

TECHNICAL UNIVERSITY OF CRETE

DEPARTMENT OF ELECTRONIC AND COMPUTER ENGINEERING

DIPLOMA DISSERTATION

 ‘COVER SONG’

IDENTIFICATION

by

XIROUCHAKIS NIKOLAOS

COMMITTEE:

POTAMIANOS ALEXANDROS, Associate Professor (Supervisor)

DIGALAKIS VASSILIS, Professor

PETRAKIS EURIPIDES, Professor

CHANIA

OCTOBER 2011

ii

 iii

Acknowledgments

I would like to show my gratitude to my supervisor who guided me towards a very

interesting topic.

I would like to thank my parents for their continuous support.

Finally, I would like to thank all those who made their work and research freely

available on the internet.

iv

 v

Abstract

With the vast increase in size of music databases, automatic content-based search

methods are required for facilitating fast retrieval of music or information about

music. Such search methods may be based on an audio-query tactic making the

extraction and comparison of musical features and thus the analysis of musical

similarity an interesting field of research. In this context, the present work focuses on

describing a system which tries to identify cover versions of a query-song. Such songs

are usually different in many musical attributes but can still be defined as 'similar'.

Hence, investigating such a system may provide an analysis of which features are

considered relevant for music similarity. To this end song representations need to be

invariant to instrumentation and tempo. This is achieved by making use of 12-

dimensional chroma features which are then averaged by the song's beat times.

Comparison of songs is then carried out by cross-correlating the above representations

taking into account all possible key transpositions as well as two possible global

tempi. By testing this system on a music collection consisting of 80 songs with 2

versions of each,querying each one of them resulted in a 52.5% accuracy, whilst for a

collection containing 15 pairs of song's a correct cover was found 10 times out of all

cases. Such work does not only contribute in searching retrieving and organizing

music collections but may also influence commercial copyright management of music

licenses. While the present work mainly focuses on the task of automatic cover song

identification it also makes a preliminary analysis of automatic beat tracking,

automatic fingerprint matching as well as automatic chorus detection systems.

vi

Περίληψη

Με την ραγδαία αύξηση του µεγέθους των µουσικών βάσεων δεδοµένων απαιτούνται

αυτόµατες µέθοδοι αναζήτησης βασισµένες στο περιεχόµενο των µουσικών σηµάτων

για την γρήγορη ανάκτηση µουσικών κοµµατιών ή πληροφοριών για αυτά. Τέτοιες

µέθοδοι αναζήτησης µπορεί να είναι βασισµένες σε µια τακτική όπου η είσοδος στο

σύστηµα να είναι ένα ηχητικό σήµα, µε αποτέλεσµα η εξαγωγή και η σύγκριση

µουσικών χαρακτηριστικών και γενικότερα η ανάλυση της µουσικής οµοιότητας να

είναι ένα ενδιαφέρον ερευνητικό θέµα. Στο πλαίσιο αυτό, η παρούσα εργασία

επικεντρώνεται στην περιγραφή ενός συστήµατος που προσπαθεί να αναγνωρίσει

διασκευές ενός τραγουδιού που έχει δοθεί ως είσοδος. Τέτοιες διασκευές διαφέρουν

σε πολλά µουσικά χαρακτηριστικά, όµως διατηρούν µια ορισµένη ‘οµοιότητα’. Έτσι

µε τη διερεύνηση ενός τέτοιου συστήµατος παρέχεται µια ανάλυση για το ποια

χαρακτηριστικά του µουσικού σήµατος θεωρούνται σηµαντικά για την µέτρηση της

µουσικής οµοιότητας. Για το σκοπό αυτό οι αναπαραστάσεις των τραγουδιών θα

πρέπει να είναι αµετάβλητες στην ενοργάνωση και στο ρυθµό. Αυτό επιτυγχάνεται µε

τη χρήση 12-διάστατων χαρακτηριστικών chroma των οποίων στη συνέχεια

υπολογίζεται ο µέσος όρος µε τη χρήση των χρονικών στιγµών κάθε παλµού (beat)

µέσα στο κοµµάτι. Σύγκριση τραγουδιών γίνεται µε την ετεροσυσχέτηση

(crosscorrelation) των παραπάνω αναπαραστάσεων λαµβάνοντας υπόψη όλες τις

πιθανές µεταθέσεις κλειδιού όπως και δύο ρυθµών, πιθανώς µε διαφορετικό µετρικό

επίπεδο. Η δοκιµή αυτού του συστήµατος σε µια µουσική συλλογή που περιέχει 80

διαφορετικά τραγούδια εκ των οποίων το καθένα έχει δύο διαφορετικές εκδόσεις και

κάνοντας αναζήτηση για όλες τις περιπτώσεις είχε ως αποτέλεσµα 52.5% επιτυχία.

