
julie vlahou

E F F I C I E N T R E R O U T I N G A L G O R I T H M S F O R
T R A F F I C B A L A N C I N G I N T H E P - G R I D P 2 P

P R O T O C O L





E F F I C I E N T R E R O U T I N G A L G O R I T H M S F O R T R A F F I C
B A L A N C I N G I N T H E P - G R I D P 2 P P R O T O C O L

technical university of crete

julie vlahou

supervisor : vassilis samoladas

Department of Electronic and Computer Engineering

committee:
Vassilis Samoladas

Antonios Deligiannakis
Minos Garofalakis

October 2010



Julie Vlahou: Efficient Rerouting Algorithms for Traffic Balancing in
the P-Grid P2P Protocol, Department of Electronic and Computer
Engineering, © October 2010



Dedicated to my parents Nikos and Glykeria,
my beloved family, friends and comrads

who have been supportive through all these years.





A B S T R A C T

In this research we study load balancing methods for the P-Grid
Peer to Peer protocol with focus on network traffic. Our main
target is to achieve a more uniform load distribution among the
network participants. We focus on alleviating the load of the
most loaded peers in the network by transferring a portion of
their additional load in underloaded peers. The proposed load
balancing methods create alternative routing paths during the
query search in order to avoid an additional load accumulation
in already overloaded peers. We introduce some new metrics for
a peer’s load and define some new peer load states, which affect
and redifine the forwarding process. The most intriguing part in
this research is that the routing process now depends not only
on the network’s topology but also on the load of each network
participant.

vii





C O N T E N T S

1 introduction 1

1.1 Architecture of P2P Networks 1

1.2 Definition of the problem 3

1.2.1 Our Approach 4

2 related work 7

2.1 Distributed hash tables 7

2.1.1 CAN 9

2.1.2 Chord 10

2.1.3 Pastry 11

2.1.4 Tapestry 12

2.1.5 P-Grid 13

2.2 Range Queries 15

2.2.1 Space filling curves 15

2.2.2 Range queries in P-Grid 17

2.3 Load Balancing 19

2.3.1 Load Balancing in CAN 19

2.3.2 Load Balancing in Chord 20

2.3.3 Load Balancing in P-Grid 20

2.4 P2P Network Simulators 21

2.4.1 P2PSim 22

2.4.2 PeerSim 22

2.4.3 OverSim 23

2.4.4 Rangesim++ 23

3 our approach 25

3.1 Assumptions 25

3.2 Definition of load factor 25

3.2.1 Definition of a peer’s load factor 28

3.2.2 Adjustment of the load factor for real P2P
networks 28

3.3 Update Algorithms 29

3.3.1 Piggy Bag 29

3.3.2 Polling Periodically 29

3.3.3 Back of Routing Path 30

3.3.4 Requesting for Common Neighbors 30

3.3.5 Exchange Routing Tables 32

3.4 Rerouting Algorithms 33

3.4.1 Dynamic Routing 33

3.4.2 Dynamic Routing with restricted number
of additional hops 37

3.4.3 Best Neighbor Dynamic Routing 39

4 simulation framework 41

4.1 Datasets/Querysets 41

4.2 Network Simulation 42

ix



x contents

4.2.1 Cycle-based and Event-driven simulation 42

4.2.2 Rangesim++ Design Structure 43

4.2.3 Classes Description 45

4.2.4 Topology Construction 47

5 analysis 49

5.1 Metrics 49

5.2 Workloads 52

5.3 Protocol Evaluation 54

5.3.1 Rerouting algorithms evaluation. 54

5.3.2 Update Algorithms Evaluation 79

5.3.3 Ideal Case Scenarios 81

5.3.4 Scalability 85

6 conlusion 91

bibliography 95



L I S T O F F I G U R E S

Figure 1 Simple CAN 2-dimensional overlay topol-
ogy 9

Figure 2 Typical Chord topology: the shaded region
is the responsibility area of the shaded peer
and the arrows indicate the entries in the
finger table. 10

Figure 3 State of an hypothetical Pastry node with
node id 10233102, b = 4, l = 8. All numbers
are in base 4. 12

Figure 4 Tapestry component architecture. Messages
pass up from physical network layers and
down from application layers. The Router is
a central conduit for communication. 13

Figure 5 P-Grid trie example. 14

Figure 6 Z-order space-filling curve. 16

Figure 7 Hilbert space-filling curve. 16

Figure 8 Min-Max Traversal algorithm example. 17

Figure 9 Shower algorithm example. 18

Figure 10 Example of common neihgbors update al-
gorithm part 1. 30

Figure 11 Example of common neighbors update al-
gorithm part 2. 31

Figure 12 Regular Routing in P-Grid. Initiating, for-
warding and answering a query. 33

Figure 13 Initiating a query. 35

Figure 14 The regular destination is overloaded, we
do rerouting. 36

Figure 15 Regular Routing, D forwards a query at
H. 36

Figure 16 Regular destination is overloaded. 37

Figure 17 Peer H reroutes the query at G. 37

Figure 18 Regular routing, Peer G forwards the query
at E. 38

Figure 19 Peer E answers the query. 38

Figure 20 Dataset and Queryset - Greece. 41

Figure 21 Dataset and Queryset - Hypersphere. 42

Figure 22 Workload schema. 52

xi



xii List of Figures

Figure 23 Number of overloaded peers for the tra-
ditional P-Grid protocol and our protocol
with the Dynamic Routing algorithm . All
the update algorithms are activated except
from polling and exchange. 55

Figure 24 Mean Utilization of the input channel for
the traditional P-Grid protocol and our pro-
tocol with the Dynamic Routing. All the up-
date algorithms are activated except from
polling and exchange. 56

Figure 25 Mean Utilization of the output channel for
the traditional P-Grid protocol and our pro-
tocol with the Dynamic Routing. All the up-
date algorithms are activated except from
polling and exchange. 56

Figure 26 Number of overloaded peers for the tra-
ditional P-Grid protocol and our protocol
with the Best Neighbor algorithm. All the
update algorithms are activated except from
polling and exchange. 57

Figure 27 Mean Utilization of the input channel for
the traditional P-Grid protocol and our pro-
tocol with the Best Neighbor algorithm. All
the update algorithms are activated except
from polling and exchange. 57

Figure 28 Mean Utilization of the output channel for
the traditional P-Grid protocol and our pro-
tocol with the Best Neighbor algorithm. All
the update algorithms are activated except
from polling and exchange. 58

Figure 29 Process, input and output channel’s response
time for the traditional P-Grid protocol and
our protocol with the Dynamic Routing .
All the update algorithms are activated ex-
cept from polling and exchange. 59

Figure 30 Network Throughput for the traditional P-
Grid protocol and our protocol with the Dy-
namic Routing . All the update algorithms
are activated except from polling and ex-
change. 59

Figure 31 Mean output channel’s queue length for the
traditional P-Grid protocol and our proto-
col with the Dynamic Routing. All the up-
date algorithms are activated except from
polling and exchange. 60

Figure 32 Utilization of two different example chan-
nels. 61



List of Figures xiii

Figure 33 Percentage of overloaded peers for the tra-
ditional P-Grid protocol and our protocol
with the Dynamic Routing with damping
utilization. All the update algorithms are
activated except from polling and exchange.
Damping rate 50 s. 62

Figure 34 Mean utilization with damping of the input
channel for the traditional P-Grid protocol
and our protocol with the Dynamic Rout-
ing. All the update algorithms are activated
except from polling and exchange. Damp-
ing rate 50 s. 62

Figure 35 Mean utilization with damping of the out-
put channel for the traditional P-Grid pro-
tocol and our protocol with the Dynamic
Routing. All the update algorithms are ac-
tivated except from polling and exchange.
Damping rate 50 s. 63

Figure 36 Process, input and output channel’s response
time for the traditional P-Grid protocol and
our protocol with the Dynamic Routing
with damping utilization. All the update al-
gorithms are activated except from polling
and exchange. Damping rate 50 s. 63

Figure 37 Network Throughput for the traditional P-
Grid protocol and our protocol with the
Dynamic Routing with damping utilization.
All the update algorithms are activated ex-
cept from polling and exchange. Damping
rate 50 s. 64

Figure 38 Percentage of overloaded peers for the tra-
ditional P-Grid protocol and our protocol
with the Dynamic Routing with damping
utilization for network sizes 40000 and 50000

peers. All the update algorithms are acti-
vated except from polling and exchange.
The damping rate is 50s. 66

Figure 39 Percentage of overloaded peers for the tra-
ditional P-Grid protocol and our protocol
with the Dynamic Routing with damping
utilization for network sizes 60000 and 100000

peers. All the update algorithms are acti-
vated except from polling and exchange.
The damping rate is 50s. 66



xiv List of Figures

Figure 40 Mean utilization with damping 50s of the
input channel for the traditional P-Grid pro-
tocol and our protocol with the Dynamic
Routing for network sizes 40000 and 50000

peers. All the update algorithms are acti-
vated except from polling and exchange.

67

Figure 41 Mean utilization with damping 50s of the
output channel for the traditional P-Grid
protocol and our protocol with the Dynamic
Routing for network sizes 40000 and 50000

peers. All the update algorithms are acti-
vated except from polling and exchange.

67

Figure 42 Mean utilization with damping 50s of the
input channel for the traditional P-Grid pro-
tocol and our protocol with the Dynamic
Routing for network sizes 60000 and 100000

peers. All the update algorithms are acti-
vated except from polling and exchange.

68

Figure 43 Mean utilization with damping 50s of the
output channel for the traditional P-Grid
protocol and our protocol with the Dynamic
Routing for network sizes 60000 and 100000

peers. All the update algorithms are acti-
vated except from polling and exchange.

68

Figure 44 Process, input and output channel’s response
time for the traditional P-Grid protocol and
our protocol with the Dynamic Routing
with damping utilization. All the update al-
gorithms are activated except from polling
and exchange. The damping rate is 50s. 69

Figure 45 Network Throughput for the traditional P-
Grid protocol and our protocol with the
Dynamic Routing with damping utilization.
All the update algorithms are activated ex-
cept from polling and exchange. 69

Figure 46 Percentage of overloaded peers for the tra-
ditional P-Grid protocol and our protocol
with exchange, for network sizes 40000 and
50000 peers. Exchange frequency 50s. 71

Figure 47 Percentage of overloaded peers for the tra-
ditional P-Grid protocol and our protocol
with exchange, for network sizes 60000 and
100000 peers. Exchange frequency 50s. 71



List of Figures xv

Figure 48 Mean Utilization of the input channel for
the traditional P-Grid protocol and our pro-
tocol with exchange, for network sizes 40000

and 50000 peers. Exchange frequency 50s. 72

Figure 49 Mean Utilization of the input channel for
the traditional P-Grid protocol and our pro-
tocol with exchange, for network sizes 60000

and 100000 peers. Exchange frequency 50s.
72

Figure 50 Mean Utilization of the output channel for
the traditional P-Grid protocol and our pro-
tocol with exchange, for network sizes 40000

and 50000 peers. Exchange frequency 50s. 73

Figure 51 Mean Utilization of the output channel for
the traditional P-Grid protocol and our pro-
tocol with exchange, for network sizes 60000

and 100000 peers. Exchange frequency 50s. 73

Figure 52 Process, input and output channel’s response
time for the traditional P-Grid protocol and
our protocol with the exchange update al-
gorithm. Exchange frequency 50s. 74

Figure 53 Network Throughput for the traditional P-
Grid protocol and our protocol with the
exchange update algorithm. Exchange fre-
quency 50s. 74

Figure 54 Number of exchange messages in compar-
ison with the total created messages. Ex-
change frequency 50s. 75

Figure 55 Percentage of overloaded peers for the tra-
ditional P-Grid protocol and our protocol
with polling, for network sizes 40000 and
50000 peers. polling frequency 50s. 75

Figure 56 Percentage of overloaded peers for the tra-
ditional P-Grid protocol and our protocol
with polling, for network sizes 60000 and
100000 peers. polling frequency 50s. 76

Figure 57 Mean Utilization of the input channel for
the traditional P-Grid protocol and our pro-
tocol with polling, for network sizes 40000

and 50000 peers. polling frequency 50s. 76

Figure 58 Mean Utilization of the input channel for
the traditional P-Grid protocol and our pro-
tocol with polling, for network sizes 60000

and 100000 peers. polling frequency 50s.
77



xvi List of Figures

Figure 59 Mean Utilization of the output channel for
the traditional P-Grid protocol and our pro-
tocol with polling, for network sizes 40000

and 50000 peers. polling frequency 50s. 77

Figure 60 Mean Utilization of the output channel for
the traditional P-Grid protocol and our pro-
tocol with polling, for network sizes 60000

and 100000 peers. polling frequency 50s. 78

Figure 61 Network Throughput for the traditional P-
Grid protocol and our protocol with the
polling update algorithm. polling frequency
50s. 78

Figure 62 Number of polling messages in compari-
son with the total created messages. polling
frequency 50s. 79

Figure 63 Performance of the update algorithms for a
workload with medium load. In the specific
workload we have Dynamic Routing with
restricted hops, all update algorithms acti-
vated with polling and exchange frequency
50 s and 100 s respectively. 79

Figure 64 Performance of the update algorithms for
a workload with heavy load. Exchange and
Polling Periodically are deactivated. 80

Figure 65 Percentage of overloaded peers for the tra-
ditional P-Grid protocol and our protocol
with the Dynamic Routing with damping
utilization and the ideal scenario, for net-
work sizes 40000 and 50000 peers. All the
update algorithms are activated except from
polling and exchange. The damping rate is
50s. 82

Figure 66 Percentage of overloaded peers for the tra-
ditional P-Grid protocol and our protocol
with the Dynamic Routing with damping
utilization and the ideal scenario, for net-
work sizes 60000 and 100000 peers. All the
update algorithms are activated except from
polling and exchange. The damping rate is
50s. 82

Figure 67 Mean utilization with damping 50s of the
input channel for the traditional P-Grid pro-
tocol and our protocol with the Dynamic
Routing and the ideal scenario, for network
sizes 40000 and 50000 peers. All the up-
date algorithms are activated except from
polling and exchange. 83



List of Figures xvii

Figure 68 Mean utilization with damping 50s of the
output channel for the traditional P-Grid
protocol and our protocol with the Dynamic
Routing and the ideal scenario, for network
sizes 40000 and 50000 peers. All the up-
date algorithms are activated except from
polling and exchange. 83

Figure 69 Mean utilization with damping 50s of the
input channel for the traditional P-Grid pro-
tocol and our protocol with the Dynamic
Routing and the ideal scenario, for network
sizes 60000 and 100000 peers. All the up-
date algorithms are activated except from
polling and exchange. 84

Figure 70 Mean utilization with damping 50s of the
output channel for the traditional P-Grid
protocol and our protocol with the Dynamic
Routing and the ideal scenario, for network
sizes 60000 and 100000 peers. All the up-
date algorithms are activated except from
polling and exchange. 84

Figure 71 Process, input and output channel’s response
time for the traditional P-Grid protocol and
our protocol with the Dynamic Routing
with damping utilization and the ideal sce-
nario. All the update algorithms are acti-
vated except from polling and exchange.
The damping rate is 50s. 85

Figure 72 Network Throughput for the traditional P-
Grid protocol and our protocol with the
Dynamic Routing with damping utilization
and the ideal scenario. All the update al-
gorithms are activated except from polling
and exchange. 85

Figure 73 Percentage of overloaded peers for the tra-
ditional P-Grid protocol and our protocol
with the Dynamic Routing with damping
utilization for network sizes 40000 and 50000

peers. All the update algorithms are acti-
vated except from polling and exchange.
The damping rate is 50s. Small queryfile.

