NBIS and after a request
to the NIST, the full export-controlled package with a large dataset for
testing was sent to our lab. The software technology contained in this
distribution is a culmination of more than a decade’s worth of work for the
FBI and DHS at NIST. In the late 60’s researchers at NIST began work on
the first FBI’s AFIS system and during this period developed methods and
produced databases for the DHS as well. Since the terrorist hit on the 11th of
September 2001 the phrase, “Everything has changed,” has been frequently
stated. This is no less true for the Image Group at NIST. Within a couple
of months, new initiatives were started that redirected work focused on law
enforcement to new work focused on border control.Thus, the necessity of
developing a fast and as accurate as possible fingerprint recognition system
was maximized. After a couple of months experimenting and testing, we
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Chapter 1. INTRODUCTION

managed to port the whole application to the PS3. Unfortunately, the lack
between the software and the Cell architecture’s characteristics caused a
drop on the performance we could not’t overcome.

The second application we had to port was a multiple sequence alignment
program used for amino acids or nucleotide sequences (“MAFFT”). Mafft
offers various multiple alignment methods such as L-INS-I (accurate for
alignment of < 200 sequences), FFT-NS-2 (fast for alignment of < 10.000
sequences), etc. in order to improve the speed and the effectiveness of the
requested sequence. Mafft is useful for optimizing protein alignments based
on physical properties of the amino acids. In our thesis , not only did we
port the application to the PS3 but we achieved a significant increase on
the performance without changing the application’s logic, only by making
use of the Cell’s computational power and its unique (so far) technical
characteristics.

The original purpose was not to compare our benchmark results and
their time of execution with a conventional system (General Purpose PC
ex.Pentium IV) . The original purpose was to port the applications to the
PS3 and try to reduce its execution time. Several problems (4.1.5) were faced
at the first application and so we focused on the second application which
looked very promising for a performance boost. Our suspicions become
true and the performance results, after the project was completed, were the
execution time of mafft to become comparable with that of a conventional
Quad-core PC (developed 4 years after the Cell was released !!).

The rest of the thesis is organized as follows:

• In Chapter 2, Section 2.1 introduces the CELL and Section 2.2 the
PS3 console we used for the implementation,

• Chapter 3 outlines the NBIS (Section 3.1) and the MAFFT (Section
3.2) applications as well as their main algorithms,

• Chapter 4 is a detailed description of the development process we
followed for the implementation and is consisted of 2 sections.
Section 4.1 describes the implementation of NBIS while MAFFT’s is
explained on Section 4.2,

• Chapter 5 presents the evaluation results of the two implementations
and finally

• Chapter 6 contains the conclusion and the related work suggestions
for both applications of this thesis.
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Chapter 2

CELL & Sony PS3

This chapter describes the hardware we used for the implementation of
this project. The purpose of this chapter is to introduce to the reader the
architecture of Cell and the PS3 game console. The concepts described in
this chapter are the theoretical setting for multicore-programming on the
PS3’s Cell.

2.1 CELL BROADBAND ENGINE

2.1.1 Introduction

The CELL Broadband Engine (CBEA) defines an architecture well suited
for a wide variety of compute and communication intensive applications.
The first implementation of the CBEA is the nine-core version of CELL
BROADBAND ENGINE and appears to be a good fit for a variety of signal
processing applications. The architecture was developed by the ”S.T.I -
alliance” - Sony, Toshiba, IBM - after a 4-year scientific research and a
budget over 400 million US$. In the first months of 2005 it was finally
released and the first version was applied to the game console that was
initially designed for, known as PLAYSTATION 3 GAME CONSOLE -
Toshiba plans to use the Cell in digital home appliances and IBM in high-
performance computers. It’s computing capabilities though, were rapidly
spread to the scientific community as the beginning of a new trend in the
multicore processing architecture.[1] [11]

The CBEA chip consists of a traditional 64-bit General-Purpose Power-
PC called PPE (2.1.2) and eight 128-bit Synergistic Power-PCs called SPE’s
(2.1.3). Onto the chip there are also integrated a high speed memory
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Figure 2.1: CBEA architecture’s block diagram

controller, an I/O controller, an interrupt controller and caches. Every
element of the chip is connected with a high bandwidth interconnection
bus element, called EIB (2.1.4). Figures 2.1 , 2.2 give an architectural
overview of the CBEA chip.[4] [13]

2.1.2 Power Processor Element - ”PPE”

The Power Processor Element (PPE) (Figure 2.3) is a 64-bit Power-
Architecture-compliant core optimized for design frequency and power efficiency.
In comparison to more recent four-issue out-of-order processors the design
of the PPE is simplified. The PPE is a dual-issue design that does not
dynamically reorder instructions at issue time (e.g., ”in-order issue”). The
core interleaves instructions from two computational threads at the same
time to optimize the use of issue slots, maintain maximum efficiency, and
reduce pipeline depth. Simple arithmetic functions execute and forward
their results in two cycles. Owing to the delayed-execution fixed-point

Microprocessor and Hardware Laboratory 18
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Figure 2.2: CBEA architecture die photo

pipeline, load instructions also complete and forward their results in two
cycles while a double-precision floating-point instruction executes in ten
cycles.

The PPE supports a conventional cache hierarchy with 32-KB first-level
instruction and data caches and a 512-KB second-level cache. The second-
level cache and the address-translation caches use replacement management
tables to allow the software to direct entries with specific address ranges at
a particular subset of the cache. This mechanism allows for locking data in
the cache (when the size of the address range is equal to the size of the set).
It can also be used to prevent overwriting data in the cache by directing
data that is known to be used only once at a particular set. Providing these
functions enables increased efficiency and increased real-time control of the
processor.

The processor provides two simultaneous threads of execution within
the processor and can be viewed as a two-way multiprocessor with shared
dataflow. This gives software the effective appearance of two independent
processing units. All architected states are duplicated, including all architected
registers and special-purpose registers, with the exception of registers that

Microprocessor and Hardware Laboratory 19
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deal with system-level resources, such as logical partitions,memory, and
thread control. Non-architected resources such as caches and queues, are
generally shared for both threads except in cases where the resource is small
or offers a critical performance improvement to multithreaded applications.

Having a 3.2 GHz clock ,the PPE looks like a very promising processor.
The PPE’s architecture though, is a lot simpler than a conventional’s General-
Purpose CPU (for example doesn’t support branch prediction) causing applications’
execution time to raise. The PPE was developed for being a controller that
supervises the other cores (SPEs) and running the Operation System (OS)
but for the compute intensive parts which are offloaded to the SPE (The
PS3 reserves one SPE for OS). All other power-demanding applications need
to be offloaded to the SPE’s and thanks to the compliance with PowerPc
architecture, existing applications can run on the Cell with a few -in some
cases even out of the box - changes (4.2.3) and then optimized for performance
using the SPE’s.[5][6][7]

The PPU deals with instruction control and execution. It includes:

• the full set of 64-bit PowerPC registers

• 32 128-bit vector registers

• a 32-KB level 1 (L1) instruction cache

• a 32-KB level 1 (L1) data cache

• an instruction-control unit

• a load and store unit

• a fixed-point integer unit

• a floating-point unit

• a vector unit

• a branch unit and

• a virtual-memory management unit.

The PPSS handles memory requests from the PPE and external requests
to the PPE from other processors or I/O devices. It includes:

• a unified 512-KB level 2 (L2) instruction and data cache,

• various queues,

• a bus interface unit that handles bus arbitration and pacing on the
EIB.

Microprocessor and Hardware Laboratory 20



Chapter 2. CELL & Sony PS3 CELL BROADBAND ENGINE

Figure 2.3: PPE block diagram

2.1.3 Synergistic Processor Elements - ”SPE’s”

The Cell has eight Synergistic Processor Elements (SPEs) and each of
them consists of a Synergistic Processor Unit (SPU) and a Memory Flow
Controller (MFC) as shown to the block diagram (Figure 2.4). The
architecture of the SPE is shown in Figure 2.5). The SPUs have less
complex computational units than PPEs because they do not perform any
system management functions. They have a single instruction, multiple data
(SIMD) capability. They typically process data and initiate any required
data transfers in order to perform their allocated tasks.([3])

An SPE is a RISC processor with 128-bit SIMD (Single Instruction,
Multiple Data) organization for single and double precision instructions.
With the current generation of the Cell, each SPE contains a 256 KB
embedded SRAM for instruction and data, called ”Local Storage” which
is visible to the PPE and can be addressed directly by software. Each SPE
can support up to 4 GB of local store memory. The local store does not
operate like a conventional CPU cache since it is neither transparent to
software nor does it contain hardware structures that predict which data to
load.[4][9]

The SPEs contain a 128-bit, 128-entry register file and measures 14.5
mm2 on a 90 nm process. The SPU cannot directly access system memory.
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Figure 2.4: SPE block diagram

Instead, the 64-bit virtual memory addresses formed by the SPU must be
passed from the SPU to the SPE memory flow controller (MFC) to set up a
DMA operation within the system address space. The SPE implements
a new instruction-set architecture optimized for power and performance
on computing-intensive and media applications. The SPE operates on a
local store memory (256 KB) that stores instructions and data. Data and
instructions are transferred between this local memory and system memory
by asynchronous coherent DMA commands, executed by the memory flow
control unit included in each SPE. Each SPE supports up to 16 outstanding
DMA commands. Because these coherent DMA commands use the same
translation and protection governed by the pageand segment tables of the
Power Architecture as the PPE, addresses can be passed between the PPE
and SPEs, and the operating system can share memory and manage all of
the processing resources in the system in a consistent manner. The DMA
unit can be programmed in one of three ways:
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1. with instructions on the SPE that insert DMA commands in the
queues;

2. by preparing (scatter-gather) lists of commands in the local store and
issuing a single “DMA list” of commands; or

3. by inserting commands in the DMA queue from another processor

Figure 2.5: Synergistic Processor Element Architecture

Instructions are fetched 128 bytes at a time, and pressure on the local
store is minimized. The highest priority is given to DMA commands, the
next highest priority to loads and stores, and instruction (pre)fetch occurs
whenever there is a cycle available. A special no-operation instruction exists
to force the availability of a slot to instruction fetch when necessary. The
execution units of the SPU are organized around a 128-bit dataflow. A large
register file with 128 entries provides enough entries to allow a compiler to
reorder large groups of instructions in order to cover instruction execution
latencies. Simple fixed-point operations take two cycles, and single-precision
floating-point and load instructions take six cycles. Two-way SIMD double-
precision floating point is also supported, but the maximum issue rate is
one SIMD instruction per seven cycles. All other instructions are fully
pipelined.Up to two instructions are issued per cycle; one issue slot supports
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fixed- and floating-point operations and the other provides loads/stores and
a byte permutation operation as well as branches.[8]

2.1.4 Element Interconnection Bus - ”EIB”

The PPE and SPEs communicate coherently with each other and with
main storage and I/O through the Element Interconnection Bus (”EIB”).
The EIB is a 4-ring structure (two clockwise and two counterclockwise) for
data, and a tree structure for commands. Apart from connecting all the
various on-chip system elements, EIB also includes an arbitration unit used
for handling the requests of the elements on the ring.[12]

An element that needs to start data transfer, sends a data bus access
request. The arbitration unit then, selects the ring that travels in the
shortest transfer as long as it doesn’t interfere with other in-flight transfers
and gives priority to the memory controller requests. Finally, each ring may
allow up to three concurrent data transfers whose paths do not overlap.
The EIB’s internal bandwidth is 96 bytes per cycle, and it can support
more than 100 outstanding DMA memory requests between main storage
and the SPEs.[14][5]

The memory-coherent EIB has two external interfaces, as shown (Figure
2.6):

1. The Memory Interface Controller (MIC) provides the interface between
the EIB and main storage. It supports two Rambus Extreme Data
Rate (XDR) I/O (XIO) memory channels and memory accesses on
each channel of 1-8, 16, 32, 64, or 128 bytes.

