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Abstract

Thousands of scientific conferences happen every year and each involves a laborious scientific peer
review process conducted by one or more prominent scientists serving as Technical/Scientific Program
Committee (TPC) chair(s). The chair(s) must match submitted papers to their reviewer pool in such a
way that i) a paper is reviewed by experts in its subject matter; and ii) no reviewer is overloaded with
reviews or under-utilized.

The paper to reviewer assignment requires prior knowledge about each reviewer’s field of expertise
and experience. This is essential because it produces reviewer assignments according to each reviewer’s
expertise. The TPC chair may do the assignment by inspection or by trial-and-error. For example, in a
typical conference with a few hundred submitted papers, this process may involve a week of hard work
from the chair.

The TPC chair may resort to reviewer and paper profiling, in order to categorize reviewers with respect
to their field of expertise and research interests -regarding the reviewers- and addressed problem and
specific scientific field - regarding the papers. When it comes to keywords that summarize a paper, most
of the times a set of index terms is provided by the author. On the contrary, when it comes to reviewers,
the TPC chair should extract the reviewers’ profiles manually.

Reviewer profiling can be a frustrating and time consuming task; these properties often lead to sub-
optimal assignments due to time pressure or insufficient knowledge of every reviewer’s work. To that
end, we propose two novel algorithms that approach the Reviewer profiling problem, in the context of
a specific conference, in an automated manner. The formulation of these algorithms is based on Sparse
Matrix Factorization and PARAFAC analysis. We also provide a comparison of the developed algorithms
with a method widely used in Text Mining applications: Non-negative Matrix Factorization.
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Preface

Notation and Symbols used

Notation

The end of an example is denoted by : �

The acronym iff stands for if and only if.

A column vector is represented by a boldface, lowercase letter, e.g v.

aTb denotes the inner product between the vectors a,b.

abT denotes the outer product between the vectors a,b.

A matrix is represented by a boldface, uppercase letter, e.g A.

For a I × J real valued matrix A we can say that A ∈ RI×J . Note that for J = 1, the same
notation applies for a vector.

For an I × J complex valued matrix A we can say that A ∈ CI×J .

Element (i, j) A is denoted as ai,j .

A Tensor or three-way array is represented by a calligraphic, uppercase letter, e.g X .

Let us consider a I × J ×K tensor(or three-way array). We call a slice or slab the I × J , I ×K
or K × J matrix that is produced by fixing one of the corresponding three indices. Such a slice of
tensor X is denoted as Xk.

Pr{} denotes probability.

Unless stated otherwise, the convergence criterion for an optimization algorithm is defined as the
difference of the cost function in two successive iterations to be less or equal to a small positive
number.

Symbols used

AT : Matrix transposition operator

A∗ : Matrix Hermitian operator (conjugate transpose )

A† : Matrix pseudo-inverse.

� : Hadamard product (elementwise matrix multiplication)

i
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⊗ : Kronecker product.

∗ : Khatri-Rao product.

� : Elementwise Matrix division.

R: The set of real numbers.

C: The set of complex numbers.

‖ A ‖1=
J∑
j=1

I∑
i=1

|ai,j | : 1 norm of matrix A of size I × J .

‖ A ‖F=

√√√√ I∑
i=1

J∑
j=1

|ai,j |2 : Frobenius norm of matrix A of size I × J .

Preliminary Definitions

Definition 1 (Rank one matrix). A rank one matrix is defined as the outer product of two vectors.

Definition 2 (Matrix rank). Let us consider a matrix M. The minimum number of rank-one components
(matrices) needed to decompose M is called the rank of M.

Definition 3 (Full rank matrix). An I × J matrix A is called full-rank if rank(A) = min(I, J)

Definition 4 (Hermitian Matrix). Consider a complex m×m matrix A ∈ Cm×m. A is called Hermi-
tian if

A = A∗ (1)

Definition 5 (Positive Semidefinite Matrix). Consider an m×m Hermitian matrix A ∈ Cm×m with
eigenvalues {λk}, k = 1 · · ·m. A is said to be positive semidefinite if any of the following equivalent
conditions hold:

1. λk ≥ 0,∀k = 1 · · ·m

2. a∗Aa ≥ 0,∀a ∈ Cm×1

3. ∃ matrix C such that A = CC∗(C is called a square root of A)

4. The determinant of any submatrix of A(obtained by striking out any rows and the corresponding
columns) is ≥ 0.

Definition 6 (Positive Definite Matrix). A Hermitian matrix A ∈ Cm×m is called positive definite
if the conditions described for the positive semidefinite matrix hold with strict > 0.

Corollary 1. A matrix is reversible iff it is positive definite.
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Chapter 1

Introduction

Thousands of scientific conferences happen every year and each involves a laborious scientific peer
review process conducted by one or more prominent scientists serving as Technical/Scientific Program
Committee (TPC) chair(s). The chair(s) must match submitted papers to their reviewer pool in such a
way that i) a paper is reviewed by experts in its subject matter; and ii) no reviewer is overloaded with
reviews or under-utilized.

The paper to reviewer assignment requires prior knowledge about each reviewer’s field of expertise
and experience. This is essential because it produces reviewer assignments according to each reviewer’s
expertise. The TPC chair may do the assignment by inspection or by trial-and-error. For example, in a
typical conference with a few hundred submitted papers, this process may involve a week of hard work
from the chair.

Usually, the knowledge on each case is reflected on a small set of keywords that summarize the essence
of the paper (when it comes to paper to session assignment) and define the reviewer’s research profile.
Towards the direction of keywords that summarize a paper, most of the times a set of index terms is
provided by the author. On the contrary, when it comes to reviewers, no such analogy exists: A reviewer’s
profile needs to be extracted manually by the TPC chair either by using personal experience regarding
the reviewer or by browsing through the list of his latest and/or highly cited publications. The latest
publications usually provide a notion of his current research interests where the highly cited publications
provide the backbone of his work. Both of the latter can be used by the TPC chair, in order to profile
each reviewer.

Reviewer profiling proves to be a frustrating and time consuming task; these properties often lead to
suboptimal assignments due to time pressure or insufficient knowledge of every reviewer’s work. To that
end, we propose two novel algorithms that approach the Reviewer profiling problem, in the context of
a specific conference, in an automated manner. The formulation of these algorithms is based on Sparse
Matrix Factorization and PARAFAC analysis.

Sparse Matrix Factorization is a subset of linear algebra that deals with the factorization of a sparse
data matrix to sparse factors. Sparse Matrix Factorization can be seen also as a subset of Factor Analysis.

PARAFAC analysis is a subset of multi way analysis, a generalization of linear algebra for structures
indexed by more than two indices, often called multi-way arrays or tensors. PARAFAC’s roots can be
traced in psychometrics and chemometrics. Some recent publications demonstrate PARAFAC analysis
as a signal processing tool and as a Data Mining tool.

We also provide a comparison of the developed algorithms with a method widely used in Text Mining
applications: Non-negative Matrix Factorization.

1



2 CHAPTER 1. INTRODUCTION

When describing the paper to reviewer and the paper to session assignment tasks, we placed the
profiling process as a fundamental task that precedes the assignment. In the following lines we provide
a brief description of the Reviewer Assignment Problem (RAP) and the Paper to Session Assignment
problem, to get the reader acquintant with the whole picture the present thesis resides in.

1.1 The Reviewer-Assignment Problem

1.1.1 Definition

The Reviewer-Assignment problem is defined as follows: Consider a number of submitted publications
to a conference or a journal. Let this number be np. Consider also a number of reviewers, nr. Usually
nr < np. That means that one reviewer usually reviews more than 1 publications. The RAP is the
problem of assigning every one of the np papers to each one of the nr reviewers in a way that certain
capacity and relevance/similarity constraints are met. The two types of constraints are:

• Capacity constraints: These constraints make sure that the assignment of the publications to
each reviewer will be just, meaning that each reviewer should be assigned to review equal or
approximately equal number of publications with everyone else, or an agreed upon quota. This
group of constraints can be dealt with methods of optimization [8].

• Relevance constraints: These constraints make sure that this automatic assignment will take into
account the field of expertise of each reviewer, assigning him the publications that are most corre-
lated with his expertise. This group of constraints can be tackled by employing tools from fields
of Natural Language Processing and Text Mining; This group of constraints is the heart of the
present thesis.

We must note that apart from RAP, there exists the much similar problem of Paper-to-Session assign-
ment. In this problem, instead of reviewers we have ns session of a particular conference and we need
to assign each paper to a session. In this case, the number of sessions is strictly less than the number
of publications, (typically an order of magnitude less). The capacity constraints are obvious, since each
session should contain equal or approximately equal number of publications. The relevance constraints
ensure that papers in a session address related problems, therefore the session is coherent.

1.1.2 Related Work

Some recent work regarding the Reviewer Assignment and the Paper to Session assignment problems
has been done in [8], where the problems are modeled and solved as optimization problems. A detailed
survey about the Reviewer Assignment problem can be found in [9]. In the following lines, we provide
an outline of the progress made on the RAP using data mining oriented approaches.

We review papers in the literature that deal with the assignment problem using data mining/infor-
mation retrieval (IR) tools. The main concern among these papers is to compute the matching degree
between papers and reviewers based on the content of the papers. Some of the related publications, like
the present, attempt to recover each reviewer’s biography through the internet, where other publications
assume this information as given.

Apart from typical data mining/IR applications, that mainly use the Vector Space Model with the
Latent Semantic Indexing expansion (principles that will be thoroughly discussed throughout this thesis),
there exist publications that attempt to tackle the RAP using Collaborative Filtering and Semantic Web
applications (to collect data representing researches’ expertise). These approaches lie well beyond the
scope of the present thesis. A list of all the publications mentioned above can be found in [9].
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However, none of the related publications addresses the profiling problem. We attempt to solve this
problem by employing tools, which are mostly used in signal processing (among others, e.g. Chemomet-
rics). Moreover, we provide an extension to the traditional Non-negative Matrix Factorization paradigm
(a concept that in a sense generalizes Latent Semantic Indexing) by introducing Sparse Matrix Regres-
sion.

1.2 Objective

This thesis is concerned with the extraction of reviewer profiles using information regarding the re-
viewers and information coming from the titles of the submitted publications that jointly represent the
reviewers and the submitted papers. We use exclusively the title of each publication. Even though the
full text is available to the TPC chair, we focus on the titles because they contain the distilled essence
of the paper as noted and extracted by the author; when coming up with an appropriate title, an author
does all the essential filtering of information we would normally do if we selected to focus on full texts and
this filtering produces better results than any automated procedure. However, all the methods developed
in the present thesis can be also applied to abstract or even full text indexing.

To state more formally the desired outputs, we introduce the following structures:

• A set of terms (moderately small in size) that best summarizes both the reviewers and the papers.
Let us denote this set of terms as T and it’s cardinality as Tfinal.

• A binary matrix R̃ of size R× Tfinal that is defined as follows:

R̃ ∈ [0, 1]R×Tfinal

r̃i,j =
{

1 if term j matches reviewer i
0 otherwise

i = 1 · · ·R, j = 1 · · ·Tfinal
where R is the number of reviewers.

• A binary matrix P̃ of size P × Tfinal that is defined in a similar way as R̃

P̃ ∈ [0, 1]P×Tfinal

p̃i,j =
{

1 if term j matches paper i
0 otherwise

i = 1 · · ·P, j = 1 · · ·Tfinal
where P is the number of the submitted papers.

1.3 Thesis Outline

The outline of this this is as follows: In Chapter 1 we discuss the Reviewer-Assignment problem and
the related work existing in the literature. In Chapter 2 we provide a short introduction to Text Mining,
describing the theory and tools used as the backbone of this work. This chapter also goes on and discusses
the process of Text Mining from the World Wide Web and how it is connected to our work. In chapters
3-5 we provide the essential mathematical background ,more specifically: in Chapter 3 we introduce the
concept of Matrix Factorization (the bilinear decomposition) and methods to achieve this, in Chapter 4
we introduce Sparse Matrix Regression as an alternative to the Matrix Factorization and in Chapter 5
we introduce multiway analysis and the PARAFAC decomposition. In chapters 6 & 7, we provide the
algorithms we developed and the results/conclusion of our work.
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Finally, some useful results and conclusions are included in Appendices A & B. The results obtained
there are excluded from chapter 7 due to their supplementary nature, however, they offer a qualitative
evaluation based on real world data.



Chapter 2

Text Mining

Text Mining is the field of Information Retrieval or Data Mining that refers to the process of dis-
covering useful information and emerging patterns from text. Text mining usually involves the process
of structuring and parsing the input text , deriving patterns within the structured data, and finally
evaluation and interpretation of the output. Typical text mining tasks include text clustering, query
evaluation, concept extraction and term extraction.

This thesis focuses on the concept extraction aspect of text mining, as our main objective is to extract
representative term profiles for a set of submitted papers to a conference and a set of reviewers to the same
conference. In the following sections, we provide the theoretical background behind the foundations of
text mining used along this thesis. More specifically, we describe the Vector Space Model of Information
Retrieval, the extraction of multi-word terms and an automated tool that employs machine learning
methods in order to extract terms from a document or a collection of documents.

2.1 Theoretical Background

2.1.1 The Vector Space Model

Introduction

Vector space model is called the algebraic model used for the representation of text documents as
vectors in a space defined by a set of index terms (also found as dictionary in the literature) as a basis
vector. The Vector Space Model is widely used since the 1960s when it was first proposed, due to it’s
elegance and precise algebraic formulation.

Index Terms

As mentioned above, the Vector Space Model (VSM) creates a mapping of a document to a vector
space defined by the set of index terms. Usually, when having a collection of documents, e.g the set
of all the submitted papers to a conference, the index terms can be defined as the set of all the terms
found throughout all the documents (or the titles, whether the indexing is based upon the whole text
or just the title, which happens to be our case), excluding the so-called stop-words. A stop-word can be
defined as a term that is either too frequent-typical (thus proving to be rather useless) or a preposition,
pronoun, conjunction or interjection etc. From now on, when referring to a term, we refer to a single or
multi word term. In addition, we usually use the stem of each term in order to avoid essentially duplicate
terms, for example give/giving or publication/publications etc.

From Document to Vector

The depiction of a document to the vector space defined by the dictionary basis vector is very simple
and elegant. Let us consider the I × 1 vector di representing the i-th document of the set D of all

5
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the documents contained in the collection(often called corpus in the literature). The vector di can be
defined as:

di =
{
wi,j if the term j exists in the document

0 else (2.1)

i = 1 · · ·N , where N is the cardinality of the set D

The number wi,j denotes the weight of the term j in the document i. There are several approaches
to the definition of that weight, depending on the application itself.

