
Fast, Parallel Stream Clustering using Hadoop

Online

Georgios Christopoulos

July 25, 2011



Contents

1 Introduction 1

2 Background and Related Work 3
2.1 Clustering Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 K-Means . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.3 Facility Location . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Hadoop . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2.4.1 Map/Reduce . . . . . . . . . . . . . . . . . . . . . . . . . 7
2.4.2 Job Submission . . . . . . . . . . . . . . . . . . . . . . . . 9

2.5 Hadoop Online Prototype . . . . . . . . . . . . . . . . . . . . . . 11
2.6 Stream Clustering Algorithms . . . . . . . . . . . . . . . . . . . . 12

2.6.1 Guha et al. Algorithms . . . . . . . . . . . . . . . . . . . 12
2.6.2 Streaming K-Means . . . . . . . . . . . . . . . . . . . . . 17

3 K-Means Algorithm 18
3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
3.2 Description of the Algorithm . . . . . . . . . . . . . . . . . . . . 19

3.2.1 Custom Writable Variables . . . . . . . . . . . . . . . . . 20
3.2.2 K-Means in Map/Reduce . . . . . . . . . . . . . . . . . . 23

4 Facility Location Algorithm 29
4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
4.2 Description of the Algorithm . . . . . . . . . . . . . . . . . . . . 29

4.2.1 Custom Writable Variable . . . . . . . . . . . . . . . . . . 34
4.2.2 Facility Location In Map/Reduce . . . . . . . . . . . . . . 35
4.2.3 FL Stage 2 . . . . . . . . . . . . . . . . . . . . . . . . . . 39

5 Results 44
5.1 Sensitivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

6 Conclusions 59

i



List of Figures

2.1 MapReduce execution overview. . . . . . . . . . . . . . . . . . . . 8
2.2 Map Reduce data flow for word count example. . . . . . . . . . . 9
2.3 Shuffle and Sort in MapReduce. . . . . . . . . . . . . . . . . . . . 10
2.4 Hadoop dataflow for batch (left) and pipelined (right) processing

of MapReduce computations. . . . . . . . . . . . . . . . . . . . . 11
2.5 Dataflow for Small-Space (left) and Smaller-Space (right) algo-

rithms. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.6 Hierarchical scheme for streaming model. . . . . . . . . . . . . . 14
2.7 Appending scheme for streaming model. . . . . . . . . . . . . . . 17

3.1 Iterative Map/Reduce Job. . . . . . . . . . . . . . . . . . . . . . 19
3.2 Driver routine for K-Means Algorithm. . . . . . . . . . . . . . . . 20

4.1 Distances from points closer to feasible, to center and to feasible. 32
4.2 Driver routine for Facility Location algorithm. . . . . . . . . . . . 34

5.1 Number of compute Nodes Vs Time (K-Means). . . . . . . . . . 55
5.2 Number of compute Nodes Vs Time (Facility Location). . . . . . 56
5.3 Datasets Vs Time (K-Means). . . . . . . . . . . . . . . . . . . . . 57
5.4 Datasets Vs Time (Facility Location). . . . . . . . . . . . . . . . 57

ii



List of Tables

4.1 Definition of variables. . . . . . . . . . . . . . . . . . . . . . . . . 32

5.1 Few dimensions with delta 0.2 . . . . . . . . . . . . . . . . . . . . 45
5.2 Many dimensions with delta 0.2 . . . . . . . . . . . . . . . . . . . 45
5.3 Many dimensions with delta 0.2 . . . . . . . . . . . . . . . . . . . 46
5.4 Few dimensions with delta 0.5 . . . . . . . . . . . . . . . . . . . . 46
5.5 Many dimensions with delta 0.5 . . . . . . . . . . . . . . . . . . . 46
5.6 Many dimensions with delta 0.5 . . . . . . . . . . . . . . . . . . . 47
5.7 Few dimensions with delta 0.8 . . . . . . . . . . . . . . . . . . . . 47
5.8 Many dimensions with delta 0.8 . . . . . . . . . . . . . . . . . . . 47
5.9 Many dimensions with delta 0.8 . . . . . . . . . . . . . . . . . . . 48
5.10 Few dimensions with 10 maximum iterations . . . . . . . . . . . 48
5.11 Many dimensions with 10 maximum iterations . . . . . . . . . . 49
5.12 Many dimensions with 10 maximum iterations . . . . . . . . . . 49
5.13 Few dimensions with 20 maximum iterations . . . . . . . . . . . 49
5.14 Many dimensions with 20 maximum iterations . . . . . . . . . . 50
5.15 Many dimensions with 20 maximum iterations . . . . . . . . . . 50
5.16 Few dimensions with 15 maximum iterations . . . . . . . . . . . 50
5.17 Few dimensions with 5 feasible points . . . . . . . . . . . . . . . 51
5.18 Many dimensions with 5 feasible points . . . . . . . . . . . . . . 51
5.19 Many dimensions with 5 feasible points . . . . . . . . . . . . . . 51
5.20 Few dimensions with 10 feasible points . . . . . . . . . . . . . . . 52
5.21 Many dimensions with 10 feasible points . . . . . . . . . . . . . . 52
5.22 Many dimensions with 10 feasible points . . . . . . . . . . . . . . 52
5.23 Few dimensions with 15 feasible points . . . . . . . . . . . . . . . 53
5.24 Many dimensions with 15 feasible points . . . . . . . . . . . . . . 53
5.25 Many dimensions with 15 feasible points . . . . . . . . . . . . . . 53
5.26 K-Means , splits . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
5.27 Facility Location , splits . . . . . . . . . . . . . . . . . . . . . . . 54
5.28 K-Means , delta = 0.5 , max.iterations = 15 . . . . . . . . . . . . 55
5.29 Facility Location , feasible points = 10 . . . . . . . . . . . . . . . 55
5.30 K-Means , Datasets Comparing to Time . . . . . . . . . . . . . . 56
5.31 Facility Location , Datasets Comparing to Time . . . . . . . . . 57

iii



Acknowledgements

This thesis would not have been possible without the guidance and the help
of several individuals who in one way or another contributed and offered their
valuable assistance in the preparation and completion of this study.

First and foremost, my utmost gratitude to my advisor, Professor Minos
Garofalakis who gave me the possibility to complete this thesis with his super-
vision, advise and guidance from the very early stage of this research.

I am grateful for his encouragement and precious contribution throughout
the elaboration of this study. I would also like to thank him for giving me the
opportunity to work on this very interesting field of research. I am indebted to
him more than he probably knows.

I would like to thank Assistant Professors Antonios Deligiannakis and Michael
Lagoudakis who agreed to evaluate my diploma thesis. Moreover, I would like to
thank my laboratory colleagues for their patience and constructive comments.

Also, I would like to thank all my friends for these great years we spent
together and for many wonderful memories.

Most of all, I would like to thank my family for their enormous help, under-
standing and support throughout all these years as a student.

iv



Abstract

In real-world problems we facing multi-dimensional and complex data that
creates the need of classifying them into groups according to some common
characteristics they have. This process of dividing data into groups is called
clustering. Clustering is the assignment of a set of observations into subsets
(called clusters) so that observations in the same cluster are similar in some
sense. Clustering is a method of unsupervised learning, and a common tech-
nique for statistical data analysis used in many fields, including machine learn-
ing, data mining, pattern recognition, image analysis, information retrieval, and
bioinformatics. Also, a serious problem that someone has to handle when works
on real-world datasets is that they are massive and evolve over time. So, a
motivation for our thesis was to work with efficiency on streams. In this thesis,
we present the novel design and implementation of two stream clustering algo-
rithms in the highly-scalable Map/Reduce parallel framework, using the Hadoop
Online Prototype open-source implementation. Our experimental results with
several large, real-life datasets on SoftNets HOP cluster verify the effectiveness
of our approach.



Chapter 1

Introduction

Cluster Analysis suggests how groups of units are determined such that units
within groups are similar in some respect and unlike those from other groups.
Units in computer science would be any kind of multi-dimensional points. So,
clustering is very useful in a large variety of applications in real world, such as bi-
ology, medicine, neuroscience, education, market etc. ,as points can be modeled
by different forms of associations among entities. Examples in medical imaging,
such as PET scans, cluster analysis can be used to differentiate between different
types of tissue and blood in a three dimensional image; in market research when
working with multivariate data from surveys and test panels and maybe parti-
tion the general population of consumers into market segments and to better
understand the relationships between different groups of consumers/potential
customers; in educational research analysis, data for clustering can be students,
parents, sex or test scores.

One problem with the study of real world datasets is that they are massive
and evolve over time. Obviously, it is difficult to apply sequential algorithms
to analyze these data. This size constraint has led to the development of par-
allelization architectures. One recent and effective framework that permits the
development of parallelized algorithms is Hadoop. Hadoop provides us with
a distributed filesystem and the implementation of the map/reduce program-
ming model, as well as all the necessary libraries that are needed in order for a
compute cluster to function. Its main advantage is that it separates the paral-
lelization code from the business logic, thus making easy for anyone to create
and execute a parallel algorithm. Additionally it poses no restrictions regarding
the number of computer nodes that the cluster should have, something that has
been an issue in older architectures. However, Hadoop is not able to handle
stream data, as input. Recently proposed extensions of Hadoop (e.g., Hadoop
Online Prototype [6]) allow data to be pipelined between jobs and handle the
continuous incoming data.

In this thesis, we focus on fast and parallel of stream clustering using Hadoop
Online Prototype. We implemented two state-of-the-art algorithms that aim to
efficient cluster streaming data. The challenge, has not been to create a new
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clustering method, rather to parallelize existing stream clustering solutions in
Hadoop Online Prototype API, so that it can be used for large and continuous
datasets.

The first algorithm is based on K-Means. Distributes all points to machines
and finds for each one the nearest cluster, from an initial random chosen list of
centers, then new cluster centers are created upon this assignment. This step is
repeated until a maximum number of iterations is reached or the cluster are so
good that no other iteration is needed before the final assignment to the best
clusters.

The second algorithm is based on Local Search solving the Facility Location
problem as proposed in Guha et al. paper [8]. From a random list of feasible
points, we test for each point whether or not the cost we would save , if this
point is finally added to the cluster list, is positive. In case a feasible point is
gainful to be added in cluster list, algorithm runs a second stage which assigns
all points to the clusters in the current cluster list.

This thesis is organized as follows. Chapter 2 describes the background
knowledge and related work regarding our work. This includes clustering theory
(2.1), K-Means (2.2), Facility Location (2.3), Hadoop framework with Map/Reduce
model and Job Submission (2.4), Hadoop Online Prototype (2.5) and the anal-
ysis of the algorithms that Guha et al. propose in their paper (2.6). The
description of our Map/Reduce algorithm of K-Means lies in Chapter 3 and
the one of Facility Location in Chapter 4. Finally, Chapter 5 contains the ex-
periments for every Map/Reduce algorithm that we conducted in several real
datasets, along with interesting results.
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Chapter 2

Background and Related
Work

2.1 Clustering Theory

Data clustering is a common technique for statistical data analysis, which is
used in many fields, including machine learning, data mining, pattern recogni-
tion, image analysis and bioinformatics. Clustering is the grouping of similar
objects into different groups, or more precisely, the partitioning of a data set
into subsets (called clusters), so that the data in each subset (ideally) share some
common trait - often proximity according to some defined distance measure.

Clustering algorithms can be classified in several types, including for in-
stance, Exclusive Clustering, Overlapping Clustering, Hierarchical Clustering,
Probabilistic Clustering. In the Exclusive Clustering data are grouped in an ex-
clusive way, so that if a certain datum belongs to a definite cluster then it could
not be included in another cluster. In contrast, overlapping clustering, uses
fuzzy sets to cluster data, so that each point may belong to two or more clus-
ters with different degrees of membership. In this case, data is associated with
appropriate membership values in [0,1] for each cluster. Hierarchical clustering
creates a hierarchy of clusters which may be represented in a tree structure
called a dendrogram. The root of the tree consists of a single cluster containing
all observations, and the leaves correspond to individual observations. Algo-
rithms for hierarchical clustering are generally either agglomerative, in which
one starts at the leaves and successively merges clusters together; or divisive,
in which one starts at the root and recursively splits the clusters. So, in both
cases, after a few iterations the algorithm reaches the final clusters wanted.
Finally, Probabilistic clustering uses a completely probabilistic approach. The
most widely used probabilistic clustering method is the one based on learning
a Mixture of Gaussians, where we can actually consider clusters as Gaussian
distributions centered on their barycenters. This algorithm is a model-based
approach, which consists in using certain models for clusters and attempting to

3



optimize the fit between the data and the model. In general, each cluster can
be mathematically represented by a parametric distribution, like a Gaussian
(continuous) or a Poisson (discrete). The entire data set is therefore modelled
by a mixture of these distributions. An individual distribution used to model a
specific cluster is often referred to as a component distribution.

