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Abstract 
 Feature detectors are schemes that locate and describe points or regions of   

‘interest’ in an image. Today there are numerous machine vision applications needing 

efficient feature detectors that can work on Real-time; moreover, since this detection 

is one of the most time consuming tasks in several vision devices, the speed of the 

feature detection schemes severally affects the effectiveness of the complete systems. 

As a result, feature detectors are increasingly being implemented in state-of-the-art 

FPGAs. This thesis describes an FPGA-based implementation of the SURF (Speeded-

Up Robust Features) detector introduced by Bay, Ess, Tuytelaars and Van Gool; this 

algorithm is considered to be the most efficient feature detector algorithm available.  

This implementation can support processing of standard video (640 x 480 pixels) at 

up to 56 frames per second while it outperforms a state-of-the-art dual-core Intel CPU 

by at least 8 times. Moreover, the proposed system, which is clocked at 200MHz and 

consumes less than 20W, supports constantly a frame rate only 20% lower than the 

peak rate of a high-end GPU executing the same basic algorithm; the specified GPU 

consists of 128 floating point CPUs, clocked at 1.35GHz and consumes more than 

200W. 
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Chapter 1  

 

Introduction 
 

Human vision is a complex combination of physical, psychological and neurological 

processes that allows us to interact with our environment. We use vision effortlessly 

to detect, identify and track objects, to navigate and to create a conceptual map of our 

surroundings. 

The goal of computer vision is to design computer systems that are capable of 

performing these tasks both accurately and efficiently using a minimal amount of time 

and resources. Current computer vision systems are far from matching the flexibility 

of biological visual systems. However they have been successfully applied in areas 

such as manufacturing, medicine and robotics to perform object recognition, scene 

reconstruction and motion tracking among many others. 

Part of research in computer vision focuses on developing algorithms that can 

locate and describe points or regions of   ‘interests’ (features) in an image. The idea is 

that if a structure in an image (such as part of an object or a texture) can be described 

by a limited set of features, and this set is scale and rotation invariant, then the 

features can be used to identify and match the same structure in different images. 

Once a set of features is detected in an image, the characteristics of the image 

around the features can be encoded description vectors. These description vectors, for 

example, can be computed independently for two images. Description vectors can 

also be used to index a database of object descriptors to perform object recognition. 

Features and descriptors are usually computed in the preliminary stages of systems for 

object recognition, object tracking, motion analysis and video indexing. 

What constitutes a feature depends to a large extent on what is the intended 

use for the information that is extracted from the images. For example, different 

application may have different requirements for the robustness of the features to 

changes in viewing conditions. In general, feature detectors try to achieve invariance 

to changes in illumination, scale, location, 2D rotation and even affine or perspective 

transformations. In addition, features should be distinctive so the features 

corresponding to different structures can be easily distinguished. 

As the complexity of vision task increases, the processing time and computer 

resources required to perform it, are increased respectively. In particular, embedded 

vision systems, like the ones used in autonomous robot navigation need to process 

large amounts of data in real-time. For this reason, many vision algorithms have been 

ported to integrated circuits such as Application-Specific Integrated Circuits (ASICs) 
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and Field-Programmable Gate Arrays (FPGAs) [21]. Integrated circuits often referred 

to simply as hardware, can increase the speed of vision algorithms by one to three 

orders of magnitude when compared to the speed achieved in general-purpose 

processors. 

Hardware implementation of vision algorithms can achieve this increase in 

speed because of the inherent parallelism of many of the operations involved in 

processing an image. For example, convolution of an image with a two-dimensional 

filter is implemented in a general-purpose processor as a series of multiplication and 

additions where only one coefficient of the filter is processes at a time. Thus, several 

cycles are required to produce a result for a single image pixel. On the other hand, in a 

hardware implementation all coefficients in the filter could potentially be processed at 

the same time, as long as there are enough resources to implement the necessary 

multipliers and adders. Moreover, since many of the processes in a vision system are 

relatively independent of each other, the system can be pipelined so that several 

processes are executed at the same time, which greatly increases the throughput of 

data. 

The amount of resources available to implement operations in hardware is 

often limited by factors such as cost, weight and power consumption. Thus, it is 

important to design an implementation of the algorithm that is carefully crafted to 

balance the need of accuracy and numerical precision with an efficient use of the 

hardware resources. For this purpose, many hardware designs use a fixed-point 

representation instead of the floating point representation used in general-purpose 

processors. 

The extensive use of feature detectors as preliminary stages of vision 

applications, coupled with the capacity and speed of current FPGAs, have led to the 

development of smart camera systems with integrated feature detection stages. These 

systems can preprocess incoming video from a camera and provide real-time 

information to subsequent processing stages. 

This thesis describes an FPGA-based implementation of a scale and rotation 

invariant detector and one part of feature descriptor introduced by Herbert Bay, 

Andreas Ess, Tinne Tuytelaars, Luc Van Gool [1], referred to in the literature as 

SURF(Speeded-Up Robust Features). This thesis is organized as follows: Chapter 2 

introduces the feature detector, field-programmable gate arrays and gives a brief 

review of the design methodology. Chapter 3 provides a detailed description of the 

design of the detector, including a discussion on the fixed-point arithmetic. Chapter 4 

presents the results obtained from the completed system and Chapter 5 presents the 

conclusions of the project and discusses possible directions for future work. 
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Chapter 2  

 

Background  

  

This chapter introduces some of the concepts applied throughout this thesis. Section 

2.1 provides a brief overview of the methods developed for feature detection 

encountered in the literature, with focus on those based on image intensity that  

achieve invariance to scale, viewing conditions and other transformations. Section 2.2 

describes SURF feature detector and descriptor. Section 2.3 gives an overview of the 

algorithm in steps. Section 2.4 introduces Field-Programmable Gate Arrays (FPGAs). 

Section 2.5 discusses some of the existing FPGA-based, GPU-based vision systems. 

Section 2.6 presents the design methodology. 

 

2.1 Feature detectors 
 

The literature on feature detectors is extensive. The detection algorithms can be based 

on image characteristics such as contours, intensity and phase (refers to the phase 

response of a complex-value filter applied to an image), as well as on parametric 

models (efficient models associated to features such as edges, corners, vertices by 

searching the parameters of the model that best approximate the observed grey level 

image intensities). A complete description of the existing methods and the evaluation 

criterion of different interest point detectors are explained in [43]. Despite their 

differences, all methods attempt to achieve invariance to changes in viewpoint to 

facilitate the description and matching of objects across images.  

Most intensity-based feature detectors can be traced back to the work of 

Moravec [3]. His method observes the average changes in image intensity over a local 

window, result from shifting the window over the image. The features are the points 

at which the image intensity changes in more than one direction. Lowe [4, 5] 

proposed SIFT (Scale Invariant Feature Transform) which is the most recent feature 

detector. 

In general, the size of objects can vary significantly between images and thus 

algorithms that search for features at a single scale miss important information present 

at other scales. Many of the methods that achieve invariance to scale changes analyze 

images at multiple scales using image pyramids [6]. Image pyramids are hierarchical 

structures that represent an image at different resolutions. The different ‘levels’ of the 

pyramid are formed by convolving the original image with filters at different scales. 
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Since Gaussian filters attenuate high-frequency components, each level can be sub-

sampled to reduce the amount of effort required to compute the next level. The 

number of levels and the type of filters used depend on the application. Often 

different levels of the pyramid are combined to form different representations, as in 

the case of difference-of-Gaussians pyramid, where each level is formed by 

subtracting adjacent levels of Gaussian pyramid. 

There are numerous approaches that explore ways to detect features that are 

invariant to scale changes. Crowley and Parker [7] presented a multi-scale 

representation of shapes in an image, constructed by detecting peaks and ridges in a 

pyramid of difference-of-Gaussians. Their algorithm forms a multi-scale tree that 

describes shape by linking adjacent peaks and ridges across different levels of the 

pyramid. Linderberg has done extensive work on the optimal scales for feature 

selection [8, 9, 10, 11]. He proposed a method to detect blob-like structures over scale 

space [10] and later studied how feature detection with automatic scale selection can 

be formulated for various kinds of features based on scale spaces formed by 

normalized differential operators [11].  

Harris and Stephens [12] improved Moravec’s idea to make the detection 

more robust to noise and nearby changes. Their method used a second moment matrix 

to describe the image gradient in Gaussian window centered at a pixel position. This 

detector is robust to rotation and translation, however its performance degrades as the 

change in scale becomes more significant because image derivatives are sensitive to 

changes in the size of local structure. Mikolajczyk and Schmid [13] extended Harri’s 

approach to achieve invariance to scale. Their methods use a scale-normalized second 

moment matrix and select points at which the matrix presents two large eigenvalues. 

The characteristic scale for each point is the scale at which the Laplacian achieves an 

extremum. Shokoufandeh, Marsic and Dickinson [14] developed a scale-invariant 

method that captures the salient regions of an object using a wavelet transform at 

different scales. 

  SIFT by Lowe [5] use four major stages of computation to generate the set of 

image features. Scale-space extrema detection stage searches over all scales and 

image locations. It is implemented efficiently by using a difference of Gaussian 

function to identify potential interest points that are invariant to scale and rotation. 

