
TECHNICAL UNIVERSITY OF CRETE

Department of Electronic and Computer Engineering

Implementation and performance evaluation of the 802.11

CSMA/CA MAC protocol in SDR

Diploma Thesis

By

Panagiotis K.Matzakos

Submitted to the Department of Electronic & Computer Engineering in partial

fulfillment of the requirements for the ECE Diploma Degree.

Advisor: Professor Liavas Athanasios

Co-advisor: Assistant Professor Karystinos Georgios

Co-advisor: Assistant Professor Mpletsas Aggelos

October 2010

To my parents and my brother for their deepest love and support.

Acknowledgements

I would like to express my gratitude to my advisor, Prof. Athanasios Liavas for

the assignment of this thesis and his encouragement, guidance and support from the

initial to the final level of its implementation. His wide knowledge and experience

in the field of telecommunications meant a great deal to me. Deepest gratitude is

also due to Assist. Prof. Aggelos Bletsas for his invaluable guidance and assistance.

Special thanks also to postgraduate student Manolis Matigakis without whose

knowledge and assistance, this thesis would not have been successful.

Finally, i want to thank my beloved friends, who have always been there for me,

standing by me as a family here in Chania.

Abstract

A software-defined radio system, or SDR, is a radio communication system where

components that have been typically implemented in hardware (e.g. mixers, filters,

amplifiers, modulators/demodulators, detectors, etc.) are instead implemented by

means of software on a general purpose computer, providing much greater flexibil-

ity for the experimentation with different PHYs (physical layers) MACs (Medium

Access Control) and other network layers as well as the interactions between them.

A basic SDR system consists of a personal computer, Analog-to-Digital (AD) and

Digital-to-Analog (DA) converters preceded by an RF front end.

In this thesis, we implemented and measured the throughput of the primary

MAC technique of 802.11, called distributed coordination function (DCF), in an

SDR system.

Contents

1 Introduction 8

2 Software Tools and the USRP 9

2.1 USRP . 9

2.1.1 USRP1 . 10

2.2 GNU Radio . 12

2.3 The Click Modular router . 13

2.3.1 Architecture . 14

2.3.2 Control flow and queues . 15

2.3.3 Push and pull processing . 16

2.3.4 Language . 19

3 Implementation 20

3.1 IPC between Click and GNU Radio processes 20

3.2 Experimental Setup . 21

3.3 802.11 Distributed Coordination Function 23

3.3.1 Pseudocode . 25

3.4 Other implementation issues . 29

3.4.1 Software Constraints . 29

3.4.2 Operation Frequency . 30

4 Throughput Analysis 31

4.1 System Capacity . 31

4.2 Bianchi’s simulation and theoretical results 32

CONTENTS 5

4.2.1 Maximun and Saturation Throughput 32

4.2.2 Bianchi’s Model for performance evaluation 34

4.3 Experimental results . 40

5 Future Work 44

Appendices

List of Figures

2.1 A sample element. Triangular ports are inputs and rectangular ports

are outputs.(Figure from [5]) . 15

2.2 A router configuration that throws away all packets.(Figure from [5]) 15

2.3 Push and pull control flow.This diagram shows functions called as a

packet moves through a simple router; time moves downwards. The

central element is a Queue. During the push, control flow moves

forward through the element graph starting at the receiving device;

during the pull, control flow moves backwards through the graph,

starting at the transmitting device. The packet p always moves for-

ward.(Figure from [5]) . 18

2.4 Some push and pull violations. The top configuration has four er-

rors: (1) FromDevice’s push output connects to ToDevice’s pull in-

put; (2) more than one connection to FromDevice’s push output; (3)

more than one connection to ToDevice’s pull input; and (4) an ag-

nostic element, Counter, in a mixed push/pull context. The bottom

configuration, which includes a Queue, is legal. In a properly con-

figured router, the port colors on either end of each connection will

match.(Figure from [5]) . 18

2.5 Two Click-language definitions for the trivial router of Figure 2.2.

(Figure from [5]) . 19

3.1 IPC using UNIX datagram sockets 21

3.2 Experimental Setup . 23

3.3 IEEE 802.11 DCF Transmission Example (Figure from [11]) 24

LIST OF FIGURES 7

3.4 MAC frame . 30

4.1 point-to-point link performance . 32

4.2 Measured Throughput with slowly increasing offered load (Figure

from [8]) . 34

4.3 Markov chain for the backoff window size (Figure from [8]) 35

4.4 Throughput versus the transmission probability τ for the basic access

scheme (Figure from [8]) . 40

4.5 Experimental Throughput for 2 and 4 users 41

4.6 Average Number of transmissions per packet according to Bianchi’s

Model (Figure from [8]) . 42

4.7 Average Number of transmissions per packet according to our system

experimental results . 43

Chapter 1

Introduction

The 802.11 CSMA/CA Distributed Coordination Function (DCF) is a carrier sense

multiple access with collision avoidance (CSMA/CA) scheme with binary slotted

exponential backoff.

In our SDR, the RF front-end is a Universal Software Radio Peripheral (USRP)

board. The PHY processing is performed in GNU Radio framework, which defines

a flexible API for the USRP board, and the basic access scheme of the DCF is im-

plemented in Click Modular Router framework. The carrier sensing mechanism of

the protocol was implemented using Inter Process Communication between Click

and GNU Radio processes. In particular, each packet identified by PHY processing

(GNU Radio) is sent to MAC (Click Modular Router) using UNIX datagram sock-

ets.

The large Rx-Tx, Tx-Rx turnaround times as well as the large packets’ processing

times for each station lead to a total delay in the scale of milliseconds. As a result,

we had to limit to a suboptimal performance and approximate our own system’s slot

time, using a technique desribed in chapter 3.

Then, we evaluated our system’s performance by measuring its normalized through-

put. Our experiments were conducted with 2 and 4 stations communicating with a

base station for various values of total offered load. Finally, the experimental results

were compared to the theoretical ones as these are presented in [8].

Chapter 2

Software Tools and the USRP

In this chapter, we will describe the architecture and the operation principles of

our RF front-end (i.e. USRP testbed) as well as the two frameworks we used in

our SDR (i.e. GNU Radio framework for PHY and Click Modular Router for MAC

implementation).

2.1 USRP

The Universal Software Radio Peripheral, or USRP, is designed to allow general

purpose computers to function as high bandwidth software radios. In essence, it

serves as a digital baseband and IF section of a radio communication system [1].