86



xviii List of Figures

Figure 74 Percentage of overloaded peers for the tra-
ditional P-Grid protocol and our protocol
with the Dynamic Routing with damping
utilization for network sizes 60000 and 100000

peers. All the update algorithms are acti-
vated except from polling and exchange.
The damping rate is 50s. Small queryfile. 87

Figure 75 Mean utilization with damping 50s of the
input channel for the traditional P-Grid pro-
tocol and our protocol with the Dynamic
Routing for network sizes 40000 and 50000

peers. All the update algorithms are acti-
vated except from polling and exchange.
Small queryfile. 87

Figure 76 Mean utilization with damping 50s of the
output channel for the traditional P-Grid
protocol and our protocol with the Dynamic
Routing for network sizes 40000 and 50000

peers. All the update algorithms are acti-
vated except from polling and exchange.
Small queryfile. 88

Figure 77 Mean utilization with damping 50s of the
input channel for the traditional P-Grid pro-
tocol and our protocol with the Dynamic
Routing for network sizes 60000 and 100000

peers. All the update algorithms are acti-
vated except from polling and exchange.
Small queryfile. 88

Figure 78 Mean utilization with damping 50s of the
output channel for the traditional P-Grid
protocol and our protocol with the Dynamic
Routing for network sizes 60000 and 100000

peers. All the update algorithms are acti-
vated except from polling and exchange.
Small queryfile. 89

Figure 79 Process, input and output channel’s response
time for the traditional P-Grid protocol and
our protocol with the Dynamic Routing
with damping utilization. All the update al-
gorithms are activated except from polling
and exchange. The damping rate is 50s.
Small queryfile. 89



Figure 80 Network Throughput for the traditional P-
Grid protocol and our protocol with the
Dynamic Routing with damping utiliza-
tion. All the update algorithms are acti-
vated except from polling and exchange.
Small queryfile. 90

L I S T I N G S

Listing 3.1 Pseudocode of Dynamic Routing 34

Listing 3.2 Pseudocode of Dynamic Routing with Re-
stricted number of additional hops per query 38

Listing 4.1 An example of a configuration file 44

xix





1
I N T R O D U C T I O N

During the last years the scientific interest about peer to peer
networks is growing rapidly due to their innovative structure
and philosophy. A peer to peer network is a distributed network
architecture composed of participants that make a portion of
their resources directly available to other network participants,
without the need for central coordination instances. Peers are
both suppliers and consumers of resources, in contrast to the
traditional client server model where only servers supply, and
clients consume. This structure offers the users numerous bene-
fits concerning the common usage of all the available resources
such us disk storage, processing power, network bandwidth etc.
In other words any peer user which joins the p2p community
offers its resources in all the other peers and can simultaneously
utilize their resources in return. This unique attribute of P2P net-
works improves the network performance in a more qualitative
and versatile way in comparison with the obsolete client-server
technologies.

1.1 architecture of p2p networks

A P2P network structure consists of two main topologies, the
Overlay network topology and the underlying Internet Topology.
The underlying Internet Topology is the network structure in
TCP/IP level which is used for transferring and forwarding
data directly between the peers using physical addresses. The
overlay network topology is a virtual network built on top of
the underlying topology. Nodes in the overlay can be thought
of as being connected by virtual or logical links, each of which
corresponds to a path, perhaps through many physical links, in
the underlying network. The overlay network consists of all the
participating peers as network nodes. There are links between
any two nodes that know each other: i.e. if a participating peer
knows the location of another peer in the P2P network, then
there is a directed edge from the former node to the latter in
the overlay network. Based on the centralization degree of the
overlay network we define the following categories [3]:

• Purely Decentralized Architectures: All the nodes of the
peer to peer network are allowed to execute the same tasks,
acting both as resource providers and consumers without
using any central coordination of their activities.

1



2 introduction

• Partially Centralized Architectures: Similar to the previous
architecture with the difference that there are specific nodes
which have a more important role, acting as local central
indexes for files shared by local peers. These nodes are
called Supernodes and do not constitute single points of
failure for a peer to peer network, since they are dynami-
cally assigned and in case of failure they are automatically
replaced by other network nodes. The assignment of the
supernode role to specific nodes is based on criteria which
differs at each peer to peer network.

• Hybrid Decentralized Architectures:In these architectures
there is a central server coordinating the interaction between
peers by maintaining directories of metadata, describing the
shared files stored in the network nodes. All the exchange
interactions between two peers are partially performed by
the central server who implements the lookups and the
identification of nodes with the appropriate data files. After
the central coordination the two peer nodes complete the
exchange interaction directly. Despite the great similarities
with the client server architecture there is a significant at-
tribute which differentiates the two architectures. In Hybrid
Decentralized Architecture the data is shared between the
nodes and not in the central server. Even though central
coordination is necessary the central node is more allevi-
ated than the traditional server of client server models. We
should not forget that there is still a single point of failure,
the central server.

Another classification for peer to peer networks which is based
in the overlay network topology is structure. That is if the overlay
network is created according to specific rules or is created in
more arbitrary way. So in terms of the peer to peer networks
structure we have the following types[3]:

• Structured: The main characteristic of structured networks
is that any request of data can be efficiently routed to a peer
destination that has the answer even if the requested data
file is extremely rare. This means that the overlay network
is strictly controlled and the data files are placed at precise
and specific locations(nodes) in the network using exact
mapping between content and location. Hash functions are
used for the mapping, which assign data files at specific
peers using data file identifiers and node addresses. A great
drawback of structured peer to peer networks is that it is
hard and expensive to maintain the strict overlay structure
which guarantees efficient routing in a transient network,
because peers are entering and leaving the network with
high or even arbitrary rate. Some representative examples



1.2 definition of the problem 3

of structured peer to peer systems include Chord, CAN,
Tapestry and P-Grid.

• Unstructured: In the Unstructured peer to peer systems the
links of the overlay network are defined arbitrarily and also
the placement of contents is completely irrelevant with the
overlay topology. This type of networks can be easily con-
structed by continuous joins of new peers in the network,
by splitting the data and copying the overlay links of an
old node and then form their own over time. Searching
mechanisms are more inexplicit here due to the flexibility
of the overlay network topology. The most common search-
ing mechanism is the flood algorithm where each query is
propagated in the network until a node with the requested
data is found. Quite known also is the propagation of query
using random walks, where a node instead of forwarding
the query at all neighbors chooses a neighbor randomly
and propagates the query only at the chosen one. A major
drawback is that the searching mechanisms employed in un-
structured networks have obvious implications, particularly
in regards to data availability, scalability and persistence.
Concerning the restricted data availability many data repli-
cation mechanisms have been developed and applied with
great success in almost all the Unstructured peer to peer net-
works. Considering the above we can easily realize that the
Unstructured networks are more appropriate for accommo-
dating highly-transient node populations. Some prevalent
Unstructured networks are Napster, Gnutella, FreeHaven
and Edutella.

1.2 definition of the problem

As we mentioned above all the nodes which affiliate the network
provide their resources such us bandwidth, storage space and
computing power. As nodes arrive and demand on the system
increases, the total capacity of the system also increases. In con-
trast with a typical client server architecture where clients share
only their demands with the system, but not their resources so
as more clients join the system, less resources are available to
serve each client. This indicates that the biggest drawback of
traditional client server model turns into a great advantage for
the distributed peer to peer networks. Another great asset is that
in distributed systems there is no single point of failure in the
system due to lack of centralized index server during search. This
fact not only improves the system performance but also increases
network robustness. The distributed peer to peer networks are
not lacking in comparison with the antecedent common purpose



4 introduction

systems but have a long way ahead of them for some additional
and unique characteristics that they introduce. A major problem
is that the network load is not uniformly distributed among the
peers, this happens because the popularity of the available data
in the network differs significantly. Indisputably some data are
more popular than others and as a consequence the peers that
own this data accept more requests, so they have greater load
to manage. Under these circumstances some peers are unable to
handle the additional load and subsequently crash down. A peer
crash down means that the peer leaves the network and so the
overlay network links among the peers need to be changed or up-
dated, furthermore the data which were assigned to the departed
peer must be distributed to other peers. All these actions have
great cost and taking under consideration that the peer might
leave the network immediately in some cases there is no time for
the above actions to take place before the peer’s departure. So the
non uniform load distribution among peers is a great weakness
which encumbers system’s performance and is the reason why
the most recent researches in the field of peer to peer networks
focalize in studying load balancing methods.

1.2.1 Our Approach

This study focuses in overcoming the problem described above by
introducing new load balancing methods for a peer to peer net-
work. Our objective is to propose and study efficient algorithms
in order to avoid heavy load in specific network participants.
Specifically this research aims to:

• Identify the parameters which can lead in overloading a
peer in a P2P network.

• Understand and study the impact of the overloaded peers
in network’s performance.

• Propose techniques which contribute in alleviating peers
with popular data and also elaborate the heavy load so as to
not have a dramatic impact in the network’s performance.

Our theoretical study is mostly based in queuing theory which
provide us with useful mathematical tools for the overloaded
peers problems. Main focus was given in a peer’s receiving, pro-
cessing and sending mechanisms in order to evaluate and select
the determinant parameters which define our load balancing
algorithms. Some very important parameters of our study which
contribute significantly in detecting and further avoiding satura-
tion problems in the network includes:

• the arrival rate of the messages in the input queue of a peer



1.2 definition of the problem 5

• the service rate of peers

• the portion of time at which the peer is busy

• the delay of the network

• the information for the load of the neighboring peers in
the network which can be represented by a load-factor.
This information was proved useful when choosing the
forwarding path for a message in the network in order
to avoid the additional load of the overloaded peers. The
definition for the load-factor will be described in the chapter
3.

Finally we will describe how the above parameters can be
exploited in order to implement efficient rerouting algorithms
during query search in the network. We introduce new rerouting
algorithms which take into consideration the load of the desti-
nation peer and the network topology. In our approach there is
additional information in the routing tables of each peer. This
information concerns the load of each corresponding neighbor
which is used during message forwarding in the network so as
to avoid aggravating already overloaded peers.

Load balancing is one of the wick spots of today’s P2P networks
so any improvement in this field is of major importance. The
alleviation of overloaded peers by transferring a portion of their
load in less stressed peers, can enhance network’s consistency
by relieving the peers with increased traffic. In the following
chapters we will prove that this can be easily done without
applying any additional data balancing methods in the network.





2
R E L AT E D W O R K

In this chapter we will present the most prevalent peer to peer
networks protocols as well as range queries. Moreover we will
talk about searching techniques of each protocol concerning man-
agement of range queries.

2.1 distributed hash tables

Distributed hash tables more widely known as DHT’s are a cate-
gory of decentralized distributed systems which provide lookup
service similar to hash tables. In every registration stored in a
DHT a key is assigned and so we have key-value pairs. The value
retrieval can be done by any participating node in the system
using the corresponding key during search. The mapping main-
tenance from keys to values is distributed among the network
participants in such a way that any node departure or failure
will cause minimal disruption in the mapping mechanism. This
shows the ability of DHT’s to handle efficiently continuous node
arrivals, departures and failures without any serious impact in
the system’s mapping. Furthermore is able to expend the scala-
bility1 of the system to extremely large number of nodes.

DHT research was originally motivated, in part, by peer-to-
peer systems such as Napster, Gnutella, and Freenet, which took
advantage of resources distributed across the Internet to provide
a single useful application. In particular, they took advantage
of increased bandwidth and hard disk capacity to provide a file
sharing service.

The design of Gnutella was the first attempt to create a de-
centralized indexing scheme using a peer-to-peer network. Each
node of this network maintains a list of neighbors which is used
in order to route messages across the peers. When a query is
instantiated at a peer, the query is forwarded to every node in
the neighbor list and recursively in the subsequent nodes. Addi-
tionally, the search requests have high probability to be dropped
before the whole network has been contacted, therefore the results
cannot be reliable. Unfortunately, this flooding scheme is the only
valid way to locate data in networks with such infrastructure.

Napster had a central index server: each node, upon joining,
would send a list of locally held files to the server, which would

1 scalability is a desirable property of a system, a network, or a process, which
indicates its ability to either handle growing amounts of work in a graceful
manner or to be readily enlarged

7



8 related work

perform searches and refer the querier to the nodes that held
the results. This central component left the system vulnerable to
attacks and lawsuits.

Freenet was also fully distributed, but employed a heuristic
key-based routing in which each file was associated with a key,
and files with similar keys tended to cluster on a similar set of
nodes. Queries were likely to be routed through the network to
such a cluster without needing to visit many peers. However,
Freenet did not guarantee that data would be found.

Distributed hash tables use a more structured key based rout-
ing in order to attain both the decentralization of Gnutella and
Freenet, and the effciency and guaranteed results of Napster.
One drawback is that, like Freenet, DHTs only directly support
exact-match search, rather than keyword search, although that
functionality can be layered on top of a DHT. DHTs characteristi-
cally emphasize the following properties:

• Decentralization:the nodes collectively form the system
without any central coordination.

• Scalability:the system should function efficiently even with
thousands or millions of nodes.

• Fault-tolerance:the system should be reliable even with
nodes continuously joining, leaving, and failing.

The infrastructure of DHT’s can be used except from peer to
peer file sharing systems, in distributed databases, in content dis-
tribution systems, cooperative web caching2, multicast3, domain
name services4 and instant messaging mechanisms5. Noticeable
distributed systems which use the DHT infrastructure are BitTor-

2 Web caching is the caching of web documents (e. g. , HTML pages, images) to
reduce bandwidth usage, server load, and perceived lag. A web cache stores
copies of documents passing through it; subsequent requests may be satisfied
from the cache if certain conditions are met

3 Multicast addressing is a network technology for the delivery of information
to a group of destinations simultaneously using the most efficient strategy to
deliver the messages over each link of the network only once, creating copies
only when the links to the multiple destinations split

4 The Domain Name System (DNS) is a hierarchical naming system for comput-
ers, services, or any resource connected to the Internet or a private network

5 Instant messaging (IM) is a form of real-time direct text-based communication
between two or more people using personal computers or other devices, along
with shared software clients



2.1 distributed hash tables 9

rent’s distributed tracker6, the Kad Network7, the Storm Botnet8

and the Coral Content Distribution Network9.

2.1.1 CAN

Content Addressable Network(CAN) which introduced by Rat-
nasamy is a distributed Internet-scale hash table that maps file-
names to their location in the network, by supporting the in-
sertion, deletion and lookup of key-value pairs in the table [8].
The data space in CAN uses a virtual d-dimensional Cartesian
coordinate space and any key is deterministically mapped onto a
point of this coordinate space. The coordinate space is split into
segments which are assigned to the network nodes, and each
node is responsible for the pairs key-value whom the points lies
in the corresponding segment. CAN nodes also maintain routing
tables containing the nodes that hold segments adjacent to theirs
in the coordinate space. Figure 1 shows a simple CAN topology
with 5 nodes.

Figure 1: Simple CAN 2-dimensional overlay topology

Routing in CAN works by following the straight line path
through the Cartesian space from source to destination coordi-
nates. During node insertion, the joining node must locate a
bootstrap node10, identify a data zone (segment) that can be split

6 BitTorrent is a peer-to-peer file sharing protocol used for distributing large
amounts of data

7 The Kad network is a peer-to-peer (P2P) network which implements the Kadem-
lia P2P overlay protocol which were designed by Petar Maymounkov and David
Mazieres

8 The Storm botnet or Storm worm botnet is a remotely controlled network of
"zombie" computers (or "botnet") that has been linked by the Storm Worm, a
Trojan horse spread through e-mail spam

9 Is a peer to peer network that uses the bandwidth of a world-wide network
of web proxies and nameservers to mirror web content, http://www.coralcdn.
org/

10 Bootstrap node is a node in an overlay network that provides initial configura-
tion information to newly joining nodes so that they may successfully join the
overlay network

http://www.coralcdn.org/
http://www.coralcdn.org/


10 related work

and finally Update the routing tables of nodes neighboring the
newly split zone. To handle a node departing, the CAN must
identify that a node is departing, have the departing node’s zone
merged or taken-over by a neighboring node, and finally update
the corresponding routing tables across the network. CAN is
designed to be scalable, fault-tolerant and self-organizing and
has a routing performance of O(kN1/k).