Key-point localization stage fits each candidate location by a 3D quadratic function to 

determine the location and scale and then enforcing the condition that the Hessian 

matrix of the image intensity presents two large eigenvalues. Orientation assignment 

stage assigns an orientation at each feature based on the dominant directions of the 

local gradients. Key-point descriptor stage measure local image gradients at the 

selected scale in the region around each key-point and these gradients transformed 

into a representation that allows for significant levels of local shape distortion and 

change in illumination.    
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2.2 SURF detector 
 

The system described in this thesis implements the Surf interest point detection and 

orientation assignment at each detected interest point [1]. The Surf detector consists 

of two basic distinct parts. Fist part called interest point detection and second known 

as interest point description. Both parts are based on the use of integral images as 

made popular by Viola and Jones [15]. This section presents the concept of integral 

images, the interest point detection and description from a theoretical standpoint. 

 

2.2.1 Integral Images 
 

Much of the performance increase in SURF can be attributed to the use of an 

intermediate image representation known as ‘Integral Image’ [15]. The integral image 

is computed rapidly from an input image and is used to speed up the calculation of 

any upright rectangular area. Given an input image I (grayscale representation) and a 

point (x,y) the integral image IΣ is calculated by the sum of the values between the 

point and the origin. Formally this can be defined by the formula: 

IΣ(x,y)   =                                   (2.1) 

Using the integral image, the task of calculating the area of an upright 

rectangular region is reduced to four operations. If we consider a rectangle bounded 

by vertices A, B, C, D as in Figure 1, the sum of pixel intensities is calculated by: 

∑=A+D-(C+B)                           (2.2)                                                                             

 

Figure 2.1: Integral Image Computation 
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Figure 2.2: Area computation using integral images 

Since computation time is invariant to change in size this approach is 

particularly useful when large areas are required. SURF makes good use of this 

property to perform fast convolutions of varying size box filter at constant time. Once 

the integral image has been computed, it takes three additions and four memory 

accesses to calculate the sum of the intensities over any upright, rectangular area.  

 

2.2.2 Interest Point Detection 
 

The SURF detector is based on the determinant of a Hessian-matrix approximation 

because of its good performance in accuracy. In order to motivate the use of the 

Hessian, we consider a continuous function of two variables such that the value of the 

function at (x,y) is given by f(x,y). The Hessian matrix is the matrix of partial 

derivatives of the function f and the determinant of the matrix are presented by the 

next equations. 

H(f(x,y))   =                            (2.3) 

 

det(H)   =     -                       (2.4) 

 The value of the determinant is used to classify maximum and minimum of the 

function f. Since the determinant is the product of eigenvalues of the Hessian we can 

classify the points based on the sign of the result. If the determinant is negative then 

the eigenvalues have different signs and hence the point is not a local extremum 

(minimum or maximum). If it is positive then either both eigenvalues are positive or 

both are negative and in either case the point is classified as an extremum (Leading 

Minot Test theorem) [16]. 
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 Translating this theory to work with images rather than a continuous function 

is a simple task. The function f(x,y) is replaced by the image pixel intensity function 

I(x,y). The calculation of the second order partial derivatives of the image becomes by 

convolution with an appropriate kernel. In the case of SURF the second order scale 

normalized Gaussian is the chosen filter as it allows analysis over scales. We can 

construct kernels for the Gaussian derivatives in x,y and combined xy direction such 

that we calculate the four entries of the Hessian matrix. Use of the Gaussian allows 

varying the amount of smoothing during the convolution stage so that the determinant 

is calculated at different scales. Furthermore, since the Gaussian is a circularly 

symmetric function, convolution with the kernel allows for rotation invariance. 

Gaussians are optimal for scale-space analysis [17, 18]. Hessian matrix as function of 

both space x = (x,y) and scale σ.     

H(x,σ)   =                     (2.5) 

 

 Here Lxx(x,σ) refers to the convolution of the second order Gaussian derivative 

 with the image at point x=(x,y) and similarly for Lyy and Lxy. These 

derivatives are known as Laplacian of Gaussians. Thus, determinant of Hessian is 

calculated for each pixel and this value is used to find interest points. 

 Bay [1] proposed an approximation to the Laplacian of Gaussians by using 

box filter representations of the respective kernels. The use of these filters in 

combination with the use of integral images described in previous section increases 

the performance. To quantify the difference we can consider the number of array 

accesses and operations required in the convolution. For a 9x9 filter we would require 

81 array accesses and operations for the original real valued filter and only 8 for the 

box filter representation. As the filter is increased in size, the computation cost 

increases significantly for the original Lapalacian while the cost for box filters is 

independent of size. 

Figure 2.3 gives a brief explanation of box filters and how these are 

implemented in an image. For the Dxy filter the white regions with a value of -1 and 

the black with a value of 1 and the remaining areas are not weighted at all. The Dxx 

and Dyy filters are weighted similarly but with the white regions have a value of -1 

and the black with a value of 2. Simple weighting allows for rapid calculation of areas 

but in using these weights we need to address the difference in response values 

between the original and approximated kernels. Bay [1] proposes the following 

formula as an accurate approximation for the Hessian determinant using the 

approximated Gaussians:    

det(Happrox)   =   DxxDyy  -  (0.9Dxy)2                        (2.6) 
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Figure 2.3: Laplacian of Gaussian Approximation. Top Row: Discretised and 

cropped second order derivatives in the x, y and xy-directions. Bottom Row:  

Weighted Box filter approximations in the x, y and xy-directions(Dxx, Dyy, Dxy) 

The necessity of finding objects under different scales leads to the introduction 

of scale-space concept [19]. A scale-space is a continuous function which can be used 

to find maximum and minimum across all possible scales [20]. In computer vision the 

scale-space is typically implemented as an image pyramid where the input image is 

iteratively convolved with Gaussian kernel and repeatedly sub-sampled. In SURF 

scale-space is created by applying kernels of increasing size to the original image. 

This allows for multiple layers of the scale-space pyramid to be processed 

simultaneously and negates the need to subsample the image hence providing 

performance increase.  The difference between approach with image pyramid and 

SURF approach is shown in Figure 2.4.  

 

Figure 2.4: Image pyramids vs SURF approach 
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The scale-space is divided into a number of octaves, where an octave refers to 

a series of response maps of covering a doubling of scale. Each octave is divided into 

four intervals and filter size is given equation (2.7). The lowest level of the scale-

space is obtained from the output of the 9x9 filters shown in Figure 2.5. These filters 

correspond to a real valued Gaussian with σ=1.2. Subsequent layers are obtained by 

up-scaling the filters while maintaining the same filter layout ratio. As the filter size 

increases, the value of associated Gaussian scale also increased and is calculated by 

next formula: 

Filter Size   =   3(2octavexinterval + 1)           (2.7) 

 

σapprox  = Current Filter Size∙  = Current Filter Size        (2.8) 

 

When constructing larger filters, there are a number of factors which must be 

taken into consideration. The increase in size is restricted by the length of the positive 

and negative lobes of second order Gaussian derivatives. In the approximated filters 

the lobe size is set at one third the side length of the filter and refers to the shorter side 

length of the weighted black and white regions. Since we require the presence of a 

central pixel, the dimensions must be increased equally around this location and hence 

the lobe size can increase by a minimum of 2. Since there are three lobes in each filter 

which must be the same size, the smallest step size between consecutive filters is 6. 

Figure 2.5 presents the structure and the size of subsequent filters.    

The construction of the scale space starts with 9x9 filter, which calculate the 

blob response of the image for the smallest scale. Then filters with sizes 15x15, 21x21 

and 27x27 are applied, by which more than a scale of 2 has been achieved. But this is 

needed, as a 3D non-maximum suppression is applied both spatially and over 

neighboring scales. Hence, the first and last Hessian response map in the stack cannot 

contain such maxima themselves, as they are used for reasons of comparison only. 

Similar considerations hold for the others octaves. For each new octave, the filter size 

increase is doubled (going from 6 to 12 to 24). At the same time the sampling 

intervals between processing pixels for the extraction of the interest points are 

doubled as well as for every new octave. This reduces the computation time and the 

loss in accuracy is comparable to the image sub-sampling of the traditional 

approaches (image pyramids). The filter sizes for the second octave are 15, 27, 39, 51 

and for the third octave 27, 51, 75, 99.   

Once the responses are calculated for each layer of the scale-space, they are 

scale-normalized. For the approximated filters, scale-normalization is achieved by 

dividing the responses by the filter area. This leads to perfect scale-invariance. 
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Figure 2.5: Filter Structure. Subsequent filter’s sizes differ by a minimum of 6 to 

preserve filter structure 

Final part of detection consists of interest point localization. This task is 

divided into three steps. Firstly, the determinants are compared to a predetermined 

threshold and localization is not performed for values under this threshold. Increasing 

the threshold lowers the number of detected interest points, leaving only the strongest 

while decreasing this threshold allows more interest points to be detected. 

 After the previous process, a non-maximal suppression is performed to find a 

set of candidate interest points. To do this each pixel in the scale-space is compared to 

its 26 neighbors, comprised of the 8 points in the native scale and the 9 in each of the 

scales above and below (non-maximal suppression in a 3x3x3 neighborhood). Before 

these comparisons, we have found the maximum value in the 3x3 region between the 

two intermediate intervals of each octave. Figure 2.6 describes then non-maximal 

suppression step. Essentially, algorithm finds the maximum value and if it is less than 

threshold, the localization is not performed. Scale space interpolation is especially 

important in our case, as the difference between the first layers of every octave is 

relatively large.  