2. The Cell Broadband Engine Interface (BEI) manages data transfers
between the EIB and I/O devices. It provides address translation,
command processing, an internal interrupt controller, and bus interfacing.
It supports two Rambus FlexIO external I/O channels. One channel
supports only non-coherent I/O devices. The other channel can be
configured to support either non-coherent transfers or coherent transfers
that extend the logical EIB to another compatible external device, such
as another Cell Broadband Engine.

Each participant on the EIB has one 16B read port and one 16B write
port. The limit for a single participant is to read and write at a rate of
16B per EIB clock (8B per system clock). Each SPU processor contains a
dedicated DMA management queue capable of scheduling long sequences of
transactions to various endpoints without interfering with the SPU’s ongoing
computations; these DMA queues can be managed locally or remotely as
well, providing additional flexibility in the control model.
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A Cell’s processor clock speed is most often cited running at 3.2 GHz
resulting the clock frequency at each channel to flow at a rate of 25.6
GB/s. Viewing the EIB in isolation from the system elements it connects,
achieving twelve concurrent transactions at this flow rate works out to
an abstract EIB bandwidth of 307.2 GB/s. Based on this view many
IBM publications depict available EIB bandwidth as ”greater than 300
GB/s”. This number reflects the peak instantaneous EIB bandwidth scaled
by processor frequency. However, other technical restrictions are involved
in the arbitration mechanism for packets accepted onto the bus. The IBM
Systems Performance group explains: Each unit on the EIB can simultaneously
send and receive 16B of data every bus cycle. The maximum data bandwidth
of the entire EIB is limited by the maximum rate at which addresses are
snooped across all units in the system, which is one per bus cycle. Since each
snooped address request can potentially transfer up to 128B, the theoretical
peak data bandwidth on the EIB at 3.2 GHz is 128B x1.6 GHz = 204.8
GB/s. All things considered the theoretic 204.8 GB/s number most often
cited is the best one to bear in mind. The IBM Systems Performance group
has demonstrated SPU-centric data flows achieving 197 GB/s on a Cell
processor running at 3.2 GHz so this number is a fair reflection on practice
as well.

On-chip network design has become an increasingly important component
of computer architecture. The Cell Broadband Engine’s Element Interconnect
Bus, with its four data rings and common command bus for end-to-end
transaction control, interconnects more nodes than most commercial on-
chip networks.[32]

2.1.5 Programming Models

On any processor, coding optimizations are achieved by exploiting the
unique features of the hardware. In the case of the Cell Broadband Engine,
the large number of SPEs, their large register file, and their ability to
hide main-storage latency with concurrent computation and DMA transfers
support many interesting programming models.

With the computational efficiency of the SPEs, software developers can
create programs that manage dataflow as opposed to leaving dataflow to
a compiler or to later optimizations.Many of the unique features of the
SPE are handled by the compiler, although programmers looking for the
best performance can take advantage of the features independently of the
compiler. It is almost never necessary to program the SPE in assembly
language. C intrinsics provide a convenient way to program the efficient
movement and buffering of data. There are seven types of programming
models:
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Figure 2.6: Element Interconnection Bus - EIB

1. Function-Offload Model:

In the Function-Offload Model, the SPEs are used as accelerators for
performance-critical procedures. This model is the quickest way to
effectively use the Cell Broadband Engine with an existing application.
In this model, the main application runs on the PPE and calls selected
procedures to run on one or more SPEs. The Function-Offload Model
is sometimes called the Remote Procedure Call (RPC) Model. The
model allows a PPE program to call a procedure located on an SPE as
if it were calling a local procedure on the PPE. This provides an easy
way for programmers to use the asynchronous parallelism of the SPEs
without having to understand the low-level workings of the MFC DMA
layer. In this model, you identify which procedures should execute on
the PPE and which should execute on the SPEs. The PPE and SPE
source modules must be compiled separately, by different compilers.

Remote procedure call The Function Offload or Remote Procedure
Call (RPC) Model is implemented using stubs as proxies. A method
stub , or simply stub , is a small piece of code used to stand in for some
other code. The stub or proxy acts as a local surrogate for the remote
procedure, hiding the details of server communication. The main code
on the PPE contains a stub for each remote procedure on the SPEs.
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Figure 2.7: Function-Offload (or RPC) Model example

Each procedure on an SPE has a stub that takes care of running the
procedure and communicating with the PPE. When the program on
the PPE calls a remote procedure, it actually calls that procedure’s
stub located on the PPE. The stub code initializes the SPE with the
necessary data and code, packs the procedure’s parameters, and sends
a mailbox message to the SPE to start its stub procedure. The SPE
stub retrieves the parameters and executes the procedure locally on
the SPE. The PPE program then retrieves the output parameters.

An example of the Function-Offload (or RPC) Model is shown in
Figure 2.7

2. Device-Extension Model: The Device Extension Model is a special
case of the Function-Offload Model in which the SPEs act like I/O
devices or can also act as intelligent front ends to an I/O device while
mailboxes can be used as command and response FIFOs between the
PPE and SPEs.

3. Streaming Model: In the Streaming Model, each SPE, in either a
serial or parallel pipeline, computes data that streams through. The
PPE acts as a stream controller, and the SPEs act as stream-data
processors. Although the SDK does not include a formal streaming
language, most of the programs written for the Cell Broadband Engine
are likely to use the streaming model to some extent. An algorithm
that contains a computational kernel that streams packets of data
through the kernel for each step in time is an example of the streaming
model.
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4. Computation-Acceleration Model: The Computation-Acceleration
Model is an SPE-centric model that provides a smaller-grained and
more integrated use of SPEs. The model speeds up applications that
use computation-intensive mathematical functions without requiring
significant rewrite of the applications. Most computation-intensive
sections of the application run in parallel on SPEs. The PPE acts as a
control and system-service facility. The work is partitioned manually
by the programmer, or automatically by the compilers.

5. Shared-Memory Multiprocessor Model: The Cell Broadband Engine
can be programmed as a shared-memory multiprocessor, using two
different instruction sets. The SPEs and the PPE fully interoperate
in a cache-coherent Shared-Memory Multiprocessor Model. All DMA
operations in the SPEs are cache-coherent. Shared-memory load instructions
are replaced by DMA operations from shared memory to local store
(LS), followed by a load from LS to the register file. The DMA
operations use an effective address that is common to the PPE and all
the SPEs. Shared-memory store instructions are replaced by a store
from the register file to the LS, followed by a DMA operation from
LS to shared memory. The SPE’s DMA lock-line commands provide
the equivalent of the PowerPC Architecture atomic-update primitives
(load with reservation and store conditional).

6. Asymmetric-Thread Runtime Model: Threads can be scheduled to
run on either the PPE or on the SPEs, and threads interact with
one another in the same way they do in a conventional symmetric
multiprocessor. Scheduling policies are applied to the PPE and SPE
threads to optimize performance. Although preemptive task-switching
is supported on SPEs for debugging purposes, there is a runtime
performance and resource-allocation cost. FIFO run-to-completion
models, or lightweight cooperatively-yielding models, can be used for
efficient task-scheduling. A single SPE can run only one thread at a
time; it cannot support multiple simultaneous threads.

The Asymmetric-Thread Runtime Model is flexible and supports all of
the other programming models described in this chapter.

Any program that explicitly calls spe context create and spe context run
is an example of the Asymmetric-Thread Runtime Model. This is the
fundamental model provided by the SDK’s SPU Runtime Management
Library, and it is identified by user threads (both PPE and SPE)
running on the Cell Broadband Engine’s heterogeneous processing
complex.

7. User-Mode Thread Model: The User-Mode Thread Model refers to
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one SPE thread managing a set of user-level functions running in
parallel. The user-level functions are called microthreads which are
created and supported by user software(also called user threads and
user-level tasks) and in contrary to the SPE thread which is supported
by the operating system, the OS is not involved. One advantage of
this programming model is that the microthreads, running on a set of
SPUs under the control of an SPE thread, have predictable overhead.
A single SPE cannot save and restore the MFC commands queues
without assistance from the PPE.[10][3]

Our implementations were based on a combination of the Function-Offload
and the Asymmetric-Thread Runtime Models and are explained with details
in Chapter 4.
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Figure 2.8: PLAYSTATION 3 Game Console black edition - PS3

2.2 PLAYSTATION 3 game console

2.2.1 Introduction

”Though sold as a game console, what will in fact enter the home is
a Cell-based computer” as Ken Kutaragi1 stated when the Playstation 3
game console-(”PS3”) was released. The version we used in this thesis was
the 60 GB version 1 black-edition PS3 which was released in Europe at
November,2007. It includes an internal IEEE 802.11 b/g Wi-Fi, multiple
flash card readers (SD/MultiMedia Card, CompactFlash Type I/Type II,
Microdrive,Memory Stick/PRO/Duo), and a chrome colored trim . It also
supports hardware-based PS2 emulation and SACD(Super Audio Cd) playback
and was the first Blu-ray 2.0-compliant Blu-ray player on the market.[17]
[33] [34] Figure 7 (2.8) is an image of our Console.

1He is known as ”The Father of the PlayStation”, and its successors and spinoffs,
including the PlayStation 2, PlayStation Portable, and the PlayStation 3
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2.2.2 Operating Systems

The Cell project was driven by the need to develop a processor for next-
generation entertainment systems. A powerful next-generation architecture
that is designed to interface optimally with a user and broadband network
in real time and could, if architected and designed properly, be effective
in a wide range of applications in the digital home and beyond. The
Broadband Processor Architecture is intended to have a life well beyond
its first incarnation in the first-generation Cell processor.