Για µουσική συλλογή 15 ζευγών τραγουδιών, το σύστηµα έβρισκε τη σωστή

διασκευή σε 10 από τις 15 περιπτώσεις κατά µέσο όρο. Μια τέτοια έρευνα δεν

συνεισφέρει µόνο στην αναζήτηση, ανάκτηση και οργάνωση µουσικών συλλογών,

αλλά µπορεί και να επηρεάσει την εµπορική διαχείριση πνευµατικών δικαιωµάτων

στη µουσική. Ενώ η παρούσα εργασία εστιάζει κυρίως στο έργο της αυτόµατης

αναγνώρισης µουσικών διασκευών, αναλύει και συστήµατα όπως: χρονικός

εντοπισµός παλµών-beat µέσα στο µουσικό σήµα, αυτόµατη µουσική ταύτιση µε

χρήση audiofingerprint και αυτόµατη εύρεση ρεφραίν.

 vii

Contents

Acknowledgments .. iii

Abstract ..v

Περίληψη .. vi

Contents ... vii

List of figures ...x

List of abbreviations .. xii

List of tables ... xiv

CHAPTER 1 ...1

Introduction ..1

1.1. Motivation ...1

1.2. Defining a system's specificity ..3

1.3. Related Work ...5

1.4. Objectives ..7

1.5. Thesis Outline ...8

CHAPTER 2 ...9

Background Information ..9

2.1. Signal processing ...9

2.1.1. Analog to digital conversion ...10

2.1.2. The frequency domain ..11

2.1.3. Windowing and the time-frequency domain ...14

2.1.4. Filters ..17

viii

2.1.5. Cross-correlation ...20

2.1.6. Self-similarity matrix ..21

2.2. Dynamic programming ...23

2.3. Music feature extraction ..24

2.3.1. Pitch and musical notes ...25

2.3.2. Pitch class – chroma ..26

2.3.3. Tempo and beat ...29

CHAPTER 3 ...31

Query-By-Example ..31

3.1. Audio fingerprinting ..32

3.2. Frame-based analysis ..33

3.3. Landmark-based analysis ..35

CHAPTER 4 ...37

Automatic Cover Song (ACS) Identification Method ..37

4.1. Extraction of chroma-vectors and chromagram ..38

4.2. Tempo estimation and beat tracking ...44

4.2.1. Extraction of the onset-strength signal ...45

4.2.2. Estimating the global tempo ...47

4.2.3. Temporal beat-location retrieval ...51

4.3. Beat-synchronous chromagram ...53

4.4. Matching ..55

CHAPTER 5 ...57

Automatic Chorus Detection Method ..57

5.1. Obtaining the SSM ..59

5.2. Enhancing the similarity matrix ..60

5.3. Detecting repetition ...62

 ix

5.4. Selecting the desired repetition – chorus ...67

5.4.1. Scoring the position of the repetition in the SSM68

5.4.2. Scoring the position of the repetition in relation to other repetitions69

5.4.3. Scoring the average energy of the line segment ...71

5.4.4. Scoring the average similarity of the line segment71

5.4.5. Scoring the number of times the repetition occurs72

5.4.6. Chorus selection ..72

CHAPTER 6 ...73

Implementation ...73

6.1. Experimental Setup ...73

6.1.1. AFP matching ...73

6.1.2. ACS identification ..77

6.1.3. ACD ..78

6.2. Evaluation Results ...79

6.2.1. AFP matching ...79

6.2.2. ACS identification ..83

6.2.3. ACD ..84

CHAPTER 7 ...90

Conclusion and Future Work ...90

References ..93

x

List of figures

1. 1: Examples of MIR Tasks and their 'specificities' ..4

1. 2: Overview of an ACS identification system ..5

2. 1: Effect of aliasing ..11

2. 2: The relationship between Mel and Hertz scale ..13

2. 3: Example of windowing process ...14

2. 4: Magnitude spectrum �(�) of rectangular window ..15

2. 5: Differences between rectangular and Hamming window in time and frequency 16

2. 6: Example of the use of overlapping windows. In the above figure the information

of the signal (B) is not included (B1) ..17

2. 7: Impulse response sequence of a system ...18

2. 8: The impulse response of a FIR (left) and an IIR (right) filter18

2. 9: Ideal lowpass, highpass, bandpass and bandstop filters19

2. 10: The time-time SSM (left) and the time-lag SSM (right) of an example song22