In this thesis we focus on K-Means and Facility Location algorithms, both
of which belong in the category of exclusive clustering algorithms.

2.2 K-Means

J. MacQueen developed an algorithm in 1967 [11] describing a process for parti-
tioning an N-dimensional population into k sets on the basis of a sample. This
algorithm is widely known as k-means and appears to give partitions which are
reasonably efficient in the sense of minimizing variance. K-means is one of the
simplest unsupervised learning algorithms that solve the well known clustering
problem. The procedure follows a simple and easy way to classify a given data
set through a certain number of clusters k, that is fixed a priori. The main idea
is to define k centroids, one for each cluster. A centroid is the “average” (arith-
metic mean) of all cluster points. These centroids should initially be placed in
a clever way, since their location can affect the result. The better choice is to
place them as far away from each other as possible. The next step is to take each
point belonging to a given data set and associate it with the nearest centroid.
When no point is pending, the first step is completed and an initial grouping is
done. At this point we need to re-calculate k new centroids as barycenters of
the clusters resulting from the previous step. These new centroids should be the
centers of mass of the points assigned to each cluster from the previous step.
After we have these k new centroids, a new binding has to be done between
the same data set points and the nearest new centroid. With this reassignment
a loop has been generated. As a result of this loop we may notice that the k
centroids change their location step by step until no more changes are done. In
other words centroids do not move any more. Finally, this algorithm aims at
minimizing an objective function, in this case a squared error function. The
objective function

J =

k∑
j=1

n∑
i=1

‖x(j)i − cj‖
2,

where ‖x(j)i − cj‖2 is the Euclidean square distance between a data point x
(j)
i

and the cluster center cj , is an indicator of the n data points from their respec-
tive cluster centers. Although it can be proved that the procedure will always
terminate, the k-means algorithm does not necessarily find the optimal configu-
ration, corresponding to the global objective function minimum. The algorithm
is also significantly sensitive to the initial randomly selected cluster centers. The
k-means algorithm can be run multiple times to reduce this effect.
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K-Means Algortihm

Input: E = {e1, e2, .., en}
k (number of clusters)
maxIter (limit of iterations)

Output: C = {c1, c2, .., ck}
L = {l(e) | e = 1, 2, ..., n} (set of cluster labels of E)�

�

�



Algorithm 2.2.1: K-Menas(E, k,maxIter)

for each ci ∈ C // Random selection

do
{

ci ← ej ∈ E
for each ei ∈ E
do

{
l(ei) ← argminDistance(ei, cj) // j ≤ k

changed← false;
iter ← 0;

repeat
for each ci ∈ C
do

{
UpdateCluster(ci);

for each ei ∈ E

do


minDist← argminDistance(ei, cj) // j ≤ k
if minDistneql(ei)

then

{
l(ei) ← minDist;
changed← true;

until changed = true and iter ≤ maxIter

2.3 Facility Location

The main problem of clustering is the choice of the number of expected clusters
in a dataset. In the Facility Location problem, this is avoided as there is no a
priori number of clusters, instead we find all those that minimize the total cost.
In the Facility Location problem the basic issue is to distribute a number of
facilities in a given set of data points, in a way of minimizing the total opening
and maintenance cost of the facilities.

In each real-life facility location problem that we study, there is a set of
locations at which we may build a facility (such as a warehouse), where the cost
of building this facility is z. Furthermore, there is a set of client locations (such
as stores) that need to be serviced by a facility, and if a client at location j (cj)
is assigned to a facility at location i (fi), it incurs a cost that is proportional to
the distance between fi and cj .

The objective in any case is to determine a set of locations at which to open
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facilities so as to minimize the total facility and assignment costs.

FC(N,F ) = z|F |+
k∑

i=0

N∑
j=0

d(fi, cj),

where N is the given set of data points, F = {f1, f2, ..., fk} ⊂ N is the set of k
cluster centers, z is a parameter for the facility opening cost (assuming uniform
opening costs) and d is a distance function d : N ×N → <+. Moreover, for any
choice of F defines a set of points Ni ⊆ N that are closer to fi, with the union
of N1, N2, ..., Nk being the whole set N.

There are two variants of facility location problem: the uncapacitated and
the capacitated case. In the uncapacitated case, each facility can service an
unlimited number of clients without restrictions , whereas in the capacitated
case, each facility can serve, for example, at most u clients.

2.4 Hadoop

Hadoop is the Apache Software Foundation top-level project [1]. Hadoop is the
answer to the needs of numerous computations that process a large amount of
data to be completed in a reasonable amount of time. The Hadoop open-source
project, supplies a powerful framework for the development of highly scalable
distributed computing applications. Hadoop allows the developer to focus on
the application logic leaving apart the processing details, as the framework is
fully responsible for balanced distribution of data and processing to the nodes in
a cluster, handling possible failures and other similar issues. This programming
model that Hadoop uses is called MapReduce. MapReduce is a distributed
data processing model and execution environment that runs on large clusters of
commodity machines.

Hadoop includes a number of subprojects :

⇁ Common: The common utilities that support the other Hadoop projects.

⇁ HDFS: A distributed file system that provides high throughput access to
application data.

⇁ ZooKeeper: A distributed, highly availably coordination service. ZooKeeper
provides primitives such as distributed locks that can be used for building
distribuuted applications.

⇁ Avro: A data serialization system for efficient, cross-language RPC, and
persistent data storage.

⇁ Chukwa: A distributed data collection and analysis system. Chukwa runs
collectors that store data in HDFS, and it uses MapReduce to produce
reports.
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⇁ HBase: A distributed column-oriented database. HBase uses HDFS for
its underlying storage, and support both batch-style computations using
MapReduce and point queries (random reads).

⇁ Hive: A distributed data warehouse.Hive manages data stored in HDFS
and provides a query language based on SQL, (and which is translated by
the runtime engine to MapReduce jobs) for querying the data.

⇁ Mahout: A Scalable machine learning and data mining library, implement-
ing algorithms for clustering, classification and batch based collaborative
filtering.

⇁ Pig: A dataflow language and execution environment for exploring very
large datasets. Pig runs on HDFS and MapReduce clusters.

Hadoop also provides its own set of data types that are optimized for network
serialization and correspond to the known Java built-in data types. Of course,
the user can define custom data types if necessary. The data types that are used
as keys need to implement the WritableComparable and the data types that are
used as values need to implement the Writable interface, which is a subset of
WritableComparable. The Writable interface implements the methods that are
used for serialization and deserialization of the objects and the WritableCom-
parable implements additionally the methods that are used for the comparison
of the keys.

The most common Hadoop data types are:

⇁ Text: equivalent to String.

⇁ IntWritable: equivalent to Integer.

⇁ LongWritable: equivalent to Long.

⇁ FloatWritable: equivalent to Float.

⇁ DoubleWritable: equvalent to Double.

⇁ BooleanWritable: equivalent to Boolean.

2.4.1 Map/Reduce

MapReduce [7] is the programming model implemented by Hadoop for prossesing
large datasets that are produced by many different real-world tasks. MapReduce
works by breaking processing into two phases: the map and the reduce phase
with key/value pairs as input and output; allowing the user-programmer to
implement those two functions (map - reduce) to perform the computations
needed. First, the MapReduce library splits the input data into M parts and
distributes them in parallel to different machines, as shown in Figure 2.1.
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Figure 2.1: MapReduce execution overview.

The framework will convert each record of input into a key/value pair. Each
pair will be input to the map function, which is the initial ingestion and trans-
formation step. The map output, which is also a set of key/value pairs (inter-
mediate key/value pairs), is grouped and sorted by key. The result of grouping
and sorting is the input of the reduce function.

map (k1,v1) → list(k2,v2)

reduce (k2,list(v2)) → list(v2)

The reduce function is applied to each key, in sort sequence, with the key
and the set of values that share that key. The reduce method may output an
arbitrary number of key/value pairs, which are written to the output files in the
job output directory. If the reduce output keys are unchanged from the reduce
input keys, the final output will be sorted.

Programs written in this functional style are automatically parallelized and
executed on large clusters of commodity machines. The run-time system takes
care of the details of partitioning the input data, scheduling the programs ex-
ecution across a set of machines, handling machine failures, and managing the
required inter-machine communication. This allows programmers without any
experience with parallel and distributed systems to easily utilize the resources
of a large distributed system.

For example, consider the problem of counting the number of occurrences of
each word in a large collection of documents. The user would write code similar
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to the following pseudocode.

�
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Algorithm 2.4.1: Map(key, value)

// key is a document name

// value is the document’s contents

for each word ∈ value
do EmitIntermediate(word, 1);

�

�

�



Algorithm 2.4.2: Reduce(key, IteratorV alues)

// key is a word

// value is a list of values

result← 0
for each v ∈ values

do

{
result+ = ParseInt(v)
Emit(AsString(result))

A graphical presentation of our example is shown in Figure 2.2 (below) clarifying
how our initial data is split and used by Mappers and the way mapper outputs
are shuffled and sorted so Reducers are able to use them to emit the final results.

Figure 2.2: Map Reduce data flow for word count example.

2.4.2 Job Submission

The Hadoop framework runs a MapReduce Job by dividing it into two types
of tasks: map tasks and reduce tasks. Two processes are responsible for the
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execution of MapReduce Jobs a jobTracker and a number of TaskTrackers.
The TaskTrackers manage the execution of individual map and reduce tasks
on a compute node in the cluster. The jobTracker accepts job submission,
provides job monitoring and control, and manages the distribution of tasks to
the TaskTracker nodes. TaskTrackers periodically send a heartbeat signal to
jobTracker. This heartbeat informs the jobTracker that the task is still alive
and also a part of heartbeat indicates whether the TaskTracker is ready to run
a new task. When a MapReduce job is submitted, the user has to provide the
system with a series of necessary parameters regarding the job. Such parameters
included, the input and output type format and destination in HDFS, the classes
of map and reduce functions, the JAR file(s) that contain the map and reduce
functions and maybe other support classes, as well any possible configuration
informations needed. The first action taken by the framework, once a new job
is submitted, is to divide the input into fixed-size pieces (usually same size with
HDFS block - 64MB by default) called input splits and create one map task for
each split. Each map task calls the user-defined map function once per record
(one line) in the split producing an intermediate key/value pair and writes it
locally. At this point, Hadoop guarantees that the input to every reducer is
sorted by key. The process by which the system performs the sort and transfers
the map outputs to the reducers as inputs, is known as the shuffle. The shuffle
is the heart of MapReduce, and is where the “magic” happens. So, the reduce
task needs the map output for its particular partition from several map task
across the cluster. The map tasks may finish at different times, so the reduce
task starts copying their outputs as soon as each completes. This is known as
the copy phase of the reduce task. When all map outputs have been copied,
the reduce task moves into the merge phase, which merges the map outputs,
maintaining their sort ordering. The last phase is the reduce phase. During the
reduce phase the reduce function is invoked for each key in the sorted output.
The output of this phase is written directly to the output distributed filesystem
(HDFS). The above process is depicted in Figure 2.3

Figure 2.3: Shuffle and Sort in MapReduce.
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2.5 Hadoop Online Prototype

MapReduce is a framework for processing huge datasets on certain kinds of par-
allelizable problems with primary focus on time of job completion. As analyzed
in Section 2.4 the batch-processing implementation of MapReduce, is based on
the materialization of map and reduce stages, for reliability and storage stabil-
ity. However, this strategy has a high probability of slowdowns or failures at
worker nodes. In attempting to resolve these issues, Condie et al. [6] proposed
a modified MapReduce architecture in which, along with some other additional
features, intermediate data is pipelined between tasks, saving valuable time in
the execution process. This pipelined architecture of Hadoop called Hadoop
Online Prototype (HOP).

The main advantage of HOP to the unmodified Hadoop is that reducers are
able to begin consuming the output produced by mappers after it is produced
without requiring all mapper executions to complete, and without writing it to
HDFS.

Figure 2.4: Hadoop dataflow for batch (left) and pipelined (right) processing of
MapReduce computations.

