
Technical University of Crete
Department of Electronic and Computer Engineering

Development of a 3D Network Game

Diploma Thesis by Grigoris Nikiforakis

Board of Inquiry
Mania Katerina, Assistant Professor (Director of Studies)

Christodoulakis Stauros , Professor

Deligiannakis Antonios, Assistant Professor

Greece, Crete, Chania

 November 2010

1

2

Acknowledgements

From the beginning till the the end, there were people that assisted in making the
Thauma T.v game complete. Special thanks to Nikitas Papadoulakis for the cover
and the intro he made for Thauma as well as to my family for their financial and
emotional support all these years.

Many thanks to Manos Karistineos for composing the piano project especially for
the game which is used in the intro video, as well as Marita Karistineos who
introduced us. I would also like to thank Vaggelis Gavalakis, Nikos Katzakis,
Samantha Haidemenaki and Aggelos Ledakis, for their contribution in various
subjects.

All the Alpha and Beta testers, and especially Vasilis Milonakis, Manos
Kalaitzoglou, and Nikos Katzakis for their helpful feedback. Additionally, Epic's
forum members for assisting in UDK deadends.

Last but not least, Katerina Mania for her valuable guidance and commentary
during the writing of this text and for giving me the chance to create my final thesis
in order to get my diploma.

Extra thanks to Nikos, Manos and WASP.

3

Abstract
The aim of this project was to create an entertaining Multiplayer 3D game. The
primary objective has been to work on the most important tasks a software engineer
is taught, in the context of game development. The game designed and created from
this project is titled Thauma. Thauma is a story-based game which supports on-
line multiplayer mode and includes different genres throughout the game. The
game presented is Multiplayer, Story-based and falls in the category of First person
shooter games. The game is about Jonathan, a man who experienced a traumatic
event at a young age, but has managed to leave it behind and go on with his life. At
some point in his present life, he has to confront his past painful experiences and
start a battle with himself. During his journey his dual personality disorder
emerged, leading to the awakening of his evil side. This evil side (Dark Jonathan in
game) incarnates the negative emotions Jonathan feels during his adventure. The
game starts when the subconciousncess starts revealing memories that should
remain hidden. The second player is assigned to the role of Jonathan's Evil self. If
he manages to win the battle against his evil self, he will have succeded in finding
peace with himself, discarding his dual personality disorder once and for all. In
case he loses, that will mean his dark side overcame his good side.

Game-wise the battle consists of 4 phases, depicting Jonathan's unstable mind.
Each side has 4 powers (skills) that can be used spending psychic energy. This
energy comes from Jonathan's mental strength and cannot overcome a certain
maximum value (100). The skills Dark Jonathan can use are of evil nature, able to
cause damage and control Jonathan, while Jonathan has defensive skills at his
disposal. Using these skills effitiently will aid the player in killing the opponent. A
point system is used to determine the winner. Points can be obtained with two
different ways. The first way is by killing the opponent and the second one is by
participating in the events.

The game engine used was the Unreal Development Kit (UDK). UDK is an
industry-standard game engine used today for the development of many
commercial high-quality games by multiple personnel teams. Unrealscript was
designed to provide the developers with a powerful, built-in programming language
that maps the needs of game programming.

UnrealScript is purely object-oriented and comprises of a a well-defined object
model with support for high level object-oriented concepts such as serialization and
polymorphism. This design differs from the monolithical one that classic games
adopted having their major functionality hardcoded and unexpandable at the object
level. Before working with UnrealScript, understanding the object's hierarchy
within UDK is crucial in relation to the programming part.

4

Table of Contents

Acknowledgements.. 3
Abstract.. 4
Table of Contents... 5

Chapter 1: Introduction... 8
1.1 Purpose of Thesis... 8
1.2 Thesis Summary.. 8
1.3 Development Review... 9

Chapter 2: Games and How To develop them........................... 11

2.1 History of Games... 11
2.1.1 Origin of Games... 11
2.1.2 Digital Games... 12
2.1.3 Present-Future.. 13

2.2 Entertainment in Games... 14
2.3 Game Development.. 16

2.3.1 Development Summary..................................... 16

Chapter 3: Software and Tools... 23

3.1 Game Engine-UDK... 23
3.1.1 Design Goals of UnrealScript........................... 25

3.1.1.1 The Unreal Virtual Machine................ 26
3.1.1.2 Object Hierarchy................................. 26
3.1.1.3 Timers... 27
3.1.1.4 States.. 27
3.1.1.5 Interfaces.. 29
3.1.1.6 Delegates.. 29
3.1.1.7 UnrealScript Compiler.......................... 30
3.1.1.8 UnrealScript Programming Strategy..... 30

3.1.2 Network Overview... 31
3.1.2.1 Server's Authority................................. 31
3.1.2.2 Replication .. 31
3.1.2.3 Simulated Functions and States.......... 31

5

3.2 IDE-Microsoft Visual Studio.. 31
3.3 Materials .. 32

Chapter 4: Game Design... 34
4.1 TimeTable.. 35
4.2 THAUMA Story...37

4.2.1 The Concept...37
4.2.1.1 The Characters.................................... 39

4.3 THAUMA GamePlay.. 41
4.3.1 THAUMA Challenges... 41
4.3.2 THAUMA Level Design...................................... 43

4.3.2.1 THAUMA Events...................................44
4.3.3 THAUMA User Interface.....................................46
4.3.4 THAUMA Multiplayer.. 48

4.4 THAUMA Prototyping...49

Chapter 5: Implementation.. 52
5.1 Intro.. 52
5.2 Players... 54
5.3 Skills... 55
5.4 Events.. 60
5.5 Multiplayer.. 61
5.6 Quality Assurance.. 63

5.6.1 Testing.. 64

Chapter 6:Results... 66
6.1 Summary.. 66
6.2 Future Work... 66

Appendix... 68
A.1 Story Design Document.. 68
B.1 Source Code Samples... 78

B.1.1 ThaumaPawn... 75
B.1.2 ThaumaAbilities.. 83
B.1.3 ThaumaAbilitiesDefense................................... 86

6

B.1.4 ThaumaAbilitySpeed... 86
B.1.5 ThaumaAbilityStun.. 87

Bibliography... 89
Useful References... 90

7

Chapter 1: Introduction

1.1 Purpose of Τhesis
The aim of this project was to create a Multiplayer 3D game. The primary
objective has been to work on the most important tasks a software engineer is
taught, in the context of game development. Most projects in this field focus on the
implementation part, resulting in a game which is not fun to play. Creating game
parts from scratch is not an easy procedure. It is significant that the game's rules
and mechanics are designed to provide fun. This project aims to design an engaging
story line of a game which will result in a demanding software engineering
implementation. This thesis takes an in-depth look at the narrative in games,
gameplay, game prototyping as well as the implementation process. During game
development attention should be devoted to all of the above.

The game designed and created from this project is titled Thauma. Thauma is a
story based game which supports on-line multiplayer mode and includes different
genres throughout the game. The Thauma TUC version (Thauma T.v) is the
completed part of the game described in this thesis. The game presented is
Multiplayer, Story-based and falls in the category of First person shooter games.
The game is about Jonathan, a man who experienced a traumatic event at a young
age, but has managed to leave it behind and go on with his life. At some point in his
present life, he has to confront his past painful experiences and start a battle with
himself. Memories emerge like ghosts from the past, and each has a question that
needs to be answered, in order to find peace. Guiltiness, anxiety, depression and
moral dilemmas comprise of the burden the hero has to carry till he reaches the end
in his mind's maze. When his journey comes to an end, will he find catharsis or will
the opening of his mind's hidden locks lead him to another purgatory? The second
player is assigned to the role of Jonathan's Evil self. The two players have to
confront each other with several skills (super-power abilities) at their disposal.

The programming environment used (game engine) was the Unreal Development
Kit (UDK). UDK is an industry-standard game engine used today for the
development of many commercial AAA (high quality) games by multiple personnel
teams.

The next section presents the structure of this thesis.

1.2 Thesis Summary
Chapter 1 includes an introduction and a summary to the thesis.

Chapter 2 describes the initia form of games, their origin and their evolution

8

throughout the centuries. Focus is given to digital games, their past, present and a
glimpse to the future, according to experts in the field. Entertainment and how it
can be achieved via games is also discussed in this chapter, concluding with an
analysis of the game development processes adopted by professional teams.

The tools that were needed and used, along with the tools that did not meet the
requirements for this project are all described in Chapter 3. A thorough
description of the game engine is included in this chapter as well.

Chapter 4 presents the development process adopted which is a modification of
the generic game development process described in Chapter 3 because of the team's
size. All the steps during game design and game development are explained in
detail in Chapter 4, before proceeding to Chapter 5 which presents the
implementation of the game. This includes the 'Skills' creation, the 'Rules' settings
and the effort required to implement the multi-player part of tha game.

Finally, quality assurance and future work as resulted from the players' feedback
during the Alpha and the Beta testing are presented in Chapter 6.

1.3 Development Review
The stages of the development process for this project differ to some degree from
the ones adopted in industry, mainly because there was an one-man team and
secondly because the purpose of the project was not a product release, but rather a
thesis for an "Electronic and Computer Engineering" degree. The roles needed
for game development are that of Designer, Programmer and Level Designer. Each
role's responsibilities are described below.

Designer:
A game designer's responsibility includes the design of the gameplay in addition to
the rules and sctructure of the game. Game development teams are usually
managed by a Lead Designer who is the main visionaire of the game. Conceiving
the narration, writing the dialogues, commentary, journals and video game
packaging are among the duties the designer has.

Programmer:
Software engineers and programmers take up this role. Software engineers primarly
develop the game or the platform needed (Game Engine), while programmers
mainly deal with the game's codebase. A Lead Programmer initializes the codebase
programming and overviews progress. Different areas a programmer can focus are:
Gameplay, Scripting, Network Play, UI and more (these four were also the author's
responsibilities).

9

Level Designer:
The Level Designer is the person who creates the levels of the game. Level is the
environment the game takes place in. A game may consist of many levels, in
different places. The game's progress, missions and events are all created by the
level designer often using a level editor. Level editors do not require any
programming needs; high-level scripting is used in order to develop interactive
environments or game AI. Level Designers also work with game prototypes before
including artwork (Fig 1.1) or scripting the levels.

Fig 1.1 -Cover of the Thauma game made by Nikitas Papadoulakis.

10

Chapter 2: Games and How to Develop
them

2.1 History of Games

2.1.1 Origin of Games
In order to succesfully grasp the concept of games, one has to look back to when
and how games appeared. Games date back to ancient times, when people
participated in them not only for their entertainment, but also for religious
purposes. Every culture had its own games, which were of great importance to
both the athletes and the spectators. There were some occasions where games were
used as a mean to communicate with deities. Games demanded a highest level of
skill that only a few could reach, since sometimes the athletes had to put their life
on the line (Fig 2.1). Certain games had roots in ancient legends, such as Sumo ,
where each match was a representation of a ritual.

Fig 2.1 -Taurokathapsia (Bull leaping) was a ritual performed in connection with
bull worship.

Different forms of ancient games shared many common characteristics and they
even shared some characteristics with the form of games as we know it today. The
majority of the games required courage in order to participate and the action
element was apparent through the process. Apart from that, there was a winning
condition, obstacles, and sometimes enemies and even allies. Hunting, for
example, was done by hunters with the help of dogs, while the goal was to catch
the prey and overcome the landscape's obstacles. Other common characteristics
were two sides fighting each other or the protagonist fighting for a prize. The word

11

'Protagonist' is a greek word, where "protos" means first and "agon" means struggle
and the protagonist would struggle in order to reach a goal. Moreover every game
had a certain structure. Its beggining, middle and end defined the phases of the
game. The rules that were set along with the landscape, limited the player's abilities
to a certain degree. In the case of victory a prize was claimed, or a penalty in case
of failure. Even today some types of games have maintained their original form, so
for example we see a lot of "Predator-Prey" kind of games (Pacman, Fig 2.2), or "A
Hero's Journey" type (Tomb Raider), or even the classic fight between two sides
(Counter Strike).

Fig 2.2 -Pac-Man is one of the longest running video game franchises from the
golden age of arcade games.

2.1.2 Digital Games
When computers came along, the urge to implement a game in digital form
occured. A modification of tic-tac-toe named "OXO" first appeared in 1952, as well
as a space combat simulator named Spacewar! invented by three MIT students
(Martin Graetz, Alan Kotok and Steve Russell) in 1961, on a PDP-1 computer used
for statistical calculations (Fig 2.3). The text game genre was the first for the
Personal Computer which allowed the user to type the commands while immersed
in a fantasy world described by text. Coin up machines also made their appearance
in the 70's which used vector graphics. Star Wars, Death Race and Breakout (the
latter was made by Steve jobs) were some of the famous coin ups at that time.

Later on that decade there was the beggining of a commercial move, when the first
TV consoles became available. In 1983, the consumer's interest for personal
computers rose and as a result the low-cost Commodore 64 appeared. Large scale
companies saw this as a chance to rule the market and their great support to
computers followed soon. The invention of the mouse, the improvement of the
sound via the new sound cards and certain succesful games helped the personal
computer to become even more popular. Nintendo and Sega were dominant in the
console market over the next decade when the next generation consoles appeared.
A year before that, (1993) Doom appeared and nVidia was founded. Both events
were of great importance for the future of the computer games.

12

Computers brought games to a new dimension including high quality sound effects,
vivid artistic imagery and easy-to-use input, all of which led to a smooth immersion
of the player to a fantasy world. Succesfull companies inactive until then in game-
relevant productions (Microsoft, Sony and more) grabbed the opportunity to rule
that market and started investing large amounts of money to software and hardware
relevant to games. 3D graphics also set the ground for multiple companies
working on graphics cards.

Fig 2.3 -It took the three MIT students approximatelly 200 hours of work to create
the first version of Spacewar.

2.1.3 Present-Future
Since the dawn of this millenium, games have been continuously growing in
popularity. Online games now rule the market and the profit of the game industry
surpasses this of the movie industry. The most popular Massive Multiplayer Online
Role Playing Game (MMORPG) World of Warcraft (WoW) by Blizzard counts
more than 10 million subscribers (Fig 2.4). The spread and advancement in
telecommunications technology along with the mass improvements on gameplay
characteristics of other popular online games, led WoW to inspiring artists to
satirize or acknowledge its mark in popular culture. Another approach to gaming
was also suggested by Nintendo's console Wii, where the input escapes the classical
keyboard-mouse and introduces a more "active" way of input, with the help of
movement sensors. A different genre then appeared, the one that demanded
physical interaction. The popularity of games is increasing more and more, with
worldwide events happening (BlizzCon) and millions of fans enjoying either online
or single player, PC or console games.

Recently, a more accessible type of game appeared. Such games' audience were
mostly non gamers, or casual gamers, so the fan base was not there to support it,
but suprisingly it succeded more than expected and the profits of such games
nowdays are enormous. Browser, flash and mostly facebook games give the
opportunity to people with no previous game experience, to spend time with a
simple game that is fun to play. Carnegie Mellon University Professor, Jesse
Schell, dives into a world of game development which will emerge from the

13

popular "Facebook Games" era in his "Design Outside the Box" presentation this
year[8]. According to the Professor, our future is full of gameplay characteristics,
that add both to our enjoyment and to a better quality of life. So, the question
arises; what is it in games, that makes them so much fun that can even affect our
lifestyle?

Fig 2.4 -World of Warcraft has more than 10 million subscribers.

2.2 Entertainment in Games
Happiness and how to obtain it has always troubled mankind. In ancient Greece,
philosophers reached several conclusions. According to Aristotle, "More than
anything else, men and women seek happiness". Psychologists have revealed a
strong connection between a pleasurable state called Flow and gaming experience.
Mihaly Csikszentmihalyi found that "what makes experience genuinely satisfying
is a state of consciousness called flow"[1]. His studies suggest eight major
components that people have (one or more) when they are feeling most positive:

1. They confront tasks they have a chance of completing;
2. They must be able to concentrate on what they are doing;
3. The task has clear goals;
4. The task provides immediate feedback;
5. One acts with deep, but effortless involvement, that removes from

awareness the worries and frustrations of everyday life;
6. One exercises a sense of control over their actions;
7. Concern for the self disappears, yet, paradoxically the sense of self

emerges stronger after the flow experience is over; and
8. The sense of duration of time is altered

14

The author comments in [1] that "The combination of all these elements causes a
sense of deep enjoyment that is so rewarding, people feel that expending a great
deal of energy is worthwhile simply to be able to feel it."

The same 'symptoms' appear to people playing computer games. Unfortunatelly in
rare occasions this flow state goes on for too long with disastrous results for the
person which becomes addicted to gameplay (Fig 2.5).

The connection between Csikszentmihalyi's flaw state and the gaming experience
has been studied by his colleagues, resulting in important facts. In Jenova Chen's
Viewpoint "Flow in Games (And Everything Else)" he studies and analyzes that
connection among others[7]. According to Mr Chen, important variables are: the
player's skill, the difficulty of the game, the amount of choices the gameplay offers
to the player which should be no more than the player can handle. Two different
players have different skill levels and each one is challenged more or less by
different situations. For these reasons the game designer should keep all these
factors in mind in an effort to lead most players to the flow state. There are
however many experts that do not accept the Flow theory in the gaming
enviroment, however they support other theories that derive from psychology.