Term Weighting

The weight wi,j can be the frequency of occurrence of the j-th term inside the i-th document. Even
though raw term frequency makes intuitive sense, it suffers from a critical problem: All terms are
considered equally important when it comes to assessing relevancy on a query. In fact, certain terms
have little or no discriminating power in determining relevance. For instance, a collection of documents
on the auto industry is likely to have the term auto in almost every document. To this end, we introduce
a mechanism for attenuating the effect of terms that occur too often in the collection to be meaningful
for relevance determination. An immediate idea is to scale down the term weights of terms with high
collection frequency, defined to be the total number of occurrences of a term in the collection. The idea
is to reduce the term frequency weight of a term by a factor that grows with its frequency throughout
the corpus.

Instead, it is more commonplace to use for this purpose the document frequency df , defined to be
the number of documents in the corpus that contain a term t. This is because in trying to discriminate
between documents for the purpose of scoring, it is better to use a document-level statistic (such as the
number of documents containing a term) than to use a collection-wide statistic for the term.

How is the document frequency df of a term used to scale its weight? To that end, we need to define
the inverse document frequency (idf) of the j-th term tj as follows:

idfj = log
N

card(tj ∈ D)
(2.2)

where card(tj ∈ D) denotes the number of documents of the collection D that contain the term tj . We
also define as tfi,j the frequency of the j-th term occurring in the i-th document.

The weight of the i-th document for the j-th term now becomes:

wi,j = tfi,j idfj (2.3)

introducing the term-frequency/inverse document frequency weighting scheme.

Applications of VSM

The most popular application of the VSM in text mining and information retrieval is it’s use for query
relevance evaluation and document clustering.

Query Evaluation Let us consider the document corpus D and a query upon the contents of that
corpus. Such a query usually consists of 1-2 sentences and expresses a question in natural language.
VSM provides us with a way to determine the relevance of every document contained in D to a query.
We can represent a query the same way we represent a document in the vector space defined by our
index terms. The term weighting of the query vector can be binary, indicating whether a term appears
in the query or not. The similarity of each document to the query can be computed using the cosine of
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the angle between the two corresponding vector. This is usually referred to as cosine similarity and
can be computed by the inner product of the two vectors as follows:

sim(di,q) = cos(θdi,q) =
dTi q

‖ di ‖‖ q ‖
(2.4)

where q is the query vector, di is the i-th document vector and θdi,q is the angle between the former
two vectors. After computing the similarity of each document to the query, the documents can be sorted
according to their similarity to the query, usually referred to as score or ranking.

Document Clustering The task of document organization in categories is called Document Cluster-
ing. The categorization relies on a predefined similarity criterion. The similarity criterion that relates
to the VSM is the cosine similarity criterion that is defined in equation 2.4. Instead of calculating the
similarity of a document to a query, in the clustering concept, we calculate the document to document
similarity and cluster the documents of the corpus D accordingly.

Term/Concept Extraction Term/Concept Extraction is the application of interest in this thesis. Its
aim is to extract appropriate and representative terms or group of terms from large amounts of text.

2.1.2 Multi-word term extraction

Multi-word terms extraction does not differ in principle from single-word term extraction. The term-
by-document matrix could be created using a basis of both single and multi word terms. However,
when in need to extract multiword terms, one should consider a way of determining whether a certain
combination of word that form a multi word term is meaningful or not. To this end, we present a practical
method for the extraction of multi word terms, first proposed in [10]. In [10], two methods called C-value
and NC-value regarding the weighting of multi word terms are introduced. We shall present these two
methods briefly in this section:

• C-value: The C-value is a metric that measures the significance of a multi-word term as an actual
term by measuring it’s occurrence in sequences of text. If the length of the multi-word term is
maximal, it weight is obtained by it’s frequency of occurrence or any other alternative weighting
scheme that we demonstrated previously. However, if the candidate term is a subsequence of some
longer candidate term, then it is possible that the longer term is a more appropriate term than
it’s subsequence, thus the C-value weighs the candidate term that appears as a subsequence to
longer terms, according to the weights of the corresponding longer terms. Other than this short
introduction, the C-value is beyond the scope of this thesis, but the reader can find a more detailed
description in [10].

• NC-value:The NC-value, additionally to the C-value, attempts to incorporate information regard-
ing the context of each candidate term. Thus, the main idea is that if the context of a candidate
multi-word term is highly weighted, this would probably lead to a good candidate mutli-word term.
When referring to the context of a candidate term, we refer to the terms surrounding that candidate
term. The NC-value of a term ’a’ can be stated by the following formula:

NC-value(a) = 0.8C-value(a) + 0.2
∑
b∈Ca

fa(b)weight(b)

where Ca is the set of context terms of candidate term ’a’, fa(b) is the frequency of term ’b’ as a
context of ’a’ and weight(b) is the weight of ’b’ as a term context word.

2.2 The KEA Algorithm and Tool

Instead of parsing/pre-processing the text ourselves, creating the term-by-document matrix, choosing
the appropriate weighting scheme and proceeding manually to the term extraction process, we can choose
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to employ certain tools that excel in that field. One of these tools, that we use in this thesis, is the KEA
tool. KEA is an abbreviation for Keyphrase1 Extraction Algorithm and is introduced in [11].

KEA’s extraction algorithm consists of the two following stages

• Training: Creation of a model for identifying keyphrases using training documents where the
author’s keyphrases are known. For the purposes of the training process, KEA uses the Naive
Bayes machine learning technique.

• Extraction: In this step, the set of keyphrases to be extracted from a new document is done,
based on the model produced from the Training step. For each candidate keyphrase, two features
are computed: The TF×IDF weigh (as described previously) and the first occurrence, which is the
distance into the document of the phrase’s first appearance. Based on these two features, the Naive
Bayes model is employed to determine whether this candidate phrase is indeed a proper term and
should be output.

The KEA tool can be downloaded from the New Zealand Digital Library project (http://www.nzdl.
org/)

2.3 Mining from the Web

The World Wide Web is a vast source of information. Most of this information basically exists in
textual form, where other popular forms include images, videos and other type of binary files. The
specific sub-field of Data Mining, Web Mining, is associated with the retrieval, indexing and extraction
of hidden information from resources existing on the World Wide Web or a subset. The task of exploring
the web, retrieving useful information out of it and further processing that information is fundamental
to many every-day use applications such as web search engines (i.e Google). We are going to provide
insight to the basics of that task, as far as our application is concerned. Throughout this section, we
are about to describe the procedure of exploring the web and retrieving desired information. After the
retrieval process, the indexing and processing process adheres to the principles of Text Mining that was
demonstrated in chapter 2.

2.3.1 Exploring the Web

The task of exploring the web is quite appropriately called crawling and the programs that carry out
that task are called in the same spirit crawlers, bots or spiders. The main task of such a program is quite
simple; it navigates through a web page, downloads any contained information, discovers any existing
hyperlinks to other web pages(on the same or different domain) and then navigates to each one of those
hyperlinked pages, repeating the same pattern. One can notice that what a crawler does, does not differ
in principle from what a regular human user does, only the crawler does that in a systematic pattern by
following all the links and downloading every piece of downloadable information. The stopping criterion
for a crawler is rather abstract and could be either when a specific subset of the web is covered, or when
a time limit is reached and so on.

1In this context, ’keyphrase’ has the same meaning with ’term’

http://www.nzdl.org/
http://www.nzdl.org/
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Algorithm 2.1 A simple web crawler
Input: A list of starting web pages’ addresses
1: Insert each of the starting addresses to a structure S. S can either be a LIFO or a FIFO structure.
2: while stoping criterion is not met do
3: Pick a page p from S.
4: Download the content of that page.
5: Process the content in order to discover any hyperlinks.
6: for all hyperlinks in p do
7: insert hyperlink into S
8: end for
9: end while

On algorithm 2.1 is stated that the structure S where the crawler deposits the candidate links can be
either a FIFO (First In First Out) or a LIFO (Last In First Out) structure. The difference between the
use of FIFO or LIFO is the fact that the exploration using a FIFO structure would lead to a ’deeper’
search in the web graph where using a LIFO structure would lead to a ’broader’ search. However, further
discussion upon this fact is beyond the scope of this introduction.

The step of crawling is one of the most important tasks of the whole web mining process. It is not
exaggeration to say that every known web search engine does that in a very regular basis, updating its
archives of indexed web pages (or what many times might resemble a replica of the World Wide Web).
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Chapter 3

Matrix Factorization

3.1 Introduction

This chapter focuses on the factorization of a matrix M in 2 factors A,B, such that:

M = ABT (3.1)

Usually, this factorization is done on a lower rank than the original rank of matrix M, so the above
equation becomes an approximation:

M ≈ AkBT
k (3.2)

Where k is the inner dimension of the two factors and also the approximation rank.
By factoring M in the above form, we can express each row of the original matrix as a linear

combination of the columns of B, weighed by the rows of A in a low-dimensional latent space.

This type of factorization can be achieved by employing either one of the following techniques. In
the following sections, we describe the principles governing the Singular Value Decomposition and the
Non-negative Matrix Factorization and provide the methods for obtaining the factors A,B for each one.

3.1.1 Definition of Matrix Rank

Consider an I × J matrix M, and suppose that rank(M) = 3. Let mi,j denote the (i,j)-th entry of M.
Then it holds that mi,j admits a three-component bilinear decomposition:

mi,j =
3∑

f=1

ai,fbj,f (3.3)

for all i = 1 · · ·m and j = 1 · · ·n. Equivalently, letting af =
[
a1,f · · · aI,f

]T and bf =
[
b1,f · · · aJ,f

]T
M = a1b1

T + a2b2
T + a3b3

T (3.4)

i.e.,M can be written as a sum of three outer products of the respective component vectors, which
constitute rank-one matrices. The above decomposition can be found in figure 3.1 below:

According to the above, we can derive the following definition for matrix rank:

Definition 7 (Matrix Rank). Let us consider a matrix M. The minimum number of rank-one compo-
nents (matrices) needed to decompose M is called the rank of M.

11
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Figure 3.1: The Matrix Bilinear Decomposition. (Copyright belongs to [1])

3.2 Singular Value Decomposition (SVD)

3.2.1 Definition and Properties

Definition 8 (Unitary Matrix). Let us consider a complex I × J matrix U. U is called unitary if

UU∗ = U∗U =In (3.5)

Corollary 2. If U is unitary then :
U∗ = U−1 (3.6)

Theorem 1 (Singular Value Decomposition). Let us consider the I×J complex-valued matrix M. Then
there exists a factorization of the form:

M = UΣV∗ (3.7)

U Matrix of left singular vectors of M. This matrix is I × I and unitary.

V Matrix of right singular vectors of M. This matrix is J × J and unitary.

Σ Diagonal matrix that contains the singular values of M. We may assume that the singular values
are in a descending order. The diagonal elements of Σ are non-negative.

If matrix M is real-valued, the Singular Value Decomposition of M is:

M = UΣVT (3.8)

and all of the above properties hold. In that case of course, matrices U,V are said to be orthogonal,
an equivalent property of a Hermitian matrix when it comes to real valued matrices.

Remark 1. The two following points emerge as a result of the theorem 1

• The left singular vectors are also the eigenvectors of the matrix AA∗ (or AAT for the real case).

• The right singular vectors are also the eigenvectors of the matrix A∗A(or ATA for the real case).

Corollary 3 (Compact SVD). Let us consider the I×J matrix M and r = rank(M) = min(I, J). Then,
the Singular Value Decomposition of M can be written as:

M = UrΣrV∗r (3.9)

where:

Ur m× r matrix containing the r first left singular vectors.

Vr n× r matrix containing the r first right singular vectors.

Σr r × r matrix containing all the singular values of M.
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It can be proved that through the Singular Value Decomposition of a matrix, we can obtain the
optimal low rank approximation of that matrix, in terms of the mean square error. This is summarized
by the following theorem:

Theorem 2 (SVD approximation). Let us consider the rank r I × J matrix M and let us consider an
integer k < r being the desired approximating low rank. The optimal rank k approximation of M in the
least squares sense is obtained through the truncated Singular Value Decomposition of M:

Mk ≈ UkΣkV∗k (3.10)

where

Uk m× k matrix containing the k first left singular vectors.

Vk n× k matrix containing the k first right singular vectors.

Σk k × k matrix containing the k first singular values of M.

3.2.2 Matrix Factorization using the SVD

In order to factor M as the product of Asvd,Bsvd we can use the SVD approximation Theorem (2).

We take the svd approximation of M as presented in Theorem 2. Then we may define the 2 factors
as:

A = UkΣk

B = Vk

3.2.3 Applictions of the SVD

Latent Semantic Indexing

One very useful application of the Singular Value Decomposition, perhaps the most fundamental in
text mining is Latent Semantic Indexing, LSI for brevity which was first introduced in 1990 in [12].

Reconsider the Vector Space Model document representation, where each document of a collection D
is represented by a I-dimensional vector dn, where I is the number of index term that constitute the
basis vector. If the number of documents in D is N, then we may arrange all the document vectors in a
I ×N matrix C where the n-th column is dn.

Now, consider the low rank approximation of the term-by-document matrix Ck (as defined in Theorem
2), where k is integer and k < rank(C). The principle of LSI states the substitution of C with Ck and
use the approximation for carrying out queries. In VSM, queries are represented as I-dimensional vectors
too. That being said, the need rises for the projection of the query vector q to the low-rank space of Ck.
This projection is done as follows:

qk = Σ−1
k UT

kq

where Σk,Uk are obtained by the svd approximation Theorem 2. Now, we may use cosine similarities
to compute the similarity between a query and a document, between two documents, or between two
terms.

Latent Semantic Index is shown to deal with the concepts of polysemy and synonymy, where VSM fails
to. Polysemy refers to the case where a term has multiple meanings and synonymy refers to the case
where two or more words have the same meaning. This can be justified by the dimensionality reduction
provided by the low rank approximation. Namely, the rows of the term-by-document matrix are mapped
to a lower dimension space, leading to the compaction of terms that behave the same way(thus not
providing any new information in the original term-by-document matrix).
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Link analysis (HITS algorithm)

The HITS algorithm (which is abbreviation for Hyperlink-Induced Topic Search) is a link analysis
algorithm proposed by Jon Kleinberg in [13]. Given a directed graph G = {V,E} of web pages where
the vertices V represent the set of web pages and the edges E represent the hyperlinks that contain
a reference from one page to the other, HITS computes a ranking of each page as a hub and as an
authority. The definition of the two latter terms is simple: A hub is a page that contains many links to
pages that have good content. The pages that are being referenced by many hubs and have high value
of content are called authorities.