   

Figure 2.6: Non-Maximal Suppression 
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The final step of interest point localization involves interpolating the nearby 

data to find the location in both space and scale to sub-pixel accuracy. This is done by 

fitting a 3D quadratic as proposed by Brown [39]. In order to do this we express the 

determinant of the Hessian function H(x,y,σ), as a Taylor expansion up to quadratic 

terms centered at detected location. This is expressed as: 

H(x)   =   H +  +                 (2.9) 

 

The interpolated location of the extremum (candidate interest point resulted by 

non-maximal suppression), x=(x,y,σ), is found by taking initially the derivative of  

function in equation 2.9 and setting it to zero such that: 

x   =  -                                       (2.10) 

The derivatives are approximated by finite differences of neighboring pixels of 

the candidate interest point’s neighboring determinant values. The result of equation 

(2.10) is a vector with three values. These three values determine the exact position of 

the interest point (x,y,scale). In case all three values are less than 0.5 they are adjusted 

as following: x and y are multiplied with the sampling interval (described previously), 

the result of the multiplication is added to x and y respectively and the final results are 

rounded to the nearest integers. The new scale is computed based on equation (2.8). In 

this formula the requested filter size is computed by equation (2.7) while the interval 

value represents the actual scale of the reported point. 

 

2.2.3 Interest Point Description 
 

The SURF descriptor describes how the pixel’s intensities are distributed within a 

scale dependent neighborhood of each interest point detected by the detection part.  

Extraction of the descriptor is divided into two distinct tasks. First each interest point 

is assigned an orientation before a scale dependent window is constructed in which a 

64-dimensional vector is extracted. All calculations for the descriptor are based on 

measurements relative to the detected scale in order to achieve scale invariant results. 

In this work is implemented only the orientation assignment. 

 In order to achieve invariance to image rotation each detected interest point is 

assigned a reproducible orientation. Extraction of the descriptor components is 

performed relative to this direction so it is important that this direction has to be 

repeatable under varying conditions. To determine the orientation, the concept of 

Haar Wavelets is used. 
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 Haar wavelets are filters which used in combination with integral images in 

order to increase robustness and decrease computation time. These simple filters 

represented by figure 2.7 can be used to find gradients in the x and y directions. The 

left filter computes the response in the x-direction and the right in the y-direction. 

Weights are 1 for black regions and -1 for white. 

 

Figure 2.7: Haar Wavelets 

Haar wavelet responses of size 4σ are calculated for a set of pixels within a 

radius of 6σ, where σ refers to the scale of the detected interest point (σ is a rounded 

value of detected decimal value of scale). The set of pixels is determined by sampling 

those from within the circle using a step of σ. The responses are normalized by value 

that follows Gaussian distribution with standard deviation of 2.5σ where σ is the 

detected scale, centered at the interest point. The weighted responses are represented 

as points in vector space with the x-response and y-response as values. For each x,y-

response we compute the orientation of the formed vector. The set of pixels around 

interesting point as mentioned previously, is described by x,y-response and the 

respective orientation. The dominant orientation is selected by rotating a circle 

segment covering an angle of       around the origin, every 11 degrees. At each circle 

position, the x and y-responses for which the orientation belongs to angle space of a 

specific circle segment, are summed and used to form a new vector. We compute the 

length of the summed x and y-responses and the orientation of the vector formed by 

these summed responses, for every circle segment. The longest vector among all 

circle segments, gives its orientation to the interest point. The process of orientation 

assignment is described by the Figure 2.8. 

 

 

Figure 2.8: Orientation assignment with a sliding window of  . 
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2.3 Algorithm 
 

This section describes the basic steps of detection and orientation task processes.  

1. Calculate the integral image representation. 

2. Calculate the determinant response map into scale-space level. 

3. Scale normalization of the determinant response map 

4. Perform non maximal suppression to localize interest points in scale-

space. 

5. Result of non-maximal suppression compared to a predetermined 

threshold. 

6. Interest point localization into scale-space based on equation (2.10) 

7. Calculate the orientation of each interest point. 

 

2.4 Field-programmable gate arrays (FPGAs) 
 

A field-programmable gate array (FPGA) is a semiconductor device that contains 

programmable logic components, programmable interconnects, memory blocks and 

I/O elements [22] Figure 2.10. Modern FPGAs contain also include dedicated 

arithmetic circuitry, such as embedded multipliers and adders, and microprocessors 

either as fixed embedded components (‘hard’ processors) or software module (‘soft’ 

processors). 

The basic programmable unit of an FPGA is a look-up table (LUT). The latest 

families of FPGAs such virtex-5 contain six-input LUTs, which can implement any 

basic logic function of up to six input variables (AND, OR, NOT, XOR, etc.). 

Register elements around the LUTs hold the values of the signals until some specified 

condition is met (generally a clock edge). LUTs and registers are combined into logic 

blocks to control both functionality and timing. Figure 2.9 shows the structure of a 

generic logic block. It includes multiplexers to choose between inputs and outputs, 

and a carry chain that can be used to cascade several blocks for implementation of fast 

adders and multipliers. Complex circuits can be designed by combining the 

functionality of multiple logic blocks. Thus, the processing power of an FPGA is 

directly related to the number of logic block it contains.  
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Figure 2.9: Logic block. 

 

Figure 2.10: Structure of a generic FPGA. 

 Hardware description language such as VHDL and Verilog allow designers to 

specify the desired behavior of the circuit in terms of basic logic functions, or more 

operations such as counters and multipliers. In addition, FPGA vendors offer 

intellectual property (IP) cores that implement commonly used functions, and that are 

optimized for their target FPGA architectures. FPGA vendors offer also software tools 

that can analyze the description of the circuit, decide on the optimal routing and 

allocation of resources, and translate the information into a bit-stream that can be 

downloaded onto the chip to configure it. 

 

2.5 Other vision systems on FPGAs and GPUs 
 

FPGAs and GPUs are increasingly being used for feature extraction and other vision 

tasks to improve the performance of real-time systems. The most recent FPGA-based 

systems implement tasks such as stereo disparity estimation [23, 24], optic flow 

computation [25], template matching [26] and gesture recognition [27, 28], among 

others. 
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 Among the FPGA-based feature detectors in the literature, many implement 

Tomasi and Kanadi’s corner detector [29]  as an initial stage for tracking [30, 31, 32, 

33]. This detector is robust to rotation and translation, but not to changes in scale.  Se 

[34] use the scale invariant SIFT features [4] for localization and terrain modeling in 

the ExoMars. Their system can compute SIFT locations for a 640x480 image in 60 ms 

using a Xilinx Virtex II FPGA. Bouganis [35] compute corner locations using 

complex steerable wavelets at four different scales and orientations. Sift and Surf are 

also implemented in GPUs [36, 37]. GPU-SIFT took on average 30 ms for the 

detection of 1000 features in 1024x768 resolution and GPU-SURF takes for 500 

features in 640x480 resolution 11.7 ms. Recently, a CPU-based parallel algorithm was 

presented [41]. The testing system of this implementation was equipped with an Intel 

Core Cuo P8600 at 2.4 Ghz and it was able to extract and represent features (only 

orientation part of this task is performed by our implementation) from 640x480 image 

at a rate of 33 frames per second.  

 

2.6 Design Methodology 
 

The design of the feature detector started by dividing the algorithm into functional 

modules and implementing them in C(using OpenCv library) using floating point 

arithmetic. This provides valuable information on the types of operations involved in 

the algorithm, as well as the dynamic range and precision of the parameters and 

intermediate results. The source code we used for the evaluation has been downloaded 

directly from [42] and it is distributed under the GNU General Public License v4. 

Once the floating point implementation was tested and verified, a fixed point 

version of the algorithm was derived from the floating point implementation by 

limiting the range and the precision of all intermediate results to an explicit number of 

integer and fractional bits. This fixed point implementation was used to study the 

effect of fixed point arithmetic on the algorithm, to determine which parameters and 

intermediate results affected the final results most significantly, and to select the 

optimal number of bits to represent each quantity. This information was used to 

design the hardware architecture and to code the description of the circuit in VHDL. 

Once coded, each module in hardware design underwent several stages of 

verification. First, the VHDL descriptors were simulated in Modelsim using specially 

designed testbenches verify that all control signals and arithmetic results occurred at 

the correct cycles (cycle-true verification). Second, intermediate results from the 

Modelsim simulations were saved into text files and then they were compared to the 

corresponding results in the fixed-point implementation. 

The development tools used in this project were ModelSim 6.3f, Xilinx ISE 

10.1, OpenCV library and gcc compiler(4.3.4). 
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2.7 Summary 
 

This chapter introduces some of the concepts applied throughout this thesis, presents a 

brief literature review on feature detection algorithms and FPGA-based, GPU-based 

vision systems and discusses the design methodology in the implementation of the 

hardware system. 

Features are points or regions of interest in an image. There are numerous 

approaches to feature detection, however they all attempt to achieve invariance to 

viewing conditions to facilitate the description and matching of objects across images. 

Modern feature detection algorithms are robust to rotation and translation, as well as, 

to changes in scale transformations. 

The system described in this thesis is an FPGA-based implementation of the 

interest point detection and orientation assignment part of SURF detector introduced 

by Herbert Bay, Andreas Ess, Tinne Tuytelaars, Luc Van Gool [1]. This system is 

implemented in Virtex5 vsx240T FPGA device. The use of FPGAs is expected to 

increase the speed of the feature detector considerably, at the expense of loss of 

numerical precision. Chapter 3 provides a detailed description of the design of the 

hardware implementation. Chapter 4 lists the hardware resources for each processing 

module, computational time for software, hardware and compares the accuracy of the 

results. Chapter 5 presents some ideas to improve performance in terms of speed and 

hardware resources.   
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Chapter 3    

 

Hardware Design 
 

This chapter describes the implementation of the interest point detector on Virtex5 

vsx240T board and presents the reasoning behind the most important design 

decisions. Section 3.1 describes a high-level overview of the system. Section 3.2, 3.3, 

3.4, 3.5, 3.6 and 3.7 provide a detailed description of the core modules of the feature 

detector. Section 3.8 discusses the methods and difficulties in translating an algorithm 

designed for floating-point computation into a fixed-point design suitable for 

implementation on FPGAs. Finally, the design was successfully placed & routed in 

the device Virtex5 vfx200T. The device choice was determined by the memory-

intensive nature of our application.  