A step further was the work of Georgios N. Yannakakis and John Hallam titled
"Capturing Player's enjoyment in computer games"[6] which presented
mathematical equations that describe the amount of challenge needed, for example,
in order for the game to be more enjoyable in relation to improvements of the AI
methods incorporated in the game. Such work links game development with user
satisfaction.

Fig 2.5 -Starcraft: "They are the types of games that completely engross the
player. They are not games that you can play for 20 minutes and stop" ,

Psychologist Professor Mark Griffiths[10]

15

Games can generally bring enjoyment to people. Therefore, during the game design
and development, player experiences should be taken into consideration. Quests,
user abilities, game difficulty over time and varied gameplay 'tools' should be at the
designers' disposal.

2.3 Game Development
In the early days of video games (1970), a programmer was responsible for creating
a game from scratch and could also take on the job of the designer and artist. The
limitations of computer power at that time, led to the programmer being able to
handle all functions, therefore, having specialized personnel was unnecessary.
Games were only meant to be played for a few minutes at a time, while art content
and variations in gameplay were constrained by the limitations of computer power,
making the work of the programmer easier.

Nowdays, a game development studio is composed of tens and for AAA projects
even hundreds of people, seperated in teams for each task that needs to be
accomplished. The most complex part of any computer game is the software
behind it. The software needs to incorporate game play mechanics, art, algorithms,
network protocols, real time physics, simulation, decompression and playback of
music, 3d visualisation and more.

A software engineer holds an important role in the game development process and
is sought after for his ability to assist in many areas. From early-step designing, to
middle-step prototyping, to late-step implementing, his versatility enables him to
contribute to a large part of the game creation process and most importantly, during
all the different phases a game requires to be developed. Adopting software
engineering processes leads to better software products and games are not an
exception considering the fact that a game takes from one to four years or more to
be developed.

2.3.1 Development Summary
One of the most successful methods used for game development is agile
development[13]. It is based on iterative prototyping, a subset of software
prototyping. Agile development depends on feedback and refinement of game's
iterations with gradually increasing feature set. This method is effective because
most projects do not start with a clear requirement outline.

The process to create a game is comprised of the stages described below. Some of
the steps can be changed or left out. It is important to note that stages of
development can occur in parallel. It is rare for one stage to be completed and
untouched ever after, since changes and modifications occur until the last moment.

16

• Stage 1: Design
During this phase the general idea of the game is generated, along with the concept
behind it. The initial design document is written referring to the plan the
development team must follow and the basic information behind the concept of the
game. At this point early game prototypes could be made; however the usual case is
to have a playable prototype ready at a later stage. Concept ideas can be influenced
by several sources. Books, history, mythology or even real world modern time
influences can do the trick (Fig 2.6). Pokemon for instance, a very popular brand
used in cartoon, video games and card games was Satoshi Tajiri's idea since
younghood. He used to go to the surrounding countryside to collect bugs and
insects as a hobby. In combination with his love for video games, he created
Pokemon. There are many more examples where an idea like this was adjusted and
perfectly fitted in the gaming world.

Fig 2.6 -Greek Mythology has always served as an inspiration to game designers.

• Stage 2: Research
During this stage the game concept is developed. Moreover, the developers choose
which game engine they will utilize. Depending on the team, an already built game
engine may be used (like Epic's UDK that is used for this thesis) or a new one can
be built by the team's software engineers for several reasons: A commercial game
engine may not offer what the game in progress demands or the team may not be
able to afford buying a commercial one. In these cases, the best choice may be to
build one from scratch. The genre of the game must also be considered in addition
to the audience targeted. The genre includes one or more (a combination actually)
of the following :

Action: Fast paced game with lots of combat and exploring. First or third
person with inventory, usually single player. High reaction speed and good hand–
eye coordination is needed. An example is Tomb Raider.

Adventure: In adventures the player assumes the role of a protagonist in an
interactive story. Interactive media like films and novels have influenced this genre,
resulting in a wide variety of literary genres. Almost all adventures are single

17

player, in order to focus the story around the protagonist. Exploration and puzzle-
solving skills are required. An example is Monkey Island.

Puzzle: Puzzle games involves puzzle solving as the main mechanic of the
game, usually involving colors, shapes and symbols in a logical and conceptual
challenge. The puzzles in each game are oriented around a basic theme, like pattern
recognition, logic or understanding a process. The difficulty rises and a time limit is
common. An example is Lemmings.

Role Playing: Either by a party controlled by the player or by a single
avatar, the player's purpose is to advance the avatar to more levels by gaining
experience in order to achieve the main goal. Most often the player has to succeed
in heroic deeds earning gold, items and experience during the process. Exploration
and tactical combat in combination with a strong story setting are the main
characteristics of RPGs which come from their ancestor, the pen and paper RPG.
An example is Planescape Torment.

Shooter: The player owns one or more weapons or combat gadgets and must
accompish an objective by killing his opponents directly or inderectly e.g. in
Capture The Flag mode. Most of the times multiplayer gaming is supported. An
example is Unreal.

Simulation: Simulation games try to simulate aspects of a real or fictional
reality. Driving vehicles and playing sports are the usual themes, but nowdays more
popular themes have emerged. Companies simulators give the player the chance to
run a big company (Hospital, theme park and more), whereas Life simulators allow
the player to run the life of the avatar. An example is Sims.

Strategy: This type requires skillful thinking and planning to achieve
victory. Each move must bring the player closer to achieving victory since chance
holds a smaller part. Each move may affect a number of factors such as resource
management and warfare tactics. The player usually views the world from a
godlike perspective to be able to manage his territory more efficiently. A
combination of tactical and stragetic considerations is needed, in addition to
economy management. An example is Civilization.

During the video games history different genres have been popular for a period of
time, mostly depending on the available technology or one title making a great
success with many similar titles following. Nowdays 30% of console games are
Action themed whereas the 31% of computer games are strategy. Massive
Multiplayer Online Role Playing Games (MMORPGs) also have an increasing
popularity.

• Stage 3: Prototyping
Prototyping is the process of a fast and cheap implementation of an idea. It usually
takes place before the design document is complete,however it is common to have
prototypes in many stages to test various aspects of the game. For these reasons
prototyping is thought to be an important process which is aided by various tools
designed for this purpose. A succesfull development model is iterative prototyping,
where design is refined based on current progress.

18

• Stage 4: Gathering Material
During this stage material is gathered in relation to the concept of the game in
development. The material gathered will help inspire the team's work. Inspiration
comes from the web as well as from other games, books, movies and real life. A
sketchbook and a digital picture are usually handy when walking around in case of
coming across to something interesting related to the game concept, whether it is a
fancy texture or a haunted looking house (Fig 2.7).

Fig 2.7 -A digital Camera can be useful to capturing inspiring scenes from real life.

• Stage 5: Characters Concept
Characters are vey important in games since a well thought out character can easily
be the trademark of a game, which in turn can depict the general concept of the
game. Characters are also able to deliver the story such as actors in a movie do. The
main difference is that designers create game characters from scratch. Characters
include not only the protagonist, but also Non Player Characters (NPCs) and
enemies. The main characters' back story is essential and must be in-line with the
character's appearance. In a recent vote for the Greatest Game Villain of all time
hosted in one of the biggest game sites, Kerrigan (Starcraft) and Darth Vader (Star
Wars) made it to the last round, declaring Kerrigan the winner (Fig 2.8). The
character's popularity was not only dependent on her character appearing in the
video game series, but also to the StarCraft2 game being published recently,
therefore Kerrigan's impact on players was fresh.

As a sidenote, while characters and a narration is not necessary depending soloely
on the gameplay, investing resources on a story creation is certainly worths it,
especially when a sequel game is planned. There are many examples of games
based on stories prior known to the public mostly from written fiction that were
very succesfull as video games. Such examples include Conan, Lord of the Rings, I
Have No Mouth And I Must Scream, etc. From time to time, developers try to take
advantage of popular hype and polular stories and turn them into a game. An

19

example of using an already existing story line and converting it to a game
resulting in disatisfying success, was the adventure game Lost.

Fig 2.8 -Kerrigan, the Queen of Blades eliminated the Pac-Man Ghosts, Joker and
Darth Vader, making her the greatest game villan of all time.

• Stage 6: Environment Concept
The environment's design can be as important as the character's design. The look
and feel of the game is emitted by the environment and the challenges the
landscape provides to the player. Atmospheric effects and light configurations can
enhance the feeling the game is trying to convey. Fog, rain and darkness are very
important for example, in a horror game. Moreover, knowledge of the
psychological states of the players can affect the design of the space. Pleasant and
meditative places can help the player relax, whereas tight and claustrophobic areas
will impose an uneasy feeling.

• Stage 7: Game Design Document
This document does not add to the production process, but rather is a document that
sums up the details. The Game Design Document can be done at any stage, as
long as introductory information is available to the developers. It becomes the main
point of reference of the ongoing development for every team involved. The story,
genre, characters, mood of the game and core mechanics are all described in the
GDD.

• Stage 8: Level Design
After the type, environment and core mechanics of the game have been decided,
the levels can be created. When entering each level the player must fulfill a goal in

20

order to continue to the next level. To do so, each level's goal is divided to smaller
objectives in order to provide a smoother flow to the player. This subdivision also
allows the player to become more familiar with the game mechanisms. It is
important that the level designers design the level to be fun, interesting and
challenging, rewarding the player when needed. An interesting article of Valve's
designers talking about the design decisions they had to make on their debut title is
named "The Cabal: Valve’s Design Process For Creating Half-Life" [14] (Fig 2.9).
Their peculiar level design process gave many rewards and a Guinness record to
the development team (Microsoft's ex-employees).

Fig 2.9 -The box art for Half-Life shows the title on a rusted orange background,
below the Greek lamda letter.

• Stage 9: Game Engine
Game engines and game editors are at the designers' disposal in order to help
materialise each level. Game Engines usually include an editor which offers an
easy way to create the environement and the level events. Many times additional
source code is required. Programming can start even from stage 1, after the initial
desicions have been made such as how the movement will be done (WASD keys,
point and click and more).

• Stage 10:Artset
Textures, models, animations and more visual requirements are created to fit the
game world. Their creation can start as soon as the mood of the game is decided
and the level design has been initiated (Fig 2.10).

21

Fig 2.10 -Blender is a free 3D graphics application

• Stage 11: Quality Assurance
When all the stages are done, or a playable verion is avaialbe, the testing can begin,
usually directed by professionals.

22

Chapter 3: Software and Tools

Several low-cost tools were used that assisted the implementation of the Thauma
Project. These tools are the following:

3.1 Game Engine-UDK
Choosing the right game engine is crucial not only because it offers the tools and
programming environment necessary for the game development but also because
once a game engine is selected, considerable time should be available in order to
learn its structure and tools. In the event a decision is made that a selected game
engine is not suitable for the needs of a project, effort should be spent in identifying
a different one which suits the projects needs. When looking for the game engine to
implement the THAUMA game, various game engine options were investigated
available on September 2009, based on specific requirements set:

• The engine's language should be C/C++ based. Although it is time
consuming and difficult to write computer programs in C, it offers complete
control along with vast amount of resouces and libraries, a fact which
defines C as an idustry standard. Fast execution is another advantage to be
considered. The author had previous experience with other suitable
languages such as Python or Java but finding a game development
environment in C for the reasons listed above was a priority;

• The game engine should be available at no cost for non commercial releases
since there are effitient free game engines;

• There should be an active community, which also meant that the game
engine's development should also be active. The official documentation
usually is not enough and the experience of more experienced users is very
useful to a new user;

• Support of 3D graphics was essential as well as network programming
support;

The above were the main requirements. Being open source or being available for a
long time (the more work done the better) was considered a plus. Having released
AAA titles was a plus too. This filtering left out the following engines (some are
rendering engines,however were considered to be an option as well) : GameCore,
Torque, Unity, NeoAxis, Leadwerk, Irrlicht, Neoengine, Gosu, Panda3D , Plib,
ZakEngine, C4, and GameMaker. The final choice was at the time, the Esenthel
engine.

The Esenthel Engine is a complete game development suite allowing to create fully
featured AAA titles. However, no AAA title implemented in Esenthel had been
released at the time. Esenthel has been specifically designed for professional game
development, which has been achieved by giving the developers full control over
the game code mechanics, the next generation graphics core and a rich toolset

23

drastically simplifying the game development process. While mainly targeted for
the professional market, the engine is easy enough to be used by independent teams
or small companies with no prior game development experience.

At the time game engines were investigated as potential development environments
for this thesis, Epic's UDK became free (November 2009). UDK is a complete
professional development framework, with countless releases and dozens of
rewards. UDK is designed mostly for professional teams. It was challenging for an
one man project learn to deal with the tools that UDK offers, in order to deliver the
best outcome. This practically means that the same game may be implemented by
one person in another engine a lot faster than UDK, although the visual aspect may
not be as good as UDK's. As far as the visual quality is concerned, nVidia has
assisted Epic in writing the code for the visual aspects of the engine. As a final
note, when one is aiming for the best result being able to invest time, UDK is the
right choice. For the reasons analyzed above, the UDK was selected for this
project.

UDK offers the following features [4]:

1. A Complete editing environment

2. Pure rendering power

3. State-of-the-Art animation

4. Powerful scripting

5. Real world physics

6. Eye-popping lighting and shadows

7. Gorgeous cinematics

8. Terrain

9. Built-in networking

10. Real-time shaders

11. Broad-audio support

12. Particle effects

13. Artificial intelligence

14. Distributed computing

15. Desctructible environments

16. Bink video codec

17. SpeedTree foliage editor

18. FaceFX facial animation

A new version of UDK is available every couple of months, improving several
design flaws, bugs and upgrading or increasing the extra tools UDK offers (Fig
3.1). This project was finished with the March-2010 release. The subsequent
versions have addresed several issues and include improvements. Some of the

24

flaws of the March version are:

• The editor uses a not so familiar system for the manipulation of geometry;

• There is a need for more tooltips at the editor's entities properties;

• The undo operation supports only a few undos;

• Timers do not support function calling from any class;

Fig 3.1 -Free from November '09

The following information is necessary before programming with UDK. There are
also some source code examples where needed, that were written for this project.
This chapter works as an intro for UDK and should in no way replace the official
UDN documentation which is written by the developers.

3.1.1 Design Goals of UnrealScript
Unrealscript was designed to provide the developers with a powerful, built-in
programming language that maps the needs of game programming.

The major design goals of UnrealScript are:

• Enabling time, state and network programming, which traditional
programming languages do not address but are needed in game
programming. C/C++ deals with AI and game logic programming with
events which are dependant on aspects of the object's state. This results in
long-length code that is hard to maintain and debug. UnrealScript includes
native support for time, state and network programming which not only
simplifies game programming, but also results in low execution time, due to
the native code written in C/C++;

• Programming simplicity, object-orientation and compile-time error
checking, helpful attributes met in Java are also met in UnrealScript. More
specifically, deriving from Java UnrealScript offers:

• A pointerless environment with automatic garbage collection;
• A simple single-inheritance class graph;
• Strong compile-time type checking;

25

• A safe client-side execution "sandbox";
• The familiar look and feel of C/C++/Java code;

Often design trade-offs had to be made, choosing between execution speed and
development simplicity. Execution speed was then sacrificed , since all the native
code in UnrealScript is written in C/C++ where performance outweighs the added
complexity. UnrealScript has very slow execution speed compared to C, however
since a large portion of the engine's native code is in C, only the 10%-20% of code
in UnrealScript that is executed when called has low performance.

3.1.1.1 The Unreal Virtual Machine
The Unreal Virtual Machine consists of several components: The server, the client,
the rendering engine and the engine's support code.

The Unreal server controls all the gameplay and interaction between players and
actors (placable entities). A listen server is able to host both a game and a client on
the same computer, whereas the dedicated server allows a host to run on the
computer with no client. All players connect to this machine and are considered
clients.

The gameplay takes place inside a level, containing geometry actors and players.
Many levels can be running simultaneously, each being independent and shielded
from the other. This helps in cases where pre-rendered levels need to be fast-loaded
one after another.

Every actor on a map can be either player control or under script control. The
Script controls the actor's movement, behaviour and interaction with other actors.
Actor's control can change in game from player to script and vice versa.

Time managemenet is done by dividing each time second of gameplay into Ticks.
Each tick is only limited by CPU power and typically lasts 1/100th of a second.
Functions that manage time are really helpful for gameplay design. Latent
functions like Sleep, MoveTo and more can not be called from within a function,
only within a state however.

When latent functions are executing in an actor, the actor's state execution does not
continue until the latent functions is completed. However, other actors may call
functions from the actor that handles the latent function. The result is that all
functions can be called, even with latent functions pending.

In UnrealScript, every actor is as if executed on its own thread. Windows threads
are not efficient in handling thousands at once, so UnrealScript simulates threads
instead. This means that 100 spawned actors will be executed independently of
each other each Tick.