2.1.2 Chord

Figure 2: Typical Chord topology: the shaded region is the responsibil-
ity area of the shaded peer and the arrows indicate the entries
in the finger table.

Another distributed hash table is the Chord peer to peer lookup
protocol for Internet applications proposed by Stoica in 2001[13].
In Chord except from data, nodes are also identified by m− bit

keys. The m− bit identifier keys are assigned both to files and
nodes by means of a deterministic function, a variant of consistent
hashing 11a technique which is designed to let peers enter and
leave the network with minimal disruption. All node identifiers
are arranged in a "identifier circle" which cannot have more than
2m nodes. Key k is assigned to the first node whose identifier is
equal to, or follows k, in the identifier space. This node is called
the successor node of key k and the node which precedes key k
is called predecessor. The only routing information required, is
for each node to be aware of its successor node on the "identifier
circle". Queries for a given key are passed around the circle via
the successors’ pointers until a node that contains the key is
encountered. A typical Chord topology is shown in Figure 2.

11 Consistent hashing is a scheme that provides hash table functionality using the
SHA-1 algorithm in a way that the addition or removal of one slot does not
significantly change the mapping of keys to slots. By using consistent hashing,
only K/n keys need to be remapped on average, where K is the number of keys,
and n is the number of slots.



2.1 distributed hash tables 11

When a new node n joins the network, certain keys previously
assigned to n’s successor will be assigned to n. When a node n
leaves the network, all its keys will be assigned to its successor.
The only changes in the the network which need to be done in
order to preserve load balance are the above. Also, in order to
achieve logarithmic lookup performance, each peer maintains a
finger table which points to the peer responsible for every 2i − 1
interval from this peer, with 1 <= i <= m.

2.1.3 Pastry

Pastry[10] is a Distributed Hash Table quite similar to Chord. The
hash table’s key-space is taken to be circular, like the key-space
in the Chord system, and node IDs are 128-bit unsigned integers
representing position in the circular key-space. Node IDs are
chosen randomly and uniformly so peers who are adjacent in
node ID are geographically diverse. An attribute that sets apart
Pastry is that the notion of network proximity is based on a
scalar proximity metric, such us the number of IP routing hops
or geographic distance. A node with a lower distance value is
assumed to be more desirable. For the purpose of routing, node
id’s and keys are thought of as a sequence of digits with base 2b
12. Pastry routes messages to the node whose id is numerically
closest to the given key with the following way:In each routing
step, a node normally forwards the message to a node whose
id shares with the key a prefix that is at least on digit longer
than the prefix that the key shares with the present’s node id.
If no such node is known, the message is forwarded to a node
whose id shares a prefix with the key as long as the current node,
but it is numerically closer to the key than the present node’s id.
We do this recursively until the node with the searching key is
encountered. To support this procedure, each node maintains a
routing table, a neighborhood set and a leaf set.

The routing overlay network is formed on top of the hash
table by each peer discovering and exchanging state information
consisting of a list of leaf nodes, a neighborhood list, and a routing
table. The routing table of a Pastry node contains one entry for
each address block assigned to it. To form the address blocks, the
128-bit key is divided up into digits with each digit being b bits
long, yielding a numbering b system with base 2 . This partitions
the addresses into distinct levels from the viewpoint of the client,
with level 0 representing a zero-digit common prefix between
two addresses, level 1 a one-digit common prefix, and so on. The
routing table contains the address of the closest known peer for
each possible digit at each address level, except for the digit that
belongs to the peer itself at that particular level. The leaf node list
consists of the L/2 13 closest peers by node id in each direction
around the circle. In addition to the leaf nodes there is also the

12 The value of b is defined according to the corresponding Pastry network
13 L in most cases take the value 16 or 32



12 related work

Figure 3: State of an hypothetical Pastry node with node id 10233102,
b = 4, l = 8. All numbers are in base 4.

neighborhood list. This represents the M closest peers in terms of
the routing metric. Although it is not used directly in the routing
algorithm, the neighborhood list is used for maintaining locality
principals in the routing table. A typical example of all routing
information of a Pastry node is shown in Figure 3.

2.1.4 Tapestry

Tapestry[14] is a distributed hash table which provides a decen-
tralized object location, routing, and multicasting infrastructure
for distributed applications. It is composed of a peer-to-peer over-
lay network offering efficient, scalable, self-repairing, location-
aware routing to nearby resources. The topology of the network is
self-organizing as nodes come and go, and network latencies vary.
Each node is assigned a unique nodeID uniformly distributed in
a large identifier space. Tapestry uses SHA− 1 hash function to
produce a 160-bit identifier space represented by a 40 digit hex
key. The routing and location information is distributed among
network nodes; the topology’s consistency is checked on the fly,
and if it is lost or destroyed due to failures , it is easily rebuilt or
updated. Each node maintain a neighbor map which comprises
of multiple levels l. Each level l contains pointers to nodes whose
id’s must match with l digits with the current node. Each entry
in the neighbor map corresponds to pointer to the closest node in
the network whose id matches the number in the neighbor map,
up to a digit position.

Routing in Tapestry has as follows. Each identifier is mapped
to a live node called the root. If a node’s nodeID is G then it is
the root else use the routing table’s nodeIDs and IP addresses to
find the nodes neighbors. At each hop a message is progressively
routed closer to G by incremental suffix routing. Each neighbor



2.1 distributed hash tables 13

Figure 4: Tapestry component architecture. Messages pass up from
physical network layers and down from application layers.
The Router is a central conduit for communication.

map has multiple levels where each level contains links to nodes
matching up to a certain digit position in the ID. Because of this,
routing takes approximately log(BN) hops in a network of size
N and IDs of base B(hex : B = 16). If an exact ID can not be
found, the routing table will route to the closest matching node.
For fault tolerance, nodes keep c secondary links such that the
routing table has size c ∗ B ∗ log(BN). Figure 4 shows a typical
Tapestry component architecture.

2.1.5 P-Grid

P-Grid is the peer to peer protocol in which our work is based. It
was introduced by Karl Aberer and is an efficient self-organizing
infrastructure which can accommodate arbitrary key distribu-
tions (and hence support lexicographic key ordering and range
queries), while providing storage load-balancing and efficient
search by using randomized routing. The main characteristics of
P-Grid are the following:

• Arbitrary load-distribution over the key-space by preserv-
ing good balance over the stored data.



14 related work

• Efficient elaboration of range queries while simultaneously
supports arbitrary load-distribution over the key-space as
in real life scenario.

• Offers decentralized bootstrapping in the network and
hence easy merge of multiple P-Grid networks without
any deterioration in the load distribution.

• Replication mechanisms and also gossip based algorithms
in order to preserve replicated data up-to-date.

• A Self-referential directory is realized using to provide peer
identity persistence over multiple sessions.

• Query-adaptive caching is easy to realize on P-Grid to
provide query load-balancing where peers have restricted
capacity.

Figure 5: P-Grid trie example.

2.1.5.1 P-Grid Overlay topology

P-Grid[2][1] abstracts a trie14 and resolves queries based on pre-
fix matching. The actual topology has no hierarchy. Queries are
resolved by matching prefixes. This also determines the choice of
routing table entries. Each peer, for each level of the trie, main-
tains autonomously routing entries chosen randomly from the
complementary sub-trees. In fact, multiple entries are maintained
for each level at each peer to provide fault-tolerance (as well as
query-load management). For diverse reasons including fault-
tolerance and load-balancing, multiple peers are responsible for
each leaf node in the P-Grid tree. These are called replicas. The
replica peers maintain an independent replica sub-network and

14 A trie, or prefix tree, is an ordered tree data structure that is used to store an
associative array where the keys are usually strings. No node in the tree stores
the key associated with that node; instead, its position in the tree shows what
key it is associated with. All the descendants of a node have a common prefix of
the string associated with that node, and the root is associated with the empty
string. Values are normally not associated with every node, only with leaves
and some inner nodes that correspond to keys of interest.



2.2 range queries 15

uses gossip based communication to keep the replica group up-
to-date. The redundancy in both the replication of key-space
partitions as well as the routing network together is called struc-
tural replication. Figure 5 shows a P-Grid overlay topology.

2.2 range queries

Range Queries are a type of query in centralized databases that
retrieves all records where some value is between an upper and
lower boundary, the range boundaries. Distributed hash tables
which were described in section 2.1 more extensively , can sup-
port exact match lookup operations but due to the hashing that
is used for a more uniform load distribution among the net-
work, hobble to implement efficiently range queries. The uniform
hashing functions they use to achieve probabilistically good load
balance is disastrous for range queries. Range queries are based
on spatial locality which is however destroyed when keys are
uniformly hashed before entering the network. As a result, DHTs
cannot handle natively this kind of queries. Due to this drawback
of the widely used DHT’s many interest is given in the search of
efficient ways for answering range queries in DHT’s. Many ways
are proposed which target in maintaining the good characteris-
tics that DHT’s have established in conjuction with algorithms
which can handle the additional complexity of range queries.
Most notable are illustrated in following sections.

2.2.1 Space filling curves

A space-filling curve[12] is a curve whose range contains the
entire 2− dimensional unit square or for more dimensions the
entire k−dimensional unit hypercube. Intuitively, a "continuous
curve" in 2 or 3 (or higher) dimensions can be thought of as
the "path of a continuously moving point". To eliminate the
inherent vagueness of this notion Jordan in 1887 introduced the
following rigorous definition, which has since been adopted as
the precise description of the notion of a "continuous curve": A
curve (with endpoints) is a continuous function whose domain is
the unit interval. In the most general form, the range of such a
function may lie in an arbitrary topological space, but in the most
common cases, the range will lie in a Euclidean space such as the
2-dimensional plane (a "plane curve") or the 3-dimensional space
("space curve"). The most common space-filling curves widely
used in computer science are the following:

z-ordering curves :Z-ordering space-filling curves has locality-
preserving behavior and it is used in data structures for
mapping multidimensional data to one dimension. The z-
value of a point in multidimensions is simply calculated
by interleaving the binary representations of its coordinate
values. Once the data are sorted into this ordering, any
one-dimensional data structure can be used such as binary
search trees, B-trees, skip lists or (with low significant bits
truncated) hash tables.



16 related work

Figure 6: Z-order space-filling curve.

Figure 7: Hilbert space-filling curve.

hilbert curves :A major drawback of z-order curves is that it
does not preserve spatial locality. A more satisfying curve



2.2 range queries 17

on this matter is the Hilbert curve[11]. On the downside, the
algorithmic complexity of mapping K-dimensional points
to 1 dimension using the Hilbert curve makes z-ordering
usually a more desirable choice.

2.2.2 Range queries in P-Grid

As it was described above a range query comprises of a lower and
an upper bound and the results set is the data within this range
boundaries stored in the network. In P-Grid[4] boundaries are
represented by binary strings and and the range query retrieves
all element with keys between the two binary strings. The P-Grid
has to main algortihms in order to perfom a range query, both
have the same task but a different manner, the first is a sequential
approach and the second a parallel one.

Figure 8: Min-Max Traversal algorithm example.

sequential approach the min-max traversal algorithm

The Min-Max Traversal Algorithm[9] is based in sequential
processing of the query by locating the subsets of the query
in order. Subsequently only one peer performs a query at
the same time. Firstly the peer responsible for the lower
bound of the query is located, then the query is forwarded
to the peer which handle the next subset of the query until
all the query’s subsets are found, and so the query is final-
ized at the peer which has the last subset of keys in which
lies the upper bound of the query range. The described
algorithm has two major drawbacks which make implemen-
tation of range queries difficult. The first is that it requires



18 related work

additional links in the peers’ Routing tables except from the
existing and so cannot be used directly in the traditional
P-Grid infrastructure. Another drawback is that a single
peer failure can interrupt a range query search and so the
processing of the query may end up incomplete. Figure 8
shows a Min-Max Traversal algorithm example.

Figure 9: Shower algorithm example.

parallel approach the shower algorithm The Shower
algorithm[9] partially overcomes the drawbacks of the pre-
vious and is based in simultaneous processing of a query
by multiple peers. The main idea is to split the P-Grid tree
in subtrees and then delegate the query to arbitrary peers
in each subtree. The initial query is forwarded in paral-
lel to peers who have a part of the query result and then
this query is forwarded recursively to the other peers who
handle partitions of the query interval using each peer’s
routing table. Each peer discovers the peers who are regis-
tered in his Routing table and are responsible for a subset
of the current query, and then forwards the query to them
taking into account the relative position of the peer who
forwarded the query to him in the virtual binary tree. Al-
though it is possible to forward a query to a peer who does
not have part of the result set, the P-Grid infrastructure
guarantees that this peer will forward the query back to
a peer whose keys are lying inside the query key-range.
Despite the fact that this algorithm requires more messages
than the previous is less prone to peer failures and gives



2.3 load balancing 19

faster results. Our protocol supports the Shower Algorithm
for processing Range Queries. Figure 9 shows a Shower
algorithm example.

2.3 load balancing

Load balancing in peer to peer networks is a technique to dis-
tribute workload evenly across the network, in order to get op-
timal resource utilization, maximize throughput, minimize re-
sponse time, and avoid overload in peers. In peer to peer networks
load balancing algorithms try to achieve a more uniform distri-
bution of data among peers because an uneven data distribution
increases significantly the probability of overloading the peers
at which greater amount of data is assigned. Also try to achieve
a more uniform distribution of traffic among the peers consid-
ering the frequency of requests that each peer accepts, which is
defined by the popularity of data that each peer is responsible
for. Load balancing is a critical issue for the efficient operation
of a peer-to-peer networks as it increases system’s resistance in
single point failures and network consistency.

2.3.1 Load Balancing in CAN

The main load balancing methods on the CAN[8] peer to peer
protocol are the overloading of a coordinate zone and the use of
multiple hash functions. Both are described below:

Overloading coordinate zone: The basic CAN topology as-
signs a coordinate zone to a unique node in the network. Now
this attribute is modified and it is allowed to many nodes of the
network to share the same zone by defining a maximum number
of allowable peers per zone. Each node except from its neighbor-
ing list maintains a list of the peers that are responsible for its
zone and needs to keep information only about one peer of each
neighboring zone. Consequently there is no need for a node to
keep additional neighboring information but it is only necessary
to keep the state of all the peers which are co-responsible for its
zone. The overloading zones offer the following advantages:

• Reduce the path length and thus path latency, because
placing more nodes per zone has similar effect as reducing
the number of nodes in the system.

• Reduce per-hop latency because now a node has multiple
choices and at each hop can select the node which is closer
in TCP-IP level.

• Greater fault-tolerance because a zone is unaccessible only
if all the nodes of this zone had simultaneously failed.



20 related work

On the other hand the overloading zones increase system’s
complexity because nodes must additionally track a set of peers.

Multiple Hash functions: Instead of using the traditional one
hash function for key mapping the CAN uses k different hash
functions in order to map one key in k different points in the
coordinate space and simultaneously to replicate a single (key,
value) pair at k distinct peers in the network. The use of multiple
hash functions offers the following advantages:

• A key is unavailable only if all the nodes that are responsible
for the coordinate zones in which the k replicas of the
requesting key are lying, have simultaneously failed.

• Reduction of the average query latency because queries for
a particular key could be sent to all k nodes simultaneously.

• Queries for a particular key can be sent only to the node
which is closest and thus reduces per-hop latency.

The only drawbacks of multiple hashing is increased query
traffic in the case of parallel queries and also additional cost by
the increased size of the key database.

2.3.2 Load Balancing in Chord

As it was described in section 2.1.2 the Chord protocol uses con-
sistent hashing for key mapping which offers a even distribution
of keys in the network nodes. Additionally Chord makes the
distribution of keys to the nodes more uniform by associating the
keys to virtual nodes and then mapping these virtual nodes in
the real nodes, thus we succeed a more uniform coverage of the
identifier space. Adding virtual nodes as an indirection layer can
significantly improve load balance. The tradeoff is that each real
node now needs time as much space to store the finger tables for
its virtual nodes.

