
4D-Fluents Plug-In: A Tool for Handling

Temporal Ontologies in Protégé

Polyxeni Makri

Department of Electronic and Computer Engineering
Technical University of Crete

Dissertation Thesis Committee:
Euripides G.M Petrakis, Associate Professor (Supervisor)

Stavros Christodoulakis, Professor
Michail G. Lagoudakis, Assistant Professor

2011

1

Σ�o�& o�"�́& �o�,
��o� ����o�́ �o� M �́��o,

��� ��� ���́�� �o� ����o�́ Θ���́��.

2

Acknowledgments

This thesis would not have been possible without the help of several people
who in one way or another, contributed and offered their valuable assistance in
the preparation and completion of this study.

First and foremost, my utmost gratitude to my advisor, Associate Professor
Euripides G.M Petrakis for his supervision, advise and guidance from the very
early stage of this research. I am grateful for his encouragement and precious
contribution throughout this study. I would also like to thank him for giving
me the opportunity to work on this very interesting field of research.

Also, I would like to thank Professor Stavros Christodoulakis and Assistant
Professor Michail G. Lagoudakis who agreed to evaluate my diploma thesis.

Moreover, I would like to thank my laboratory colleagues for their patience
and constructive comments.

I would like to thank my friend Ioannis for his enormous help and support
all these years. And my friend Eleni for being next to me whenever I needed
her.

Finally, my eternal gratitude goes to my parents and my brother, who sup-
ported me for as long as they could and believed in me. I will never forget your
dedication and support.

Abstract

An ontology describes the concepts and relationships that are important in a
particular domain, provides a vocabulary for that domain that helps both people
and machines to communicate concisely. Many approaches have been proposed
to deal with representing information that evolves in time (e.g., objects in a
video) in ontologies including among others, N-ary relations, reification, and
recently the 4D-fluents approach with the later being the one we adopt in this
work. However, representing the time dimension of concepts that evolve in
time in ontologies require that temporal relationships become ternary (from
binary). Typically, this is handled by decomposing ternary relationships to a
set of binary relations and by using additional new classes to represent their
relationships. This introduces additional complexity into the representation
(e.g., property restrictions of temporal classes might refer to the additional
classes introduced by the representation rather than the classes on which they
are originally defined). Writing a temporal ontology using an editor takes time
and effort and requires lots of attention to detail. Although there are editors for
handling ontologies, with the most popular being the Protégé editor, there is no
tool for crafting temporal concepts in ontologies. This is exactly the problem
this work is dealing with. In this thesis, we design and implement a Plug-
In for the Protégé editor that facilitates the crafting (i.e., creating, editing)
of temporal ontologies. Particular emphasis is given to making the Plug-In
portable and easy to use by ordinary users of the semantic Web. The Plug-In
is realized as a Protégé tab that provides a front-end interface which is easy
to use, handles temporal ontologies similarly to static ontologies and does not
require that users are familiar with peculiarities of the underlying representation
of temporal information (the 4D-fluents approach in our case).

Contents

1 Introduction 4
1.1 Problem Definition . 4
1.2 Proposed Solution . 5
1.3 Thesis outline . 6

2 Background and Related Work 7
2.1 Ontologies . 7
2.2 Representation of time in Ontologies 7
2.3 OWL-Time Ontology . 9
2.4 Protégé editor . 11
2.5 OWL API . 11

3 4D-Fluents Tab 12
3.1 The Difficulty of Handling Temporal Ontologies in Protégé . . . 12
3.2 Use Cases . 13
3.3 User Interface design . 23
3.4 Functionality . 25
3.5 Activity Diagrams . 28
3.6 Ontology Changes According to 4D-fluents model 33
3.7 Code Structure . 35
3.8 Plug-In Documentation . 38

4 Conclusion and future work 41

1

List of Figures

2.1 Static Enterprise Ontology . 9
2.2 Dynamic Enterprise Ontology . 10
2.3 An OWL-Time diagram . 10

3.1 Object Property Panel . 23
3.2 Data Property Panel . 24
3.3 Individual Panel . 25
3.4 4D-Fluents Tab: Object Properties View 25
3.5 4D-Fluents Tab: Confirm the conversion of an object property to

temporal . 26
3.6 4D-Fluents Tab: Data Properties View 26
3.7 4D-Fluents Tab: Confirm the conversion of a data property to

temporal . 27
3.8 4D-Fluents Tab: Individuals View 27
3.9 4D-Fluents Tab: Dialog to indicate that there is no temporal

property . 27
3.10 4D-Fluents Tab: Individuals Dialog 28
3.11 Activity Diagram 1 . 29
3.12 Activity Diagram 2 . 29
3.13 Activity Diagram 3 . 30
3.14 Activity Diagram 4 . 30
3.15 Activity Diagram 5 . 31
3.16 Activity Diagram 6 . 31
3.17 Activity Diagram 7 . 32
3.18 Activity Diagram 8 . 32
3.19 A static object property assertion 33
3.20 A temporal object property assertion 34
3.21 A static data property assertion 34
3.22 A temporal data property assertion 35
3.23 Class Diagram . 37

2

List of Tables

3.1 Use Case 1 . 14
3.2 Use Case 2 . 15
3.3 Use Case 3 . 17
3.4 Use Case 4 . 18
3.5 Use Case 5 . 19
3.6 Use Case 6 . 20
3.7 Use Case 7 . 21
3.8 Use Case 8 . 22

3

Chapter 1

Introduction

Ontologies represent a set of concepts and the relationships between these con-
cepts that describe a particular domain. Issues relating to knowledge represen-
tation has been in the center of intensive research activities in artificial intelli-
gence and databases and information systems research. The increasing role of
ontologies in information systems design for knowledge representation has been
acknowledged many times by the research community and recently with the ad-
vent of the Semantic Web [5]. Because of their increasing significance in research
for the Semantic Web, ontologies need to be extended to incorporate additional
information types which are routinely used in applications of the real world.
A particular aspect of knowledge that needs to be interpreted by ontologies is
temporal information.

Several representation languages are defined for the Semantic Web, the most
important of them are referred to as the OWL-family [13] of ontology languages
(OWL-Full, OWL-DL and OWL-Lite) for ontology building and knowledge rep-
resentation. OWL-Time [7] has been developed that is very simple and provides
a vocabulary for expressing the most needed time-related facts. Dealing with
information that changes over time is a critical problem in Knowledge Repre-
sentation (KR). Representation languages such as OWL, RDF (which are based
on description logics), are all based on binary relations. Binary relations sim-
ply connect two instances (e.g., the employee with the company) without any
temporal information. Nevertheless, time representation using OWL is feasible,
although complicated [1].

1.1 Problem Definition

A critical problem in practical Knowledge Representation (KR) is dealing with
information that evolves over time. The OWL-Time [7] temporal ontology de-
scribes the temporal content of Web pages and the temporal properties of Web
services. Apart from language constructs for the representation of time in on-
tologies, there is still a need for mechanisms for the representation of the evo-
lution of concepts (events) in time. For example, the fact that a person will go
to elementary school, to high school, and then to college or that a company will
be established, hire personnel, and develop products which evolve as a result of
time, cannot be sufficiently described using existing methods. Languages such

4

CHAPTER 1. INTRODUCTION 5

as OWL, RDF etc., are biased towards binary relations making the representa-
tion of time complicated and tricky, as temporal relations become ternary with
the addition of the temporal property.

It is possible to enhance the capabilities of state of the art information
representation over the semantic Web and its support for information analysis
and reasoning, by exploiting the time dimension in the information possessed.
This can be achieved by adding the concepts of time and change (evolution)
in a rich semantics ontology representation enabling context aware information
analysis and reasoning based on evolution over time.