3.1.1.2 Object Hierarchy
UnrealScript is purely object-oriented and comprises of a a well-defined object

26

model with support for high level object-oriented concepts such as serialization and
polymorphism. This design differs from the monolithical one that classic games
adopted having their major functionality hardcoded and unexpandable at the object
level. Before working with UnrealScript, understanding the object's hierarchy
within Unreal is crucial in relation to the programming part.

The five main classes one should start with are Object, Actor, Pawn, Player, and
GameInfo.

Object is the parent class of all objects in Unreal. All of the functions in the Object
class are accessible everywhere, because everything derives from Object. Object is
an abstract base class, in that it doesn't do anything useful. All functionality is
provided by subclasses, such as Texture (a texture map), TextBuffer (a chunk of
text) and Class (which describes the class of other objects).

Actor (extends Object) is the parent class of all standalone game objects in Unreal.
The Actor class contains all of the functionality needed for an actor to move
around, interact with other actors, affect the environment and complete other useful
game-related actions.

Pawn (extends Actor) is the parent class of all creatures and players in Unreal
which are capable of high-level AI and player controls.

Player (extends Actor) is the class that defines the logic of the pawn. If pawn
resembles the body, Player is the brain commanding the body. Timers and
executable functions can be called from this type of class.

GameInfo is the class that sets the rules of gameplay. Players joining will be
handled in this class which and treated as programmed.

3.1.1.3 Timers
Timers are a mechanism used for scheduling an event to occur. Time management
is important both for gameplay issues and for programming tricks. All Actors can
have more than one timers implemented as an array of structs. The native code
involving timers is written in C++, so using many timers per tick is safe, unless
hundreds expire simultaneously because they execute UnrealScript when activeted.
The following function starts a timer counting the cooldown until the Speed skill
can be used again. MakeAvailableSpeed() function is located in the Player class.

function SkillCooldown(ThaumaPlayer SkillUser)
{

SkillUser.SetTimer(Cooldown,FALSE,'MakeAvailableSpeed');
}

3.1.1.4 States
States are known from Hardware engineering, where it is common to see finite
state machines managing the behaviour of a complex object. The same
management is needed in game programming, specially when dealing with AI. The

27

usual case to implement states in C/C++ is to include many switch cases based on
the object's state. This method, however, is not efficient, since the complexity in
game AI requires many states, which results to code difficult to write and update.

UnrealScript supports states at the language level. Each actor can include many
different states, and only one can be active. The state the actor is in reflects the
actions it wants to perform. Attacking, Wandering, Diying are some states the
pawns have.

Each state can have several functions, which can be the same as another state's
functions. However only the functions in the active state can be called. For
example, say you are writing a monster script, and you are contemplating how to
handle the SeePlayer() function. When wandering around, one wants to attack the
player one sees. When attacking the player, you want to continue on uninterrupted.
The easiest way to do this is by defining several states (Wandering and Attacking),
and writing a different version of Touch in each state. UnrealScript supports this.

There are two major benefits to states and one complication:

• Benefit: States provide a simple way to write state-specific functions, so
that one can handle the same function in different ways, depending on what
the actor is doing.

• Benefit: With a state, one can write special "state code", using the entire
regular UnrealScript commands plus several special functions known as
"latent functions". A latent function is a function that executes slowly (i.e.
non-blocking), and may return after a certain amount of "game time" has
passed. Time-based programming is enabled which is a major benefit that
neither C, C++, nor Java offer. Namely, code can be written in the same way
one conceptualizes it; for example, e a script can be written which supports
the action of "open this door; pause 2 seconds; play this sound effect; open
that door; release that monster and have it attack the player". This may be
done with simple, linear code and the Unreal engine takes care of the details
of managing the time-based execution of the code.

• Complication: Now that functions (such as Touch) override multiple states
as well as in child classes, the programmer should figure out exactly which
Touch() function is going to be called in a specific situation. UnrealScript
provides rules which clearly delineate this process, however it is something
to be aware of if creating complex hierarchies of classes and states.

The following function stops the timer used for the regenerating health skill
everytime the player is in the state DEAD. If the player is in another state
(attacking, running etc) he regenerates health as intended.

function Regeneration()
{

if (self.IsInState('DEAD'))
ClearTimer('Regeneration');

else{
if(Pawn.Health< Pawn.HealthMax && Regen.RegenCounter<10)

28

{
Pawn.Health = Min(Pawn.HealthMax, Pawn.Health +

Regen.RegenRate);
Regen.RegenCounter++;

}
}

}

3.1.1.5 Interfaces
UnrealScript has support for interface classes that resembles much of the Java
implementation. As with other programming languages, interfaces may only
contain function declarations and no function bodies. The implementation for these
declared methods must be done in the class that actually implements the interface.
All function types are allowed and also events. Even delegates may be defined in
interfaces.

An interface may only contain declarations which do not affect the memory layout
of the class - enums, structs and consts may be declared, not variables however.

3.1.1.6 Delegates
Delegates are a reference to a function within an instance. Delegates are a
combination of two programming concepts, e.g. functions and variables. In a way,
delegates are like variables in that they hold a value and can be changed during
runtime. In the case of delegates though, that value is another function declared
within a class. Delegates also behave like functions in that they can be executed. It
is this combination of variables and functions that makes delegates such a powerful
tool under the right circumstances. On the following example, each skill has its
own buff, buff meaning the positive power directed to the player. This means that
each skill has its own declaration. These functions are declared on the
ThaumaAbilities Class, which is the mother class of all abilities. The delegate here
may call any function from any skill, dynamically.

delegate BuffCall(ThaumaPlayer SkillUser)
{

//each skill has its own buff
}

function SkillCall(ThaumaAbilities Skill, ThaumaPlayer SkillUser)
{

//check if player is dead or without a pawn
if(SkillUser.Pawn==NONE || SkillUser.Pawn.Health <1)

`log(">>Abilities:No Valid Player");
else
{

BuffCall = Skill.SkillBuff; //call the skillbuff funtion of whatever ability is
needed

TimerCall = Skill.SkillCooldown; //call the timer of whatever ability is needed

if (Skill.bIsAvailable)

29

{
if(ThaumaPawn(SkillUser.Pawn).EnergyManagement(Skill.EnergyCost))
{

BuffCall(SkillUser);
Skill.bIsAvailable = FALSE;
TimerCall(SkillUser);

}

}
else
{

SkillUser.ClientMessage("I can not use : "$Skill.AbilityName $", yet!");
}

}
}

3.1.1.7 UnrealScript Compiler
The UnrealScript compiler is three-pass. Unlike C++, UnrealScript is compiled in
three distinct passes. In the first pass, variable, struct, enum, const, state and
function declarations are parsed and remembered, e.g. the skeleton of each class is
built. In the second pass, the script code is compiled to byte codes. This enables
complex script hierarchies with circular dependencies to be completely compiled
and linked in two passes, without a separate link phase. The third phase parses and
imports default properties for the class using the values specified in the default
properties block in the .uc file.

3.1.1.8 UnrealScript Programming Strategy
1. UnrealScript is a slow programming language when compared to C/C++. A

program in UnrealScript runs about 20x slower than C. However, script
programms written are executed only 5-10% of the time with the rest of the
90%-95% being handled in the native coden written in C/C++. This means
that only the 'interesting' events will be handled in UnrealScript. For
example, when writing a projectile script, you typically write a HitWall(),
Bounce() and Touch() function describing what to do when key events
happen. Thus 95% of the time, your projectile script isn't executing any
code and is just waiting for the physics code to notify it of an event. This is
inherently very efficient.

2. One should keep an eye on the Unreal log while testing scripts. The
UnrealScript runtime often generates useful warnings in the log that notifies
the programmer of non fatal problems that are occuring.

3. UnrealScript's object-oriented capabilities should be exploited as much as
possible. Creating new functionality by overriding existing functions and
states leads to clean code that is easy to modify and easy to integrate with
other peoples' work. Traditional C techniques should be avoided, like
writing a switch() statement based on the class of an actor or the state
because code like this tends to break as you add new classes and modify
states.

30

3.1.2 Network Overview
The UnrealScript's method for multiplayer gaming is based on shared reality. The
players see the same actors and events from different viewpoints. Most of the
actors will not change state in any way, so the clients only need to know their initial
state. The server inform the players for the rest of the actors and events that every
player needs to know.

When network capabilities (on-line gaming) are implemented, the best route is to
start the implementation from the beggining working on the multiplayer along with
the other features. Retrofitting a solution is hard and design decisions that make a
lot of sense when networking is not considered; such as splitting functionality
across many objects, may cause significant issues when multi-player gaming is
implemented at a later stage.

3.1.2.1 Server's Authority
The server's game state is completely defined by the set of all variables of all actors
within a level. Because the server is authoritative about the gameplay flow, the
server's game state can always be regarded as the one true game state. The version
of the game state on client machines should always be regarded as an
approximation subject to many different kinds of deviations from the server's game
state. Actors that exist on the client machine should be considered proxies because
they are a temporary, approximate representation of an object rather than the object
itself.

3.1.2.2 Replication
Unreal views the general problem of "coordinating a reasonable approximation of a
shared reality between the server and clients" as a problem of "replication". That is,
a problem of determining a set of data and commands that flow between the client
and server in order to achieve that approximate shared reality.

3.1.2.3 Simulated Functions and States
Simulated functions on the client side refer to the proxy Actors, which are copies of
the Actors created by the server. This is the only way for clients to control over
which functions should be executed on proxy actors. Non simulated
functions/states are not called that way. These proxy Actors are often moving
around using client-side physics and affecting the environment, so at any time their
functions can potentially be called.

3.2 IDE-Microsoft Visual Studio
Microsoft Visual Studio is an integrated development environment (IDE) from
Microsoft. It can be used to develop console and graphical user interface

31

applications along with Windows forms applications, web applications and more.

Visual Studio includes a code editor supporting IntelliSense as well as code
refactoring. The integrated debugger works both as a source-level debugger and a
machine-level debugger. It accepts plug-ins that enhance the functionality at almost
every level.

Microsoft provides "Express" editions of its Visual Studio 2010 components Visual
Basic, Visual C#, Visual C++, and Visual Web Developer at no cost. Visual Studio
2010, 2008 and 2005 Professional Editions, along with language-specific versions
(Visual Basic, C++, C#, J#) of Visual Studio 2005 are available for free to students
as downloads via Microsoft's DreamSpark program.

The Express 2008 Edition was used for this project inclusive of a module
supporting the Unreal Scpript language. Using nFringe allows IntelliSense to
automatically detects incorrect syntax[11]. However, debugging features do not
work with UDK, since nFringe was not built exclusively for Unreal Script.

3.3 Materials
In addition to software tools, there were certain useful items that helped during the
design and testing stages. These tools (or equivalent) while not mandatory are
recommended and are always used in large scale projects.

• WhiteBoard is a replacement of the mood board for large projects.
Gathering material relevant to the game's concept in one place helps the
developers get in the game's mood and think accordingly. Ideas, plans and
resources can be written on the whiteboard and by placing him in line of
the working place's sight can serve as a project's cache. A 45x60 cm can be
bought for 20€.

• Board game's materials will help build the board prototype. A board
prototype is better visually and depending on the genre of the game may be
overall better than other non-software prototypes. When gameplay
mechanics are available, "cheap and dirty" prototypes, as they are called,
should be ready to launch (Fig 3.2).

• A digital camera will prove handy when walking outside. A scene, a
texture, a person or a situation from real life can trigger your imagination
and be the source of inspiration for the work to be done.

• Finally the simplest note taking inventory, a pen and a notebook should be
at your disposal all the time. Brainstorming is not programmable, and a
good idea can come up when you least expect it. It is not coincidence that
several important inventions or great ideas were first written on a
papernakin.

32

Fig 3.2 –Materials from various game types will help build a prototype.

33

Chapter 4: Game Design

The stages followed in this project are according to the ones professionals adopt for
developing a game. Adjustments had to be made due to the developer's team size.
The stages followed and subsequently detailed are the following:

Stage 1: TimeTable
The first objective was to organise the time schedule for the project in order to set
milestones which lead to an easier management of the different tasks. The time
available was 12 months and the tasks were too many for this tight timeline.
Careful filtering had to be made, depending on the importance of the task and the
relation to the computer science field.

Stage2: The Concept
A story was obligatory to aid the player's immersion to the game world. The
academic work on that subject is rich, since movies and books have examined
immersion and interactive stories since long ago.

Stage3: Tools
At this point a search for the tools that would be used for the project had to be
made. The search included various popular and not-so-popular game engines as
detailed in Chapter 2.

Stage4: Game Design
A gameplay fitting to the story concept had to be invented in order to provide
entertainement to the player via the game mechanics. Creativity, strategy and a bit
of unexpectancy were the parameters that were of importance. These characteristics
are expressed mainly with the skills, the combat system involving energy
management and the mini events of the game. Books, guides and more importantly
gaming experience were the inspirations for the gameplay.

Stage5: Prototype
The ideas derived from the game design process could not be instantly
implemented and various versions were on the table not only for the skills but also
for the events. A board prototype was created to aid choosing and modifying
decisions made in the previous stages.

Stage6: Programming
Gameplay, Networking, UI and Scripting were programmed on the core of UDK.
Gameplay mainly concerns the skills the players can use, the life, armor and energy
management along with setting the base for future improvements, such as building

34

a skill tree. Network was implemeted on a higher level due to the engine's core
source code with the connection being managed by UDK, using the UDP protocol.
A basic UI was designed in order to provide immediate feedback to the player's
actions. Finally scripting was needed first and foremost during the level design to
set and manage the various events.

Stage7: Artwork
The game cover was created by an artist volunteer. Similar guidelines were given
for the intro and the soundtrack developed by the same artist and a musician
volunteer, in order to make the project as complete as possible. Finally, a video
showing the logo of the game was developed by a 3D graphics expert [16].

Stage8: Testing
Alpha and beta versions of the project were released to gamers providing feedback
not only for bugs, but also concerning the entertainment factors and possible
improvemets.

As a final note, these eight Stages sum up the process of making the Thauma
Project, however not in a linear way. During each stage the previous and in some
occasions the next ones were also revised.

4.1 TimeTable
A timetable is necessary in software development and this project is not an
exception. The need to set strict milestones emerged from the beggining when the
estimated time needed to work on every aspect of the game development was
calculated to be higher than expected. The method used was the agile
development, meaning that there was an iteration during each step redifining the
previous part and affecting the next ones. There were major changes happening
during the process on many stages, which is natural since new ideas were on the
table quite often.

Another important issue concerning time was how much of that would be spent in
each subject involved. For that reason some decisions had to be made beforehand,
concerning the portion of time each element would be allocated. GamePlay or
Story (Fig 4.1)? Core mechanins or Interactivity (Fig 4.2)? The following figures
depict the percentage of time the project's elements would take.

Finally, learning the game engine required a considerable amount of time,
especially because UDK is designed for complicated projects.

35

Fig 4.1 –Focus of Thauma.

Fig 4.2 –Ingredients of Thauma.

The next step was to set the game goals in a linear way and estimate the time
needed for their completion. Completing one step in order to proceed to the
following was not possible as stated before. The goals set for one year were the
following :

• Design the main theme and come up with a story.

• Gather material based on the concept.

• Depending on the theme and the story, define the game (genre, basic
details).

• Create the game mechanics.

36

StorySimulation

GamePlay

Game
Mechanics

Interactivity Story
telling &
Narrative

• Test the mechanics with the help of prototypes.

• Initialise the programming part.

• Add artwork.

Most of the time would be used for Programming, and less for the concept and the
gameplay. The game engine learning process was also a demanding one. Designing
the artwork's prerequisites would be done in any phase's spare time.

4.2 THAUMA Story
Since this is a one-man's project, it is only natural that the developer's likes and
dislikes will effect everything in the game. In another case (commercial one), the
trend of current games may be an important factor.

4.2.1 The Concept
Tolkien wrote "To ask what is the origin of stories, is to ask what is the origin of
language and of the mind." Fantasy has always been in man's reality and games
can immerse the player into that fantasy. Kids dream of being a knight or a ninja.
Games can make that dream come true and that's how immersion begins. The
experience offered by games add to this immersion, which many times surpasses
that of alternative but traditional mediums, like books and movies. While in books
the reader plays the part of the observer, in games the player may play the part of
the observer, the protagonist or even the director. In addition to this, the story in
games can be non linear, as opposed to other interactive means. The story structure
of an adventure game is usually not single-threaded and the player can experience
each ending, depending on the choices he made during the game, much like real
life.

Despite the differences between the game narratives and traditional narratives, the
similarities in creating each are many. Ella Tallyn in her PhD titled "Applying
Narrative Theory to the Design of Digital Interactive Narratives with the Aim of
Understanding and Enhancing Participant Engagement" compares the structures of
narratives and games[3]. She concludes that there are inherent problems in
emotionally engaging protagonists using the existing interactive techniques. The
main problem, according to her, is the audience interaction that interrupts the
author’s ability to structure a plot precisely, and as a result, many narrative
techniques for promoting engagement are ineffective. The goal centred approach of
computer games however, has been the most successful.