2.3.3 Load Balancing in P-Grid

Load balancing in P-Grid, as it is extensively described in [7],
is mostly based in storage balance algorithms which exploit the
topology of the overlay trie. Load balancing algorithms are based
in exchange interactions between two peers of the network and
are separated in exchanges between peers with common path
and non-common path.

Exchange interactions between peers with common path

• Become mutual replicas: If two peers meet during routing
and have common path and the total amount of stored data
is within the apprropriate limit they are willing to store,
they can create replicas of each other’s data.



2.4 p2p network simulators 21

• Extend paths: If two peers with the same path meet and
they are not able to store any more data then they can
extend their path by complimentary bits and then share
their total data according to their new paths. Similarly, if
peers meet where the path of one peer is a prefix of the
other peer’s path, the peer with the shorter path may decide
to extend its path by a complimentary bit, and then this
peer can split its data to the new nodes acoording to the
new paths.

• Retract paths: If two peers with exactly the last bit of their
path different meet, and together store less than their stor-
age ability then they may decide to retract simultaneously
their path. Similarly, if one peer’s path is prefix of another
peer’s path, the peer with the longer path might retract by
one bit, if it finds an amount of data in the corresponding
leaf nodes which does not exceed its storage ability.

Exchange interactions between peers with non common path

• Initiation of further exchanges: The most common case
where two peers meet randomly is to have incompatible
paths. In this case the peer with the longest path searches
for a registration in its routing table with path common
with the path of the other peer, and so we can implement
one of the previous exchanges between peers with compat-
ible paths. This shows that any exchange interaction can
be implemented as an exchange between two peers with
compatible paths.

• Exchange routing tables: This exchange method implements
the routing tables’ exchange between two peers without
no need for path compatibility between them. This method
sends a request for exchange RT from a peer to another and
then the recipient can accept it or not. If the exchange re-
quest is accepted by the recipient then the recipient should
send its RT to the sender, and the exchange action is com-
pleted.

2.4 p2p network simulators

Typical peer-to-peer networks involve thousands of computers.
They make heavy use of the network communication capabilities
of the underlying hardware and typically computers join and
leave continuously. These facts make researching and obtaining
experimental results for peer-to-peer networks a very difficult,
error-prone and time-consuming process. The only feasible way
to approach such problems is to use realistic simulation models
to extract useful information about the (virtual) network, before



22 related work

proceeding to real implementations. The academic community
has created many specialized simulation tools for a variety of
peer-to-peer networks. There is no single widely accepted frame-
work for performing experiments on peer-to-peer networks; each
individual solution has its own strengths and weaknesses and
often focuses on different aspects of the problem.

2.4.1 P2PSim

P2PSim15 is a discrete event packet level simulator that can simu-
late structured overlays only. It contains implementations of six
candidate protocols: Chord, Accordion, Koorde, Kelips, Tapestry
and Kademlia. Event scripts can be setup to simulate churn but
neither the churn north node failure statistics are exhaustive.
P2PSim can simulate node failures and both iterative and recur-
sive lookups are supported. Node IDs are generated by consistent
160-bit SHA-1 hashing.vDistributed simulation, cross traffic and
massive fluctuations of bandwidth are not supported. The C++
API documentation is poor, but implementation of other pro-
tocols can be built by extending certain base classes. Custom
event generators can also be implemented by extending a base
class. The P2PSim code suggests support for a wide range of
underlying network topologies such as end-to-end time graph,
G2 graph, GT-ITM, random graph and Euclidean graph, which
is the most commonly used. P2PSim developers have tested its
scalability with a 3, 000- node Euclidean ConstantFailureModel
topology.

2.4.2 PeerSim

PeerSim16 is an event-based P2P simulator written in Java, partly
developed in the BISON project and released under the GPL open
source license. It is designed specifically for epidemic protocols
with very high scalability and support for dynamicity. It can be
used to simulate both structured and unstructured overlays. Since
it is exclusively focused on extreme performance simulation at
the network overlay level of abstraction, it does not regard any
overheads and details of the underlying communication network,
such as TCP/IP stack, latencies, etc. Its extensible and pluggable
component characteristics allow almost all predefined entities in
PeerSim to be customized or replaced with user-defined entities.
For flexible configuration, it uses a plain ASCII file composed of
key-value pairs.

15 http://pdos.csail.mit.edu/p2psim/

16 http://peersim.sourceforge.net/

http://pdos.csail.mit.edu/p2psim/
http://peersim.sourceforge.net/


2.4 p2p network simulators 23

2.4.3 OverSim

OverSim[5]is a flexible overlay network simulation framework
based on OMNeT++, designed by Ingmar Baumgart and Bern-
hard Heep and Stephan Krause in 2007. It was designed to fulfill
a number of requirements that have been partially neglected
by existing simulation frameworks. OverSim includes several
structured and unstructured peer-to-peer protocols like Chord,
Kademlia and Gia. These protocol implementations can be used
for both simulation as well as real world networks. To facilitate
the implementation of additional protocols and to make them
more comparable OverSim provides several common functions
like a generic lookup mechanism for structured peer-to-peer
networks and an RPC interface. Several exchangeable underlay
network models allow to simulate complex heterogeneous un-
derlay networks as well as simplified networks for large-scale
simulations.

2.4.4 Rangesim++

Rangesim++ is a simulator based on PeerSim that supports cycle-
driven and event-based simulations. It is implemented by V.
Samoladas in C++ , which greatly improves the time of experi-
ments (about 100 times faster than its predecessor which is writ-
ten in Java). We have used this simulator to get our experimental
results for our proposed algorithms. Rangesim++ is described
more thoroughly in chapter 4.





3
O U R A P P R O A C H

In our approach the main target is to achieve a more uniform
load distribution among peers, we try to alleviate the overloaded
peers by transferring a portion of its load to the underloaded
peers of the network. In order to achieve that, we need a metric
which will represent a peer’s traffic. By traffic here we mean the
frequency that a peer accepts query requests. Consequently for
the needs of our research we introduce a load-factor for each
peer. The definition of load-factor is extensively presented in the
following sections. This load factor information is registered for
each peer neighbor as additional information in the routing tables
of a peer. In our implementation, in the routing tables except from
the existing information for each neighbor that the traditional
P-Grid overlay has, such as the peer’s path and its psychical
address, a load factor also stored for each neighbor. Every time
that a peer looks for the appropriate neighbor to forward the
query except from the position in the overlay network takes
under consideration and the neighbor’s load factor so as to avoid
increasing the load in already overloaded peers. The rerouting
algorithms used in this case are thoroughly presented in the
following sections.

3.1 assumptions

In order to focus in congestion control in P2P networks we need to
make some simplifying assumptions of the studied protocol.The
assumptions concern two major problems in the field of P2P
networks which concern fault tolerance in the topology level and
in application level.So our assumptions are the following:

• The underlying topology of the network is static, the net-
work size and its topology is predefined and so the peers
cannot enter or leave the network arbitrarily.

• The alternation of the P-Grid protocol which is used dur-
ing the experiments does not support any data replication
mechanisms, so every data item is assigned only to one
peer.

3.2 definition of load factor

Load factor is a quantity which represents the load at each peer
in the network according to the frequency of the query requests

25



26 our approach

that each peer receives. Each peer has an Input and an Output
channel which are simulated as two PSQueues queues 1 ,queues
with processing sharing policy. So the load factor of each peer
must reflect the load at both queues. In our approach we define a
load factor for the input and output channel of a peer respectively,
and then we calculate the peer’s load factor in relative with this
two quantities. We introduce two approaches for calculating
a channel’s load, the time average and the time average with
damping.

3.2.0.1 Time average utilization

In this approach we define as a channel’s load factor the utilization[6]
of a queue(a peer’s channel is simulated as a PSQueue as it was
described above) which is the fraction of the time that the queue
is busy to the total time at which the system is observed. As long
as the input and output channel of the peer are simulated as two
PSQueues this definition is valid.

U =
B

T

U : Utilization
B : The length of time which the queue is observed to be busy,

namely the time at which there are packages in the queue waiting
to be serviced

T : The length of time that we observe the queue, in our case is
the simulation time

Although this definition of the Utilization is quite represen-
tative for the traffic of a queue we encountered some problems
which may lead to inaccuracies. As the time passes and we ob-
serve the utilization of the queue, this quantity loses the ability
to reflect satisfactory the current state of a queue. For example if
we observe the queue for 1000s and the time at which the queue
is busy is 200s, we conclude at a first glance that the queue does
not have any difficulties of serving the packages. But we do not
know if the time of 200s at which the queue is busy is at the first
250s of observation, or at the last seconds of the observation or
if it is evenly distributed through the total observation time. So

1 This is a queue with Processor Sharing (PS) service policy. In our simulator
the implementation is a slight approximation. An accurate implementation
cannot be implemented, because the type at which simulation time is counted
is an integral type. For example, assume that we have two concurrent customer
arrivals with demands 2 and 3 respectively. Then, at time 1, another customer
arrives, with demand 2. The first customer’s exact departure time would then
be 2.5, which is non-integral!) In practice, if service times have large values (in
the thousands), the simulation is highly accurate. Thus, if accuracy is required,
the time units of the simulation must be chosen appropriately.



3.2 definition of load factor 27

it is possible that the queue did not have any packages at the
first 750s of observation and at the last 250s started to receive
packages constantly. This means that the utilization would be
U = 200s/1000s = 0.2 value which indicates that there isn’t any
increased service demand while it is possible to be.

3.2.0.2 Time average utilization with damping

In order to overcome previous approach’s problem we introduce
a time-weighed estimation of a queue’s utilization. In this second
approach we take into consideration except from the observed
value of the utilization, and the time at which this value is mea-
sured, in order to give increased importance in the most recent
observations. So each observation of a peer’s utilization is as-
signed with a weight according to the value of observation time,
the most recent observations are assigned with greater weights
and as the oldness of an observation is increasing the weights
decrease. This approach offer us the ability to have a more repre-
sentative view of a queue’s load state due to the fact that reflects
more effectively the current state of the queue without having
great distortions from the old observations of the studying quan-
tity. In order to assign the weights in the observed values of the
queue’s utilization we use an exponential frame with damping
rate λ, which decreases according to the observation time. We
define the time average utilization with damping 2, as follows:

Let φ(t) be a real function defined for t > 0.
Let µϕ(t) be the time average at t, with damping rate λ, ie.

µϕ(t) =
λ

1− e−λt

t∫
0

ϕ(τ)e−λ(t−τ)dτ

Now, assume that for t ′ < τ 6 t, φ(t) is constant i.e φ(t) = x.
Let ∆t = t− t ′. Also, let µ = µϕ(t) and µ ′ = µϕ(t

′).
Then,

µ = µ ′ + (x− µ ′)
1− e−λ∆t

1− e−λt

and

s = e−λ∆ts ′ + (x− µ)(x− µ ′)(1− e−λ∆t)

with

σ2ϕ(t) = µϕ2(t) − µ
2
ϕ(t) =

s

1− e−λt

According to the above we consider as the queue’s load factor
the mean value µ of the observed values of the queue’s Utiliza-
tion.

2 http://en.wikipedia.org/wiki/Moving_average

http://en.wikipedia.org/wiki/Moving_average


28 our approach

3.2.1 Definition of a peer’s load factor

The load factor of a peer is defined in relation with the load
state of its input and output channel. So in order to calculate
a peer’s load factor we check the values of each peer’s input
and output queues and then we conclude which is the load state
of the peer.So our approach is case-oriented and we define the
following four load states of a peer which are represented by the
values 1,2,3 and 4 respectively:

1. None of the two queues is overloaded or about to become
overloaded.

2. One or both queues are not overloaded but are about to
become.

3. One of the peer’s queues is overloaded.

4. Both input and output queues are overloaded.

By saying overloaded we mean that the utilization value tends to
become equal to 1 which means that from the beginning of the
observation until now a queue has constantly packages which
are waiting to be served.

3.2.2 Adjustment of the load factor for real P2P networks

In an experimental process at which simulations take place, the
observation of the quantities B and T is possible but in real life
scenarios the length of time that we observe a channel is not
easily measurable. In order to overcome this problem and to
make our approach more applicable to real P2P networks we can
substitute the variant T with the following alternative measures:

• The length of time at which a peer is in the network, the
time interval at which a peer joined the network until cur-
rent time. This definition might not be very efficient due to
the fact that the portion of time that each peer is observed
can be different with great variations, since the peers join
and leave the network constantly, and furthermore is tech-
nically difficult to measure a quantity for so big length
of time. In this case the time average utilization metric as
time passes becomes less representative of a peer’s traffic
while the time average utilization with damping does not
encounter similar problems.

• The second alternative is to define a time interval at which
all the peers’ load factor will be reseted and then will start
calculating of a peer’s utilization from the beginning. Since
our experiments’ duration is approximately 500s, and we



3.3 update algorithms 29

observe a good performance considering the estimation of
utilization, we assume that the second alternative is effi-
cient and the appropriate time-interval duration easy to be
chosen. Additionally the second alternative overcomes the
problems which appears the first approximation. In this ap-
proach both definitions of utilization perform satisfactory.

3.3 update algorithms

For each registration at a peer’s Routing Table we store the load
factor of the corresponding neighbor peer and also the time that
this load factor is estimated so as to know how recent is the
value of the stored load factor. This information about the neigh-
boring peer’s load must be up to date so as to take optimized
decisions about a more effective routing path without having or
creating additional load. Our aspect is that the registered values
of neighboring peers load must be as consistent as possible to the
real values of each neighbor load. So we introduce 5 algorithms
for efficient updating of the neighboring peers load information
which is stored in each peers Routing Table.

3.3.1 Piggy Bag

Every time a message is sent the sender peer sends with the
message its load factor. When the message will be received and
will be processed, the recipient will check if there is a registration
of the sender peer in its Routing Table, if there is the stored value
of load factor and the corresponding timestamp will be replaced
by the new.

3.3.2 Polling Periodically

We define a specific time interval which we call polling inter-
val in which each peer informs its neighbors about its recently
estimated load factor. When this time interval is elapsed the
peer sends a message at each peer registered in its Routing Table,
which contains the sender’s load factor. When a neighbor receives
a polling message from a peer it first checks its RT and if there
is a registration matched with the sender the stored load factor
is updated. Then sends its load-factor back to the sender of the
polling message. This offers us the ability to update the stored
values as often as we consider appropriate but creates additional
traffic to the network for the additional messages which need
to be sent. We also have a slight alternation of the polling peri-
odically algorithm where the neighbors are not obliged to send
back their load factors. We introduced this alternated algorithm



30 our approach

in order to reduce the quantity of additional messages which are
created by the polling, by keeping at the same time the ability to
attempt for an update as often as we wish.

3.3.3 Back of Routing Path

When a query is created, it must be forwarded inside the network
to be answered. During the forwarding the query goes through
many peers of the network which constitute the query’s routing
path. This algorithm stores the load factor of each peer which
is added to the routing path, and for each new added peer in
the routing path checks if there is a registration in the RT which
matches with a registration of the current routing path. If there
is the corresponding load factor is updated. This algorithm offers
updating without creating additional messages due to the fact
that the information is enclosed to the original messages.

3.3.4 Requesting for Common Neighbors

Figure 10: Example of common neihgbors update algorithm part 1.



3.3 update algorithms 31

According to P-Grid protocol a peer has at least one neighbor
for each different subtree of each different level of the underlying
trie. So every time a message is sent we also sent back of the
message information about the load of the sender’s neighbors
which correspond to the subtrees of levels smaller than the cur-
rent search level. This means that if the message is in search
depth l we send information for the neighbor peers until depth
l-1, namely for all the neighbors of all the existing subtrees except
the one that both sender and recipient belong to. We do this
because there is possibility some of the sender’s and recipient’s
neighbors for the corresponding levels to be common, and so the
load factor of the common neighbors is updated with the new
which is sent back of the message. This algorithm offers updating
without creating additional network traffic due to the fact that
the information is enclosed to the original messages. Figures 10

and 11 present a simple example of the algorithm.