The basic design philosophy behind the USRP has been to do all of the waveform-

specific processing, like modulation and demodulation, on the host CPU. All of the

high-speed general purpose operations like digital up and down conversion, decima-

tion and interpolation are done on the FPGA [1].

The true value of the USRP is in what it enables engineers and designers to create

on a low budget and with a minimum of effort. A large community of developers

and users have contributed to a substantial code base and provided many practical

applications for the hardware and software. The powerful combination of flexible

hardware, open-source software and a community of experienced users make it the

ideal platform for software radio development [1].

2.1 USRP 10

2.1.1 USRP1

In our implementation we used the USRP1 devices, which are consisted of one

mainboard and up to four daughterboards. With this design, it is easy for anyone

to make his own system working in different frequencies simply by choosing the

appropriate daughterboard. We used the RFX2400 daughterboars in the 2.4Ghz

area.

RFX2400 daughterboard

As mentioned above, this daughterboard works in the 2.4Ghz band. This band con-

sists of a continuous spectrum range of 100 Mhz (one of the areas of the ISM band).

The daughterboard has one transmitter and one receiver on it.

The transmitter takes the baseband analog signal which comes from the mainboard

and modulates it to the central frequency that we choose through the software (gnu

radio). Pulse shaping is also implemented in the software. The output of the trans-

mitter goes to a two-sided switch which is connected to the input of the transmitter

from the one side and to the antenna plug from the other side. The side of the switch

is controlled through the software, depending on whether we transmit or receive.

The receiver consists of an oscillator, whose frequency is controlled by the software,

and a mixer which mixes the signal coming from the antenna with the sinusodial

signal coming from the oscillator. The receiver is direct conversion so the baseband

signal which is produced is sent to the mainboard for sampling [2]. In table 2.1 you

can see the RFX2400 specifications.

RFX2400 specs

Frequency 2.3-2.9 GHz

Tx Power 50+ mW(17dBm)

Noise figure 6-10dB

Table 2.1: RFX2400 specs

2.1 USRP 11

Mainboard

The USRP has 4 high-speed analog to digital converters (ADCs), each at 12 bits per

sample, 64MSamples/sec. There are also 4 high-speed digital to analog converters

(DACs), each at 14 bits per sample, 128MSamples/sec. These 4 input and 4 output

channels are connected to an Altera Cyclone EP1C12 FPGA. The FPGA, in turn,

is connected to a USB2 interface chip, the Cypress FX2, and to the computer. The

USRP is connected to the computer via a high speed USB2 interface.

So, in principle, we have 4 input and 4 output channels if we use real sampling.

However, we can have more flexibility (and bandwidth) if we use complex (IQ)

sampling. Then we have to pair them up, so we get 2 complex inputs and 2 complex

outputs [1].

ADC

There are 4 high-speed 12-bit AD converters. The sampling rate is 64M samples per

second. In principle, it could digitize a band as wide as 32MHz.

The full range of the ADCs is 2V peak to peak, and the input is 50 ohms differential.

This is 10mW, or 10dBm. There is a programmable gain amplifier (PGA) before

the ADCs which amplifies the input signal so that it utilizes the entire input range

of the ADCs, in case the signal is weak. The PGA is up to 20dB. With gain set to

zero, full scale inputs are 2 Volts peak-to-peak differential. When set to 20 dB, only

.2 V p-p differential input signal is needed to reach full scale. This PGA is software

programmable [1].

DAC

At the transmit path, there are also 4 high-speed 14-bit DA converters. The DAC

clock frequency is 128 MS/s, so Nyquist frequency is 64MHz. However, we will

probably want to stay below it to make filtering easier. A useful output frequency

range is from DC to about 44MHz. The DACs can supply 1V peak to a 50 ohm

differential load, or 10mW (10dBm). There is also PGA used after the DAC, pro-

viding up to 20dB gain. This PGA is software programmable. The DAC signals

2.2 GNU Radio 12

(IOUTPA/IOUTNA and IOUTPB/IOUTNB) are current-output, each varying be-

tween 0 and 20 mA. They can be converted into differential voltages with a resistor

[1].

FPGA

According to the above, the information rate that a USRP sends and receives at the

same time is:

(64MSPS ∗12bit/Sample+128MSPS ∗14bit/Sample)∗2 = 640Mbyte/sec. (2.1)

But the data rate tha the USB port can support is up to 32Mbyte/sec. Moreover

the samples should be transformed from 12 and 14 bits to the closest multiple of 8

bits. These two processes are undertaken by the FPGA [2].

On the FPGA, there are two digital filters (decimation and interpolation). The

decimation filter’s input is the flow of the samples from the ADC which comes with

a rate of 64MS/s. The decimation filter subsamples its input flow by a decimation

rate factor, which is chosen through the software. The minimum decimation rate is

4 and the maximum 256. The decimation rate sets the limit of the bandwith around

the central frequency at which the receiver listens to [2].

Accordingly, the interpolation filter oversamples the data flow by an interpolation

rate factor, which is also chosen through the software, so that the final sampling rate

is 128MS/s (sampling rate of the DAC). Finally, as the data rate of the USB is not

stable, we need a buffer before the interpolation filter in which the samples coming

from the PC are stored and they are read by a rate of 128MSPS/interpolation so

that in the end we have a 128MS/s [2].

2.2 GNU Radio

GNU Radio is a free software development toolkit that provides the signal pro-

cessing runtime and processing blocks to implement software radios using readily-

available, low-cost external RF hardware and commodity processors. It is widely

2.3 The Click Modular router 13

used in hobbyist, academic and commercial environments to support wireless com-

munications research as well as to implement real-world radio systems [3].

GNU Radio applications are primarily written using the Python programming

language, while the supplied, performance-critical signal processing path is imple-

mented in C++ using processor floating point extensions, where available. Thus,

the developer is able to implement real-time, high-throughput radio systems in a

simple-to-use, rapid-application-development environment [3].

While not primarily a simulation tool, GNU Radio does support development

of signal processing algorithms using pre-recorded or generated data, avoiding the

need for actual RF hardware [3].

To compose an application in GNU Radio, users first build signal processing

blocks in C++ and then connect these blocks together using the Python language

to form a flow graph. In addition to the relative ease of programming in C++, this

approach makes it easy to transition blocks that are part of a PHY simulator into

GNU Radio [4].