Ontologies offer the means for representing high level concepts, their prop-
erties and interrelationships. Dynamic or temporal ontologies will in addition
enable representation of time evolving information in ontologies through e.g.,
versioning [12] or the 4-D perdurandist approach [1]. According to this approach
all entities are perdurants, making no distinction between endurants (physical
objects such as cars, companies, people) and occurants (events such as buying
a car). The idea is that each entity is considered to be an event that has a
start and an end point. The temporal ontology then becomes more complicated
compared to static ontologies (where all properties are directly attached to the
static classes) as any temporal properties are attached to temporal classes (i.e.
the TimeSlice and TimeInterval classes) introduced by the representation [13]
and are only indirectly associated with the dynamic classes that the property
refers to. In turn, the creation of a temporal ontology, or the conversion of a
static one to temporal is a complex enterprise.

Ontology editors, such as Protégé are particularly well suited for crafting
(creating, editing) static ontologies with binary relations but have no means for
facilitating the development of dynamic ontologies (with ternary relationships
between classes). As it is common in all known approaches for representing
dynamic concepts (such as the N-ary or the 4D-fluents approach) the ternary
relationships are decomposed into sets of binary relations and properties holding
between classes now refer to properties between classes introduced by the tem-
poral representation. This not only complicates the ontology, but also, requires
that the user be familiar with the peculiarities of the temporal representation
method adopted. In addition, information such the above cannot be handled
directly by an ontology editor such as Protégé (i.e., property restrictions be-
tween temporal classes cannot be defined using Protégé). These are exactly the
problems this work is dealing with.

1.2 Proposed Solution

We present Plug-In for the Protégé editor (version 4.1 beta, supporting OWL
2.0) that facilitates the crafting of temporal ontologies and the handling of tem-
poral information, such the definition and handling of temporal classes and of
temporal properties as well as of the restrictions defined over temporal proper-
ties. The tool is implemented as a Tab in Protégé which is portable and easy to
use, handles temporal ontologies and static ones and does not require the user
be familiar with the peculiarities of the underlying representation of temporal
information is ontologies (i.e., the 4D-fluent approach is our case).

The contribution of this work is the development of a tab widget Plug-In in
Protégé 4.1 beta, which has the following desirable properties:

CHAPTER 1. INTRODUCTION 6

1. The design and the implementation of the Plug-In interface in a way con-
sistent with the layout of the default Protégé tabs .

2. The tool is developed in a way easy to use, handles temporal ontologies
as static ones, and does not require that the user be familiar with the
peculiarities of the underlying representation of temporal information.

3. Supports reasoning over temporal information using the standard Pellet
reasoner in Protégé. This is achieved by introducing a set of SWRL rules
adding the required reasoning support to the temporal representation.
The reasoner implements the method described in [14, 15].

1.3 Thesis outline

Background knowledge and related research are discussed in Chapter 2. A
description of ontologies and of the 4-D perdurantist approach to handle time in
ontologies is presented. The three first sections of Chapter 3 provide information
for the Plug-In interface, like use cases diagrams, activity diagrams and details
about the layout and its supported functionality. In section 3.6 the steps of
the ontology conversion to temporal are discussed accordingly to 4D-fluents
mechanism. In sections 3.7 and 3.8 is presented the structure of our source code
and some significant methods we use. Finally, conclusions and issues for further
research are discussed in Chapter 4.

Chapter 2

Background and Related
Work

2.1 Ontologies

An ontology is a method of representing knowledge (i.e., ideas, facts, things)
in a way that defines the relationships and classifications of concepts within a
specific domain of knowledge [24]. They are well-suited for describing heteroge-
neous, distributed and semi-structured information sources that can be found
on the Web. By defining shared and common domain theories, ontologies help
both people and machines to communicate concisely, supporting the exchange
of semantics and not only syntax. In recent years, ontologies been adopted in
many business and scientific communities as a way to share, reuse and process
domain knowledge. Now they are used in many applications such as scientific
knowledge portals, information management and integration systems, electronic
commerce, and semantic web services.

2.2 Representation of time in Ontologies

Dealing with information that changes over time is a critical problem in Knowl-
edge Representation (KR). Representation languages such as OWL [3], RDF
(description logics) [16], frame-based and object-oriented languages (F-logic) [17]
are all based on binary relations. The fact is that binary relations may change
over time making the representation of time a difficult matter to deal with,
since binary relations simply connect two instances without any temporal in-
formation. Apart from language constructs for the representation of time in
ontologies, there is a need for mechanism for the representation of the evolution
of concepts (events) over time. The principal mechanisms in Semantic Web are
Temporal Description logics [10] [11], Versioning [12], Reification [1].

Temporal Description Logics (TDL) extend Description Logics (DL) with
additional time representation operators and semantics such as ’until’
and’always in the past’. Many TDLs have been proposed [10] [11] with the
most expressive of them being undecidable. Contrary to other approaches,

7

CHAPTER 2. BACKGROUND AND RELATED WORK 8

temporal description logics offer additional semantics and reasoning mech-
anisms and they don’t suffer from data redundancy. All other approaches
except TDLs require temporal semantics to be defined using an additional
set of rules combined with a reasoning mechanism, as we did in this work.
TDLs disadvantage is that they require extending OWL to represent time
(by introducing additional operators and semantics), while the other ap-
proaches can be implemented directly using OWL.

Versioning [12] suggests that the ontology has a different version for every
instance of time. When a change takes place, a new version is created.
Versioning suffers from several disadvantages: (a) information redundancy,
because a new version of the ontology is created when a change occur ,even
on single attributes,(b) searching for events, occurred at time instances or
during time intervals, requires exhaustive searches in multiple versions of
the ontology,(c) it is not clear how the relation between evolving classes
is represented. Furthermore, ontology languages such as OWL citeowl
are based on binary relations (relations connecting two instances) with no
time dimension.

Reification [1] is a general purpose technique for representing N-ary relations
using a language such as OWL that permits only binary relations. Spe-
cially, an N-ary relation is represented as a new object that has all the
arguments of the N-ary relation as attributes. For example if the relation
R holds between objects A and B at time t, expressed as R(A,B,t), this
is represented in OWL using reification as an object R with attributes
A;B and t. Reification suffers from two disadvantages: (a) data redun-
dancy, because a new object is created whenever a temporal relation has
to be represented (this is a problem common to all approaches based on
non temporal Description Logics such as OWL-DL) and (b) offers limited
OWL reasoning capabilities.

4D-fluents (four-dimensionalist)[1] approach shows how temporal information
can be represented effectively in OWL and is the one that we use in this
work. Notice though that it still suffers from data redundancy. In order
to better explain this mechanism, we should briefly describe the 3-D view.

In 3D view, the world is distinguished into two basic categories: the en-
durants (physical objects such as cars, companies, people) and the occu-
rants (events such as buying a car). Endurants are supposed to exist at all
times and have no time dimension, while occurants have temporal parts
that exist during the times the entity exists. The main issue with this
approach is that the diachronic identity (the identity that determines an
entity over time) of endurants is addressed by identifying a set of prop-
erties that do not change over time. An entity (endurant) has a set of
properties that do not change over time (e.g., a person’s DNA) along with
a set of properties that do change over time (e.g., the hair’s color).

The 4D approach assumes that all entities are perdurants, making no
distinction between endurants and occurants. The idea is that each every
entity has a start and an end point. An entity can be seen as a four
dimensional “space-time worm”, with the slices of the worm being the
temporal parts of the entity. With this approach the problem of diachronic

CHAPTER 2. BACKGROUND AND RELATED WORK 9

Figure 2.1: Static Enterprise Ontology

entity becomes trivial since an entity is four dimensional and has temporal
parts. Changes occur on the properties of the temporal part keeping the
entity as a whole unchanged.

The ontology of Figure 2.1 has three classes (concepts), namely Company,
Product and Employee. Class Company has the data property company-
Name and the object properties produces and hasEmployee; class Product
has the data properties productName and price, and class Employee has
the data property employeeName.

Following the approach by Welty and Fikes [1], to add the time dimen-
sion to an ontology, classes TimeSlice and TimeInterval with properties
tsTimeSliceOf and tsTimeInterval respectively are introduced, as shown
in Figure 2.2. n this example, classes Company, Product have properties
which may evolve in time (e.g., the name of the company may change, and
similarly, the price or name of a product). Class TimeSlice is the domain
class for entities representing temporal parts (i.e., ‘time slices’) and class
TimeInterval is the domain class of time intervals. A time interval holds
the temporal information of a time slice. Property tsTimeSliceOf connects
an instance of class TimeSlice with an entity, and property tsTimeInterval
connects an instance of class TimeSlice with an instance of class TimeIn-
terval. Properties having a time dimension are called Fluent properties
and connect instances of class TimeSlice.