Figure 11: Example of common neighbors update algorithm part 2.

At this point we need to notice that this algorithm does not
increases the message size significantly. Suppose that we have
a network that constitutes of 100000 peers. In the mean case a
peer has a Routing Table with O(logN) registrations, where N
is the network size. Now think that we are just one hop away
from the peer that has the answer and we need to store all load



32 our approach

information of the possible common neighbors’ of the current
peer with the destination peer, in the message we are sending. A
peer’s load factor is represented by a double variable of 8bytes,
and its store time by a long long int 64bits = 8bytes. A peer’s
pathid length differentiates according to the trie and can be from
1 toNbitswhereN the network size, but in the mean case is logN
bits = log100000 = 16bits. In order to store all the necessary
information we need :

RT_size∗ (pathid_size+ load_factor_size+ store_time_size) =

logN ∗ (logNbits+ 8bytes+ 8bytes) =

log100000 ∗ (log100000bits+ 16bytes) =

16 ∗ (16bits+ 16bytes) =

16 ∗ 18bytes =

288bytes =

2.88kbytes.

So it is feasible to support 2.8kbytes more per message.

3.3.5 Exchange Routing Tables

The exchange method implements the routing tables’ exchange
between two peers. This method sends a request for exchange
RT from a peer to another and then the recipient can accept it or
not. If the exchange request is accepted by the recipient then the
recipient should send its own RT to the sender, and the exchange
action is completed. The exchange requests can only be sent in
specific times during the simulation ,so we define an exchange
time interval, when this exchange interval is elapsed we check
if we need to do an exchange request to a neighbor. In other
words this exactly is the common exchange method of the P-Grid
protocol with the difference that the exchange take place only in
the two following cases:

• When the majority of the registered neighbors in the RT
have load factor values which indicate that they are over-
loaded.

• When the majority of the registered values of the neigh-
bors load factor are old and thus unrepresentative of the
neighbors load state, and so need to be updated.



3.4 rerouting algorithms 33

3.4 rerouting algorithms

Before introducing the new rerouting algorithms we must note
that we have two categories of forwarding. The first is the already
known common forwarding and the second is the just-routing
forwarding. The second takes place when the destination peer is
overloaded and the receiving of additional messages will hinder
the peer’s load state, in this case we just forward the message
without implementing any search mechanism until a properly
loaded peer in the corresponding search level is found. Until
this happens the forwarding messages transmit load information
among the peers which belong to the routing path and so we
don’t forward the messages with no purpose.

3.4.1 Dynamic Routing

Figure 12: Regular Routing in P-Grid. Initiating, forwarding and an-
swering a query.

In Dynamic Routing algorithm, when the destination peer3

is overloaded or is about to become, the least loaded neighbor
of the levels greater than the message’s current search level is
selected as destination peer instead of the original destination
peer. Here we need to mention that we cannot select neighbors
which correspond to level smaller than the current search level
as alternative destination peer, due to the fact that the search
would go back and forth and the search algorithm would not
operate at all. When the regular destination peer is overloaded,
we select an alternative destination peer and so the dynamic
routing is triggered, this routing continues until a neighbor of
the appropriate search level will be found not overloaded. When

3 Is the peer which is selected by the search algorithm as the appropriate peer
for the query to be forwarded, according to the range of the query



34 our approach

this happens the dynamic routing stops and we go on with
the regular forwarding. During the dynamic routing when the
search stops at the current level, we just transfer load information
among the peers using the update algorithms described above
until a neighbor of the corresponding level at which we stopped
the search will be found not overloaded. The functions below
implement Dynamic Routing and are methods of struct Peer :

Listing 3.1: Pseudocode of Dynamic Routing

%This function just sends a message at a peer.Has 4 arguments

, the query, the destination peer,

%the current search level and a boolean argument. The last

argument of the forwardMessage function is triggered if

the routing

%path has changed and so when the peer will process the

message, will act accordingly.

void ForwardMessage(Query query, Peer* destination, size_t

level, bool dynamic_routing_flag){

Message* msg=new Message(query);

%sends the message to a peer

send_message(destination, level, dynamic_routing_flag

);

}

%This functions checks if the regular destination peer is not

overloaded and acts properly.

smart_forward(Peer* destination, size_t level){

if (destination is saturated) then

Peer* new_destination=find_least_saturated_

neighbor(level);

if (new_destination==NULL) then

ForwardMessage(Destination, level, false);

%if we find a underloaded peer we forward the message

at it

else if (new_destination->load_factor<destination->

load_factor)

ForwardMessage(new_destination, level, true);

%if we cannot find an underloaded neighbor we send

the message to the regular destination

else

ForwardMessage(destination, level, false);

}

%This function finds the least saturated peer of the Routing

Table for level greater than the argument level.

%If all the neighbors in level grater than the argument

level are overloaded returns NULL

Peer* find_least_saturated_neighbor(size_t level){

bool flag=false;



3.4 rerouting algorithms 35

Peer* best_neighbor=new Peer();

best_neighbor->load_factor=worst_value;

%We search for an underloaded neighbor in level greater

than the current search level,

%because we don’t want the search information we have

until this search level for the current query

for(int i=level+1;i<RoutingTable.size();i++)

if(RoutingTable[i]->load_factor<best_neighbor) then

best_neighbor=RoutingTable[i];

flag=true;

if(flag) then

return best_neighbor;

else

return NULL;

} �
We present a simple example of the dynamic routing algorithm

in the figures below:

Figure 13: Initiating a query.

In figure 13 we see a small P2P network based in the P-Grid
overlay with 8 peers, the trie is balanced but this is of minor
importance. We observe that in the Routing tables the load factor
of each neighbor is also registered , this information is now used
during routing. Peer A creates a query and wants to forward it in
a subtree with prefix 1xx. As we observe the only neighbor of A
in the subtree with prefix 1xx is overloaded4. So A looks for the
least saturated neighbor in levels smaller than the current search
level which is level 0 for the moment. Peer A chooses Peer D and
forwards the query to it. We should notice that the search has
not started yet, A sends the query at D by informing D that the
current search level remains 0, see figure 14.

Peer D receives the query and check if it has the answer. Ob-
serves that it does not have the answer and looks for a neighbor

4 In section 3.2.1 we present the values of the peer’s load factor and we defined
that the value 3 indicates that at least one of the peer’s channel is overloaded



36 our approach

Figure 14: The regular destination is overloaded, we do rerouting.

to forward the query. The query must be forwarded at peer H ,
D sees that neighbor peer H is not overloaded and forwards the
query at H with search level 1. The query now has a prefix 1. See
figure 15.

Figure 15: Regular Routing, D forwards a query at H.

Peer H receives the query, checks if it has the answer, it does
not and so the query needs to be forwarded at a neighbor in level
2. The neighbor F in level 2 is overloaded (see figure 16), so we
look for an underloaded neighbor at levels greater than 2.

The only neighbor in level greater than 2 is G and is not over-
loaded. H forwards the query at G (see figure 17) by preserving
the search level to 1 because of rerouting. If G was overloaded
the query would be forwarded to regular destination F because
all the alternative destination peers would be overloaded.

Peer G receives the query, checks if it has the answer and it
does not, so it looks for a neighbor at level 2 to forward the



3.4 rerouting algorithms 37

Figure 16: Regular destination is overloaded.

Figure 17: Peer H reroutes the query at G.

query. Peer E the neighbor for level 2 is not overloaded and so G
forwards the query at E by increasing the search level at 2. Now
the query has the prefix 10x, see figure 18.

Peer E receives the query and checks if it can answer it. Peer
E sees that it has the answer for the query with prefix 100 and
the search is completed (figure 1). We observe that every time
we reroute a query the P-Grid overlay guarantees that the al-
ternative destination peer will have a neighbor for the level at
which we stopped the search and so it will continue normally
after one additional hop.

3.4.2 Dynamic Routing with restricted number of additional hops

This algorithm is similar to the previous. The difference is that
the query’s regular routing can change only for a specific number



38 our approach

Figure 18: Regular routing, Peer G forwards the query at E.

Figure 19: Peer E answers the query.

of times which are defined by the variable maximum additional
hops per message which is given from each experiment’s config-
uration file. This means that if the destination peer is overloaded
then we can select another neighbor as destination peer, but we
can to this successively for a restricted number of times which
is defined by the variable max_hops. The pseudocode below
implements the current type of routing.

Listing 3.2: Pseudocode of Dynamic Routing with Restricted number
of additional hops per query

%The variable max_hops is global and it is defined from the

configuration file for each experiment respectively

smart_forward(Peer* Destination,size_t level,Process* proc){

if (Peer_is_saturated(Destination)&&current_hops<max_

hops) then

Peer* NewDestination=find_least_saturated_

neighbor();



3.4 rerouting algorithms 39

proc->current_hops++;

if(NewDestination==NULL) then

ForwardMessage(Destination,level,false);

proc->current_hops=0;

else if(NewDestination->load_factor<Destination->load_

factor)

ForwardMessage(NewDestination,level,true);

proc->current_hops++;

else

ForwardMessage(Destination,level,false);

proc->current_hops=0;

} �
The other functions remain as were described above.

3.4.3 Best Neighbor Dynamic Routing

This algorithm is quite simple but similar to the previous. It can
be implemented under the condition that we have 2-dimensional
Routing Tables. Every time that we should forward a query we
select the least loaded neighbor for the corresponding search level,
instead of a random neighbor selection, and forward the message
to it. Also we need to notice that we still use the load information
that we store for each neighbor so as to get a more optimized
forwarding without creating additional routing messages (as we
did in the two previous algorithms) and this is a case that we
consider interesting to study.





4
S I M U L AT I O N F R A M E W O R K

A brief overview of the total work will be presented in this chap-
ter. At first we will present the Datasets and the corresponding
Querysets used during the experimental process. We will then
give an abstract description of the Rangesim simulator which was
used during the simulation process. Finally we will thoroughly
describe the simulation framework for evaluating our proposed
P-Grid protocol with range query support.

4.1 datasets/querysets

The Datasets used during the simulation are the following:
Greece: This dataset was constructed from real geographic

data retrieved from the R-treeportal1. It contains random points
distributed throughout the road network of Greece.

Hypersphere: This dataset contains points distributed on a
hypersphere2.

Figure 20: Dataset and Queryset - Greece.

For each of these datasets, three querysets were created re-
spectively containing 30000 queries. Each query returns approx-

1 http://www.rtreeportal.org/

2 The n-hypersphere (often simply called the n-sphere) is a generalization of the
circle (called by geometers the 2-sphere) and usual sphere (called by geometers
the 3-sphere) to dimensions n >= 4. The n-sphere is therefore defined (again,
to a geometer; see below) as the set of n-tuples of points

(x1, x2, ..., xn)

such that

x21 + x
2
2 + ... + x2n = R2

where R is the radius of the hypersphere.

41

http://www.rtreeportal.org/


42 simulation framework

imately 50 keys as an answer. A query is a rectangle, centered
around a randomly chosen point of the dataset. Thus, the distri-
bution of query ranges is similar to the distribution of datasets.

Figure 21: Dataset and Queryset - Hypersphere.

4.2 network simulation

In this section we will present the simulation framework that
we implement in order to obtain our experimental results. Our
framework is based on the Rangesim++ simulator which is based
in PeerSim and fully supports peer to peer network experiments.
Rangesim supports some basic DHT’s including a simple imple-
mentation of the P-Grid protocol in which our research focuses
on. The main features of the Rangesim++ framework are:

• A convenient logging library to export information and
results during the simulation process.

• A library used to seed statistical metrics, valuable for each
experiment, during the simulation process.

• Supports both event-driven and cycle-based simulations.

• Random number generation facilities.

• Data point, Range and Queryset classes for Multidiamen-
sional Range Search.

• It is fully configurable.

• Supports data balancing such as volume balancing algo-
rithms concerning data distribution among the network.

4.2.1 Cycle-based and Event-driven simulation

As it was mentioned above our framework supports both cycle-
based and event-driven simulation models which are presented
below.



4.2 network simulation 43

In the cycle-based model there is direct communication be-
tween peers in order to alternate the control of the simulation on
a sequential order. When a peer has the simulation control can
act arbitrarily, perform computations or call methods of other
objects. This model is far simpler than the second but lacks on
realism according to the real peer to peer networks behavior and
functionality.

In the event-driven model we have a global simulation time and
each operation is associated with a time delay. Each event carries
a timestamp, a time-related information, and the event handling
is conducted according to the time priority of the events which
are sorted in a queue. The event whose the timestamp is closer
to the global simulation time is processed first, then we perform
the predefined operation and finally we define a new timestamp
which is the sum of the old timestamp and the corresponding
delay of the executed operation. A process can be enacted from
any peer in the network and at any simulation time, peers may
receive messages from other peers as part of this process. After
processing an incoming message, the peer produces a number
of outgoing messages to continue the process and goes on. The
event-driven model is far more realistic than the cycle based
because simulates effectively the synchronous behavior of the
real peer to peer networks where all the peers can operate in
parallel. Also continuous time delays such as communication
latencies can be simulated with great accuracy.

In our experimental framework we use the event-driven simu-
lation due to its great similarity with the real life scenarios. Also
due to the fact that our research focuses in network traffic load
it was more convenient to compute and measure our metrics in
this simulation model where all the peers operate in parallel.

4.2.2 Rangesim++ Design Structure

The Rangesim++ simulator is designed to be fully configurable in
order to make modular programming easier and to avoid repeti-
tive recompilation processes. A simple configuration file is the
argument to the simulator, given as a command line parameter.
The configuration contains all the simulation parameters con-
cerning all the objects involved in the experiment. The simulator
reads the configuration file and sets up the network, initializing
all the simulation parameters which were given through the con-
figuration file. The input parameters defined in the configuration
file are the following:

• Definition of Datasets and Querysets.

• Network size meaning the number of peers which constitute
the network, we can define multiple sizes.



44 simulation framework

• Repetition number for each experiment.

• Network construction algorithm and topology.

• Total simulation time.

• Boolean flags for triggering the update algorithms of our
protocol.

• Time variables which define how often the peers will do
exchange and polling.

• For the dynamic routing algorithm with restricted number
of hops the variable which defines the maximum number
of continuous hops.

• The dimensions of the peers’ Routing Tables, depth and
length.

• The channel latencies for the peers’ input and output chan-
nel respectively.

• Report path where the results of each experiment are stored.

Listing 4.1: An example of a configuration file

simulator = "PGridDES";

# rndgen_seed = 342898233;

%Information for the dataset and the queryset

workload = {

dimension=2;

datafile = "workloads/D1M.dat";

queryfile = "workloads/Q10K.dat";

};

%Information for the wokload’s parameters

simulation = {

% N.B. this is a double for precision reasons (

internally time is 64-bit integral)

maxtime = 500.0e6; # (in microseconds)

polling_back=false;

polling_interval=5000000;%5 sec

exchange_interval=50000000;%50 sec

process_path=true;

common_neighbors=true;

max_no_hops=100000;

load_factor=false;

utilization=true;

damping_flag=true;

damping_rate=50000000;%50 sec

};

%Information for the network model

network = {

repeat = 1;

size = [100000];



4.2 network simulation 45

topology = "volume";

peer_model = {

input_channel = {

message_latency = 500.0E3;

};

output_channel = {

message_latency = 1000.0E3;

};

user_think_time = 3.E5;

};

rt_depth=32;

rt_length=3;

};

%Information for the result path

reports = {

path = "results/damping_50s_think_time_0.3s/id_

pgrid_damping_50s_first_hops_unlimited_volume
_Q10K_100000_8_outp$Nr$R";

perrun_path = "results/";

fileset = {

Rformat = false;

Perrun = true;

Topology= false;

};

}; �
4.2.3 Classes Description

A brief description of the classes our framework consists of, is
given in the following table:

Class Description, Attributes and Methods

Simulation Holds all the configuration parameters of
each experiment. Has the simulation
time, a vector with pointers to all the
peers of the network. A vector with all
the Datasets and a vector with all the
Querysets. Also holds a pointer to the
P-Grid trie root.