The algorithm proposed in [13] is a simple iterative algorithm that updates the hub and authority values
for each page until a predefined convergence criterion is met. On the other hand, in [14] there is shown
an alternative way of computing the hub and authority scores via the Singular Value Decomposition.
In order to present this approach, first we must get the reader acquintant with the definition of the
Adjacency Matrix, a way of representing a graph:

Definition 9 (Graph Adjacency Matrix). Let us consider a graph G = {V,E}. Without loss of general-
ity, we may assume that this graph is directed, but the same definition applies for indirected graphs too.
An Adjacency Matrix A ∈ [0, 1]|V |×|V | is defined as follows:

ai,j =
{

1 if (i, j) ∈ E
0 else (3.11)

If the graph is weighted then A ∈ R|V |×|V | and instead of 1, each element contains the weight of the
corresponding edge.

In [14] is shown that the hub scores of a set of webpages depicted by a matrix A can be obtained
from the first left singular vector, while the authority scores can be obtained from the first right singular
vector. Let us examine the following example, taken from [14] where the above property of SVD is
illustrated:

Example 1. Consider the graph in figure 1 that contains 4 web pages and the hyperlinks among them.

Figure 3.2: Graph representing 4 web pages and the hyperlinks among them

The Adjacency matrix that represents the above graph is

A =


0 1 1 1
0 0 1 1
1 0 0 0
0 0 1 1

 (3.12)

The first left singular vector is

u1 =


0.74
0.59
0.00
0.33

 (3.13)
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The above vector indicates that the webpage with the highest hub score is the first one. Accordingly, the
first right singular vector is

v1 =


0.00
0.33
0.74
0.59

 (3.14)

which indicates that the page with the highest authority score is the third.

�

Principal Component Analysis

Principal Component Analysis or PCA for brevity, is the workhorse of multivariate analysis in statistics,
which provides a transformation of correlated data into a generally smaller coordinate space. This
transformation is achieved either by the eigendecomposition or by the Singular Value Decomposition.

When using the SVD, Principal Component Analysis uses the same matrices that we introduce in
the Matrix Factorization concept. To be more precise, the matrix holding the principal components is
A = UΣ and the matrix holding the loading values is B = VT .

The image below, taken from [2], visualizes the above remark.

Figure 3.3: PCA using the SVD (Copyright belongs to [2])

Image Compression

This application relies on theorem 2 The idea behind the compression is the computation of a lower-
rank approximation of the matrix that represents the digital image we want to compress. Of course,
this application is merely academic than practical in terms of execution cost, but provides a very good
visualization of theorem 2.

Example 2. In this point we shall demonstrate the process of Image Compression via the SVD for a
number of different rank approximations of the original image matrix. To that end, we use the widely used
image of Lenna and exhibit a series of compressed images using different number of ranks(i.e different
number of singular values on the truncated SVD(2)). The original image is

The subscript under every image indicates the number of components used(thus the rank of the re-
sulting matrix) in order to approximate the initial image. Note that the rank of the initial image is 254.
We can see that even with a rank close to 50, we can approximate the image in acceptable quality.

�
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Figure 3.4: Original Image (rank=254)

Number of components: 1

50 100 150 200 250

50

100

150

200

250

(a) k=1

Number of components: 10

50 100 150 200 250

50

100

150

200

250

(b) k=10

Number of components: 20

50 100 150 200 250

50

100

150

200

250

(c) k=20

Number of components: 30

50 100 150 200 250

50

100

150

200

250

(d) k=30

Number of components: 50

50 100 150 200 250

50

100

150

200

250

(e) k=50

Figure 3.5: Image Compression via SVD approximation using k components

3.3 Non-Negative Matrix Factorization (NMF)

3.3.1 Definition

Non-negative Matrix Factorization can be expressed as a non-linear, constrained optimization problem,
as follows: Consider a (generally) non-negative matrix M ∈ RI×J . We want to decompose M into two
factors A ∈ RI×k̂,B ∈ RJ×k̂, where k̂ < rank(M) minimizing the following objective function:

min
A,B
‖M−ABT ‖2F (3.15)

subject to ai,j ≥ 0 and bi,j ≥ 0

In [3], Non-negative Matrix Factorization is demonstrated for it’s use as a sum-by-parts representation
of image data in order to both identify and classify image features.

In this factorization principle, each row of the initial data matrix M is expressed as a linear combi-
nation of the columns of B, weighted by the elements of the corresponding row of A. The fact that
this linear combination contains strictly additive relations between it’s elements, provides a more inter-
pretable model in contrast to the factorization using the SVD (presented in the previous section), that is
compatible with human perception of a parts-based representation. Intuitively, a parts-based represen-
tation involves additive relationships between the parts that constitute the whole. Such representation
is achieved through Non-negative Matrix Factorization.

3.3.2 Algorithms

Several algorithms have been proposed for the computation of the Non-negative Matrix Factorization.
Most of the existent algorithms are described in [15].

Multiplicative Method

The most popular approach is the one proposed in [3], called Multiplicative Method and can be written
in pseudocode as follows:
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Algorithm 3.1 Non-negative Matrix Factorization using the Multiplicative Method

Input: M of size I × J , k̂
Output: A,B

A=randn(I,k̂);
B=randn(k̂,J);
while convergence criterion is not met do

B=B�(ATM)�(ATAB+ε);
A=A�(MBT )�(ABBT + ε);

end while
B=BT ;

In algorithm 3.1, ε is a very small positive number used to avoid division by zero. Instead of initializing
A,B with totally random values, one can employ more sophisticated methods, such as using the Singular
Value Decomposition of M to obtain initial values for the two factors [16].

The optimization problem 3.15 is non-convex, thus there exist more than one stationary points. Given
that fact, convergence issues arise. Regarding the convergence of the Multiplicative Method we can read
at [15] that when the Multiplicative Method algorithm converges to a limit point in the interior of the
feasible region, the point is a stationary point. The stationary point may or may not be a local minimum.
If the limit point lies on the boundary of the feasible region, one cannot determine its stationarity.

The computational complexity per iteration for Algorithm 3.1 is O(IJk̂).

Alternating Least Squares

Another, more simplistic, approach to solving 3.15 is by decomposing the non-linear optimization
problem into two linear optimization problems. This technique is called Alternating Least Squares in
general and consists of the following simple steps:

• Fix matrix A to initially a random value(the same initialization issues as above apply here too).

• Solve the Non-negative Least Squares problem (NNLS) :

min
B
‖M−ABT ‖2F

subject to bi,j ≥ 0

• Fix B to the value obtained at the previous step.

• Solve the Non-negative Least Squares problem (NNLS) :

min
A
‖M−ABT ‖2F

subject to ai,j ≥ 0

• Repeat from the top until convergence.

3.3.3 Applications of NMF

Non-negative Matrix Factorization has a variety of applications, spanning from Image Classification
[3], document clustering [17, 3], anomaly detection[18] and blind source separation[19] among others. In
the following lines we will present two representative applications of NMF found in the literature.
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Image Classification

In [3], NMF is used in an image classification context and is compared to Vector Quantization(VQ) and
Principal Component Analysis(PCA). These three methods are applied on a database of facial images
and the term of comparison is the way of representation of an image. All three methods represent an
image as a linear combination of basis images. VQ and PCA representations allow the coefficients of the
combination to be either additive or subtractive, whereas NMF permits only additive linear combinations.
In [3] is demonstrated that this strictly additive representation leads to more intuitive data modelling.
In figure 3.6, taken from [3], this difference between the three methods is demonstrated.

Figure 3.6: Image Classification using (a)NMF (b)VQ and (c)PCA (Copyright belongs to [3])

3.4 Identifiability

In this section, we examine the issue of the uniqueness of the bilinear decomposition. As it will follow,
this model is generally not unique, but when some conditions hold, the NMF pertains uniqueness.

3.4.1 Rotational Freedom

A matrix factorization in the form

M = ABT

is also called a bilinear decomposition or bilinear model as it can also be expressed by the k component
bilinear decomposition(where k is the low approximating rank):

M = a1b1
T + · · ·+ akbk

T
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It can be shown that the above model suffers from rotational indeterminacy, thus is not unique, even
when posing non-negativity conditions in the general case. Let us consider the following example:

A =
[
1 1
2 3

]
,B =

[
3 3
4 5

]
M = ABT =

[
6 9
15 23

]
We can easily see that given A,B, M cannot be uniquely determined: Let us consider matrices A1,B2

where

A1 =
[
3 3
8 7

]
,B1 =

[
1 1
2 1

]
and

M = ABT = A1B1
T

This is a manifestation of the rotational freedom associated with bilinear models that is, one may
rotate A by right-multiplying with any non-singular matrix T and counter-rotate BT (left-multiplying
with T−1 ) without modifying X . In the example above,

T =
[
1 2
2 1

]
and the inverse is

T−1 =
[
− 1

3
2
3

2
3 − 1

3

]
One can make sure that this rotational property holds for the above example even when the factors are
positive. It is also remarkable that, even though T−1 has negative elements, the resulting product turns
out to be non-negative. Thus, even under non-negativity constraints, the bilinear decomposition is not
unique in general.

3.4.2 NMF Identifiability Properties

In the previous section, we demonstrated that, even when non-negativity holds, the bilinear model is
not unique in general. However, in [20] we can find a study that explores the conditions under which
a Non-negative Matrix Factorization may be unique. In [20], a geometric representation of NMF is
provided. According to that representation, all elements of M are mapped to a simplicial cone defined
by the columns of B. In conclusion, [20] states three conditions and an example, under which the
Non-negative Matrix Factorization can be uniquely determined. Further discussion about this topic lies
beyond the scope of the present text.
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Chapter 4

Sparse Matrix Regression

4.1 Introduction to Linear Regression

Linear Regression aims to model variables using linear combinations of certain observations or mea-
surements. The observations are usually called predictors and are symbolized by x and the outputs are
called responses and are symbolized by y. Linear Regression provides an estimate ŷ of the actual output.
The notation for this introductory section will be the one used in the related bibliography. However,
when we reach the point to describe the process of Matrix Factorization via Sparse Regression, we will
provide the required transformation among notations.

Consider the input vector

x =

x1

...
xp


The linear regression model has the form:

ŷ = f(x) = β0 +
p∑
j=1

xjβj (4.1)

We assume that the relationships between x and y are linear or approximately linear. The parameters
{βi} are initially unknown and are computed via a training process. Let us denote as X the N × p input
matrix, with each row containing an input vector. Let us denote as y the vector with the corresponding
outputs to each row of X. The most popular estimator for {βi} is the least squares estimator which
minimizes the residual sum of squares (RSS):

RSS(β) =
N∑
i=1

(yi − f(xi))2 =
N∑
i=1

(yi −
p∑
j=1

Xijβj))2

We denote as X the N × (p + 1) training matrix, where each row corresponds to a data vector and
y as the N × 1 vector of outputs. We can rewrite RSS as:

RSS(β) =‖ y −Xβ ‖2= (y −Xβ)T (y −Xβ)

∂RSS

∂β
= −2XT (y −Xβ)⇒

∂2RSS

∂β2
= 2XTX

21
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We assume that, X being full column rank, XTX > 0 and (XTX)−1 exists, thus by setting ∂RSS
∂β = 0

we obtain the unique solution:
βLS = (XTX)−1X

T
y (4.2)

4.2 Shrinkage Least Squares Methods

Instead of just minimizing the Residual Sum of Squares function, the group of shrinkage least squares
methods also introduces an additional penalty to the cost function which eventually leads to more inter-
pretable models by shrinking or discarding some of the predictor values. In the following subsections we
shall review two widely accredited shrinkage methods, the Ridge regression and the Lasso regression.

4.2.1 Lasso Regression

The Lasso is a shrinkage and selection method for linear regression and was first introduced in [4].
The lasso minimizes the RSS, penalizing the optimization process with the absolute value of the coeffi-
cients. By posing this constraint, some coefficient tend to become 0, thus providing a more conceptually
interpretable model.

The setting for lasso is the same as the one described in the linear regression model. We assume a
N ×p matrix X containing the predictor values and a vector y containing the responses. We also denote

β̂ =

β̂1

...
β̂p


Then, the lasso estimate (â, β̂) is obtained through the following optimization formula:

min
β
{
N∑
i=1

(yi − β0 −
p∑
j=1

βjxi,j)2} (4.3)

subject to
p∑
j=1

|βj | ≤ t

The upper bound t is a tuning parameter. When t is large enough, the constraint has no effect and
the solution is just the usual multiple linear least squares regression of y on X. However when for
smaller values of t the solutions are shrunken versions of the least squares estimates, justifying the term
“shrinkage methods”. Often, some of the coefficients βj are zero, a property that is quite often desirable.
Choosing t is like choosing the number of predictors to use in a regression model. In Chapter 6, we offer
methods for choosing this parameter, with respect to our application.

An alternative way to express the lasso equation is:

min
β
{
N∑
i=1

(yi − β0 −
p∑
j=1

βjxi,j)2 + λ

p∑
j=1

|βj |} (4.4)

with λ ≥ 0 playing an equivalent role to t in equation 4.3.

4.2.2 Ridge Regression

Ridge Regression, being a shrinkage least square regression method, additionally to minimizing the
RSS, poses a penalty on the size of the regression coefficients. The additional constraint comes with the
form of the squared value of the coefficients.



4.2. SHRINKAGE LEAST SQUARES METHODS 23

Let us assume a N×p matrix X containing the predictor values and a vector y containing the responses.
Then, the Ridge regression estimate is obtained by solving the following optimization formula:

min
β
{
N∑
i=1

(yi − β0 −
p∑
j=1

βjxi,j)2 + λ

p∑
j=1

β2
j } (4.5)

Equivalently, we may solve:

min
β
{
N∑
i=1

(yi − β0 −
p∑
j=1

βjxi,j)2} (4.6)

subject to
p∑
j=1

β2
j ≤ t

4.2.3 Comparison of Ridge & Lasso Regression methods

As we stated earlier, in the Lasso regression case, it occurs more often, some of the regression coefficients
to be exactly zero. This quality is desirable in our application as it will be made clear in the next chapters.
At this point, we will provide insight as to why Lasso instead of Ridge regression produces coefficients
equal to zero.

The penalty for each of the two regression methods comes with the flavor of an additive factor of a p-
norm in the optimization formula. In the case of Ridge regression, we have the squares of the coefficients,
hence the norm that is added is p = 2. However, in the case of Lasso regression, the absolute values of
the coefficients are added as penalty, hence the norm in that case is p = 1. The insight that we shall
provide is based upon the way that each type of norm behaves. We notice that in equations 4.3 and 4.5
(or 4.4 and 4.6 in respect), the only thing that changes is the penalty. This means that the difference in
the regression coefficients produced, should be caused by the difference in the penalty.