Figure 2.4 depicts the dataflow of two MapReduce implementations with this
basic difference. The dataflow on the left corresponds to the output materializa-
tion approach used by stock Hadoop; the dataflow on the right allows pipelining
with the addition of a “flush” function, which pushes data from the map task
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to the reduce tasks. This pipelining mechanism can be applied intra-job (map
tasks push their output to reducers as it is produced) and inter-job (reducer
tasks of a previous job pipeline their output to the map tasks of a next job). By
its design HOP [2] is able to handle two important types of functionality: online
aggregation and continuous queries. Online aggregation [9] is a technique that
allows the user to have an approximation of the final output during the course
of execution. Traditional MapReduce implementations suffer in interactive data
analysis, by losing valuable time expecting the job to be completely executed
in order to produce the final results. In HOP, reducers begin processing data
as soon as it is produced by mappers, so they can generate, according to the
percentage of input data, a “quick and dirty” approximation over the final out-
put. This approximation is called “snapshot” and this mechanism can be used
at various intervals based on the job progress after system configuration. In this
manner, time for data analysis can be reduced by several orders of magnitude.
Continuous queries is the second new functionality supported by HOP. With
this feature continuous running jobs can accept data as it becomes available and
analyze it immediately. This Continuous queries functionality is critical for the
analysis of streaming data.

2.6 Stream Clustering Algorithms

In computer science, streaming algorithms are algorithms for processing data
streams in which the input is presented as a sequence of items and can be ex-
amined in only a few passes (typically just one). These algorithms have limited
memory available to them (much less than the input size) and also limited pro-
cessing time per item. In our thesis, we focus on the stream clustering algorithms
that Guha et al. [8] propose in their paper. Guha et al. begin their analysis
with a simple algorithm, and after a row of improvements that we analyze below
in this section, they end up with a final Local Search algorithm solving Facility
Location problem. The one of the algorithms we have implemented is this final
algorithm. Finally, we have also implemented a second algorithm, which is a
simple variant of K-Means algorithm.

2.6.1 Guha et al. Algorithms

Baseline Strategies

Guha et al. investigate algorithms that examine the data in a piecemeal fashion.
In particular, they begin their study with the performance of a simple divide-
and-conquer algorithm, called Small-Space. This algorithm divides the data
into l pieces, clusters each of these pieces, and then again clusters the centers
obtained (where each center is weighted by the number of points assigned to
it).The l parameter will be set so that both dataset (S ) and lk centers fit in
the memory. The next algorithm they propose (Smaller-Space) is similar to
the previous piecemeal approach except that, instead of reclustering only once,
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it repeatedly reclusters weighted centers. For this algorithm, they prove that,
if it reclusters a constant number of times, a constant-factor approximation is
still obtained, although, as expected, the constant factor worsens with each
successive reclustering. However, the Smaller-Space algorithm, has a problem
since the intermediate medians of each clustered piece must be stored in memory,
this implies that the number of subsets that the original dataset is partitioned
into is limited by memory capacity.

Figure (2.5) below shows a graphical representation of those two algorithms.

Figure 2.5: Dataflow for Small-Space (left) and Smaller-Space (right) algo-
rithms.

Hierarchical Strategy

The next algorithm of Guha et al. uses a more clever implementation of a
hierarchical scheme (Figure 2.6) to get around of the Smaller-Space algorithm
problem. The algorithm takes as input the first m points (m =

√
M , where

M is the memory size) and reduce them with a bicriterion algorithm to O(k)
(say 2k) points. As usual, the weight of each intermediate median is the number
of points assigned to it in the bicriterion clustering. (Assume m is a multiple of
2k). This is repeated until m intermediate medians are generated.

At this point, these m first-level medians are clustered into 2k second-level
medians and proceed. In general, it maintains at most m level-i medians, and,
on seeing m, generates 2k level-(i+1 ) medians, with the weight of a new median
as the sum of the weights of the intermediate assigned to it. Finally, after
seeing all the original data points, all the intermediate medians are clustered to
k final medians by a primal dual algorithm. The approximation quality of this
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Figure 2.6: Hierarchical scheme for streaming model.

algorithm will depend heavily on the number of levels. Guha et al. use the local
search algorithm in [5] to provide a bicriterion approximation in space linear in
m, the number of points clustered at a time.

Hierarchical Speed Up

Leaf-Level : Then Guha et al. try to reduce the running time of this scheme.
The running time of this hierarchical clustering is dominated by the contribution
from the first level and the local search they are using is quadratic, so they
proposed a sampling-based algorithm that requires O(nk) time, where n denotes
the size of the input stream, for the generation of the first level intermediates.
Consider the following algorithm:

1. Draw a sample of size s =
√
nk.

2. Find k medians from these s points using a primal dual algorithm.

3. Assign each of the n original points to its closest median.

4. Collect the n/s points with the largest assignment distance.

5. Find k medians from among these n/s points.

6. We have at this point 2k medians.

This sampling-based scheme is used to develop a one-pass and O(nk)-time
algorithm.

1. Leaf-level point clustering

◦ Input the first O(M/k) points, and use the randomized
algorithm above to cluster this to 2k intermediate median points.

2. Intermediate-level point clustering
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◦ Use a local search algorithm to cluster O(M) intermediate
medians of level i to 2k medians of level-(i+1).

3. Final clustering

◦ Use the primal dual algorithm [10] to cluster the final O(M)
medians to k medians.

Notice that the algorithm remains one pass since the O(log n) iterations of
the randomized subalgorithm just add to the running time. Thus, over the first
phase, the contribution to the running time is O(nk). Over the next level, we
have nk

M points, where M is the memory size, and if we cluster O(M) of these
at a time taking O(M2) time, the total time for the second phase is O(nk)
again. The contribution from the rest of the levels decreases geometrically so
the running time is O(nk).

Intermediate-Level : The second step of the algorithm above is using a
quadratic-time local search. They propose that this time can be reduced by
relaxing the number of clusters. The parameter k (number of clusters) is a
target, and need not be held fixed in the intermediate stages of the algorithm
and local search allows this flexibility. The ability to relax the parameter k
in the intermediate steps of the algorithm provides an interesting contrast to
k-Means which (as defined commonly) does not relax the number of clusters.

Lagrangian Relaxation techniques provide a powerful tool for combinatorial
optimization problems and the Facility Location minimization is a Lagrangian
relaxation of the k-median problem. Algorithm, Guha et al. present is a new
local search-based algorithm solving the Facility Location Problem in order to
speed up the local search step, by relaxing the number of clusters. This solution
relies on a simple algorithm of Charikar and Guha [5], referred to as CG, for
solving facility location on a set N of n points in a metric space with metric
(relaxed metric) d(., .), when the facility cost is z. We briefly describe CG below.

Assume that we have a feasible solution to facility location on N given d(., .)
and z. That is, we have some set I ⊆ N of currently open facilities and an
assignment for each point in N to some (not necessarily the closest) open fa-
cility. For every x ∈ N , we define gain of x to be the cost we would save (or
further expend) if we were to open a facility at x (if one does not already exist),
and then perform all possible advantageous reassignments and facility closings,
subject to the following two constraints: First, points cannot be reassigned ex-
cept to x and, second, a facility can be closed only if all its members are first
reassigned to x.

Algorithm CG(data set N , facility cost z)

1. Obtain an initial solution (I, f) (I ⊆ N of facilities, f
an assignment function) that gives a n-approximation
to facility location on N with facility cost z.

2. Repeat Ω(log n) times:
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◦ Randomly order N .

◦ For each x in this random order: calculate gain(x)
, and if gain(x) > 0, add a facility there and per-
form the allowed reassignments and closures.

CG Speed Up : Their final algorithm, uses the CG algorithm as a subrou-
tine. But, the CG algorithms running time Θ(n2 log n) is expensive for large
data streams. Therefore, they describe a new local search algorithm, referred
to as FL, that relies on the correctness of the above algorithm, but avoids the
quadratic running time by taking advantage of the structure of local search
and the sampling-based scheme that discussed earlier. Guha et al. prove that
instead of evaluating gain for every point x, it would be still likely to choose
good medians from a randomly choosen set of Θ( 1

p log k) points and finish the
computation sooner.

Algorithm FL(N , d(., .), z, ε, (I, α) )

1. Begin with (I, α) as the current solution.

2. Let C be the cost of the current solution on N .
Consider the feasible centers in random order, and, for each
feasible center y, if gain(y) > 0, perform all advantageous
closures and reassignments (as per gain description), to
obtain a new solution (I ′, α′). [α′ should assign each point
to its closest center in I ′ .]

3. Let C ′ be the cost of the new solution; if C ′ ≤ (1− ε)C,
return to Step 2.

Complete Algorithm

Their final algorithm, the one we have implemented, uses the FL algorithm, as
a subroutine, also using a binary search for the best selection of the parameter
zeta. The algorithm begins with an initial solution and an initial range for
the facility cost zeta (between 0 and an easy-to-calculate upper bound); then
a binary search is performed within this range to find the appropriate value of
zeta that gives the right number k of facilities needed (clusters). This search,
for the parameter zeta, calls the FL algorithm repeatedly (iterative step), with
a parameter ε that controls convergence, for a number of feasible points. Then it
checks if the total cost changes very little from one iteration to the next and the
solution is far from k centers, then we have gotten the value of zeta incorrect.

The final k-Median algorithm for a data set N with distance function d that
uses FL as a subroutine:
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Algorithm LSEARCH(N , d(., .), k, ε, ε′ )

1. zmin ← 0.

2. zmax ←
∑

x∈N d(x, x0) (for x0 an arbitrary point in N).

3. z ← (zmin + zmax)/2.

4. (I, α)← InitialSolution(N, z)

5. Randomly pick Θ( 1
p log k) points as feasible medians.

6. While medians 6= k and zmin < (1− ε′)zmax:

◦ Let (F, g) be the current solution.

◦ Run FL(N, d, ε, (F, g)) to obtain a new solution (F ′, g′)

◦ If k ≤ |F ′| ≤ 2k, then exit loop.

◦ If |F ′| > 2k, then zmin ← z and z ← (zmax + zmin)/2;

◦ else if |F ′| < k, then zmax ← z and z ← (zmax + zmin)/2;

7. Return our Solution (F ′, g′).

2.6.2 Streaming K-Means

Finally, we devised and implemented an other stream algorithm to handle the
continuous data. The idea is based on an appending-scheme, as shown in the
Figure 2.7 (below). The output of each data set is appended in the next coming
data set and is treated as a normal part of the whole file. We implemented this
scheme in K-Means algorithm.

Figure 2.7: Appending scheme for streaming model.
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Chapter 3

K-Means Algorithm

3.1 Introduction

As we discussed in Section 2.2 K-Means is one of the simplest algorithms for
solving the clustering problem. K-means clustering is a method of cluster anal-
ysis which aims to partition n data points into k clusters in which each data
point belongs to the cluster with the nearest mean. Thus, k-means main goal
is to minimize the within-cluster sum-of-squared distances.

Suppose that we have a set of data points (x1, x2, ..., xn), where each point
is a d-dimensional vector. After the assignment to k centroids (µ1, µ2, ..., µk)
we will have k partitions S = {S1, S2, ..., Sk}.

argmin
S

k∑
i=1

∑
xj∈Si

‖xj − µi‖2

As mentioned in Section 2.2 our first stream clustering algorithm relies on
the K-Means algorithm, which has already been implemented in conventional
Hadoop in the Mahout project. Our implementation has similar logic with
K-Means clustering that Mahout implements1. The key difference is that we
implemented K-Means in HOP considering the “snapshot” mechanism that it
provides. So, we allow the user to see an approximation of the final results early
on before the job is completed. Also, as we discussed in subsection 2.6.2, our K-
Means implementation is able to receive a continuous series of data appending
each time the final clusters to the next dataset as weighted points (where weight
is the number of the assigned points).

1Once we completed our implementation, we found another paper implementing K-Means
in Hadoop [12] with a similar way Mahout does.
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3.2 Description of the Algorithm

Firstly, we implemented a streaming algorithm based on the appending scheme
that discussed earlier in Section 2.6.2. According to this scheme each dataset
returns K centers, which are appended at the next dataset as weighted points,
with weight the number of points assigned to this weighted point. The algorithm
we used to cluster each datasets is K-Means.

Our K-means implementation uses one Map and one Reduce jobs called in
two different points. Firstly, Map/Reduce job with the knowledge of all cluster
centers, finds, for each given point, the closest cluster center and assigns it to
this cluster; then, new cluster centers are recomputed with the assignment that
results. Figure 3.1 depicts the above logic.

Figure 3.1: Iterative Map/Reduce Job.

This job is iterative under two conditions: The first condition is that the
number of iterations should not exceed a given “max-iterations” parameter,
The second condition checks for convergence, which means that our algorithm
converges and breaks the iterative part if the distance of all new cluster centers
from those in the prior iteration, one by one, do not exceed, distance, the given
parameter about convergence. The second Map/Reduce job is called, when
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iterations are completed and computes simple assignment of all points to the
last found cluster centers, by the iterative part.