In order to extend the reach of this architecture, and to foster a software
development community in which applications are optimized to this architecture,
an open (Linux**-based) software development environment was developed
along with the first-generation processor - The YELLOW DOG version 6
developed from Terra Soft Solutions. Nowadays ,there are various distributions
that offer official and unofficial support such as ”Fedore Core 7 ” and “Debian“
operation systems and software has been developed for a wide range of
applications far more than gaming.

One SPE is reserved for running the operation system while one more is
used for yield reasons. Consequently, the developer has one PPE and six
SPEs at his full command for programming any application as access is not
allowed to the 2 reserved SPE’s.

2.2.3 Graphic Card

For graphics the PS3 has a 256 MB GDDR3 Nvidia RSX graphic card
with a clock frequency at 550MHz. RSX stands for Reality Synthesizer
and is the graphics processing unit (GPU) co-developed by NVIDIA and
Sony for the PlayStation 3 game console. Sony also claims a 1.8 TFLOPS
floating point performance with full HD (up to 1080p) x 2 channels Multi-
way programmable parallel floating point shader pipelines.(??)

2.2.4 Memory

The PS3 has a dual-channel 256 MB XDR (Rambus Extreme Data Rate)
main memory providing nearly 200MB the operating system and its applications.
As for storage there is a detachable 2.5” HDD of 60GB -in our version. The
most recent versions reach up to 160GB capacity.
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2.2.5 Networking

Unlike the standard PC’s Ethernet controllers, PS3 has a built-in network
card directly attached to the companion chip. Therefore, no PPE’s intervention
is required for data transfers. The PS3 has an internal IEEE 802.11 b/g Wi-
Fi which means a total Net Bit Rate of 54Mbps and a maximum throughput
of 22 Mbps. Unfortunately, the 2.4 GHz band frequency where the IEEE
protocol operates is often used by other devices - microwaves or bluetooth
devices and may result in interference issues within a 150feet range indoor.

2.2.6 I/O interface

Our version of PS3 has six ports ( Front x 4, Rear x 2 (USB2.0)for USB
connection and also supports :

• Memory Stick: standard/Duo, PRO x 1

• SD: standard/mini x 1

• CompactFlash: (Type I, II) x 1
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Implemented Algorithms

3.1 NBIS

3.1.1 Introduction

The first application we had to port to the PS3, was the fingerprint
recognition application (NBIS) developed by the National Institute of Standards
and Technology (NIST) for the Federal Bureau of Investigation (FBI)
and the US Department of Homeland Security (DHS). In the late 60’s
researchers at NIST began work on the first FBI’s AFIS system and during
this period developed methods and produced databases for the DHS as well.
Since the terrorist hit on the 11th of September 2001 the phrase, “Everything
has changed,” has been frequently stated. This is no less true for the Image
Group at NIST. Within a couple of months, new initiatives were started
that redirected work focused on law enforcement to new work focused on
border control. Thus, the necessity of developing a fast and as accurate as
possible fingerprint recognition system was maximized and new methods are
applied in order to cover those needs.[21][22][23]

3.1.2 NBIS packages

The NBIS software is organized in two categories: non-export controlled
and export controlled. The non-export controlled NBIS software is organized
into five major packages:

1. PCASYS is a neural network based fingerprint pattern classification
system; Pcasys is a pattern classification system designed to automatically
categorize a fingerprint image as an arch, left or right loop, scar, tented
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arch, or whorl. Identifying a fingerprint’s class effectively reduces the
number of candidate searches required to determine if a fingerprint
matches a print on file. For example, if the unknown fingerprint is an
arch, it only needs to be compared against all arches on file. These
types of “binning” strategies are critical for the FBI to manage the
searching of its fingerprint repository.

2. MINDTCT is a fingerprint minutiae detector; It takes a fingerprint image
and locates features in the ridges and furrows of the friction skin, called
minutiae. Points are detected where ridges end or split, and their
location, type, orientation, and quality are stored and used for search.
There are 100 minutiae on a typical tenprint, and matching takes place
on these points rather than the 250,000 pixels in the fingerprint image.

These 3 methods all conduct image binarization of the fingerprint.
It should be noted that these systems were developed independently of
each other, so although these processing steps are in common, different
algorithms are applied in each. Further study is required to determine
if one system’s algorithmic approach is better than the other.

3. NFIQ is a neural network based fingerprint image quality algorithm. It
takes a fingerprint image and analyzes the overall quality of the image
returning an image quality number ranging from 1 for highest quality
to 5 for lowest. The quality of the image can be extremely useful in
knowing the likely performance of a fingerprint matcher on that image.

4. AN2K7 is a reference implementation of the ANSI/NIST-ITL 1-2000
”Data Format for the Interchange of Fingerprint, Facial, Scar Mark &
Tattoo (SMT) Information” standard; It contains a suite of utilities
which facilitate reading, writing, manipulating, editing and displaying
the contents of ANSI/NIST files.

5. IMGTOOLS is a collection of image utilities, including encoders and
decoders for Baseline and Lossless JPEG and the FBI’s WSQ specification.
It is a large collection of general-purpose image utilities such as image
encoders and decoders supporting Baseline JPEG, Lossless JPEG, and
the FBI’s specification of Wavelet Scalar Quantization (WSQ). There
are utilities supporting the conversion between images with interleaved
and non-interleaved color components; colorspace conversion between
RGB and YCbCr; and the format conversion of legacy files in NIST
databases.

The export controlled NBIS software is organized into two major packages:

1. NFSEG is a fingerprint segmentation system useful for segmenting four-
finger plain impressions, It takes a four-finger plain impression fingerprint
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image (called a slap) and segments it into four separate fingerprint
images. These single finger plain impression images can then be used
for single finger matching versus either rolled images or other plain
impression fingerprint images. NFSEG will also take a single finger
rolled or plain impression image and isolate the fingerprint area of the
image by removing the white space.

2. BOZORTH3 is a minutiae based fingerprint matching system. It uses
the minutiae detected by MINDTCT to determine if two fingerprints
are from the same person, same finger. It can analyze fingers two at a
time or run in a batch mode comparing a single finger (probe) against
a large database of fingerprints (gallery).

The NFSEG and BOZORTH3 software are subject to U.S. export control
laws. It is our understanding that NFSEG and BOZORTH3 software fall
within ECCN 3D980, which covers software associated with the development,
production or use of certain equipment controlled in accordance with U.S
concerns about crime control practices in specific countries. This source
code is written in ANSI “C”, and has been developed to compile and execute
under the Linux operating system and MAC OS-X operating system using
the GNU gcc compiler and gmake utility.

The reasons of our process selection are described in detail in Chapter
4.1.2.

3.1.3 PCASYS package

Automatic fingerprint classification is a subject of interest to developers
of an Automated Fingerprint Identification System (AFIS). In an AFIS
system, there is a database of file fingerprint cards, against which incoming
search cards must be efficiently matched. Automatic matchers now exist
that compare fingerprints based on their patterns of ridge endings and
bifurcations (the minutiae). However, if the file is very large, then exhaustive
matching of search fingerprints against file fingerprints may require so much
computation as to be impractical. In such a case, the efficiency of the
matching process may be greatly increased by partitioning the file fingerprints
based on classification.

The basic method used by the PCASYS fingerprint classifier consists
of, first, extracting from the fingerprint to be classified an array (a two-
dimensional grid in this case) of the local orientations of the fingerprint’s
ridges and valleys. Second, comparing that orientation array with similar
arrays made from prototype fingerprints ahead of time. The comparisons
are actually performed between low-dimensional feature vectors made from
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Figure 3.1: Six pattern-level classes example

the orientation arrays, rather than using the arrays directly, but that can
be thought of as an implementation detail.

The algorithm may be outlined in 10 steps:

1. Segmentor: The segmentor produces, as its output, an image that is
512x480 pixels in size by cutting a rectangular region of these dimensions
out of the input image

2. Image Enhancement: The enhancement of an input square is done by
first performing the forward two-dimensional fast Fourier transform
(FFT) to convert the data from its original (spatial) representation to
a frequency representation. Next, a nonlinear function is applied that
tends to increase the power of useful information (the overall pattern,
and in particular the orientation, of the ridges and valleys) relative to
noise. Finally, the backward 2-d FFT is done to return the enhanced
data to a spatial representation before snipping out the middle 16×16
pixels and installing them into the output image.

3. Ridge-Valley Orientation Detector: This step detects, at each
pixel location of the fingerprint image, the local orientation of the
ridges and valleys of the finger surface, and produces an array of
regional averages of these orientations. This is the basic feature extractor
of the classification.
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4. Registration: Registration is a process that the classifier uses in
order to reduce the amount of translation variation between similar
orientation arrays. When finding a consistent feature it essentially
translates the array, bringing that feature to standard location.

5. Feature Set Transformation: This step applies a linear transform
to the registered orientation array. Transformation accomplishes the
reduction of the dimensionality of the feature vector from its original
1680 dimensions to 64 dimensions (PNN) and 128 dimensions (MLP).

6. Karhunen-Loève Transform: In order to transform the high-dimensional
feature vectors representing each fingerprint which is 1680 elements(28*30
orientation vectors * two components per orientation vector) into much
lower-dimensional ones in such a way that would not be detrimental
to the classifiers , the K-L transform algorithm was applied.

7. Probabilistic Neural Network Classifier - "PNN": This step takes
as its input the low-dimensional feature vector that is the output
of the transform and it determines the class of the fingerprint.The
algorithm classifies an incoming feature vector by computing the value,
at its point in feature space, of spherical Gaussian kernel functions
centered at each of a large number of stored prototype feature vectors.
The largest normalized activation, which is the estimated posterior
probability of the hypothesized class, is a measure of the confidence
that may be assigned to the classifier’s decision.

8. Multi-Layer Perceptron Neural Network Classifier - "MLP": This
alternative classifier takes as input the low-dimensional feature vector,
non-optimized, and a set of MLP weights. The weights are the result
of several training runs of MLP in which the weights are optimized to
produce the best results with the given training data.

9. Auxiliary Classifier: Pseudo-ridge Tracer: This step takes a
grid of ridge orientations of the incoming fingerprint and traces pseudo-
ridges, which are trajectories that approximately follow the flow of the
ridges. It is a whorl detector for the missclassified by the classifiers
whorl fingerprints.

10. Combining the Classifier and Pseudo-ridge Outputs: This final
processing module takes the outputs of the main Neural Network (NN)
classifier and the auxiliary pseudo-ridge tracer, and makes the decision
as to what class, and confidence, to assign to the fingerprint.

Orientation arrays or matrices like the ones used in PCASYS were produced
in early fingerprint work at Rockwell, CALSPAN, and Printrak. The detection
of local ridge slopes came about naturally as a side effect of binarization
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algorithms that were used to pre-process scanned fingerprint images in preparation
for minutiae detection. Early experiments in automatic fingerprint classification
using these orientation matrices were done by Rockwell, improved upon by
Printrak, and work was done at NIST (formerly NBS). Wegstein, of NBS,
produced the R92 registration algorithm that is used by PCASYS and did
important early automatic classification experiments.