The criterion
N∑
i=1

(yi −
∑
j

βjxi,j) (4.7)

equals the quadratic function
(β − β̂)XTX(β − β̂) (4.8)

The above quadratic function corresponds to elliptical contours which are centered at the least squares
estimates β̂. Moreover, for each of the two regression methods, we have to examine how the penalty is
mapped in space. One way to do this is by employing the depiction of a p-norm to the LP space. It can
be shown that the l − 1 norm of a vector is being depicted as a unary rectangle, where the l − 2 norm
can be depicted as a unary circle. The illustration for the l − 1 norm type of norm can be shown in the
following figure:

Figure 4.1: The l − 1 norm in the LP space. (Copyright belongs to Wikipedia.org)
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When we plot the penalty and the quadratic function that was shown above, we observe in the figure
below that in the case of Lasso regression, when the contours of the quadratic intersect the l − 1 norm
rectangle, this occurs at a corner, producing a zero coefficient. On the other hand, in the Ridge regression
case, the contours intersect the unary circle in points that produce coefficients close to but not exactly
zero. This consists no proof but provides good insight for this property of Lasso regression. A proof for
that argument lies beyond the scope and the purpose of the present thesis.

(a) Lasso Regression (b) Ridge Regression

Figure 4.2: Lasso and Ridge comparison in space. (Copyright belongs to [4])

4.3 Matrix Factorization with Sparse Regression

The goal of Matrix Factorization using Sparse Regression is to factor the data matrix M in two sparse
factors:

M ≈ ABT (4.9)

A matrix is called sparse if the zero elements largely outnumber the non zero elements.

We examined the case of Non-negative Matrix Factorization that poses non-negativity constraints to
factors A,B. In Sparse Matrix Regression, our main objective is to produce factors that maintain a
fundamental characteristic of the initial matrix, sparsity. In certain applications, this property is useful
as it reflects prior knowledge about the “true” factors. E.g. Reviewer profiles are by construction sparse.

The method chosen to accomplish this objective is Lasso regression, which was previously described
in detail. This method apart from solving the factorization problem that we encountered on a previous
chapter, adds an additional constraint to the minimization formula. This constraint comes with the form
of a l − 1 norm penalty added to the objective function of the minimization process.

In it’s simplest form, the Sparse Matrix Regression problem can be stated as an Lasso regression
problem as follows:

min
B
{‖M−ABT ‖2F +λ ‖ B ‖1} (4.10)

The above equation is similar to the equation introduced by Lasso Regression, if we consider each column
of M as an output vector, matrix A as the input matrix and each column of B as the βj coefficients we
need to estimate. The latter provides us with the appropriate notation transformation.
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Additionally,we may use matrix transposition to reform our regression formula in order to penalize
‖ A ‖1 and pose sparsity in A

min
A
{‖MT −BAT ‖2F +λ ‖ A ‖1} (4.11)

Both equations 4.10 and 4.11 assume a fixed value for A and B respectively. However, in many
applications (such as the present), there is the need to force sparsity constraints to both factors of
the data matrix. This need rises because both factors are conceptually supposed to be sparse thus
posing sparsity constraints to just one of them may lead to unwanted results, such as total zeroing
of the “sparse” matrix in order to conform to the constraint. This can be expressed by the following
optimization formula:

min
A,B
{‖M−ABT ‖2F +λ ‖ A ‖1 +λ ‖ B ‖1} (4.12)

One may additionally want to pose non-negativity constraints to A and B (e.g for better intuitive
interpretation). In that case, 4.12 can be restated as:

min
A,B
{‖M−ABT ‖2F +λ ‖ A ‖1 +λ ‖ B ‖1} (4.13)

subject to ai,j ≥ 0 and bi,j ≥ 0

In both l − 1 penalties of equation 4.13, the parameter λ has to be the same, otherwise, the algorithm
might be led to instabilities.

The problem 4.12 is not linear thus it cannot be solved in this direct form. One way to solve this is
by solving two linear lasso problems in an alternating fashion (in a similar way to ALS-NMF and TALS
for PARAFAC). The complexity per iteration for Algorithm 4.1 is O(IJk̂2). The Alternating Sparse
Regression algorithm pseudocode follows:

Algorithm 4.1 Alternating Sparse Matrix Regression

Input: M of size I × J , k̂,λ
Output: A,B

A=randn(I,k̂);
B=randn(J,k̂);
while convergence criterion is not met do

B=argmin
B
{‖M−ABT ‖2F +λ ‖ B ‖1}

A=argmin
A
{‖MT −BAT ‖2F +λ ‖ A ‖1}

end while
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Chapter 5

Tensors and Tensor Decompositions

5.1 An Introduction to Tensors

A tensor or N-way array is a multidimensional array. To define the term way consider the following
example. A vector is also called one-way array and a matrix is also called a two-way array. Consequently,
a three-way array is a three dimensional structure that is composed by a number of matrices (or two-way
arrays). In this thesis, we will be concerned with three-way arrays, though higher order arrays or tensors
can be defined and all of the following apply to them. Before proceeding, we must note that tensors
or n-way arrays in the present context should not be confused with tensors in the field of quantum
mechanics or physics in general. From now on when referring to a tensor we refer to a three way array,
a structure indexed by 3 indices (i.e I × J ×K).

The applications of tensors and tensor decomposition span from Signal Processing to Data Mining,
from Computer Vision to Chemometrics, Psychometrics and others. A very informative bibliographic
list of tensor applications can be found in [5]. Additionally, most of the material regarding PARAFAC
comes from [1] (chapter 6).

5.2 Definitions

Definition 10 (Kronecker Product). Given two matrices A,B with sizes I × F1 and J × F2 in respect,
we define the IJ × F1F2 matrix as A⊗B the Kronecker product:

A⊗B :=

Ba1,1 · · · Ba1,F1

...
. . .

...
BaI,1 · · · BaI,F1


Example 3. Consider matrices

A =
[
1 2
3 4

]
,B =

 5 10
15 20
25 30


The Kronecker product is

A⊗B =


5 10 10 20
15 20 30 40
25 30 50 60
15 30 20 40
45 60 60 80
75 90 100 120
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�

Definition 11 (Khatri Rao product). Given two matrices A(I × F1) and A(J × F1 with equal number
of columns, we define the Khatri-Rao product as

A ∗B =
[
a1 ⊗ b1 · · ·aF ⊗ bF

]
where af and bf denote the f -th column of A and B.

Example 4. Consider matrices

A =
[
1 2
3 4

]
,B =

 5 10
15 20
25 30


The Khatri-Rao product is

A ∗B =


5 20
15 40
25 60
15 40
45 80
75 120


�

5.3 The PARAFAC decomposition

5.3.1 Introduction

Let us reconsider the definition of matrix rank, following the bilinear decomposition that was presented
in a previous chapter 7. That was one way to define the matrix rank. It’s value is found in the fact that
this same definition can be used in order to define a three way array rank.

Let us now consider an I×J×K three-way array X with typical element xi,j,k , and the F -component
trilinear decomposition:

xi,j,k =
F∑
f=1

ai,fbj,fck,f (5.1)

for all i = 1 · · · I, j = 1 · · · J , and k = 1 · · ·K . The above equation expresses the three-way array X as
a sum of F rank-one three-way factors. This decomposition can be visualized in figure 5.3.1. Analogous
to the definition of matrix rank, we conclude to the following definition:

Definition 12 (Three-way array rank). A three-way array X rank can be defined as the minimum
number of rank-one (three-way) components needed to decompose X .

An example of a rank one three way array can be found in figure 5.3.1 below.

Depending on context, the vectors af ,bf , cf are often referred to as loading vectors or score vectors
or factor profiles in the multi-way literature.

5.4 PARAFAC Theory

5.4.1 Notation and Preliminaries

In this section we define some notation that is deemed necessary, in order to proceed with the intro-
duction of the PARAFAC model. In the following lines we will review methods of visualization of a three
way array as a two way array (matrix) and preliminary information regarding PARAFAC.
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Figure 5.1: The trilinear decomposition of a three way array. (Copyright belongs to [5])

Figure 5.2: A rank-one three way array. (Copyright belongs to [5])

Le us define an I × F matrix A with typical element A(if) := ai,f , J × F matrix B with typical
element B(jf) := bj,f , and K × F matrix C with typical element C(kf) := ck,f . Furthermore, define
J × K matrices Xi , I × K matrices Xj , and I × J matrices Xk with corresponding typical elements
Xi(jk) := Xj(ik) := Xk(ij) := xi,j,k . Then the model in Equation 5.1 can be written in three different
ways in terms of systems of simultaneous matrix equations (each of which can be interpreted as “slicing”
the three-way array X along one of the three dimensions:

Xi = BDi(A)CT , i = 1 · · · I (5.2)
Xj = ADj(B)CT , j = 1 · · · J (5.3)
Xk = ADk(C)BT , k = 1 · · ·K (5.4)

where Di(A) denotes a diagonal matrix constructed out of the i-th row of A. Dj(B) and Dk(C) are
constructed accordingly.

The PARAFAC model can be said to be the analogous of the Singular Value Decomposition (SVD) to
the realm of three way arrays. The one property that makes PARAFAC and the trilinear decomposition
differ significantly from the bilinear decomposition is the fact that the trilinear decomposition is proved
to be unique under some mild conditions that are going to be discussed further later on. Another
alternative to PARAFAC in terms of generalization of the SVD for higher than matrix order arrays is
the Tucker model or HO-SVD, abbreviation of High Order Singular Value Decomposition, which was
first proposed in 1966 in [21] . This model will not concern us in terms of this thesis, but a reference in
this point was essential for completeness. The Tucker model can be expressed as:

XI×J×K = [AI×R,GR×S×T ,CK×T ,BJ×S ] (5.5)

In 5.5, the subscripts indicate the dimensions of each component. Matrices A,B,C are generally or-
thonormal and full column rank. Instead of PARAFAC, the Tucker model decomposes a tensor into a
set of matrices and a smaller core tensor. As we will see later on, the Tucker model can be useful for the
computation of the PARAFAC model (5.4.3).

As it will be shown in the following example, the PARAFAC model does not suffer from rotational
freedom that was exhibited in 3.4. In order to see how PARAFAC excludes subspace rotation, let us
reconsider the example shown on the Matrix Factorization chapter:



30 CHAPTER 5. TENSORS AND TENSOR DECOMPOSITIONS

A =
[
1 1
2 3

]
,B =

[
3 3
4 5

]
X = ABT =

[
6 9
15 23

]
We can easily see that given A,B, X cannot be uniquely determined: Let us consider matrices A1,B2

where

A1 =
[
3 3
8 7

]
,B1 =

[
1 1
2 1

]
and

X = ABT = A1B1
T

This is a manifestation of the rotational freedom associated with bilinear models that is, one may
rotate A by right-multiplying with any non-singular matrix T and counter-rotate BT (left-multiplying
with T−1 ) without modifying X . In the example above,

T =
[
1 2
2 1

]
Now let us examine a similar example, but instead of a matrix and it’s bilinear decomposition, we use

three-way array and the PARAFAC decomposition.

Example 5. Consider the 2× 2× 2 three-way array with the following two slices:

X1 =
[

6 9
15 23

]
,X2 =

[
6 0
0 7

]

BT =
[
39 59
99 153

]
If we define

C =
[
1 1
6 7

]
then we can express the two slices as

X1 = AD1(C)BT

X2 = AD2(C)BT

�

The above example shows that it is possible for the trilinear decomposition to achieve uniqueness in
terms of subspace rotation.

In addition to the slice representations in 5.2,5.3,5.4, there exist several more ways of representing a
three-way array X into a matrix. For example, we have two more kinds of representations, a block-row
and a block-column matrix form. The block-row representation is

X (I×JK) =
[
Xk=1 · · · Xk=K

]
(5.6)

and the block-column representation is

X (JI×K) =

Xi=1

...
Xi=I

 (5.7)
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The superscript in each case denotes at first the size of the resulting matrix. Moreover, in each repre-
sentation, it denotes which index “runs” faster along the rows or columns. For example, in X (I×JK),
the j-th index runs faster than the k-th index along the rows (as J goes first in the product JK) and
in X (JI×K), the j-th index (that goes first in the product JI) runs faster than the i-th index along the
columns.

5.4.2 Identifiability and Uniqueness

As mentioned before, a very important property of the PARAFAC decomposition is uniqueness. This
uniqueness property is proved to hold under mild conditions. This means that factor matrices A,B,C
don’t suffer from matrix ambiguities such as the ones discussed previously regarding the bilinear decom-
position.

[22, 23]

5.4.3 Algorithms for Fitting the PARAFAC model

Alternating Least Squares

The principle of Alternating Least Squares (ALS) regression, previously introduced in 3.3.2 can be
applied to the computation of the trilinear decomposition. The basic idea behind ALS is simple: In each
step

• update one of the three matrices, using least squares regression based on previous estimates

• update the other matrices

• repeat from the top until convergence

The ALS principle for the trilinear decomposition is generally called TALS (trilinear ALS). The trilinear
ALS method is appealing primarily because it is guaranteed to converge monotonically, but also because
it is conceptually simple (no parameters to tune, each step solves a standard LS problem) and provides
good performance.

The optimization formula and and the update formula for the algorithm can be derived by using the
block-column matrix representation 5.7 as follows:

min
A,B,C

‖

X̂i=1

...
X̂i=I

−
BD1(A)

...
BDI(A)

CT ‖2F (5.8)

The conditional least squares update for C is

ĈT =

B̂D1(Â)
...

B̂DI(Â)


† X̂i=1

...
X̂i=I

 (5.9)

where Â, B̂ denote the estimated values of A,B. The LS updates for A,B can be obtained the same
way, considering the symmetry of the trilinear model.

For efficiency, some TALS algorithms in the literature employ line search/relaxation to speed up
convergence. The complexity per iteration for TALS is O(IJKF ).
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Compression/COMFAC

COMFAC stands for COMplex parallel FACtor analysis and utilizes compression of the initial three-
way aray, in order to speed up the computation of the PARAFAC model. COMFAC involves the 3
following steps:

1. Compression of the three-way array

2. Initialization and fitting of the PARAFAC model in the compressed array

3. Decompression and refining of the solution in the original space

5.5 Other Tensor Decompositions

When describing the equivalence of PARAFAC to the matrix SVD, we stumbled upon an alternative
model, the Tucker model. Some alternative models, other than the PARAFAC and the Tucker model
are:Tucker2, PARAFAC2 ([24]), CANDELINC ([25]), DEDICOM, PARATUCK2 ([26]) and INDSCAL
([27]).

5.6 Tensor Applications

There is a vast number of Tensor applications, ranging from Chemometrics to Psychometrics and from
Signal Processing to Data Mining. In the present section we will present two widely known and cited
tensor applications, coming from the field of Data Mining, which is the area of interest for the present
thesis. The copyright of every image taken from a particular publication belongs to the respective owner
and is reproduced here providing a reference to the original source.