 

3.1 System Overview 
 

Figure 3.1 shows the high-level architecture of the system. Input image is converted 

to a grayscale representation and all processing stages of detector use these pixel 

values. The system can process images of a standard video (640x480 pixels).   

 The core of the detector consists of the main three stages described in chapter 

2. The first stage computes the integral representation of the input image. The second 

stage finds the interest points. This stage is divided into three basic parts. First part 

computes the determinant response map and accesses the integral image module. It is 

important to mention that sequential memory accesses guarantee the maximum speed 

in terms of hardware design. The second part performs a non-maximal suppression 

and the third part is the interest point localization while determinant calculation 

continues its process. The latter stage computes the orientation of the interest points 

extracted from previous stages (stored into BRAMs). 

 One of the considerations of the design of the detector was to allow for 

scalability. For example, whenever possible the bit-widths of the parameters and 

intermediate signals have been defined as generic parameters, to allow for easier 

modification in case different numerical precision is required. DSP multipliers were 

extensively used for all required multiplications using LogicCore generator (optimal 

pipeline stages were also used to increase speed) and all look-up tables were 

implemented using slice LUTs.  
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Figure 3.1: High-level Architecture of feature detector 

 

3.2 Grayscale Image Module 
 

Grayscale image contains one value per pixel described by eight bits. The large 

amount of on-chip memory in Virtex5 vsx240T board allows grayscale image to be 

loaded (prefetching) while detection and orientation parts continue their process using 

integral image representation. 

A partition in two parts of the grayscale image leads to better memory 

utilization. Total number of pixels in 640x480 image dimension is 307200. Thus, first 

part of grayscale image contains 2^18 (262144) pixel values of eight bits and 

converted to rows means 640x400 (256000) and second part contains 2^16 (65536) 

pixel values where can stored the last 80 rows of image (640x80 = 51200). The 

number of bits without partitioning is 524288*8 because 524288 positions are 

required to store 307200 pixel values in power of two addressing. A little waste of 

memory is unavoidable but a gain of 1.5 Mbit is achieved compared to an 

unpartitioned memory scheme. Figure 3.2 represents the partitioned grayscale image 

and its ports. The signal sel is referred to the selection of first or second part for 

reading or writing based on the values of respective addresses.  

The integral image representation is computed and stored to integral image 

module (section 3.3). The processing tasks (detection and orientation) communicate 

only with the integral image module. Thus, a new frame can be loaded to grayscale 

image module after integral image computation. Integral image is not the critical part 

of the whole procedure as it requires only 1.5ms to complete.    
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Figure 3.2: Grayscale Image. 

 

3.3 Integral Image Module 
 

The integral image module computes the integral representation of grayscale supplied 

input image and described in Chapter 2. In addition, this module handles integral 

images. Pixel values are normalized by factor of 255 in software. However, in our 

fixed-point implementation we normalize by a factor of 256 in order to replace the 

division with a simple bit-shifting while not loosing significant accuracy. 

 Integral image is divided into five parts. Each part holds 640x100 pixels 

except for the last which holds 640x80 elements. Each integrated pixel is a 32-bit 

value with the last eight bits as a fractional part. This specific partition of integral 

image into five parts achieves both better utilization of on-chip memory and allows 

more cores of detection to process the same image. Each memory part has 2^16 

(65536) positions and stores 640x100 (64000) integrated pixels except for the last 

which uses the 640x80 positions of the fifth part. Thus, this scheme is able to load a 

complete frame (640x480 pixels) on the available BRAMs of vsx240T device and 

also it is possible the parallel processing of image data. Figure 3.3 depicts integral 

image module and how communicates with detection and orientation tasks.  

This module reads the values of the integral image. The inputs are the two 

points in image (row_one,col_one) , (row_one,col_two) , (row_two,col_one) , 

(row_two,col_two) for each detection core and the outputs the four respective integral 

pixel intensities of the image. Row_one, row_two must be converted to the respective 

number of elements. For example, if row has as value 2, it means that 2*640 

elements, beginning row from value 0 and for a 640x480 image. This conversion is 

done using a look-up table of 100 positions. 



Speeded-Up Robust Features Implementation 
         

30 
 

Image part one

Image part two

Image part three

Image part four

Image part five

valueA,valueB
valueC,valueD

Row_one,Row_two

Col_one,Col_two

Row_one,Row_two

Col_one,Col_two

valueA,valueB
valueC,valueD

First Core
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Figure 3.3: Integral Image Module. 

A critical point for interest point detection in order to be parallelized is that 

box integral function (computes any rectangular area intensity) reads elements from 

rows with different odd number. Thus, a partition in odd and even rows for each of 

the previous memory parts leads to x2speedup as in each cycle we now process two 

rows considering only the interest point detection (not the orientation part of the 

algorithm). This module can process more rows if we can satisfy the condition of non-

overlapping rows between the five parts of the integral image. 

 

3.4 Determinant Module 
 

The determinant module computes the determinant at each pixel location for all scales 

based on different filter sizes. Figure 3.4 represents Determinant Module’s 

architecture. 

 In chapter 2 was analyzed the notion of scale-space and a specific scale is 

represented by a specific number of octave and interval. Each octave and interval is 

used to retrieve a set of coefficients from look-up tables. These coefficients form the 

dimensions of box filters and one constant used to perform division by the method of 

multiplication. A detailed explanation of these look-up tables is provided in Section 

3.4.1.  

 The first image processing in this stage finds the parameters for specific 

octave and interval. Second stage computes the eight rectangular area intensities that 
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required computing the elements of the Hessian Matrix (Dxx, Dyy, Dxy) applying filters 

shown in Figure 2.3. These results used by the final stage to calculate the determinant 

of the matrix based on equation (2.6).  

Retrieve

Parameters

Octave

interval

 parameters

step

Box Integral

Calculation

Determinant

Calculation

Determinant

Octave,interval

Figure 3.4: Determinant Module 

 

3.4.1 Retrieve Parameters Module 
 

Each octave and interval represents a discrete value of scale. The concept of scale-

space explained in detail in Chapter 2. For a specific scale are applied box filters with 

the respective dimensions. These dimensions are located in look-up tables. Figure 3.5 

represents the filter lengths for the different octaves and intervals. It becomes clear in 

this figure that second and last scale in each octave is repeated in next octave with 

different sampling step (sampling interval) in space. Finally, the number of detected 

points decays quickly for new octave and three octaves are enough to describe the 

important information of the image. 

Figure 3.5: Filter lengths for different octaves and scales 

Box filters are centered to current processing pixel and different values are 

required to compute the responses. A normalization factor is used for each response, it 

is constant and pre-computed for each scale. 



Speeded-Up Robust Features Implementation 
         

32 
 

3.4.2 Box Integral Calculation Module 
 

Basic unit of this module is the Boxintegral function. This function communicates 

with Integral Image module, performs four memory accesses, three 

additions/subtractions and calculates the intensity of a rectangular area. Totally, eight 

rectangular area calculations are required, two for Dxx, two for Dyy and four for Dxy. 

 A logic unit based on filter parameters and current pixel position computes 

the inputs of eight calls of boxintegral function. The whole process is represented by 

Figure 3.6. These eight values of rectangular areas pixel intensities are stored in 

buffers in order to be forwarded to the next processing module. The respective 

processing pixel (row, column, interval) and the normalizing factor for the current 

interval are also stored in buffers. Determinant calculation module begins when the 

eight rectangular areas have been calculated. The necessity of using multipliers with 

pipeline stages leads to make a fully pipelined determinant calculation module and 

buffers are used for storing intermediate results. 

a) 
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Figure 3.6: Description of Dxx,Dyy,Dxy computation process 

a)Dxx, similarly for Dyy, b) Dxy 
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3.4.3 Determinant Calculation Module 
 

This module performs three basic operations. Initially, it computes Dxx, Dyy, Dxy. 

Dxy requires only additions/subtractions. Dxx, Dyy are using a multiplier by 3 with 

pipeline stages. Dxy is normalized by using the normalizing factor and after Dxx and 

Dyy are computed, then they are also normalized. Normalization is a division by filter 

area (constant) which is implemented with the method of multiplication with the 

inverted value of normalizing factor (filter area). It results improvement both in speed 

as division circuit adds latency and in hardware resources utilization. 

Finally the equation 2.6 computes the determinant of approximated Hessian 

matrix. All operations are performed using multipliers with optimal number of 

pipeline stages. Making this unit pipelined allows the calculation of determinants 

every eight cycles as the numbers of rectangular areas with an initial delay of 21 

cycles.   

 

3.5 Non-maximal Suppression Module 
 

The non-maximal suppression module finds the interest points all over the scales. 

There are three main cores that find and localize exactly the interest points both in 

scale and in space. Figure 3.7 presents the overview of this module and in the next 

sections will be described the internal structure of these sub-cores. The most 

significant parts are the store determinant module which differs from software 

implementation and matrix inversion (sub-core of interest point localization module 

and implemented with single precision floating point arithmetic instead of the double 

precision of the software implementation). 