The driver routine that the algorithm calls the Map/Reduce Job is shown
in Figure 3.2 (below)

Figure 3.2: Driver routine for K-Means Algorithm.

In the remainder of this chapter, we provide the description of the Map
and Reduce functions of the algorithm along with their pseudocode, also we
analyze the detailed description of two custom Writable variables, Cluster and
KMeansInfo, that we used. In the map/reduce functions described below, we
give the input and output types of the variables and also an example of the
key/value pairs that are read and written. The notation that is used in the
following sections to express the key/value pairs of the map/reduce framework
uses underlining for keys and parenthesis for values, i.e., key, (value).

3.2.1 Custom Writable Variables

For better understanding of the Map/Reduce stages, in this section we analyze
two Custom Writable Variables that we created in order to keep some necessary
information between Tasks and Jobs. As discussed in Section 2.4, Hadoop allows
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users to define their own custom variables if necessary. The first such variable
is the Cluster Writable that keeps all the information needed for a cluster and
the points assigned to it. The second is the KMeansInfo Writable that keeps
all the information needed by reducers about the points and the clusters they
are assigned to.

Cluster Writable

Our need to categorize clusters based on their center and their assigned points,
and also recompute new centers and thus new clusters, led us to implement this
custom Writable variable, which we called “Cluster”. This variable is created
in order to help us emit composite values and is used to express clusters. It con-
tains six fields: clusterId, center, numPoints, pointTotal , sqrTotal, converged.
clusterId is the unique identity of a cluster, center is a vector of doubles express-
ing the dimensions of the cluster center. This attribute is very important for
us, as we use it in map functions for the assignment of all point to the nearest
center of cluster and in reduce functions for the convergence check, the distance
between new recomputed and prior center, numPoints is an integer exressing
the number of points this cluster is consisted of and is used in reduce task of the
first stage to recompute the center , pointTotal is a vector of doubles expressing
the sum per dimension of all points assigned in cluster and it is needed in reduc-
ers of the first stage when recomputing the center (each dimension is divided
by the numPoints of the Cluster), sqrTotal is a vector of doubles expressing
the sum per squared dimension of all points assigned to cluster center and with
pointTotal is used in the end of clustering process to check the the efficiency
of the final clustering. and converged is a boolean shows, whether the previous
cluster center is farther from current (recomputed) center than given parameter
of convergence, or not.

Supposing that we have two points, let us say p1 :{1,1} and p2 :{2,1} assigned
to the same cluster center :{2,2} then the Cluster attributes would be: clusterId
= 1 (random choice but different from other existing objects of Cluster), center
= {2,2}, numPoints = 2, pointTotal = {3 (p1x+p2x) , 2 (p1y+p2y)}, sqrDistance
= {5 (p12x + p22x) , 2 (p12y + p22y)}, converged = false (false is the initialization
of converged as no previous step has been made to check convergence).

Input Data Cluster

point id center num pntTot sqrTot converge
1 1 1 [ 2 , 2 ] 2 [ 3 , 2 ] [ 5 , 2 ] false
2 1

In the Cluster column there is only one record as we assume that both points
assigned to the same cluster, so they were grouped by cluster key.

The class Cluster implements the following methods:

⇁ associated constructors: All Writable implementations must have a default
constructor so that the MapReduce framework can instantiate them.
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⇁ setters and getters for the variables.

⇁ toString(): returns the String representation of the variable. It is called
to write the reducers output to the HDFS filesystem, if the output format
is TextOutputFormat.

⇁ readFields(): deserializes the bytes from the input stream by delegating
to each object. It is called by a mapper to read from the HDFS.

⇁ write(): serializes each object in turn to the output stream. It is called by
the collect() function and writes the variable to the HDFS, if the output
format is SequenceFileOutputFormat.

⇁ getIdentifier(): returns a V or a C, depending on cluster center conver-
gence, concatenated with the cluster id; so we can easily check which of
the clusters have converged.

KMeansInfo Writable

In order to define a cluster we need to know how many and which specific
points comprise this cluster. This need to keep points with their multiplicity
and pass this information between tasks, led us to implement a custom Writable
variable, which is called “KMeansInfo”. This variable is created in order to
help us emit composite values and is used to express the main attribute of
a cluster,i.e., its points with their multiplicities. This composite variable is
needed to pass the appropriate information needed from Mappers to Reducers.
It contains 4 fields: numPoints, point, pointsTotal, pointSqrTot. numPoints is
an integer expressing the multitude of points collected at this point (weighted
points) this is used in mapper’s output when the income data contains weighted
points with multiplicity greater than one, so reducers have the knowledge of
how many points are assigned to each cluster. The variable point is a vector
of doubles expressing the dimensions of our point and is used in reducers to
compute the new center, by summing all points per dimension assigned to a
cluster and dividing with the number of points assigned. The third attribute,
pointsTotal, is a vector of doubles that expresses the point (weighted or not)
that is to be assigned to a cluster in map tasks. If a point has multiplicity “one”
(numPoints=1) then the pointsTotal vector is the same with the point vector,
else each dimension is the multiplied, with numPoints variable, dimension of
point. sqrTotal is a vector of doubles, each dimension expressing the squared
dimension of point.

To make this clearer we give an example showing what KMeansInfo variable
would be created with two types of data. The one has multiplicity greater than
one while the other has not. If points have some multiplicity then next to their
dimensions we have an “m” character that separates the point from multiplicity.
It is also possible to have this “m” character while multiplicity is one and the
number next to “m” is 1:
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Input Data KMeansInfo

point with multiplicity numPnts point pntTot pntSqrTot
3 2 m1 1 [ 3 , 2 ] [ 3 , 2 ] [ 9 , 4 ] - Simple
2 1 m2 2 [ 2 , 1 ] [ 4 , 2 ] [ 8 , 2 ] - Weighted

The class KMeansInfo implements the following methods:

⇁ associated constructors: All Writable implementations must have a default
constructor so that the MapReduce framework can instantiate them.

⇁ setters and getters for the variables.

⇁ toString(): returns the String representation of the variable. It is called
to write the reducers output to the HDFS filesystem, if the output format
is TextOutputFormat.

⇁ readFields(): deserializes the bytes from the input stream by delegating
to each object. It is called by a mapper to read from the HDFS.

⇁ write(): serializes each object in turn to the output stream. It is called by
the collect() function and writes the variable to the HDFS, if the output
format is SequenceFileOutputFormat.

3.2.2 K-Means in Map/Reduce

As we mentioned before the first step of our algorithm is executed iteratively.
In each iteration, the algorithm refines the cluster centers by recomputing new
centroids upon the points assigned to each center. This assignment is based
on Euclidean distance, so each point is assigned to the nearest center. Iter-
ations stop when the distance of all new centers, one-by-one, to the previous
centers is smaller than a factor delta, where delta is the convergence input (our
third input), from those before re-computation or when the number of iterations
reaches a higher bound which is our second input in algorithm (referring to max
iterations).

The first iteration begins after a random initialization of cluster centers,
selected from the data set that is given as input. Obviously the computed
clusters in each iteration form the input to the next iteration.

Map

The Mapper interface is a generic type, with four type parameters that specify
the input key, input value, output key, and output value types of the map
function. For this Map function, the input key is a long integer offset, the
input value is a line of text containing one point. The Map function’s mission
is to find for each point the nearest cluster center. Each mapper knows all
current cluster centers (a global list) and processes one point at a time. As
shown in the algorithm KMeansMapper below, a mapper searches the minimum
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distance between the processing point and the centers in the known cluster list
and returns the id of the nearest cluster as the output key and a KMeansInfo-
type variable, which practically contains the current point, as the output value.
KMeansInfo is the custom writable variable that was described in the previous
section, and is need to keep track of informations for each processed point
beyond its dimensions, such as the point’s weight and some other information
for the ensuing computation of the Sum of Square Distances for each cluster.

InputTypes : LongWritable , ( Text )

OutputTypes : Text , ( KMeansInfo )

The input of this job is a file containing a set of data points, each mapper
takes as input one line at a time that corresponds to a data point, and a list
of clusters. At the process of the very first set of data points, mappers read
data of type “x y m1 ”, because all points have multiplicity “1” (one) . In the
next iterations, where we have appended the output of a previous execution
(streaming model for K-Means, in section 2.6), the mappers apart from the
previous format, will also read k data points with further information. This k is
because k centers have been computed from previous inputs and thus k weighted
points have been appended to this file. The extra information includes the
weight (number of points assigned) of each point (cluster center), and additional
information about the data points assigned to the center. An example of such an
input is shown in the end of this section. So, once a mapper reads a line, splits
it to its components. One of this components is the data point that mapper
uses to find the minimum distance from the centers in cluster list. When the
nearest cluster center is found, the mapper creates a KMeansInfo variable with
the appropriate data and emits the id of nearest cluster as the output key and
this KMeansInfo variable as the output value. Key output is also concatenated
with a random number between 1 and the number of working machines divided
by the size of cluster list. So, we distribute the intermediate data to more than
one machine for each cluster increasing the scalability of our algorithm. The
pseudocode below depicts the logic of our mapper.
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Algorithm 3.2.1: KMeansMapper(key, value)

global listOfClusters
global reducers
local point,multi, pointTot, sqrTot
local nearestDistance, nearestCenter
local keyOutput
local kmInfo

point,multi, pointTot, sqrTot← split(value)

nearestDistance←MaxV alue
nearestCenter ← null

for each cluster ∈ listOfClusters

do


center ← getcenter(cluster)
distance← distance(center, point)
if distance < nearestDistance

then

{
nearestDistance← distance
nearestCluster ← cluster

random← rand(reducers/(listOfClusters.size() + 1))
keyOutput← id+ random
kmInfo← (multi, point, pointTot, sqrTot)

output (keyOutput, kmInfo)

Example : If we suppose that we have from initialization the cluster centers:
[ 1 , 2 ],[ 1 , 5 ],[ 5 , 3 ], with ids 1, 2, 3 respectively, and a set of data points
in the input file, as shown on the left side of the arrows below, then, after the
map execution, the output key for each point, would be the id of the nearest
cluster found and the output value would be a KMeansInfo variable as shown
below. In the example below we have as input 4 simple and 2 composite points.
As discussed earlier, we understand that the composite points have been the
result of appending the previous cluster centers to the current data set. From
the simple points it is easy to conduct the KMeansInfo variable, but from the
composite may not be so obvious. Before discussing the example below, we
should mention that in composite input, the reducers from previous step have
put all the information needed about clusters in a text line, separated with
a character “m”,i.e., cluster point m number of assigned points to cluster m
vector with sum of points assigned to cluster per dimension m vector with sum
of points assigned to cluster per squared dimension.

id num point Total SqrTot

2 6 m1→ 2r , ( 1 [ 2 , 6 ] [ 2 , 6 ] [ 4 , 36 ])
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1 5 m1→ 2r , ( 1 [ 1 , 5 ] [ 1 , 5 ] [ 1 , 25 ])

5 3 m1→ 3r , ( 1 [ 5 , 3 ] [ 5 , 3 ] [ 25 , 9 ])

1 2 m1→ 1r , ( 1 [ 1 , 2 ] [ 1 , 2 ] [ 1 , 4 ])

1 1 m3 m2 2 m10 2 → 1r , ( 3 [ 1 , 1 ] [ 2 , 2 ] [ 10 , 2 ])

5 4 m2 m10 9 m50 41→ 3r , ( 2 [ 5 , 4 ] [ 10 , 9 ] [ 50 , 41 ])

So, if we take the last input data, from the example above, and split it on “m”
then we would have 4 elements: {5 4}{2}{10 9}{50 41}. If we consider the first
to be the point (previous cluster center), the second to be the weight (number
of points assigned), the third element to be the sum of assigned points per
dimension, and the last to be the sum of assigned points per squared dimension,
then it is much easier to create the KMeansInfo variable as shown above. In
composite points we do not have to calculate the pointsTotal and pointSqrTot
attributes of KMeansInfo variable, as they are already given. The r character in
key output, as we said before, is a random number that helps us distribute our
data to more reducers. In this case r can take values between 1 and numberOf
Reducers/(k). For example, if our job runs 90 reducers and our k parameter
is 3 then each clusters data will be distributed to a maximum of 30 reducers
instead of 1.

Reduce

The reducer function is defined similarly with the mapper. We also have four
formal type parameters that specify the input key, input value, output key, and
output value. The difference here is that we have a restriction: the input key
and value parameters must be the same type of the mapper’s output key and
value parameter types. Our reducers know not only the current cluster centers,
as the mappers, but also the delta factor that is used in convergence, since
the convergence check is executed in this step. More specifically, as discussed
earlier, reducers take as input key a cluster id and as input valueList the points
(in KMeansInfo-type) that share the same id.