2.3 OWL-Time Ontology

OWL-Time [7] is an ontology of temporal concepts. As all the Web services
have temporal information, OWL-Time is a complete tool for describing the
temporal content of Web pages and the temporal properties of Web services.
It provides a vocabulary for expressing facts about topological relations among
instants and intervals, together with information about durations, and about
date-time information. A simple example is: “Suppose someone has a medical
examination scheduled for 6:00pm EST on November 5, 2006. You would like
to meet him at 2:00pm PST on the same day for an hour. Will there be an
overlap?” In this use case we can specify the facts about the examination and
the meeting using our ontology in OWL that will allow a temporal reasoner
to determine whether there is a conflict. Figure 2.3 illustrates a diagram of
OWL-Time ontology.

CHAPTER 2. BACKGROUND AND RELATED WORK 10

Figure 2.2: Dynamic Enterprise Ontology

Figure 2.3: An OWL-Time diagram

CHAPTER 2. BACKGROUND AND RELATED WORK 11

2.4 Protégé editor

Protégé [4] is a free, open-source platform that provides tools to construct do-
main models and knowledge-based applications with ontologies and it supports
the creation, visualization, and manipulation of ontologies in various represen-
tation formats. Protégé can be extended by way of a plug-in architecture and a
Java-based Application Programming Interface (API) for building knowledge-
based tools and applications.

The Protégé platform supports two main ways of modeling ontologies: the
Protégé-Frames editor and the Protégé-OWL editor. The Protégé-OWL editor
enables users to build ontologies for the Semantic Web, in particular in the
W3C’s Web Ontology Language (OWL). “An OWL ontology may include de-
scriptions of classes, properties and their instances. Given such an ontology, the
OWL formal semantics specifies how to derive its logical consequences, i.e. facts
not literally present in the ontology, but entailed by the semantics. These en-
tailments may be based on a single document or multiple distributed documents
that have been combined using defined OWL mechanisms” [3].

2.5 OWL API

There is a wide range of OWL tools available that support the creation and
editing of OWL ontologies, reasoning over ontologies, and using ontologies in
applications. All of these tools require some kind of underlying API that allow
ontologies to be loaded, manipulated and queried. OWL API [2] has been de-
signed to meet the needs of people developing OWL based applications, OWL
editors, such as Protégé 4 and OWL reasoners. It is a high level API that is
closely aligned with the OWL 2 specification and supports ontology manage-
ment, ontology change, ontology parsing and rendering, data structure storage
and reasoner interfaces.

Chapter 3

4D-Fluents Tab

4D-Fluents Tab is a Protégé Tab Plug-In [6]. It supports the creation and
editing of temporal ontologies in OWL 2.0 compatible format, so that with the
addition of SWRL rules [14, 15], reasoning can be supported using the built-in
Pellet reasoner [9]. Static object properties, data properties and individuals can
be converted to temporal easily, without being familiar with the peculiarities of
the 4D-fluents model used to represent temporal entities in the ontology. So,
anyone who knows how to use Protégé editor and OWL can load a temporal
ontology, convert an existing static ontology to dynamic, create a new or edit
an existing one. The 4D-Fluents Plug-In will hide all the details of the model
that may be complex and confusing to user not familiar with temporal ontology
representation models.

3.1 The Difficulty of Handling Temporal On-
tologies in Protégé

Protégé editor is particularly well suited for crafting (creating, editing) static
ontologies by declaring classes and their instances and properties between them.
But for the creation of a dynamic ontology, it seems to be inefficient.

As we explained in section 2.2, for the conversion of a static concept to
temporal we have to insert temporal classes, object and data properties, create
time interval instances, create time slice instances and connect them to the
appropriate interval. The ontology entities increase dramatically, as well as the
complexity of the relations between them. These factors are getting worse if
we want to include qualitative relations among time intervals, i.e. procedure A
occurs before procedure B. This, also means that the user must be familiar with
representation of time in ontologies and especially with the 4D-fluents model.

The 4D-Fluents Plug-In hides the peculiarities of the mechanism adopted
and automatically inserts all the extra information needed. The details of this
mechanism are presented and discussed in the following sections, along with use
descriptions, user interface and its functionality.

12

CHAPTER 3. 4D-FLUENTS TAB 13

3.2 Use Cases

Because the 4D-Fluents Tab is a Plug-In which deals with temporal information,
we need a tool for describing temporal concepts and relations between them.
This information can be found in OWL-TIME. More specifically, OWL-TIME
provided definitions for intervals, temporal relations, duration, time zones, date
and time. So, when the user selects the 4D-Fluents Tab from the Protégé tabs,
we check if the loaded ontology is already temporal or not. If the ontology is
static, we insert the OWL-Time ontology so that we can use its features. If the
loaded ontology is temporal, we do nothing. Next, we are going to discuss some
use case tables.

Table 3.1 is the description of use case “Convert an object property to
temporal”. In this case, the user selects a static property from the “Object
Property Hierarchy” and then the button “Convert” from the object property
panel. In 4D-fluents model, when a property is temporal, all the individuals
that are connected with it, must be temporal too. In this case, a pop-up win-
dow appears, in order to inform the user that the individuals connected with
the last selected object property, will become temporal. If the user wants to
continue, then the object property will be converted to temporal, the same as
its associated individuals. If the user cancels the conversion, the object property
and the individuals remain static. If the selected object property is a property
of OWL-Time ontology that property will remain unchanged.

The use case “Convert a data property to temporal” is described in table 3.2.
The user selects a data property from the “Data Property Hierarchy” and the
button “Convert” from the data property panel. As we explained at the pre-
vious case, when a data property is temporal, all the relevant triplets must be
converted. A similar pop-up window appears and the user may select to proceed
to the conversion or not. Again, if the selected data property is a property of
OWL-Time ontology that property will remain unchanged.

Table 3.3 describes the use case “Create an individual”. According to 4D-
fluents model, time is not represented in classes or instances, but in properties.
In fact, temporal individualsmust be connected with a temporal property. So
when the user wants to create an individual, the whole triplet has to be cre-
ated, namely the domain individual, the property and the range individual. To
return in this case, user selects a class and the “Create individual” button from
“Individuals” panel. In the “Individuals” dialog appeared, he inserts a name
for the new individual, selects a temporal object property and an individual
as range. Notice that, only the temporal object properties are displayed along
with individuals associated with it individuals. In the following, an interval can
be defined in three possible ways:

∙ The user selects the “Specific dates” button and selects the date of the
start point and the date of the end point of the interval.

∙ The user selects the “Non specific dates” button and selects the date of
the start point and the date of the end point, but not both. One of the
start or end point are left undefined.

1. The user selects the “Qualitative Relations” check box and a relation,
such as intervalAfter, intervalContains etc and one interval from the
“Intervals” list.

CHAPTER 3. 4D-FLUENTS TAB 14

Use Case 1 Convert an object property to temporal
Goal In Context A user wants to convert a static object property

to temporal.
Skope & Level System, User Goal
Preconditions The Temporal Tab is selected.

Success End Condition The object property is temporal and the individ-
uals that are connected with this object property.

Failed End Condition The object property is static.No data have been
modified.

Primary Actors User
Trigger User selects an object property and the “Con-

vert” button from the “Object Property” panel.
Description Step Action

1 The System displays the “Confirm Indi-
viduals Triplets” Dialog.

2 User selects the “Yes” button.
3 The System converts the selected object

property to temporal.
4 The System converts the individual tr-

riplets to temporal.
5 The System displays the “Object Prop-

erty” panel.
Extension Step Branching Action

1 User selects the “No” button.
1.1 The object property remains static.
1.2 The System displays the “Object
Property” panel.