2. 11: Shepard’s pitch helix ..26

3. 1: Overview of a QBE system ..33

3. 2: Overview of the fingerprint extraction scheme ..34

3. 3: Spectrogram example (left) and its constellation map (right)36

4. 1: General block diagram of the cover song identification system37

4. 2: Frequency spectrum of an example signal ...38

4. 3: Peak picking of the example frequency spectrum ..39

4. 4: Placing of Hann-windows in the logarithmic power spectrum40

4. 5: Band-pass filter for the pitch-class A ...40

4. 6: Scaling function centered at 400 Hz and base width of 1 octave41

4. 7: Result of the application of the scaling function to the BPF of pitch class A41

4. 8: Visualization of a chroma-vector ...42

4. 9: Chromagram of an audio signal which follows the note sequence of an octave .42

4. 10: Chromagram of an example song ..43

 xi

4. 11: Ideal sound wave signal and its four constituted parts44

4. 12: Onset-strength signal from a part of a song ...47

4. 13: Autocorrelation function of an example onset-strength signal48

4. 14: Peak picking applied to the autocorrelation function ...49

4. 15: ‘Human preference window’ biased around 120 BPM (left) and 240 BPM

(right) ..50

4. 16: Scaled local maxima of the autocorrelation favoring peaks around 120 BPM ..50

4. 17: Finding the best predecessor beat for a given time t ..52

4. 18: Beat-synchronous chromagram of the example chromagram in Fig.4.954

4. 19: Part of a chromagram of an example song ...54

4. 20: Beat-synchronous chromagram of the above example55

5. 1: SSM of a particular song (Madonna: ‘Like a virgin’) ..60

5. 2: SSM division into 9 parts. Gray parts are omitted for the enhancement process 61

5. 3: Enhanced SSM of the example song ..62

5. 4: Overview of selecting diagonals for further processing64

5. 5: Binarized SSM of the example song ..65

5. 6: Enhanced binarized SSM of the example song ..66

5. 7: Ideal case of the position of three line segments, corresponding to three

repetitions of the chorus ...70

6. 1: Example of the AFP matching system's output ...74

6. 2: Recording a new audio recording using the GUI ...75

6. 3: Opening an existing audio recording using the GUI ..76

6. 4: Matching a clip using the GUI ...76

6. 5: Recognition rate for segments of 5,10 and 15 seconds with additive babble-noise

 ..82

xii

List of abbreviations

In order of appearance in the text:

ACS Automatic Cover Song

MIR Music Information Retrieval

QBE Query By Example

QBH Query By Humming

PCP Pitch Class Profile

MIREX Music Information Retrieval Evaluation eXchange

DTW Dynamic Time Warp

DSP Digital Signal Processing

DTFT Discrete - Time Fourier Transform

IDTFT Inverse Discrete – Time Fourier Transform

DFT Discrete Fourier Transform

FFT Fast Fourier Transform

STFT Short – Time Fourier Transform (or Short – Term Fourier Transform)

FIR Finite Impulse Response

IIR Infinite Impulse Response

SSM Self – Similarity Matrix

DP Dynamic programming

 xiii

ASA American Standard Association

MFCC Mel Frequency Cepstral Coefficients

BPM Beas Per Minute

AFP Audio Fingerprint

BPF Band-pass filter

ACF Autocorrelation Function

ACD Automatic Chorus Detection

GUI Graphical User Interface

SNR Signal-to-Noise Ratio

MRR Mean Reciprocal Rank

xiv

List of tables

Table 2. 1 Notes’ frequencies over nine octaves in Hz ..28

Table 2. 2: Notes’ distances in cents in relation to A0 over nine octaves28

Table 6. 1: AFP matching evaluation results ...81

Table 6. 2: Results of ACS identification system ..83

Table 6. 3: rough evaluation results ...84

Table 6. 4: Example songs tested for the ACD system ..85

Table 6. 5: Song parts of “Abracadabra” by Steve Miller Band85

Table 6. 6: Song parts of “I don’t want to miss a thing” by Aerosmith86

Table 6. 7: Song parts of “It’s tricky” by Run D.M.C. ..87

Table 6. 8: Song parts of “Let it be” by The Beatles ...88

Table 6. 9: Song parts of “Little Wings” by The Corrs..88

Table 6. 10: Table 6. 11: Song parts of “Never let me down again” by Depeche Mode

 ..89

 xv

To my friends and loved ones…

xvi

 1

CHAPTER 1

Introduction

The present study examines the issue of automatic cover song (ACS) identification, a

prominent subject of research in recent years. The term cover song implies any new

rendition of a previously recorded song, including alternate versions, performances,

recordings or other. Cover songs may vary in many attributes but usually are ‘similar’

to their originals keeping the essence of the same melody and/or harmony. The task is

to identify cover songs within a musical database on the basis of similar musical

features. This chapter provides motivation as to why, within the context of music

information retrieval (MIR), ACS identification is a noteworthy study, to be followed

by an overview of music similarity and the definition of a system's specificity. The

chapter concludes with the study's objectives and a thesis outline presenting each

chapter’s content and purpose.