InputTypes : Text , ( KMeansInfo )

OutputTypes : Text , ( Cluster )

Reducers take as input the output produced by the mappers. After, the
output data of mappers, has been shuffled and sorted, it has been grouped by
key. Each reducer takes a unique key with all the values that share the same
key. Thus, each reducer reads as input, data of type { key , [ {KMeansInfo1},
{KMeansInfo2},...,{KMeansInfon} ]}. The Reducer uses the input key to
find the cluster in the given cluster list. Once the cluster is found, the reducer
runs on the valueList, which actually is a list of KMeansInfo objects and adds all
the points on the cluster. This practically means that from each KMeansInfo ob-
ject, which consists of four variables (multiplicity, point, pointsTotal, sqrTotal),
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reducers, after dimensions of each point have been multiplied with the variable
of multiplicity, add all points, so weighted points are taken into account. This
value, which actually is a vector, is stored in the pointTotal attribute of the
cluster. Multiplicities are also added, and the final sum is an integer number,
expressing the total number of points assigned to the cluster, which is stored in
the numPoints attribute. The output parameters of this process includes, the
cluster’s id (as the output key), and the cluster itself (as the output value).

The reducer logic is shown in the pseudocode below.�
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Algorithm 3.2.2: KMeansReducer(key, valueList)

global listOfClusters
local cluster, point,multi
local center, totalPoint, sumPoints
local id
local kmInfo

id← getId(key)
cluster ← findCluster(listOfClusters, id)

while hasNext(valueList)

do



kmInfo← getnext(valueList)

multi← getMulti(kmInfo)
point← getPoint(kmInfo)

sumPoints← addMulti(cluster,multi)
totalPoint← addPoint(cluster, point)

setNumPoints(cluster, sumPoints)
setPointTotal(cluster, totalPoint)

output (id, cluster)

example : This reduce method takes as input the output of the above map
method. So, if we assume as input the output of the map method and a delta
factor d = 0.5, then the outcome of the reduce step would be as follows:

1 , ( 3 [ 1 , 1 ] [ 2 , 2 ] [ 10, 2 ])
1 , ( 1 [ 1 , 2 ] [ 1 , 2 ] [ 1 , 4 ])

}
1 (1 [1 , 1.25] 4 [3 , 4] [11 , 6] false)

2 , ( 1 [ 2 , 6 ] [ 2 , 6 ] [ 4 , 36 ])
2 , ( 1 [ 1 , 5 ] [ 1 , 5 ] [ 1 , 25 ])

}
2 (2 [1.5, 5.5] 2 [3 , 11] [5 , 61] false)

3 , ( 1 [ 5 , 3 ] [ 5 , 3 ] [ 25, 9 ])
3 , ( 2 [ 5 , 4 ] [10, 9 ] [ 50, 41])

}
3 (3 [5 , 3.66] 3 [15 , 12] [75 , 50] false)
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In the example above we can see the grouped by key data on the left side
and the clusters created on the right side. First of all we see in the clusters the
new recomputed centers; before, the cluster with id=3, had {5 3}, as center and
now {5 3.66}. This can easily be exported if we multiply the dimensions of each
point with its multiplicity and divide the sum per dimension with the sum of
points assigned; (5 ∗ 1 + 5 ∗ 2)/3 = 5 and (3 ∗ 1 + 4 ∗ 2)/3 = 3.66. The vector
attributes of each cluster are simply computed by summing the KMeansInfo
corresponding vectors per dimension. Finally, we see that none of the clusters
has converged, as their last value is false. This last boolean attribute depends
on the distance of the new centers to the previous. If this distance is greater
than the factor delta then the cluster has not converged. We can see that all
new cluster centers are farther than delta:

distance( [ 1, 2 ], [ 1, 1.25 ] ) > 0.5

distance( [ 1, 5 ], [ 1, 5.5 ] ) > 0.5

distance( [ 5, 3 ], [ 5, 3.66 ] ) > 0.5

Once all reducers have finished, a function outside Hadoop recomputes the new
center of each cluster by dividing the pointTotal vector with the numPoints
variable per dimension. Finally, a second function checks whether each cluster
has converged or not, by the Euclidean distance of the old and the recomputed
cluster center. If the recomputed cluster center is not farther by a delta factor
(convergence delta, given as a input variable) to the old one, then the cluster
has converged and this is stored in the converged attribute of the cluster. If all
clusters one-by-one have converged then iteration step stops and our algorithm
forwards to the next step, the last assignment.

The second step of our algorithm is called when iterations have finished and
the final cluster centers had been found. This step makes a last assignment of
all points to the final centers. The Map/Reduce job is the same with the one in
iterative part. The reason why we repeat it is because we want to make a last
assignment to our points, so after this job we can compute the Sum of Square
distances of all assigned points to the final centers of each cluster, without any
recomputed centers mess with the final result.
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Chapter 4

Facility Location Algorithm

4.1 Introduction

As we discussed in Section 2.3 Facility Location, also known as location analysis,
is a branch of operations research concerning itself with mathematical modeling
and solution of problems concerning optimal placement of facilities in order
to minimize transportation costs, outperform competitors facilities, etc. Our
focus area in Facility Location Problems is the minsum facility location. In a
basic formulation, the Facility Location problem consists of a set of potential
facility sites L where a facility can be opened, and a set of demand points
D = {x1, x2, ..., xd} that must be serviced. The goal is to pick a subset F =
{f1, ..., fn} of facilities to open, to minimize the sum of distances from each
demand point to its nearest facility, plus the sum of zeta (z), the opening costs
of the facilities.

argmin
D

z|F |+
n∑

i=0

∑
x∈D

d(x, fi)

As we mentioned in Section 2.6 the algorithm we have implemented is ac-
tually a Local Search solving the Facility Location Problem, as a subroutine,
for better performance. A new task in this local search algorithm is the binary
search of the facility cost (zeta), in order to have the desirable number of clusters
at the end of the process.

We have implemented the facility location algorithm in two MapReduce
stages.

4.2 Description of the Algorithm

Firstly, we implemented a stream clustering algorithm based on hierarchical
scheme, discussed earlier in Section 2.6.1. According to this scheme the intermediate-
level clustering is made by a local search algorithm solving the facility location
problem with a binary search of facility cost zeta. Our implementation focuses
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on this clustering of the intermediate-level and especially on the Facility Loca-
tion algorithm, we proposed a parallel version for Hadoop Online Prototype.

As discussed earlier, the Local Search algorithm that Guha et al. propose in
their paper [8] begins finding an initial solution, a list of feasible points, and a
range upon the binary search for facility cost runs, before the Facility Location
subroutine can run. So, in our implementation we begin with computing some
important parameters that will use later. First of all we compute a zeta factor
that is later used as the initial maximum facility opening cost in a range needed
by binary search. Guha et al. propose this zeta initialization to be calculated
by simply adding all point distances from one random chosen point in our data
set. Then, we need a good initial solution to start our algorithm, which is also
proposed to be computed with a simple algorithm shown in the pseudocode
below. We create a cluster center at the first point and then for every point
after the first, depending on its nearest distance (dmin) from the existing cluster
centers, we create, with a probability dmin/zeta, a new cluster center at this
point. Otherwise, we add this current point to the nearest existing cluster.�

�
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Algorithm 4.2.1: InitialSolution(N, zeta)

local clusterList
local currentPoint
local nearestDist, nearestClu
local probability

clusterList← add(N.readF irst)

while hasNext(N)

do



currentPoint← N.next
nearestDist← findNearestClu(clusterList)
propability ← nearestDist/zeta

if probability ← true
then

{
clusterList← add(currentPoint)

else
{
nearestCLu← assignPoint(currentPoint)

Initial Clusters and Facility Cost (zeta) are two of the parameters we need
to run the Facility Location algorithm. A third parameter is a list of feasible
centers. This list is a randomly chosen set of Θ( 1

p log k) points and it is used
to evaluate gain, the cost we would save or add in case a new point becomes
a facility, instead of evaluating it on every point of our data set, as Guha et
al. propose in their paper [8] in order to reduce the total running time of their
algorithm. By that way it is still likely to choose good medians but will finish
our computation sooner. On this set of feasible centers, the p value is depending
on the smaller cluster in our data set. More specifically, |Ci|/|N | ≥ p, where
Ci is the set of points in N assigned to ci assuming that the points c1, ..., ck
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constitute an optimal solution to the k-Median problem for the data set N.
However, we have computed our initial solution and through this cluster centers
we take the smaller cluster size.

After we have computed the facility cost and have drawn some initial clusters
and a list of feasible centers from our data set, we run iteratively the facility
location subroutine and a binary search, after the FL, for the better choice of
zeta (facility cost) in case the desired number of clusters is not achieved. This
iteration step works until our cluster centers are exactly k (a number of our
choice - it is an input parameter) or the minimum zeta becomes greater than
a degree (also our choice - input parameter) of the maximum zeta in binary
search, as it begins searching in a range of zero bottom and the initial zeta as
top. This iteration also breaks when our clusters centers are more than k and
less than 2k.

The above logic is shown in the pseudocode below.
Algorithm LSEARCH(N , d(., .), k, ε, ε′, ε′′ )

1. zmin ← 0.

2. zmax ←
∑

x∈N d(x, x0) (for x0) an arbitrary point in N).

3. z ← (zmin + zmax)/2.

4. (I, α)← InitialSolution(N, z)

5. Randomly pick Θ( 1
p log k) points as feasible medians.

6. While medians 6= k and zmin < (1− ε′′)zmax:

◦ Let (F, g) be the current solution.

◦ Run FL(N, d, ε, (F, g)) to obtain a new solution (F ′, g′)

◦ If k ≤ |F ′| ≤ 2k, then exit loop.

◦ If |F ′| > 2k, then zmin ← z and z ← (zmax + zmin)/2;

◦ else if |F ′| < k, then zmax ← z and z ← (zmax + zmin)/2;

7. Return our Solution (F ′, g′).

Our MapReduce implementation focuses on the Facility Location sub al-
gorithm. The Facility Location clustering implementation is divided in two
MapReduce stages. The first stage runs for a number (given parameter) of fea-
sible points in a feasible list and calculates 4 statistics that we later use, outside
Hadoop, to compute the gain or loss we would have if the current feasible point
becomes a cluster center. We find, for all points, the nearest cluster center and,
in comparison to the Euclidean distance with the feasible point returns four
sums: the first sum is the total distance from all points to the current existing
nearest cluster center, the second sum is the total distance from all points to the
current feasible point, the third is the total distance from points, closer to the
feasible, to the nearest existing cluster center and the last is the total distance
from points, closer to the feasible, to the current feasible.
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Figure 4.1 depicts the two last totals. The total of gray lines is the third
sum, while the total of dashed lines is the fourth sum.

Figure 4.1: Distances from points closer to feasible, to center and to feasible.

Gain for each candidate feasible point is computed in a function outside
Hadoop, using a function that is called once for each cluster, as the reducer emits
the statistics for each cluster. This function works as shown in the pseudocode
(Gain-Function) below. Once gain-function is completed we have a positive gain
if the existence of current feasible is more useful to distribute our input data
points (or, a zero gain otherwise).

Symbol Definition

AC Sum of All distances from assigned points to Center of cluster
AF Sum of All distances from assigned points to Feasible point
SC Sum of (Some) distances from points* to Center of cluster
SF Sum of (Some) distances from points* to Feasible point
SC’ Sum of (Some) distances from points** to Center of cluster
SF’ Sum of (Some) distances from points** to Feasible point

*closer to the feasible than the center of cluster
**closer to the center of cluster than the feasible

Table 4.1: Definition of variables.
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Algorithm 4.2.2: Gain-Function(AC,AF, SC, SF, cluster, zeta, fnum)

local cost
local totSF

totSF ← totSF + SF
if SF != 0 // At least one point closer to feasible

then


cost← cost+ SF − SC

if SF ′ − SC ′ < zeta // Check not closer to feasible points

then

{
cost← cost+ SF ′ − SC ′ − zeta
delete(cluster)

else


if AC == 0 // only one point - center itself

then

if AF < zeta

then

{
cost← cost+AF − zeta
delete(cluster)

if totSF == 0// None is closer to feasible

then

{
if distance(nearestClu.center,feasible)*fnum> zeta
then cost← cost−distance(nearestClu.center,feasible)*fnum

Note that none of our data points are actually reassigned yet. Reassignment
is our next step in second MapReduce Stage. This stage is called only when gain
is positive, otherwise there is no reason to reassign points to the same previous
cluster centers, as feasible point will not be included in cluster list and nothing
will change. So, this second stage finds the minimum distance of all points to
the cluster centers and the feasible and assigns it to the corresponding cluster.
In case the minimum distance is to the feasible a new cluster is created and
later added to the list of clusters.