2 User selects an object property of the on-
tology time.owl.
2.1 The object property remains static.
2.2 A message at the “Info” text area in-
forms the user that this object property
cannot be converted to temporal.
2.3 The System displays the “Object
Property” panel.

Sub-Variations Step Variation

Table 3.1: Use Case 1

CHAPTER 3. 4D-FLUENTS TAB 15

Use Case 2 Convert an data property to temporal
Goal In Context The user wants to convert a static data property

to temporal.
Skope & Level System, User Goal
Preconditions The Temporal Tab is selected.

Success End Condition The data property is temporal and the individu-
als that are connected with this data property.

Failed End Condition The data property is static.No data have been
modified.

Primary Actors User
Trigger The user selects an data property and the Con-

vert to Temporal button from the “Data Prop-
erty” panel.

Description Step Action
1 The System displays the “Confirm Indi-

viduals Triplets” Dialog.
2 The user selects the “Yes” button.
3 The System converts the selected object

property to temporal.
4 The System converts the individual tr-

riplets to temporal.
5 The System displays the “Object Prop-

erty” panel.
Extension Step Branching Action

1 The user selects the “No” button.
1.1 The object property remains static.
1.2 The System displays the “Object
Property” panel.

2 The user selects an object property of the
ontology time.owl.
2.1 The object property remains static.
2.2 A message at the “Info” text area in-
forms the user that this object property
cannot be converted to temporal.
2.3 The System displays the “Object
Property” panel.

Sub-Variations Step Variation

Table 3.2: Use Case 2

CHAPTER 3. 4D-FLUENTS TAB 16

2. The user does not select the “Qualitative Relations”.

The user may add an interval property using the “Intervals of the selected
triplet” list with the “Add Interval” button. Similarly, an interval can be deleted
by selecting “Delete”. Only intervals confirmed with “Save” will be stored into
the ontology. By selecting “Cancel” the changes will not be saved.

Table 3.4 describes the use case “Create an individual”. The user selects a
class and the “Create individual” button from “Individuals” panel. In the “In-
dividuals” dialog, he defines the name of the new individual, selects a temporal
data property and inserts a proper data value. Only temporal data proper-
ties are displayed. The start and end points of a time interval will be defined
similarly to the previous case.

Table 3.5 describes the use case “Edit an individual”. Temporal individuals
can be edited only in our tab. By selecting a static one, nothing will happen.
By selecting an individual and the “Edit Individual” button from “Individuals”
panel. In the dialog appeared, the name of the individual is displayed and it is
uneditable. The user can select a temporal object property and an individual
as its range.

Table 3.6 describes the use case “Edit an individual”. Temporal individu-
als can be edited only (if a static one is selected, nothing will happen). The
user selects an individual and the “Edit Individual” button from “Individuals”
panel. In the dialog appeared, the name of the individual is displayed and is is
uneditable. The user can select a temporal data property and insert a proper
data value. The time interval can be defined similarly.

Table 3.7 describes the use case “Edit an object property assertion”. In fact
this option lets the user edit only the interval of a triplet. So, the user selects an
object property assertion from the “Property Assertion”, at the “Individuals”
panel and then the button “Edit” from the same area. When the dialog ap-
pears, the name of the individual, the temporal object property and the range
individual displayed are uneditable. Also, at the ‘The intervals of the selected
triplet” list is displayed the interval of the triplet. The user’s choices are reduced
to interval’s options only. As described before, when the user selects the “Save”
button:

∙ In the “Intervals of the selected triplet” list there are two intervals (or
more), the new and the old one. A new object property assertion will be
created, and the old one will be retained.

∙ In the “Intervals of the selected triplet” list there is a new interval (the
user has deleted the old interval), a new object property assertion will be
created and the selected one will be deleted.

∙ In the “Intervals of the selected triplet” list there is no interval, the selected
object property will be deleted.

Finally, the use case “Edit a data property assertion” is described at ta-
ble 3.7. In this case the user’s choices are similar to the previous ones. The
differences are that the user selects a data property assertion from the “Property
Assertion”, at the “Individuals” panel and when the dialog appears, the name of
the individual, the temporal data property and the data value are displayed and
uneditable. Also, at the ‘The intervals of the selected triplet” list the interval
of the triplet is displayed as explained before.

CHAPTER 3. 4D-FLUENTS TAB 17

Use Case 3 Create an individual
Goal In Context The user wants to create a temporal individual.

Skope & Level System, User Goal
Preconditions The Temporal Tab is selected and some property

(object or data) is temporal.
Success End Condition A new temporal individual will be created.

Failed End Condition No individual will be created. No data have been
modified.

Primary Actors User
Trigger The user selects a class and the Create Individual

button from the Individuals panel.
Description Step Action

1 The System displays the “Individuals” Di-
alog.

2 The user enters a name at the “Individual
Name text area.

3 The user selects the type of the property
Object Property from the Property radio
button.

4 The user selects a property from the Prop-
erties combo box.

5 The user selects an individual from the
Range combo box.

6 The user selects the Specific dates radio
button.

7 The user selects the date of the start and
end point of the time interval.

8 The user selects the Add Interval button.
9 The System displays the time interval at

the Intervals text area.
10 The user selects the Save button.

Extension Step Branching Action
1 The user selects the “Cancel” button.

1.1 No individual is created.
1.2 The System displays the “Individuals”
panel.

2 User selects the “Non Specific dates” radio
button.
2.1 The user selects the date of the start
OR end point of the time interval.
2.2 The user selects the “Add Interval”
button.
2.3 The System displays the time interval
at the “Intervals” text area.
2.4 The user selects the “Save” button.

2 The user selects the “Qualitative rela-
tions” check box.
3.1 The user selects a property from the
“Qualitative” combo box.
3.2 The user selects a time interval from
the All Intervals list.
3.3 The user selects the “Add Interval”
button.

Sub-Variations Step Variation

Table 3.3: Use Case 3

CHAPTER 3. 4D-FLUENTS TAB 18

Use Case 4 Create an individual
Goal In Context The user wants to create a temporal individual.

Skope & Level System, User Goal
Preconditions The Temporal Tab is selected and some property

(object or data) is temporal.
Success End Condition A new temporal individual will be created.

Failed End Condition No individual will be created. No data have been
modified.

Primary Actors User
Trigger The user selects a class and the “Create Individ-

ual” button from the “Individuals” panel.
Description Step Action

1 The System displays the “Individuals” Di-
alog.

2 The user enters a name at the “Individual
Name” text area.

3 The user selects the type of the property
“Data Property” from the ‘Property” ra-
dio button.

4 The user selects a property from the
“Properties” combo box.

5 The user enters a value at the “Data
Value” text area.

6 The user selects the “Specific dates” radio
button.

7 The user selects the date of the start and
end point of the time interval.

8 The user selects the “Add Interval” but-
ton.

9 The System displays the time interval at
the “Intervals” text area.

10 The user selects the “Save” button.
Extension Step Branching Action

1 The user selects the “Cancel” button.
1.1 No individual is created.
1.2 The System displays the “Individuals”
panel.

2 The user selects the “Non Specific dates”
radio button.
2.1 The user selects the date of the start
OR end point of the time interval.
2.2 The user selects the “Add Interval”
button.
2.3 The System displays the time interval
at the “Intervals” text area.
2.4 The user selects the “Save” button.

2 The user selects the “Qualitative rela-
tions” check box.
3.1 The user selects a property from the
“Qualitative” combo box.
3.2 The user selects a time interval from
the “All Intervals” list.
3.3 The user selects the “Add Interval”
button.

Sub-Variations Step Variation

Table 3.4: Use Case 4

CHAPTER 3. 4D-FLUENTS TAB 19

Use Case 5 Edit an individual
Goal In Context The user wants to edit a temporal individual.

Skope & Level System, User Goal
Preconditions The Temporal Tab is selected and the selected

individual is temporal.
Success End Condition The individual will be edited.

Failed End Condition The individual will not be edited.
Primary Actors User

Trigger The user selects an individual and the “Create
Individual” button from the “Individuals” panel.

Description Step Action
1 The System displays the “Individuals” Di-

alog.
2 The system displays the name of the

selected individual at the “Individual
Name” text area.