46 simulation framework

Peer Is a virtual peer. Holds a 2-dimensional
Routing Table, a pointer to the
corresponding trie node, and an input
and output channel object. Also has all
the variables necessary for the
computation of the load factor. Finally
holds statistic variables regarding the
messages, the processes and the load
factor. Also has methods that implement
all the update and rerouting algorithms
of our proposed protocol.

SimOrchestration Main class orchestrating a whole P-Grid
simulation. Reads the input parameters
creates the simulation objects and
initiates all the necessary variable
regarding each experiment.

InputChannel & OutputChannel Holds variable concerning the channel
latency and also all the variables needed
for the computation of the channel’s
utilization. Also has methods regarding
the scheduling of the queue, the
receiving and the sending of the
messages.

TrieNode Holds a bitstring denoting its path from
the root and a pointer to the trie root.
Also holds the data range that occupies
and pointers to its parent and children.

PeerNeighbor Implements a registration in a peer’s RT.
Holds a pointer to the corresponding
neighbor, its load factor and the
calculation time for it.

RoutingTable Is a 2-dimensional table. Implements all
the methods, for finding, updating a
neighbor’s load factor, replacing a
neighbor with another etc.

InfoTraffic It is the class used for transmiting
information for the peers’ load state. It is
used by the update algorithms in order
to transmit as less information as
possible. Contains the unique pathid of
the trie node, the load factor of the
corresponding peer and its calculation
time.

Process A process object is responsible for
initiating, searching and answering a
query. Creates all the necessary number
of messages in order to complete a query.
Holds a pointer to the initial peer, a
pointer to the query and a pointer to the
corresponding simulation object.



4.2 network simulation 47

Message A message is sent in the context of a
process. Holds a pointer to the recipient,
a pointer to the sender and a pointer to
the corresponding process. Also holds
information about the creation time, the
transmition time, the load state of the
sender, and all the flags concerning the
triggering of the update and rerouting
algorithms.

Statistics This class implements the statistic
collection for each experiment,
concerning the number of messages, the
process duration, the load of the peers,
the load of the network etc.

4.2.4 Topology Construction

Before starting the simulation the network needs to be con-
structed according to the P-Grid protocol topology, each peer
must be assigned with links to other peers in order to perform
searching operations in the network. Each protocol has specific
algorithms which are executed when a peer wants to join the
network. These algorithms in general involve at least one peer
of the network, sending a join request to him, taking a part of
the network data under responsibility and gradually obtaining
network links to other peers so as to forward queries to other
peers.

Our research focuses on the stable state of the system, the
network size is given from the configuration file, the underly-
ing topology of the network is static and is constructed at the
beginning of each experiment and so the peers cannot join or
leave the network arbitrarily. Although in peer to peer networks
peers join and leave continuously and thus a global stable state is
impossible to achieve, the assumption of a stable system provides
some significant advantages when analyzing each network’s per-
formance.

First of all, the performance achieved in the stable state reflects
the optimal ability of the network to retrieve answers to queries.
Thus this assumption enables us to identify the upper bound
associated with each network’s performance. More importantly,
when we compare two peer to peer systems in their stable state,
we actually only compare the effectiveness of their algorithms for
locating data items. If we were comparing the systems in their
transient state, not only would the results be inevitably affected
by the effectiveness of the algorithms for node join, node removal



48 simulation framework

and node failure but would also be affected in an unforeseeable
and unmeasurable way.

In our framework we used two different topology construction
algorithms the Data-Balanced and the Volume-Balanced which
are presented below:

Data-Balanced Algorithm: Suppose that we start from a net-
work aparted from two peers, the total datakey space is already
splitted in half and so each one of them holds half of the total
amount of the datakeys. Each time that a peer wants to join the
network selects uniformly at random a key from the indexed
dataset. Then the new peer through the P-Grid trie locates the
peer that holds the selected key, this peer is called mate, and asks
to join the network. When this happens the mate peer splits the
datakey space that he owns and shares it with the new joined
peer. After that both peers , the mate and the new peer, are as-
signed with new pathid’s in order to obtain a new position in the
underlying P-Grid trie, the mate’s pathid comes from his old con-
catenated by a 0 at the end and the pathid of the new peer comes
from the mate’s old pathid concatenated by a 1 at the end.As a
result the mate peer becomes left child and the new peer becomes
a right child of the P-Grid trie. This procedure is repeated until
the network size becomes the required (which is defined in the
configuration file). Thus, existing nodes are selected for splitting
with probability proportional to the amount of data they store.
This strategy tends to equalize the amount of data assigned to
nodes, but is an open question whether it equalizes load as well.

Volume-Balanced Algorithm: Is similar in structure to the
Data-Balanced algorithm with the great difference that the new
peer instead of selecting a key from the indexed dataset selects
uniformly at random a point from the multidimensional search
space. The rest of the steps are the same with the previous al-
gorithm. Thus, existing nodes are selected for splitting with
probability proportional to the volume of their assigned space
partition. This strategy tends to equalize the volume of space
assigned to nodes, but possibly not the load among peers.



5
A N A LY S I S

In this chapter at first we will present a description of the metrics
used to evaluate our proposed protocol. Then we will present
the workloads which where executed during the experimental
process. We will thoroughly examine the efficiency of the pro-
posed rerouting and update algorithms and we will present and
comment the graphs with the results of our experiments.

5.1 metrics

Before the description of the metrics which were studied we need
to introduce the reader to the types of messages of our protocol.

1. Regular Messages : the messages which are created and
forwarded during the search of a query in the network such
us in the traditional P-Grid protocol.

2. Rerouting Messages : the messages which are created and
forwarded by the rerouting algorithms.

3. Polling Messages : the messages which are created by the
polling periodically update algorithm.

4. Exchange Messages: the messages which are created by
the exchange update algorithm.

Due to the fact that our research is based in event driven
simulation our metrics are classified in the two following types:

1. Metrics which emerge from the mean values of the observed
measurements at the end of each experiment.

2. Metrics which are observed and measured during the exe-
cution of an experiment.

In the first category we observed and study the following
metrics:

• The mean response time per process: For an experiment
we measure the duration of all the completed processes
and then we calculate the mean process duration which
we call mean response time per process. With this metric
we can observe how the additional messages created by
the rerouting algorithms can influence the duration of a
process.

49



50 analysis

• The mean response time of the peers’ input channel: Each
message waits an amount of time in the input channel. This
time is computed from the time that a message enters the
channel until the time that is serviced. We calculate the
mean response time of the input channel of each peer, and
then the mean response time of the input channel of all the
peers in the network. The observation of this quantity can
show us if our protocol can influence the response time of
a channel.

• The mean response time of the peers’ output channel: is
measured the same way as in the input channel.

• Mean number of messages per process.

• Total number of regular, rerouting, polling and exchange
messages. These quantities can show us the amount of the
extra messages that our protocol uses in order to achieve
good load balancing.

• Total number of exact matches for each update algorithm.
As it was described in section 3.3 the update algorithms
were designed in order to diffuse information about the
peers load state by transmitting their load factors in their
neighbors. With this metric we can measure and compare
the effectiveness of the proposed update algorithms by
examining the registered values which were updated by
each algorithm.

• Network Throughput Throughput is the maximum rate of
queries that a P2P network can sustain without any peer
becoming overloaded.

In this category we study and observe the metrics and also
their variations during the simulation time. This mean that we
observe and keep their values for many different times during the
simulation in order to study more thoroughly their fluctuations.
These metrics are the following:

• The number of overloaded peers in the network. This met-
ric shows the number of the peers in the network which are
overloaded or are about to become in relation with the total
number of the participant peers, for a specific simulation
time. The observation of this quantity at very close times
can give us a representative view considering the peers
which confront increased traffic load, for each moment dur-
ing the experiment execution. We calculate this number
based in each peer’s load factor (the peers’ load states are
thoroughly described in section 3.2.1). This metric reflects
significantly the load in the network. Moreover by using



5.1 metrics 51

this metric we can easily examine the efficiency of our pro-
tocol and get significant information about the network’s
consistency.

• The mean utilization of the input channel. For the calcu-
lation of this metric we observe the utilization of the input
channel of all the peers in the network and then we calcu-
late the mean value of the observed samples for a specific
time during the simulation. This metric offers us the same
observation abilities with the previous and can also show
us the portion of the load that accumulates in the input
channel of the overloaded peers.

• The mean utilization of the output channel. This metric is
calculated as the previous. Moreover it offers us equivalent
with the previous observation abilities but for the output
channel.



52 analysis

5.2 workloads

Figure 22: Workload schema.



5.2 workloads 53

In order to evaluate the performance and the effectiveness of our
protocol it was necessary to simulate two batches of experiments.
At first we simulated the traditional P-Grid protocol with all the
different datasets and querysets changing simultaneously the
rest of the configuration parameters such as channel’s latency,
network size etc. Then we simulated our protocol for the same
scenarios, testing at the same time it’s performance, using dif-
ferent combinations of our update and rerouting algorithms. In
order to achieve as optimized network performance as possible
we performed a wide number of experiments. Here we need to
mention that we implemented also many experiments so as to
obtain optimized values for some measurements which constitute
network’s characteristics. For example it was necessary to per-
form many experiments in order to have an efficient classification
of a peers load state, state which will reflect satisfactory the peer’s
load without exaggerating or underestimating its load. Also we
examined the frequency that the peers should implement an ex-
change request. The exchange could not be done very frequently
because this would result in great additional load because of the
increased amount of the created exchange messages. It could not
be done rarely either because it would be inefficient. The execu-
tion of many different experiment scenarios was necessary for
the definition of similar values, which during the design of the
protocol were inexplicit and needed to be estimated through the
experimental process in order to obtain optimized performance.

Our experiments span in the following domains:

• Parametres of the proposed protocol

1. The two approaches of calculating a channel’s load
and peer’s load (section 3.2).

– Time average utilization.

– Time average utilization with damping.

2. The three rerouting algorithms (section 3.4).

– Dynamic Routing.

– Dynamic Routing with restricted number of addi-
tional hops.

– Best Neighbor Dynamic Routing.

3. The six update algorithms (section 3.3).

– Piggy bag.

– Polling Periodically.

– Polling Periodically and back.

– Back of routing path.

– Requesting for common neighbors.

– Exchange routing tables.



54 analysis

• Parametres of Scalability and network characteristics.

1. Dataset.

– We used two different datasets as they were de-
scribed in section 4.1.

2. Queryset.

– We simulated 3 different querysets for each dataset.

3. Data Balancing Algorithms. We used the following
data balancing algorithms (see section 4.2.4).

– Data-Balanced.

– Volume-Balanced.

4. The network size.

– For each experiment we simulated 9 different net-
work sizes 1000, 5000, 10000, 20000, 30000, 40000,
50000, 60000 and 100000 peers.

5. The repetition number for each experiment.

– In order to get reliable and realistic results we run
each experiment for 30 repetitions.

Due to the fact that we have a great number of protocol and
scalability parameters we executed a wide number of experiments
and consequently we had a great amount of results to process. In
order to avoid any confusion we present the workload schema
(see figure 23) which includes all the experimental scenarios. We
would also like to add that for each of the following presented
cases the results and the graphs are representative of the total
network’s behavior.

5.3 protocol evaluation

In this section we will present and comment on the graphical
plots which were generated from our experiments. We will see
how our protocol performs in comparison with the traditional
P-Grid protocol . This procedure includes the evaluation of the
two methods of utilization calculation and also of the proposed
rerouting and update algorithms for each method respectively.
Then we will measure and comment the perfomace of the update
algorithms. Finally we will evaluate the protocol’s scalability
according to the scalability parameters which where described in
the previous section.

5.3.1 Rerouting algorithms evaluation.

In our protocol we introduced three rerouting algorithms Dy-
namic Routing, Dynamic Routing and Best Neighbor Dynamic



5.3 protocol evaluation 55

Routing . At first we will present the results for the time average
utilization. In the figure 24 we see the percentage of overloaded
peers for the traditional P-Grid protocol and our proposed proto-
col for the Dynamic Routing algorithm.

Figure 23: Number of overloaded peers for the traditional P-Grid pro-
tocol and our protocol with the Dynamic Routing algorithm
. All the update algorithms are activated except from polling
and exchange.

Examining the figure 24 we can observe the following

• The percentage of overloaded peers is barely higher in our
protocol at the start but then converges gradually to smaller
than the base case.

• The converge of our protocol to smaller percentage of over-
loaded peers than the base case is faster for greater network
sizes.

• The final reduction in the percentage of overloaded peers is
about 25 to 30 percent.

In order to study the distribution of a peer’s load in the input
and output channel and the way that the reduction in the number
of overloaded peers is reflected in a peer’s load we plotted the
mean utilization for the input and output channel respectively.
In figures 25 and 26 we see the mean utilization of the peers’
input and output channel for the Dynamic Routing algorithm
with time average utilization.



56 analysis

Figure 24: Mean Utilization of the input channel for the traditional
P-Grid protocol and our protocol with the Dynamic Routing.
All the update algorithms are activated except from polling
and exchange.

Figure 25: Mean Utilization of the output channel for the traditional
P-Grid protocol and our protocol with the Dynamic Routing.
All the update algorithms are activated except from polling
and exchange.

These figures can lead us in the following conclusions:

• The mean utilization of both input and output channel is
smaller for our protocol. Finally the reduction ends up to
10 to 12 percent for both channels.

• The reduction of the mean utilization for both channels
increases as the percentage of overloaded peers decreases
during the simulation time.

In the figures 27, 28 and 29 below we present the same metrics
for the Best Neighbor routing algorithm.



5.3 protocol evaluation 57

Figure 26: Number of overloaded peers for the traditional P-Grid pro-
tocol and our protocol with the Best Neighbor algorithm. All
the update algorithms are activated except from polling and
exchange.

Figure 27: Mean Utilization of the input channel for the traditional
P-Grid protocol and our protocol with the Best Neighbor
algorithm. All the update algorithms are activated except
from polling and exchange.



58 analysis

Figure 28: Mean Utilization of the output channel for the traditional
P-Grid protocol and our protocol with the Best Neighbor
algorithm. All the update algorithms are activated except
from polling and exchange.

From the above figures we observe the following:

• The Best Neighbor algorithm converges slower than the
Dynamic Routing algorithm as far as it concerns the per-
centage of overloaded peers.

• Despite the slower converge of the Best Neighbor algorithm
the utilization of input and out channel tend to reduce
gradually, a reduction which ends up to 10 percent for both
channels.

• The additional messages which are created by the Dynamic
Routing Algorithm contribute significantly in a faster alle-
viation of the overloaded peers of the network.

Here we need to mention that the Dynamic Routing with
Restricted number of hops Algorithm has similar behavior with
the Dynamic Routing Algorithm.

In order to study how the rerouting algorithms impact to the
network’s response time we need to examine some more metrics.
These metrics are the mean process response time, the mean
input and output channel response time and the throughput
of the network. Figures 30 and 31 show these metrics for the
Dynamic Routing algorithm in comparison with the base case.



5.3 protocol evaluation 59

Figure 29: Process, input and output channel’s response time for the tra-
ditional P-Grid protocol and our protocol with the Dynamic
Routing . All the update algorithms are activated except
from polling and exchange.

Figure 30: Network Throughput for the traditional P-Grid protocol and
our protocol with the Dynamic Routing . All the update
algorithms are activated except from polling and exchange.