A well established goal will not only drive the player to the end, but will also add
meaning to the game. The storytelling characteristics can provide the game
designer with the following:

1. Immersion: The player controls what happens;

37

2. Plot: Plot can provide the player with surprises;

3. Characters: Characters can bring the story to life. Players "become" the
protagonist, rather than playing him;

4. Setting: The world of the game depends on the story of the protagonist;

5. Goals and Motives: they Define what the player tries to achieve;

6. Obstacles and Challenges: Either physical or puzzles, riddles;

7. Rewards and Penalties: They can be a score or a new skill/weapon;

8. Emotions: They can make a game richer, more memorable;

9. Urgency: The player must succed at something before time runs out.

Horror, survival and action were the chosen characteristics that are met frequently
in games, movies and other media in order to trigger one's imagination. Games
such as ASC's Sanitarium (Fig 4.3), CAPCOM's Resident Evil series, Infograme's
Alone in the Dark series were engraved in the players' memory in relation to the
feelings and the atmosphere they would experience playing these games. Several
more horror-themed sources are H.P.Lovecraft's Cthulhu Mythos, Jacob's Ladder
(Bruce Joel Rubin Movie,1990), Monster (manga from Naoki Urasawa) etc. The
story of Sanitarium was considered to be a good starting point in relation to the
final year project's story. The following abstract is part of the story design
document, included at the appendix.

Fig 4.3 -Sanitarium is a point-and-click adventure game released in 1998 by ASC
Games.

'This game (Thauma) is about a man who experienced a traumatic event at a young
age, but has managed to leave it behind and go on with his life. At some point in his
present life, he has to confront his past painful experiences and start a battle with

38

himself. Memories emerge like ghosts from the past, and each has a question that
needs to be answered, in order to find peace...Guiltiness, anxiety, depression and
moral dillemas are the burden the hero has to carry till he reaches the end in his
mind's maze. When his journey comes to an end, will he find catharsis or will the
opening of his mind's hidden locks lead him to another purgatory?'

During his journey his dual personality disorder emerged, leading to the awakening
of his evil side. This evil side depicted by Dark Jonathan incarnates the negative
emotions Jonathan feels during his adventure. The origin of this evil self is the
guiltiness he felt after his brother died, asking for his favorite comic book. Jonathan
had secretly taken the book in order to repair it and give it back to him in time. On
the verge of a psychological collapse, Jonathan's parents visited a doctor and
managed to hide this guiltiness inside Jonathan's subconciousness. The game starts
when the subconciousncess reveals memories that should remain hidden. The battle
in Thauma T.v takes place in Jonathan's subconciousness, opposing his evil self.
The outcome of this battle is symbolic, however it depicts the hero's current
psychosynthesis. If he manages to win the battle against his evil self, he will have
succeeded in finding peace with himself, discarding his dual personality disorder
once and for all. If he loses his dark side overcomes his good side. Being overun
with guiltiness and depression, the protagonist loses his mind. Finally, in the case
that there is no winner, then his state of mind is unstable, being sane but guilty and
depressed.

Game-wise the battle consists of 4 phases, depicting Jonathan's unstable mind.
Each side has 4 powers (skills) that can be used spending psychic energy. This
energy comes from Jonathan's mental strength, and cannot overcome a certain
maximum value (100). However it regenerates, since he is still sane during this
battle. The skills Dark Jonathan can use are of evil nature, able to cause damage
and control Jonathan, while Jonathan has defensive skills at his disposal. The skills'
system is described in detail at the following section. Using these skills effitiently
will aid the player in killing the opponent which in turn grants points. A point
system is used to determine the winner. Points can be obtained in two different
ways, either by killing the opponent, or by participating in the events. Due to the
replayable nature of Thauma, the events may be anticipated after the first game.
This is not a problem, since careful planning was meant to be required before each
event. The random pick of the second and third event add a random variable that
will have to be taken into account as well.

4.2.1.1 The Characters
In games there are two types of characters; the one the player controls, and the non-
player characters (NPC's). Characters must be developed carefully, provided with a
background story and a good visual design supporting it. Some important facts are
that people have a tendency to see attractive people as more intelligent, moral and
sociable than unattractive people. On the other hand, people that have more baby
face features are considered more naive, helpless, innocent and honest than those
with mature features. Finally, characters should have depth which is revealed
throughout the story. Characters' growth is very important to the player, who will
find the protagonist static and unrealistic if he does not evolve during the game.

39

This evolution may involve personal characteristics, such as not trusting a person
that lied to him in the past, abilities, which is the more usual case, or any other
form.

Certain techniques improve the player's relationship with the protagonist, such as
the first person camera, used mostly in FPS games. Moreover, cinematic videos can
show characteristics through dialogues or events that add to the character's prior
created personality. Therefore, the advancement can occure via dialogues options
the player chooses. The future became ominent for dialogue based games, like
adventures, after the creation of Facade [15].

What is the player feeling as he/she play? What motivates him/her and what is the
relationship to the central character? The most important feature is the characters
the story provides the game with. Well-developed characters will enhance the bond
between the story and the player. This means that it will be easier for the nine
characteristics to be applied during his/her gaming session. On the other hand,
weak characters or characters the player shows no interest at all, may easily be the
reason to ignore the game. Even if the character is unimportant to the gameplay, if
he/she is well developed he/she can be highlighted. Mario, for example, from the
Super Mario Bros series , is a plumber with a blue outfit, a red hat, a big nose and a
moustache (Fig 4.4).

Fig 4.4 -Would this Mario be as popular as the current one?

This description is almost irrelevant to the gameplay (except maybe the fact that he
can go through pipes because he is a plumber) and even if he was tall, blond with a
toxedo, the gameplay would be exactly the same. However, his creation as it was,
helped promote the game and he is one of the most popular characters in games
history. For this project, inspiration was drawn from real-life characters (please
check the Story Design Document at the appendix). A short description of the
protagonist of Thauma follows:

Jonathan: The tragic protagonist in this hero's journey. Jonathan was born in 1983

40

from middle-class parents. He and his brother, Jacob lived a happy life until Jacob
got sick with a deadly disease. Jonathan's failure to fulfill Jacob's last wish caused a
deep travma, which healed after a psychologist intervened. Now Jonathan is 26
years old and the demolition of his parents' mansion will make him confront these
past events.

4.3 THAUMA GamePlay
The THAUMA gameplay consists of the challenges the game offers to the player in
addition to the actions the player can take to overcome these challenges. Rules,
balance issues, victory conditions are all part of gameplay. For this project, almost
every part of the gameplay mechanics were built from scratch. This includes the
skills the players can use, the resources available to player, the level design, the
events and the victory condition. The challenges the players face test their physical
abilities, resources management, skills and creativity.

4.3.1 THAUMA Challenges
The physical abilities tested in THAUMA are the typical for FPS games. Quick
reflexes, physical coordination, speed timing, accuracy and precision are all
needed, based on the action side of the project. More specifically, by killing the
opponent the players can increase their score, and in order to do so each player
must be superior from the opponents in relation to the characteristics mentioned
above.

Resource management is involved mainly due to the Energy constant that is
included in the THAUMA game. Energy is used on all skills and even the default
attack consumes one point of energy. It represents Jonathan's mental strength. The
careless use of skills will most likely result in a large consumption of energy, which
in turn means that some skills will not be available when the player needs them.
Skills are important because they boost the player's powers aiding the player in
killing his/her opponent or surviving for that matter. An additional attribute of
resource management is the cooldown (cd) of the skills. Each skill has a cooldown,
which prevents it from being used again until that cooldown passses. Once again,
careless use of the skills can prove fatal, since using speed in order to move faster
while not in combat, will also mean that the player will not be able to use it to
escape when engaged in combat. Health and Armor need management, however
not immediate since the other player can affect their values too (Table 4.1).

Resource Min. Value Max. Value Special
Health 1 150 0 = Death

Armor 0 100 Absorbs Damage
Energy 0 100 Regen 5/2sec

Table 4.1 –Player stats.

41

Lastly, creativity may be expressed mostly through the skills. Using the landscape
in combination with the skills provided may provide a lot of help to the player.
Skills must support that kind of creativity. The multi-purpose skills enhance the
ways the player can play the game, which is desired (Table 4.2).

SkillName Cooldown Cost Duration Ability Player

Speed 8 25 3 Haste A,B
Invisibility 16 35 2 Ethereal A,B
Armor 12 20 Instant Armor A
Regeneratio
n

36 35 8 +40 Health
over time

A

Stun 16 35 2 Stuns
Enemy

B

Sacrifice 30 40 Instant AOE
damage

B

Table 4.2 –Player Skills.

Time is of great importance in games and the use of time can be a precious tool for
the designer. In the THAUMA game, time equals stress and anxiety. A countdown
is always visible to the players and it signifies two distinct timestamps: One is the
beggining of an event. Every 90 seconds an event initializes which can provide the
players with additional points, either by providing the circumstances for combat
engagement or by giving points when an certain action is done by a player. Note
that the second event is randomly chosen between B and C. The other purpose is to
inform the player that there is time left before the end of the game. When time
passes, the player with the highest score wins. Since points from killings matter a
lot, even a few seoncds can be enough for the player to change the flow of the
game and win. This thought adds to the anxiety of the game. Another stress factor
is the choice of the right skill. A few seconds are not enough to distinguish which is
the right one for the situation.

One more critical topic concerning gameplay is balance. Balance is a factor that
when addressed successfully, a great game can be derived. Starcraft is known for its
balanced gameplay among others as well as DoTA (a mod for Warcraft 3). Both
games are very popular among their kind. A game can be considered balanced,
when all sides available to the player are equal in power and when a high-skilled
player has an advantage over a low skilled one. This can be achieved with various
ways and most of them work just fine. The classic rock, paper, scissor method is a
situation involving three sides, A, B, C, with A winning B, B winning C, C
winning A. This of course is not a deterministic result in games, otherwise it would
not be fun. Luck is affecting these relationships, however, the base is as desrcibed.
Another method is to give all sides the same tools. This means that both the players
and their opponents have the same skills, the same cooldowns, etc. One is a copy of
the other. Only luck and skill matters in that case, however personal differences
between players cannot be expressed which means that choosing a side can only be

42

based on the story elements of the game. Finally, another approach is to give
players different powers/tools which are of equal strength. Victory then depends
highly on strategy and tactics and the choices the player makes when facing an
opponent.

Taken all these into consideration, the skills of Thauma were decided not to be the
same for the players. The skills are described in the Story Design Document. To
sum up, there are two skills of the same kind available to both players as well as
two skills that differ between them. Perfect balance is a difficult achievement and
this is not a game with perfect balance. The more the game is tested the more
balance can be achieved. This involves professional players for commercial
projects and design experience. Another option was to give all 6 skills to both
players, so that the game would be balanced but that desicion created a conflict
with the story elements of the game, and was set aside. The Good side of Jonathan
(the protagonist) has defensive skills, whereas Dark Jonathan (Jonathan's Dual
Personality Disorder) has offensive skills due to his dark nature.

4.3.2 THAUMA Level Design
Level Design is another part of gameplay. As mentioned earlier, the level is a
medium to following the story and can also be used as a modifier to the player's
experience. Levels may be defined as the chapters of a book. Sometimes they may
occur sequentially, however this is not necessary. Depending on the genre, the level
design can be more or less complicated and can serve multiple purposes. In a
football simulator for instance, a plain field serves as the level. In Strategy games
however, taking over a hill may mean the victory after a long-houred battle. There
are certain points to consider when designing a level:

1. Its function in the game, such as providing new challenges;
2. The setting of the level, such as a deserted village in a post nuclear world;
3. The layout and the paths available to the player;
4. The main goal of this level, such as killing the dragon to save the princess;
5. The major challenges and the walkthrough;
6. The initial conditions, such as straight from a shipwreck with an empty

inventory (Conan);
7. The narrative elements of this level and the flow of the story;
8. The trigger points and the actions needed to activate them;
9. The level's mood and atmosphere, such as a foggy haunted city (Silent

Hill);
10. The termination conditions.

Apart from these points, there are several methods to adopt in order to succesfully
design a level. A level is successful when it serves the purposes it was built for.
Showing the player an NPC (Non player character) that walks into the dark water
and gets massacred by a creature will give signs to the player about which way
he/she can move in order to successfully complete the challenge. Moreover, the
level's goals should always be clear to the player and a reward for completing is
important especially when it is communicated from the start.

43

The first levels of Thauma are designed only roughly and are described in the SDD.
This project's level was designed to be a fantastic world similar to a brain. The last
fight happens in Jonathan's mind so this place would be ideal. As written before, no
assets were created for this project, which means the graphics do not resemble a
brain. However, apart from the visual entities, the level had to be small, circular in
shape with a topology that favors the use of skills and the combat in general,
therefore resembling the overall shape and idea of a brain. Speed, Invisibility (with
ability to pass through the walls), Create Obstacle and Combat were the main
parameters for designing the level in order to provide for creative thinking on how
to use them. The Create Obstacle skill could be used best in narrow long corridors,
in addition with the Invisibility skill. The aim was to be able to turn the tide of the
combat by using this abilities well. Finally, wide areas in between the corridors
would permit the use of events and combat, with players showing their fighting
skills (Fig 4.5).

Fig 4.5 –The Level used for thauma at its final form. (DM-Sanctuary mod)

4.3.2.1 THAUMA Events
The Events's purpose is to add excitement and fun to the game. The use of skills
alone, while unusual and interesting as an implementation to a FPS, do not support
the replayability of the game. They resemble weapons in the classic FPS games and
may be boring after a couple of games. This gap can be filled with the events. The
Event give the players an aim for a little while, however it is enough to keep their
thought focused on achieving it. Each Thauma game lasts 6 minutes while an event
is happening every 90 seconds. However, it will propably be raised to 8 minutes in
subsequent versions while events will occur every 2 minutes (Table 4.3).

The first event actually marks the beggining of the game, offering extra points for
each killing. It serves as a tutorial, without demanding anything specific from the
player, in order to let him get accustomed to the Interface, Skills, etc.

44

The second event is a random choice between two, let's name them B and C.
During B, the player has to step on a stone on a marked spot on the center of the
map, in order to get extra points (Fig 4.6). By doing so, he also has a chance to get
a buff or a debuff. Buff is the positive effect, while debuff is the negative. A battle
for territory control starts at that point, with the stepping stone being the key. Will
the player risk and step on it, while being in combat with the other player, or will
the player let the opponent risk while trying to kill him in the meanwhile? The
buffs/debuffs may turn the tide of the combat, with the random factor adding to the
unpredictability which adds to excitement. One variation in mind that did not
manage to be implemented due to time constraints, was to make the stepping stone
random too. This action would mean that despite taking all the previous actions
into consideration, the player should be aware for the randomly chosen stone.

Event C includes a teleportation of the two players to the same spot, stunning them
for a few seconds and realeasing them afterwards for battle. Generally, Thauma is a
fast-paced game and in combination with the kills and the players' skill, it may not
be easy to kill the opponent. This Event acts like a reset, engaging the players in
combat. It worths mentioning here that after a player's death, the player re-spawns
at one of the two spawning points.

Finally, Event D is pre-determined and acts like a countdown for the whole game.
This event changes the rules of the game a bit. The first of the three changes is
related to health. Both Players' health instantly rises to 150, while a count down
begins and certain health score is lost every 2 seconds. This means that by the end
of the game (after 90 seconds), the players will be left with a few health points if
they are not hit at all by the opponent. They are vurnerable for 90 seconds and that
vurnerability can be abused by the opponent. The second change refers to the
energy regeneration. The energy normally regenarates with a pace of 5 points of
energy lost every 2 seconds. During this event, the regeneration drops to 2 energy
points per 2 seconds. This practically means that the energy management has to be
carefully designed and utilized by the players. Correct use of the skills and the
default attack matter a lot at this point and the highly skilled player has better
chances landing an attack or succeeding in a skill use. Finally, when a player is
killed during this phase, he/she does not respawn, leaving the alive player with
extra point if the alive player manages to survive the health loss every two seconds
until the end of the game.

Event Description
A Each kill gives double points.
B Stepping on stone gives points and a random buff/debuff.
C Both Players are teleported to the same spot and get stunned.
D Players' Health goes maximum. They start losing health/time.

Energy regeneration goes down to 2/2sec.
Table 4.3 – Events Description

45

Fig 4.6 –Will you step and risk being stunned?

4.3.3 THAUMA User Interface
The User Interface (UI) is the connection between the player and the game. It
gathers the information concerning player actions and sends the appropriate output
based on the input. A well-designed interface will enhance the gameplay
experience, whereas a poorly designed will repulse the player from spending time
with the game. The ideal UI offers maximum control to the player, all the
information needed to play and enjoy the game, is clear, easy to learn and very easy
to use after a few seconds. The importance of the UI is highlighted by the Human
Computer Interaction field, and one of the first principles is “The first
impressions of the users on the interface are determining the attitude of the users
towards the interactive system“. Both appearance and efficiency are of utmost
importance for the UI. A consistent Interface which provides feedback to the player
for every action, while keeping things as simple as possible is the designer's goal.