1.1. Motivation

Even nowadays, digital music collections are typically browsed by combinations of

textual metadata, such as the song's title, composer or performer. However, the larger

the musical collection in a database the more complex it is to navigate it easily, and

therefore the less efficient the above approach becomes. With the drastic evolution in

technology people are faced with larger music collections every day. Let us take for

example a common iPod which can carry up to 20.000 songs, or a storage device

which can carry up to 250.000 songs, or even an online music store which has

millions of songs available to their customers. Such large music databases raise new

2

interesting computational problems which need solving, such as direct access in such

large collections and thus the need of algorithms for automatic search methodsand

automatic music similarity estimations. These methods and estimations are based on

musical features such as melody, harmony, rhythm and instrumentation, which

describe the audio at a new level and help respond to requests such as: what is the

name of the song that goes like <whistle the melody> (query by example); could you

raise the volume of a particular instrument recording? (source separation); skip to the

next chorus while listening to a music piece (musical structure identification); what

instrument is this, or what is the name of this artist? (instrument/singer identification);

and find recordings to a specified genre (genre classification) [1]. These methods

could be used in a number of applications such as: automatic playlist generators;

organization and visualization of large music collections; systems for

recommendation of unknown pieces and/or artists to one’s preferences; or even a

system which helps out a DJ in choosing his next song so that the current and the next

have similar rhythm and/or melody.

Another practical use of music similarity is the Query-By-Example (QBE) system,

whereby the user has the possibility to search a music collection using audio as an

input query, and not text. This can be very handy. Consider the case of a user who is

browsing a large music collection for a particular song but is unable to remember

neither the song’s title nor the artist’s name to use as textual metadata. But what if he

does remember the melody or possesses a recorded part of that song? We may use

music similarity in such a way that the user can load, sing, whistle or hum (in this case

Query-By-Humming or QBH) the melody to the system and obtain a list of closest

matches ranked by their similarity measure.

Identifying two different versions of a song requires consideration in variations of

several musical dimensions. The main attributes that may vary between two cover

songs are: its timbre, representing difference in instrumentation and production

techniques; noise, presented e.g. during audience manifestations; key, when a song is

transposed to a different key to adapt the pitch range to a particular singer; language

of lyrics, when a song is translated; timing, depending on the performer's feeling;

harmonization, which is common in an introduction or a bridge part in a song; and

also tempo, structure, duration, or even genre. The feature which is robust enough to

endure several of the above mentioned changes and will be used throughout this work

 3

is the chroma or chromagram, otherwise known as Pitch Class Profile (PCP) of the

signal, which will described in more detail in the present study.

Identifying a cover given its original as a query, or finding the original given a cover

using only musical features, is quite a challenge which is researched by a community

named Music Information Retrieval Evaluation eXchange (or MIREX). MIREX is a

community-based endeavor to scientifically evaluate music information retrieval

(MIR) algorithms and techniques [2] [3]. Such algorithms describe tasks which range

from low-level, like audio onset detection, to higher-level ones, like audio music

similarity. Some of these tasks are: audio classification tasks (i.e. audio artist

identification), audio beat tracking, audio tempo estimation, audio key detection,

audio music similarity and retrieval and among others, our task, audio cover song

identification. The MIREX community put its interest into the ACS identification

task, in order to distinct the sense of ‘music similarity’ (melody) with the sense of

‘timbral similarity’ (instrumentation). Measuring and using the degree of music

similarity is what we are trying to achieve, making it an important musical feature and

a worthwhile study. Suffice it to say that ACS identification systems have a direct

implication to musical rights' management and licenses. In addition, MIR-systems

have the ability to manage extremely large digital music databases in an efficient and

reliable manner paving the way for future music-related industry developments. ACS

identification systems may contribute to this cause.