Store

Determinants
Octave,interval

Row,column,det Comparison

Unit

Interest Point

Localizationrow,col

maxvalue

space(x,y)

scale

rowA,columnA rowB,columnB 

detA,detB

rowA,columnA

rowB,columnB

detA,detB

   
Figure 3.7: Non-maximal suppression overview 
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3.5.1 Store Determinant Module 
 

In section 3.4 was mentioned that determinants are calculated for each pixel location 

(space), octave and interval which represent a discrete value of scale.  The necessity 

of this module is that determinant response map in software implementation is stored 

into a matrix with total size equal to image size multiplied with the number of 

octaves*intervals. 

A modification in sequence of the determinant computation allows for a better 

utilization of on chip memory while enables the non-maximal suppression to be 

executed in parallel with the determinant calculation.  

Based on the values that non-maximal suppression module needs to perform 

its function, determinants are computed for one octave, for each pixel location and for 

four intervals (octaves are splitted into intervals). This module needs the determinants 

of five rows for all intervals to begin the processing stage. Three rows are needed to 

find the maximum determinant in 3x3 regions of two intermediate intervals of each 

octave. The two neighboring rows of these three rows are needed to find if the value 

from previous comparison is indeed the maximum value among neighboring pixels 

determinants of interval that maximum value was detected and neighboring intervals. 

Dividing the determinant response map every three rows we have to store also the 

previous and the next row of these three rows in order to perform the whole process of 

this module. 

The main reason for the previous modification was the limited on chip 

memory in comparison with the size of determinant response map. The fact that this 

module functions independently from the determinant module leads to the usage of 

two extra ‘store’ structures of five rows size as previously described. The determinant 

module continues its processing stage while non-maximal suppression module 

process one of these ‘store structures’.  Figure 3.8 presents the general architecture of 

‘store’ structure and this is repeated for all intervals (totally 4) of each octave. 

Structure two of five rows

Structure one of five rows

Structure three of five rows

FSMWr_en Addresses

 

Figure 3.8: Store determinant basic structure 
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Inputs are write and read addresses and respective enables for each five_row module.  

A Finite State Machine is used to select which component of five rows is 

available to write the determinants. Also, it computes which of these three 

components is ready so as the non-maximal suppression will start the processing. It 

writes for each ‘five row’ structure the value of the row which is stored in second row 

and it is the starting row of the next processing modules. This value is used to 

compute the pixel position in image resolution, based on the relative position in five 

row ‘store’ structure. In addition, write address computation is relative to current state 

of fsm. Table 3.1 depicts the values of signals for all states. 

Sta
te 

addres
s_one 

addres
s_two 

address
_three 

one_e
nable 

two_e
nable 

three_e
nable 

ready
_one 

ready
_two 

ready_
three 

A 640 x x 1 0 0 0 0 0 

B 2*640 x x 1 0 0 0 0 0 

C 3*640 0 x 1 1 0 0 0 0 

D 4*640 640 x 1 1 0 0 0 0 

E x 2*640 x 0 1 0 1 0 0 

F x 3*640 0 0 1 1 1 0 0 

G x 4*640 640 0 1 1 1 0 0 

H x x 2*640 0 0 1 0 1 0 

I 0 x 3*640 1 0 1 0 1 0 

K 640 x 4*640 1 0 1 0 1 0 

L 2*640 x x 1 0 0 0 0 1 

M 3*640 0 x 1 1 0 0 0 1 

N 4*640 640 x 1 1 0 0 0 1 

Table 3.1:  FSM signals 

Enable signals write the determinant to one or two of these three ‘store’ 

structures and the value of interval select one of these four basic structures. The 

structure of Figure 3.8 is repeated for four intervals. Next section analyzes more how 

the reading of stored determinants becomes. State changes when the determinants for 

all elements of one row are computed. A,B,C states are used only for the first three 

rows and only other states are used for rest rows of image. As mentioned, each 

five_row structure  used to perform 3x3 comparisons. Therefore, for each structure 

the value of first row from 3 is stored and supplied to next module.   

 

3.5.2 Comparison Unit Module 
 

This module performs the non-maximal suppression and finds candidate interest 

points as previously described. It is divided into two different comparison sub-units. 

The first sub-unit finds the maximum value in 3x3 regions of two intermediate 

intervals. One FSM which is based on initial values of row, column, produces all nine 

values of row, column to complete its function for two intervals. A second sub-unit, 
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using the row, column of detected maximum value from previous sub-unit, is enabled 

if maximum value is greater than a predetermined threshold, and produces the 

addresses for all nine values of neighboring pixels both for detected interval and for 

neighboring intervals. A general overview of this module is represented by Figure 3.9 

and describes the main inputs and outputs needed to communicate with the store 

determinant module.   

First 

Comparison

Unit

Second 

Comparison

Unit

Column 

Counterx3

Row,column

Interval,max_value

column

rowA,columnA

rowB,columnB

row,col

maxvalue

detA,detB

row,col_en

Figure 3.9: Comparison Module overview 

Determinant response map is divided into 3x3 regions. Row is given from 

previous module and it already comes every three rows. Column counter is enabled 

when a 3x3 region is processed and interest point is detected and localized. Next 

module makes the localization and the next 3x3 region is provided to comparison 

module until all regions of five_row structure are completely processed.    

 

3.5.3 Interest Point Localization Module 
 

As mentioned previously, the scale takes discrete values due to the nature of 

implemented box filters. The space is also discrete as pixels are in discrete positions 

in the image. The difference between neighboring discrete values of scale enforces the 

use of the interpolation method described in chapter 2.  

This method needs the creation of two matrices which have as elements 

derivatives approximated by finite differences of neighboring pixels not only in space 

but also in scale (neighboring intervals). After the matrix creation using again the 

store determinant module to read the determinants, we have one symmetric 3x3 

matrix and one 3x1 matrix. It is performed a matrix inversion of the 3x3 matrix and 

then a matrix multiplication of the inverted matrix with the 3x1 matrix. The result is a 

3x1 matrix containing factors which they are used to adjust both pixel location and 

scale if the values of these factors are not greater than 0.5. Figure 3.10 provides an 

overview based on the aforementioned and components are explained further down.  
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Figure 3.10: Interest Point Localization overview 

Matrix creation reads determinants of neighboring pixels. It implements 

additions/subtractions, simple multiplication by two and division by four with left and 

right shifts respectively. FSM produces the neighboring pixels needed to create the 

elements of the two matrices.   

Matrix inversion has many difficulties to be implemented successfully in 

hardware. Especially in our case where all matrix values belong to space [0, 1) the 

determinant of the 3x3 matrix is a very small number. This results to an inverted 

determinant which is a large number and can’t be represented easily by fixed point 

arithmetic. Therefore, matrix inversion works with floating point numbers of single 

precision. Firstly, matrix elements are converted from fixed point to single precision 

floating point numbers. Using floating point adders, multipliers and divide units, we 

have to take advantage of pipeline provided by these units and limit the number of 

these. In addition floating point units require more cycles to produce the results but it 

doesn’t affect the whole processing time as it becomes parallel with determinant 

computation. Finally, FSM controls the results from floating point units and 

determines also their inputs in order to perform correctly matrix inversion. 

Position and scale adjustment uses the three elements produced by matrix 

multiplication, the initial position and the scale of the detected interest point are 

changed if the absolute values of these are not greater than 0.5. Firstly, these floating 

point values are converted to a fixed point representation. Each octave has a sampling 

interval (step) as explained in section 2.2.2, this step is multiplied with two from the 

converted results of matrix multiplication and are used to adjust the pixel position. 

Box filter size and scale are determined by octave and interval as shown in equation 

2.7 and 2.8. Based on these equations comes the next equation which presents how 

the scale adjustment becomes.  

Scale   =   )              (3.1) 
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In previous equation, the factor 1.2/9 is converted to a fixed point 

representation, ‘adjust’ is one element from previous matrix multiplication (relative to 

scale), multiplications are implemented and scale adjustment is completed.  

 Finally, the detected interest points which contain the pixel position and scale 

are stored in the devices’s-on-chip memory. Once interest point detection part has 

finished, every interest point is supplied to next processing module which assigns an 

orientation to each point.   

 

3.6 Detection using a dual core implementation 
 

The large amount of available hardware resources in Virtex5 vsx240T device allows 

the two cores of feature detection module described in section 3.4 and 3.5 to be ported 

in the same FPGA. Some changes relative to the first and last row of each processing 

core are implemented. 

 The partition of the image as explained in section 3.3 facilitates the use of two 

cores without additional storage requirements. Rows used from first and second core 

belong to different parts of image. Thus, each core begins the processing stage from 

different initial rows and finishes also in different rows. Clearly, the initial rows for 

first core are the starting processing rows of the algorithm (applied filters must not 

exceed image dimension) and the final rows for second core are the ending rows of 

the algorithm.  

 The ending rows of first core and the initial rows of second core are 

determined based on the values needed by each core. We decide the last processing 

row of first core to be the 242 for each octave. However, we need neighboring rows of 

242 and the ending rows will be different than 242. In addition, different steps for 

each octave create different ending rows. Same concept was followed to create the 

starting rows of second core. It is important to mention that interest point localization 

functions for every three rows. Thus, 242 is the first row of these three rows and 

comparison unit needs one extra row than these three rows to complete its process. 