A game UI may include windowed views or overlays. Windows views gather all
the visual information in window-like areas at the edge of the screen (sides,up or
most often at bottom). Overlays, on the other hand, intergrate the UI in the game
offering an intense immersive experience because there is more screen available for
the actual game. The choice is made mostly depending on the genre, along with
the actions the player can perform. One may suggest that when designing a UI,
innovation most of the times is not a plus. There are however, differences from
game to game even of the same genre, but basic guidelines are followed. An
interesting point is that UI in games does not have to follow some of the classic
HCI rules in order to be successful. Games' complexity from the early years of their
development have managed to get the players accustomed to a design more
complicated than non-game software (Fig 4.7).

46

The type of UI designed for this project is a visual one, which means that the player
cannot interact, but rather be informed from it. Health, Armor, Energy, skills'
availability and messages are always on the player's screen. Related sounds also
help to provide feedback since an exciting event may result in the player ignoring
a visual indication.

Fig 4.7 -More than half of the screen is covered from the UI. That equals to
nightmare for HCI experts, but to an enjoyful experience for hardcore gamers.

Thauma UI was based on very simple graphic elements since no artist was involved
and the author's skills in art are questionable (Figure 4.8). The interface is spread
all around the screen, since placing all the elements in one place would cover a
large portion of the screen. The important meters of Health and Energy were placed
on the top of the screen which is where they are commonly placed in games of the
same genre. Skills were placed on the bottom middle screen which is also common.
The events messages appear on the left side, under the important Health bar, so the
messages are clear to the players. The skills' icons turn to a distinguishable color
when they cannot be used in order to be clearly unavailable to the players without
them having to focus on them and lose attention. The colors chosen for health and
energy are based on previous games as well. Red depicts blood which equals life,
while blue stands for the mental strength (Fig 4.8).

47

Fig 4.8 -Thauma uses a visual interface.

4.3.4 THAUMA Multiplayer
Multiplayer support is very common nowdays, especially because of the fast
network speeds that are available. Implementing multiplayer gaming is a desicion
that needs to be taken during the first steps of the game, not only because of the
different orientation the game gets concerning the gameplay, but also because of
the programming part which demands networking to be taken into consideration
from the beggining. The reason this project supports multiplayer is mainly because
(apart from implementing it as a chosen requirement for this thesis) games are
more entertaining when you play with your friends, either co-op or competitive.
The fact is that 60% of games are played with friends; this is also the entertaining
part of socializing. Apart from that, having experience with network programming
was also a goal. Due to UDK being available for only a short period of time, there
were no indie projects supporting multiplayer. Other programmer's experience and
help would be too valuable for a team-focused engine like UDK.

Jonathan's story supports multiplayer, with the second player taking the part of his
DPD, Jonathan's evil self. Throughout the story, DPD's role changes, along with
the role of the second player, depending on Jonathan's psychosynthesis.

The taste the game leaves to the players is strange, because of the mixing of types
and genres throughout the game as described in the players' feedback text having
read the SDD and played with Thauma T.v. To be more specific, story-based games
do not normally support multiplayer, with a few exceptions that were not successful
such as the last Zork game having one player moving and the other using the
mouse for the puzzles. Moreover, implementing RPG-like skills in FPS is not
common either. First of all the player cannot use the skills by using the mouse
(mouse is used for ratation-aim), which is the traditional way and secondly the
different weapons usually cover the need for diversity.

48

4.4 THAUMA Prototyping
Protytype means first impression, which comes from the greek work 'protos'
meaning first and 'typos' meaning impression. Creating prototypes is a critical
procedure used in software development among others, which aims to serve as a
typical example or basis. The main reason to create prototypes is because software
development takes a great amount of time, which leaves no place for mistakes.
There are various methods to prototype and each expert team can modify any
method to fit their own standards. In games, this procedure is sometimes
overlooked either because no personnel can handle it, since it is mainly related to
software engineering and no game design, or because the complexity of the game
leaves no room for extended prototyping. Prototyping is very popular however in
researching new types of games. Pervasive games for example are the games that
inculde real life constants in games. Time and location parameters can be used in
prototypes much easier than it would be to actualy use input devices for these
constants. [9]

No matter how experienced in game design a designer is, an idea can turn out
different from what the designer would have thought or expected. This is the reason
why prototypes are important. The main methods of game prototyping are four,
however one can always experiment with a new form or a sub-form.

• Pen and Paper: Fastest and cheepest method to prototype and no further
knowledge is needed.

• Board Game: No better way to show an idea for a game than
implementing it in a non-software game. The entertainment factor can be
measured easilly and it is a cheap method too. Some counters, miniatures
and a piece of paper will do.

• Graphics Program: Depending on the concept, a prototype in Photoshop
or elsewhere can be useful too. This is not the usual case, since it does not
allow for much interactivity, but is chosen when working from distance.

• Software Prototype: The programmed prototype is the one with the most
resemblance to the actual game. On the other hand, the time needed to
create it is sometimes forbiden, and is hard to change.

Protytyping is about experimenting. Two or three or all the methods can be used for
one project. The main advantages are the following:

• It can be checked if the game will be fun from early on;

• An idea can be chosen among others;

• The game rules can be balanced;

• Early feedback can be taken into account by having testers play the
prototype version;

Many are the projects that managed to become popular and were based on
prototypes. These games are most known for their innovations. Two examples

49

worth paying attention are Spore and World of Goo. Spore is a game based on the
evolution of creatures the player makes. A fragile concept like that needs a lot of
prototyping before certifying an idea[2]. The second game, World of Goo, came
from a different procedure though. Grad enginner students of Carnegie Mellon
University (CMU) spent a semester creating one-week games. The goal was to
rapid prototype many new ways of gameplay. The result was a game (one of the
many) that was downloaded hundreds thousands of times in a short period of time.
The one-week concept fits the prototype idea fully; cheap and dirty.

For this project, a board prototype was devised and built, mainly to provide
feedback for the game mechanics, the events and the balance issues (Fig 4.9). One
person was needed to simulate the two avatars during the prototypes' session. The
drawback of prototyping a game such as THAUMA is that while the game is
played in real-time, the prototype has to be tested as turn-based. From that
perspective it could not help much. However, having a visual indication of the level
and the position of players in the level was enough to assist in the making of the
events. Resolving balance issues was the main advantage of the THAUMA
prototype, specially because the multiplayer part demanded a second person being
available at working hours, which was hardly possible for this project. Board
games with heroes and skills only need miniatures and cards displaying the abilities
and dices. The main idea is the same, therefore it was easy to simulate an in-game
combat by using two miniatures and the skills written in pieces of paper. A
stopwatch (cooldowns) and tiles resembling the level would be handy as well (Fig
4.10).

Fig 4.9 -A few miniatures, a board or hexed paper, index cards, counter marks,
pen and paper can assist in making a board game prototype.

50

Fig 4.10 -The prototype is ready for some testing. Skills and Players' stats are
described in the index cards. The counters mark a skill as used.

51

Chapter 5: Implementation

5.1 Intro
Object-oriented programming in UnrealScript unveils no major difficulties, mainly
because of the strong resemblance to the C/C++/Java syntax. The core of
UnrealScript allows the programmer to accomplish any game attribute, however,
the developer is centred on that core. Obtaining the core's code is highly significant
to the programmer for this reason. This is proven to be a difficult task. Learning
UnrealScript starts with reading the main classes' code as written by Epic, in order
to become aware of what has to be written anew and what not. Learning the
hierarchy of the classes is also of high importance. UDK was designed as a
professional tool and professional teams consist of many people. Using UDK for a
solo project meant one man had to implement the tasks that normally other experts
would do. For example, UDK offers a very good base for the network
programming part which usually is being handled exclusively from a network
programmer, due to the complexity of that task. The same goes for the UI
programmer etc. Once the programmer learns to develop game attributes using
UnrealScript, the many possibilities that Unreal Script has to offer are realized.

The classes created for this project are (Fig 5.1):

• ThaumaAbilities

• ThaumaAbilitiesNeutral

• ThaumaAbilitiesOffense

• ThaumaAbilitiesDefense

• ThaumaAbilityArmor

• ThaumaAbilityRegeneration

• ThaumaAbilitySpeed

• ThaumaAbilityInvisibility

• ThaumaAbilityStun

• ThaumaAbilitySacrifice

• ThaumaAttackSacrifice

• ThaumaHUD

• ThaumaMain

• ThaumaPawn

• ThaumaPlayer

• Thauma_ProjPsychic

52

ThaumaAbilities includes the base attributes of the skills, such as the EnergyCost
and Duration. All these attributes are inherited to the ThaumaAbilitiesNeutral,
ThaumaAbilitiesDefense and ThaumaAbilitiesOffence classes. Each of these classes
contain different skills, depending on the nature of the skill. The
ThaumaAbilityXXX classes include the main implementation of the skills.
Additional implementation had to be done in other classes, in order to connect the
skill to the player. ThaumaAttackSacrifice is the class that creates the new projectile
that is used for the Sacrifice Ability. The Heads Up Display is described and
implemented in the ThaumaHUD class, which includes the UI. The game logic and
rules are implemented in the ThaumaMain class, along with some connection
issues between Thauma and the players. ThaumaPawn is the class responsible for
the avatar's actions, whereas ThaumaPlayer contains the commands that result to
the action. For instance, if the player decides to run, the code responsible for
running is located in ThaumaPawn, but the process from pressing the button to
calling the run inside Pawn is handled in ThaumaPlayer. Finally,
Thauma_ProjPsychic is the class describing the projectile used for the default
attack.

Fig 5.1 -Hierarchy of the classes written for Thauma T.v. The Blue classes derive
from UTGame, the green from the engine, while the orange are made from

scratch. The Classes with the asterisk include network code.

53

Main

Player
Controller

Abilities

Armor Regeneration Stun Sacrifice

Pawn

Invisibility

Proj_Psychic

HUD

Speed

Neutral Defense Offense

Attack
Sacrifice

5.2 Players
ThaumaPlayerController is the class ordering the Pawn what to do. It derives from
UTPlayerController class inheriting all the base functionality from it, enabling the
programmer to deal with the important parts and the parts that need to be changed.
For example, the movement functions, the physics and more basic features are all
implemented in UTPlayerController, saving precious time which can be spent in
different aspects, such as skills. One may decide to escape the movement type of
Unreal however. These critical desicions are left for the designer to take. The
complete source code for this class is available at the appendix.

...
var ThaumaAbilities Abilities;
var ThaumaAbilitySpeed Speed;
var ThaumaAbilityInvisibility Invis;
var ThaumaAbilityArmor Armor;
var ThaumaAbilityRegeneration Regen;
var ThaumaAbilityStun Stun;
var ThaumaAbilitySacrifice Sacri;

var int PsychicAttackCost;
var UIScene PauseMenu;
var Console PlayerConsole;
var bool bPhaseD;

replication
{

if (bNetDirty) //when replicated variable changes server side, send its value to all
clients

bPhaseD;
}
...

The declaration of variables always comes first, followed by the replication
statement. For this class the bPhaseD boolean must be known to both to the client
and server so this statement has the server send bPhaseD's value everytime it
changes.

...
simulated function InitializeAbilities()
{

Abilities = new class'Thauma2.ThaumaAbilities';
Abilities.AbilitiesOffenseConstructor();
Abilities.AbilitiesNeutralConstructor();
Abilities.AbilitiesDefenseConstructor();
Speed = Abilities.GoodAbiNeu.NeutralTier.AbiSpe;
Invis = Abilities.GoodAbiNeu.NeutralTier.AbiInv;
Armor = Abilities.GoodAbiDef.DefenseTier.AbiArm;
Regen = Abilities.GoodAbiDef.DefenseTier.AbiReg;
Stun = Abilities.GoodAbiOff.OffenseTier.AbiStu;
Sacri = Abilities.GoodAbiOff.OffenseTier.AbiSac;

}
...

InitializeAbilities() works as a constructor for all the skills. While not all skills are
used by both players, the client server will propably use the server's abilities during

54

the event that gives buffs. Some of the buffs serve as the skills themselves. The
server however, will not use the stun or the sacrifice skill, so this initialization
could have been altered depending on whether the machine is a client or not. This
is bound to change in the next patch.

Whenever there is a a function call with the keyword 'Energy', this function is
located in the ThaumaPawn class, where the Energy variable is declared and
managed..

...
/due to timer's restriction (functions calls with no parametres) Regen() is in here
function Regeneration()
{

if (self.IsInState('DEAD'))
ClearTimer('Regeneration');

else{
if(Pawn.Health< Pawn.HealthMax && Regen.RegenCounter<10)
{

Pawn.Health = Min(Pawn.HealthMax, Pawn.Health +
Regen.RegenRate);

Regen.RegenCounter++;
}

}
}
...

The Regeneration() function should best be declared in the ThaumaPawn class,
however that was not possible due to the constraints the Timers have in UDK. To
be more specific, the Timer's function call ought to be in the PlayerController's
class. SetTimer() has several parameters including a function declaring the function
that will be called when the timer expires. This function must be in the
PlayerController class.

The functions involving the skills follow, requiring additional management
depending on the side from which the skill is called (either server, client) and the
complexity of the skill.

The Kismet is a tool UDK offers that will be described below. Kismet actions, are
also in this class because the functions have to be executable and only the
PlayerController class can have executable actions. Executable is the action that
can be called from the console.

5.3 Skills
A large portion of the programming part of this project, refers to the skills the
players can use. Skills are the main characteristic of the Role Playing Games, a
genre with great potential due to MMO games' popularity nowdays. Skills can be

55

compared to super powers or special moves. Tenths of different skills are at the
player's disposal while playing these games, allowing for differencies between
player's characters' builts. Therefore, implementing a skill is a significant task for a
game programmer. The full description of two of the skills utilized follows. The
network part of the skill is also described, since Thauma is multiplayer game.

The base on which the skills were set, was designed like a common skill tree
similar to the one many games include (Fig 5.2). The origin of this tree may well be
the PnP RPG skills, which most often demanded a low level skill before allowing
the player to learn a higher one. This progression allows the player to use a new
power at each level, the next being greater than the current. In order to resemble
this tree, a hierarchy had to be developed. The class ThaumaAbilities is the super
class of every tier and the three classes that derive from it are
ThaumaAbilitiesNeutral, ThaumaAbilitiesOffense and ThaumaAbilitiesDefense. All
the skills extend from these three classes, which in turn extend from the basic one.
This means that a large amount of the source code would be declared in the basic
one, since all the subclasses inherit its functions. The functions code would differ,
however, calling a function would need a call from the basic one, due to the
inheritance. All the common skills attributes would also be declared in the super
class.

Fig 5.2 -Adding more skills can easily result to a classic skill tree met in RPGs,
with points spent to learn each skill.

The complete code for the ThaumaAbilities class can be found in the Appendix.

Now that the base is set, the subclasses can be declared. Only one is presented, with
the others being similar. The implementation could be the same without this
hierarchy, but as stated before this convenience was applied to allow for future
modifications. Adding more skills and including a skill tree can be easily developed
that way.

56

Neutral Defense Offense

Skill 1

Skill 2

1 point

3 pts

6 pts Skill 3

Skill 410 pts

Skill 5

Skill 5

Skill 6

Skill 7

Skill 8

Skill 9 Skill 14

Skill 13

Skill 12

Skill 11

Skill 10

15 pts

Points
spent

The first skill analyzed is the Speed skill. Using it offers the player a movement
speed bonus for a small amount of time. The main implementation is in the class
presented below. The ThaumaPlayerController class and the ThaumaPawn class
include part of the skill's functionality in order to connect the skill with the player
succesfullyin the client or server.
...
simulated function SkillBuff(ThaumaPlayer SkillUser)
{

if(SkillUser.Pawn != NONE)
{

SkillUser.SetTimer(Duration, FALSE, 'SpeedEnded');
if(SkillUser.Pawn.Role < Role_Authority)

SkillUser.ServerSpeedBuff();
else

SkillUser.Pawn.GroundSpeed =
ThaumaPawn(SkillUser.Pawn).MaxSpeed;

if(SpeedUseSound != None && SkillUser.Pawn != None)
SkillUser.Pawn.PlaySound(SpeedUseSound, false, false);

SkillUser.ClientMessage("My feet feel too light!");

}
else

`log(">>AbilitySpeed:this shouldn't happen");
}

function SkillCooldown(ThaumaPlayer SkillUser)
{

SkillUser.SetTimer(Cooldown,FALSE,'MakeAvailableSpeed');
}

function SkillEnded(ThaumaPlayer SkillUser)
{

if(SkillUser.Pawn.Role < Role_Authority)
SkillUser.ServerSpeedEnded();

else
SkillUser.Pawn.GroundSpeed = ThaumaPawn(SkillUser.Pawn).BaseSpeed;

SkillUser.ClientMessage("My feet feel heavy again!");
}
...