1.2. Defining a system's specificity

Stemming from the above motivation, each and every MIR system should be specified

with the kind of information it should retrieve. Content-based music retrieval is thus

structured in a way whereby a system firstly defines a type of query, secondly what is

to be considered a match, and finally the form of its output. The 'sense of match' is the

characteristic which makes a system unique in searching for information of a certain

degree of specificity [4] [5]. The specificity degree could either be exact or

approximate depending on whether the music retrieval is performed with specific

content or in a broader sense of music similarity respectively. Clearly a system which

4

finds an exact duplicate of an audio snippet and a system which retrieves all songs

belonging to a particular genre class do not have the same specificity degree. An

audio fingerprinting-based system (Section 3.1) is an example of a high-match (exact)

specificity, whereas a genre-classification one [6] is an example of a low-match

(approximate) specificity. A cover song identification system has an intermediate

specificity degree since it is less exacting than audio-fingerprint duplicating,but is

more specific than an genre-classification system. Such a system tries to approximate

duplicate detection whilst allowing many musical facets to change and incorporates

the important idea that cover songs retain their identity notwithstanding variations in

several musical dimensions. This is what makes the creation of automatic cover song

identification systems a complex task. The scale of specificity together with an

enumeration of some MIR tasks is displayed in Fig. 1.1 [5].

Figure 1.1: Examples of MIR Tasks and their 'specificities'

An overview of an ACS identification system can be 'broken' into five functional

blocks as seen in Fig. 1.2 below. These blocks correspond to: a feature extraction

block ensuring invariance of instrumentation and noise; a key invariance block which

ensures invariance to transposition; a tempo invariance block; a structure invariance

block and a similarity measure block which measures the final similarity between two

songs. Tempo, key and structure changes are usually not handled by the features

extracted from the signals and since these are common changes between cover songs

they need to be processed individually.

 5

Figure 1.2: Overview of an ACS identification system

1.3. Related Work

Several approaches have been developed to attend to the cover song identification

task. The different approaches of existing literature are referenced on the basis of the

division displayed in Fig. 1.2 above, referring to each block separately [4]. Regarding

the feature extraction block it should be pointed out that almost every ACS

identification system makes use of tonal sequence representation (section 2.3), which

either estimate the main melody or the chord or harmonic progression of raw audio

signals. Examples of systems which make use of melody representations as main

descriptors are [7] [8] [9] [10] and [11]. Such systems are usually based on a pitch

tracking technique which tries to obtain the main melody of a song. Pitch tracking is a

complex task if we are working with real-world polyphonic signals, since these

present multiple pitches at each time point. Having an incorrect selection of the

correct pitch to correspond to the main melody could result to an unreliable

representation. Example systems which use harmonic representations with so called

pitch class profiles (PCP), or else named as chromafeatures are [12] [13] [14] [15]

[16] [17] [18] [19] [20] [21] [22] [23] [24] [25] and [26]. This representation is able to

represent both monophonic and polyphonic signals and maintains an invariant stance

in respect to several music characteristics. Hence the present study focuses on systems

using the latter representation, namely those that use chroma-representations.

6

Four different methods stand out as being most effective for overcoming variability in

tempo. First, finding the beats temporal locations in order to use them as an averaging

factor for the descriptor information [14] [24]; second, applying temporal

compression and expansion to the signal's representation [23] [24]; third, making use

of the 2D power spectrum or the 2D autocorrelation function [8] [17] [18]; and last,

by making use of dynamic programming aligning algorithms such as the dynamic time

warp (DTW) and edit distance variants [10] [26] [25] [7] [16] [15] [12][27] [28]. In

the present work we make use of the first method in order to examine Ellis' method of

beat tracking [29].

Key invariance is handled is several ways: either by accounting all possible key

transpositions in the final similarity measure; or by computing the most probable

relative transpositions and accounting only them; or by estimating the mainkey and

apply transposition accordingly; or by making use of 2D power spectrum or 2D

autocorrelation function, an approach that achieves both invariance in tempo and key.

For the purposes of this work we make use of the first method which consists of

accounting all possible transpositions, on the grounds that it guarantees the best

results at the cost of being slower.

Serra et al. [26] demonstrated the importance of structure invariance. A method used

to accommodate this factor is summarizing a song through its most repeated or

representative parts [7] [16]. Other methods consist of so-called local alignment

algorithms [12] [25] [26] and sequence windowing [24] [23] [8] [22]. In this work it

was found useful to include a presentation of the first method which considers finding

the most repeated part of a song to be an attractive task in various applications, such

as for music pre-listening stations whereby someone can automatically jump to the

most representative part of a particular song. Therefore for the purposes of the present

study research on musical structure detection limits to [30][31][32][33], which follow

by and large the same method in order to extract an audio thumbnail (usually the

chorus) of a song using stripe detection within a self similarity matrix (Section 2.3.2).