Figure 3.1 is an example of a six pattern-level classes.

3.1.4 Pcasys input - output

Input The algorithm reads a sequence of image files, each depicting one
box as scanned from a fingerprint card, and classifies each fingerprint, using
a Multi-Layer Perceptron (MLP) or Probabilistic (PNN) Neural Network,
to one of six pattern−level classes: Arch, Left loop, Right loop, Scar,
Tented arch, and Whorl. The type of classifier MLP or PNN is chosen
in the parameters file pcasys/parms/pcasys.prs. Pcasys may optionally
make an output file, containing a results line for each fingerprint and a
summary at the end showing the error rate and the ”confusion matrix”,
and it optionally writes progress messages to the standard output. After
a request to the National Institute of Standards and Technology (NIST)
the NBIS EXPORT CONTROL SOURCE CODE CD-ROM with a
set of 2700 WSQ compressed grayscale fingerprint images are included to
support the testing of PCASYS.

Output The output file has a line for each of the fingerprints that were
classified. Each line shows: the fingerprint filename; the actual class (A, L,
R, S, T, and W stand for the pattern-level classes arch, left loop, right loop,
sear, tented arch, and whorl); the output of the classifier (a hypothesized
class and a confidence); the output of the auxiliary pseudo-ridge tracing
whorl detector (whether or not a concave-upward shape, a “conup,” was
found); the final output of the hybrid classifier, which is a hypothesized
class and a confidence; and whether this hypothesized class was right or
wrong. Figure 3.2 is the output showing the first and last 10 sample images
using the PNN classifier:

3.1.5 The Join Lets process

The most consuming process - in terms of CPU execution time of the
pcasys package (Section 4.1.2) was the join lets process. This process was
part of general routines responsible for supporting WSQ image compression
contained in the util.c source code. The image is firstly converted into
unsigned character pixels which are converted to floating points in the
range of +-128.0. The variances between the image’s wavelet subbands are
then calculated and the image’s wavelet subbands as well as every image’s
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Figure 3.2: Pcasys output example
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subband block are quantized. The wavelet decomposition of an image and
the wavelet subband decomposition are computed and a lossy floating point
pixmap is reconstructed from a WSQ compressed datastream. Join lets is
then called for the reconstruction of the image from the wavelet subbands.
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3.2 MAFFT

3.2.1 Introduction

An important step in various types of comparative studies of biological
sequences is the Multiple sequence alignment (SMSA). SMSA is used in
phylogenetic inference, conserved region detection, structure prediction of
ncRNAs and proteins and many other situations. For an easy MSA problem,
such as an alignment consisting of a small number (<∼ 100) of short (<∼
5, 000) sequences with global and high similarity (percent identity of >∼
40% for protein cases and >∼ 70% for nucleotide cases), most of the current
programs return a correct MSA, and no special consideration is needed.
However, if all three of these conditions are not met, then the construction
of an MSA can be a difficult task from both computational and biological
viewpoints.[18]

There is an established method based on the Dynamic Programming (DP)
algorithm for calculating- a pairwise alignment (an alignment between two
sequences) with a time complexity of O(L2 ), where L is the sequence length.
Theoretically, the DP algorithm can be extended for cases of more than
two sequences, but the time and space complexities of the naively extended
algorithm, O(LN ), are impossibly large, where N is the number of sequences.
Finding the exactly optimum MSA quickly becomes computationally intractable
when the number of sequences in- creases. Considerable efforts have been
made to obtain the optimum MSA of∼10 sequences, which is still substantially
smaller than the alignment size biologists now need. Therefore,some sort of
heuristics are inevitable.[19][20]

Even if the optimal MSA is successfully obtained, it is not always the
correct solution from a biological viewpoint. This suggests that we should
pay attention to a biologically relevant objective function, as well as to
algorithmic techniques for obtaining the optimum solution. This is one of
the reasons why various multiple sequence alignment schemes have been
extensively studied to date, but there is no definitive one. Moreover, the
accuracy of multiple alignment is improved by adding homologs or profiles.
This is because homologs make family-specific information available and
enrich the profiles used in the multiple alignment processes. Recent protein
MSA studies indeed tended to use external sequence information. Therefore,
for an alignment program, the ability to handle many sequences is an important
factor for yielding accurate results, as well as for large-scale analyzing.
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Figure 3.3: MAFFT - Progressive method - algorithm dataflow

3.2.2 MAFFT algorithm dataflow

MAFFT offers various multiple alignment strategies. They are classified
into three types:

1. the progressive method,

2. the iterative refinement method with the WSP score and the

3. the iterative refinement method using both the WSP and consistency
scores.

In general, there is a trade off between speed and accuracy. The order
of speed is a > b > c , whereas the order of accuracy is a < b < c. Apart
from being the faster , the progressive method has been more friendly to this
thesis’ target as explained on Section 4.2.2. Therefore our implementation
was focused on the progressive methods (1st method)

These are simple progressive methods like ClustalW. By using the several
new techniques described below, these options can align a large number of
sequences (up to ∼5,000) on a standard desktop computer. The most used
progressive methods are:
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• FFT-NS-1 which is the simplest progressive option in MAFFT and one
of the fastest methods currently available. Firstly it makes a rough
distance matrix by counting the number of shared 6-tuples (see below)
between every sequence pair. A guide tree is then being built and
finally the sequences are aligned according to the branching order.

• FFT-NS-2 where the distance matrix already used in FFT-NS-1 is
recomputed and a second progressive alignment is carried out which
basically optimise’s the 1st method.

Figure 3.3 shows the algorithm’s dataflow

Argument Differences Default
–retree 1 Approximately two times

faster but more rough than
default

–retree 2

–maxiterate 2 Enhances the accuracy but
not applicable to many
sequences

–maxiterate 0

–memsave Memory saving but
approximately two times
slower

auto

–fft For long (∼1,000,000 nt)
conserved sequences

auto

–nofft For many (∼5,000) sequences auto
–parttree For extremely many

(> 10, 000) sequences
disabled

–dpparttree For extremely many
(> 10, 000) sequences

disabled

–fastaparttree For extremely many
(> 10, 000) sequences

disabled

–partsize 1000 More accurate than default –partsize 50
–groupsize 1 Does not align.

Recommended to be used
with –reorder. The sequences
will be sorted according to
similarity.

–groupsize (large)

–treeout Outputs the guide tree disabled

Table 3.1: Mafft optional input arguments
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Mafft (versions > 5.850) has as a default setting to automatically select
a moderately fast method that can process a large dataset the number
of sequences (< 10, 000). It may also take many optional arguments as
inputs (shown on table 3.1 which are for manual selection of the appropriate
combination in cases of abnormal termination or if there are extremely many
(> 10, 000) sequences to be aligned.

TYPE INPUTS - OUTPUT
char **seq1
char **seq2
double *eff1
double *eff2
int icyc
int jcyc
int alloclen
LocalHom (structure) localhom
float *impmatch
char *sgap1
char *sgap2
char *egap1
char *egap2
float wm

Table 3.2: A Align optional input arguments
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3.2.3 A Align - The most demanding process

The most time-consuming process of the MAFFT application was the
A Align process. This process is responsible for reconstructing the guide
tree after the progressive alignment of the original tree. It calls other
routines in order to create matrices with matching scores. When the new
matrices are created, in order to make the alignment of the sequences,
A Align produces a score value between the new and the old score tables.

A Align is called at least once per input sequence. For every single
sequence it creates two pairs of sequences -called ”clusters”- based on the
weight tree already created. Every pair consists of sequence parts, the
number of whom depends on the nature of the input. For most of our
datasets the maximum length of a part was less than 500 characters. In
more details, the input sequence is separated into seq1 and seq2 and their
elements number is set by the values of cluster1 and cluster2. Furthermore,
it takes as input the table dis consweight which contains the weights of
each part as calculated in the previous step of mafft. The table also contains
a default fpenalty value for the cost of empty sequence parts and two
vectors sgap and egap used for defining any blank spaces of the sequence.
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Input: . At the stage of alignment MAFFT calls A align. A Align
takes as input arguments few pointers to the original score table as well as
some static integer and float values used for data transfer between the score
matrices.

Output: . After the alignment A Align returns one float value, called
wm which is the totalscore of the matching between the matrices and is also
the benchmark of the method’s accuracy and the two aligned parts of the
sequence.

Table 3.2 shows the input and output arguments of A Align

Microprocessor and Hardware Laboratory 46



Chapter 4

Implementation

The main purpose of this chapter is to explain the overall development flow
of this thesis’ implementation. The processes of enabling the NBIS (Section
4.1) and the MAFFT (Section 4.2) applications on the PS3’s Cell processor
are presented in this chapter. Details are also given for the programming
models, the level of parallelism and the data partitioning procedure that
were used in each application. Finally, some of the problems we encountered
as well as their solutions are described at the end of each section.

4.1 NBIS Implementation

4.1.1 Introduction

This section gives an overall development flow of our implementation of
the NBIS application on the CELL processor. This implementation was not
successful in terms of boosting the performance of an existing application.
The problems we faced, instead, obliged us to stop prematurely. They
provided us, on the other hand, with a theoretical base not only for porting
an application to the CELL but also for the necessity to have the source
code written for a multithreaded execution. After porting the Fingerprint
recognition algorithm to the Cell’s PPE, our implementation was completed
by the disappointing execution times (we used Intel Vtune Performance
Analyzer along with the Linux time function).

Our implementation is separated into 4 steps each described in details in
the following sections:
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• Section 4.1.2 describes the performance analysis of the given application
and shows the execution profile for each of the packages of NBIS
(described in Section 3.1.2),

• Section 4.1.3 describes the process of porting the PCASYS package to
the PPE and refers to the problems we faced at this stage,

• Section 4.1.4 describes the data analysis we did to the most time-
consuming function called Join Lets

• Section 4.1.5 gives an overall of the problems that ended this implementation
without porting to the SPE’s.

In the final subsection 4.1.6, solutions and a brief conclusion for the
requirements when building applications like NBIS, are provided.

4.1.2 Performance analysis

The first step of our implementation was to make the profile of the
original source code and discover the hotspots that would be offloaded
to the Synergistic Processing Units. NBIS came along with a 300 page
manual describing all the packages’ and their main processes’ algorithms and
provided us as well with inputs and outputs for testing. For measuring the
performance of the packages we used INTEL’s Vtune Analyzer distribution
9 1 for Linux. The machine we used for the profiling was a Pentium IV at
2.66 GHz, with Ubuntu 8.04 OS.
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Bozorth3 package

After reading the manual and having realized the need of every package
(as described in Section 3.1.2) we decided to port the bozorth3 package to
CELL. Bozorth3 is responsible for determining if two fingerprints are from
the same person, same finger. It uses the minutiae detected by MINDTCT
to analyze fingers two at a time or run in a batch mode comparing a single
finger (probe) against a large database of fingerprints (gallery) and come
with a matching result.