2.3 The Click Modular router

Click is a new software architecture for building flexible and configurable routers.1

A Click router is assembled from packet processing modules called elements. Individ-

ual elements implement simple router functions like packet classification, queueing,

scheduling, and interfacing with network devices. A router configuration is a directed

graph with elements at the vertices; packets flow along the edges of the graph. Sev-

eral features make individual elements more powerful and complex configurations

easier to write, including pull connections, which model packet flow driven by trans-

mitting hardware devices, and flow-based router context, which helps an element

locate other interesting elements.

First, packet handoff along a connection may be initiated by either the source

end (push processing) or the destination end (pull processing). This cleanly models

most router packet flow patterns, and pull processing makes it possible to write

1Copyright for this section belongs to [5].

2.3 The Click Modular router 14

composable packet schedulers. Second, the flow-based router context mechanism

lets an element automatically locate other elements on which it depends; it is based

on the observation that relevant elements are often connected by the flow of packets.

These features make individual elements more powerful and configurations easier to

write.

2.3.1 Architecture

A Click router configuration is a directed graph whose nodes are called elements.

A single element represents a unit of router processing. An edge, or connection,

between two elements represents a possible path for packet transfer. This graph re-

sembles a flowchart, except that connections represent packet flow, not control flow,

and elements are actual objects that may maintain private state. Inside a running

router, each element is a C++ object and connections are pointers to elements. The

overhead of passing a packet along a connection is a single virtual function call. The

most important properties of an element are:

• Element class. Like objects in an object-oriented program, each element has

a class that determines its behavior.

• Input and output ports. Ports are the endpoints of connections between ele-

ments. An element can have any number of input or output ports, which can

have different semantic meanings (a normal and an error output, for example).

• Configuration string. Some element classes support additional arguments, used

to initialize per-element state and fine-tune element behavior. The configura-

tion string contains these arguments.

Figure 2.1 shows how we diagram these properties for a single element, Tee(2).Tee

is the element class; a Tee copies each packet it receives from its single input port,

sending one copy to each output port. (The packet data is not copied: Click packets

are copy-on-write.) Configuration strings are enclosed in parentheses: the 2 in Tee(2)

is a configuration string that Tee interprets as a request for two outputs. Every action

performed by a Click routers software is encapsulated in an element, from device

2.3 The Click Modular router 15

reading and writing to queueing, routing table lookups, and counting packets. The

user determines what a Click router does by choosing the elements to be used and

the connections among them. Figure 2.2 shows a sample router that counts incoming

packets, then throws them all away. Click provides two kinds of connections between

elements, push and pull. In a push connection, the upstream element hands a packet

to the downstream element; in a pull connection, the downstream element asks the

upstream element to return a packet. Each kind of handoff is implemented as a

virtual function call. Packet arrival usually initiates push processing, which stops

when an element discards the packet or stores it for later. Output interfaces initiate

pull processing when they are ready to send a packet; processing flows backwards

through the graph until an element yields up a packet. Pull elements can simply and

explicitly represent decisions that should occur at packet transmission time, such as

packet scheduling.

Figure 2.1: A sample element. Triangular ports are inputs and rectangular ports

are outputs.(Figure from [5])

Figure 2.2: A router configuration that throws away all packets.(Figure from [5])

2.3.2 Control flow and queues

When an element receives a packet from a push connection, it must store it,

discard it, or forward it to another element for more processing. Most elements

forward packets by calling the next element’s push function. Since packet handoff

is just a virtual function call, a Click CPU scheduler can not stop packet processing

at arbitrary points, elements must cooperatively choose to stop processing. Packet

2.3 The Click Modular router 16

storage must be implemented by the element itself. Click elements do not have

implicit queues on their input and output ports, or the associated performance

and complexity costs. Instead, Click queues are explicit objects, implemented by

a separate element (Queue). This enables valuable configurations that are difficult

to arrange otherwise - for example, a single queue feeding multiple interfaces, or

a queue feeding a traffic shaper on the way to an interface. Queue is the most

common element that stops packet processing, giving the system a chance to schedule

different work: it enqueues packets it receives rather than passing them on. Thus,

the placement of Queues in a configuration determines that configuration’s execution

profile. If a user wants to carefully manage packet scheduling as soon as packets

enter the system, he must put Queues early in the graph.

2.3.3 Push and pull processing

Click supports two kinds of connections, push and pull. On a push connection,

packets start at the source element and are passed downstream to the destination

element. This corresponds to the way packets move through most software routers.

On a pull connection, in contrast, the destination element initiates packet transfer: it

asks the source element to return a packet, or a null pointer if no packet is available.

This is the dual of a push connection. Each of these forms of packet transfer is

implemented by one virtual function call.

The processing type of a connection—whether it is push or pull—is determined

by the ports at its endpoints. Each port in a running router is either push or pull;

connections between two push ports are push, and connections between two pull

ports are pull. Connections between a push port and a pull port are illegal. Elements

set their ports’ types as the router is initialized. They may also create agnostic ports,

which behave as push when connected to push ports and pull when connected to

pull ports. When a router is initialized, the system propagates constraints until

every agnostic port has been assigned to either push or pull. In our configuration

diagrams, black ports are push and white ports are pull; agnostic ports are shown

as push or pull ports with a double outline. Figure 2.3 shows how push and pull

work in a simple router.

2.3 The Click Modular router 17

Push processing is appropriate when unsolicited packets arrive at a Click router—for

example, when packets arrive from a device. The router must handle such packets

as they arrive, if only to queue them for later consideration. Pull processing is ap-

propriate when the Click router needs to control the timing of packet processing.

For example, a router may transmit a packet only when the transmitting device is

ready. In Click, transmitting devices are elements with one pull input; they therefore

initiate packet transfer, and can ask for packets only when they are ready.

Pull processing also models the scheduling decision inherent in choosing the next

packet to send. A Click packet scheduler is simply an element with one pull output

and multiple pull inputs. Such an element responds to a pull request by choosing

one of its inputs, making a pull request to that input, and returning the packet it

receives. (If it receives a null pointer, it will generally try another input.) These

elements make only local decisions: different scheduling behaviors correspond to

different algorithms for choosing an input. Thus, they are easily composable.

The following properties hold for all correctly configured routers: Push outputs

must be connected to push inputs, and pull outputs must be connected to pull inputs.

Each agnostic port must be used as push or pull exclusively. Furthermore, if packets

arriving on an agnostic input might be emitted immediately on one of that element’s

agnostic outputs, then both input and output must be used in the same way (either

push or pull). Finally, push outputs and pull inputs must be connected exactly

once. This ensures that each packet transfer request—either pushing to an output

port or pulling from an input port—is along a unique connection. These properties

are automatically checked by the system during router initialization. Figure 2.4

demonstrates some property violations.