The full course of action in order to use any skill, in this case speed is the following
(Fig 5.3):

Each player has his HUD drawn either on the side of the server or the client. The
first skill is represented by the number one key. The player presses the "1" button
which is assigned in the configuration file of the game to the function
PlayerAbilitySpeed() in the ThaumaPlayerController. The PlayerAbilitySpeed()
function calls the generic function used for all skills located in the ThaumaAbilities
class. This function then checks whether the player that uses the skill is valid,
meaning not dead or not spawned in game, whether the ability can be used
(cooldown wise) and then it calls for the skill's ability and starts the cooldown if the
player has enough energy to spend in order to use it. The ability Speed checks the
side of the client that called for it mainly because it involves movement which is
related to the gameplay rules the server needs to know and authorise. One more
timer is then needed to count the skill's duration while the previous timer utilized
counts the cooldown. The speed of that player is set to the maximum for the

57

duration of the skill. When the skill ends, the movement is set to the standard one,
which is applied on the client or server sider accordingly. A boolean is set to mark
the skill as used, so when the cooldown ends the boolean will be set to true again.

Fig 5.3 – Using a skill process.

The code for Stun skill follows, used only by the client side and player Dark
Jonathan.

...
simulated function SkillBuff(ThaumaPlayer SkillUser)
{

if(SkillUser.Pawn != NONE)
{

//Only client uses Stun. If server can use it too, some changes are needed in
Pawn's CheckForStun function.

if(SkillUser.Pawn.Role < Role_Authority)
SkillUser.ServerStunBuff();

SkillUser.ClientMessage("I am aiming for his kidney.");
}
else

58

Configuration
file

Keypad
"1"

Player
Contro

ller

Abilities

SpeedEnergy, Cooldown

Server Client

checks

defines
to

calls

calls

executed on

`log(">>AbilityStun:this shouldn't happen");
}

function SkillCooldown(ThaumaPlayer SkillUser)
{

SkillUser.SetTimer(Cooldown,FALSE,'MakeAvailableStun');
}

//stun ended for the stunned player!
function SkillEnded(ThaumaPlayer SkillUser)
{

SkillUser.SpeedEnded();
ThaumaPawn(SkillUser.Pawn).bEnergyUsable = TRUE;

}
...

Stun is a skill more complicated than the others due to the fact that using this skill
can affect another player too. When this skill is used, the next attack (Right click
this time) will shoot a special projectile that can stun the player it hits. Stun
disables both the movement and the energy use of the enemy, making him very
vurnerable for a short amount of time. Compared with the sacrifice attack it maybe
deadly. However Jonathan will use 50 points or Armor if available, in order to
avoid the stun effect. The damage of the Stun attack will be applied which is more
than double of the default psychic attack. The procedure for this skill's
implementation uses the same base as the one described for the speed skill above.

The player presses the "3" button as shown in his HUD, which shows a message
about the next attack being in a critical spot. In the configuration file the button 3 is
assigned to the function PlayerAbilityThree() in the ThaumaPlayerController. This
function calls the correct skill 'number three' depending on the player. Attacking
with the right click button now shoots the projectile which does damage and causes
the stun effect. This attack is written in the ThaumaPawn class with this function.

reliable server function StunAttack()
{

local Projectile StuProj;
local vector newLoc;
local rotator Aim;

Aim = GetViewRotation();
newLoc = Location;
newLoc.Z += 10;
StuProj = Spawn(class'UTProj_ShockBall',self,,newLoc);
StuProj.Damage = 20;
StuProj.Init(Vector(Aim));
if(StunFireSound != None || Instigator != None)

PlaySound(StunFireSound, false, false);
}

Note that since this is an action that affects both players, it is very important for
the server to know, since the gameplay state lies on the server and the client is a
proxy one. This is the reason why there is a boolean informing the server about the

59

stun attack in a replication statement in the ThaumaPawn class. If the attack hits the
opponent, there is a series of checks in the ThaumaPawn class (this is the class
managing the damage done to the player) that check each time the player is
damaged, whether this damage is damage from the stun attack (each attack can
have its own damage type), in which case if the player has 50 or more armor points
the stunn effect is avoided, otherwise the stun effect is applied. The checks
concerning the energy the cooldown etc. are done as described before.

5.4 Events
A part of the implementation, the events were written in UnrealScript. A significant
amount of events' gameplay was also implemented using the Kismet tool.
UnrealKismet is a flexible and powerful tool that allows non-programmers to script
complex gameplay flow in level. It works by allowing the developed to connect
simple functional Sequence Objects to form complex sequences. Every sequence is
translated into UnrealScript, which means that a programmer can skip the Kismet
and write the code for the gameplay events. However using Kismet saves a great
amount of time and is fun to use (Fig 5.4, Fig 5.5).

Fig 5.4 - Overview of the Kismet sequences made for the Thauma T.v Game.

60

Fig 5.5 - Clear view of Kismet sequences.

The sequences look like a Finite State Machine (FSM). There is visible progression
from one state to another when and if some conditions allow it. In this example,
when the level is visible (condition checked by UDK) a text is drawn on the screen
and a countdown begins. When the countdown ends, the integer comparison is
applied and according to the result the correct sequence is called. This game-wise
checks the result of a random integer generator and calls an event based on the
integer generated. This sequence of Kismet actions affect the gameplay but not
immediately. There are more immediate means such as making damage to a player,
or teleporting him. The actions the Kismet may use to make sequences can be
either premade or created by the level designer. The basic actions are pre-made and
available from a menu in Kismet. In order to implement new actions, an amount of
programming may be involved.

5.5 Multiplayer
What is important when implementing multiplayer support is to know exactly what
needs to be sent from the server to the clients and vice versa and what not. The
second most important thing is to know how to do this data transfer. A general rule
is that every action that involves gameplay rules must be known to the server. As
mentioned before the true game state is that of the server. The clients only see a
proxy of that gameplay. If too much info is sent from the server to the clients the
game will have latency and lag is hardly tolerated in action games where every
second counts. The setup for a network connection is written in the native code of
UDK, which means that the programmer does not need to spend time opening
sockets and using protocols (UDK uses the UDP protocol).

61

The keyword simulated before the function's name means that this funcion will be
executed in the server side as well as the client side. The functions that do not
include this keyword are executed in the computer the game is played at, without
sychronization or information transfer. Most of the functions are declared that way,
in order to not burden the bandwidth. This also means that the gameplay rules that
will be executed in this machine, (like the cooldown timer) are prone to hacking
since the server cannot check the functions that are executed in that machine.
However security was not taken into consideration in this project. There are certain
methods that protect the code's execution in each machine.

In order to check the side the code is being executed in, there is a variable named
'Role' at each machine, getting values depending on whether the machine is a listen
server, a dedicated server or a client. This check is useful when server data are
involved. In the following example, the stun attack is used from the client and the
server has to know that the client used the stun attack. Movement, attacks, sounds
and more actions the server must know are being treated likewise.

simulated function SkillBuff(ThaumaPlayer SkillUser)
{

if(SkillUser.Pawn != NONE)
{

//Only client uses Stun. If server can use it too, some changes are needed in Pawn's
CheckForStun function.

if(SkillUser.Pawn.Role < Role_Authority)
SkillUser.ServerStunBuff();

SkillUser.ClientMessage("I am aiming for his kidney.");
}
else

`log(">>AbilityStun:this shouldn't happen");
}

reliable server function ServerStunBuff()
{

ThaumaPawn(Pawn).bNextAttackStun = TRUE;
}

The reliable keyword tells the side (server in this case) to definitelly execute it, in
the same order it was sent to the client. When the stun skill is used from the client,
the server will set this boolean to true.

replication
{

if (bNetDirty) //when replicated variable changes server side, send its value to all clients
bNextAttackStun;

}

The boolean's new value will be sent to all the clients, including the one that used
the stun skill. The next successful stun attack will check for this boolean in order to
know whether the skill was used or not and the server will know that the player in
that machine will have to get stunned whereas the player in the client's machine
will know that the stun attack was used. The next step is to set the boolean to false,

62

meaning the next attack will not be a stun attack since it has already been used.

Data involving players' and game's information are replicated in the native code,
therefore all the sides can access them. The programmer has to know these
functions since it is most likely that they are going to be needed at some point. One
example is the GameReplicationInfo (GRI). This structure keeps the score for each
player and can be accesed from any side. This is the code accesing the opponent's
score.

...
for (i=0; i < WorldInfo.GRI.PRIArray.Length; i++)

{
if (WorldInfo.GRI.PRIArray[i]!= none)
{

TotalScore += WorldInfo.GRI.PRIArray[i].Score;
}

}

OpponentScore = TotalScore - PlayerScore;
...

As a final note, it is important to grasp the whole idea behind the server's authority
in the game. Certain classes do not need to be replicated to the clients such as the
PlayerController or the GameType. The client uses the PlayerController to
command the pawn what to do, then the server sends that action to all clients.
Finally, the server reports the data back to the pawns or their controllers.

5.6 Quality Assurance
Quality assurance is described here as the last step of developing a game but should
begin as soon as a playable version of the game is available, depending on the
resources (testers). There are many techniques a game can be tested with, some
including psychologists or mathematicians apart from engineers. These techniques
inquire into the entertaining part of the game as well as checking for bugs. One
such technique is the TRUE System (Tracking Real-time User Experience System),
implemented by Microsoft Game Studios, more specifically the Games User
Research team. This system records the player's experience and the data such as
place and number of deaths mined from all sessions are analysed by experts to
improve the game[12].

While techniques such as the TRUE System are used to improve the gameplay
experience, there are more traditional methods to testing a game (Table 5.1). Focus
Groups, Usability Testings and Surveys are all methods that provide feedback to
the game developers[5]. Getting good feedback may be difficult especially for a
solo project such as the one presented in this thesis and is often misjudged. Good
feedback is not the feedback that re-confirms the developer's pre-existing opinion.
The purpose of the quality assurance stage is to receive specific comments which
are not obvious to the developer. Evaluation test questions such as "how great the
game was" will most likely bear no useful results.

63

Goals Focus Group Usability Test Survey
Objective NO Good NO
Subjective OK Good Good

Qualitative OK Good Good
Quantitative NO OK Good

Evaluation NO Good Good
Generation Good OK OK

Table 5.1 – Methods of research in games.

For this project, a Usability Testing method was used, focusing on Think Aloud
sessions while testers played the game. Thauma is Player versus Player and the
volunteer testers four of which provided useful feedback were playing from
distance. This only allowed for Think Aloud sessions of the developer and one
player at a time. Skype was used to communicate with the other player. During the
Alpha testing, when the game could be tested in single-player mode the testers
could report their comments either verbally in small talk sessions if possible or e-
mailed.

5.6.1 Testing
There were two testing phases for this project, the Alpha testing and the Beta
testing. The purpose of each testing session was different.

The Alpha testing was run when the Alpha version of the game was available. This
version included only the implementation of the skills, did not support multiplayer
and the level used was a pre-made Unreal map which did not include the
requirements of the level design phase. The purpose of this version was to check
whether the skills were fun to use, whether any changes on the skills' design were
needed and whether the skills should be all available to both players or not. There
was enough feedback since it was easier to test the game in single-player, mode
which led to some skills' changes.

The Beta testing (Beta is also the current version of the game, not the initial
though) provided the players with 95% of the functionality of the game. The level
was the one designed, the skills had been tested before and their paramaters were
set accordingly. Most importantly, the multiplayer part was ready to be tested. The
original idea was to make Thauma T.v a FPS with skills. The need to include events
emerged at this point, since the gameplay was rightfully considered to be poor. The
events were designed and tested, with some changes happening before reaching
their current state. A few recommendations and bugs have not been fixed yet, but
most of them will be implemented as a patch in the future. Creating a patch for a
game requires a different procedure than the standard programming one mostly
required for a PC game. Feedback that is taken into consideration suggests the
Event B to change from a specific stone to a random one around that area. This

64

will have the player paying attention to his surroundings as well and not only the
opponent and the specific stone. The increase of the game's duration from 6
minutes to 8 is another change pending. The gameplay relies on replayability,
allowing the players to play many fast and different from one another sessions.
Eight minutes of total game with a different event every two minutes is better than
the current approach. Finally, several User Interface improvements were noted such
as the need for a different color to signify the used abilities, adding text messages
in certain situations and making the text under the Join button in the menu more
apparent.

Another purpose the testing had to fulfill was the balance between the two players'
abilities. The importance of a balanced gameplay was described in a previous
chapter and testing it included two seperate phases. The first phase was done via
the board prototype that was built for this game and offered a fast and easy way to
test the balance components of the game. The balance components consist of the
various parameters that define the gameplay. Usually in FPS games, special powers
and weapons' damage are the gameplay variables that need to be balanced, apart
from map events. In accordance with Thauma T.v, the parameters that were
subjected to balance issues were: Health, Energy, Armor and the Energy cost,
duration, cooldown and effect of all the skills. The prototype assisted in defining
the damage and the energy cost. Duration and cooldown could not be tested in a
turn-based enviroment, therefore these attribute were tested at the Beta test phase
two, involving real players.

65

Chapter 6 : Results

6.1 Summary
The purpose of this thesis was to design and develop a networked computer game.
This thesis focused on the development part as well as the design part of gameplay
resulting in a game with entertaining elements and interesting gameplay mechanics.
The Thauma Story was based on the creation of the characters' profiles and their
background stories and the design proccess includes the levels, the game mechanics
and prototyping. Finally, implementation based on the design results along with
quality assurance conducted by testers in two phases using Usability testing are all
parts of this project adopting a user-centered design using the agile development
method.

Thauma T.v is a multiplayer game. Two players confront each other which is
challenging since the opponent is not an A.I agent. This is entertaining since one is
able to spend time playing the game with a friend. The game's storyline can be
extended to include additional parts and chapters. Jonathan, the protagonist, is on a
quest to find peace with himself after the death of his brother at a young age. The
antagonist (the second player) is Jonathan's evil self, summoned by a series of
events at the beggining of the game.

The implementation part included the creation of skills, the definition of the
gameplay mechanics and the network part. UDK was chosen among others for this
project. The inherent team-oriented design of this game engine as opposed to the
limited resources available for the implementation of THAUMA led to a difficult
start with excellent results nonetheless.

6.2 Future Work
Creating a game requires a team consisting of many skills inclusive of scientific
and artistic. Working alone requires careful time planning. Software engineers can
spend time on the design and development stages such as coming up with the game
mechanics, prototyping and programming (gameplay, AI, network etc).

Future work could include the provision of the 'save' option which saves the
player's current state and offers the capability of starting a game at a later stage
from that point. 'Save' is used in many game genres, mainly because completing a
game nowdays requires tenths of hours. Careful thinking is required when
designing a save routine in order to pause and continue the game in a smooth
transition. This option was neither discussed nor implemented in this project. The
FPS nature of the game makes does not need, however, a 'Save' routine would be
handy in the context of the Thauma game when implemented in full.

One significant programming aspect that was not addressed in this project was the
process of creating and implementing a patch. Using pre-made code as a basis and
implementing new pieces of code requires a separate process. Based on testers'
feedback, patches may be implemented.

66

As far as the design part is concerned, a thorough investigation of the relevant
psychology bibliography would come up with interesting results.

Adding new skills and creating a skill tree that allows the players to choose their
favourite among many, depending on the experience level, is a welcome change in
the future. The basis is set on the programming part, needing only the new skills to
be designed and created, as well as a leveling system, which is very common
nowdays, even in FPS games.

Lastly, completing the rest of the Thauma Game is a challenge by itself.

67

Appendix

A.1 Story Design Document

THAUMA

Made by: Gregory Nikiforakis
Mail: gnikiforakis@isc.tuc.gr

document version 0.8

68

mailto:gnikiforakis@isc.tuc.gr

Overview :
(some of the following are subject to change)
This game is about a man who experienced a traumatic event at a young age,
however, he has managed to leave it behind and go on with his life. At some point
in his present life, he has to confront his past painful experiences and start a battle
with himself. Memories emerge like ghosts from the past and each has a question
that needs to be answered in order to find peace... Guiltiness, anxiety, depression
and moral dillemas are the burden the hero has to carry till he reaches the end in his
mind's maze. When his journey comes to an end, will he find catharsis or will the
opening of his mind's hidden locks lead him to another purgatory?

The game's purpose is only to entertain by presenting a story in which you
participate and decide the finale.

It will be available for Windows OS with the possibility of additional platforms
compatability in the future.

THAUMA is an atmospheric horror adventure-action game(1st person POV) which
targets the T(13+) group. Prior experience in games may help through the game.
The game engine used was Epic's UDK free release version.

Player mode: Single/Multi Player. The multiplayer part will offer a new
experience to the players who will have to confront each other.

The Goal of the game is to finish all the chapters. In terms of multiplaying there
will be alternate endings depending on the multiplayer sections in each chapter. The
players can lose, (e.g by having another player reach his goal first) however he/she
will not have to restart the chapter. It will afffect, however the ending of the game.

The major challenge for the hero is to find the truth in relation to one incident in
the past. This is done piece by piece as the hero recovers memories. Minor
challenges include riddles, dialogue riddles, skill puzzles, time limits and player vs
player combat through the chapters.