5.6.1 TOPHITS

The TOPHITS (abbreviation for Topical-HITS) is considered to be a generalization of the HITS
link analysis algorithm described in chapter 3, in the Three-way realm. The TOPHITS algorithm was
first proposed in [6] and eventually every image regarding this algorithm is taken from that particular
publication.

Opposed to the matrix based HITS algorithm (3.2.3) tophits creates a three way array as the Ad-
jacency Structure (the term Adjacency Matrix is not appropriate in the present context), that also
incorporates relations between terms contained in the web pages. This information is represented by the
third dimension of the tensor.

The TOPHITS algorithm defines the following I × J ×K tensor X :

xi,j,k =
{

1 if page i points to page j using term k
0 otherwise (5.10)

where 1 ≤ i, j ≤ I, 1 ≤ k ≤ K

5.6.2 Discussion Tracking

An example of Discussion Tracking using Tensors and the PARAFAC decomposition can be found in
[7]. The particular publication uses the e-mail database of the Enron company, that closed down on
December 2, 2001 in order to extract and detect discussions over a period of time from e-mail messages.
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Figure 5.3: Example of a TOPHITS Adjacency Tensor (Copyright belongs to [6])

This publication models the email data as a three way adjacency array of dimension I × J × K
where I is the number of terms parsed from the messages, J is the number of e-mail authors and K
is the period of time. The authors constructed two different arrays, one for a daily period of time,
resulting to K = 357 and another one for a monthly period of time, resulting to K = 12. These
arrays were decomposed using the PARAFAC decomposition as described earlier in the present chapter
and the PARAFAC decomposition with Non-negativity constraints (also found as Non-negative Tensor
Factorization (NNTF) in the literature).

The following images provide a timetable produced by the PARAFAC factors that describes the ex-
tracted conversation topics over time. The images were taken from [7].

5.7 Software

5.7.1 Tensor Toolbox for Matlab

The Tensor Toolbox for Matlab is a toolbox developed by Sandia National Laboratories. It provides
interface for the manipulation of dense or sparse tensors, using the object oriented principle that was
newly introduced to Matlab. Apart from the ease of data manipulation, the Tensor Toolbox provides
among others, implementation of the PARAFAC model and the Tucker model and variations of both.

The Tensor Toolbox for Matlab can be downloaded from [28]. Additional publications regarding the
toolbox can be found in [29, 30].

5.7.2 The N-way Toolbox for Matlab

The N-way Toolbox for Matlab [31] is a freely available collection of functions and algorithms for
modeling multiway data sets by a range of multilin- ear models. Apart from the PARAFAC model,more
types of multiway models are covered: multilinear partial least-squares regression (PLSR), generalized
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(a) NNTF (b) PARAFAC

Figure 5.4: Topics extracted over time from the Enron Email dataset. (Copyright belongs to [7]
)

rank annihilation method (GRAM), direct trilinear decomposition (DTLD) and the class of Tucker
models.

Regarding the computation of the PARAFAC model that is of interest in this particular thesis, the
N-way Toolbox for Matlab embeds some optional constraints into the least-squares error minimization
algorithm such as orthogonality, unimodality and non-negativity constraints.

The N-way Toolbox for Matlab can be downloaded from http://www.models.life.ku.dk/source/
nwaytoolbox/.

http://www.models.life.ku.dk/source/nwaytoolbox/
http://www.models.life.ku.dk/source/nwaytoolbox/


Chapter 6

Proposed Algorithms

In this chapter, we present the work done on this thesis. The flow of the presentation is according to the
actual flow of the algorithms developed. First, we describe the task of data acquisition and assembly, in
order to form our working dataset. In that section, we also introduce a web mining tool we developed
especially for the purposes of this thesis. Later on, we present the formulation of the data in algebraic
form and finally, we provide the developed algorithms and associated details.

6.1 GoogleScholar Miner

GoogleScholar miner is a small Java based application, we developed in order to query Google Scholar
[32] for a specific researcher, browse through the resulting list of publications, download it and store it
in a database, in a form that can be easily processed and made use of. Google Scholar [32] is service
offered by Google that provides a researcher with the ability to search online for a publication of a broad
area of scientific fields.

The idea for GoogleScholarMiner was inspired by a citation analysis application called Publish or
Perish ([33]). Publish or Perish, like GoogleScholarMiner, uses the search results of Google Scholar
in order to perform citation analysis for a researcher and obtain his/her publication list. However, we
chose to design our own miner because Publish or Perish cannot be used in a non-manual way and the
results it produces, regarding the publication list, were very noisy, usually containing a lot of information
irrelevant to the actual title of the publication). The application we designed for the purposes of this
thesis proved to produce more clean results.

6.1.1 Method of Retrieval

The format of the Google Scholar results is plain machine generated HTML, making it a bit frustrating
to recover successfully, without nuisance (in the form of irrelevant text) the desired information about
each reviewer. However, for each publication entry of the results, apart from the usual information
(number of citations, external links etc.) contains a link to BL-Direct (abbreviation for British Library
Direct). This link, is an entry of that publication to the online repositories of BL-Direct. Moreover,
this entry contains all the information useful to us, namely the title of the publication and the year of
publication. Apart from the title (which is essential for obvious reasons), the number of citations and
the year of publication prove to be useful to determining the weight of each publication of a researcher,
in terms of “field of expertise”. A more detailed discussion regarding the field of expertise and the
publication weighting scheme will be presented later on. The number of citations can be extracted from
the original results page. The basic idea behind the retrieval process of a list of publications, consists of
the following steps:

1. Provide Google Scholar with a query containing the full name of the researcher and preferable
scientific field, in order to disambiguate-as much as possible-the results. It is also more efficient

35



36 CHAPTER 6. PROPOSED ALGORITHMS

to insert just the first letter of the first name and the whole last name of the author, in order to
disambiguate references to the same person using variations of his/her first name (e.g Peter/Pete)

2. Browse systematically through the whole list of publications.

3. For each publication entry, retrieve the number of citations. Then follow the link to the BL-Direct
page and retrieve the title and year of publication.

6.1.2 The Algorithm

In pseudocode form, the GoogleScholarMiner can be stated as follows:

Algorithm 6.1 GoogleScholarMiner algorithm
Input: The name of a researcher his/her scientific field.
Output: The list of publications and respective date and citation number for that researcher.
1: Make a query to Google Scholar using the name and the scientific field.
2: for all result pages do
3: Browse through the page and search for BL-Direct links
4: for all BL-Direct links do
5: Follow the BL-Direct link.
6: Parse the resulting page, storing the title and the year of publication.
7: Store the citation number that belongs to the same structure of code corresponding to that link
8: end for
9: end for

6.2 Data Acquisition

In this section, we shall describe the way of acquiring the data needed for the completion of our task.
The first step is to extract a very large number of raw information regarding these two entities: the
papers and the reviewers. The list of submitted papers is already available to us from the TPC chair. So
is the list of the prospective reviewers. For the case of the reviewers, the challenge is to extract raw terms
starting only with their first and last name and obtaining somehow a list of their publication history.

The terms for each entity were extracted using either a custom approach (which puts to work most
of the preliminaries described on chapter 2) or the KEA tool (that was briefly described on that same
chapter). We found out that the raw and final extracted terms produced using KEA were slightly more
accurate, though we present both methods here, for completeness.

6.2.1 Retrieving Terms from the Submitted Papers

As we mentioned before, the list of submitted papers is already available to us from the conference
organizers. Thus, there is no need to look for supplementary data for this process. We remind the reader
that the information we need to extract, relies solely on the papers’ titles. Throughout the following
lines, we describe the custom method used and how KEA was used, in order to extract these raw initial
terms:

Custom Method

The custom method used consists of the following steps:

1. Parsing & Preprocessing: This is the process of parsing the paper titles, breaking every sentence
to seperate words (tokenizing) and eliminating stopwords using a custom made list that is oriented
to the broad specific scientific area of the conference.
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2. Creation of the paper-by-term matrix, based on the terms that “survived” the stopword elimination.
The weighting scheme employed is the TF×IDX scheme. Note that the frequency of occurence of
every term to a paper’s title can be at most 1 almost surely: The event of finding twice a term
(that is not a stopword) on a single title is nearly impossible. The paper-by-term matrix is created
using only single word terms.

3. Extraction of single word terms using the paper-by-term matrix. We can additionally use the SVD
approximation of the paper-by-term matrix in a lower dimension, in order to benefit from all the
qualities of Latent Semantic Indexing.

4. Extraction of multi word terms: This process requies at first an additional step of text pre-
processing : Part-of-speech tagging (POS tagging). POS tagging is procedure of marking
each token of the text with the appropriate part of speech tag (e.g verb, noun, adjective e.t.c).
This step is essential for the application the C-value/NC-value methods. For POS tagging, we use
the POS tagger developed by the Stanford University. More information regarding this tool (and
a download link) can be found in [34]. When done with the POS tagging process, we proceed to
the extraction of multi word terms, using the NC-value method which was described on chapter 2.

The resulting final list of raw terms is the union of the single-word terms set and the multi-word term
set obtained from the above steps.

KEA

When using the KEA tool, things are not as complicated as above. What needs to be done is provide
the tool with a set of training documents, in order to train the Naive Bayes model and then feed the
application with the paper titles, in order to extract the desired raw terms. For training, we used the
abstract of published papers in the same broad area as the conference (e.g. Signal Processing), using as
author defined keyphrases the index terms of each paper. The model built upon this training data is the
one used throughout this whole thesis.

The next step, is the extraction process. We choose to concatenate all the titles in one big document,
as it is stated on the KEA documentation that the algorithm works better on long input text files. The
length of the extracted terms is set to at most two words. This, of course, is a design parameter and can
be altered at will, with respect to the scientific field of interest (e.g. medical terms often consist of more
than two consequent words).

6.2.2 Retrieving Terms from the Reviewers

The case of the Reviewers is identical to the case of the Papers, with a twist. The list of publications
for each reviewer is not availabe as is the list of the submitted papers. The list of publications for
each reviewer, along with the number of citations for each publication and the date of each publication
are the means that lead us to the extraction of the initial terms for the prospective reviewers. As this
information is not readily accessible, we need to employ GoogleScholarMiner. For each reviewer, we use
GoogleScholarMiner in order to access the Google Scholar database, inquire the list publications of that
reviewer and finally process the results of that inquiry to gain access to that reviewer’s term profile.

Let us examine the case for one reviewer, which can be generalized for the complete list of reviewers.
The output of GoogleScholarMiner for that specific reviewer is the list of publications accompanied with
the associated publication date and the number of citations for each publication. The last two pieces of
information are essential in order to discover his area of expertise and his current research interests. The
publications that correspond to the area of expertise and are of his current research interest should be the
most likely to produce representative terms. Taking this into account, we devised a weighting mechanism
that “boosts” publications that belong either to the area of expertise or to the current research interests
or both, in order to bias the raw extraction procedure to pick more terms from these publications.
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This mechanism is simple and intuitive: We take into account the timeliness of the publication and
the impact it has had over it’s respective scientific field. We initially start with equal weights for all
publications. If a publication is very recent (e.g. published in the last 5 years), it is more likely that this
publication comes under the current research interests of that reviewer, thus we grant the publication’s
weight with an additive factor of 4. Moreover, if a publication is highly cited, this probably means that
this publication was very influential and comes under the field of expertise of that reviewer. In that case,
we grant the corresponding weight with an additive factor of 5. Given all of the above, if a publication
is timely, it’s weight is 4, if it is highly cited, it’s weight is 5 and if it exhibits both properties, it’s weight
is 10. An example of this weight vector is illustrated on the following figure:
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Figure 6.1: Weight vector for Nicholaos Sidiropoulos

Apart from the application of the weight vector of each reviewer, the whole extraction process, either
following the custom method or using KEA, is essentially the same as the one involving the submitted
papers. The weight vector is applied on each case as follows:

• Custom Method: The paper-by-term matrix represents all the papers from all reviewers’ publica-
tions lists in the Vector Space Model representation. For convenience, let us assume that the lists
of publications are vertically concatenated, forming the list of all publications among the reviewers.
For each set of n papers (corresponding to the list of publications of the reviewer p), we also have a
weight vector wp with size n× 1. We have R such vectors (with variable size, according to the size
of each reviewer’s publication list), where R is the total number of reviewers. Let us denote as w
the vector produced by the vertical concatenation of all wp, p = 1 · · ·R. Then, the final weighted
paper-by-term matrix is given by:

M̂ = diag(w)M

where diag(w) denotes a diagonal matrix with diagonal elements equal to the given vector w, M
denotes the original paper-by-term matrix for all the reviewers and M̂ denotes the weighted one.

• KEA: When using KEA, we don’t have access to the weighting scheme of the algorithm applied.
What we can control is the input text. This gives us the opportunity to bias the outcome of the
extraction process by repetition. This means that on the input text that contains all the paper
titles for a reviewer, we repeat each title as many times as the corresponding paper’s weight.

6.2.3 How many raw terms should we extract?

The question of this section’s title poses the fundamental trade off that emerges from this process.
The number of raw terms that we extract for both entites is a parameter that is reflected later on the
results of the final extracted terms. If the number of raw terms is significantly small, then each profile is
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very sparse and some of the algorithms proposed later on may produce unwanted results. On the other
hand, if the number of raw terms is vast, the quality of the resulting list of terms might be compromised
by noisy terms that come about as a result of the large number of initial raw terms. This trade off is
also discussed on the final chapter where we attempt to find the “sweet spot” between the number of
initial raw terms and the quality of the final results.

6.3 Data Formulation

In this section we take a moment to describe the notation be used throughout all three algorithms
that follow. These are:

• ’reviewer terms’: This is the list of raw terms retrieved using the GoogleScholarMiner application.
The number of these terms is a tunable parameter and it’s value is obviously reflected on the
cardinality of the final results.

• ’paper terms’: This is the list of raw terms retrieved from the titles of the submitted papers. The
number of these terms is a tunable parameter and it’s value is also reflected on the final results, as
in the case of ’reviewer terms’.

• ’all terms’ This is the union of the 2 above sets and constitutes our set of index terms.

• P: This matrix is the P × T paper-by-term matrix that uses a basis ’all terms’. P denotes the
number of submitted papers and T denotes the number of terms in ’all terms’, throughout this
thesis.

• R : This matrix is the R×T reviewer-by-term matrix that uses a basis ’all terms’. R denotes the
number of the reviewers.

We also need to define the terms concept/topic: As a topic or concept we define a group of terms
that have similar meaning and constitute a conceptual category and exists in the latent term space.