Unfortunately vtune’s results (showed on Table 4.1) were discouraging as
there was no demanding (in terms of computing) process with a significant
percentage of CPU usage. Instead, depending on the dataset different
processes would prove to be the most time-consuming. For a thread designer
this means that he\she should follow one of the following designing paths:

• The first way would be to create threads for more than one processes
that have a sum of CPU time at least over 75% in order to have a
considerable influence on the total execution time

• Another way would be to try to fit as much code to the SPEs which is
regarded to be faster than the PPE. The problem with this method,
except for the limited sizes of the SPE’s Local Storage and the considerable
enough cost of DMA transfers, is the architecture of the SPE’s itself.
As explained on Section 2.1.3, the SPE’s were developed for calculations
and vector multiplication applications. When it comes to architecture
though, the SPEs do not include ”Out-of-order execution”, ”branch
prediction” or caches (they have their own Local Store but does not
support the cache’s characteristics of a Pentium). This is a trade
off which gives you more computing power along with low power
consumption, but the simplicity of the architecture results in an even
worse execution time than the PPE (already proved to be slower than
a Pentium IV).[30][31]

We chose the first path for this project’s implementation. The next step
was to find the most time-consuming functions of the first three processes.
The results on Table 4.1 show that the most compute-intensive functions
were once again not consuming a considerable percentage of the CPU time.
Furthermore, there were different functions for each of the processes and
with varying percentages as well. For our implementation this meant that
had to be limited in terms of the arguments and the datasets tested. Thus,
to find a formula where we could apply the Threading Processing that was
the initial target of this thesis. The cost of limiting the applicability of our
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project was seriously taken under consideration and we decided to profile
the other packages of NBIS in order to find a package with more ”appealing”
results.

BOZORTH3 on Pentium IV
Dataset Argument 1st process

(%CPU)
2nd process
(%CPU)

3rd process (%CPU)

mates -M bz match score
(53%)

bz comp (17,1%) bz match (9,4%)

gallery -M bz match score
(49,6%)

bz match (21,3%) sort order decreasing
(7,3%)

probes -P bz match score
(43,3%)

bz comp (28,2%) bz match (11,7%)

gallery -v -M bz match score
(39%)

bz comp (26,4%) sort order decreasing
(6,7%)

Table 4.1: Bozorth3 process analysis : datasets - Processes ( their CPU time
% percentage)
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Pcasys Package

Pcasys was the second package we did the profiling to and its vtune’s
results had been more positive than Bozorth3’s. Pcasys is a fingerprint
classifier that reduces the number of candidate searches required to determine
if a fingerprint matches a print on file. For more details for the package
Pcasys refer to Sections 3.1.2 3.1.3 .
Table 4.2 shows the three most time-consuming processes and their % percentage
of CPU time for a few different datasets we tested.

Pcasys on Pentium IV
Dataset 1st process (% CPU) 2nd process (% CPU) 3rd process (% CPU)
1 image join Lets (55,2%) rors(6,2%) passb4 (5,6%)
10 images join Lets (49,8%) fft2dr (6,8%) passbf4 (5,8%)
100 images join Lets (51,4%) rors (4,9%) enhnc (3,9%)
270 images join Lets (53,7%) passb4 (5,9%) rors (5,6%)
1000 images join Lets (53,6%) rors (5,8%) passbf4 (5,7%)
2700 images join Lets (54.6%) rors (6,2%) enhnc (5.6%)

Table 4.2: Pcasys process analysis : datasets - Processes (their CPU time%
percentage)
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4.1.3 Porting to PPE

When we started this project over a year ago, our knowledge for Thread
Processing on a multicore processor was limited to what the few manuals for
Cell Programming and PS3 programming said about porting an application.
Unfortunately, all the examples and the methos produced in the manuals had
in common the way to treat the Makefiles. To be more precise, the use of two
Makefiles (one in the SPU folder and one in the PPU’s) was implemented.
On the other side, when trying to port a huge application , there might be
many different Makefiles and executables located into different directories
(in our case we had 140 different Makefiles and over 500 executables placed
in different folders )

The next step seemed to be the creation of a new Makefile for the PPE.
A new Makefile that would do exactly what the other 140 Makefiles did but
would call the ppu-gcc compiler instead of the original gcc. This process
of creating the Makefile finally lead us to a dead end. After a lot of tries
and changes to all the Makefiles the build errors continued to appear to the
console. The complexity of the Makefiles of the NBIS distribution we had
then was above our limits. The Makefiles were written in the ”old style” !
The new-style Makefiles are more compact and easier to get correct for
certain features (such as CONFIG options that enable more than one file).
The ”new-style variables” are simpler and more powerful than the ”old-
style variables”. Moreover, the ”new-style” Makefiles support associative
indexing (a single line simple assignment equals to eight lines of code in
an ”old-style” Makefile). As a result, many subdirectory Makefiles shrank
more than 60 %. Our project was divagating from its original purpose to
Software’s Engineering fields and ways to manipulate Makefiles.

Writer’s Note : In time, all arch Makefiles and subdirectory Makefiles
will convert to the new style.

Fortunately a new distribution of NBIS was released during our experiments
and although the Makefiles were once again in different folders they had
been written this time in ”new-style”. This distribution was developed and
released for more recent machines including Linux distributions using the
GNU gcc compiler and the gmake utility. To us, this was an unexpected gift
apart from a sign to stop and erase a couple months of work that seemed to
lead our research to a dead end in the first place.

With the new distribution nothing has changed on the original source code
but for the Makefile’s structure. There were also no new flag optimizations
compared to the previous Makefiles. Therefore, and due to the new process
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analysis we did with Vtune, packages and their processes’ demands had been
stable and so we continued with the Pcasys package.

The makefiles of NBIS looked for the gcc compiler by default (it was
declared in the parent Makefile located in the top folder of NBIS). We
changed that value to ppu-gcc and added few lines of source to raise some
flags needed for the PPE. Additionally, we had to include to the Makefile a
footer file (containing makefile definitions supplied by the SDK for producing
programs) and a couple of header files. A few changes to the binaries folders
and their permissions and our Makefile was finally ready for compiling.

The application was built without errors or warnings on PS3’s Yellow Dog
(version 6 0) and the step porting to the PPE was successful. We used the
time process of Linux apart from Intel’s Vtune and both showed that the
PPE with its 3.2 GHz frequency was more than x2 slower than the Pentium
IV running at 2.66 GHz. The scientific community backed us up with many
applications that proved the PPE’s execution time to be significantly slower
than a Pentium’s. Table 4.3 shows the execution times of NBIS for the
Pentium IV and the PPE for the same datasets.

Pcasys : Pentium IV vs PPE
Dataset Pentium IV PPE
1 image 0.398 0.940
10 images 4.024 8.765
100 images 39.450 99.389
270 images 106.119 237.709
2700 images 1024.703 2334.699

Table 4.3: Pcasys execution times : PPE vs Pentium IV
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4.1.4 Data analysis of Join lets

Join lets proved to be the most demanding function of the Pcasys package
as it consumed around 45 % of the total execution time of pcasys executable.
With the use of system calls we discovered that join lets would run 40 times
per input file we want to compare. The datasets we tested were consisted
of 270 sample files each. As a result, join lets was called 10800(= 2700 ∗ 40)
times per dataset. With a closer look to join lets source code we discovered
that there where dependencies between the variables but more importantly
it consisted of over ten ”branch-loops” also depended with each other. For
our implementation this meant that neither the method of data partitioning
nor the ”data-column” could be applied. The next step to solve this problem
would be a data analysis of the Join Lets function, hoping it would fit to
the limited size of the SPEs.

More system calls were used to the original source code printing to the
console the sizes of the input arguments. Fortunately, the total size of data
input had been around 4 KB (< 256KB available in the Local Stores).
Two ideas for implementation could be applied on this case. As already
mentioned join lets runs 40 times per full compare between the dataset and
the 270 samples we used. The first idea was to try and fit all 40 runs in
every SPU, thus have 6 parallel Synergistic processors with different input
files doing 40 compares each with the Database. This method would have
a maximum theoretical speed-up of 1/((1− p) + n/p) , where p=fraction of
the code and n=number of cores. The other idea was to have all the SPEs
working on the same input file doing a different compare each until the end of
the file. The structure of the source though (had dependencies) in addition
to the cost of the many DMA transfers required for sending and receiving
data lead to the selection of the first method for our implementation.
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4.1.5 Overall of NBIS problems

As mentioned in previous section our implementation would be to try and
fit the join lets process to the SPEs in order to deploy Cell’s performance
abilities. On the other side, we had to limit our thesis’ target in terms of
applicability as well as in achieving a speed-up in the performance.

Due to the reasons described in Sections 4.1.2 and 4.1.4 our range of
Pcasys’ potential methods along with our dataset were seriously smaller
than the target of this thesis. This thesis’ target was to port an existing
application to the Cell microprocessor. Porting an existing application
means that we should include into our implementation most -if not all-
potential arguments, or datasets it originally supported. Moreover, depending
on the input data of an algorithm, an application may call different routines
or functions. Porting should also support most of these execution methods of
the original application, but in our case this could not be applied. Therefore,
we rested our hopes to achieving a performance boost in the execution on
the CELL, even for limited data and methods.

When we ported the Pcasys to the Cell’s PPE we measured it’s execution
time with the mfttb command supported by spu intrinsics.h library.
With the use of time and the Intel’s Vtune Analyzer we also measured
the execution time of Join lets process on a Pentium IV running at 2.66
GHz. The PPE proved to be too slow even for a Pentium running at lower
frequencies. Furthermore, join lets would consume a maximum of only 55%
of the total execution time. This means that no matter what approach
we may have followed for implementation (any method applied only to the
Join Lets function) it would have an effect only on the 55% of the total time.
In the best case scenario (SPE’s execution time limiting to zero) we would
still be considerably slower than the Pentium IV.[2]
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4.1.6 Conclusion

Our first try to the CELL could not be regarded as a success. We faced
difficulties in every step of our implementation and no matter what method
we may have used for porting, we would still be slower than a Pentium IV.
The simplicity of the CBEA architecture proved to be the most important
factor that led to our premature ending of the NBIS implementation.

In addition to the slow architecture, NBIS source structure was not friendly
to multi-processors. The algorithms had not been created for multithreaded
execution and due to the dependencies existed in them, optimization by
parallel execution could not be applied. In order to test the performance
abilities of the CELL, the need for rewriting source for this application
seems to be the only way. New algorithms that support multithreading
should be implemented, along with changes to the sequential structure of
this application.