These properties are designed to catch intuitively invalid configurations. For

example, the connection in Figure 2.4 from FromDevice to ToDevice is illegal because

FromDevice’s output is push while ToDevice’s input is pull. But this connection is

intuitively illegal, since it would mean that ToDevice might receive packets when it

was not ready to send them. The Queue element, which converts from push to pull,

also provides the temporary packet storage this configuration requires.

2.3 The Click Modular router 18

Figure 2.3: Push and pull control flow.This diagram shows functions called as a

packet moves through a simple router; time moves downwards. The central element

is a Queue. During the push, control flow moves forward through the element

graph starting at the receiving device; during the pull, control flow moves backwards

through the graph, starting at the transmitting device. The packet p always moves

forward.(Figure from [5])

Figure 2.4: Some push and pull violations. The top configuration has four errors:

(1) FromDevice’s push output connects to ToDevice’s pull input; (2) more than one

connection to FromDevice’s push output; (3) more than one connection to ToDe-

vice’s pull input; and (4) an agnostic element, Counter, in a mixed push/pull context.

The bottom configuration, which includes a Queue, is legal. In a properly configured

router, the port colors on either end of each connection will match.(Figure from [5])

2.3 The Click Modular router 19

2.3.4 Language

Click configurations are written in a simple language with two important con-

structs: declarations create elements, and connections say how they should be con-

nected. Its syntax is easy enough to learn from an example; Figure 2.5 uses it to

define a trivial router.

Figure 2.5: Two Click-language definitions for the trivial router of Figure 2.2. (Fig-

ure from [5])

Chapter 3

Implementation

In this chapter, we will first discuss how the PHY and the MAC layer were connected

through IPC (Inter Process Communication), then we will describe the experimental

setup and finally the DCF of the 802.11 CSMA/CA MAC protocol and how this

was implemented through the Click Modular router.

3.1 IPC between Click and GNU Radio processes

This approach discussed in [6] suggests that Click and GNU Radio execute as

individual processes with Click implementing our MAC Protocol and GNU Radio

performing the PHY processing. So each station (terminal) in our implementation

has three running processes, one for Click and two for GNU Radio (sender and

receiver). Thus, the two GNU Radio processes communicate with Click, by sending

and receiving messages through UNIX domain datagram sockets.

Sockets are based on the client-server model. These terms refer to the two

processes which will be communicating with each other. One of the two processes,

the client, connects to the other process, the server, typically to make a request for

information. The client needs to be aware of the existence and the address of the

server, but the server does not need to know the address (or even the existence)

of the client before the connection has been established. A socket is one end of an

interprocess communication channel. Each of the two processes establish their own

socket [7].

3.2 Experimental Setup 21

Figure 3.1: IPC using UNIX datagram sockets

In our case, the packets generated at Click flow to the GNU Radio sender process

through a socket and conversely, the packets received from the PHY flow from the

GNU Radio receiver process to Click for MAC processing, as shown in figure 3.1. In

the first case, the GNU Radio process is the server which creates a socket through

the socket() system call and binds it to a specific address (entry in the filesystem)

through the bind() system call. Then, it can receive messages (packets) from the

Click process using the recvfrom() system call. The Click process is the client which

also creates its own socket through socket() system call and can send messages

(packets) to the GNU Radio process’s socket through sendto() system call. The

opposite process takes place in the second case (i.e, the GNU Radio process is the

client and the Click process is the server).

3.2 Experimental Setup

In this section, we will follow the route of each generated packet from the MAC

Layer of the sender (station) to the MAC Layer of the receiver (base station) and

show which actions are performed in each stage.

3.2 Experimental Setup 22

The Station’s Click Process

The router configuration of the MAC Layer can be viewed in Figure 3.2. Rated-

Source is a standard Click Element which generates packets at specified rate. The

generated packets are stored in the Queue that follows. Next to the Queue there

is the main element of our configuration which implements the MAC algorithm and

sends the packets to the PHY layer according to it. When a packet is successfully

acknowledged from the base station it passes to Discard standard element which

drops it and initiates the next packet transfer.

The GNU Radio Sender Process

The packets sent to GNU Radio are received through the socket inside a packet

source block. This block converts the bytes of each message to 4-QAM symbols.

It also adds the training symbols, the MAC address of the particular station, the

MAC address of the base station and the frame number of the current packet. The

processed packet is then oversampled by the next block, passed through a SRRC

(Square Root Raised Cosine) transmit filter and finally flows to usrp sink block

which sends the packet to the USRP for transmission at a specified frequency.

The GNU Radio Receiver Process

In the GNU Radio Receiver Process the data arriving at the USRP’s RF front-end

(tuned through GNU Radio at the specified frequency) are converted to baseband

signal and they are sent to USRP source block. Then they pass through a SRRC

receiver filter and after that through the packetizer block. The above detects the

packets inside the data stream. Frequency offset estimation and cancelation, channel

estimation and equalization take place afterwards resulting in retrieving each packet.

The next block converts the 4-QAM symbols to bytes and sends each packet to MAC

Layer (Click process).

3.3 802.11 Distributed Coordination Function 23

The Base Station’s Click Process

After having received the packet from its socket this process reads the transmitter’s

MAC address as well as the frame number of the current packet and inserts them

to the Acknowledgment packet which is generated. The above follows the opposite

route to reach the initial station.

Figure 3.2: Experimental Setup

3.3 802.11 Distributed Coordination Function

According to the DCF, a station with a new packet to transmit monitors the

channel activity. If the channel is idle for a period of time equal to a distributed

interframe space (DIFS), the station transmits. Otherwise, if the channel is sensed

busy (either immediately or during the DIFS), the station persists to monitor the

channel until it is measured idle for a DIFS. At this point, the station generates a

random backoff interval before transmitting (this is the Collision Avoidance feature

of the protocol), to minimize the probability of collision with packets being trans-

mitted by other stations. In addition, to avoid channel capture, a station must wait

a random backoff time between two consecutive new packet transmissions, even if

the medium is sensed idle in the DIFS time [8].

For efficiency reasons, DCF employs a discrete-time backoff scale. The time

immediately following an idle DIFS is slotted, and a station is allowed to transmit

only at the beginning of each slot time. The slot time size is set equal to the

time needed at any station to detect the transmission of a packet from any other

3.3 802.11 Distributed Coordination Function 24

Figure 3.3: IEEE 802.11 DCF Transmission Example (Figure from [11])

station. It accounts for the propagation delay, for the time needed to switch from

the receiving to the transmitting state (RX-TX-Turnaround Time), and for the time

to signal to the MAC layer the state of the channel (busy detect time) [8].