6.4 Profiling using Non-negative Matrix Factorization

6.4.1 Why NMF?

When introducing Matrix Factorization, we reviewed two different ways of tracking the factorization
of the data matrix M in the form

M̂ ≈ AB
T

These two different methods were the SVD of M or the Non-negative Matrix Factorization of M. Even
though the approximation of a matrix in a lower dimension is optimal when using the truncated SVD
of that matrix (in the least squares sense), this property does not suffice to model our data. This
happens, because optimality in the least squares sense is not our main objective. Our main desire is
model interpretability, a property that Matrix Factorization using the SVD lacks. The SVD does not
provide any guarantees of non-negativity on the singular vectors. This is not desirable in the present
applications for the following reasons:

1. We need to express each reviewer’s profile as a linear combination (or sum-of-parts) of the rows of
B. A sum of parts concept is not valid when negative parts exist.

2. There is good chance that in the resulting profile matrix there exist negative elements, a property
that does not make intuitive sense in the present context. If a reviewer is not matched at all by
a specific term, the weight of that term for that reviewer should be zero. Any value less than
zero has no logical interpretation. Despite that fact, the original data matrix M is binary, thus
non-negative and it is highly desirable for the resulting matrix to maintain the properties of the
initial data matrix.
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As a result of the above, the choice that comes naturally is NMF. The model produced by NMF
exhibits non-negativity as the original data matrix does ,and provides interpretability. Even though
the NMF is not an optimal approximation (non-negativity constraints lead to non-convexity, thus the
result most probably comes from a local minimum), the benefit of the interpretability outweighs the
non-optimality in terms of minimization and in the least squares sense.

6.4.2 The Algorithm

At first, using the initial data matrices R,P, we create the data matrix M such that

M =
[
R
P

]
which denotes the vertical concatenation of R,P. In this step we unify the data that represent reviewers
and papers, as we aim to extract terms that best represent both entities. It is valid to concatenate R,P
vertically, as they share the same basis vector.

After creating M, the next step is to obtain it’s Non-negative Matrix Factorization, the two factors
A,B. The number of bilinear components for the factorization (or equivalently the approximating low
rank of the target matrix) is denoted by k̂. This parameter is tunable; a reasonable value for k̂ is the
total number of concepts/topics we want to extract.

The NMF of M is {A,B} where A ∈ {RR+P×k̂, ai,j ≥ 0} and B ∈ {RT×k̂, bi,j ≥ 0}. The columns of B
are the basis vectors of the k̂-dimensional latent term space. This means that each one of these vectors,
represents an entire group of terms. The rows of A are the profiles of each entity in that k̂-dimensional
space.

From the above factorization, we can reconstruct each profile as a linear combination (sum-of-parts)
of the columns of B with the profile vector in the latent term space. The reconstructed profile matrix
for the reviewers is

R̂ = A(1 : R, :)BT (6.1)

where A(1 : R, :) denote the first R rows of A. Respectively, the new profiles matrix for the papers is

P̂ = A(R+ 1 : R+ P, :)BT (6.2)

where A(R + 1 : R + P, :) denotes the rows of A from R + 1 to R + P . This can be also written as
A(R+ 1 : end, :) in Matlab notation. It should be obvious that rank(R̂) ≤ k̂ and rank(P̂) ≤ k̂, if k̂ ≤ R
and k̂ ≤ P .

The new profile matrices R̂, P̂ contain the scores of each reviewer or paper in a lower dimension. Let
us recall at this point the Latent Semantic Indexing principle which states that such a depiction can deal
with synonymy and polyesmy issues. Moreover, such a depiction can cluster together in a way reviewers
or papers which have a similar profile in the basis ’all terms’.

Let’s consider at this point the case of R̂. Each row of that matrix is a vector representing the
corresponding reviewer in the k̂-dimensional space. When plotting such a vector, we may observe peaks
with varying values that represent high scoring terms and points with smaller values that can be seen
either as noise or as less significant terms. Additionally, all of the elements of that vector are non-
negative. In order to get the highest scoring terms, we may first determine the highest peaks of the
vector. In other words, post-processing is needed, in the form of sorting each profile vector.
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After sorting each profile vector, we take the t̂ highest values and we collect the corresponding terms
from ’all terms’. This procedure is done repeatedly for all the reviewers and the resulting terms for each
reviewer are stored along with the others’. When this process is finished, we have a set of terms selected
to represent best each reviewer. The parameter t̂, just like k̂ is a tunable parameter which essentially
determines the size of the resulting set of terms. If we choose for example t̂ = 15 or accordingly small,
the resulting list of terms should be significantly smaller than the initial raw list of ’all terms’. Let us
call the resulting list of terms, obtained the way we described earlier as ’final reviewer terms’.

Now, all we need is to filter out all those terms that don’t represent the papers and keep only those that
do. One way to do this is by taking the set intersection of ’final reviewer terms’ and the ’paper terms’.
In that way, we discard all the terms in ’final reviewer terms’ that don’t appear on any title and keep
only the ones that jointly describe both the reviewers and the papers. This method is universal among
the three algorithms described in this chapter. This final set of terms is denoted as T.

After determining the final list of terms T, we have to compute the matrices R̂ and P̂. These matrices
are the reviewer-by-term and paper-by-term matrices produced using as a basis the terms in T. The
concept behind the computation is very simple: we just take the columns of R and P that correspond
to the terms in T. But there is a twist. The initial feature matrices R,P do not represent any latent
relationships between reviewers and terms or papers and terms, hence it doesn’t come as a surprise
that some of the rows of R̂ and P̂ contain only zeros. This property is inevitable but fortunately, the
algorithm itself provides the solution. The basic idea is that for every zero row (equivalently, every empty
profile), we find the most similar reviewer or paper and copy that profile to the empty one.

Let us consider the case of R̂ and then the case of P̂ is completely analogous. Suppose that there exist
in R̂ r rows that contain all-zero elements. Now consider the matrix

Sr = R̂R̂T (6.3)

This matrix is of size R×R and is defined as the correlation matrix of the reviewer profiles.The element
sri,j shows the similarity of reviewer i with the reviewer j. The matrix Sr is obviously, by definition
symmetric. For each of the r rows of R̂ that contain zeros, we find, using the similarity matrix Sr, the
most similar reviewer with non-empty profile and copy that profile to the empty one. The similarities
expressed by Sr take into account relationships between reviewers, as the matrix used to compute Sr is
the one obtained by the factorization.The case of P̂ is completely analogous, with the similarity matrix
being defined as

Sp = P̂P̂T (6.4)

In the Algorithm 6.2 table we provide a summary of the proposed algorithm in a concise, pseudocode
form.

The algorithm used to track the Non-negative Matrix Factorization equation is the Multiplicative
Method algorithm that can be found on the according chapter (3.1).

6.5 Profiling using Sparse Matrix Regression

6.5.1 Why Sparse Matrix Regression?

As we reviewed earlier, on the Data Acquisition section, the number of “batch” terms initially ex-
tracted from the web and the submitted papers is vast. This fact tends to produce very sparse profile
vectors, because a reviewer is depicted in the large dimensional space by very few non-zero coordinates
(representing his profile). Consequently, the data matrix M tends to be very sparse. From this point
on, a matrix or vector is said to be sparse when the zero elements strongly outnumber the non-zero
elements. In this thesis, we don’t employ an explicit way of calculating the sparsity of a matrix or a
vector, other than the ratio of the non-zero elements over the zero elements. Even though there exist
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Algorithm 6.2 Profile Extraction using Non-negative Matrix Factorization
Input: List of submitted papers and reviewers
Output: T, R̃, P̃
1: paper terms=extract raw terms for submitted papers
2: reviewer terms=∅
3: for all reviewers in the reviewer list do
4: reviewer terms=reviewer terms ∪ Terms{GoogleScholarMiner(reviewer)}(see algorithm 6.1)
5: end for
6: all terms=paper terms ∪ reviewer terms
7: construct P,R

8: set M =
[
R
P

]
9: {A,B}=Non-negative Matrix Factorization (M,k̂)(see Algorithm 3.1)

10: R̂=A(1 : R, :)BT

11: P̂=A(R+ 1 : end, :)BT

12: terms=∅
13: for i = 1 : R do
14: r̂i =R̂(i, :)
15: Sort r̂i and get the t̂ highest scoring terms.
16: Then, get the corresponding terms and store them in ’w’
17: terms=terms ∪ w
18: end for
19: T=terms ∩ paper terms
20: Construct R̃ ∈ [0, 1](R×k̂) as
21: R̃=R(:,indices of ’terms’ in vector ’all terms’)
22: if R̃ contains zero rows then
23: Construct similarity matrix Sr=R̂R̂T

24: Set diagonal elements of Sr equal to 0.
25: for each zero row of R̃ do
26: Get the reviewer most similar (with non-empty profile) to the one with
27: the empty profile and copy the non empty profile
28: to the empty one.
29: end for
30: end if
31: Construct P̃ ∈ [0, 1](P×k̂) as
32: P̃=P(:,indices of ’terms’ in vector ’all terms’)
33: if P̃ contains zero rows then
34: Construct similarity matrix Sp=P̂P̂T

35: Set diagonal elements of Sp equal to 0.
36: for each zero row of P̃ do
37: Get the paper most similar (with non-empty profile) to the one with
38: the empty profile and copy the non zero profile
39: to the empty one.
40: end for
41: end if
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alternative ways of measuring sparsity, the above definition suffices for the characterization of our data
matrix as sparse.

When decomposing the data matrix M into factors A,B, using the bilinear decomposition and more
specifically Non-negative Matrix Factorization as shown on the previous section, there are no guarantees
whatsoever that the resulting profile matrix will maintain the sparsity the original matrix M exhibits.
In fact, for Non-negative Matrix Factorization, we have observed that nearly no element is exactly zero.
By looking at the profile matrix resulting from NMF, we can see the peaks of each profile vector that
represent the highest scoring terms for each reviewer and the rest of the elements being of lower-but not
zero-value. This leads to weak interpretability of the resulting matrix as it is. This means that for the
NMF profile matrix, in order to obtain the most representative terms for each reviewer, post-processing
is needed, as shown on the previous section.

In Sparse Matrix Regression, we propose an alternative Matrix Factorization that uses Sparse Regres-
sion as shown in chapter 5, in order to produce more interpretable profiles. By employing Sparse Matrix
Regression, we make sure that the resulting matrix will be sufficiently sparse, inheriting this quality
from the original matrix, and we eliminate the need of post-processing, as the algorithm itself does the
“filtering” of the noise that the plain matrix factorization produces. In the following section we will
describe in detail the algorithmic developments made for this method.

6.5.2 The Algorithm

The algorithm we propose in table 6.3 is similar on the basic elements of algorithm 6.2 but differs
fundamentally on the fact that uses Sparse Matrix Regression (SMR) in order to enforce sparsity on the
resulting factors.

As we reviewed earlier, the data matrix M is factored by {A,B} where A ∈ {RR+P×k̂, ai,j ≥ 0} and
B ∈ {RT×k̂, bi,j ≥ 0}; additionally, both factors are forced to be sparse. The columns of B are the basis
vectors of the k̂-dimensional latent term space. This means that each one of these vectors, represents an
entire group of terms. Due to sparsity, each column should have very few nonzero elements, leading to
less noisy compound term vectors, which finally lead to less noisy reconstructed profiles for each reviewer
and paper. Therefore, there is no need at all for post-processing of the results (sorting each profile vector
and picking the t̂ highest scoring terms),

Note that in contrast to the NMF case, where we pick exactly t̂ high scoring terms for each reviewer, in
SMR the number of candidate terms varies from reviewer to reviewer, a property that makes tremendous
intuitive sense. Take for example a reviewer that has a very large number of publications (which should
lead to an equally large profile) and a reviewer that has a significantly lower number of publications.
When we choose to pick an equal number of terms from both profiles, we enter ourselves into a trade-off.
If we set the number of terms to pick to a very large number, we might be extracting a lot of noise from
the reviewer with the small profile and accordingly, if we set that number to a small value, we might be
excluding very important terms from the reviewer large profile.

The algorithm used to compute the Sparse Matrix Regression is the alternating algorithm shown in
Algorithm 4.1. The algorithm used to solve each one of the sub problems of the alternating sparse
matrix regression is an element-wise coordinate descent. This algorithm can be found in pseudocode in
Algorithm 6.4.

When presenting the NMF based algorithm, we encountered the problem of an empty profile to the
final reviewer-by-term matrix or the final paper-by-term matrix. This problem was solved by computing
similarities of the empty profiles to non-empty profiles, using the matrices produced directly by {A,B}.
If a row of the matrix produced by {A,B} is zero, this row cannot provide us with any useful information
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regarding the similarity of that profile to other profiles. The point made from this statement is that there
is a difference between empty profiles in the matrix obtained by the decomposition directly and empty
profiles emerging in the final matrices P̃, R̃. An empty profile in P̃, R̃ can be dealt with information
directly from {A,B}, where an empty profile in M̂ = ABT is highly undesirable.

As we reviewed earlier, empty profiles resulting in matrices P̃, R̃ can be dealt with information directly
from {A,B}. However, in the SMR case, if the value of λ is very high, sparsity on M̂ = ABT may
cause some rows of M̂ to be completely zero. This case resembles the one described above and can also
be dealt with by obtaining similarities and substituting empty profiles accordingly. However, an empty
reconstructed profile is slightly more undesirable from an empty profile in matrices P̃, R̃. Empty profiles
in M̂ will most likely result to less terms that match both reviewers and papers. Therefore, it is desirable
but not definitive that none or very few reconstructed profiles are empty.