We observe that in our case we have a negligible increase of the
mean process duration and also of the output channel response
time while the response time of the input channel remains the
same. This means that the rerouting deteriorates scarcely the
network’s response time and that is the reason why we observe
a small reduction in the network’s throughput. Also we need to
notice that the results for the Dynamic Routing with restricted
number of hops and the Best Neighbor Routing are equivalent to
the presented case, so the increase in the network’s response time
can be partially attributed to the additional rerouting messages
which increase the process response time. We might expect that



60 analysis

the reduction in the mean utilization of the input and the output
channel would lead in a equivalent reduction in their response
time. Here we need to notice that the amplitude of this reduction
could only lead in negligible reduction in the channel’s response
time, we need to achieve much greater reduction in order to
have obvious results in the channels’ response time. Also for
the output channel we observed that despite the reduction of
the mean utilization, we have a small increase in the channel’s
response time. In order to understand this behavior we need to
observe figure 32.

Figure 31: Mean output channel’s queue length for the traditional P-
Grid protocol and our protocol with the Dynamic Routing.
All the update algorithms are activated except from polling
and exchange.

In figure 32 we see the mean length of the output channel
for the base and the optimized case. We observe that the mean
length of the output queue is negligibly but steadily increased,
this means that each message needs to wait for greater time in
the output channel in order to be served. This fact leads in the
increase of the output channel’s response time. Our algorithms try
to alleviate the load in the overloaded peers so the additional load
is distributed to underloaded peers. The previously underloaded
peers remain underloaded but their total load is increased due to
the additional messages that they accept because of the rerouting.
We should also explain how a reduction in the utilization of a
channel can lead in the increase of its queue length and moreover
to the deterioration of its response time.



5.3 protocol evaluation 61

Figure 32: Utilization of two different example channels.

If we observe figure 33 we see the utilization of two different
channels respectively. We see that for the first channel we have

U =
BusyTime

ObservationTime
=
60sec

150sec
= 0.4

and for the second channel we have

U =
BusyTime

ObservationTime
=
80sec

150sec
= 0.53

Also we observe that the first channel is busy for greater amount
of continuous time than the second but despite that the first
channel has smaller utilization. This continuous busy time of the
queue leads in the increase of the queue length and moreover in
the increase of the channel’s response time without any increase
in the channel’s utilization. So we conclude that a reduction in
the channel’s utilization does not necessarily leads in an response
time reduction. The response time has to do mostly with the
arrival rate of the messages.

Now we will present the results for the second way of the
utilization calculation, the time average with damping, for the
same with the above workload in order to compare the two
calculation methods. In the following figures 34, 35, 36, 37 and
38 we see the percentage of the overloaded peers, the mean
utilization of input and output channel, the response time of the
system and the network’s throughput for the traditional P-Grid
and our protocol.



62 analysis

Figure 33: Percentage of overloaded peers for the traditional P-Grid
protocol and our protocol with the Dynamic Routing with
damping utilization. All the update algorithms are activated
except from polling and exchange. Damping rate 50 s.

Figure 34: Mean utilization with damping of the input channel for
the traditional P-Grid protocol and our protocol with the
Dynamic Routing. All the update algorithms are activated
except from polling and exchange. Damping rate 50 s.



5.3 protocol evaluation 63

Figure 35: Mean utilization with damping of the output channel for
the traditional P-Grid protocol and our protocol with the
Dynamic Routing. All the update algorithms are activated
except from polling and exchange. Damping rate 50 s.

Figure 36: Process, input and output channel’s response time for the tra-
ditional P-Grid protocol and our protocol with the Dynamic
Routing with damping utilization. All the update algorithms
are activated except from polling and exchange. Damping
rate 50 s.



64 analysis

Figure 37: Network Throughput for the traditional P-Grid protocol
and our protocol with the Dynamic Routing with damping
utilization. All the update algorithms are activated except
from polling and exchange. Damping rate 50 s.

From the above figures we can conclude:

• The calculation of utilization with damping which assigns
greater weights in the most recent utilization values shows
us that the utilization is reduced significantly as the simu-
lation time elapses. This means that with the time average
method we have relatively high values of utilization at the
start of the simulation which need time in order to depreci-
ate. So we need to observe many small values of utilization
in order to eliminate the effect of the first observed high
utilization values and that is the reason why with the time
average method the system needs more time in order to
perform better than the base case.

• The utilization of the input channel is reduced 20 to 25
percent while the utilization of the output channel is re-
duced 50 to 60 percent.

• The number of overloaded peers tends to zero, fact which
indicates a reduction of 100 percent for the specific work-
load where we have a small number of overloaded peers in
the base case.

• The reduction of the above metrics tends to stabilize from
the beginning of the simulation for the utilization with
damping while in the time average utilization needs greater
time in order to converge.

• The second method has better behavior as far as it concerns
the percentage of overloaded peers but despite that, we
observe a small deterioration in the network’s response



5.3 protocol evaluation 65

time, fact which leads in an equivalent reduction in the
network’s throughput.

• We observe zero number of overloaded peers, fact which
shows us that the Dynamic routing algorithm was not trig-
gered and the optimization at the system’s performance is
attributed only to the Best Neighbor rerouting algorithm
which does not inquires additional rerouting messages. By
this observation we can conclude that in our case where
we have 2 dimensional Routing Tables there always is an
underloaded neighbor at which we can forward the mes-
sage regularly when the network has a medium total load.
This indicates that only the existence of a variable which
holds information of a peer’s load state, without the addi-
tional rerouting messages, can easily lead in the creation of
alternative routing paths which do not burden the already
overloaded peers of the network. Here we need to mention
that in the base case we have also 2 dimensional Routing Ta-
bles where the selection of the destination peers is random
among the corresponding level registrations.

Also we should mention that we executed experiments for the
time average utilization with damping, with damping equal to 5

seconds and 100 seconds respectively and we got similar results
with the presented where we have damping equal to 50 seconds.

In order to evaluate the performance of the other two rerouting
algorithms we need to examine them in heavier workloads. In the
figures 39, 40, 41, 42, 43, 44, 45 and 46 we present the percentage
of overloaded peers and the mean utilization of input and output
channel for a heavier workload with damping rate 50s.



66 analysis

Figure 38: Percentage of overloaded peers for the traditional P-Grid
protocol and our protocol with the Dynamic Routing with
damping utilization for network sizes 40000 and 50000 peers.
All the update algorithms are activated except from polling
and exchange. The damping rate is 50s.

Figure 39: Percentage of overloaded peers for the traditional P-Grid
protocol and our protocol with the Dynamic Routing with
damping utilization for network sizes 60000 and 100000

peers. All the update algorithms are activated except from
polling and exchange. The damping rate is 50s.



5.3 protocol evaluation 67

Figure 40: Mean utilization with damping 50s of the input channel for
the traditional P-Grid protocol and our protocol with the
Dynamic Routing for network sizes 40000 and 50000 peers.
All the update algorithms are activated except from polling
and exchange.

Figure 41: Mean utilization with damping 50s of the output channel
for the traditional P-Grid protocol and our protocol with the
Dynamic Routing for network sizes 40000 and 50000 peers.
All the update algorithms are activated except from polling
and exchange.



68 analysis

Figure 42: Mean utilization with damping 50s of the input channel for
the traditional P-Grid protocol and our protocol with the
Dynamic Routing for network sizes 60000 and 100000 peers.
All the update algorithms are activated except from polling
and exchange.

Figure 43: Mean utilization with damping 50s of the output channel
for the traditional P-Grid protocol and our protocol with the
Dynamic Routing for network sizes 60000 and 100000 peers.
All the update algorithms are activated except from polling
and exchange.



5.3 protocol evaluation 69

Figure 44: Process, input and output channel’s response time for the
traditional P-Grid protocol and our protocol with the Dy-
namic Routing with damping utilization. All the update
algorithms are activated except from polling and exchange.
The damping rate is 50s.

Figure 45: Network Throughput for the traditional P-Grid protocol
and our protocol with the Dynamic Routing with damping
utilization. All the update algorithms are activated except
from polling and exchange.

Looking the above figures we cocclude the following:

• Our protocol is by far better than the base case. The number
of overloaded peers is significantly reduced more than 90
percent.

• Our protocol handles the network load better and manages
to reduce the percentage of overloaded peers to almost 0
percent, while the same time the base case varies between
1 and 2 percent. So we can say that our protocol performs



70 analysis

the same well and for quite heavy workloads as far as it
concerns the percentage of overloaded peers.

• At the beginning we have high mean utilizations in both
channels, proportional to the great number of overloaded
peers for the corresponding simulation time. Then the
means starts to reduce gradually and if we observe the last
seconds of the simulation time we will see that we reach a
stable reduction of 50 percent for the mean utilization of
the input and the output channel.

• Also we observe a small increase in the output channel’s
response time which with the additional rerouting mes-
sages leads to a small increase in the process response time.
The increase of the process response time leads in a small
reduction in the network’s throughput as it was expected.

• So we can say that in general terms our protocol performs
the same well and for much heavier than the previous
workloads.

We should mention that we tested many heavy workloads
with damping rates 5s, 50s and 100s for all of the Rerouting
algorithms. In all the cases we got almost the same good results
and we conclude that all the rerouting algorithms have equivalent
performance for heavier workloads.

We would also present some interesting results which emerge
from specific workloads. In figures 47,48,49,50,51 and 52 we see
our protocol with and without the exchange method in compar-
ison with the traditional P-Grid protocol. We observe that the
results remain the same either with or without exchange. This
means that the exchange update algorithm does not improves
further our protocol. Lastly we should mention that the exchange
algorithm is the only update algorithm which can change a reg-
istration in a peer’s Routing Table, so offers updating in the
registered neighbors except from updating in the neighbors’ load
factors. This unique characteristic of the exchange algorithm must
be studied further in order to see the impact in the network’s
behavior.



5.3 protocol evaluation 71

Figure 46: Percentage of overloaded peers for the traditional P-Grid
protocol and our protocol with exchange, for network sizes
40000 and 50000 peers. Exchange frequency 50s.

Figure 47: Percentage of overloaded peers for the traditional P-Grid
protocol and our protocol with exchange, for network sizes
60000 and 100000 peers. Exchange frequency 50s.



72 analysis

Figure 48: Mean Utilization of the input channel for the traditional P-
Grid protocol and our protocol with exchange, for network
sizes 40000 and 50000 peers. Exchange frequency 50s.

Figure 49: Mean Utilization of the input channel for the traditional P-
Grid protocol and our protocol with exchange, for network
sizes 60000 and 100000 peers. Exchange frequency 50s.



5.3 protocol evaluation 73

Figure 50: Mean Utilization of the output channel for the traditional
P-Grid protocol and our protocol with exchange, for network
sizes 40000 and 50000 peers. Exchange frequency 50s.

Figure 51: Mean Utilization of the output channel for the traditional
P-Grid protocol and our protocol with exchange, for network
sizes 60000 and 100000 peers. Exchange frequency 50s.

If we see the figure 53 and 54 we observe that the mean pro-
cess response time and the mean output channel response time
increase and as a result the maximum throughput of the network
decreases. If we see figure 55 we conclude that the exchange
method creates extremely high number of additional messages
about 1/13 of the total messages. This amount of messages does
not increase the load of a peer because the exchange takes place
between two peers if both are underloaded, but increases the
peers’ output channel response time. Moreover the process dura-
tion is increased because the exchanges are executed as part of
the already created processes.



74 analysis

Figure 52: Process, input and output channel’s response time for the tra-
ditional P-Grid protocol and our protocol with the exchange
update algorithm. Exchange frequency 50s.

Figure 53: Network Throughput for the traditional P-Grid protocol and
our protocol with the exchange update algorithm. Exchange
frequency 50s.



5.3 protocol evaluation 75

Figure 54: Number of exchange messages in comparison with the total
created messages. Exchange frequency 50s.

In figures 56,57,58,59,60,61 we see the network’s performance
with the polling update algorithm. Despite the fact that the per-
centage of overloaded peers remains in the same level we have
a negligible but peculiar increase in the mean utilization of the
input channel, after the time that the polling starts (polling fre-
quency = 50s), while the mean utilization of the output channel
remains almost the same.

Figure 55: Percentage of overloaded peers for the traditional P-Grid
protocol and our protocol with polling, for network sizes
40000 and 50000 peers. polling frequency 50s.



76 analysis

Figure 56: Percentage of overloaded peers for the traditional P-Grid
protocol and our protocol with polling, for network sizes
60000 and 100000 peers. polling frequency 50s.

Figure 57: Mean Utilization of the input channel for the traditional
P-Grid protocol and our protocol with polling, for network
sizes 40000 and 50000 peers. polling frequency 50s.



5.3 protocol evaluation 77

Figure 58: Mean Utilization of the input channel for the traditional
P-Grid protocol and our protocol with polling, for network
sizes 60000 and 100000 peers. polling frequency 50s.

Figure 59: Mean Utilization of the output channel for the traditional
P-Grid protocol and our protocol with polling, for network
sizes 40000 and 50000 peers. polling frequency 50s.



78 analysis

Figure 60: Mean Utilization of the output channel for the traditional
P-Grid protocol and our protocol with polling, for network
sizes 60000 and 100000 peers. polling frequency 50s.

Also in figures 62 and 63 that we see a great increase in the
network’s response time which leads in an equivalent reduction
in the network’s throughput.As we see in figure 64 this increase
is attributed to extremely high number of polling messages,the
polling messages are about the half of the total messages. So we
should examine the algorithm’s efficiency in order to see if the
trade off in the network’s response time worths.

Figure 61: Network Throughput for the traditional P-Grid protocol
and our protocol with the polling update algorithm. polling
frequency 50s.



5.3 protocol evaluation 79

Figure 62: Number of polling messages in comparison with the total
created messages. polling frequency 50s.

5.3.2 Update Algorithms Evaluation

In this section we will observe and study the performance of
the proposed update algorithms. In figure 64 and 65 we see
the number of updates that each update algorithm performed
for workloads with medium and heavy load respectively. The
percentage of the updates that each update algorithm performs
is almost the same in all the tested workloads, so we present only
one in order to compare the algorithms’ performance.

Figure 63: Performance of the update algorithms for a workload with
medium load. In the specific workload we have Dynamic
Routing with restricted hops, all update algorithms activated
with polling and exchange frequency 50 s and 100 s respec-
tively.



80 analysis

Figure 64: Performance of the update algorithms for a workload with
heavy load. Exchange and Polling Periodically are deacti-
vated.

So we conclude the following:

• The Common Neighbor and the Back of routing path algo-
rithms is by far better than the others. Their performance
alternates according to each workload, if we have many
rerouting messages the routing path increases and as a re-
sult the performance of the Back of routing path algorithm
improves significantly, otherwise the Common Neighbors
algorithm performs better.

• The exchange algorithm comes third. We observe that the
number of the updates that it performs is relatively low in
comparison with the two first. Although we need to notice
that the exchange algorithm except from updating also
offers exchanges in the registrations of the peers’ Routing
Tables, so it has additional functionality. As we observed
in the previous section this additional functionality of the
exchange algorithm performs relatively well so we can not
reject totally this algorithm, we should further examine and
observe its unique characteristics.

• The piggy bag and the polling back periodically algorithms
come last. Despite the low performance of the piggy bag
algorithm we choose to keep it in our protocol because it
operates without creating additional messages, so it has
no additional cost. Polling periodically algorithm has also
mediocre performance but creates additional messages. As
we see in previous section the additional messages burden
significantly the network’s performance. If we want to in-
crease the algorithm’s performance we need to increase its
frequency but this action would burden the network’s per-
formance even more because of the increased quantity of



5.3 protocol evaluation 81

the additional messages, so we should reject polling period-
ically. Also we need to notice that polling back periodically
performs a bit better than the simple polling but creates
twofold number of messages, and so we reject it for the
same reasons.