Also different steps (sampling intervals) for each octave have as consequence 

different neighboring rows. Starting and ending rows for each processing core are 

described by Table 3.2. 

octave 0 1 2 

first_core_init_row 14 26 50 

first_core_final_row 250 258 274 

second_core_init_row 246 250 258 

second_core_final_row 466 454 430 

Table 3.2:  Dual Core borders 
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Finally, last changes are needed for the fsm of store determinant module 

described in section 3.5.1. The first core completes its process when last row 

determinants are computed and interest point localization for the last three rows is 

performed (242 and after) then the second core begins its process from the rows of 

table 3.2 with a modified version of fsm described in Table 3.1. First processing row 

is needed only for comparison unit. In first core, the first processing row is the 

starting row of the three rows needed for localization and comparison. In second core, 

the first processing row is the previously neighboring row of these three rows needed 

by localization unit. These reasons lead to the modified version of previous FSM. 

Stat
e 

addres
s_one 

addres
s_two 

address
_three 

one_e
nable 

two_e
nable 

three_e
nable 

 
ready
_one 

ready
_two 

ready_
three 

A 0 x x 1 0 0 0 0 0 

B 640 x x 1 0 0 0 0 0 

C 2*640 x x 1 0 0 0 0 0 

D 3*640 0 x 1 1 0 0 0 0 

E 4*640 640 x 1 1 0 0 0 0 

F x 2*640 x 0 1 0 1 0 0 

G x 3*640 0 0 1 1 1 0 0 

H x 4*640 640 0 0 1 1 0 0 

I x x 2*640 0 0 1 0 1 0 

K 0 x 3*640 1 0 1 0 1 0 

L 640 x 4*640 1 0 1 0 1 0 

M 3*640 x x 1 0 0 0 0 1 

N 4*640 0 x 1 1 0 0 0 1 

O 0 640 x 1 1 0 0 0 1 

Table 3.3:  Modified FSM for second core. 

 

3.7 Orientation Assignment Module 
 

This module implements the orientation assignment task for each interesting point as 

described in section 2.2.3.   This section provides a more detailed description both 

in algorithm and in hardware implementation. The main purpose of this task is to 

achieve the rotation invariance of the detected features. 

Scale invariance is guaranteed by using the scale of each interest point. 

Responses from Haar wavelets are computed for all pixels in a radius of 6σ (where σ 

is the scale) around interesting point with step equal to σ between neighboring pixels. 

In addition, haar responses are weighted with Gaussian values which are stored in a 

look-up table of size 7x7. It is also computed an orientation operation as described in 

section 2.2.3, for each pixel. The notion of Haar wavelets was introduced in Chapter 
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2. Wavelets are filters implemented using the Boxintegral function which described in 

section 3.4.2. The basic components of this module are depicted in next figure.    
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Figure 3.11: Orientation assignment 

 

3.7.1 HaarX,Y Module 
 

The Haar wavelets are shown in Figure 2.7. The size of these filters are 4σ and each 

haar response either in x or in y dimension requires the intensities of two rectangular 

areas (boxintegral) and one subtraction. Totally, 16 memory accesses required to 

compute Haar responses which are weighted finally with the same Gaussian value 

retrieved by a look-up table based on the pixel position. After analyzing Haar 

responses, we limit the memory accesses from 16 to 12 by storing some intermediate 

results. These weighted values are supplied to orientation module and they are also 

stored in a structure explained later. When a pixel is processed by this module, a pixel 

generator is enabled and haar responses are calculated for a new pixel.    

 

3.7.2 Pixel Generator Module 
 

 We have to compute the orientation and haar responses for all pixels around 

interest point with step σ in radius of 6σ. This module is an FSM which begins from 

initial state the position (0,0) and takes all pixels in radius of 6 (for example (0,1),(0,-

1) etc). These values are multiplied with the scale in order to take all pixels in a radius 
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of 6σ and added to the interesting point position. According to absolute values of 

pixels generated by FSM is calculated the position of the Gaussian value in a look-up 

table and used by HaarX,Y module. Totally 109 pixels are processed and are supplied 

to the next module.      

 

3.7.3 Orientation Module 
  

The orientation module finds the angle of a vector (X,Y) where X,Y are the Haar 

responses in x and in y-dimension respectively. The angle of the vector is calculated 

using the arctan function. The inputs of the arctan are only positive and the result is 

based on the quadrant that belongs the vector as shown in Table 3.4.   

sign(X) + - + - 

sign(Y) + + - - 

angle atan(Y/X) pi-atan(-Y/X) 2*pi-atan(-Y/X) pi+atan(Y/X) 

Table 3.4:  Angle of vector(X,Y) 

The question is how the arctan is implemented in hardware as it is an 

expensive function in terms of cost and time. The Xilinx LogicCORE implements a 

generalized coordinate rotational digital computer (CORDIC) algorithm. ArcTan is 

selected among others functional configurations. A detailed information about the 

input and the output data representation is given in product specification of cordic 

LogicCore [38]. Latency is directly proportional to output width for every arctan 

calculation. Pipeline implementation of cordic core allow to increase throughput but it 

requires a buffer to store the signs of X,Y because result have to be adjusted 

according to Table 3.4. When a new vector is inserted to arctan function module, its 

sign is stored in a FIFO and when arctan is calculated, we read its sign from FIFO and 

return the angle of the vector. Implementation of arctan using LogicCORE is 

equipped with enable and done signals which used to write and read the signs in FIFO 

buffer respectively.  

 In addition, inputs of arctan implementation from Xilinx logicCORE belong to 

[-1, 1] space value. Gaussian weighted HaarX, HaarY responses have a different 

range which exceeds the previous values. Normalization of these responses is 

required. This process finds the biggest value between HaarX and HaarY and 

performs respective right shifts (division by powers of two). In order to limit the 

impact in accuracy, normalization is performed based on which range belongs the 

biggest value.  For example if it belongs to (1,2] one right shift is performed, (2,4] 

two right shifts etc. 

 



Speeded-Up Robust Features Implementation 
         

42 
 

3.7.4 Store X,Y,Orientation Module 
 

In software implementation all these 109 vector values (X,Y,orientation) are stored in 

one vector and these vector values are used from a loop which slides a pi/3 window 

around the feature point with a step of 0.2 in space [0,2π]. The above computation 

increases significantly the number of memory accesses. In the hardware 

implementation this vector is stored into seven different memories and seven 

processing units, run in parallel as will be explained in the next section.    

 It becomes clear from previous section that Haar responses are calculated 

before the respective angle. This leads to separate the storing procedure for Haar 

responses and for orientation. Two different write addresses are stored in registers. 

Write address is increased for haar response memory when new responses are 

computed from HaarX,Y module while write address for angle when new angle is 

produced by orientation module. Also, some logic is used to select which from the 

seven memories must be selected based on the value of write address. Finally, all 109 

vectors and angles are stored in this structure. The last and most complex part of this 

task is the dominant orientation search. Figure 3.12 represents the seven parts of one 

vector with 109 values performing fourteen memory accesses and using seven dual-

port rams per cycle instead of one.  

Vector

109 values

1st 2nd 3rd 4th

5th 6th 7th

Figure 3.12: Vector partition 

 

3.7.5 Dominant Orientation Module 
 

Firstly, the space [0,2π] is divided in windows of size π/3 beginning from [0,π/3] and 

increasing by 0.2 until all space is covered. This is simply implemented by using a 

counter with a step of 0.2.   
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 The one vector in software implementation is separated into seven and it 

allows a parallel processing. Seven units read the angles and check if they belong to 

current window, they perform the additions of weighted HaarX, HaarY responses and 

form a new vector. Also, it is performed a normalization to space [-1, 1] of these sums 

before arctan implementation computes the angle. If the vector length is longer than 

previous vectors lengths, this forms the new dominant orientation. This process is 

repeated for all windows in space [0,2π]. The vector which forms the dominant 

orientation is computed. Finally this vector is processed by orientation module and the 

angle of dominant orientation is calculated. 

 

3.8 Fixed-point representation analysis 
 

Although a floating-point representation can achieve great precision and large 

dynamic ranges, it is often prohibitive to use floating-point operators in an FPGA 

implementation because of the large amount of hardware resources required to 

implement the normalization operations. This becomes critical in hardware vision 

systems where operators are replicated numerous times and used in parallel to 

increase the speed of the system.  

 In vision algorithms, parameters and intermediate results rarely exploit the 

entire capacity of a floating-point representation. As a result, it is possible to study 

their precision and dynamic ranges to determine the optimal number of integer and 

fractional bits that need to be allocated to represent them in fixed point format. Larger 

bit-widths result in smaller quantization errors, however they require larger operators. 

In our case floating point representation for one module is used due to the fact that the 

dynamic range of these numbers is too large. 

 In general, finding the optimal bit widths for each variable is a complex 

multivariable optimization problem that requires knowledge of both the algorithm and 

the target hardware platform. Among others, the following conditions have to be 

taken into account: 

 Some variable have a larger impact on the final results than others, and so the 

most critical should have larger bit-widths.  

 Different input images may yield different optimal widths.  

 An efficient implementation must take into account the relative size of the 

operations associated with each variable and how many times these operations 

are repeated throughout the circuit, to try to minimize the width of the 

operations that require most resources.  

 In FPGAs, memory blocks and dedicated arithmetic circuitry, such as 

embedded multipliers and adders, are optimized for signals of certain sizes 
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(usually powers of 2), often the remaining resources cannot be used for other 

operations. To avoid waste of resources, signals should be kept in standard 

sizes whenever possible.  

The rest of this section describes the inputs and the outputs of previously 

explained hardware modules from the point of fixed-point representation. A mixed 

fixed-point and floating point arithmetic was used.    