This issue can be dealt with an appropriate choice of the parameters λ and k̂, parameters that control
the sparsity of the reconstructed profiles. A formal way to choose among reasonable combinations of
those parameters is a Monte Carlo simulation, as exhibited in Algorithm 6.5. In that pseudocode, K
denotes a set of candidate values for k̂ and Λ denotes a set of candidate values for λ. Finally, zk̂,λ
denotes the number of zero rows in the resulting matrix for a specific couple of {k̂, λ} and nk̂,λ denotes
the average number of nonzero elements per row of the resulting matrix for a specific couple of {k̂, λ}.
Usually the decision for {λ, k̂} is taken by empirical evaluation, perhaps after obtaining some possible
choices using simulation.
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Algorithm 6.3 Profile Extraction using Sparse Matrix Regression
Input: List of submitted papers and reviewers
Output: T, R̃, P̃
1: paper terms=extract raw terms for submitted papers
2: reviewer terms=∅
3: for all reviewers in the reviewer list do
4: reviewer terms=reviewer terms ∪ Terms{GoogleScholarMiner(reviewer)}(see algorithm 6.1)
5: end for
6: all terms=paper terms ∪ reviewer terms
7: construct P,R

8: set M =
[
R
P

]
9: Choose {k̂, λ}(see Algorithm 6.5)

10: {A,B}=Sparse Matrix Regression (M,k̂,λ)(see Algorithms 6.4,4.1)
11: R̂=A(1 : R, :)BT

12: P̂=A(R+ 1 : end, :)BT

13: terms=∅
14: for i = 1 : R do
15: r̂i =R̂(i, :)
16: Get the corresponding terms of r̂i
17: (e.g all non-zero positions of the vector) and store them in ’w’
18: terms=terms ∪ w
19: end for
20: T=terms ∩ paper terms
21: Construct R̃ ∈ [0, 1](R×k̂) as
22: R̃=R(:,indices of ’terms’ in vector ’all terms’)
23: if R̃ contains zero rows then
24: Construct similarity matrix Sr=R̂R̂T

25: Set diagonal elements of Sr equal to 0.
26: for each zero row of R̃ do
27: Get the reviewer most similar (with non-empty profile) to the one with
28: the empty profile and copy the non empty profile
29: to the empty one.
30: end for
31: end if
32: Construct P̃ ∈ [0, 1](P×k̂) as
33: P̃=P(:,indices of ’terms’ in vector ’all terms’)
34: if P̃ contains zero rows then
35: Construct similarity matrix Sp=P̂P̂T

36: Set diagonal elements of Sp equal to 0.
37: for each zero row of P̃ do
38: Get the paper most similar (with non-empty profile) to the one with
39: the empty profile and copy the non zero profile
40: to the empty one.
41: end for
42: end if
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Algorithm 6.4 Element-wise Coordinate Descent for Non-negative Sparse Matrix Regression
while convergence criterion is not met do

for j = 1 : J do
for f = 1 : F do

d = M(:, j)−AB(j, :)T + A(:, f)B(j, f)
a = A(:, f)
if (aTd− λ

2 ) > 0 then

B(j, f) = aTd−λ2
‖a‖22

else
B(j, f) = 0 {Non-negativity constraint}

end if
end for

end for
end while

Algorithm 6.5 Monte Carlo simulation for the selection of λ and k̂ for Sparse Matrix Regression

for k̂ ∈ K do
for λ ∈ Λ do
{A,B}=Alternating Non-negative SMR(M, k̂, λ)
M̂ = ABT

Count how many zero rows M̂ has and store it in zk̂,λ.
Count the average number of non-zero elements per row of M̂ and store it in nk̂,λ.

end for
end for
Choose according to zk̂,λ and nk̂,λ the best {k̂, λ} that maintains sparsity and does not produce empty
profiles if possible.

6.6 Profiling using PARAFAC

6.6.1 Why PARAFAC?

The main reason to model our data as a three way array instead of a matrix is, as we reviewed earlier,
on the chapter discussing the PARAFAC decomposition, the PARAFAC model does not generally suffer
from rotational freedom and indeterminacy, in contrast to the bilinear decomposition and the Matrix
Factorization technique.

Moreover, the representation of the data as a three way array provides an alternative intuitive way
of modeling the Reviewer and Paper profiling problem. The third dimension of the terms connecting a
reviewer with a submitted paper is what enabled us to express this problem as a Three-way array.

In the literature there are a couple of recent examples of three way array modeling of data, in data
and text mining applications. Some of these examples can be found in:[35, 36, 6, 37]. We presented two
applications in the previous chapter. However, no publication so far has approached the Reviewer-Paper
profile extraction problem as a three-way analysis application.

6.6.2 The Algorithm

The three way array is constructed using P as the initial value of each of the P slices of the array.
Every slice of the three-way array is essentially the Reviewer-Term matrix with emphasis given on the
keywords that appear on the corresponding paper. More specifically, let us consider the i-th reviewer
and the j-th term. If the i-th reviewer is matched by that term (equivalently R(i, j) = 1) and that term
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appears on the corresponding paper, then the value of that element in that slice is 1. If R(i, j) = 1 but
the term does not appear on the paper then the (i, j) element of the slice is 0.25

A typical definition of X is :
X (:, :, p) = R�Qp, p = 1 . . . P (6.5)

where

Qp =
{

1 if P(p, k) = 1
1
4 else (6.6)

Following the method described above, the three-way array X is constructed. We can see an example
of the slices of X in figure 6.6.2 below:

(a) Slice 1 (b) Slice 50 (c) Slice 132

Figure 6.2: Slices of X

After forming X , we have to obtain the trilinear or PARAFAC decomposition of this three way array.
There is no need to determine the rank of X . We will decompose X to a small number of factors instead.
This number of factors is the dimension of the latent term space and roughly corresponds to the total
number of concepts or topics that we need to extract. A way of determining the number of factors for the
decomposition can be found on Algorithm 6.6 and resembles the one used in Sparse Matrix Regression.
Again, this simulation is not definitive in picking an appropriate value for k̂; it only provides a guideline
as to which values of k̂ behave in a desirable manner.

Let us denote the number of factors for the PARAFAC decomposition as k̂. With the decomposition of
X to k̂ factors using PARAFAC, we obtain k̂ triplets (rank one three way arrays) that each one represent
the score or loading values for each of the concepts that we will extract. The PARAFAC decompositions
produces matrices [A,B,C] with sizes R× k̂, T × k̂ and P × k̂ respectively. Matrix A contains the scores
of each Reviewer for every latent term. Matrix B contains the score of each normal term in the latent
term space and finally, matrix C contains the scores of each paper for every latent term. To be precise,
matrix C cannot provide the same amount of useful information as matrices A,B, as the third mode of
X is derived from a Hadamard product, that produces differences in scaling in different slices of X .

Consequently, we shall use matrices A,B to reconstruct our profile matrix. As we mentioned earlier,
each row of matrix A contains the scores for each reviewer in the k̂-dimensional term space, whereas
each row of B contains the scores for the corresponding term in the k̂-dimensional term space. This
leads us to the reconstruction of the profile vector for each reviewer. If we denote the profile vector for
the i-th reviewer as r̂Ti , its value is obtained by taking the linear combination of all the rows of B(or
equivalently the columns of BT) weighed by the elements of the i-th row of A. This can be written in
the following equation as

r̂Ti = A(i, :)BT , i = 1 · · ·R (6.7)

where, A(i, :) denotes the i-th row of A.



48 CHAPTER 6. PROPOSED ALGORITHMS

Later on, we may organize all the profile vectors in a R × T matrix Rp, where the i-th row is the
profile vector of the i-th reviewer. Equivalently, we have

R̂(i, :) = pTi = A(i, :)BT , i = 1 · · ·R (6.8)

R̂ = ABT (6.9)

Algorithm 6.6 Monte Carlo simulation for the selection of k̂ for PARAFAC

for k̂ ∈ K do
{A,B,C}=PARAFAC(X , k̂,non-negativity)
M̂ = ABT

Count how many zero rows M̂ has and store it in zk̂.
Count the average number of non-zero elements per row of M̂ and store it in nk̂.

end for
Choose according to zk̂ and nk̂ the best k̂ that maintains sparsity if possible and does not produce
empty profiles if possible.

In order to compute the PARAFAC decomposition, we use the N-way Toolbox for Matlab ([31]). The
algorithm the toolbox uses to track the decomposition is the TALS algorithm. We additionally pose
non-negativity constraints to all three modes of the decomposition. This means that all three factor
matrices [A,B,C] are non-negative. As exhibited on the NMF proposed algorithm, non-negativity is
essential for the proper interpretation of the model.

The way to obtain the final keywords is the same as the one described on the two previous algorithms:
we take the intersection of the high scoring terms for each reviewer, with the terms that belong to paper
titles.

A significant property that we observed is that the results produced tend to be sparse in a satisfactory
manner. In contrast to Sparse Matrix Regression, the PARAFAC approach does not provide any control
over sparsity, but usually the resulting matrix resembles more to the SMR one rather than the NMF one.
This implies that post-processing is usually not necessary, since sparsity tends to single out the most
important terms. However, we cannot exclude the fact of a case where post-processing can be useful to
produce more clear results. In conclusion, post-processing of the results is optional and should be done
only if really needed, a decision that can usually be made by inspection and empirical evaluation of the
results.

Another difference from the other two proposed algorithms is the fact that the similarity matrix Sp

cannot be constructed using P̂ as there is no way of constructing this matrix. Instead, we use the original
matrix P and the paper similarity matrix is

Sp = PPT (6.10)
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Algorithm 6.7 Profile Extraction using PARAFAC with Non-negativity Constraints
Input: List of submitted papers and reviewers
Output: T, R̃, P̃
1: paper terms=extract raw terms for submitted papers
2: reviewer terms=∅
3: for all reviewers in the reviewer list do
4: reviewer terms=reviewer terms ∪ Terms{GoogleScholarMiner(reviewer)}(see algorithm 6.1)
5: end for
6: all terms=paper terms ∪ reviewer terms
7: construct P,R
8: construct X :
9: for p = 1 : T do

10: for i = 1 : T do
11: if P(p, k) == 1 then
12: Qp = 1
13: else
14: Qp = 1

4
15: end if
16: end for
17: X (:, :, p) = R�Qp

18: end for
19: {A,B,C}=PARAFAC (X ,k̂,non-negativity)
20: R̂=ABT

21: terms=∅
22: for i = 1 : R do
23: r̂i =R̂(i, :)
24: Get the corresponding terms of r̂i
25: (e.g all non-zero positions of the vector) and store them in ’w’
26: terms=terms ∪ w
27: end for
28: T=terms ∩ paper terms
29: Construct R̃ ∈ [0, 1](R×k̂) as
30: R̃=R(:,indices of ’terms’ in vector ’all terms’)
31: if R̃ contains zero rows then
32: Construct similarity matrix Sr=R̂R̂T

33: Set diagonal elements of Sr equal to 0.
34: for each zero row of R̃ do
35: Get the reviewer most similar (with non-empty profile) to the one with
36: the empty profile and copy the non empty profile
37: to the empty one.
38: end for
39: end if
40: Construct P̃ ∈ [0, 1](P×k̂) as
41: P̃=P(:,indices of ’terms’ in vector ’all terms’)
42: if P̃ contains zero rows then
43: Construct similarity matrix Sp=PPT

44: Set diagonal elements of Sp equal to 0.
45: for each zero row of P̃ do
46: Get the paper most similar (with non-empty profile) to the one with
47: the empty profile and copy the non zero profile
48: to the empty one.
49: end for
50: end if
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Chapter 7

Results and Conclusions

7.1 Results

For the evaluation of the methods, data from the ICASSP09 conference was used. The available
dataset contains the list of the reviewers and the list of submitted papers, accompanied by the name of
the lead author for each paper. The total number of reviewers was R = 72 and the number of submitted
papers was P = 132. A key parameter for the evaluation of the results is the total number of raw terms
initially extracted in order to build M and X . We remind the reader that this parameter is symbolized
by T . We observed that the results in terms of precision for all three methods exhibited alterations when
changing T . In the following sections, we demonstrate graphically the results of each method by plotting
the result matrices of each one and quantitatively, by demonstrating precision graphs for each algorithm.

7.1.1 Illustration of Representative Results

In figure 7.1.1, we can see the original data matrix M. The number of total raw terms for this sample
matrix is 2553. The same number of raw terms applies on the following example matrices for each of the
three methods.

Figure 7.1: Original Data Matrix M
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Non-negative Matrix Factorization

The following subfigures in figure 7.1.1 show the factor matrices A,B resulting from the Non-negative
Matrix Factorization with k̂ = 15, along with the reconstructed profile matrix ABT . The size of ABT

is the same as the size of M. The reviewer profile matrix R̂ can be obtained from the reconstructed
matrix by taking the first R rows. The matrix R̂ is shown on the figure below.

In figure 7.1.1, we can see the most significant property introduced by NMF, the non-negativity, which
is imposed on both factors. We can also observe that the resulting reconstructed matrix is not at all
sparse, at least by inspection.
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Figure 7.2: Resulting matrices for Non-negative Matrix Factorization with k̂ = 15

Sparse Matrix Regression

In figure 7.1.1, we can view the factor matrices A,B obtained by Alternating Sparse Matrix Regression
with k̂, λ = 0.2 and the resulting reconstructed matrix ABT . The same as the NMF case applies as to
the computation of R̂. This matrix is shown on the figure below.

The key observation that comes from figure 7.1.1 is the fact that both the factor matrices and the
resulting reconstructed matrix are sparse and the resulting matrix is also more sparse than the initial
matrix M.
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Figure 7.3: Resulting matrices for Sparse Matrix Regression with k̂ = 15, λ = 0.2

The most severe obstacle that we faced throughout the evaluation of the SMR method was the fact
that under certain circumstances, the SMR algorithm produced profiles matrices that contained empty
profiles. The main observation upon this fact was that if a profile vector was initially very sparse, after
the application of sparse regression, the corresponding reconstructed profile vector would be empty with
very high probability. This obstacle was tackled with two methods. The more systematic one was
described in the previous chapter, in algorithm 6.5, where we show a Monte Carlo simulation procedure
that helps us choose {k̂, λ} in an appropriate way such that no empty profiles exist. The second, rather
empirical, method was the tuning of sparsity in the initial profiles. We observed that when we forced to
extract 25-30 raw terms per reviewer, the initial profile vectors were not sufficiently sparse, in order for
an empty profile to be produced by SMR.

PARAFAC

In figure 7.1.1, we can view the three modes of the PARAFAC decomposition [A,B,C], as long as the
reconstructed matrix R̂ = ABT . In the factor matrices, there exist the values of each reviewer, term
and paper with respect to the k̂ extracted topics. In the following example, k̂ is equal to 15.

7.1.2 Quantitative Evaluation

For the needs of evaluating the results of the proposed methods, we employ a familiar and widely used
in text mining applications evaluation method, the Precision-Recall metrics. In order to proceed, first
we must provide a brief introduction to the basics of this method.
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Figure 7.4: Resulting matrices for PARAFAC with k̂ = 15

Precision is the fraction of the retrieved terms that are also relevant. The precision value for a set of
retrieved and relevant terms can be calculated by the following formula:

Precision =
|Relevant ∩ Retrieved|

|Retrieved|
= Pr{Relevant|Retrieved} (7.1)

Recall is the fraction of relevant terms that are retrieved. Recall can be calculated as follows:

Recall =
|Relevant ∩ Retrieved|

|Relevant|
= Pr{Retrieved|Relevant} (7.2)

In order to single out the relevant terms from all the retrieved terms, we employed empirical evaluation.
We asked a domain expert to rate each one of the retrieved terms as relevant or not, producing the set
of relevant terms that was used for the calculation of precision-recall values and the interpolated curve,
as introduced on the previous paragraph.

We must note that the set of the relevant terms for each result set is a subset of the retrieved terms
for that set. Therefore, as implied by equation 7.2, the recall value for each of the result sets is equal
to 1. For that reason, we only present the precision value, given by equation 7.1. For each method, we
provide the precision value for 3 different sets of initial terms, for a range of approximation ranks. These
sets are:

• 10 terms per reviewer & 5 terms per paper, resulting to T = 1251.
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• 20 terms per reviewer & 5 terms per paper, resulting to T = 1844.