Unless these are applied, there will be no significant speed-up in the
performance and even an ancient Pentium would look like a speed-horse
compared to the Cell Broadband Engine.

Writer’s Note : Although this design came to a dead end it proved to
be -apart from interesting- extremely helpful as provided us with essential
knowledge on multicoring, later applied on the MAFFT application.
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4.2 MAFFT Implementation

4.2.1 Introduction

This section gives an overall development flow of our implementation of
the MAFFT application on the CELL processor. In next section ( 4.2.2 ),
the programming model we chose for our implementation and the reasons for
our choice are provided along with the Application Enablement Process
(AEP) of the implementation. Our implementation consists of five main steps:

1. Make the profile of the original code (Section 4.2.3) of MAFFT ,

2. Port the application only to the PPE processor (Section 4.2.4,)

3. Data flow analysis and setting the PPE to act as a control (Section
4.2.5),

4. The DMA (Direct memory access) data transfers to the SPE’s Local
Storage (Section 4.2.6) and

5. The overall execution implementation with the 6 SPE’s available on
the PS3 (Section 4.2.7).

4.2.2 Programming Model & AEP

The programming model we chose for our implementation was the function-
offload model with the use of Asymmetric-Threads (Asymmetric-Thread
Runtime Model).The models are explained in section 2.1.5. We chose these
models as they are suggested for optimizing an existing application. After we
statically identified the critical on performance functions , we decided which
functions should be offloaded to the SPEs. Using these methods was the
quickest way to speed-up the computation-intensive functions of an existing
application (In Chapter 5 the need for re-writing sources is explained ).

The process of enabling an application (Application Enablement Process)
on Cell processor (Figure 4.1 shows our Application Enablement Process)
can be iterative on every hotspot of the application. Each one can be
dealt with the steps mentioned above until the performance is good enough.
Therefore, this AEP may be applied in different applications and should
give depending on the algorithm an increase in the performance.

Microprocessor and Hardware Laboratory 57



Chapter 4. Implementation MAFFT Implementation

Figure 4.1: Application Enablement Process

4.2.3 Profiling the original code

The first step of our implementation was to make the profile of the
application. In order to find the most demanding functions of the MAFFT
application we used INTEL’s Vtune Analyzer 9.1 for Linux on a Pentium
IV 2.66 GHz with Ubuntu v.8.04 .(Details of measuring the performance
are given on Chapter 5)

We measured all the methods described in Chapter 3.2.2 with vtune. The
results for the progressive methods ,in contrast with NBIS’s performance
analysis (Section 4.1.2), have been an auspicious start for us. Table 4.4
shows that the most-demanding process measured in execution time was
by far the disstbfast (when running with option –retree 1 - 1st progressive
method) or the tbfast (with option –retree2 - 2nd progressive method). For
an implementation on the Cell processor this is a case where the function-
offload model is suggested as the way to start. The measurement of those
two processes showed that the function A align was the most computation-
intensive function , as shown on Table 4.5.

The results of the profiling showed us the way for the implementation.
Based on these , we decided to choose the Function-Offload Model and port
to the SPE’s only the A Align function.
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Writer’s Note : There is no need offloading the other functions as the
cost of DMA transfers - needed for the data transfers to the SPE’s LS. - is
significant and any potential speed-up from porting to the SPEs would be
lost.[24][27][28][29][26]

DISSTBFAST
Dataset CPU (%) Execution time (Sec)
ex10x766 40 0.336
ex10x1460 57 1.320
ex100x766 45 1.768
ex59x5271 41 53.254
flyDNA10x766 43 0.180
flyDNA100x766 48 0.812
flyDNA100x1403 49 4.649

Table 4.4: Vtune system analysis for MAFFT

A Align
Dataset CPU (%) Execution time (Sec)
ex10x766 85 0.285
ex10x1460 87 1.148
ex100x766 84 1.485
ex59x5271 89 47.910
flyDNA10x766 77 0.138
flyDNA100x766 81 0.657
flyDNA100x1403 79 3.673

Table 4.5: Vtune functions analysis forDisstbfast

4.2.4 Port to PPE only

Porting to the PPE proved to be an easy case for us. The Makefile was
written for any Linux distribution (with kernel 2.6 ) and so there were very
few changes we had to do in order to built the application on the Yellow Dog.
The main parameter we had to alter was the compiler the makefiles looked
for , from gcc to ppc-gcc. This automatically sets the Power-Pc compiler
environment needed for the PPE of the PS3 to run the application. The
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source files were all located in the same directory and so no other changes
were needed except for changing the binaries’ installation directory and their
permissions to root’s. The default flag for optimizations was initially at -O3
and we tested the performance with the optimizations and without them
(-O0) as we had already done on the Pentium IV.

With or without the O3 flag , the PPE (running at 3.2GHz) was 4x times
slower than the Pentium IV (running at 2.66 GHz). This can be explained
as the role of the PPE is to behave as a controller of the SPE’s and so
it was made with a lot simpler architecture than the other general purpose
processors. Most modern microprocessors devote a large amount of silicon to
executing as many instructions as possible at once by executing them ”out-
of-order” (OOO). This type of design is widely used but it requires hefty
amounts of additional circuitry and consumes large amounts of power. With
the PPE, IBM have not done this and have instead gone with a much simpler
design which uses considerably less power than other PowerPC devices - even
at higher clock rates. This design has however the downside of potentially
having rather erratic performance on branch laden applications. Such a
simple CPU needs the compiler to do a lot of the scheduling work that
hardware usually does; so a good compiler will be essential. In conclusion
, there is nothing impressive about the PPE’s architecture other than it is
a small, fast, efficient core. Against a Pentium 4 or an Athlon 64, the PPE
would lose undoubtedly, but the PPE’s architecture is one answer to a shift
in the performance.

Table 4.6 shows the execution time for the PPE and the Pentium IV with
the use of -O3 optimization flag.

MAFFT
Dataset Pentium IV PPE
ex10x766 0.336 0.705
ex10x1460 1.320 2.414
ex100x766 1.768 4.292
ex59x5271 68.322 122.234
flyDNA10x766 0.180 0.336
flyDNA100x766 0.812 2.080
flyDNA100x1403 1.912 4.649

Table 4.6: Pentium IV vs PPE execution times
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Writer’s Note : Should Cell ever make its way into a PC, the PPE would
definitely have to be “beefed” up, or at least paired with multiple other
PPEs.

4.2.5 PPE control behavior

As already mentioned in section 2.1.3 the SPEs operate on a 256KB Local
Store, each of the SPUs possess , for data transfers and instruction fetching.
After having decided which method to use for the implementation, our next
step was to locate the calls of our function (A Align) during the mafft’s
execution. The use of ”printf” showed that our function was called once
per sequence of any input file and there were two different ways of calling
A Align. It was called either directly from the treebase function or the
treebase would call the F Align function and it would then call A Align.
Since the methods aren’t conflicting, threads should be created just before
the call of A Align on both cases.

The PPE will start running the Mafft and it will pause it’s execution just
before the call of A Align from processes treebase or F align - depending
on the input sequence of the dataset. Afterwards, it creates a thread and
starts sending data to the SPEs’ Local Storages. At this point we had to
determine the amount of data needed to be transfered to the SPEs’ LS.
The data size of the inputs was different not only between the datasets
but also from sequence to sequence. In addition to this, the limited size
of the LS was taken under consideration. Therefore, the method of data
partitioning was implemented to partition the data and to solve any bus
errors (as the ppu-gcc compiler identifies them). Details for the method are
given on Section 4.2.6.

The declaration of our function was initially located at the SAlignmm.c
file and was removed as it would be offloaded to the SPEs by any calls
to our function. Therefore , in order to solve the ”duplicate or unused
declaration” warnings, the A Align source was saved to a new C source
file (spe A Align.c). The PPE’s role has turned from computing to being
just a controller of the SPEs. It stops it’s execution , creates the context
for the SPE’s and loads the program to the SPEs. From the current thread
the execution starts and it is and the PPE waits for the return of the SPEs.
After fetching the data from the SPE’s it destroys the context and continues
its execution. The scheduling process had some overhead and this proved to
be crucial for the design as it takes a significant amount of time compared
to the execution time. In order to reduce the overhead, context was created
just before and destroyed immediately after one SPE program load. Figure
4.2 shows the PPE’s control behavior.
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Figure 4.2: PPE control

4.2.6 DMA transfers

The architecture of Cell defines that the SPEs use data only from their
LS. The need for data transfer was fulfilled by the commands supported
by the CELL for DMA transfers. In order to initiate the request for data,
we used the SPE initiated transfers as the PPE initiated transfers
are slower than the SPEs. Moreover, there are size limitations to a single
transfer (maximum supported is 16KB per transfer) and the data should be
a multiple of 16. These problems were solved with the use of the mfcget and
mfcputs commands used for moving data from LS to main storage and vice
versa in addition to a 16-byte data alignment implemented on the control
block of the data.

As mentioned in previous section our input arguments are not stable in
terms of size and a special treatment was needed in order to avoid the
bus errors or any mistakes in the output. Thankfully, instead of using the
libspe header we used the newest version (libspe2) and the posix threads
supported. The deprecated libspe version is asynchronous. That means, if
you try to create more threads than SPEs available, the program tries to
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create threads but sometimes fails because the SPEs are busy. On the other
side , the libspe2 header with posix threads is synchronous. They will block
and queue the incoming thread until the requested resources are free again
without the overhead we would get from trying this with the old libspe.
[16]. The use of posix threads is essential for creating, manipulating and
managing threads, as well as synchronize between threads using mutexes and
signals. Their ability to be build on different machines (Solaris, PPE(Cell’s),
PowerPcs etc.) is very useful for future work implementations.

Figure 4.3: DMA transfers from and to LS

After fetching the input arguments from the main memory to the Local
Storage of each SPE, the SPEs are ready for execution. While processing the
input they stall the transfers for as long it takes to the SPE to complete the
execution and return the result value (in our case a float wm) to the main
memory. Then, they are free again for receiving the data from the main
store. We categorized our datasets into two categories in terms of data size.
Those whose data were less from the size limits of LS (256KB) and those
whose data had an overhead. Fortunately, most of our datasets could fit
on the Local Storage except for very long sequences for which we had to
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fetch data more than once. The main categorization of the dataset, though,
was made depending on the input sequence each dataset used. Depending
on the sequence the FFT-Transform our method uses, becomes slower and
has to create tables with a double size than the original (cases where the
sequences did not have similarities) while on “long-distanced” sequences the
FFT becomes more applicable thus faster, as it creates tables half of the
original size. Therefore, our inputs where separated into two groups:

• examples :We tested four different in terms of size and sequence number
datasets and they are the cases in which we saw the best performance
boost.