Other methods try to segment a given song into its constituent parts, e.g. intro, verse,

chorus, bridge and outro [34] [35]. A more thorough overview of the work done in the

automatic music structure field is presented in [36].

 7

Finally in each ACS identification system a similarity measure computation is

required. The DTW algorithm used for tempo invariance already provides a similarity

measure between two songs which is used by some systems as the conclusive

similarity indicator [10] [11] [15] [16] and [28]. Alternative methods consist of using

more conventional approaches such as the cross-correlation function [7] [13] [14], the

Frobenius norm [17], the Euclidean distance [8] [18] or the dot product [19] [20] [22]

[23]. In the present work we choose to use the method of cross-correlation, following

Ellis' method [13] [14].

1.4. Objectives

The main objective of the present study is to investigate the existence of an automatic

cover song identification system. For this purpose a chromagram-based approach has

been followed. Background information on signal processing, some computational

algorithms as well as on several musical attributes are also provided in order to

introduce to the reader the basic concepts which are necessary for the understanding

of the rest of the work. Consequently, four different MIR task systems are presented.

The first two are automatic fingerprint (AFP) matching and ACS identification, which

are both forms of QBE systems, each with a different degree of specificity. The other

two systems are beat-tracking and automatic chorus detection (ACD), where each

system is both an end in itself and a means to improve the performance of other

systems such as the ACS identification one. Finally experimentation is performed to

evaluate the systems' performance described throughout the present work, followed

by a concluding discussion referring to topics such as appliance of music similarity

systems in real-world and industry related applications as well as potential future

work on the subject of the ACS identification task.

8

1.5. Thesis Outline

Chapter 2: Background information.This chapter introduces the main concepts

which are necessary for understanding the work presented in the following sections.

The information gathered and presented is based on the works of [37] [38] [39] [40]

[43] [46] [47] [48] [49] and [50].

Chapter 3: Query-By-Example.This chapter describes the basic framework of

query-by-example systems and analyzes more in detail systems using audio

fingerprinting-based approaches. Consequently,two systems for audio matching are

analyzed: one using a frame-based analysis and one using a landmark-based one.

Chapter 4:Automatic Cover Song (ACS) Identification Method.Here we present

the core of this thesis, namely an automatic cover song identification system using a

beat-synchronous chroma-based approach. The method used in this approach is

divided into four processing steps: feature extraction, beat-times extraction, averaging

of chroma and beat-times and matching. These steps are described and explained

separately.

Chapter 5:Automatic Chorus Detection Method.In this chapter an automatic

chorus detection method is described. We examine how repetitive parts within a song

may be extracted using a self similarity matrix followed by a means to select the

repetitive part which most likely corresponds to the chorus.

Chapter 6: Implementation.This chapter provides the experimentation made on

automatic fingerprint matching, automatic cover song identification and automatic

chorus detection systems. It presents the experimental datasets used for each system

and makes an evaluation of the results.

Chapter 7: Conclusion and Future Work.Here, we discuss some conclusive

remarks on this study, present possible applications in real-world situations and

suggest some topics which could be thesubjects of future research.

 9

CHAPTER 2

Background Information

2.1. Signal processing

In electrical engineering, signal processing is defined as the analysis, or handling of,

signals, where signals are representations of time-varying or spatial-varying physical

quantities. A signal can be used to carry a codified message and thus signals are used

for storing, manipulating and transmitting information. Such information can be

voice, music, images, video or other. In mathematical terms, we define a signal as the

sequence of values of a quantity y, which changes according to a value of a quantity x.

If x and y are defined on a continuous set of times, then the function y(x) is defined as

a continuous-time or analog signal. If x is defined only on a discrete set of times (n),

but y is defined on a continuous set of times, then the sequence y[n] is defined as a

discrete-time signal. If xand y are both defined only on a discrete set of times, then the

sequence y[n], is defined as a digital signal. Digital signal processing (or DSP) and

analog signal processing are subfields of signal processing. The aim of DSP, which

includes audio signal processing as a subfield, is to use continuous real-world analog

signals in a digitalized manner. To do so, an analog to digital conversion is necessary.