DCF adopts an exponential backoff scheme. At each packet transmission, the

backoff time is uniformly chosen in the range (0,W − 1). The value w is called con-

tention window, and depends on the number of transmissions failed for the packet.

At the first transmission attempt, w is set equal to a value CWmin called minimum

contention window. After each unsuccessful transmission, w is doubled, up to a

maximum value CWmax = 2m ∗ CWmin [8].

The backoff time counter is decreased as long as the channel is sensed idle,

frozen when a transmission is detected on the channel, and reactivated when the

channel is sensed idle again for more than a DIFS. The station transmits when the

backoff time reaches zero [8].

Since the CSMA/CA does not rely on the capability of the stations to detect

a collision by hearing their own transmission, an ACK is transmitted by the desti-

nation station to signal the successful packet reception. The ACK is immediately

transmitted at the end of the packet, after a period of time called short interframe

space (SIFS). As the SIFS (plus the propagation delay) is shorter than a DIFS, no

other station is able to detect the channel idle for a DIFS until the end of the ACK. If

the transmitting station does not receive the ACK within a specified ACK-Timeout,

or it detects the transmission of a different packet on the channel, it reschedules the

packet transmission according to the given backoff rules [8].

Figure 3.3 shows a simplified example of how the DCF process works. (In this

3.3 802.11 Distributed Coordination Function 25

simplified DCF example, no acknowledgments are shown and no fragmentation oc-

curs.) The DCF steps illustrated in Figure 3.3 work as follows:

1. Station A successfully sends a frame, and three other stations also want to

send frames but must defer to Station A’s traffic.

2. When Station A completes transmission, all the stations must still defer to

the DIFS. When the DIFS is complete, stations that want to send a frame can

begin decreasing their backoff counters (decreasing by one for every slot time

that passes). If their backoff counters reach 0 and the channel is available,

they may send their frame.

3. Station B’s backoff counter reaches 0 before Stations C and D, so Station B

begins transmitting its frame.

4. When Stations C and D detect that Station B is transmitting, they must stop

decreasing their backoff counters and again defer until the frame is transmitted

and a DIFS has passed.

5. During the time that Station B is transmitting a frame, Station E gets a frame

to transmit, but because Station B is sending a frame, Station E must defer

in the same manner as Stations C and D.

6. When Station B completes transmission and the DIFS has passed, stations

with frames to send begin decreasing their backoff counters again. In this case,

Station D’s backoff counter reaches 0 first, and the station begins transmission

of its frame.

7. The process continues as traffic arrives on different stations.

3.3.1 Pseudocode

At this point we present our pseudocode of 802.11 DCF (Algorithm 1) to show

how we implemented the various steps of the MAC algorithm under Click Modular

Router platform.

3.3 802.11 Distributed Coordination Function 26

Line 1 indicates that after each packet’s successful transmission, a pull request

is made on the queue to get the next packet, if available, and that the contention

window length is set to its minimum value. If the queue is empty, we are in the

case of non-consecutive transmissions (i.e there is an empty queue incident between

two new packet transfers). This means that the current station will not necessarily

enter the backoff stage of the algorithm the next time it has a packet available

for transmission (backoff stage = false). On the contrary, as mentioned in the

above description of the DCF, if no empty queue incident occurs between two new

packet transfers the station has to enter the backoff stage to avoid channel capture

(backoff stage = true).

Having a packet available for transmission, each station has to listen to its socket

for a DIFS interval. If the socket receives a message during that time (i.e. the channel

got busy during DIFS period), then the station has to secure that the socket remains

empty for a DIFS period and then enter the backoff stage. If not, plus the current

transmission is not consecutive with the previous one, the station is free to transmit

(backoff stage = false).

Lines 11-22 implement the exponential backoff stage of the algorithm. The sta-

tion picks a random backoff time in line 12 and then it listens to each socket for that

time through select() system call. select() returns 0 when no message was found in

the socket during the specified time and 1 immediately after a message was found in

the socket. The two timestamps, before and after the select() system call are used

to calculate the elapsed time during which the socket was empty (i.e. the channel

was sensed idle). Thus, every time the backoff timer is frozen due to a detected

transmission we can calculate the remaining time, as shown in line 20. Lines 17-19

indicate that once the backoff timer is frozen, the station has to wait for its socket

being empty for a DIFS interval before it is allowed to continue the countdown.

After the backoff stage, the station is free to transmit its packet. Then, it listens

to its socket for an ACK Timeout period, waiting to receive an Acknowledgment

from the base station. At this point, the transmission is considered to be unsuccess-

full if one of the following incidents occurs:

1. we did not receive anything from the socket during ACK Timeout,

3.3 802.11 Distributed Coordination Function 27

2. we received an erroneous packet,

3. the receiver’s MAC address of the ACK packet is not that of the current

station.

In the case of an unsuccessful transmision, the contention window value is in-

creased, unless it has already reached its maximum value. Then, the station re-enters

the backoff stage. If nothing from the above occurs and the transmission is success-

ful, the current packet is discarded and a new pull connection from the queue takes

place.

3.3 802.11 Distributed Coordination Function 28

Algorithm 1 802.11 DCF

1: p = pull next packet from queue, cw length = CW MIN

2: if p == null then

3: backoff stage = false {case of non consecutive transmissions}
4: return p

5: else

6: wait for difs idle channel

7: if channel got busy during DIFS then

8: backoff stage = true

9: end if

10: repeat

11: if backoff stage == true then

12: backoff = random interval from range (0, cw length− 1)× slot
13: while backoff > 0 do

14: t1 = timestamp1

15: rc = select(sock1,backoff)

16: t2 = timestamp2

17: if rc > 0 then

18: wait for DIFS idle channel

19: end if

20: backoff = backoff - (t2 - t1)

21: end while

22: end if

23: send packet to PHY socket

24: rc = select(sock2,ACK Timeout)

25: receive ACK from MAC socket

26: if rc == 0 or erroneous packet or wrong MAC then

27: if cw length < CW MAX then

28: cw length = 2× cw length

29: end if

30: else

31: successfull transmission

32: end if

33: backoff stage = true

34: until successfull transmission

35: end if

36: return p

3.4 Other implementation issues 29

3.4 Other implementation issues

In this section we will discuss some implementation issues that we consider important

and the way we dealt with them.