• flyDNA :We tested three different sequences in which mafft’s execution
time was a lot faster on the Pentium than the PPE and even faster
than our final implementation with the six Synergistic processing units
available.

DATASETS
No. Examples flyDnas

1 ex10x766 flyDNA10x766
2 ex100x766 flyDNA100x766
3 ex10x1460 flyDNA100x1403
4 ex59x5271 -

Table 4.7: Two categories of dataset used for the implementation
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4.2.7 Implementation with 6 SPEs

This stage of our implementation started with creating an SPE source file.
We copied the original A Align source and added the headers needed for
the SPEs. Those headers were also placed to the SPE Makefile in addition
to the headers necessary for the threading procedure and the communication
with the PPE. In more details, we created a folder called mafft as a parent
directory and created 2 subfolders called SPU and PPU.

PPU folder The PPU folder contained all the original folders with the
changes described on Section Porting to PPE only (4.2.3). When building
an application on an SPE, an embedded library is created (mylib.a). This
embedded library had also to be imported to the PPE. In order to allow
consolidation of the spu program into the ppe binary we added two more
flags to the original Makefile (-lspe2 -lpthread). Those flags were used only
for the object files that needed the A Align function and had to look for
the SPE executable. Furthermore, we had to create the threads, send data
to the Local Stores and receive the result back to the main memory, on
every process that called A Align. All the other folders and their contents
didn’t need any changes. An example script of our thread process is shown
on figure 4.4.

Figure 4.4: PPU source
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SPU folder: This folder contained the SPE A Align source file written
in C with the posix threads and their headers included. In this folder
we placed a new Makefile (SPE Makefile) where we set the name of our
SPU program and embedded the library mylib.a. Furthermore, we had to
manually include the files containing any headers or functions’ declarations
that A Align called. When building an SPU application a new executable
(with the name set as SPU program) is created apart from the libraries
already discussed. It goes without saying that this executable has to be
created before the PPU’s in order to be available for the PPE. Finally, when
setting an SPE application’s name we automatically set the spu gcc compiler
along with some flags (-W -Wall -Winline -Wno-main -I. -I ) needed for
the compiling and the join of the SPU with the PPU. When the SPE source
is built, the SPE executable along with the object file spe A align-embed64.o
and the embedded library mylib.a are created in the folder spu.

Figure 4.5: Folders organized in a tree
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MAFFT -1st progressive method
Dataset Pentium IV PPE PPE & SPEs
ex10x766 0.336 0.705 0.198
ex100x766 1.768 4.292 1.263
ex10x1460 1.320 2.414 0.778
ex59x5271 62.322 122.321 40.503
flyDNA10x766 0.180 0.336 0.225
flyDNA100x766 0.812 2.080 1.898
flyDNA100x1403 1.912 4.649 3.815

Table 4.8: Pentium IV vs PPE vs PPE & SPEs execution times

Parent makefile: In the parent directory (mafft) we created another
Makefile (Makefile parent) in order to connect the two Makefiles placed in
the spu and the ppu folders, with each other. In more details, we first build
the makefile of the spu folder and then the ppu’s. The original Makefile
needed two instructions for build (make and make install). This conflicted
with the build on the SPU which had no tags at all. After a few more changes
to the ppe’s Makefile we managed for our implementation to need only one
instruction (a single make) on the top folder where the Makefile parent is
located. A couple bus errors were then faced but were all solved by the
initialization of our control block of data.

With the use of the system call fprintf in our spe source we were certain
that the SPE code we implemented was executed and even before timing
the results it was obvious that there was a significant improvement on the
performance compared with the original PPE’s execution time. The time
simulations proved our suspicions and the CELL JUST become a powerfull
processor. Especially on the slower datasets(”examples”) the execution time
was enough faster than the Pentium. Unfortunately, for the fast cases
where the FFT is applicable most, the architecture of the Pentium was
too fast for us. An example of those time measurements is given on Table
4.8 while Tables 4.9 4.10 show the speed-up between the Pentium and our
implementation and the PPE versus our implementation.
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MAFFT -1st progressive method
Dataset Pentium IV PPE & SPEs Speed-up
ex10x766 0.336 0.198 1,8x
ex100x766 1.768 1.263 1,4x
ex10x1460 1.320 0.778 1,7x
ex59x5271 62.322 40.503 1,5x
flyDNA10x766 0.180 0.225 -0.8x
flyDNA100x766 0.812 1.898 -0.4x
flyDNA100x1403 1.912 3.815 -0.5x

Table 4.9: Pentium IV vs PPE & SPEs execution times - SPEEDUP

MAFFT -1st progressive method
Dataset PPE PPE & SPEs Speed-up
ex10x766 0.705 0.198 3.5x
ex100x766 4.292 1.263 3.4x
ex10x1460 2.414 0.778 3.1x
ex59x5271 125.321 40.503 3.1x
flyDNA10x766 0.336 0.225 1.5x
flyDNA100x766 2.080 1.898 1.1x
flyDNA100x1403 4.649 3.815 1.3x

Table 4.10: PPE vs PPE & SPEs execution times - SPEEDUP
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Evaluation

Introduction

This chapter’s purpose is to compare the performance of our designs
for the NBIS and the MAFFT applications with the performance of other
processors. Apart from the explanation of the results, the measuring procedure
as well as the tools we used are also presented in the chapter. This chapter
is organized in two sections. Section 5.1 shows the evaluation results of NBIS
while the results of MAFFT are in Section 5.2.

5.1 NBIS evaluation

Introduction

In sections 4.1.5 4.1.6 we showed that our implementation on the NBIS
application ended earlier than we expected and consequently this section is
also shorter than expected. This Section is organized into two subsections.
The time analysis and the measuring methods used for the Pentium IV are
provided in the first section (5.1.1), while the results after porting to the
PPE are shown in Section 5.1.2.

5.1.1 Evaluation on Pentium

Our reference machine was a Pentium IV running at 2.66 GHz with an
1GB DDR RAM running at 333 MHz under the Linux operating system
UBUNTU version 8.04 Hardy. The execution time of the total application
was measured with the time function supported by ???. We also used
INTEL’s VTUNE PERFORMANCE ANALYZER version 9 1 for Linux to
discover the most consuming processes and their percentage of the total
execution time.
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TIME function The time function supported by our O/S showed us the
execution time of Pcasys. It provided us with three different time information:

1. real: The total real time it took to the PC to return the exit value
along with other processes running on the PC.

2. user: The total time of our application only- both the computational
and the application’s system calls times are calculated,

3. system:The total time of the system calls of our application.

Different O/S treat system calls differently and so the printfs-system calls
were removed. In all datasets tested the system calls execution time was
less than 0.01 % of the user time and therefore we used the user time as
our reference. The time function proved to be extremely accurate and most
runs (on the same dataset each time) had almost the same user value.

Pcasys - dataset:mates
RUN real user system
1st 0.203 0.104 0.002
2nd 0.212 0.106 0.002
3rd 0.198 0.101 0.002
4th 0.204 0.103 0.001

Table 5.1: Pcasys dataset mates time analysis

Tables 5.1 5.2 5.3 show our application execution times for different
datasets, running on our reference machine, as they were printed to our
console.

Vtune Analyzer Vtune is used for analyzing throughout the development
process to produce faster, more efficient code. Source and disassembly views
show the developer exactly the lines of code and clockticks they require.
Therefore, for our reference computer (CPU at 2.66 GHz) we had to divide
the number of clockticks calculated from Vtune with the CPU frequency.
On a General-Purpose system like our Pentium many processes are running
apart from our application on the same time (Round-Robin system). It is
natural, therefore, to have different number of clockticks on every single run
even with the same input dataset (due to the different misses or stalls
that may take place while execution). In order to be accurate with our
measurements we ran each dataset more than 10 times in order to get an
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Pcasys - dataset:gallery
RUN real user system
1st 0.102 0.028 0.001
2nd 0.107 0.030 0.001
3rd 0.103 0.035 0.002
4th 0.114 0.029 0.002

Table 5.2: Pcasys dataset gallery time analysis

Pcasys - dataset:probes
RUN real user system
1st 0.071 0.008 < 0.001
2nd 0.079 0.009 < 0.001
3rd 0.064 0.008 < 0.001
4th 0.069 0.009 < 0.001

Table 5.3: Pcasys dataset probes time analysis

average performance analysis. The average performance demands are shown
in Section 4.1.2 while the clockticks of different dataset runs are shown in
table 5.4.

Pcasys
Dataset total(%) join lets(%)
1 images 54 47
10 images 62 50
100 images 47 49
270 images 51 45
2700 images 53 44

Table 5.4: Pcasys vtune analysis
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5.1.2 Cell’s evaluation

After porting successfully to the PPE, the PS3 was able to run the Pcasys
application. We used the time function also supported by our O/S (Yellow
Dog) and measured the performance of the PPE. The execution time results
of pcasys for the same datasets tested on the Pentium are shown on Tables
5.5 to 5.8.

Pcasys - dataset:1 image
RUN real user system
1st 1.988 0.940 0.236
2nd 1.997 0.939 0.233
3rd 1.989 0.939 0.234
4th 2.003 0.941 0.233

Table 5.5: Pcasys (1 image) time analysis

Pcasys - dataset:100 images
RUN real user system
1st 90.755 87.385 2.605
2nd 89.864 87.315 2.598
3rd 89.997 87.934 2.599
4th 91.235 87.885 2.601

Table 5.6: Pcasys (100 images) time analysis
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Pcasys - dataset:270 images
RUN real user system
1st 125.705 106.119 3.740
2nd 123.864 106.123 3.700
3rd 125.426 107.231 3.799
4th 129.235 106.385 3.744

Table 5.7: Pcasys (270 images) time analysis

Pcasys (2700 images)
RUN real user system
1st 2407.729 2330.699 66.137
2nd 2411.543 2332.001 67.132
3rd 2418.012 2330.301 66.989
4th 2415.232 2331.432 67.129

Table 5.8: Pcasys (2700 images) time analysis
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5.2 MAFFT evaluation

Introduction

This section is organized in 3 subsections each describing and containing
details of the execution time, the methods and tools applied for the analysis
of the Mafft application. In Section 5.2.1 the results of our reference machine
are demonstrated while in Section 5.2.2 we show the time measurements of
the PS3’s Cell. In final Section 5.2.3, the final results of our implementation
are being shown on tables comparing the PS3’s performance versus the
(unexpectedly impressive for its age - and characteristics) Pentium IV.

Mafft - dataset:ex10x1460
RUN real user system
1st 1.051 0.764 0.008
2nd 1.076 0.812 0.080
3rd 1.075 0.836 0.080
4th 1.059 0.842 0.081

Table 5.9: Mafft dataset ex10x1460 time analysis

5.2.1 Pentium

For the time analysis of our application we used the same tools described
in Section 5.1.1 for the NBIS application. Due to the measurements shown
in tables 5.9 to 5.14 we calculated the execution time of A Align for the
same 3 datasets. The execution time of those datasets in addition to few
more datasets tested as inputs in A Align are shown in Tables 5.15 to 5.20.