The action takes place at the mansion where the hero had the trauma in the past, a
distorted version of a fairy tale book's world and the hero's mind's imaginary
labyrinth.

Structure:The game is seperated in levels/chapters (one chapter for the purpose of
this proejct but more after that). The player has to beat each chapter in a linear
manner. Each chapter has different goal/setting.

Gameplay: Players can walk/run, jump, can't crawl etc. They have an inventory
for items that will use through their way at each chapter. Time is important in some
chapters, as there is one chapter with time limit and another with a “faster wins”

69

condition of winning. The control is done using the keyboard for moving and the
mouse for interaction. There are also menus for options like exit, save/load etc.
There are audio tracks appropriate to the mood of the game. Gameplay will be
further discussed at each level.

Prologue:

(shown in handsketch pictures as an intro)
This is an image showing Jonathan eating alone on a rainy day. He receives a call
from a demolition company, announcing to him that the day the demolition will
take place is the day after tommorrow (through dialog text or voise acting). The
house in question is his parents' house. Jonathan remembers a scene shown in the
image below. He finds himself in a psychotherapist's office during a council at
young age as a patient talking about a house.

70

The next frame shows Jonathan driving (to the Mansion). He arrives only to see a
previously majestic building, now being an abandoned wreck waiting its
destruction. As Jonathan walks through the yard, he remembers playing at the same
yard with his little brother, Jacob, in a happy and bright environment.

In the next frame, Jonathan is in the mansion gathering some stuff that has already
been packed. At the top of an opened box lies an old mistreated book. He glances
upon it and freezes for a second. His heartrate rises high and cold sweat runs from
his forehead. That book brings up memories he tried hard to hide in his
subconsciousness... He can see little Jacob lying sick in a bed, asking for his book.
Jonathan's heartrate raises. His hands can't hold the box and he lets it fall. Whispers

71

sound in the room. He looks up, to the direction of Jacob's room. Now he can see
him passing away in bed and his younger self stands right next to him.

Chapter 1:

~~this chapter will not be available in the current version of THAUMA~~
Room door knocks are heard, faintly at the beggining, but louder as seconds pass
by. Jonathan opens the door and hesitates. A man stands behind the door who looks
like a twisted elder version of his brother. When asked he implies he is Jacob. In
reality he is Jonathan's DPD (Dual Personality Disorder) which has just surfaced
due to his guiltiness being reminded. The spirit urges Jonathan to find a video that
will help him remember. This is another long forgotten memory. On the one hand
he wants to remember what happened, however he is being protected by himself
not to remember because these memories will bring all the pain back.

72

GAMEPLAY:(adventure-like, game mechanics, gameplay etc still in
development)

Single: Player 1, as Jonathan in young age having to find the projector's
whereabouts through dialogs with his parents and riddles.

Multi: Player 2 has to prevent player 1 to find the projector's pieces in time.
Place: Old version of mansion.

End: Full video shows Jonathan giving Jacob the book on his last birthday.

The Strange figure, however destroys the mood by accusing/questioning Jonathan
that afterwards he stole the book. That's why Jacob was asking for it before he
passed away. All hell breaks loose for Jonathan...
Deep in his mind, Jonathan remembers that he took the book from Jonathan after
he had given it to him. That caused him this self-questioning.

Chapter 2:

~~this chapter will not be available in the current version of THAUMA~~
Jonathan enters the imaginary world of the book and has to fight his way to the end
in order to realize that the last page is missing.

73

GAMEPLAY:(game mechanics, gameplay etc still in development)
Single: Player 1 vs AI.
Multi: Player 2 vs Player 1.
Place: Twisted world of the book.

End: Once again the Strange figure appears, in a more complete and divine form,
almost like God. Could he be God all this time? He tries to calm Jonathan down
and prompts him to find the missing page.

The missing last page symbolizes two things. One thing is that the last page
was actually missing and that was the reason why Jonathan took the book. This
incident creates this nightmare in Jonathan's mind. He wanted to repair it, as the
last page was torn apart. Another thing could be that Jonathan is always missing
one piece of each memory he gains, however, that piece is the most important.

Chapter 3:

74

In yet another gothic fantasy world the players are called to find the way to Jacob
through a maze and give him his precious book. Reflexes, wise use of your abilities
but also prediction of your opponent's moves are all part of your ticket out of this
maze.

GAMEPLAY:(action based)
Single: Player 1 vs AI .
Multi: P2 vs P1. P1 has to find Jacob, and P2 has to prevent it.
Place: Gothic labyrinth.

MECHANICS:
Both Player1 and P2 have the following abilities, each with a seperate cooldown.

TIER0:
RUSH: movement speed increased.
INVISIBLE: Stealth and the ability to fly through obstacles.

Player1 has the following abilities along with TIER0:
TIER1:

ATTACK: A psychic attack.
ARMOR: gain an amount of armor.
REGENERATION: you regenerate health per time.

Player2 has the following abilities along with TIER0:
TIER2:

ATTACK: A psychic attack.
SACRIFICE: deals area of effect damage.
STUN: If enemy is hit, he is stunned for a period of time.

End: In order to find Jacob, they will have to confront each other.

This chapter is Jonathan asking Jacob for forgiveness. He has to find peace with
himself first though and his DPD makes that hard. This chapter will highly affect
the end too.

75

Characters' profile:
Jonathan: The tragic protagonist in this hero's journey. Jonathan was born

in 1983 from middle-class parents. He and his brother, Jacob lived a happy life
until Jacob got sick with a deadly disease. Jonathan's failure to fulfill Jacob's last
wish caused a deep travma which healed after a psychologist intervened. Now
Jonathan is 26 y.o and the demolition of his parents mansion will make him
confront these past events. Jonathan is controlled by Player1.

Photo 1 - Jonathan

Jacob: Jonathan's young sibling. His precious book meant a lot to him.
While in a critcal situation he was asking for it. Jonathan couldn't find the book and
that created Jonathan's Erinyes.

Parents: Both loving and caring for their children, their profile is vague
through the game. They only apper in the old mansion's chapter. Their role is to
assist Jonathan.

Strange figure: This character serves multiple purposes through the story.
At the beggining he assists the player in finding the answer behind his unexplained
turmoil. Later he appears as a villain accusing him for stealing the book from his
sick brother. Then he depicts God offering salvation. He is Jonathan's image of his
Double Personality Disorder that he suffered at a young age due to his self-loathing
(faillure to fulfill Jacob's dying wish). It surfaced when his memories from that
incident started coming back and he had to experience the same situation again.

The multiple personalities depict the different levels that the DPD goes through and
the resistance Jonathan shows. At first he is trying to find the reason why he is
upset after viewing the book. Later he finds out he took the book and he is afraid he

76

had stolen it from his dying brother. At the end he turns to God to help him and his
DPD takes that role. Finally, he will have to confront his DPD and the conclusion is
up to the player's actions. Will his DPD take control which will lead him to
madness or will he manage to overcome his fears and by finding the truth, he will
reach catharsis? In multiplayer the 2nd player takes control of the strange figure,
most of the times with a specific objective he has to complete.

A few changes have been applied for the purposes of this thesis, however, the story
design document's purpose to inform the team (if there was one) would not be
altered. In this case, the Story Design Document were given to various people to
get feedback. In addition to this, the gameplay mechanics and the level
walkthrough are included in this document which results in a game design
document rather than a story design document.

77

B.1 Source Code Samples

The classes ThaumaPawn, ThaumaAbilities, ThaumaAbilitiesDefense with the
skills ThaumaAbilitySpeed and ThaumaAbilityStun are presented here. The
programming of new skills can be done in a similar way, resulting in a richer
gameplay.

B.1.1 ThaumaPawn
/**
 * DESCRIPTION : Player's Pawns. Handles the health, armor, energy and damage system.
 *
 * Written by : Grigoris Nikiforakis for "Thauma" project, 2010 */

class ThaumaPawn extends UTPawn;

//Energy Management
var int EnergyMax; //maximum Energy a player can have
var int EnergyMin; //minimum Energy a player can have
var int EnergyCur; //current Energy a player has
var int EnergyRegen; //energy regeneration per sec
var bool bEnergyUsable; //certain Player states like Death prevent the Energy usage

var int BaseSpeed; //base ground speed
var int MaxSpeed; //maximum speed obtained through the ability

var() int ArmorMax; //maximum Armor a player can have
var int ArmorMin; //minimum Armor a player can have
var() float AbsorptionRate; //rate at which the armor absorbs damage
var bool bNextAttackStun; //shows whether next attack is a stun attack or not

var SoundCue PsychicFireSound;
var SoundCue SacrificeFireSound;
var SoundCue StunFireSound;
var SoundCue StunnedSound;

//Only essential variable for server to know is bNextAttackStun. More values could be replicated in
//order to prevent cheats, but cheat protection is not a concern at this stage.
replication
{

if (bNetDirty) //when replicated variable changes server side, send its value to all clients
bNextAttackStun;

}

//partially tries to solve the invisibility collision bug
simulated function UnStuck()
{

local vector NewDest,TraceEnd,HitLocation,HitNormal;

TraceEnd = Location + vect(0,0,1) * GetCollisionHeight();
if (Trace(HitLocation, HitNormal, TraceEnd, Location, true, GetCollisionExtent()) ==

None)
{

HitLocation = TraceEnd;
}

78

newdest = HitLocation + GetCollisionRadius() * vect(1,1,0);

if (SetLocation(newdest) && CheckValidLocation(Location))
SetLocation(NewDest);

else
{

newdest = HitLocation + GetCollisionRadius() * vect(1,-1,0);
if (SetLocation(newdest) && CheckValidLocation(Location))

SetLocation(NewDest);
else{

newdest = HitLocation + GetCollisionRadius() * vect(-1,1,0);
if (SetLocation(newdest) && CheckValidLocation(Location))

SetLocation(NewDest);
else
{

newdest = HitLocation + GetCollisionRadius() * vect(-1,-1,0);
if (SetLocation(newdest) && CheckValidLocation(Location))
SetLocation(NewDest);

}
}

}
}

simulated function PostBeginPlay()
{

Super.PostBeginPlay();
if(Role==ROLE_Authority)

SetTimer(2.0,true,'ClientEnergyReport'); //timer for energy regen
}

reliable client function ClientEnergyReport()
{

if(self!=NONE)
{

if(ThaumaPlayer(Controller).bPhaseD)
{

if (EnergyCur < EnergyMax)
EnergyCur = Min(EnergyCur + 1, EnergyMax);

}
else
{

if (EnergyCur < EnergyMax)
EnergyCur = Min(EnergyCur + EnergyRegen, EnergyMax);

}
}

}

//Returns true when player has enough energy AND can use energy.False otherwise.It checks
whether
// an ability can be used, and returns appropriate message, but can be helpful to return bool.
function bool EnergyManagement(int EneCost)
{

if(bEnergyUsable)
{

if (EnergyCur - EneCost >= 0)
{

EnergyCur = EnergyCur - EneCost;
return TRUE;

}

79

else
{

ThaumaPlayer(Controller).ClientMessage("I do not have enough
Energy!");

return FALSE;
}

}
else //e.g when player is stunned he cant use abilities
{

ThaumaPlayer(Controller).ClientMessage("I...cannot move... at all!");
return FALSE;

}
}

//Checks if energy is enough for hud information
function bool EnergyCheck(int EneCost)
{

if (EnergyCur - EneCost >= 0)
return TRUE;

else
return FALSE;

}

//does not work for UTBot yet!Only for ThaumaPlayer
simulated function CheckForStun(Controller instigatedBy)
{

local UTPlayerController WillBeStunned;

if(instigatedBy.Pawn != NONE)
{

WillBeStunned = UTPlayerController(Instigator.Controller);
//player will lose 50 armor to avoid being stunned
if(ThaumaPawn(WillBeStunned.Pawn).GetShieldStrength() >50)
{

ThaumaPawn(WillBeStunned.Pawn).VestArmor -=50;
WillBeStunned.ClientMessage("I avoided a stunning attack, but not

without cost...");
}
else
{

ThaumaPawn(WillBeStunned.Pawn).PlayerStunned(true);
WillBeStunned.SetTimer(ThaumaPlayer(WillBestunned).Speed.Duration,

FALSE, 'StunnedEnded');
}
ThaumaPlayer(Instigator.Controller).ServerStunFalse();

}
}

simulated function PlayerStunned(bool bStunned)
{

GroundSpeed = 00.00;
bEnergyUsable = FALSE;
if(StunnedSound != None)

PlaySound(StunnedSound, false, true);
}

/**
 * calculates the damage done by the weapon, after the armor absorbs the correct amount
 **/

80

simulated function AdjustDamage(out int inDamage, out Vector momentum, Controller
instigatedBy, Vector hitlocation, class<DamageType> damageType, optional TraceHitInfo HitInfo)
{

local int PreDamage;

if(damageType==class'UTDmgType_ShockBall')
CheckForStun(instigatedBy);

if (bIsInvulnerable)
inDamage = 0;

if (UTWeapon(Weapon) != None)
UTWeapon(Weapon).AdjustPlayerDamage(inDamage, InstigatedBy, HitLocation,

Momentum, DamageType);
if(DamageType.default.bArmorStops && (inDamage > 0))
{

PreDamage = inDamage;

//if Health of attacker is below 30, he does 50% extra damage
if(Instigator.Health < 30)

inDamage = 1.5 * inDamage;

inDamage = ArmorAbsorb(inDamage);
// still show damage effect on HUD if damage completely absorbed
if ((inDamage == 0) && (Controller != None))
{

Controller.NotifyTakeHit(InstigatedBy, HitLocation,
Min(PreDamage,10), DamageType, Momentum);

}
}

}

/**
 * ArmorAbsorb()returns the resultant amount of damage after shields have absorbed what they can.
*/
simulated function int ArmorAbsorb(int Damage)
{

if (Health <= 0)
return damage;

//armor prevents 30% of the damage, but is damaged by 60% of the dmg. Also blocks the
stun ability

if(GetShieldStrength() > 0)
{

bShieldAbsorb = true;
VestArmor = Max(ArmorMin, AbsorbPsychicDamage(Damage));
if (VestArmor == 0)

SetOverlayMaterial(None);
if (Damage == 0)
{

SetBodyMatColor(SpawnProtectionColor, 1.0);
PlaySound(ArmorHitSound);
return 0;

}
}

return Damage;
}

simulated function int AbsorbPsychicDamage(out int Damage)
{

local int MaxAbsorbedDamage;

81

MaxAbsorbedDamage = Min(Damage * AbsorptionRate, VestArmor);
Damage -= MaxAbsorbedDamage;
return VestArmor - MaxAbsorbedDamage/AbsorptionRate;

}

simulated function bool TakeHeadShot(const out ImpactInfo Impact, class<UTDamageType>
HeadShotDamageType, int HeadDamage, float AdditionalScale, controller InstigatingController)
{

if(IsLocationOnHead(Impact, AdditionalScale))
{

if (VestArmor > 0)
{

VestArmor = 0;
bShieldAbsorb = true;
Spawn(class'UTEmit_HeadShotHelmet',,,Impact.HitLocation);

}
else
{

TakeDamage(HeadDamage, InstigatingController, Impact.HitLocation,
Impact.RayDir, HeadShotDamageType, Impact.HitInfo);

}
return true;

}
return false;

}

reliable server function SacrificeAttack()
{

local Projectile SacProj;
local vector newLoc;
local rotator Aim;

Aim = GetViewRotation();
newLoc = Location;
newLoc.Z += 10;
SacProj = Spawn(class'UTProj_ScorpionGlob',self,,newLoc);
SacProj.Init(Vector(Aim));
if(SacrificeFireSound != None || Instigator != None)

PlaySound(SacrificeFireSound, false, false);
}

reliable server function PsychicAttack()
{

local Projectile PsyProj;
local vector newLoc;
local rotator Aim;

Aim = GetViewRotation();
newLoc = Location;
newLoc.Z += 10;
PsyProj = Spawn(class'ThaumaProj_Psychic',self,,newLoc);
PsyProj.Init(Vector(Aim));
if(PsychicFireSound != None || Instigator != None)

PlaySound(PsychicFireSound, false, false);
}

reliable server function StunAttack()
{

82

local Projectile StuProj;
local vector newLoc;
local rotator Aim;

Aim = GetViewRotation();
newLoc = Location;
newLoc.Z += 10;
StuProj = Spawn(class'UTProj_ShockBall',self,,newLoc);
StuProj.Damage = 20;
StuProj.Init(Vector(Aim));
if(StunFireSound != None || Instigator != None)

PlaySound(StunFireSound, false, false);
}

DefaultProperties
{

Health = 100
HealthMax = 150
ArmorMax = 100
ArmorMin = 0
AbsorptionRate = 0.3
EnergyMax = 100
EnergyMin = 0
EnergyCur = 100
EnergyRegen = 5
BaseSpeed = 280
MaxSpeed = 560
bEnergyUsable = TRUE

PsychicFireSound = SoundCue'A_Weapon_ShockRifle.Cue.A_Weapon_SR_FireCue'
SacrificeFireSound =

SoundCue'A_Weapon_RocketLauncher.Cue.A_Weapon_RL_GrenadeFire_Cue'
StunFireSound = SoundCue'A_Weapon_Link.Cue.A_Weapon_Link_FireCue'
StunnedSound =
SoundCue'A_Gameplay.CTF.Cue.A_Gameplay_CTF_EnemyFlagReturn01Cue'

}

B.1.2 ThaumaAbilities

/**
 * DESCRIPTION : Abilities tiers. Consisting of Neutral, Defense and Offense tiers
 * In addition here is the definition of the main functions used by all skills.
 * Good Side: Neutral + Defense
 * Evil Side: Neutral + Offense
 *
 * Written by : Grigoris Nikiforakis for "Thauma" project, 2010 */

class ThaumaAbilities extends Object;

// Variables needed for all abilities
var int EnergyCost; //energy Cost for the ability
var float Cooldown; //time needed to use ability again
var float Duration; //duration time of the ability
var bool bIsAvailable; //check if ability is ready to use (energy/cooldown)
var string AbilityName; //name needed in hud

83

// Three different skill tiers. Can be used as such in a skill tree in the future
var ThaumaAbilitiesNeutral GoodAbiNeu; //neutral
var ThaumaAbilitiesDefense GoodAbiDef; //defensive
var ThaumaAbilitiesOffense GoodAbiOff; //offensive

//==
================
// Tiers Constructors.
function AbilitiesNeutralConstructor()
{

GoodAbiNeu = new class'Thauma2.ThaumaAbilitiesNeutral';
GoodAbiNeu.AbilitiesConstructor();

}

function AbilitiesDefenseConstructor()
{

GoodAbiDef = new class'Thauma2.ThaumaAbilitiesDefense';
GoodAbiDef.AbilitiesConstructor();

}

function AbilitiesOffenseConstructor()
{

GoodAbiOff = new class'Thauma2.ThaumaAbilitiesOffense';
GoodAbioff.AbilitiesConstructor();

}

//==
================
// Delegates for the the common functions that need to know the ability used.
delegate BuffCall(ThaumaPlayer SkillUser)
{

//each skill has its own buff
}

delegate TimerCall(ThaumaPlayer SkillUser)
{

//each skill has its own cooldown timer
}

//==
================
// Functions needed by all abilities.