3 The user selects the type of the property
“Object Property” from the “Property”
radio button.

4 The user selects a property from the
“Properties” combo box.

5 The user selects an individual from the
“Range” combo box.

6 The user selects the “Specific dates” radio
button.

7 The user selects the date of the start and
end point of the time interval.

8 The user selects the “Add Interval” but-
ton.

9 The System displays the time interval at
the “Intervals” text area.

10 The user selects the “Save” button.
Extension Step Branching Action

1 The user selects the “Cancel” button.
1.1 No individual is created.
1.2 The System displays the “Individuals”
panel.

2 The user selects the “Non Specific dates”
radio button.
2.1 The user selects the date of the start
OR end point of the time interval.
2.2 The user selects the “Add Interval”
button.
2.3 The System displays the time interval
at the “Intervals” text area.
2.4 The user selects the “Save” button.

3 The user selects the “Qualitative rela-
tions” check box.
3.1 The user selects a property from the
“Qualitative” combo box.
3.2 The user selects a time interval from
the All Intervals list.
3.3 The user selects the “Add Interval”
button.

Sub-Variations Step Variation

Table 3.5: Use Case 5

CHAPTER 3. 4D-FLUENTS TAB 20

Use Case 6 Edit an individual
Goal In Context The user wants to edit a temporal individual.

Skope & Level System, User Goal
Preconditions The Temporal Tab is selected and the selected

individual is temporal.
Success End Condition The individual will be edited.

Failed End Condition The individual will not be edited.
Primary Actors User

Trigger The user selects an individual and the “Create
Individual” button from the “Individuals” panel.

Description Step Action
1 The System displays the “Individuals” Di-

alog.
2 The system displays the name of the

selected individual at the “Individual
Name” text area.

3 The user selects the type of the property
“Data Property” from the “Property” ra-
dio button.

4 The user selects a property from the
“Properties” combo box.

5 The user enters a value at the “Data
Value” text area.

6 The user selects the “Specific dates” radio
button.

7 The user selects the date of the start and
end point of the time interval.

8 The user selects the “Add Interval” but-
ton.

9 The System displays the time interval at
the “Intervals” text area.

10 The user selects the “Save” button.
Extension Step Branching Action

1 The user selects the “Cancel” button.
1.1 No individual is created.
1.2 The System displays the “Individuals”
panel.

2 User selects the “Non Specific dates” radio
button.
2.1 The user selects the date of the start
OR end point of the time interval.
2.2 The user selects the “Add Interval”
button.
2.3 The System displays the time interval
at the “Intervals” text area.
2.4 The user selects the “Save” button.

3 The user selects the “Qualitative rela-
tions” check box.
3.1 The user selects a property from the
“Qualitative” combo box.
3.2 The user selects a time interval from
the All Intervals list.
3.3 The user selects the “Add Interval”
button.

Sub-Variations Step Variation

Table 3.6: Use Case 6

CHAPTER 3. 4D-FLUENTS TAB 21

Use Case 7 Edit an object property assertion
Goal In Context The user wants to edit the time interval of an

individual.
Skope & Level System, User Goal
Preconditions The Temporal Tab is selected and the selected

individual is temporal.
Success End Condition The time interval of the individual will be edited.

Failed End Condition The time interval of the individual will not be
edited.

Primary Actors User
Trigger The user selects an object property assertion of

the selected individual and the “Edit” button
from the “Individuals” panel.

Description Step Action
1 The System displays the “Individuals” Di-

alog.
2 The system displays the name of the

selected individual at the “Individual
Name” text area.

3 The System displays the type of the prop-
erty (object) from the “Property” radio
button.

4 The System displays the property from
the “Properties” combo box.

5 The System displays the individual from
the “Range” combo box.

6 The user selects the “Specific dates” radio
button.

7 The user selects the date of the start and
end point of the time interval.

8 The user selects the “Add Interval” but-
ton.

9 The System displays the time interval at
the “Intervals” text area.

10 The user selects the “Save” button.
Extension Step Branching Action

1 The user selects the “Cancel” button.
1.1 No changes at the selected object
property assertion are made.
1.2 The System displays the “Individuals”
panel.

2 The user selects the “Non Specific dates”
radio button.
2.1 The user selects the date of the start
OR end point of the time interval.
2.2 The user selects the “Add Interval”
button.
2.3 The System displays the time interval
at the “Intervals” text area.
2.4 The user selects the “Save” button.

3 User selects the “Qualitative relations”
check box.
3.1 The user selects a property from the
“Qualitative” combo box.
3.2 The user selects a time interval from
the All Intervals list.
3.3 The user selects the “Add Interval”
button.

Sub-Variations Step Variation

Table 3.7: Use Case 7

CHAPTER 3. 4D-FLUENTS TAB 22

Use Case 8 Edit an object property assertion
Goal In Context The user wants to edit the time interval of an

individual.
Skope & Level System, User Goal
Preconditions The Temporal Tab is selected and the selected

individual is temporal.
Success End Condition The time interval of the individual will be edited.

Failed End Condition The time interval of the individual will not be
edited.

Primary Actors User
Trigger The user selects an data property assertion of the

selected individual and the “Edit” button from
the “Individuals” panel.

Description Step Action
1 The System displays the “Individuals” Di-

alog.
2 The system displays the name of the

selected individual at the “Individual
Name” text area.

3 The System displays the type of the prop-
erty (data) from the “Property” radio but-
ton.

4 The System displays the property from
the “Properties” combo box.

5 The System displays the value at the
“Data Value” text area.

6 The user selects the “Specific dates” radio
button.

7 The user selects the date of the start and
end point of the time interval.

8 The user selects the “Add Interval” but-
ton.

9 The System displays the time interval at
the “Intervals” text area.

10 The user selects the “Save” button.
Extension Step Branching Action

1 The user selects the “Cancel” button.
1.1 No changes at the selected object
property assertion are made.
1.2 The System displays the “Individuals”
panel.

2 User selects the “Non Specific dates” radio
button.
2.1 The user selects the date of the start
OR end point of the time interval.
2.2 The user selects the “Add Interval”
button.
2.3 The System displays the time interval
at the “Intervals” text area.
2.4 The user selects the “Save” button.

3 The user selects the “Qualitative rela-
tions” check box.
3.1 The user selects a property from the
“Qualitative” combo box.
3.2 The user selects a time interval from
the All Intervals list.
3.3 The user selects the “Add Interval”
button.

Sub-Variations Step Variation

Table 3.8: Use Case 8

CHAPTER 3. 4D-FLUENTS TAB 23

3.3 User Interface design

The interface layout was inspired from the structure of standard Protégé tabs.
Our attempt has been to retain the appearance and functionality of a standard
Protégé tab, so users of Protégé wont experience difficulties in using it. We
group different information in three different panels. The characteristics and
the description of object properties are banded together in one panel as we can
see in Figure 3.1. The characteristics and the descriptions of data properties are
put together in one panel too (figure 3.2) and similarly the characteristics and
the property assertions of individuals (figure 3.3). These panels are divided in
four areas. In general, buttons for the conversion appear at the up and left side
or a panel and text messages are displayed at the up and right side of a panel.

At the left of the screen, we have four different views: Class Hierarchy, Object
Property Hierarchy, Data Property Hierarchy and Individuals by type. For each
one a different panel appears. Figure 3.1 illustrates the view of our tab, when
the selected entity is an object property. At the right is the main panel, which
looks like with the default tab “Object Properties” of Protégé. According to
this default tab, we designed the “Characteristics” panel and the “Description”
panel. In the first one, there are check boxes to indicate if an object property is
Functional, Inverse Functional, Transitive, Symmetric, Asymmetric, Reflexive
and Irreflexive. In the “Description” panel, there are jLists to show the Domain,
Range, Equivalent Properties, Super Properties, Inverse Properties and Disjoint
Properties, with the corresponding labels. Above these two panels, we see the
“Convert to Temporal” button and the text area “Info”. Some info-messages
and some instructions to help the user are displayed in this area.