The driver routine that calls the two Map/Reduce Jobs is shown in the
Figure 4.2.

In the remainder of this chapter, we give the detailed description of a custom
Writable variable, Cluster, that we used and the extended description of each
one of the two stages of the algorithm along with their pseudocode. In every
map/reduce stage described below, we give the types of input and output vari-
ables, and also an example of the key/value pairs that are read and written. The
notation that is used in the following sections to express the key/value pairs of
the map/reduce framework uses underlining for keys and parenthesis for values,
i.e., key, (value).
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Figure 4.2: Driver routine for Facility Location algorithm.

4.2.1 Custom Writable Variable

This Local Search algorithm is also dealing with clustering issues, so the need
arises for a composite variable that keeps all the appropriate information for a
cluster and the points assigned to it. This Cluster Writable variable differs a
little with the one we used in our earlier K-Means implementation.

Cluster Writable

Also in this Facility Location algorithm, our need to categorize clusters based
on their center and their assigned points led us to implement a custom Writable
variable, which we called “Cluster”. This variable is created in order to help
us emit composite values and is used to express clusters. It contains five fields:
clusterId, center, numPoints, pointTotal, sqrTotal. clusterId is the unique iden-
tity of a cluster, center is a vector of doubles expressing the dimensions of the
cluster center, numPoints is an integer expressing the number of points this
cluster is consisted of, pointTotal is a vector of doubles expressing the sum per
dimension of all points assigned in cluster and sqrTotal is a vector of doubles ex-
pressing the sum per squared dimension of all points assigned to cluster center,
those two lasts vectors is used in the end to show the efficiency of clustering. In
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this algorithm we do not recompute the new cluster centers upon the previous
centers and also there is no convergence factor so we do not need the converged
variable that we had in K-Means.

Supposing that we have two points, let us say p1 :{1,1} and p2 :{2,1} assigned
to the same cluster center :{2,2} then the Cluster attributes would be: clusterId
= 1 (random choice but different from other existing objects of Cluster), center
= {2,2}, numPoints = 2, pointTotal = {3 (p1x+p2x) , 2 (p1y+p2y)}, sqrDistance
= 5 (p12x + p22x) , 2 (p12y + p22y).

Input Data Cluster

point id center num pntTot sqrTot
1 1 1 [ 2 , 2 ] 2 [ 3 , 2 ] [ 5 , 2 ]
2 1

The class Cluster implements the following methods:

⇁ associated constructors: All Writable implementations must have a default
constructor so that the MapReduce framework can instatiate them.

⇁ setters and getters for the variables.

⇁ toString(): returns the String representation of the variable. It is called
to write the reducer’s output to the HDFS filesystem, if the output format
is TextOutputFormat.

⇁ readFields(): deserializes the bytes from the input stream by delegating
to each object. It is called by a mapper to read from the HDFS.

⇁ write(): serializes each object in turn to the output stream. It is called by
the collect() function and writes the variable to the HDFS, if the output
format is SequenceFileOutputFormat.

4.2.2 Facility Location In Map/Reduce

As we discussed before Facility Location algorithm consists of two Map/Reduce
stages. The first stage of our algorithm is executed iteratively until a desired
number of feasible points are checked. In the intermediate of these iterations, a
function is executed checking whether the addition of the feasible point, (pro-
cessed in the last iteration) in the cluster list would be gainful for the distribution
of our data set or not. If the feasible helps to reduce the total cost, then the
second stage of our algorithm is activated assigning all points to its nearest
cluster, including the one that feasible has just created.

The algorithm takes as input an initial Solution, a facility cost (zeta), and
a list of feasible points.
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FL Stage 1

The first stage of our implementation calculates some statistics, for the clusters,
that we later use, in an outside Hadoop function, to compute gain for each
feasible center. The first iteration, where this stage is called, begins after the
computation of an Initial Solution and a random choice of a standard number
of feasible centers. So this stage, apart from the data set, has as inputs a list of
clusters, and a list of feasibles.

Map

Mapper interface has four parameters that specify the input and output key/value
pairs. In this Map function the input key is a long integer offset, and the input
value is a line of text containing one point. This mapper’s mission is to evalu-
ate two statistics, with the knowledge of the current cluster list (a global liist)
and the feasible point: the first statistic is the distance from the input point to
the nearest existing cluster center and the second is the distance to the feasible
point. Those two distances concatenated to one text type variable are emitted
as the output value. The output key is also a text type variable expressing the
id of the nearest cluster found. This map function actually assigns each point
to a cluster but also keeps the distance to the feasible, so we can later be able
to compare the sum of distances per cluster.

InputTypes : LongWritable , ( Text )

OutputTypes : Text , ( Text )

Our algorithm is designed for data points that are all vectors with the same
dimension. As discussed in section 2.6 our implementation works on a hierar-
chical scheme, so at the process of first-level datasets, mappers read data of
type “x y m1 ”, because all points have multiplicity “1” (one). However, at the
intermediate levels where data have been computed from previous jobs, map-
pers work on data of type “x y mn mtotx toty mtotx2 toty2”. This data type
includes further information about those points that are previously assigned to
this, hidden-in-data, point. Examples of both input types are shown after this
mapper’s analysis. So, once a mapper reads a line splits to its components. One
of these components is the data point that mapper uses to find the distances
from nearest cluster center and from the feasible point. Once distances have
been computed, mapper emits the id of the nearest cluster (as output key) and
a Text type object containing the point’s nearest distance from all cluster cen-
ters and the distance from feasible point (as a value). Moreover, before emitting,
distances are multiplied according to the multiplicity factor of the data point.
More specifically, the output value is of a type A,B, where A is the nearest
distance of data point to all cluster centers and B is the distance between data
point and feasible.

The pseudocode below depicts the logic of our first-stage mapper.

36



�

�

�



Algorithm 4.2.3: FLMapperStg1(key, value)

global listOfClusters
global feasible
local point,multi
local nearestDistance, feasibleDistance
local nearestCenter
local keyOutput, valueOutput
local A,B

point,multi← split(value)

feasibleDistance← distance(feasible, point)

for each cluster ∈ listOfClusters

do



center ← getcenter(cluster)
distance← distance(center, point)

if distance < nearestDistance

then

{
nearestDistance← distance
nearestCluster ← cluster

A← nearestDistance ∗multi
B ← feasibleDistance ∗multi

keyOutput← key

valueOutput← A,B

output (keyOutput, valueOutput)

Example : If we suppose that we have from initialization the cluster centers:
[ 1 , 1 ],[ 1 , 6 ], with ids 1, 2 respectively, and a set of first-level data points in
input file, as it is shown below, and the feasible: [ 5 , 3 ] then the outcome of
the map execution would be this:

input id A B

1 5 m2 → 2 , ( 2 , 8.94 )

1 1 m1 → 1 , ( 0 , 4.47 )

1 2 m1 → 1 , ( 1 , 4.12 )

1 6 m1 → 2 , ( 0 , 5 )

5 3 m1 → 1 , ( 4.47 , 0 )
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5 4 m3 → 2 , ( 13.41 , 3 )

Now, if we have n-level data points the result will be the same, as the
additional information these data have is not used in this step of our algorithm.

1 5 m2 m3 9 m5 41 → 2 , ( 2 , 8.94 )

1 1 m1 m3 3 m5 5 → 1 , ( 0 , 4.47 )

Reduce

As we said in the beginning of this section this stage is used for statistical
information. This reducer takes as input key/value pairs two text-type variables,
as the above mapper’s output and returns as output key the same id of the
cluster it is processing, and as output value a text-type variable, in which four
statistics about the current cluster are concatenated. This reducer is actually a
very simple one, as it sums in a way the values in the value list.

InputTypes : Text , ( Text )

OutputTypes : Text , ( Text )

Each reducer in this stage reads as input, data of type {key , [(nearestClu1
, distFeas1),(nearestClu2 , distFeas2),...,(nearestCluN , distFeasN)]}. Re-
ducers for each key, actually creates four totals. The one sums all nearestClu
values, expressing the sum of distances to the center of all points assigned to
this cluster, the second one, sums all distFeas values, expressing the sum of
distances to the feasible point of all points. The third, sums those nearestClu
values that in comparison with the corresponding value distFeas are greater.
The fourth and last total, keeps the sum of those distFeas distances that in
comparison with the corresponding nearestClu are smaller. Practically, the
first total keeps the cost of cluster, in case feasible would not exist, the second
keeps the cost of cluster in the case of the feasible to be the center, the third
keeps the cost of cluster, in case feasible exists as a cluster and has taken some
points from it, and the last keeps the cost of cluster that feasible would create
and would take some the current cluster’s points to itself.

The algorithm below shows how this reducer works.
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Algorithm 4.2.4: FLReducerStg1(key, value)

local nearestAll, feasibleAll
local nearestSome, feasibleSome
local prevDist, feasDist
local outputV alue

nearestAll← 0
feasibleAll← 0
nearestSome← 0
feasibleSome← 0

while hasNext(valueList)

do



prevDist, feasDist← split(value)

nearestAll← add(prevDist)
feasibleAll← add(feasDist)

if feasDist < prevDist

then

{
nearestSome← add(prevDist)
feasibleSome← add(feasDist)

outputV alue← nearestAll, feasibleAll, nearestSome, feasibleSome

output (key, outputV alue)

Example : This reduce method takes as input the output of the above map
method. So if we suppose the same data set as input and the output of the map
method, then the outcome of the reduce step would be this:

key valueList nAll fAll nSome fSome

1 , ( 0 , 4.47 )
1 , ( 1 , 4.12 )
1 , ( 4.47 , 0 )

}
1 ( 5.57 , 8.59 , 4.47 , 0 )

2 , ( 2 , 8.94 )
2 , ( 0 , 5 )
2 , ( 13.41, 3 )

}
2 ( 15.41 , 16.94 , 13.41 , 3 )

4.2.3 FL Stage 2

This second MapReduce Stage of our Facility Location is called once for each
feasible point, if only the gain in cost is positive. In this stage we reassign our

39



data points to the updated list of cluster centers (including the feasible point).
We find for each point the minimum distance to the centers and assign it to the
correct cluster.

Map

This mapper takes as input value a text-type variable, which actually is a line
from our data set and contains a single point. The input key is a long integer
offset. This mapper’s mission is to find for each point the smaller distance
from either one of the centers from in the list of clusters or the feasible point.
All mappers know the current cluster list and the fesaible point. In the end
the output key is text-type parameter expressing the cluster or the feasible
that is closer to the processing point, and the output value is also a text-type
parameter expressing the point with some useful informations that we later use
in the reduce step.

InputTypes : LongWritable , ( Text )

OutputTypes : Text , ( Text )

The input of this map method is a file containing a set of data points.
According to the hierarchical scheme, our algorithm works on as mentioned
in section 2.6, the data set that reducers receives as input are of two kinds;
first-level and intermediate-level type. At the process of the first-level set of
data points, mappers read data of type “x y m1 ”, because all points have
multiplicity “1” (one) . At the intermediate-levels, mappers read data of type
“x y mn mtotx toty mtotx2 toty2”. If we split this data on m, we can see that
this type of intermediate data includes, apart from the data point, its multi-
plicity, which actually is the number of points that assigned to this point (as
cluster center) in a previous level, and two other vectors being more informa-
tion about the cluster and its assigned points from the previous step. Once the
mapper reads the data point from the splitted input, it computes the distance
(from this point) to the known feasible and searches in a global known cluster
list the nearest cluster. Once, those two distances have been computed, mapper
compares them and emits as output key the id of nearest cluster or an “f” (for
feasible), depending which one is closer to the data point. The output value is
the input data point with its all information. In order to take advantage of the
number of our working machines and not to face a bottleneck at this point with
a limited number of reducers, we tweak the output key concatanating the id
with a random number between 1 and the number of working machines divided
by the size of cluster list. So, we distribute the intermediate data to much more
reducers than before, when only a number of cluster list’s size reducers would
have to bear the hole process letting the rest remain idle.