/**
 * Function that calls the right skill and checks if it can be used.
 * */
function SkillCall(ThaumaAbilities Skill, ThaumaPlayer SkillUser)
{

//check if player is dead or without a pawn
if(SkillUser.Pawn==NONE || SkillUser.Pawn.Health <1)

`log(">>Abilities:No Valid Player");
else
{

BuffCall = Skill.SkillBuff; //call the skillbuff funtion of whatever ability is
needed

TimerCall = Skill.SkillCooldown; //call the timer of whatever ability is needed

if (Skill.bIsAvailable)
{

84

if(ThaumaPawn(SkillUser.Pawn).EnergyManagement(Skill.EnergyCost))
{

BuffCall(SkillUser);
Skill.bIsAvailable = FALSE;
TimerCall(SkillUser);

}

}
else
{

SkillUser.ClientMessage("I can not use : "$Skill.AbilityName $", yet!");
}

}
}

/**
 * Function that handles the main action of the ability.
 * */
simulated function SkillBuff(ThaumaPlayer SkillUser)
{

//each ability has its own buff.
}

/**
 * Function that calls the timer of the ability.
 * */
function SkillCooldown(ThaumaPlayer SkillUser)
{

//each ability has its own timer.
}

/**
 * Function that handles the action of the ability after it ends.(Could also be done with states.)
 * */
function SkillEnded(ThaumaPlayer SkillUser)
{

//each ability has its own ending conditions.
}

/**
 * Check if the ability is ready to use.(cooldown).for a global cooldown a different function is
needed.
 * */
function MakeSkillAvailable(ThaumaAbilities Skill)
{

if(Skill == NONE || Skill.bIsAvailable == TRUE)
`log(">>Abilities:this shouldn't happen");

else
Skill.bIsAvailable = TRUE;

}

DefaultProperties
{
}

85

B.1.3 ThaumaAbilitiesDefense

/**
 * DESCRIPTION : Defensive abilities tier. Consisting of Armor, Regeneration
 *
 * Written by : Grigoris Nikiforakis for "Thauma" project, 2010 */

class ThaumaAbilitiesDefense extends ThaumaAbilities;

/**
 * The abilities this tier have are in this struct.
 * */
struct AbilitiesDefense
{

var ThaumaAbilityArmor AbiArm;
var ThaumaAbilityRegeneration AbiReg;

};

var AbilitiesDefense DefenseTier;

function AbilitiesConstructor()
{

DefenseTier.AbiArm = new class'Thauma2.ThaumaAbilityArmor';
DefenseTier.AbiReg = new class'Thauma2.ThaumaAbilityRegeneration';

}

DefaultProperties
{
}

B.1.4 ThaumaAbilitySpeed

/**
 * DESCRIPTION : Speed - Player increases his movement Speed for a certain period of time
 * Cooldown: 8
 * Duration: 3
 * Energy: 25
 *
 * Written by : Grigoris Nikiforakis for "Thauma" project, 2010 */

class ThaumaAbilitySpeed extends ThaumaAbilitiesNeutral;

var SoundCue SpeedUseSound;

simulated function SkillBuff(ThaumaPlayer SkillUser)
{

if(SkillUser.Pawn != NONE)
{

SkillUser.SetTimer(Duration, FALSE, 'SpeedEnded');
if(SkillUser.Pawn.Role < Role_Authority)

SkillUser.ServerSpeedBuff();

86

else
SkillUser.Pawn.GroundSpeed =

ThaumaPawn(SkillUser.Pawn).MaxSpeed;
if(SpeedUseSound != None && SkillUser.Pawn != None)

SkillUser.Pawn.PlaySound(SpeedUseSound, false, false);
SkillUser.ClientMessage("My feet feel too light!");

}
else

`log(">>AbilitySpeed:this shouldn't happen");
}

function SkillCooldown(ThaumaPlayer SkillUser)
{

SkillUser.SetTimer(Cooldown,FALSE,'MakeAvailableSpeed');
}

function SkillEnded(ThaumaPlayer SkillUser)
{

if(SkillUser.Pawn.Role < Role_Authority)
SkillUser.ServerSpeedEnded();

else
SkillUser.Pawn.GroundSpeed = ThaumaPawn(SkillUser.Pawn).BaseSpeed;

SkillUser.ClientMessage("My feet feel heavy again!");
}

DefaultProperties
{

EnergyCost = 25
Cooldown = 8.0
Duration = 3.0
bIsAvailable = TRUE
AbilityName = "Speed"

SpeedUseSound =
SoundCue'A_Pickups_Powerups.PowerUps.A_Powerup_UDamage_PickupCue'
}

B.1.5 ThaumaAbilityStun

/**
 * DESCRIPTION : Stun - Next energy-ball attack stuns opponent if hit.
 * Cooldown: 16
 * Duration: 2
 * Energy: 35
 *
 * Written by : Grigoris Nikiforakis for "Thauma" project, 2010 */

class ThaumaAbilityStun extends ThaumaAbilitiesOffense;

simulated function SkillBuff(ThaumaPlayer SkillUser)
{

if(SkillUser.Pawn != NONE)
{

//Only client uses Stun. If server can use it too, some changes are needed in
Pawn's CheckForStun function.

87

if(SkillUser.Pawn.Role < Role_Authority)
SkillUser.ServerStunBuff();

SkillUser.ClientMessage("I am aiming for his kidney.");
}
else

`log(">>AbilityStun:this shouldn't happen");
}

function SkillCooldown(ThaumaPlayer SkillUser)
{

SkillUser.SetTimer(Cooldown,FALSE,'MakeAvailableStun');
}

//stun ended for the stunned player!
function SkillEnded(ThaumaPlayer SkillUser)
{

SkillUser.SpeedEnded();
ThaumaPawn(SkillUser.Pawn).bEnergyUsable = TRUE;

}

DefaultProperties
{

EnergyCost = 35
Cooldown = 16.0
Duration = 2.0
bIsAvailable = TRUE
AbilityName = "Stun"

}

88

Bibliography
[1] Csikszentmihalyi, M. (1990). Flow: The Psychology of Optimal Experience.
New York: Harper and Row

[2] Daniel Terdiman, Behind the Prototyping of 'Spore', http://news.cnet.com/8301-
13772_3-10033443-52.html

[3] Ella Tallyn, Applying Narrative Theory to the Design of Digital Interactive
Narratives with the Aim of Understanding and Enhancing Participant Engagement

[4] Epic's UDK engine, http://www.udk.com/features

[5] Fulton, B., & Medlock, M. (2003). Beyond Focus Groups: Getting More Useful
Feedback from Consumers. Game Developer's Conference 2003 Proceedings, San
Jose CA, March 2003. , http://mgsuserresearch.com/publications/

[6] Georgios N. Yannakakis and John Hallam, Capturing Player Enjoyment in
Computer Games

[7] Jenova Chen, Flow in Games (and Everything Else), Communications of the
ACM April 2007/Vol. 50, No. 4

[8] Jesse Schell CMU Professor, DICE 2010: "Design Outside the Box"
Presentation, http://e3.g4tv.com/videos/44277/DICE-2010-Design-Outside-the-
Box-Presentation/

[9] Koivisto Elina, Suomela Riku, Using Prototypes in Early Pervasive game
Development, Sandbox Symposium ACM 2007

[10]Mark Griffiths, Video Games and Health,
http://www.bmj.com/content/331/7509/122.full

[11] nFringe, add-on for UDK, http://wiki.pixelminegames.com/index.php?
title=Tools:nFringe

[12] Romero, R. (2008). Successful Instrumentation: Tracking Attitudes and
Behaviors to Improve Games. Presented at the Game Developer's Conference, San
Jose CA, February 2008, http://mgsuserresearch.com/publications/

89

http://mgsuserresearch.com/publications/
http://wiki.pixelminegames.com/index.php?title=Tools:nFringe
http://wiki.pixelminegames.com/index.php?title=Tools:nFringe
http://www.bmj.com/content/331/7509/122.full
http://e3.g4tv.com/videos/44277/DICE-2010-Design-Outside-the-Box-Presentation/
http://e3.g4tv.com/videos/44277/DICE-2010-Design-Outside-the-Box-Presentation/
http://mgsuserresearch.com/publications/
http://www.udk.com/features
http://news.cnet.com/8301-13772_3-10033443-52.html
http://news.cnet.com/8301-13772_3-10033443-52.html

[13] The Agile Alliance, http://agilemanifesto.org/

[14] The Cabal: Valve’s Design Process For Creating Half-Life,
http://www.gamasutra.com/view/feature/3408/the_cabal_valves_design_process_.p
hp

Useful References
[-] Articles on Game Development, www.gamasutra.com/ , www.gamespot.com

[-] Charles Platt , Interactive Entertainment article,
http://www.wired.com/wired/archive/3.09/interactive.html

[-] Gamboa, M., Kowalewski, R., & Roy, P. (2004), Playtesting Strategies,
Presented at the Game Developer’s Conference, San Jose CA, March 2004.
http://mgsuserresearch.com/publications/

[-] Game Design Course, Univestity of Utrecht
http://www.cs.uu.nl/docs/vakken/gds/

[-] Game development Course, ECE 495/595; CS 491/591, University of New
Mexico, http://www.cs.unm.edu/~angel/GAME/Game%20Development%20--First
%20steps.pdf

[-] Gamer's Quest to save the World , McGonigal Jane : Gaming can make a better
world,
http://www.ted.com/talks/jane_mcgonigal_gaming_can_make_a_better_world.html

[-] HCI Course, Stauros Christodoulakis , Technical University of Crete

[-] Jim Thompson 's, The Computer Game Design Course, Thames & Hudson

[15] Michael Mateas and Andrew Stern, Natural Language understanding in
Facade:Surface-text Processing, Best Paper Award, Technologies for Interactive
Digital Storytelling and Entertainment (TIDSE), Darmstadt, Germany, June 2004 ,
http://www.interactivestory.net/papers/MateasSternTIDSE04.pdf

[-] Neils Clark, The Sensible Side of Immersion,

http://www.gamasutra.com/view/feature/4265/the_sensible_side_of_immersion.php

90

http://www.gamasutra.com/view/feature/4265/the_sensible_side_of_immersion.php
http://www.interactivestory.net/papers/MateasSternTIDSE04.pdf
http://www.ted.com/talks/jane_mcgonigal_gaming_can_make_a_better_world.html
http://www.cs.unm.edu/~angel/GAME/Game%20Development%20--First%20steps.pdf
http://www.cs.unm.edu/~angel/GAME/Game%20Development%20--First%20steps.pdf
http://www.cs.uu.nl/docs/vakken/gds/
http://mgsuserresearch.com/publications/
http://www.wired.com/wired/archive/3.09/interactive.html
http://www.gamespot.com/
http://www.gamasutra.com/
http://www.gamasutra.com/view/feature/3408/the_cabal_valves_design_process_.php
http://www.gamasutra.com/view/feature/3408/the_cabal_valves_design_process_.php
http://agilemanifesto.org/

[-] Thauma TUC Version , http://rapidshare.com/files/430261715/UDKInstall-
Thauma.exe

[16] Thauma Intro Video , http://www.youtube.com/watch?v=to7-pClGxLg

[-] Thomas Maarup, HEX thesis, http://maarup.net/thomas/hex/

[-] Wikipedia, The free Encyclopedia, www.wikipedia.com

[-] Zervoudakis Nikos, TUC UnderGraduate Thesis ,3D game development using a
rendering engine

91

http://rapidshare.com/files/430261715/UDKInstall-Thauma.exe
http://rapidshare.com/files/430261715/UDKInstall-Thauma.exe
http://www.wikipedia.com/
http://maarup.net/thomas/hex/
http://www.youtube.com/watch?v=to7-pClGxLg

	Abstract
	Chapter 1: Introduction
	1.1 Purpose of Τhesis

	1.2 Thesis Summary
	1.3 Development Review
	Chapter 2: Games and How to Develop them
	2.1 History of Games
	2.1.1 Origin of Games
	Fig 2.1 -Taurokathapsia (Bull leaping) was a ritual performed in connection with bull worship.
	Fig 2.2 -Pac-Man is one of the longest running video game franchises from the golden age of arcade games.
	2.1.2 Digital Games
	Fig 2.3 -It took the three MIT students approximatelly 200 hours of work to create the first version of Spacewar.

	2.1.3 Present-Future
	Fig 2.4 -World of Warcraft has more than 10 million subscribers.

	2.2 Entertainment in Games

	Fig 2.5 -Starcraft: "They are the types of games that completely engross the player. They are not games that you can play for 20 minutes and stop" , Psychologist Professor Mark Griffiths[10]
	2.3.1 Development Summary
	Fig 2.6 -Greek Mythology has always served as an inspiration to game designers.
	Fig 2.7 -A digital Camera can be useful to capturing inspiring scenes from real life.
	Fig 2.8 -Kerrigan, the Queen of Blades eliminated the Pac-Man Ghosts, Joker and Darth Vader, making her the greatest game villan of all time.
	Fig 2.9 -The box art for Half-Life shows the title on a rusted orange background, below the Greek lamda letter.
	Fig 2.10 -Blender is a free 3D graphics application
	Fig 3.1 -Free from November '09
	3.1.1 Design Goals of UnrealScript
	3.1.1.1 The Unreal Virtual Machine

	3.1.2.3 Simulated Functions and States
	3.2 IDE-Microsoft Visual Studio

	3.3 Materials
	Fig 3.2 –Materials from various game types will help build a prototype.

	Chapter 4: Game Design
	Fig 4.1 –Focus of Thauma.
	Fig 4.2 –Ingredients of Thauma.

	4.2 THAUMA Story
	4.3.2 THAUMA Level Design
	Fig 4.5 –The Level used for thauma at its final form. (DM-Sanctuary mod)
	Fig 4.6 –Will you step and risk being stunned?
	Fig 4.8 -Thauma uses a visual interface.
	4.4 THAUMA Prototyping
	Fig 4.9 -A few miniatures, a board or hexed paper, index cards, counter marks, pen and paper can assist in making a board game prototype.
	Fig 4.10 -The prototype is ready for some testing. Skills and Players' stats are described in the index cards. The counters mark a skill as used.

	Chapter 5: Implementation
	5.1 Intro
	Fig 5.1 -Hierarchy of the classes written for Thauma T.v. The Blue classes derive from UTGame, the green from the engine, while the orange are made from scratch. The Classes with the asterisk include network code.
	5.2 Players
	5.3 Skills
	Fig 5.2 -Adding more skills can easily result to a classic skill tree met in RPGs, with points spent to learn each skill.
	Fig 5.3 – Using a skill process.
	5.6.1 Testing
	6.2 Future Work
	A.1 Story Design Document
	B.1.1 ThaumaPawn
	B.1.2 ThaumaAbilities
	B.1.3 ThaumaAbilitiesDefense
	B.1.4 ThaumaAbilitySpeed
	B.1.5 ThaumaAbilityStun