Figure 3.1: Object Property Panel

At Figure 3.2 we see how our tab looks like, when the selected entity is a data
property. We designed it according to the default Protégé tab “Data Proper-
ties”. Thus, these is the “Characteristics” panel, which includes the Functional
check box and the “Description” panel with the jLists Domain, Range, Equiv-
alent Properties, Super Properties and Disjoint Properties. Also, above these
two panels, we see the “Convert to Temporal” button and the text area “Info”.

CHAPTER 3. 4D-FLUENTS TAB 24

Figure 3.2: Data Property Panel

Figure 3.3 shows the view of our tab, when the selected entity is an individual
or a class. According to the default “Individuals” tab of Protégé, we designed
the “Description” panel and the “Property Assertions” panel. In the first one,
there are check boxes to demostrate the individual Type, the Same Individuals
and the Different Individuals. “Property assertions” panel has one jList for
the Object Property Assertions and one for the Data Property Assertions, with
the corresponding labels. These jLists respectively to their name, display the
property assertions of the selected individual. Above these two panels, there
are the “Create/Edit Individual” button and the text area “Info”.

Note that in each panel, there are colorful details, such as colored labels and
borders, depending on the type of the selected entity. If the selected entity is an
object property we use the blue color, if it is a data property we use green and
if it is an individual we use a hue of purple. The coloring rules that we use, are
according to Protégé, so the user can easily understand and identify the type of
entity.

CHAPTER 3. 4D-FLUENTS TAB 25

Figure 3.3: Individual Panel

3.4 Functionality

Below, we discuss the functionality that our Plug-In supports. Figure 3.4 is
a screen-shot of Object Property View. This view is related to Use Case 1:
Convert an object property to temporal. We see the Object Property Hierarchy,
where the user can select an object property and the “Convert” button to make
it temporal. When the user selects this button a pop-up window informs him
for the relevant individuals triplets that are going to change. The window is
shown in Figure 3.5.

Figure 3.4: 4D-Fluents Tab: Object Properties View

Figure 3.6 is a screen-shot of Data Property View. This view is related to Use
Case 2: Convert a data property to temporal. We also, see the Data Property

CHAPTER 3. 4D-FLUENTS TAB 26

Figure 3.5: 4D-Fluents Tab: Confirm the conversion of an object property to
temporal

Hierarchy, where the user can select a data property and the “Convert” button
to make it temporal. In Figure 3.7 shows the pop-up window that informs the
user for the individuals triplets that are going to change, when the “Convert”
button is selected.

Figure 3.6: 4D-Fluents Tab: Data Properties View

Figure 3.8 is a screen-shot of Individual View. This view is related to Use
Case 3,4: Create an individual, Use Case 5,6: Edit an individual, Use Case 7:
Edit an object property assertion, Use Case 8: Edit a data property assertion.
We see the Individuals by type view, where the user can select an individual or
a class and the “Create/Edit” button to create or edit an individual. When the
user selects this button the dialog “Create/Edit an Individual” appears. This
dialog is shown in Figure 3.10 and is used in same use cases as the Individual
view. Also, no individual can be created or edited, if there is no temporal
property - object or data. This is indicated by the dialog showed in Figure 3.9.

In the dialog of Figure 3.10, we see that in the upper half of the screen, the
user can insert the name of the individual, select the property and the range.

CHAPTER 3. 4D-FLUENTS TAB 27

Figure 3.7: 4D-Fluents Tab: Confirm the conversion of a data property to
temporal

Figure 3.8: 4D-Fluents Tab: Individuals View

Figure 3.9: 4D-Fluents Tab: Dialog to indicate that there is no temporal prop-
erty

CHAPTER 3. 4D-FLUENTS TAB 28

Below this area, the interval with can be declared. The user can select the dates
of the start and end point, the qualitative relations between the intervals and
delete an interval. He can save the changes or abort the procedure.

An important extension that our team succeeded on that 4D-fluents model,
is the support of qualitative relations. The main idea of these relations is that
when we want to fit a fact in time, we may not know the exact dates of its
endurance, but know that it happened before or after something else. For
example, we know that Liza lived in Denmark from 2005 to 2009 and that her
brother, Tom, visited her once as long as she was there, but we do not know
exactly when. As we do not have the specific dates of his visit we could loose
this information because we would n’t have any way to represent it. Below
we discuss the mechanism of qualitative relations and help us declare that the
interval Liza lived there “contains” the interval of Tom’s visit. More details are
presented in section 3.6.

Figure 3.10: 4D-Fluents Tab: Individuals Dialog

3.5 Activity Diagrams

In this section we show the activity diagrams of the use cases in section 3.2. Each
activity correlates with the use case with the same number. They illustrate the
steps that a user has to follow for different procedures.

CHAPTER 3. 4D-FLUENTS TAB 29

Figure 3.11: Activity Diagram 1

Figure 3.12: Activity Diagram 2

CHAPTER 3. 4D-FLUENTS TAB 30

Figure 3.13: Activity Diagram 3

Figure 3.14: Activity Diagram 4

CHAPTER 3. 4D-FLUENTS TAB 31

Figure 3.15: Activity Diagram 5

Figure 3.16: Activity Diagram 6

CHAPTER 3. 4D-FLUENTS TAB 32

Figure 3.17: Activity Diagram 7

Figure 3.18: Activity Diagram 8

CHAPTER 3. 4D-FLUENTS TAB 33

Figure 3.19: A static object property assertion

3.6 Ontology Changes According to 4D-fluents
model

Whenever an entity is converted to temporal lots of changes occur in the un-
derlying ontology.

When the user selects our tab from Protégé, immediately the loaded ontol-
ogy is merged with OWL Time (time.owl). This is a needful step, as time.owl
contains all the appropriate information to represent time. Using OWL API
functions we join these two ontologies and we save them as a new one. We
make the new ontology, active in Protégé and we delete the old one and the
time.owl, so they do not confuse the user. Among others, the classes TimeSlice,
ProperInterval, the object properties tsTimeSliceOf, tsTimeInterval, hasBegin-
ning, hasEnd and the data property xsdDateTime are inserted, which are nec-
essary in 4D-fluents model. So now, we are ready to handle the conversion of
an entity to temporal.

That’s why our Plug-In won’t let the user change anything at the individuals,
before he makes at least one property temporal. Accordingly to the 4D-fluents
model, when the user selects to convert a property, in fact what is changing
is the domain and the range of the property. The new domain and range are
time slices of the existing ones. For example, we want to convert the object
property hasEmployee, with domain the class Company and range the class
Employee. After the conversion the property will remain, but the domain will
be timeSliceOf onlyCompany and the range timeSliceOf onlyEmployee. The
same stands for the data properties, except that the range does not change.

The conversion of an individual is more complicated, particularly because
of the interval that must be represented here. Figure 3.19 illustrates an object
property assertion when there is no time sequence. Two individuals Company1
and Employee1 are connected with the object property hasEmployee. If the user
decides to add time information in this triplet, the following changes are made:
first, two new instances of TimeSlice class are created, Company1TimeSlice1
and Empolyee1TimeSlice1, and are connected with the tsTimeSliceOf object
property to the individuals Company1 and Employee1 respectively. Then the
hasEmployee property is introduced between them.

The representation of the time interval, that the user wants to add to this
triplet, is implemented in steps: An instance of ProperInterval class is created
and is connected with the tsTimeInterval object property, with the two time
slices. This individual, ProperInterval1, “holds” the time frame. It is connected
with two instances of Instant class, the StartInstant and EndInstant, with the
hasBeginning and the hasEnd object properties correspondingly. If the start or
end point of the interval is undefined, the StartInstant or the EndInstant are
named StartUnknown and EndUnknown, and nothing else is added. But, if the
user wants to add specific dates, the StartInstant and EndInstant are connected
with the xsdDateTime data property to a DateTime data type. The converted

CHAPTER 3. 4D-FLUENTS TAB 34

Figure 3.20: A temporal object property assertion

Figure 3.21: A static data property assertion

object property, as we described it above, shows Figure 3.20. In this example
we suppose that the dates are specific.