3.4.1 Software Constraints

As the time in our MAC protocol is slotted, it is of great importance to be very

precise with the slot’s duration and the other time spaces which depend on it (i.e

DIFS, SIFS, ACK-Timeout).

Unfortunately, the GNU Radio-USRP interface results in great delays, which

do not permit us to achieve as large data rates as those described in the 802.11

standard. This suboptimal performance is mainly due to the large Rx-Tx and Tx-

Rx turnaround times for each tranceiver as well as the processing times for each

packet. These two processes lead to a total delay in the scale of milliseconds.

As we mentioned in the description of the DCF, the slot time is defined as:

Slot = Rx Tx Turnaround T ime+ propagation delay + busy detect time (3.1)

In order to calculate this duration directly, we should have had the same clock

between a station and the base station and calculate the elapsed time from the

generation of a packet in a station until the MAC layer notification of the base

station. As this is impossible we used another way. Specifically, we calculated the

slot time through the DIFS. The DIFS is defined as follows:

DIFS = 2× slot time+ SIFS. (3.2)

In our case, and since the Acknowledgments and the packets are of the same

length (i.e. same propagation delay), the above definition means that the DIFS is

equal to the time needed from the instance that we generate a packet until we receive

its Acknowledgment (this time can be easily calculated in the same terminal). It is

obvious from equation (3.2) that since we know the DIFS we can calculate the slot

time as follows:

slot time =
DIFS − SIFS

2
. (3.3)

3.4 Other implementation issues 30

3.4.2 Operation Frequency

As mentioned in Section 3.1, two gnu radio processes (transmitter and receiver)

run in each station (including the base station). Since our whole system works in

one central frequency, each station listens to its own packets as well. In order to

deal with this, we read each packet’s sender MAC Address and if it is the same with

the current station’s we discard the packet and don’t pass it to the MAC layer.

In Table 3.1 we summarise our system’s parameters and in Figure 3.4 we depict

our MAC frame.

System Parameters

Slot time 3.0 msec

DIFS 7.0 msec

ACK Timeout 20 msec

SIFS 1.0 msec

Packet length 400 bits

Tx Power 31+ mw (15dbm)

Constellation scheme 4-QAM

Table 3.1: System Parameters

Figure 3.4: MAC frame

Chapter 4

Throughput Analysis

In this chapter we will analyze the performance of our system. Due to the runtime

delays we mentioned in the previous chapter, our system cannot use the channel

capacity efficiently and achieve large data rates. As a result, to analyze the system’s

throughput we first had to measure its capacity. Then, we measured the normalized

throughput. We will discuss these issues in detail and present our results, after we

see the 802.11 DCF’s theoretical and simulation performance as this is presented by

Giuseppe Bianchi in [8].

4.1 System Capacity

To measure the system’s capacity, we counted the average number of acknowledged

packets per second in a point-to-point link and stable conditions (i.e. packet error

rate below 5 per cent). At this point, we took the acknowledgments into account

because they bring on the same runtime delays with the packets (same Rx-Tx, Tx-

Rx Turnaround times, same processing and propagation delays). Thus, we can not

ignore them in the measurement of the system’s capacity. In Figure 4.1, you can see

the offered load versus tha packet error rate and the average number of acknowledged

packets per second in a point-to-point link.

4.2 Bianchi’s simulation and theoretical results 32

Figure 4.1: point-to-point link performance

As you can see, the upper bound of the offered load (PER < 0.05) is 70 pack-

ets/second for which we have an average of 66.76 acknowledged packets/sec. This

is considered as our system’s capacity.

4.2 Bianchi’s simulation and theoretical results

4.2.1 Maximun and Saturation Throughput

Saturation throughput is defined as the limit reached by the system throughput

as the offered load increases, and represents the maximum load that the system can

carry in stable conditions [8].

As a random access scheme, the DCF of 802.11 exhibits an unstable behavior.

Particularly, as the offered load increases, the throughput grows up to a maxi-

mum value known as “maximum throughput”. Further increases of the offered load,

4.2 Bianchi’s simulation and theoretical results 33

though, lead to a significant decrease of the system throughput. As a result, it is

impossible to operate the random access scheme at its maximum throughput for a

long period of time [8].

In Figure 4.2 (from [8]), we can see simulation results for 20 stations, which

visualize this unstable behaviour. As described in [8], the offered load linearly in-

creases with simulation time. The straight line represents the ideal offered load,

normalized with respect of the channel capacity. The simulated offered load has

been generated according to a Poisson arrival process of fixed size packets, where

the arrival rate has been varied throughout the simulation to match the ideal offered

load. The throughput was measured over 20 sec time intervals and normalized with

respect to channel rate. We observe that the measured throughput follows closely

the offered load for the first 260 s of simulation, while it asymptotically drops to the

value 0.68 in the second part of the simulation run. This asymptotic throughput

value is referred to as saturation throughput, and represents the system through-

put in overload conditions. Note that, during the simulation run, the instantaneous

throughput temporarily increases over the saturation value (up to 0.74 in the exam-

ple considered), but ultimately it decreases and stabilizes to the saturation value.

Queue build-up is observed in such a condition.

4.2 Bianchi’s simulation and theoretical results 34

Figure 4.2: Measured Throughput with slowly increasing offered load (Figure from

[8])

4.2.2 Bianchi’s Model for performance evaluation

In [8], Bianchi describes a model for the analytical evaluation of the saturation

throughput of 802.11 DCF1. According to that model, Bianchi extracts the station-

ary probability τ that a station transmits a packet in a randomly chosen time slot.

Then, by studying the events that can occur in a randomly chosen time slot, he

expresses the throughput as a function of the computed value τ .

Packet Transmission Probability

In saturation conditions, each station has immediately a packet available for trans-

mission, after the completion of each successfull transmission. As a result, each

packet needs to wait a random backoff time before transmitting.

Let b(t) be the stochastic process representing the backoff time counter for a given

1copyrights for this subsection belong to [8].

4.2 Bianchi’s simulation and theoretical results 35

Figure 4.3: Markov chain for the backoff window size (Figure from [8])

station, where t and t+ 1 correspond to the beginning of two consecutive slot times.

The backoff time counter of each station is decreased at the beginning of each time

slot. We define the minimum value of the contention window, W = CWmin, and the

maximum backoff stage, m, such that CWmax = 2m ×W . We adopt the notation

Wi = 2i ×W , where i ∈ (0,m). Let s(t) be the stochastic process representing the

backoff stage (0,,m) of the station at time t.