  Initially, floating point implementation normalizes pixel values in space [0,1) 

by dividing with 256. In fixed point implementation considering the whole pixel value 

(eight bit) as a fractional part, it is almost equal to divide with 255. Integral image 

pixels are represented by 32 bit values. The eight least significant bits form the 

fractional part and the rest twenty four the integer part.       

 During determinant calculation, a mixed fixed-point arithmetic is 

implemented. The floating point version of algorithm was used to determine the bit 

widths of intermediate results for test images.  Intermediate results before 

normalization, after normalization, constant inverse factor and determinant fixed point 

representation are presented in Table 3.5.   

# of bits  sign integer part fractional part 

constant inverse 0 0 42 

Dxx_bef 1 11 8 

Dyy_bef 1 11 8 

Dxy_bef 1 11 8 

Dxx,Dyy,Dxy 1 0 31 

determinant 1 0 31 

Table 3.5:  Determinant Module fixed-point representation 

As mentioned previously, Dxx,Dyy,Dxy are normalized to space [0,1). This is 

done by dividing with a constant relative to the applied filter. Constants are pre-

calculated and the range of these numbers requires 42 bits only fractional part as it is 

always less than one and positive. Therefore, all factors (Dxx,Dyy,Dxy) used in 

determinant calculation are less than one and the determinant is also less than one.  A 

fractional part of 31 bits is been used and one bit for sign.  

 The next processing module is the non-maximal suppression. Determinant 

values are used to perform a series of comparisons. If these comparisons locate an 

interest point, interpolation module adjusts the location both in scale and in space. As 

described a matrix inversion is difficult in hardware especially when elements of 

matrix are less than one due to limited accuracy. Three multiplications of numbers 

belong to previous space may result a zero value. Fixed point implementation of this 

module leads to detected interest points which are neighboring with software detected 

interest points or some interest points were not detected because of required dynamic 

range of numbers in matrix inversion. Fixed-point to single floating point converters 

were used, floating point (adders, multipliers, dividers) units were limited to the 
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minimum required number in terms of hardware resources and float to fixed 

converters. Determinant values are converted to single precision floating-point 

numbers and factors of interest point localization from floating point to fixed point. 

Finally, next Table presents the pixel location and scale value bit widths of detected 

interest points. 

# of bits integer part fractional part 

x 10 0 

y 10 0 

scale  7 25 

Table 3.6:  Interest point representation 

Pixel position has a decimal value after localization. However, both 

orientation and description assignment use a rounded value of pixel which is stored in 

this form. On the other hand, the scale value is used rounded by orientation 

assignment and as decimal value by description part.  

Orientation is computed for each interest point. The process was described in 

previous chapters. Inputs and output of arctan function are represented in fixed-point 

arithmetic and the orientation is also in fixed-point. Input and output ranges and bit 

widths of arc tan module are shown in Table 3.7. Normalization unit as described in 

section 3.7.3 scale the inputs of arctan to range [-1, 1]. Inputs of this unit are the 

Gaussian weighted Haar responses and the summations from Dominant Orienatation 

module (section 3.7.5). Orientation is the final result of this task.  

  Range sign integer part fractional part 

X                   -1<=X<=1 1 1 30 

Y     -1<=Y<=1 1 1 30 

arctan(Y/X)     -pi<=phase<=pi 1 2 29 

orientation 0<=orientation<=2pi 1 3 28 

Table 3.7:  Orientation assignment representation 

  sign integer part fractional part 

gaus_HaarX 1 5 27 

gaus_HaarY 1 5 27 

sumX 1 8 24 

sumY 1 8 24 

normX 1 1 30 

normY 1 1 30 

Table 3.8:  Normalization Unit representation 
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Finally, the Gaussian weights are pre-computed and stored into look-up tables 

as described in previous section. These values are positive and less than one so 25 bits 

of fractional part are used to represent these numbers. 

 

3.9 Image prefetching 
 

In order to be able to support video at relatively high rates we pipelined the image 

loading with the image processing tasks. Therefore, we have two distinct memory 

banks and while we store the input image in one of them we process the previously 

stored image which has already been placed in the other bank. When the processing 

(which takes much longer than the image loading) is completed the two banks change 

roles. The image loading is explained through section 3.2 and 3.3.  
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Chapter 4  

 

Results 
 

This chapter presents a quantitative evaluation of the performance of the feature 

detector. Section 4.1 lists the hardware resources used in the system. Section 4.2 

compares the computational speed of the system against the speed of software 

implementation. Finally, Section 4.3 compares the location, scale and orientation of 

the features detected in hardware with values from floating point software 

implementation. 

 

4.1 Hardware utilization 
 

Tables 4.1, 4.2 and 4.3 list the amount and kinds of hardware resources used in the 

system. Table 4.1 and 4.2 list the resources used in each of the modules described in 

Chapter 3(sections 3.2, 3.3, 3.4, 3.5, 3.6 and 3.7). The numbers in parenthesis indicate 

the percentage of the total resources of that kind available in Virtex5 vsx240T FPGA. 

As reference, this FPGA includes 149760 slice registers, LUTs,, 960 bonded IOBs, 

516 Block RAM/FIFO, 32 BUFG/BUFGCTRLs and 1056 DSP48Es.  

As seen in Table 4.3, the available resources in the Virtex5 vsx240T are not 

fully utilized except for the on-chip memory, utilizing around 90% available memory. 

This is due to the fact that the integral of an image with dimension 640x480 requires a 

large amount of memory. Integral image module is common for detection and 

orientation task.    

Selected Device:       
Virtex5 vsx240T (speed grade -2)       

Module  Slice Registers Slice LUTs Block RAM DSP48Es 

Integral Image 365 (0%) 2892 (1%) 290 (56%) 0 (0%) 

Grayscale Image 5 (0%)  60 (0%)  80 (15%)  0 (0%)  

Retrieve Parameters 10 (0%) 94 (0%) 0 (0%) 0 (0%) 

Box Integral Calculation 51 (0%) 281 (0%) 0 (0%) 0 (0%) 

Det Calculation 1089 (0%) 818 (0%) 7 (1%) 13 (1%) 

Store Determinants 0 (0%) 0 (0%) 24 (4%) 0 (0%) 

Comparison Unit 522 (0%) 1150 (0%) 0 (0%) 0 (0%) 

I_Point localization 4714 (3%) 4048 (2%) 0 (0%) 12 (1%) 

Table 4.1:  Resource utilization for Interest point detection sub-modules 



Speeded-Up Robust Features Implementation 
         

48 
 

Selected Device:       
Virtex5 vsx240T (speed grade -2)       

Module  
Slice 
Registers 

Slice 
LUTs 

Block 
RAM DSP48Es 

Orientation 3208 (2%) 3349(2%) 0 (0%) 0 (0%) 

Store X,Y,Orientation + Dominant 
Orientation 836 (1%) 

5204 
(3%) 21 (4%) 8 (1%) 

HaarXY 141 (1%) 139(1%) 0 (0%) 0 (0%) 

Pixel_Generator 23 (1%) 52 (1%) 0 (0%) 0(0%) 

Used Multipliers  0 (0%) 0 (0%) 0 (0%) 18(1%) 

Table 4.2:  Resource utilization for Orientation assignment sub-modules 

Selected Device:         
Virtex5 vsx240T  (speed grade -2)     

Module 
Slice 
Registers 

Slice 
LUTs 

Slice LUT-FF 
pairs 

Block 
RAM DSP48Es 

DualCoreInterest point 
detection 13447(8%) 

17257 
(11%) 20310 (13%) 

435 
(84%) 50 (4%) 

Orientation assignment 6832 (4%) 
12496 
(8%) 12394 (8%) 

308 
(59%) 18(1%) 

Table 4.3:  Resource utilization for Virtex5 vsx240T device 

Selected Device:         

Virtex5 vfx200T  (speed grade -2)     

Module 
Slice 
Registers 

Slice 
LUTs 

Slice LUT-FF 
pairs 

Block 
RAM DSP48Es 

DualCoreInterest point 
detection 13447(10%) 

17257 
(14%) 20310 (16%) 

435 
(95%) 50 (13%) 

Orientation assignment 6832 (5%) 
12496 
(10%) 12394 (10%) 

308 
(67%) 18(4%) 

Table 4.4:  Resource utilization for Virtex5 vfx200T device 

 Finally, Table 4.4 presents the hardware utilization in virtex5 vfx200T device. 

This device is cheaper than vsx240T and it is obvious that our design reach the 95% 

of available BRAMs instead of 84% in vsx240T. 

 

4.2 Performance 
 

One of the most important measures in the evaluation of a hardware implementation 

is how it compares to a software implementation in terms of speed.  

 Table 4.5 presents the overall speedup and Table 4.6 shows the processing 

time for the hardware system and the floating-point software implementation for the 

case of six different images as far as interest point detection. Table 4.7 refers to 

orientation assignment time. The hardware processing time refers to a post place and 
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route implementation of the proposing scheme in the Virtex5 vsx240T device. The 

processing times for the software implementation were measured using Vtune (a 

commercial application for software performance analysis) running on a 2.4 GHz 

Pentium IV processor with a 4 GB of memory. The processing time of the hardware 

were computed for clock rates of 198.464 MHz for the dual core interest point 

detection and orientation tasks using the next formula. Clock rate remains the same 

for both devices. 

Hardware time = (# of cycles) x ( ) 

Input 

Interest 
Points 

Speedup 
Orient. 