The pseudocode below shows the way a mapper works.
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Algorithm 4.2.5: FLMapperStg2(key, value)

global listOfClusters
global feasible
global reducers
local point
local nearestDistance, feasibleDistance
local nearestCenter
local keyOutput, valueOutput
local id

point← split(value)

feasibleDistance← distance(feasible, point)

for each cluster ∈ listOfClusters

do



center ← getcenter(cluster)
distance← distance(center, point)

if distance < nearestDistance

then

{
nearestDistance← distance
nearestCluster ← cluster

if feasibleDistance < nearestDistance
then

{
id← f

else
{
id← getId(nearestCluster)

random← rand(reducers/(listOfClusters.size() + 1))
keyOutput← id+ random
valueOutput← value

output (keyOutput, valueOutput)

Example : If we suppose that we have from initialization the cluster centers:
[ 1 , 1 ][ 1 , 6 ], with ids 1, 2 respectively, a set of data points in input file and
as feasible: [ 5 , 3 ] then the outcome of the map execution would be this:

1 5 m2 → 2r , ( 1 5 2 )

1 1 m1 → 1r , ( 1 1 1 )

1 2 m1 → 1r , ( 1 2 1 )

1 6 m1 → 2r , ( 1 6 1 )

5 3 m1 → fr , ( 5 3 1 )

5 4 m3 → fr , ( 5 4 3 )
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We can see that output keys are 1r , 2r in case one of the existing clusters
is closer to the point and “fr” when the distance of the point to feasible is
shorter than to any other existing cluster centers. The “r” character, as we said
before, is a random number that helps us distribute our data to more reducers.
In this case r can take values between 1 and numberOfReducers/(2 + 1). For
example, if our job runs 90 reducers then each cluster’s data will be distributed
to 30 reducers instead of 1. Also, in the output values the character m is missing
as in the beginning of the mapper we split the input and then we create a new
variable without it, which is the output value.

Reduce

This reducer is the final step of all points assignment to the clusters including
the new cluster that feasible created. Reducer takes as input key and values
two text-type variables, the same as the mapper’s output key/value pairs. The
output key is also a text-type variable expressing the id of the cluster that we
are processing and the output value is Cluster-type variable (custom Writable
variable, we implemented), that keeps all the information needed about the
cluster.

InputTypes : Text , ( Text )

OutputTypes : Text , ( Text )

Reducers take as input the output produced by the mappers. After, the
output data of mappers, has been shuffled and sorted, it has been grouped by
key. Each reducer takes a unique key with all the values that share the same
key. This means that each time reducer handles the data of a whole cluster. In
this reducer the key is a cluster id or an “f”, which means that it processes the
data of the new cluster that feasible will create. Once reducer receives the data,
the input key is searched in the current cluster list to match the appropriate
cluster. However, the cluster list is not updated yet, as the feasible has not
create a cluster yet and no reassignments have been done. So the search in
cluster list will not return a value if the key is “f”. In case the data belongs to
the feasible, reducers need to create a cluster first. Otherwise reducers continue
their job as normally, run on the value list and assign all points to the cluster
found. Finally, the output key is the cluster id and the output value is the
cluster itself.

The pseudocode below show how this reducer works.
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Algorithm 4.2.6: FLReducerStg2(key, value)

global listOfClusters
local valueIn
local outptuKey, outputV alue

while hasNext(valueList)

do

{
valueIn← getNext(valueList)
addPoints(cluster, valueIn)

outputKey ← getId(key)
outputV alue← cluster

output (outptuKey, outputV alue)

Example : This reduce method takes as input the output of the above map
method. So if we suppose the same data set as input and the output of the map
method, then the outcome of the reduce step would be this:

1 , ( 1 1 1 )
1 , ( 1 2 1 )

}
1 , ( 1 [ 1 1 ] 2 [ 2 3 ] [ 5 2 ] )

2 , ( 1 6 1 )
2 , ( 1 5 2 )

}
2 , ( 2 [ 1 6 ] 3 [ 2 11 ] [ 2 61 ] )

f , ( 5 3 1 )
f , ( 5 4 3 )

}
f , (−1 [ 5 3 ] 4 [ 10 7 ] [ 50 21 ] )

In the example above, we see the clusters above on the right side, with the
only strange the id of the newly created cluster with the feasible point as center.
In this case we have to initialize the id with an integer as we can not leave the f
for obvious reasons, this choice, at the moment, is a negative one as we do not
know how far the other ids have been and we do not want any duplicates, as
ids are only positive. As we said before, this negative id is temporary. The final
id of the new cluster will be given outside Hadoop, where we keep a continuous
rising variable for that reason.

Also, in the example above we have not included the concatenated random
variable to the input key for simplicity purpose. Outside Hadoop there is a loop
that sums all the reducer’s outputs for each cluster (due to this random variable
we would have more than one output) creating the final clusters.

Note that no deletion is made in this Map/Reduce step. The algorithm says
that points cannot be reassigned except to the feasible point, so we keep all
clusters at this step and with an other function outside Hadoop we check if
the remaining assigned points to each cluster are costly enough to handle the
facility cost. Otherwise we reassign all the points to the feasible first and then
delete the cluster.
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Chapter 5

Results

In this chapter we present and analyze the results of our experiments. We
conducted all experiments on a 13-machine cluster (1 master - 12 slaves) with
Quad Core Processors and 4GB RAM. In our experiments we compare the SSQ
measure, which is the sum of squares of distances to medians, and the scalability
of our algorithms to the Hadoop framework. Our experiments are divided into
2 parts. The first part checks the sensitivity of some basic parameters, that
we use in our algorithms and how strong or weak influence they have on the
final results as far the quality of clustering (SSQ) and time of completion. The
second checks the scalability of our algorithms on time either if we change the
size of datasets or the number of running nodes on cluster.

The dataset that we used contains real data found on a Data Mining Com-
munity’s Resource [3] on Internet.

Our dataset contains statistics for words that have been found in books.
Each line in this dataset consists of four variables: one expressing the year that
the statistics for each word is generated, the second variable is the number of
overall times occurred this word, the third expresses the distinct number of
pages this word is found and last is the number of distinct books this word has
been written to. So we have in each line a four-dimension point.

These datasets were generated in July 2009 by Google labs.

5.1 Sensitivity

In this section we experiment on some basic parameters, we use in our algo-
rithms, to check how much they infect the final outcome as far the quality of
clustering and the total time of completion, so to run, in the next step, some
time-performance experiments with the best selection of parameters.

K-Means algorithm runs on two basic parameters: maximum number of
iterations and a factor delta that is used for checking the convergence of the
previous to new cluster centers in each iteration. Firstly, we fixed the number
of iterations and run our K-Means algorithm for different delta factors. We
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experimented on three different datasets to see also the impact of delta on
different composition of data. All experiments have been repeated 4 times
because our algorithms begin on random cluster centers and we want to check
how this randomization affect the final outcome, and also have a better view of
our results.

For the quality of clustering we focus on SSQ and how many clusters have
been converged. In the tables below we show the number of converged clusters
with a variable that is *F, where * is the number of not converged clusters or
simple F when none of the clusters have been converged and T when all clusters
are converged.

Fixed Iterations

Running on our hadoop cluster of 13 nodes and examining the delta factor with
fixed maximum iterations to be 15, we get the following results.

Data SSQ converge Time (msec)
1 MB 3.00E+007 T 223854

45000 points 3.00E+007 2F 298294
3-dimension 3.00E+007 2F 306957

3.00E+007 2F 306498
Average 3.00E+007 2F 284015 ms

Table 5.1: Few dimensions with delta 0.2

In Table above (5.1) we see the results from 4 same experiments run on
1MB data containing 45000 3-dimensional points. The algorithm runs with
delta factor 0.2, and fixed maximum iteration to be 15.

Data SSQ converge Time (msec)
1 MB 4.02E+007 F 314302

13800 points 3.98E+007 2F 314534
9-dimension 4.00E+007 2F 311555

3.99E+007 2F 311780
Average 4.00E+007 2F 313042 ms

Table 5.2: Many dimensions with delta 0.2
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Data SSQ converge Time (msec)
3.3 MB 1.37E+008 1F 344166

45000 points 1.39E+008 F 336537
9-dimension 1.38E+008 F 327090

1.38E+008 F 338441
Average 1.38E+008 F 336558 ms

Table 5.3: Many dimensions with delta 0.2

In two Tables above (5.2, 5.3) we run on 9-dimensional points. In the first
Table we experiment on a same-sized data with the 3-dimension dataset (1MB
9-dim – 1MB 3-dim) in the beginning. While in the second, we run on a same-
amount of points with the 3-dimension dataset (45000 9-dim points – 45000
3-dim points). We can see that this delta (0.2) demands a strong-accuracy
for our final clusters, but 15 iterations are not enough to allow the algorithm
converge on this result.

In the next three (5.4, 5.5, 5.6) Tables we run on the same datasets changing
the delta to 0.5. We want to check what will happen if we sacrifice a kind of
accuracy.

Data SSQ converge Time (msec)
1 MB 3.00E+007 1F 308352

45000 points 3.00E+007 T 71695
3-dimension 3.00E+007 T 268918

3.01E+007 2F 309252
Average 3.00E+007 1F 239554 ms

Table 5.4: Few dimensions with delta 0.5

Data SSQ converge Time (msec)
1 MB 3.97E+007 T 290176

13800 points 3.98E+007 2F 319935
9-dimension 3.99E+007 2F 323985

3.98E+007 1F 316524
Average 3.98E+007 1F 312655 ms

Table 5.5: Many dimensions with delta 0.5
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Data SSQ converge Time (msec)
3.3 MB 1.37E+008 1F 332744

45000 points 1.37E+008 F 335331
9-dimension 1.39E+008 2F 354608

1.37E+008 F 308352
Average 1.37E+008 2F 332758 ms

Table 5.6: Many dimensions with delta 0.5

In this case we can see that our datasets converge easier than before and the
average time of completion is similar or better. We do not lose in accuracy as in
this number of iterations the previous delta (0.5) almost never converged so the
computation has no difference. The difference in accuracy would be appeared
if we had the ability to let our algorithm run until it converges without limit
of iterations, then the final clusters would be better as the accuracy factor
(delta) would be stronger. Now with a greater delta, we have the advantage of
completion time and convergence.

In the next three Tables (5.7, 5.8, 5.9) we try an even greater delta 0.8 to see
if the results are also encouraging.

Data SSQ converge Time (msec)
1 MB 3.02E+007 2F 308790

45000 points 3.00E+007 T 277997
3-dimension 3.01E+007 T 252633

3.01E+007 T 273928
Average 3.00E+007 T 278337 ms

Table 5.7: Few dimensions with delta 0.8

Data SSQ converge Time (msec)
1 MB 3.98E+007 T 274211

13800 points 4.03E+007 1F 316817
9-dimension 4.01E+007 T 194161

4.00E+007 1F 318165
Average 4.01E+007 T 275838 ms

Table 5.8: Many dimensions with delta 0.8
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Data SSQ converge Time (msec)
3.3 MB 1.37E+008 T 309568

45000 points 1.39E+008 T 184483
9-dimension 1.37E+008 2F 332950

1.40E+008 2F 358312
Average 1.38E+008 1F 306328 ms

Table 5.9: Many dimensions with delta 0.8

From the experiments above we can see that our algorithm converges quite
easier and faster with delta=0.8. However, some times we see that the process
is completed quite fast because of convergence but the SSQ is higher than we
expected i.e., in Table 5.8 the algorithm has converged in 194 sec, with SSQ
4.01E+007, in contrary to Table 5.5 that it converged in almost 290 sec but the
SSQ is a lot better. The disadvantage of a greater delta is that it probably ends
the process earlier with not the desirable quality in results.

Fixed Delta

So after the previous experiments, we fix the delta factor to be 0.5 and exper-
iment on different maximum number of iterations. We want to see how this
parameter (max. iterations) extends or decreases the processing time and how
important this change is to the quality of clustering. We also use three different
datasets as in the previous experiments.

Data SSQ converge Time (msec)
1 MB 3.01E+007 2F 222076

45000 points 3.00E+007 2F 222749
3-dimension 3.00E+007 1F 222631

3.00E+007 T 94795
Average 3.00E+007 1F 190562 ms

Table 5.10: Few dimensions with 10 maximum iterations

Here we can see that it is very rare to see our clusters converging. Although,
the one of the runs has been converged, we see that completion time is very
short and this statistic can lead us to the conclusion that we were very lucky
with the selection of the initial (random) cluster centers.

In the next two Tables (5.11, 5.12), that we run on 9-dimensional points, we
see that it is too difficult for our algorithms to finish due to convergence and
definitely the 10 iterations are not enough.
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Data SSQ converge Time (msec)
1 MB 4.00E+007 2F 209130

13800 points 3.98E+007 2F 208184
9-dimension 4.06E+007 2F 208189

3.99E+007 2F 207392
Average 4.01E+007 2F 208223 ms

Table 5.11: Many dimensions with 10 maximum iterations

Data SSQ converge Time (msec)
3.3 MB 1.37E+008 F 226166

45000 points 1.39E+008 2F 230546
9-dimension 1.37E+008 2F 229408

1.37E+008 2F 245430
Average 1.38E+008 2F 232887 ms

Table 5.12: Many dimensions with 10 maximum iterations

At the next experiments we use 20 iterations as limit for our algorithm, as
we saw that 10 are not enough.