Mafft - dataset:ex59x5271
RUN real user system
1st 68.088 61.924 0.992
2nd 67.438 60.962 0.982
3rd 71.824 61.596 0.964
4th 69.452 60.835 0.930

Table 5.10: Mafft dataset ex59x5271 time analysis

Microprocessor and Hardware Laboratory 74



Chapter 5. Evaluation MAFFT evaluation

Mafft - dataset:flyDNA100x1403
RUN real user system
1st 2.859 1.824 0.088
2nd 2.617 1.796 0.098
3rd 2.946 1.844 0.088
4 4th 2.952 1.925 0.085

Table 5.11: Mafft dataset flyDNA100x1403 time analysis

Mafft - dataset:ex10x1460
RUN total A Align
1st 1.320 1.148
2nd 1.348 1.153
3rd 1.369 1.198
4th 1.405 1.288

Table 5.12: Mafft (ex10x1460) vtune analysis

5.2.2 Porting to PPE only

At this stage of our implementation we used the time function supported
by the Yellow Dog in addition to the use of dynamic counters for dynamic
profiling. We used time-base registers whom frequency is set by default at
79.8 MHz instead of the 3.2 GHz clock of the PPE. We included the library
spu intrinsics.h which supports the commands required for setting the
time counters. At this point of our implementation the time values of user
time function were almost identical with the dynamic counters measurements.
Finally, we used a 5bit precision on the counters while the time function
has a default value of 3-bit.
Tables 5.22 5.23 and 5.24 show the PPE’s user execution time counted with
the two methods described.

5.2.3 Porting to PPE and SPE’s available

This section presents the time results of our final implementation and
compares it with the previous results of the Pentium and the PS3. The tools
we used were once again the time function and the dynamic counters.
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Mafft - dataset:ex59x5271
RUN total A Align
1st 53.255 47.945
2nd 55.878 49.233
3rd 58.345 51.322
4th 55.656 49.350

Table 5.13: Mafft dataset ex59x5271 vtune analysis

Mafft - dataset:flyDNA100x1403
RUN total A Align
1st 1.912 1.432
2nd 1.879 1.359
3rd 1.946 1.473
4th 1.902 1.415

Table 5.14: Mafft dataset flyDNA100x1403 vtune analysis

In this stage, though, we added few new time counters to the PPE implementation.
In more details, we used counters at the stage where A Align was first called
until it returned its output value (pscore) to the function that called it. By
doing so, we managed to time the A Align process running on the SPEs
(SPE A Align).

Table 5.25 show the execution time of our implementation versus the PPE
and the Pentium for different datasets tested.

The time measurements to the SPE’s with the use of dynamic counters
is shown on Table 5.26 and is compared with A Align’s execution time on
the PPE and the Pentium.
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A Align - dataset:ex10x1460
RUN1 CPU (%) Execution time (Sec)
1st 85.32 1.149
2nd 86.12 1.138
3rd 84.77 1.022
4th 85.44 1.213

Table 5.15: A Align (dataset ex10x1460)execution time Pentium

A Align - dataset:ex59x5271
RUN1 CPU (%) Execution time (Sec)
1st 88.55 62.345
2nd 86.12 59.887
3rd 84.77 60.349
4th 85.44 61.234

Table 5.16: A Align (dataset ex59x5271)execution time - Pentium

A Align - dataset: flyDNA100x1403
RUN1 CPU (%) Execution time (Sec)
1st 77.32 1.431
2nd 74.46 1.392
3rd 77.32 1.485
4th 75.32 1.402

Table 5.17: A Align (dataset flyDNA100x1403)execution time Pentium
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A Align - dataset: ex10x766
RUN1 CPU (%) Execution time (Sec)
1st 85.39 0.295
2nd 84.22 0.296
3rd 86.53 0.297
4th 86.28 0.298

Table 5.18: A Align (dataset ex10x766)execution time Pentium

A Align - dataset: ex100x766
RUN1 CPU (%) Execution time (Sec)
1st 85.39 1.459
2nd 84.22 1.479
3rd 86.53 1.472
4th 86.28 1.476

Table 5.19: A Align (dataset ex100x766)execution time Pentium

A Align - dataset: flyDNA10x766
RUN1 CPU (%) Execution time (Sec)
1st 75.92 0.142
2nd 74.54 0.137
3rd 76.35 0.144
4th 76.81 0.139

Table 5.20: A Align (dataset flyDna10x766)execution time Pentium
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A Align - dataset: flyDNA100x766
RUN1 CPU (%) Execution time (Sec)
1st 75.92 0.652
2nd 74.54 0.647
3rd 76.35 0.644
4th 76.81 0.687

Table 5.21: A Align (dataset flyDna100x766)execution time - Pentium

Mafft - dataset:ex10x1460
RUN time function Dynamic counters
1st 2.615 2.59235
2nd 2.322 2.32152
3rd 2.642 2.64005
4th 2.263 2.26125

Table 5.22: Mafft dataset ex10x1460 on PPE time analysis

Mafft - dataset:ex59x5271
RUN time function Dynamic counters
1st 108.321 108.20213
2nd 107.444 107.21235
3rd 109.655 109.42014
4th 106.525 106.23429

Table 5.23: Mafft dataset ex59x5271 on PPE time analysis

Mafft - dataset:flyDNA100x1403
RUN time function Dynamic counters
1st 4.649 4.64912
2nd 4.648 4.64792
3rd 4.882 4.88300
4th 4.901 4.90098

Table 5.24: Mafft dataset flyDNA100x1403 on PPE time analysis
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MAFFT -1st progressive method
Dataset Pentium IV PPE PPE & SPEs
ex10x766 0.336 0.705 0.198
ex100x766 1.768 4.292 1.263
ex10x1460 1.320 2.414 0.778
ex59x5271 62.322 122.321 40.503
flyDNA10x766 0.180 0.336 0.225
flyDNA100x766 0.812 2.080 1.898
flyDNA100x1403 1.912 4.649 3.815

Table 5.25: MAFFT: PPE & SPEs vs Pentium IV vs PPE

A Align -1st progressive method
Dataset Pentium IV PPE PPE & SPEs
ex10x766 0.285 0.599 0.098
ex100x766 1.485 3.581 0.711
ex10x1460 1.148 2.021 0.393
ex59x5271 52.910 102.192 29.916
flyDNA10x766 0.138 0.231 0.119
flyDNA100x766 0.657 1.365 1.221
flyDNA100x1403 1.546 3.673 2.937

Table 5.26: A ALIGN : PPE & 6SPEs vs Pentium IV vs PPE execution
times
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Conclusions & Future Work

Introduction

This chapter’s purpose is to summarize the results of this thesis, as well as
this project’s contribution. The chapter is organized in two sections- one for
each application- and at the end of each section, some thoughts for future
work are being presented.

6.1 NBIS

6.1.1 Conclusions

The lack of experience we had on multicore programming techniques and
their development tools made this part of the thesis more than challenging.
In addition, the NBIS application we used for this project has a huge source
with high complexity; multiplying therefore our development problems. Furthermore,
the disappointing 1 results of the processes analysis we did with Vtune
Analyzer created another obstacle to our implementation.

Although many problems were faced and solved during this project, this
work was to terminate before reaching it’s final point. At the beginning of
this project, after having studied the ”parallel programming” techniques,
we decided to follow the ”function-offload” method for our implementation.
Unfortunately, the applicability of the original application had to be seriously
limited and the metrisis of the execution times on the PPE versus the
Pentium IV had also been disappointing. Consequently, our implementation
of the NBIS application ended prematurely and we decided to apply our
knowledge on the MAFFT program.

1Due to the algorithm’s structure
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6.1.2 Future Work

Our implementation was limited to applying the ”offload-function” model
techniques to the NBIS application. Therefore, we covered almost every
aspect of this particular model and came to the conclusion that this model
would be no effective on this application. Some suggestions for future work
are:

• A new approach with another programming model (Section 2.1.5).
Our suggestion would be to try the ”Streaming Model” or the ”Shared-
Memory Multiprocessor Model”.

• The best choice would be to reconstruct the source code of the application.
The need for limiting the dependencies of the existing algorithm is
essential in order to achieve speed-up from parallel processing.

• For our model, our only suggestion would be to send more than ten
processes of the application to the SPE’s (they should cover at least a
total of 75% of the total execution time). Not only this is painful path
to follow, the speed-up should NOT be taken for granted as it would
still depend on the parallelization of the processes and the cost of the
data transfers.
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6.2 MAFFT

6.2.1 Conclusions

Except for the porting to the PPE -thus enabling a game console to
execute the MAFFT program- this project’s main contribution was the
achievement of a significant speed-up to the MAFFT’s execution time on
the Cell multiprocessor. At this stage of our implementation though, we
already had the experience with the NBIS application and consequently
most of the problems faced on the tools were rapidly solved. The new kind
of problems we faced were about the porting to the SPE procedure. The
fact that our function would be called from different processes depending on
the dataset and the method of execution made the implementation a little
trickier. Data partitioning matters occurred creating ”bus errors” during
the data transfers and therefore scheduling and synchronization issues came
up in order to resolve these.

The Cell was initially designed for games and multimedia but could also be
regarded as a very promising architecture for scientific computations. The
absence of specialized software tools in addition to the low-level architecture
of the PPE (and even more of the SPEs) force the developer to take into
consideration most- if not all-of the following matters:

• Porting to the PPE may be trickier than expected if the version of the
application is old

• The Local storages of the SPEs have a limited size leading to the need
of data partitioning.

• DMA transfers also have limitations

• Scheduling issues depending on the algorithm’s structure and it’s processes
nature.
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6.2.2 Future Work

This project is a complete work which exhausted most of the possible
improvements that could be done with the use of the ”function-offload”
model. Our suggestion for future work would be to focus on a different
model. The ”Streaming Model” is again our proposal for potential speed-
up or any ”SPE-centric” model. The developer should bear in mind that
whatever design is used, most of the code emphshould be ported to the SPEs
and the PPE should react like a controller to the Synergistic units avoiding
as much computational work as possible.

A few suggestions for future work to our implementation are proposed
below:

• SIMD vectorization of the SPE’s (SIMD on the PPE would not be as
effective) in order to allow a single instruction to be applied to multiple
data elements.

• Send more processes (not only the most time-consuming) to the SPEs
in order to effect the total execution time even more.

• Categorize the dataset input 2. By doing so, we would able to predict
the number of A Align calls; thus the percentage of the total execution
time and the speed-up.

2This requires cooperation with a more specialized to Biology issues scientist
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