Speedup 
Overall 

Speedup 

image_one 10,7 9,3 9,9 

image_two 8,4 8,9 8,7 

image_three 8,3 8,1 8,2 

image_four 9,8 8 8,7 

image_five 9,2 10,9 10,1 

image_six 8,7 9,8 9,3 
Table 4.5: Speedup 

 

4.3 Accuracy 
 

The fixed-point arithmetic used in the hardware implementation of the feature 

detector introduces errors in location, scale and orientation of the detected features. 

The main reason for these errors in the detected interest points is that some rounding 

errors occurred during determinant calculation. This was due to our slightly different 

accuracy used when implementing the three multiplications in equation 2.6. To 

provide a quantitive measure of these errors, the results obtained from Modelsim 

simulation of six test images, shown in Figure 4.1 and 4.2, were compared against the 

results obtained from processing the same images with the original floating-point 

software implementation. 

Table 4.6 shows the numbers of features detected in each test image by the 

software (it also follows the modification of division by the factor of 256 for pixel 

intensity) and hardware implementation. Moreover, the total number of common 

detected points (position takes integer value) and the variance of scale for the 

common points (decimal value) are computed. Finally, the variance of orientation for 

the common interest points is also computed and orientation results presented in Table 

4.7. After examining the results for numerous 640 x 480 images we have figured that 

in all cases the number of missing or additional points of interest reported by our 
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approach was always less than 1% of the overall reported images. At the same time 

the scale and orientation error introduced was always less that 0.01%. 

Input 
Hardware 
time (ms) 

Software 
time 
(ms) 

Points of 
interest 

(hw) 

Points of 
interest 

(sw) commons scale_variance 

image_one  7.551 ms  80.97ms 1634 1635 1609 0.0014744 

 image_two 7.555 ms 63.5 ms 1681 1677 1666 6.24121x10^-5 

image_three 7.561 ms  62.47ms 1722 1713 1704 0.000524633 

image_four 7.550 ms 73.71ms 1823 1822 1808 0.000640449 

image_five 7.555 ms 69.47ms 1508 1502 1493 0.00038069 

image_six 7.55 ms 65.4 ms 1704 1708 1693 0.000785097 

Table 4.6: Interest point results 

Input Hardware time (ms) 
Software time 

(ms) 
Orientation 

Variance 

image_one  9.902 ms 91.72 ms 0.00579719 

image_two 10.255 ms  90.82 ms 0.0199012 

image_three 10.494 ms  84.8 ms 0.01785 

image_four 11.165 ms 89.4 ms 0.0169975 

image_five 9.190 ms 100 ms 0.0296172 

image_six 10.45 ms 102.5 ms 0.0245929 

Table 4.7: Orientation Assignment results 

 These results are also compared to the initial software implementation (where 

pixel intensity is divided by 255). In this case, the missing points are 6% of overall 

detected points while scale and orientation errors are always less than 0.1%. It was 

difficult to predict the repercussions of these errors in performance of overall scheme 

because feature description is not yet implemented and we can’t evaluate the effect in 

matching of features between different images. In chapter 5, we propose a slight 

different implementation which affects only one functional module and will improve 

our results.   

  

4.4 Post place and Route verification 

 

We performed a post-place and route simulation otherwise known as timing 

simulation on our design to verify that the functionality is correct after the place and 
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route. This process uses the post-place and route simulation model (a structural 

SIMPRIM-based VHDL file) and a standard delay format (SDF) file generated by 

NetGen. The SDF file contains true timing delay information of the design.  

After getting the timing simulation model of our design we were able to run 

the same tetbenches we ran during the functional verification of the design and verify 

the correct results.  

 

4.5 Tested Images 
                  

We tested our detector using images provides by Mikolajczyk [40] resized to 640x480 

dimension and converted to a grayscale image. Second image set presents first image 

set under different viewing conditions such as rotation, light and zoom.   

        

Figure 4.1: Image set one 
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Figure 4.2: Image set two 

 

Figure 4.3: Software Interest points 
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Figure 4.4: Hardware Interest points 

 

Figure 4.5: Software Interest points (oriented) 
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Figure 4.6: Hardware Interest points (oriented) 
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Chapter 5  

 

Conclusions and Future Work 
 

This thesis presents an FPGA-based implementation of SURF detector presented in 

[1]. The feature detector provides the location, scale and orientation of interest points 

in frames at a rate of 130 frames per second for detection part and at a rate of 95 

frames per second for orientation assignment part.  

 

5.1 Summary of Contributions 
 

This is, to the best knowledge of the author, the first implementation of this scheme in 

an FPGA. Our innovative system can support processing of standard video (640 x 480 

pixels) at up to 56 frames per second while it outperforms a state-of-the-art Intel CPU 

by at least 8 times. Moreover, the proposed system, which is clocked at 200MHz and 

consumes less than 20W, supports a frame rate which is less that 20% lower than that 

of a high-end GPU executing the same basic algorithm, the specified GPU consists of 

128 floating point CPUs, clocked at 1.35GHz and consumes more than 200W. 

The SURF detector produces features that are robust to image rotation and 

translation, as well as to significant changes in illumination and scale deformations. 

This performance, however, doesn’t provide real-time processing. The fact many 

operations in hardware can be performed in parallel make it an ideal candidate for 

implementation. 

 Field-programmable gate arrays (FPGAs) offer a good hardware development 

platform because they can be easily reprogrammed to fit the requirements of a given 

application. This is particularly useful in the early stages of implementation of a new 

design since correction and additional features can be added in short periods of time. 

 The main challenge with implementing a complex algorithm in hardware is to 

balance the need for numerical precision with an efficient use of the available 

hardware resources. This implementation of the feature detector uses a combination of 

fixed-point and floating-point numerical representation limiting the number of 

floating-point units in terms of hardware resources. The results obtained from 

comparing the hardware implementation and the floating-point software model show 

that the location, scale and orientation achieve results with high-accuracy.  
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Comparison with 
other schemes   Performance in  (fps) Detection Orientation Description 

CPU(2.4 GHz) original 
software  6.5 (640x480) 



  

GPU-based SURF 85 (640x480, 500 features)   

Multi-core CPU SURF 33 (640x480)   

FPGA-based SIFT on 
exomars robot 16.5 (640x480)   

GPU-based SIFT 
33 fps (1000 features, 
1024x768)   

Our FPGA-based SURF 
56 fps (640x480, 1500+ 
features) 



  

Table 5.1 Performance comparison 

 Table 5.1 describes mainly the performance in terms of speed with other 

recently implemented detection systems and our software implementation. The 

number of detected features affects the processing time for orientation task directly 

proportional. Consequently, the number of detected interest points is reduced using an 

appropriate value of threshold and processing time is reduced only for orientation task 

as the detection is independent of this value because it is used by modules which are 

executed in parallel. More details are given in hardware design of section 3.5.    

 

5.2 Future Work 
 

There is enough room for improvements and refinements, both in hardware resources 

and in the processing speed. The following are a few ideas to guide any future work 

on this system. 

 Accuracy in detected points as mentioned in section 4.3 can be improved. 

Determinant module (section 3.4) uses the results of boxintegral function 

which compute the intensity of any rectangular area. Dxx, Dyy, Dxy are 

intermediate results with eight bits fractional part (division by 256). We can 

concern these values as integer numbers without fractional part and perform 

division by 255 (multiplication with the inverse number of 255), increasing the 

bits of fractional part. We use only extra multipliers and multipliers with extra 

input bits. This module is also pipelined and doesn’t affect the overall 

processing time. This modification will limit the errors in number of detected 

points.    

 ‘Store’ Determinant module (section 3.5.1) utilizes a large amount of on-chip 

memory.  As mentioned in section 3.5.1, determinant response map is divided 

into 3x3 regions and the neighboring pixel determinants are needed to perform 

interest point localization. This implementation stores all determinants for five 
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rows and interest point localization module divides these five rows into 3x3 

regions. It becomes obvious that only five columns are needed to perform the 

localization of a 3x3 region. Thus, columns are divided into a similar way as 

five rows. This modification can reduce the used on-chip memory by a factor 

of 70%. 

 Use of floating point units is expensive in terms of hardware resources. The 

two cores of interest point detection use two modules of interest point 

localization which consist of floating point units. It becomes obvious from 

simulations that the two cores can use the same interest point localization 

module as these processing units of two cores never function at the same time. 

Thus, reduction of hardware resources is achieved. 

 Interest point detection in first octave is the most consuming part of detection 

for three octaves (5.8 ms from 7.55 ms for first test image). Moreover, applied 

box filters for the first octave require less previous and next rows for the 

current row determinant calculation. This conclusion in combination with the 

decreased on-chip memory of ‘store’ determinants module and an efficient use 

of interest point localization module can parallelize the detection only for the 

first octave in four parts. Thus, the detection time for first octave (5.8 ms) can 

be reduced by a factor around two.     

 Efficient use of orientation module (section 3.7.3). Orientation module is a 

pipelined unit and it is used every 12 cycles when new HaarX, HaarY (section 

3.7.3) are computed or every 8 cycles when new sumX, sumY (section 3.7.5) 

are computed. As orientation module is the most expensive part of orientation 

assignment, we have to take advantage of the pipeline. Image is already 

partitioned and we can have two orientation assignment cores using the same 

arctan unit. This leads to improvement of time performance by factor of two 

using only more DSP multipliers which can also be limited as these units 

aren’t be used every cycle. Also, more than 65% of interest points belong to 

first octave. For this octave, it is possible to process the interest points from 

the four parts mentioned in previous bullet, parallel. Thus, almost 2/3 of the 

time required for orientation assignment can be reduced by a factor of 4. 

 Description part of SURF. 

 Combination with a classification system. 

 Combination of detector with video interfaces to create a smart camera 

system. 
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