The key approximation of this model is that at each transmission attempt, and

regardless of the number of retransmissions suffered, each packet collides with con-

stant and independent probability p.

Once independence is assumed, and p is supposed to be a constant value, it

is possible to model the bidimensional process {s(t), b(t)} with the discrete-time

Markov chain depicted in Figure 4.3. In this Markov chain, the only non-null one-

step transition probabilities are:

4.2 Bianchi’s simulation and theoretical results 36

P {i, k |i, k + 1} = 1 k ∈ (0,Wi − 2) i ∈ (0,m)

P {0, k |i, 0} = (1− p)/W0 k ∈ (0,W0 − 1) i ∈ (0,m)

P {i, k |i− 1, 0} = p/Wi k ∈ (0,Wi − 1) i ∈ (1,m)

P {m, k |m, 0} = p/Wm k ∈ (0,Wm − 1).

(4.1)

The first equation in (4.1) accounts for the fact that, at the beginning of each

time slot, the backoff time is decreased. The second equation accounts for the fact

that a new packet following a successful packet transmission starts with backoff

stage 0, and thus the backoff is initially uniformly chosen from the range (0,W0−1).

The third equation accounts for the fact that after an unsuccessful transmission at

backoff stage i−1, the backoff stage is increased, and the new initial backoff value is

uniformly chosen in the range (0,Wi). Finally, the fourth case models the fact that

once the backoff stage reaches the value m , it is not increased in subsequent packet

transmissions.

Let bi,k = lim
t→∞

P {s(t) = i, b(t) = k}, i ∈ (0,m), k ∈ (0,Wi−1) be the stationary

distribution of the chain. It is easy to obtain a closed-form solution for this Markov

chain. First note that

bi−1,0 · p = bi,0 → bi,0 = pib0,0, 0 < i < m

bm−1,0 · p = (1− p)bm,0 → bm,0 = pm

1−pb0,0.
(4.2)

Owing to the chain regularities, for each k ∈ (1,Wi − 1), it is

bi,k =
Wi − k
Wi

·

(1− p)

∑m
j=0 bj,0 i = 0

p · bi−1,0 0 < i < m

p · (bm−1,0 + bm,0) i = m.

(4.3)

Due to (4.2) and making use of the fact that
∑m

i=0 bi,0 = b0,0/(1 − p), (4.3) can be

written as

bi,k = Wi−k
Wi

bi,0
(4.2)→ bi,k = Wi−k

Wi
pib0,0 i ∈ (0,m), k ∈ (0,Wi − 1) (4.4)

Thus, we have expressed all the values bi,k as functions of the value b0,0 and of

the conditional collision probability p. Finally, b0,0 is determined by imposing the

4.2 Bianchi’s simulation and theoretical results 37

normalization condition, that simplifies as follows:

1 =
m∑
i=0

Wi−1∑
k=0

bi,k =
m∑
i=0

bi,0

Wi−1∑
k=0

Wi − k
Wi

=
m∑
i=0

bi,0
Wi + 1

2

=
b0,0
2

[
W

(
m−1∑
i=0

(2p)i +
(2p)m

1− p

)
+

1

1− p

] (4.5)

from which we obtain that,

b0,0 =
2(1− 2p)(1− p)

(1− 2p)(W + 1) + pW (1− (2p)m)
. (4.6)

We can now express the probability τ that a station transmits in a randomly

chosen time slot. As any transmission occurs when the backoff time counter is equal

to zero, regardless of the backoff stage, it is

τ =
m∑
i=0

bi,0 =
b0,0

1− p
=

2(1− 2p)

(1− 2p)(W + 1) + pW (1− (2p)m)
. (4.7)

As we can see, τ depends on the conditional collision probability p, which is still

unknown. To find the value of p it is sufficient to note that the probability p that a

transmitted packet encounters a collision is the probability that, in a time slot, at

least one of the remaining n− 1 stations transmit. Thus, we have

p = 1− (1− τ)n−1. (4.8)

Equations (4.7) and (4.8) represent a nonlinear system in the two unknowns τ

and p , which can be solved using numerical techniques. It is easy to prove that this

system has a unique solution. In fact, inverting (4.8), we obtain τ ∗(p) = 1−(1−p)
1

n−1 .

This is a continuous and monotone increasing function in the range p ∈ (0, 1), that

starts from τ ∗(0) = 0 and grows up to τ ∗(1) = 1. Equation τ(p) defined by (4.7) is

also a continuous and monotone decreasing function that starts from τ(0) = 2
(W+1)

and reduces down to τ(1) = 2
(1+2mW)

. Uniqueness of the solution is now proven

noting that τ(0) > τ ∗(0) and τ(1) < τ ∗(1).

Throughput

To compute the throughput, we first analyze what can happen in a randomly

chosen time slot. Let Ptr be the probability that there is at least one transmission

4.2 Bianchi’s simulation and theoretical results 38

in the considered time slot. Since n stations contend on the channel, and each

transmits with probability τ

Ptr = 1− (1− τ)n (4.9)

The probability Ps that a transmission occurring on the channel is successful is

given by the probability that exactly one station transmits on the channel, condi-

tioned on the fact that at least one station transmits, i.e.,

Ps =
nτ(1− τ)n − 1

Ptr
=
nτ(1− τ)n − 1

1− (1− τ)n
(4.10)

Let S be the normalized system throughput, defined as the fraction of time the

channel is used to successfully transmit payload bits. We are now able to express S

as the ratio

S =
E [payload information transmitted in a time slot]

E [length of a time slot]
. (4.11)

Being E [P] the average packet payload size, the average amount of payload

information successfully transmitted in a time slot is PtrPsE [P], since a successful

transmission occurs in a time slot with probability PtrPs. The average length of

a time slot is readily obtained considering that, with probability 1 − Ptr, the time

slot is empty; with probability PtrPs it contains a successful transmission, and with

probability Ptr(1− Ps) it contains a collision. Hence, (4.11) becomes

S =
PsPtrE [P]

(1− Ptr)σ + PtrPsTs + Ptr(1− Ps)Tc
. (4.12)

Here, Ts is the average time the channel is sensed busy (i.e., the slot time lasts)

because of a successful transmission, and Tc is the average time the channel is sensed

busy by each station during a collision. σ is the duration of an empty time slot. Of

course, the values E [P], Ts, Tc and σ must be expressed in the same unit.