• 30 terms per reviewer & 5 terms per paper, resulting to T = 2431.

For the SMR algorithm specifically, we present the precision in terms of both the approximation rank
and the parameter λ that affects sparsity. For the SMR and PARAFAC algorithms, we present an
additional metric, the average non-zero element count per row, a number that indicates the average
number of terms extracted for each reviewer. For convenience, we symbolize this number as 6= 0. This
number can be seen as a measure of sparsity.

Precision for Non-Negative Matrix Factorization

In the following tables, we present the precision values for 3 different values of k̂ (the approximating
rank). In the post-processing procedure, we choose t̂ = 15 highest scoring terms for each reviewer.

T = 1251 k̂ = 20 k̂ = 30 k̂ = 40
precision 0.58065 0.51613 0.47170

T = 1844 k̂ = 20 k̂ = 30 k̂ = 40
precision 0.5 0.42857 0.42309

T = 2431 k̂ = 20 k̂ = 30 k̂ = 40
precision 0.6 0.59091 0.53846

In the figure 7.1.2, we demonstrate the precision value versus the approximation rank for the NMF
algorithm. The rank ranges from 20 to 40. We can observe that the algorithm performs well for low
ranks. As the rank grows, the performance of the algorithm drops in terms of precision.
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Figure 7.5: Precision vs Rank for Non-Negative Matrix Factorization

Precision for Sparse Matrix Regression

In the following tables, we present the precision values for 3 different values of k̂ and λ. For each
dataset, we choose a different range of values for λ. This is done because as the initial dimension of the
data matrix increases, the density of the profiles grows. So, in order to ensure that the resulting profiles
are sufficiently sparse, as the dimension of the data matrix increases, we user higher values for λ.
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T = 1251

k̂ = 20 k̂ = 30 k̂ = 40

λ = 0.1 precision 0.34615 0.30189 0.31373
6= 0 51 44 45

λ = 0.3 precision 0.44731 0.35714 0.35714
6= 0 32 30 31

λ = 0.6 precision 0.84615 0.64 0.64
6= 0 19 19 21

λ = 0.9 precision 0.8 0.8 0.8
6= 0 10 11 12

T = 1844

k̂ = 20 k̂ = 30 k̂ = 40

λ = 0.1 precision 0.22222 0.21260 0.21138
6= 0 225 198 160

λ = 0.6 precision 0.4 0.44828 0.44828
6= 0 70 66 50

λ = 0.9 precision 0.38095 0.44 0.44444
6= 0 50 47 49

λ = 1.3 precision 0.46667 0.52632 0.5
6= 0 18 20 21

T = 2431

k̂ = 20 k̂ = 30 k̂ = 40

λ = 0.6 precision 0.52778 0.53846 0.525
6= 0 100 93 82

λ = 0.9 precision 0.6 0.58065 0.52941
6= 0 51 57 47

λ = 1.3 precision 0.64706 0.57143 0.57143
6= 0 28 30 31

λ = 1.6 precision 0.57143 0.52941 0.5
6= 0 19 23 26

In the figure 7.1.2, we slightly alter our figure scheme. We demonstrate the evolution of the precision
versus the evolution of λ, for a range of rank values.
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Figure 7.6: Precision vs λ vs Rank for Sparse Matrix Regression

For all three scenarios, we observe that as λ increases (equivalently, as the resulting profiles become
more sparse), the performance, in terms of precision increases too, most of the times, especially for low
ranks. This indicates that our insight that sparsity is needed due to the sparse nature of a reviewer’s
profile, is indeed correct and it’s application pays off in terms of performance.
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Precision for PARAFAC

In the following tables, we present the precision values for 3 different values of k̂ (the number of factors
for the PARAFAC model). We must note that for initial dimension 2431 (2431 initial terms), we failed
to obtain the PARAFAC decomposition for k̂ = 30 and k̂ = 40, due to hardware restrictions. However,
the rest of the results suffices for our conclusions.

T = 1251
k̂ = 20 k̂ = 30 k̂ = 40

precision 0.73684 0.68182 0.73913
6= 0 90 55 46

T = 1844
k̂ = 20 k̂ = 30 k̂ = 40

precision 0.44828 0.43333 0.43333
6= 0 248 270 264

T = 2431
k̂ = 20 k̂ = 30 k̂ = 40

precision 0.51220 - -
6= 0 700 - -

In the following tables, we include results of the PARAFAC algorithm, using post-processing with
t̂ = 15 highest scoring terms per reviewer. This is is done for the last 2 datasets, where the resulting
profiles are not sufficiently sparse.

T = 1844 k̂ = 20 k̂ = 30 k̂ = 40
precision 0.43333 0.43333 0.43333

T = 2431 k̂ = 20 k̂ = 30 k̂ = 40
precision 0.51220 - -

We can observe that when employing post-processing (in the form of sorting the result vectors), the
performance of the PARAFAC based algorithm does not differ significantly from the algorithm without
post-processing.

In the figure 7.1.2, we demonstrate the precision value versus the number of trilinear components
for the PARAFAC algorithm. The rank ranges from 20 to 40. As observed on the NMF case, the
performance of the algorithm drops as the rank increases.
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Figure 7.7: Precision vs Rank for PARAFAC

7.2 Discussion and Conclusions
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Figure 7.8: Comparison of NMF, PAFAFAC and SMR in terms of precision

In figure 7.2, we can clearly see that in all three figures, there is a choice of parameters that forces
Sparse Matrix Regression to outperform both other algorithms. We also observe that for low values of
λ, SMR tends to perform similarly to (or even worse than) Non-Negative Matrix Factorization. This
result is natural, as low values of λ don’t produce sufficiently sparse results.

When it comes to PARAFAC, we can see that for low values of T , the algorithm’s performance is better
than NMF. When we proceed to higher values of T , due to the data matrix being more dense, the NMF
algorithm gains an advantage compared to PARAFAC. When PARAFAC produces sufficiently sparse
profile vectors, it’s performance is clearly better than NMF (and comparable to the SMR’s performance).
However, when the resulting profile vectors are dense (like in the cases of 1844 and 2431 initial terms),
the need for sparsity rises. This sparsity property can either be achieved artificially by employing post-
processing similar to the NMF based algorithm. However, as we shortly describe on the Future Work
(7.3) section, there is an alternative by the name of SPARAFAC.

In the following table, we present the computational costs per iteration for each of the three proposed
algorithms. Because all three algorithms differ only on the approach of the low dimensional approxima-
tion, we focus on the core algorithms, rather than the pre- and post-processing of the data.

NMF SMR PARAFAC
O(RPk̂) O(RPk̂2) O(RPT k̂)

NMF maintains the lowest complexity per iteration. However, because k̂ is relatively low in this applica-
tion, the difference between NMF and SMR in practice, is slightly noticeable and increases as k̂ increases.
The PARAFAC decomposition is by far the most costly; PARAFAC is the only algorithm among the
three with a complexity depending on T . As we presented earlier, T ranges from ≈ 1000 to ≈ 2000 and
perhaps more, resulting to very high computational cost for our PARAFAC based approach.

In conclusion, and computational costs aside, we can safely infer that Sparse Matrix Regression pro-
duces the highest scoring results. In the case of T = 1844, where the resulting profiles of PARAFAC
are sufficiently sparse, the algorithm’s performance is still clearly higher than NMF’s. This means that
the two newly proposed methods in this thesis, generally offer better results than the NMF algorithm, a
widely used and popular principle in various Data Mining applications. In fact, the algorithm proposed
in Algorithm 6.2, offers the Non-negative Matrix Factorization paradigm an advantage, as it substitutes
it’s fundamental lack of sparsity with the post-processing of the results.

7.3 Future Work

The problem this thesis addresses is widely exploratory and interdisciplinary. For that reason, there
is a number of alternatives or expansions that could be made upon this thesis. Some proposals are:
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• Employ a newly introduced Three way method called SPARAFAC. SPARAFAC uses the PARAFAC
decomposition in order to compute the factor matrices [A,B,C] of the trilinear decomposition and
then, uses Sparse Matrix Regression in an alternating fashion, to refine the factor matrices, in
terms of sparsity.

• Use a set of terms, predefined by an authority (e.g. the TPC chair), as a filter, in order to refine
the initial extraction of the T index terms.

• Extend GoogleScholarMiner, in order to perform citation analysis and eliminate self-citations from
a citation count.
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Appendix A

Groups of terms for ICASSP 2009
using SMR profiling

In this appendix we present an example of extracted topics using SMR. As we reviewed earlier, the
columns of the left factor matrix B define the basis vectors for the k̂-dimensional latent term space. Each
one of these compound vectors represents an entire category of terms that constitute a topic

The following list consists of the most notable term groups, as extracted using SMR. The selection of
the groups was again made by a domain expert.

Sparse Matrix Regression was chosen for this demonstration due to the sparsity imposed on B. Sparsity
on B implies that each column of B has a limited number of non-zero values, thus making it easier to
visualize it as a group of affine terms.

The choice of parameters for the following example is k̂ = 20, λ = 0.6 and T = 1251 (one might notice
that this choice of parameters is the one that produced the highest precision value among all data sets).
The dataset used comes from ICASSP 2009 and is the same dataset used on chapter 7.
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Group 1 blind
filter banks
impulse noise
ofdm
oversampled filter
postfix
postfix ofdm
real bch
source channel
watermarking

Group 2 opportunistic spectrum
sensor
sensor networks
spectrum access

Group 3 2k
asynchronous cooperative
block codes
codes
complex orthogonal
orthogonal
orthogonal space-time
space-time
space-time block
space-time trellis

Group 4 blind

Group 5 access control-physical
beamforming
downlink beamforming
greedy user
simple new

Group 6 filter banks
hyperbolic
hyperbolic class
nonstationary
oversampled
oversampled filter
quadratic time-frequency
time-frequency
time-frequency representations
underspread

Group 7 block codes
mimo
space-time block

Group 8 turbo

Group 9 tone
tone equalization

Group 10 multi-hop

Group 11 coherence
coherence source
cramer-rao
cramer-rao bound
distributed sensor
non-gaussian
partial spatial
sensor arrays
source localization
spatial coherence

Group 12 cooperative
cooperative broadcast
cooperative communications
cooperative transmission
dense wireless
filterbank
multipath
precoders
unknown multipath
wireless networks



Appendix B

Reviewer Assignment for SPAWC
2010

For the purpose of evaluating qualitatively our SMR & PARAFAC algorithms, we used the profiles
produced as input to the algorithm developed in [8], an application that deals with the Reviewer-
Assignment Problem using optimization methods.

The sets of reviewers and submitted papers come for the IEEE SPAWC 2010 conference. We conducted
an evaluation prior to the submission deadline and one after.

Let us now consider the case of a random reviewer assignment. Without loss of generality, let us assume
that each assignment consists of 4 papers per reviewer. Now, let us assume that each reviewer’s expertise
covers 1

7 th of the broad scientific field of the conference. For this random assignments, the probability
of a bad paper assignment to a reviewer is equal to the probability that 3 out of the 4 assigned papers
are not suitable plus the probability that all 4 assigned papers are bad choices:

Pr{bad} =
(

4
3

)
1
7

(
6
7

)3

+
(

6
7

)4

≈ 0.9

A good assignment is an assignment the TPC chair would normally do manually, where a very good
assignment is above the average level a reviewer would expect from the TPC chair. For the subject
datasets we present the number of very good, good and bad assignments, along with the probability of
a bad assignment. This evaluation was made by a domain expert who has also served as a TPC chair in
the past.

Dataset obtained after the submission deadline

The total number of submitted paper was 203 and the number of registered reviewers was 64. We
conducted an experiment for both SMR & PARAFAC algorithms, using different numbers of initially
extracted terms (due to memory restrictions of the PARAFAC decomposition).

• SMR: The dimension of the term space was T = 3113, λ = 0.9 and k̂ = 20. The grading of the
resulting assignments is:
Very Good=20, Good=32, Bad=12, Pr{bad} = 0.1875.

• PARAFAC: The dimension of the term space was T = 1676 and k̂ = 20. The dimension T was
chosen significantly lower than above, due to complexity restrictions. The grading of the resulting
assignments is:
Very Good=17, Good=32, Bad=15, Pr{bad} = 0.2344.

We observe that SMR performs slightly better than PARAFAC. The degradation of PARAFAC’s per-
formance could be partially due to the limited number of initially extracted terms.
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Dataset obtained prior to the submission deadline

The number of submitted papers was 78 and the number of registered reviewers was 64. The dimension
of terms was T = 2288. We used SMR with λ = 0.1 and k̂ = 20. The number of very good assignments
was 24, the number of good assignments was 22 and the number of bad assignments was 18. This resulted
to Pr{bad} = 0.2812.

Conclusions

At the same time we conducted the above experiments, we also produced an assignment using cus-
tom profiles manually selected by authors and reviewers. The probability of a bad assignment in this
manual reviewing assignment was 0.047. This assignment requires participation not only from the TPC
chair but from reviewers and authors too. Reviewers and authors were requested to provide manually
profiles for themselves or their paper. In a fully manual assignment by the TPC chair, the number of
bad assignments would be around 7 out of 64; this however, would require possibly a week of hard work
from the chair. On the other hand, our automated approach, involving zero human work, offers consid-
erably good assignments. The fully automatic results may be worse than both manual assignments but
considerably better than a random assignment (where 50 out of 64 assignments are bad); the automatic
assignments can be further improved by the TPC chair by a less than a day’s work of swapping and
refining assignments.

Manual Custom profiles Automatic Random
TPC chair: 7 days TPC chair: 2-4 hrs TPC chair: 0 hrs TPC chair 10 min

Reviewer: 0 hrs Reviewer: 2 min Reviewer: 0 hrs Reviewer: 0 hrs
Author: 0 hrs Author: 2 min Author: 0 hrs Author: 0 hrs

Pr{bad} = 0.109 Pr{bad} = 0.047 Pr{bad} = 0.1875 Pr{bad} = 0.9

Furthermore, the final reviewer profiles depend highly on the papers submitted to the conference. This
should be fairly obvious to the reader, because the proposed algorithms treat reviewer and paper profiles
jointly. For example, if a reviewer is an expert at OFDM but none of the submitted papers is regarding
this subject, that reviewer will not be matched by the term ’OFDM’ in the final profile.

In addition to the latter remark, we observed that reviewers with very common last names generally
suffer from non-representative profiles. This disambiguation issue can be fixed by human intervention to
the profiling process.

Finally, an important observation made when evaluating the resulting assignments is that each one of
the final terms can be seen as the most representative term of it’s corresponding topic group (see also
Appendix A); relationships between term groups are preserved in the low dimensional space, therefore,
even though some profile terms may seem quite limited, there is a good chance they represent a larger
group of similar/relevant terms.
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