If the user wants to declare a qualitative relation between two intervals, he
can choose one from the following object properties: intervalAfter, interval-
Contains, intervalDuring, intervalEquals, intervalFinishedBy, intervalFinishes,
intervalMeets, intervalMetBy, intervalOverlappedBy, intervalOverlaps, interval-
StartedBy, intervalStarts. The interval that he is creating will be the domain of
the qualitative property, and as range he selects one from the list with all the
intervals of the ontology.

When the user wants to convert a data property assertion we follow the exact
same steps. The only thing that changes from the object property assertion
case, is that the range remains the same. The data type, whatever it is, is not
connected with the instance of ProperInterval class that is created. Figure 3.21
and figure 3.22 show the conversion of a data property assertion.

CHAPTER 3. 4D-FLUENTS TAB 35

Figure 3.22: A temporal data property assertion

3.7 Code Structure

We organized our source code in several packages, in order to be more flexible
and some parts of it reusable. Especially the part which implements the inter-
face of the Plug-In. As we designed the tab, to display three different panels
depending on the selected entity, that are very similar to the default ones, this
code can be used easily in other tabs for multiple purposes.

objectPropertyPanels, dataPropertyPanels, individualsPanels : We cre-
ated a package for every panel. Every package has four classes and each
one implements a part of the panel. There is one class to create the But-
ton and to handle its events, one to create the Text area and display the
appropriate messages, one to create the Description panel with its lists
and labels and one to create the Characteristics with its check boxes.
These classes are similar for all the packages, but they have little differ-
ences to cover all the functionalities we need for every entity. For example,
in the individualPanels package instead of the description area, there is
the the Property Assertions panel, which shows the object property and
data property assertions for every individual and has two buttons for their
editing, as we saw in Figure 3.8.

Additionally, in the individualsPanels and objectPropertyPanels packages
there two more classes, AskIndDialog and CreateIndDialog respectively.
These classes implement the dialogs we see in Figure 3.5 and 3.10. Mainly
the second one is very significant as it handles all the temporal individuals.
In this class, we manage the creation and the editing of the individuals,
their property assertions, and their intervals and all the qualitative rela-
tions among them.

CHAPTER 3. 4D-FLUENTS TAB 36

tab : All these panels are used in the tab package. There are three classes
ObjectPropertyMainPanel, DataPropertyMainPanel and IndividualsMain-
Panel, that combine them and illustrates the complete panel. In the same
package there is the TimeFactory class. This a very important class, as it
implements all the methods that are necessary for the conversion of prop-
erties and individuals, handles the intervals and their deletion, handles the
property assertions of the individuals and maintains the ontology correct
accordingly to 4D-fluents model. Some of these methods will be discussed
in the section 3.8.

In the tab package also exists the ViewComponent class which extends the
AbstractOWLViewComponent and inherits from Protégé all the necessary
features for the creation of the tab. In this class we take the current
ontology loaded in Protégé and we check if it is already temporal in order
to merge it with time.owl or not.

utils : Because of the complexity of the 4D-fluents model and OWL-API, it is
difficult to manage the temporal ontology. There are many times we need
an complex entity, a “time slice” individual for example, and we follow
several properties and axioms of the ontology to find it. It would not be
efficient to repeat this procedure every time we needed it. Hence the need
for the utils package. This package contains twelve classes and each one
implements special structures that keep the information we need. Without
them the management of the temporal ontology and its editing would be
a difficult matter to deal with.

Figure 3.23 illustrates the class diagram of our project.

CHAPTER 3. 4D-FLUENTS TAB 37

Figure 3.23: Class Diagram

CHAPTER 3. 4D-FLUENTS TAB 38

3.8 Plug-In Documentation

In this section, we discuss some important methods that maintain ontology con-
sistency accordingly to 4D-fluents model. Such methods are created in Time-
Factory class of tab package.

At first, there are the methods that manage the properties:

∙ staticOblectPropToFluent(OWLObjectProperty) and staticDataProp-

ToFluent(OWLDataProperty), with arguments object property and data
property respectively. They find the domain and the range of the property,
change them and delete the old ones.

∙ allTimeObjectProp() and allTimeDataProp(), which iterates all the
properties of the ontology and returns only those which are already tem-
poral.

∙ isObPrTemporal(OWLObjectProperty) and isDaPrTemporal(OWLData-

Property), with arguments object property and data property respec-
tively. They check if the input is temporal or static.

∙ individualsOfSelectedObPr(OWLObjectProperty) and individualsOf-

SelectedDaPr(OWLDataProperty), with arguments object property and
data property respectively. They find all the individuals that are related
with the input and returns a vector filled with AskIndvidualObPrObject
or AskIndvidualDaPrObject objects.

Likewise, there are functions to manage the individuals:

∙ indivDomainCreation(String, OWLClass) and indivRangeCreation-

(OWLNamedIndividual) with arguments a string and a class. It creates
an instance of the input class and names it with the input string.

∙ properIntervalCreation() creates an instance of ProperInterval class.

∙ specificDates(String,String,OWLNamedIndividual) with arguments
two strings and an individual that is an instance of ProperInterval class.
The strings are the start and end date that the user has selected for the
interval. This function creates two instances of Instant class, one for the
start point “StartInstant” and one for the end “EndInstant”. It converts
the input strings into DateTime data type and connects it with the in-
stances. As well as the input “proper interval” individual with the data
properties hasBeginning and hasEnd with the “StartInstant” and “EndIn-
stant”. The functions unknownDates(), unknownStart(), unknownEnd()
are working in a similar way and we need the first when we do not know
the interval ends, the second when we do know only the end point and the
third when we only know the start point.

∙ finalUnionSpesificDates(OWLObjectProperty, OWLNamedIndividual,

OWLNamedIndividual, OWLNamedIndividual, String, String) with ar-
guments an object property, an instance of the domain class, an instance
of the range class, an instance of the ProperInterval class and two strings.
The two strings and the “proper interval” individual are used when the
specificDates() is called. The object property connects the domain

CHAPTER 3. 4D-FLUENTS TAB 39

individual and the range individual. These two are connected with the
proper interval. So, a triplet is created that represents also the time
interval in which it exists. The functions finalUnionUnknownDates(),
finalUnionUnknownStart(), finalUnionUnknownEnd() are working in a
similar way and are needed when we do not know the exact interval ends.

∙ finalUnionSpesificDatesDataPr(OWLDataProperty,OWLNamedIndivi-

dual, String, OWLNamedIndividual, String, String) with arguments
a data property, an instance of the domain class, a string with the data
value, an instance of the ProperInterval class and two more strings. The
two strings and the “proper interval” individual are used when the speci-
ficDates() is called. The data property connects the domain individual
with its proper data value. The domain individual is connected with the
proper interval. So, a triplet is created that represents also the time inter-
val in which it exists. The functions finalUnionUnknownDatesDataPr(),
finalUnionUnknownStartDataPr(), finalUnionUnknownEndDataPr() are
working in a similar way and are needed when we do not know the exact
interval ends.

∙ setQualitativeRelation(OWLNamedIndividual, OWLObjectProperty,

OWLIndividual) with arguments two instances of ProperInterval class and
an object property. It connects the individuals with the property that de-
fines a qualitative relation between intervals.

There are also functions that handle the property assertions and the
intervals of the individuals.Some of them are:

∙ ObPrAssertion(OWLNamedIndividual) with arguments an individual, usu-
ally the selected one by the user. It is a significant function as it finds and
keeps all the individuals that take part in a 4D-fluents triplet. To explain
it really simply the steps that it follows are: starting from the input it
finds its time slice, the object property, the range time slice individual
and the range individual. From the domain time slice it finds the proper
interval individual. To handle the interval we use the functions we are
discussing later.

∙ DaPrAssertion(OWLNamedIndividual) with arguments an individual, usu-
ally the selected one by the user. The steps are similar to the previously
mentioned function: starting from the input it finds its time slice individ-
ual, the data property and the data value. From the domain time slice it
finds the proper interval individual.

∙ showIntervals() iterates all the intervals of all the individuals and re-
turns a vector filled with “AllIntervalsObject” objects.