10

2.1.1. Analog to digital conversion

An analog signal can always be converted into a digital one so that it can be stored or

processed by a digital computer. This is achieved by converting a continuous-time

signal into a discrete-time one. This process is known as sampling and is realized by

measuring the values of the continuous-time signal at discrete times, denoted as

samples. Those times are periodically spaced every T seconds, and are given by the

equation below, where T is the sampling interval and fs is the sampling frequency, or

sampling rate:

�(�) = ��(�)� = 0,1,2, … (2.1) �� = �
�

 (2.2)

According to the Nyquist-Shannon sampling theorem, in order to be able to perfectly

reconstruct the original signal x(t) from its samples x(nT), two conditions must be

met: on the one hand the signal must be bandlimited, meaning that the maximum

value of the signal’s frequency spectrum, fmax has a real value and is not infinite; and

on the other that the sampling rate must be chosen to be at least twice that maximum

frequency [37].

�� ≥ 2 ∗ ���� (2.3)

	 ≤ �
����� (2.4)

The minimum sampling rate given by the equation (2.3) above is called Nyquist rate

and is equal to �� = 2����. The value ��
� is called Nyquist frequency or folding

frequency and defines the endpoints of the �� !"#$ "�$&'()* = +− ��
� , ��

� -. This
theorem is useful because it provides a numerical value for the maximum frequency

of a signal, in the present case a music song, given its sampling rate. If, however, the

sampling frequency is selected to be smaller than 2fmax, then there are not sufficient

samples to capture all the variations within the signal, with the result that the

representation of the samples is indistinguishable. The consequence is that without

 11

previous knowledge of the original signal we could end up reconstructing a

completely different signal than what would have been expected by using those

samples. This effect is known as aliasing.An example is given in Fig. 2.1:

Figure 2.1: Effect of aliasing

Sometimes we have a discrete-time signal, but we require a version of that signal with

fewer samples. The process of reducing the sampling rate of the signal is called

downsampling or subsampling and can be achieved by keeping only every n
th
 sample,

if we are downsampling by a factor of n.

2.1.2. The frequency domain

Frequency domain is a term used to describe the analysis’ domain of signals with

respect to frequency, rather than to time. The frequency domain’s representation of a

(time-domain’s) signal is called frequency spectrum and carries information such as

the amplitude and phase of the signal’s frequency. A perfect reconstruction of the

original signal is possible if the spectrum analyzed preserves both the amplitude and

phase of each frequency component. In addition, a common technique in signal

processing is to consider the squared amplitude (or power) of the frequency spectrum

resulting in a power spectrum. It is also observable how much of the signal lies within

each frequency band over a range of frequencies, which is an important observation

for the purposes of the present study. Frequency units used in DSP are Hertz

(cycles/sec), cycles/sample, radians/sample and radians/sec. We can obtain the

12

signal’s numerical computation of its frequency spectrum by applying the Fourier

Transform to the original signal. Since our work is using discrete-time signals, the

Discrete-Time Fourier Transform, or DTFT of a discrete-time signal x[n], is given by:

.(�) = / �[�]&23�4��565726 (2.5)

whereX(f) is computable only from the knowledge of the sample values x[n]. It is also

a periodic function of f, with period f=fs, X(f+fs)=X(f), meaning that we get replicas

of the spectrum with center each f=nfs(wheren=1,2,…) frequencies. We can restrict

our spectrum to only one period, from [− ��
� , ��

�]. We can recover the original signal

x[n] from X(f) by using the Inverse Discrete-Time Fourier Transform (IDTFT):

 �[�] = �
�� 8 .(�)9�:

29�:
&3�4��5;� (2.6)

If x[n] is a sampled version of a continuous-time signal x(t), then X(f) is an

approximation of the frequency spectrum of the continuous-time signal x(t). This is

why the DTFT is often used to compute the frequency spectra of analog signals.

Though we have the means to compute a frequency spectrum with a computer, it is

still not possible, since X(f) requires infinite calculations resulting from an infinite

number of samples, −∞ < � < ∞. To make it computable two other, practical

approximations are made to X(f). Firstly, only a finite set of samples are kept and

computed, say 0 ≤ � ≤ > − 1, known as time-windowing and, secondly, X(f) is

evaluated only on a finite set of frequencies. A DTFT of a length-L signal evaluated at

N equally spaced frequencies between 0 and fs is called aN-point Discrete Fourier

Transform or DFT. A faster implementation for the N-point DFT of a signal is the

Fast Fourier Transform (FFT). The FFT of a signal has the exact output as its DFT,

but its algorithm is based on a divide-and-conquer approach which saves a lot of

computational time. Maximum efficiency of the FFT computation is gained when its

number of points is selected to be any positive integer number of two, e.g. 1024,

2048, 4096. In addition, the first half of the frequency range (from 0 to the Nyquist

frequency fs/2) is sufficient to identify the component frequencies in the data, since

the second half is a reflection of the first half.