Maximum Saturation Throughput

The analytical model given above is very convenient to determine the maximum

achievable saturation throughput. Let us rearrange (4.12) to obtain

S =
E [P]

Ts − Tc + σ(1−Ptr)/Ptr+Tc
Ps

. (4.13)

4.2 Bianchi’s simulation and theoretical results 39

As Ts, Tc, E [P] and σ are constants, the throughput S is maximized when the

following quantity is maximized:

Ps
(1− Ptr)/Ptr + Tc/σ

=
nτ(1− τ)n−1

T ∗c − (1− τ)n(T ∗c − 1)
(4.14)

where T ∗c = Tc
σ

is the duration of a collision measured in time slot units σ. Taking

the derivative of (4.14) with respect to τ , and imposing it equal to 0, we obtain,

after some simplifications, the following equation:

(1− τ)n − T ∗c {nτ − [1− (1− τ)n]} = 0 (4.15)

Under the condition τ << 1

(1− τ)n ≈ 1− nτ +
n(n− 1)

2
τ 2

holds and yields the following approximate solution:

τ ≈ 1

n
√
T ∗c /2

. (4.16)

Equation (4.15) and its approximate solution (4.16) are of fundamental theo-

retical importance. They allow us to explicitly compute the optimal transmission

probability τ that each station should adopt in order to achieve maximum through-

put performance within a considered network scenario (i.e., number of stations n).

The results of this model, as far as the throughput is concerned, can be viewed

in Figure 4.4, where n represents the number of stations in the network.

It is obvious from Figure 4.4 that the maximum throughput is independent of

the number of stations in the wireless network. On the other hand, we can see

that in saturation conditions the behaviour of the protocol strongly depends on this

number. Specifically, we can see that, as the number of the stations in the network

increases, the throughput drops more sharply.

4.3 Experimental results 40

Figure 4.4: Throughput versus the transmission probability τ for the basic access

scheme (Figure from [8])

4.3 Experimental results

In this section we present our experimental results and compare them to Bianchi’s

simulation and theoretical results of 802.11 DCF, as these were summarized in the

previous sections. We tested our system with 2 and 4 users. In Figure 4.5, we plot

our system’s normalized throughput performance. The x-axis represents the total

offered load of the network, which is, to our system, the equivalent of Bianchi’s

transmission probability τ .

As in the theoretical figure, we can also see here that the system’s performance

strongly depends on the number of the stations, especially in saturation conditions.

Thus, we see that the system with 2 users has steadily higher throughput than the

one with 4 users. This is something that we expect since, as the number of stations

grows, we have more collisions in the network (especially when the stations are

saturated) and consequently lower throughput. Furthermore, because of the small

4.3 Experimental results 41

number of stations we had at our disposal (up to 4) we could not see any significant

drop in the saturation throughput. This is justified by the theoritical figure we

showed above, where the saturation throughput for 5 stations drops very smoothly.

As a result it would not be wise to compare our system’s performance with Bianchi’s

simulation results in Figure 4.2, where the drop of the throughput was obvious but

the number of stations was much bigger.

Figure 4.5: Experimental Throughput for 2 and 4 users

Bianchi’s model also shows that the number of transmissions per packet signifi-

cantly increases as the initial backoff window W reduces, and as the network size n

increases. These results can be viewed in Figure 4.6 from [8].

We verified these results in our system as you can see in Figure 4.7. We note

that in both theoretical and experimental results, the number of backoff stages m is

the same for all the values of the initial size of the contention window.

4.3 Experimental results 42

Figure 4.6: Average Number of transmissions per packet according to Bianchi’s

Model (Figure from [8])

4.3 Experimental results 43

Figure 4.7: Average Number of transmissions per packet according to our system

experimental results

Chapter 5

Future Work

In a future version of this SDR system, it would be useful to improve its perfor-

mance in order to get to large data rates comparable to those expected, according

to the IEEE standard for the 802.11 MAC protocol [11]. In order to accomplish this

goal, we should reduce the delays associated with packet scheduling and processing

as well as the Rx-Tx, Tx-Rx Turnaround times. To this direction, the authors in

[10] suggest a minimum set of core MAC functions that must be implemented close

to the radio (hardware) in high-latency SDR architectures, like ours, to enable high

performance and efficient MAC implementations. These functions include: precise

scheduling in time, carrier sense, backoff, packet recognition and access to physical

layer information. Then, they define a split-functionality architecture that allows the

functions to be implemented near the radio (hardware), while maintaining control

on the host CPU through an API.

For performance reasons, it would also be important to use a PHY which could

support much larger packets than those we used in our system. In this case we would

also need a packetizer which can support different packet lengths during runtime,

so that we can have different lengths for the packets and the Acknowledgments or

other control messages.

Based on this SDR we can also experiment with different sophisticated PHY

techniques, like OFDM or MIMO systems, and evaluate the achieved performance

of these techniques in combination with our MAC protocol implementation. Fur-

thermore, taking advantage of our cross layer interactions we could use a rate adap-

45

tive MAC protocol like the one implemented in [4]. This protocol uses the control

messages of the DCF mode of IEEE 802.11 to perform opportunistic link level rate-

adaptation. The goal is to use a higher rate when the wireless channel permits (i.e,

the estimated link quality between the sender and the receiver is good enough).

Bibliography

[1] http://gnuradio.org/redmine/wiki/gnuradio/UsrpFAQIntro.

[2] M.Matigakis, “GNU Radio and USRP usage tutorial”.

[3] http://gnuradio.org/redmine/wiki/gnuradio.

[4] K. Mandke, S.H. Choi, G.Kim, R. Grant, R.C. Daniels, W.Kim, R.W. Heath,

Jr., and S.M. Nettles, “Early Results on Hydra: A Flexible MAC/PHY Mul-

tihop Testbed”.

[5] E. Kohler, R. Morris, B. Chen, J. Jannoti and M.F. Kaashoek, “The Click

Modular Router”.

[6] R. Dhar, P.Steenkiste, “Supporting Integrated MAC and PHY Software De-

velopment for the USRP SDR”.

[7] http://www.linuxhowtos.org/C C++/socket.htm.

[8] G. Bianchi, “Performance Analysis of the IEEE 802.11 Distributed Coordina-

tion Function”.

[9] Cisco Systems, “End-to-end QoS network design”.

[10] G. Nychis, T. Hottelier, Z. Yang, S. Seshan, P. Steenkiste Carnegie Mellon

University, “Enabling MAC Protocol Implementations on Software-Defined

Radios”.

[11] ANSI/IEEE Std 802.11, 1999 Edition, Wireless LAN Medium Access Control

(MAC) and Physical Layer (PHY) Specifications.