5.3.3 Ideal Case Scenarios

Another way to study more thoroughly the performance of the
update algorithms is to examine the ideal case. As the ideal case
we define the case that the update algorithms would perform so
good that the information which each peer stores for the load
state of every neighbor, would be the same with the real load
state of the corresponding neighbor. So we run some experi-
ments in order to examine the consistency of the stored load
information with the real load information. With other words
we tried to examine the performance of the network in the case
at which each peer would have information for its neighbors’
load state which would be equivalent to their real load state. Of
course this was possible to be performed inside the simulation
framework. We performed many workloads for the ideal state
and in the figures 66, 67, 68, 69, 70, 71, 72 and 73 we illustrate one
representative of the network’s behavior. In the presented work-
load we have activated only the update algorithms which do not
create additional messages.We observe that the performance
of our protocol is almost the same with the ideal case. The
mean utilization of the input and output channel coincide for
the two cases and the number of overloaded peers remains the
same, the network’s response time and the network’s through-
put are in the same level for our protocol and the ideal case.
This means that we have a very good propagation of the load
information in the network only with the update algorithms
which do not need any additional messages . So the update al-
gorithms Common Neighbors, Back of Routing path and Piggy
Bag perform at the optimum level and we can reject the other
2 which deteriorate the network’s response time.



82 analysis

Figure 65: Percentage of overloaded peers for the traditional P-Grid
protocol and our protocol with the Dynamic Routing with
damping utilization and the ideal scenario, for network sizes
40000 and 50000 peers. All the update algorithms are acti-
vated except from polling and exchange. The damping rate
is 50s.

Figure 66: Percentage of overloaded peers for the traditional P-Grid
protocol and our protocol with the Dynamic Routing with
damping utilization and the ideal scenario, for network sizes
60000 and 100000 peers. All the update algorithms are acti-
vated except from polling and exchange. The damping rate
is 50s.



5.3 protocol evaluation 83

Figure 67: Mean utilization with damping 50s of the input channel
for the traditional P-Grid protocol and our protocol with
the Dynamic Routing and the ideal scenario, for network
sizes 40000 and 50000 peers. All the update algorithms are
activated except from polling and exchange.

Figure 68: Mean utilization with damping 50s of the output channel
for the traditional P-Grid protocol and our protocol with
the Dynamic Routing and the ideal scenario, for network
sizes 40000 and 50000 peers. All the update algorithms are
activated except from polling and exchange.



84 analysis

Figure 69: Mean utilization with damping 50s of the input channel
for the traditional P-Grid protocol and our protocol with
the Dynamic Routing and the ideal scenario, for network
sizes 60000 and 100000 peers. All the update algorithms are
activated except from polling and exchange.

Figure 70: Mean utilization with damping 50s of the output channel
for the traditional P-Grid protocol and our protocol with
the Dynamic Routing and the ideal scenario, for network
sizes 60000 and 100000 peers. All the update algorithms are
activated except from polling and exchange.



5.3 protocol evaluation 85

Figure 71: Process, input and output channel’s response time for the tra-
ditional P-Grid protocol and our protocol with the Dynamic
Routing with damping utilization and the ideal scenario. All
the update algorithms are activated except from polling and
exchange. The damping rate is 50s.

Figure 72: Network Throughput for the traditional P-Grid protocol
and our protocol with the Dynamic Routing with damping
utilization and the ideal scenario. All the update algorithms
are activated except from polling and exchange.

5.3.4 Scalability

In this section we will evaluate the scalability of our protocol,
we will estimate its performance by examining all the scalability
parameters presented in the workload schema. We performed var-
ious simulations under different workloads and we will present
some representative results in order to show the protocol’s per-
formance for each scalability parameter respectively.



86 analysis

• In the figures of the section 5.3.1 we presented workloads
for both data balancing algorithms, we show that our pro-
tocol has better performance in comparison with the tradi-
tional P-Grid protocol for both Data and Volume Balanced
algorithms. The optimization is equivalent for both data
balancing algorithms so our protocol is ideal for both cases.

• Except form the presented network sizes we performed
experiments for network sizes 1000, 5000, 10000, 20000 and
30000. Our protocol has the same performance and equiv-
alent optimization for all the 9 different sizes and so we
conclude that has satisfactory scalability as far as it concerns
the network size.

• In the figures below we present a workload with a smaller
query file. The workload is the same with the one presented
in the figures 39, 40, 41, 42, 43, 44, 45 and 46 but with
different queryfile. We observe that the network’s behavior
remains the same so we achieved good scalability and in
the size of queryfile.

Figure 73: Percentage of overloaded peers for the traditional P-Grid
protocol and our protocol with the Dynamic Routing with
damping utilization for network sizes 40000 and 50000 peers.
All the update algorithms are activated except from polling
and exchange. The damping rate is 50s. Small queryfile.



5.3 protocol evaluation 87

Figure 74: Percentage of overloaded peers for the traditional P-Grid
protocol and our protocol with the Dynamic Routing with
damping utilization for network sizes 60000 and 100000

peers. All the update algorithms are activated except from
polling and exchange. The damping rate is 50s. Small query-
file.

Figure 75: Mean utilization with damping 50s of the input channel for
the traditional P-Grid protocol and our protocol with the
Dynamic Routing for network sizes 40000 and 50000 peers.
All the update algorithms are activated except from polling
and exchange. Small queryfile.



88 analysis

Figure 76: Mean utilization with damping 50s of the output channel
for the traditional P-Grid protocol and our protocol with the
Dynamic Routing for network sizes 40000 and 50000 peers.
All the update algorithms are activated except from polling
and exchange. Small queryfile.

Figure 77: Mean utilization with damping 50s of the input channel for
the traditional P-Grid protocol and our protocol with the
Dynamic Routing for network sizes 60000 and 100000 peers.
All the update algorithms are activated except from polling
and exchange. Small queryfile.



5.3 protocol evaluation 89

Figure 78: Mean utilization with damping 50s of the output channel
for the traditional P-Grid protocol and our protocol with the
Dynamic Routing for network sizes 60000 and 100000 peers.
All the update algorithms are activated except from polling
and exchange. Small queryfile.

Figure 79: Process, input and output channel’s response time for the
traditional P-Grid protocol and our protocol with the Dy-
namic Routing with damping utilization. All the update
algorithms are activated except from polling and exchange.
The damping rate is 50s. Small queryfile.



90 analysis

Figure 80: Network Throughput for the traditional P-Grid protocol
and our protocol with the Dynamic Routing with damping
utilization. All the update algorithms are activated except
from polling and exchange. Small queryfile.



6
C O N L U S I O N

As observed from the previous chapter our protocol has better
performance in comparison with the traditional P-Grid protocol.
Some general purpose observations extracted from our simula-
tion results are the following:

• Time average Utilization with damping which offers us a
more reliable view of the network’s load for each simulation
time, performs better than the time average Utilization. The
time average utilization performs satisfactory but converges
slower than the first and furthermore does not give us as
recent view of the network’s load as the time average with
Damping. So we propose the time average Utilization with
damping in order to estimate the peers’ utilization of the
input and output channel.

• All the proposed rerouting algorithms have equivalent per-
formance. The Dynamic Routing and the Dynamic Routing
with restricted number of hops perform a bit better than
the Best Neighbor when the network is extremely loaded.
This can lead us to the observation that the most important
factor which optimizes the network’s performance is firstly
the good propagation of the load information an secondly
the alternative rerouting paths which requires additional
rerouting messages.

• Our protocol reduces significantly the number of over-
loaded peers and the mean utilization of the peers’ input
and output channels. These great reductions exceed the
range of 50 percent and so the processing ability of the
peers increases. Also offer greater consistency and resis-
tance in the network.

• The amplitude of the observed optimization in the number
of the overloaded peers and in the utilization of the peers’
input and output channel do not improve the network’s
response time on the contrary deteriorate it a bit.

• The update algorithms operate at an optimum level and as
a result we have consistent and cohesive load information
stored in the peers’ Routing Tables.

• In the presentation of the ideal case we see that the update
algorithms which do not need additional messages can give
us an optimum performance. The Biggy Bag, the Back of

91



92 conlusion

process path and the Common Neighbors algorithms can
guarantee good propagation of the load information with-
out the need of additional messages. The only drawback of
these efficient update algprithms is a small overhead in the
message size which can be technically supported from the
realistic peer to peer networks.

• The increased amount of additional messages, even if are
sent between underloaded peers, increase the network’s
response time.

• The exchange algorithm does not improve the utilization
of the peers’ input and output channel but the increased
amount of additional messages that it creates deteriorates
the network’s response time. Here we have a trade-off, we
need to choose between the unique functionality of the
specific algorithm and the maintenance of the network’s
response time.

• The polling periodically and the polling back periodically
update algorithms in order to be functional deteriorate
significantly the network’s performance and so we reject
them.

• All the proposed algorithms have a good scaling regarding
the network’s size, the data balancing algorithms and the
Query answer size.

• The additional rerouting messages, which are created by
the Dynamic Routing and Dynamic Routing with restricted
number of hops algorithms, do not burden the process
response time further.

All in all, we accomplish to relief the overloaded peers
of the network by transferring a portion of their load in
the underloaded peers and so we have a more uniform
load distribution regarding the network traffic. Despite
the succeeded more uniform load distribution among the
network’s participants we did not manage do improve the
network’s response time. Also we maintain the process
response time in the same level, with a negligible increase,
despite the additional rerouting messages.

In the future, we would like to experiment more with higher
dimensionality spaces and give more realistic datasets for
such problems. Also we would like to adapt the framework
described here to work with dynamic networks, but this
also requires work in terms of specifying realistic behavior
of peers who join, leave and fail. Also it would require
a careful assessment of different metrics to perform the
comparison.



conlusion 93

Another aspect is to apply this technique of routing path
modulation according to the neighbors’ load and in other
peer to peer protocols. This of course would require a
more thorough study of the corresponding overlay network
topologies.

Finally we would like to examine the network’s behavior
with different load factors. We could define different than
the proposed metrics by taking into consideration the net-
work’s characteristics that we want to improve. For example
instead of the utilization of a channel we could measure the
response time of a channel or its service ability. Also the es-
timation of a peer’s load factor could emerge by examining
combination of multiple parameters.





B I B L I O G R A P H Y

[1] Karl Aberer. P-grid: A self-organizing access structure for
p2p information systems. In CooplS ’01: Proceedings of the
9th International Conference on Cooperative Information Systems,
pages 179–194, London, UK, 2001. Springer-Verlag. ISBN
3-540-42524-1.

[2] Karl Aberer, Philippe Cudré-Mauroux, Anwitaman Datta,
Zoran Despotovic, Manfred Hauswirth, Magdalena Punceva,
and Roman Schmidt. P-grid: a self-organizing structured
p2p system. SIGMOD Rec., 32(3):29–33, 2003. ISSN 0163-5808.
doi: http://doi.acm.org/10.1145/945721.945729.

[3] Stephanos Androutsellis-theotokis and Diomidis Spinellis.
A survey of peer-to-peer content distribution technologies.
ACM Computing Surveys, 36:335–371, 2004.

[4] Roman Schmidt Renault John Karl Aberer Anwitaman Datta,
Manfred Hauswirth. Range queries in trie-structured over-
lays. Fifth IEEE International Conference on Peer-to-Peer Com-
puting, "Use of Computers at the Edge of Networks (P2P, Grid,
Clusters)", 2(1):41–53, 2005. ISSN 0163-5808.

[5] Ingmar Baumgart, Bernhard Heep, and Stephan Krause.
OverSim: A Flexible Overlay Network Simulation Frame-
work. In Proceedings of 10th IEEE Global Internet Symposium
(GI ’07) in conjunction with IEEE INFOCOM 2007, Anchor-
age, AK, USA, pages 79–84, May 2007. doi: 10.1109/GI.2007.
4301435. URL http://doc.tm.uka.de/2007/OverSim_2007.

pdf.

[6] G. Scott Graham Kenneth C. Sevcik Edward D. Lazowska,
John Zahorjan. Quantitative System Performance:Computer
System Analysis Using Queueing Network Models. Prentice-
Hall, 1984.

[7] Manfred Hauswirth EPFL Karl Aberer, Anwitaman Datta,
2003. The Quest for Balancing Peer Load in Structured
Peer-to-Peer Systems.

[8] Sylvia Ratnasamy, Paul Francis, Mark Handley, Richard
Karp, and Scott Shenker. A scalable content-addressable
network. In SIGCOMM ’01: Proceedings of the 2001 con-
ference on Applications, technologies, architectures, and proto-
cols for computer communications, pages 161–172, New York,
NY, USA, 2001. ACM. ISBN 1-58113-411-8. doi: http:
//doi.acm.org/10.1145/383059.383072.

95

http://doc.tm.uka.de/2007/OverSim_2007.pdf
http://doc.tm.uka.de/2007/OverSim_2007.pdf


96 bibliography

[9] Roman Schmidt EPFL Renault John, Karl Aberer, 2004.
Range Queries in P-Grid.

[10] Antony Rowstron and Peter Druschel. Pastry: Scalable,
distributed object location and routing for large-scale peer-
to-peer systems, 2001.

[11] Hans Sagan. Space-Filling Curves. Springer-Verlang, .

[12] Hans Sagan. Space-Filling Curves. Springer-Verlang, .

[13] Ion Stoica, Robert Morris, David Karger, M. Frans Kaashoek,
and Hari Balakrishnan. Chord: A scalable peer-to-peer
lookup service for internet applications. SIGCOMM Comput.
Commun. Rev., 31(4):149–160, 2001. ISSN 0146-4833. doi:
http://doi.acm.org/10.1145/964723.383071.

[14] Ling Stribling J Rhea S C Joseph A D Kubiatowicz J D Zhao,
B Y | Huang. Tapestry: A resilient global-scale overlay
for service deployment. IEEE Journal on Selected Areas in
Communications., 2(1):41–53, 2004. ISSN 0163-5808.


	Dedication
	Abstract
	Contents
	List of Figures
	Listings
	1 Introduction
	1.1 Architecture of P2P Networks 
	1.2 Definition of the problem
	1.2.1 Our Approach


	2 Related work
	2.1 Distributed hash tables
	2.1.1 CAN
	2.1.2 Chord
	2.1.3 Pastry
	2.1.4 Tapestry
	2.1.5 P-Grid

	2.2 Range Queries
	2.2.1 Space filling curves
	2.2.2 Range queries in P-Grid

	2.3 Load Balancing
	2.3.1 Load Balancing in CAN
	2.3.2 Load Balancing in Chord
	2.3.3 Load Balancing in P-Grid

	2.4 P2P Network Simulators
	2.4.1 P2PSim
	2.4.2 PeerSim
	2.4.3 OverSim
	2.4.4 Rangesim++


	3 Our Approach
	3.1 Assumptions
	3.2 Definition of load factor
	3.2.1 Definition of a peer's load factor
	3.2.2 Adjustment of the load factor for real P2P networks

	3.3 Update Algorithms
	3.3.1 Piggy Bag
	3.3.2 Polling Periodically
	3.3.3 Back of Routing Path
	3.3.4 Requesting for Common Neighbors
	3.3.5 Exchange Routing Tables

	3.4 Rerouting Algorithms
	3.4.1 Dynamic Routing
	3.4.2 Dynamic Routing with restricted number of additional hops
	3.4.3 Best Neighbor Dynamic Routing


	4 Simulation Framework
	4.1 Datasets/Querysets
	4.2 Network Simulation
	4.2.1 Cycle-based and Event-driven simulation
	4.2.2 Rangesim++ Design Structure
	4.2.3 Classes Description
	4.2.4 Topology Construction


	5 Analysis
	5.1 Metrics
	5.2 Workloads
	5.3 Protocol Evaluation
	5.3.1 Rerouting algorithms evaluation.
	5.3.2 Update Algorithms Evaluation
	5.3.3 Ideal Case Scenarios
	5.3.4 Scalability


	6 Conlusion
	Bibliography