∙ showIntervalsEnds() finds the ends of an interval following the connec-
tions with the Instants and then with the DateTime data values.

∙ intervalOrProperInterval(OWLNamedIndividual) with arguments an
instance of ProperInterval. This functions finds the interval ends of the
input, but checks also if the input is connected with a qualitative relation
with an other interval. If so, it finds the type of the qualitative relation, the
second interval and its ends and returns a “GeneralIntervalItem” object.

CHAPTER 3. 4D-FLUENTS TAB 40

In package utils there are some classes that help us keep and find the infor-
mation we need directly, when we need it. An example is “GeneralIntervalItem”
that we mentioned before. This class holds the proper interval individual and
its intervals ends. “IntervalItem” and “QualIntervalItem” extend “General-
IntervalItem” and inherit all the functions and the characteristics of the last
one. “IntervalItem” overrides the function toString() for the proper interval.
“QualIntervalItem” keeps the qualitative relation, the second proper interval
individual and its ends, and overrides the toString() for this triplet.

Finally, in packages objectPropertyPanels, dataPropertyPanels and individ-
ualsPanels there are functions to manage the layout and the features to be dis-
played, as we explained at previous sections. For example, setCharacteristics-
Panel() checks the characteristics of the property (functional, transitive, etc)
and enables the appropriate check box. setDescriptionPanel() function dis-
plays the domain, the range, etc of a property at the appropriate list. At this
point we have to mention, that these methods hide all the needless information
that concerns the temporal parts, the time slice individuals, proper interval in-
dividuals etc. He sees the ontology like it was a simple one. For example, in
Figure 3.20 the property domain is the individual Compnay1TimeSlice1, but
our tab shows as domain the individual Company1.

Chapter 4

Conclusion and future work

We introduce 4D-Fluents Tab Plug-In, a tool for crafting temporal ontologies in
Protégé. The temporal concepts are represented by means of the 4D-fluents [1]
mechanism implementing events occurring or evolving in time. As such, tem-
poral information cannot be handled directly by an ontology editor such as
Protégé. The 4D-Fluents Plug-In facilitates the creation and editing of tempo-
ral ontologies. Moreover, it does not require that the user be familiar with the
peculiarities of the temporal representation mechanism(the 4D-fluents approach
in our work) adopted, making it easy to use by ordinary users of the semantic
web.

Extending our mechanism to support temporal restrictions, that is a restric-
tion holding on dynamic properties, is an interesting issue for future work. In
this case, a restriction must progress over time in the same way the property
does. Then, consistency must be ascertained not only once, but at every in-
stance of time, i.e., for every timeSlice the property is associated with. The
property restrictions that change when a property is dynamic, for object prop-
erties are Functional, Inverse Functional and Transitive and for data properties
is Functional. The value constraints that differentiate are OWL:allValuesFrom,
OWL:someValuesFrom and OWL:hasValue and the cardinality constraints are
OWL:maxCardinality, OWL:minCardinality and OWL:ExactCardinality.

In addition, implementing reasoning mechanisms as a Plug-In to Protégé, to
perform restriction checking, conclusion extracting from temporal relations, i.e,
Allen algebra, and path consistency would offer additional useful functionality to
our work. Future work also includes extending our Plug-In to support other time
representation models, such as N-ary model which is a W3C recommendation.

41

Bibliography

[1] C. Welty, R. Fikes, and S. Makarios. “A Reusable Ontology for Fluents in
OWL”, Technical Report RC23755 (Wo510-142), IBM Research Division,
T. Watson Research Center, Yorktown Heights, NY, October 2005.

[2] Matthew Horridge and Sean Bechhofer. “The OWL API: A Java API for
Working with OWL 2 Ontologies”, The University of Manchester, UK.

[3] D. L. McGuinness and F. VanHarmelen. “OWL Web Ontol-
ogy Language Overview”, W3C Recommendation, February 2004.
http://www.w3.org/TR/owl-guide/

[4] http://protege.stanford.edu/

[5] http://www.w3.org

[6] http://protegewiki.stanford.edu/wiki/PluginAnatomy/

[7] http://www.w3.org/TR/owl-time/

[8] http://owlapi.sourceforge.net/documentation.html

[9] http://clarkparsia.com/pellet

[10] A. Artale, and E. Franconi. “A survey of temporal extensions of description
logics”, Annals of Mathematics and Artificial Intelligence, 30(1-4), 2001.

[11] C. Lutz,F. Wolter, and M. Zakharyaschev. “Temporal description logics:
A survey”, Proc. TIME08, IEEE Press, 2008.

[12] M. Klein and D. Fensel. “Ontology Versioning for the SemanticWeb”, In-
ternational Semantic Web Working Symposium (SWWS’01), pages 75-92,
California, USA, July-August 2001.

[13] Evdoxios Baratis, Euripides G.M. Petrakis, Sotiris Batsakis, Nikolaos
Maris and Nikolaos Papadakis. “TOQL: Temporal Ontology Querying Lan-
guage”, 11th International Symposium on Spatial and Temporal Databases
(SSTD 2009), July 8-10, 2009, Aalborg, Denmark.

[14] Sotiris Batsakis, Euripides G.M. Petrakis. “Representing Temporal Knowl-
edge in the Semantic Web: the Extended 4d-fluents Approach”, 2nd Inter-
national Workshop on Combinations of Intelligent Methods and Applica-
tions (CIMA’ 2010), October 27-29, 2010, Arras, France.

42

BIBLIOGRAPHY 43

[15] Sotiris Batsakis, Euripides G.M. Petrakis. “SOWL:Spatio-temporal Rep-
resentation, Reasoning and Querying over the Semantic Web”, 6th Inter-
national Conference on Semantic Systems (I-SEMANTICS’ 2010), Graz,
Austria, September 1-3, 2010.

[16] Franz Baader, Ian Horrocks and Ulrike Sattler. “Description Logics”, Chap-
ter 3, Elsevier, 2007.

[17] Michael Kifer, Georg Lausen and James Wu.“Logical Foundations of
Object-Oriented and Frame-Based Languages”. Journal of ACM, May
1995.

[18] Baratis Evdoxios. “TOQL: Querying temporal information in ontologies.”
Technical Report TR-TUC-ISL-02-2008.

[19] E. Baratis. “TOQL: Querying Temporal Information in Ontologies.” Mas-
ter’s thesis, Techn. Univ. of Crete (TUC), Dept. of Electronic and Comp.
Engineering, July. 2008.

[20] Ying Ding, Dieter Fensel, Michel Klein, Boris Omelayenko. “The seman-
tic Web: yet another hip?”, Elsevier, Data & Knowledge Engineering, 19
December 2001.

[21] A. Johannes Pretorius. “Ontologies - Introduction and Overview”. Adapted
from: PRETORIUS, A.J., Lexon Visualisation: Visualising Binary Fact
Types in Ontology Bases, Chapter 2, Unpublished MSc Thesis, Brussels,
Vrije Universiteit Brussel, 2004.

[22] Jennifer Golbeck, Amy Alford, James Hendler. “Organization and Struc-
ture of Information using Semantic Web Technologies”. Semantic Web and
Agents Project, Maryland Information and Network Dynamics Laboratory,
University of Maryland, College Park.

[23] Kalliopi Zervanou, Evdoxios Baratis. “TOWL Time-determined ontology
based information system for real time stock market analysis.” Intelligent
Systems Laboratory (InteLLigence), Dept. of Electronic and Computer En-
gineering, Technical University of Crete (TUC).

[24] Thomas C. Jepsen. “Just What Is an Ontology, Anyway?” IT Pro
September/October 2009, Published by the IEEE Computer Society, 1520-
9202/09/26.00 2009 IEEE.

[25] Claudio Gutierrez, Carlos Hurtado, and Alejandro Vaisman. “Temporal
RDF”. Department of Computer Science Universidad de Chile, Department
of Computer Science Universidad de Buenos Aires.

[26] Michael Uschold. “Where are the Semantics in the Semantic Web?”, On-
tologies in Agent Systems workshop, Autonomous Agents Conference, Mon-
treal, June 2001.