Data SSQ converge Time (msec)
1 MB 3.00E+007 T 378696

45000 points 3.00E+007 T 255828
3-dimension 3.00E+007 T 299843

3.00E+007 T 356421
Average 3.00E+007 T 322697 ms

Table 5.13: Few dimensions with 20 maximum iterations

In Table 5.13 we see that dataset with 3-dimensional points is always com-
pleted with all clusters converged. This is very encouraging and allows us to
experiment with less iterations for even better results, for such type of datasets.

The 9-dimensional datasets (5.14, 5.15) are not so successful as the first
dataset, but their results are also good enough. The average of only one not
converged cluster in a multi-dimensional dataset is quite good.
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Data SSQ converge Time (msec)
1 MB 3.99E+007 2F 408988

13800 points 3.98E+007 T 305886
9-dimension 3.98E+007 T 404066

3.98E+007 1F 410966
Average 3.98E+007 1F 382476 ms

Table 5.14: Many dimensions with 20 maximum iterations

Data SSQ converge Time (msec)
3.3 MB 1.37E+008 T 273303

45000 points 1.39E+008 F 445581
9-dimension 1.37E+008 1F 454715

1.37E+008 T 284359
Average 1.37E+008 1F 364489 ms

Table 5.15: Many dimensions with 20 maximum iterations

As the experiments of our algorithms performance will run with the first
type of dataset containing few-dimensional points, we want to experiment once
again with 15 iterations to see if this returns a better completion time with
satisfactory convergence results.

Data SSQ converge Time (msec)
1 MB 3.00E+007 T 223205

45000 points 3.00E+007 1F 323049
3-dimension 3.01E+007 2F 327114

3.00E+007 T 141655
Average 3.00E+007 1F 253755 ms

Table 5.16: Few dimensions with 15 maximum iterations

In Table 5.16 we see the results from our K-Means algorithm that runs on
15 maximum iterations and 0.5 delta factor. We observe that not all the runs
have totally converged clusters, but there is a high probability with a lot better
average time of completion. So the conclusion is that we choose 15 maximum
iteration sacrificing on the probability of not converging but having an important
advantage on completion time.

In conclusion, we can say that it is harder for multi-dimensional datasets to
clustered than datasets with few-dimension points. Also, the size of dataset is an
important factor, as the bigger a dataset is the more difficult to be clustered. Of
course, very important is the content of a dataset as far the physical position of
the points. A dataset with uniformly-spread points would be harder to clustered.
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Our second algorithm Facility Location runs on one basic input parameter:
the number of testing feasible points. This parameter expresses the number of
randomly selected feasible points from a list that is created in the beginning of
our algorithm. This parameter is important because a big value may lead to a
better quality of clustering, as we would have a large variety of points to select
but this will delay our algorithm to complete, while a small value will make our
algorithm faster but with higher probability of worst results.

Running on our Hadoop-Online cluster of 13 nodes and examining the num-
ber of testing feasible points, we get the following results, for 5 feasible points.

Data SSQ Time (msec)
1 MB 3.32E+007 333638

45000 points 4.12E+007 174579
3-dimension 4.24E+007 405464

4.65E+007 373105
Average 4.10E+007 321696 ms

Table 5.17: Few dimensions with 5 feasible points

Data SSQ Time (msec)
1 MB 5.43E+007 598675

13800 points 5.82E+007 653535
9-dimension 5.03E+007 612956

5.35E+007 590741
Average 5.40E+007 613976 ms

Table 5.18: Many dimensions with 5 feasible points

In Tables above (5.17, 5.18) we see that it is more difficult for our algorithm
to cluster a dataset with more dimensions, as the average time of completion
for same-sized datasets is doubled in 9-dimension dataset.

Data SSQ Time (msec)
3.3 MB 1.63E+008 818710

45000 points 1.79E+008 955364
9-dimension 2.15E+008 588591

1.84E+008 882307
Average 1.86E+008 811243 ms

Table 5.19: Many dimensions with 5 feasible points

51



The next number of feasible points we tried is 10. Raising the number of
feasible points we expect better quality in clustering, but worst completion time.

Data SSQ Time (msec)
1 MB 3.76E+007 566746

45000 points 3.32E+007 923639
3-dimension 4.20E+007 639073

3.35E+007 828596
Average 3.65E+007 739513 ms

Table 5.20: Few dimensions with 10 feasible points

Already in the first Table 5.20 we see that the average SSQ is a lot better,
but the time is over-doubled.

Data SSQ Time (msec)
1 MB 4.59E+007 1040234

13800 points 4.91E+007 1198574
9-dimension 4.53E+007 965095

4.44E+007 1236414
Average 3.72E+011 1110079 ms

Table 5.21: Many dimensions with 10 feasible points

Data SSQ Time (msec)
3.3 MB 2.00E+008 1170225

45000 points 1.41E+008 1827828
9-dimension 1.64E+008 1201169

1.43E+008 1500718
Average 1.62E+008 1424985 ms

Table 5.22: Many dimensions with 10 feasible points

In 9-dimension datasets, results are quite similar to the first Table. Quality
of clustering is better, however, the average time of completion is raised.

52



The next try is with 15 feasible points. We expect to see similar improvement
to quality and further delay to the time.

Data SSQ Time (msec)
1 MB 2.65E+007 1357716

45000 points 3.45E+007 942357
3-dimension 3.69E+007 1344360

3.83E+007 977491
Average 3.40E+007 1155481 ms

Table 5.23: Few dimensions with 15 feasible points

The first Table (5.23) is not that encouraging, against to what we expected.
We have a linear raise to the completion time, while the SSQ is not decreased
also linear.

Data SSQ Time (msec)
1 MB 4.07E+007 1500341

13800 points 4.31E+007 1593195
9-dimension 4.68E+007 1553709

4.24E+007 1490635
Average 4.32E+007 1534470 ms

Table 5.24: Many dimensions with 15 feasible points

Data SSQ Time (msec)
3.3 MB 1.70E+008 1569643

45000 points 1.44E+008 1637204
9-dimension 1.48E+008 1725519

1.59E+008 1593547
Average 1.55E+008 1631478 ms

Table 5.25: Many dimensions with 15 feasible points

In this third try we see that our algorithm completes clustering with better
quality in results, but this slightly improvement is not satisfactory enough to
the further delay of time.

In Conclusion we

Splits

Our algorithms are following a streaming model based on piece-meal approach,
so we had to check how the number of pieces affect the final outcome. We tried
both algorithms run on the same dataset three times, each time with a different
number of splits. We used a dataset of 100 MB size, containing 4-dimensional
points.
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SSQ Time
100 MB - 1*100 MB 5.35E+009 1842932 msec
100 MB - 2*50 MB 5.56E+009 1715841 msec
100 MB - 4*25 MB 5.68E+009 1492355 msec

Table 5.26: K-Means , splits

In Table 5.26 we can see that the more splits we have the less time algorithm
needs to be completed. We expected that quality will be worsen with the raise of
the number of splits. On the other hand, time reduces because, as we saw before
in delta and number of iteration experiments, it is easier for a smaller dataset
to converge and complete its process before reaching the maximum number of
iterations.

SSQ Time
100 MB - 1*100 MB 5.11E+009 2678537 msec
100 MB - 2*50 MB 6.88E+009 4113837 msec
100 MB - 4*25 MB 8.59E+009 5413499 msec

Table 5.27: Facility Location , splits

In Table 5.27 neither time, nor the quality is getting better by raising the
number of splits. Both quality and time are expected to be worsen. As we
mentioned before, Facility Location algorithm, faces a bottleneck in its first
stage (gain computation) as the number of reducers is limited. FL runs a great
amount of jobs before get completed and most of them are computing gain, so
scalability of this algorithm has still room of improvement.

5.2 Performance

Next, we will measure the scale up that we have achieved in our implemen-
tations. These experiments are separated into two types. In first type we
experimenting on different number of working nodes on the same dataset and
checking the total time of completion. The second type also checks the total
time of completion but now on different sized dataset with all nodes enabled
and working.

Nodes Vs Time

We run our K-Means implementation with a 4-dimension dataset as input, ex-
amining clustering with delta = 0.5 and maximum iterations = 15, while chang-
ing the number of compute nodes.

The figure below (5.1) summarizes the results above:
Figure 5.1 shows the scale up that we achieves with our algorithm, by running

experiments in 4, 8 and 12 compute nodes. As we can see the time is decreasing
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4 nodes 8 nodes 12 nodes
1GB - 10*100MB 22979223 msec 10910371 msec 7645795 msec

∼ hours 6.4 3 2.1

Table 5.28: K-Means , delta = 0.5 , max.iterations = 15

Figure 5.1: Number of compute Nodes Vs Time (K-Means).

linearly, while adding more working nodes.
We repeat the same experiment for our second algorithm, Facility Location,

with input a 4-dimension dataset and number of testing feasible point = 10.
Tests are occurred on 4, 8 and 12 nodes and results are shown in the Table
below.

4 nodes 8 nodes 12 nodes
1GB - 10*100MB 88920436 msec 55819384 msec 47461542 msec

∼ hours 24.7 15.5 13

Table 5.29: Facility Location , feasible points = 10

Figures 5.1 and 5.2 show the scale up, or in other words the rank of paral-
lelization that we have achieved, in our implementations. In our second algo-
rithm, time of completion is quite long and the reason is that more than 60 jobs
are completed for each run.
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Figure 5.2: Number of compute Nodes Vs Time (Facility Location).

Data Vs Time

As we mentioned before the second type of our experiments checks the perfor-
mance of our algorithms comparing the time needed to complete clustering in
different-sized datasets. We expect our algorithms to be scalable with linear
raise of time as the dataset will be getting bigger.

In Table below we see the results from K-Means algorithm on 12 working
nodes and datasets of 300 MB ,600 MB and 1 GB.

300 MB 600 MB 1 GB
12 nodes 3096104 5294255 7645795
∼ hours 0.86 1.47 2.1

Table 5.30: K-Means , Datasets Comparing to Time

The figure below (5.3) summarizes the results above:
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Figure 5.3: Datasets Vs Time (K-Means).

In figure 5.3 we see that our algorithm is working quite well as the time of
completion is raising linearly to the size of datasets.

The same experiment has also been done for our second algorithm, Facility
Location. In FL we expect to see also a linear graph but due to the bottleneck
that algorithm faces in the first stage it would be normal to see the line start a
bit higher than zero.

300 MB 600 MB 1 GB
12 nodes 21229034 33859397 47461542
∼ hours 5.9 9.4 13.18

Table 5.31: Facility Location , Datasets Comparing to Time

The figure below (5.4) summarizes the results above:

Figure 5.4: Datasets Vs Time (Facility Location).

Figure 5.4 depicts the problem we mention before. Although we have a
constant raise of time, our algorithm needs a initial time limit that is wasted in
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the first stage of our algorithm that is not so scalable.
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Chapter 6

Conclusions

The motivation of our work has been to develop a parallel Map/Reduce algo-
rithm in Hadoop Online Prototype to handle data in streams as they become
available.

However, sequential algorithms cannot address the problem of data that
occurs in real world networks. Hadoop is a tool that offers us the possibility
to easily write parallel algorithms without caring about parallelization details
like the communication of machines, the distribution of data, the replication
and fault tolerance. All that is needed for a programmer, is to supply the
implementation of a map and a reduce function. Hadoop is a powerful tool and
has already been used in clustering algorithms like Fuzzy K-Means, Mean Shift,
Dirichlet process clustering ([4]), K-Means ([12]) etc.

We worked on Hadoop Online Prototype (HOP), which is a modified version
of Hadoop and allows data to be pipelined between tasks and between jobs. This
can enable better cluster utilization and increased parallelism, and allows new
functionality: online aggregation and stream processing. The contribution of our
work is to supply two scalable algorithms that produce clustering on streams;
K-Means algorithm and Local Search algorithm solving the Facility Location
Problem. We performed several experiments in datasets with sizes from 13,000
to 80,000,000 multi-dimensional points and deducted interesting results. The
experimental process has led us to the conclusion that the performance of our
parallel algorithms is totally controlled by the I/O operations which are pretty
heavy due to the great number of iterations, especially in dense datasets. How-
ever, we have proved through experimental studies that they scale up well and
can be used in massive datasets, if we have a big cluster at our disposal.

Future work could focus on the effort of reducing the time of completion for
each dataset by resolving the bottleneck problem that we are facing in the Fa-
cility Location. Furthermore, future work includes the development in Hadoop
of more stream algorithms with more emphasis on pipelining functionality given
by HOP and experiment on real streams.
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