Since we are dealing with music signals, we should point out a particular scale of

frequency bands, called the

melody indicating that the scale is based on pitch comparisons. The mel

each Hertz-frequency to a

be an equal pitch interval. The relationship between freque

in mel is given by the equationsbelow, as shown in Fig. 2.2:

�?@ =

Figure 2.

An examination of the relationship between

reveals that it approximates linearity below 1 KHz and exhibits a logarithmic spacing

beyond that threshold, which reflects the logarithmic nature of sound as it is perceived

by human ear.

Since we are dealing with music signals, we should point out a particular scale of

frequency bands, called the mel-scale. The name ‘mel’ is derived from the word

melody indicating that the scale is based on pitch comparisons. The mel

frequency to a mel-frequency, expressing what a human’s ear perceives to

be an equal pitch interval. The relationship between frequency in Hertz

is given by the equationsbelow, as shown in Fig. 2.2:

��AB = 2CDC EFG�H I1 J �KL
MHHN

= O00(109�PQ:RSR − 1)

Figure 2.2: The relationship between Mel and Hertz scale

An examination of the relationship between Hertz-frequency and

reveals that it approximates linearity below 1 KHz and exhibits a logarithmic spacing

beyond that threshold, which reflects the logarithmic nature of sound as it is perceived

13

Since we are dealing with music signals, we should point out a particular scale of

mel’ is derived from the word

melody indicating that the scale is based on pitch comparisons. The mel-scale maps

frequency, expressing what a human’s ear perceives to

Hertz and frequency

 (2.7)

 (2.8)

frequency and mel-frequency

reveals that it approximates linearity below 1 KHz and exhibits a logarithmic spacing

beyond that threshold, which reflects the logarithmic nature of sound as it is perceived

14

2.1.3. Windowing and the time-frequency domain

It is often useful to have a representation of the signal’s frequency (or energy) over

time. This is derived by computing the Short-Term Fourier Transform (or STFT) of

the signal. The process by which a STFT of a signal is computed is through ‘cutting’

(splitting) the sampled signal into time segments (frames), then calculating each

segment’s frequency spectrum by using either the DFT or FFT and, finally, appending

the resulting spectra to build the signal’s frequency over time representation. If, then,

we square the magnitude of the STFT we obtain the spectrogram function, a common

time-varying spectral representation. Such representations are often useful for signals

whose characteristics change quickly over time, as i.e. music signals, and are to be

displayed or processed in both time and frequency.

The process of cutting the sampled signal into segments of, say, L samples, is known

as windowing and is achieved by multiplying our sampled signal with a series of

shifted windows. The simplest window is a rectangular window and is defined as:

T(�) = U1, "� 0 ≤ � ≤ > − 10, V$ℎ&'T"#& X
When the window is multiplied to the sampled signal it becomes:

�Y(�) = �(�)T(�) = U�(�), "� 0 ≤ � ≤ > − 10, &*#&Tℎ&'& X
An exampEe Ff which is presented in FiG. 2.3 beEFw:

Figure 2.3: Example of windowing process

 15

Two major effects occur with the use of time-windowing when considering the

frequency domain. Firstly, the frequency resolution is reduced as a direct consequence

of the “uncertainty principle” and, secondly, spurious high-frequency components are

produced into the spectrum, a phenomenon known as ‘frequency leakage’.

Concerning the first and in the context of signal processing, the uncertainty principle

indicates that a function cannot be both time-limited and band-limited. Alternatively

stated, one cannot achieve high temporal resolution and frequency resolution at the

same time because the window size has a direct impact on both. A wide window

achieves high frequency resolution at the cost of temporal resolution, while a narrow

window has the opposite trade-off effect. Hence, the reduction in frequency resolution

is a consequence of the change of the signal’s duration, since after windowing the

minimum resolvable frequency difference becomes ∆� = �
Y� as the new signal

duration is 	Y = >	. Concerning the second effect, the spurious high-frequency

components are produced as a consequence of the sharp ends of the signal caused by

the (rectangular) window. The presence of these components becomes clear by

examining the magnitude spectrum of w(n), pq(r)p,as shown in Fig. 2.4 below.The

figure shows the existence of several smaller side-lobes in addition to the main-lobe.

Figure 2.4: Magnitude spectrum p�(�)p of rectangular window

The main-lobe width determines the achievable frequency resolution. The side-lobes

are an undesirable artifact of the windowing process referred to above as frequency

leakage. They are to be suppressed as much as possible, as they can be confused with

main-lobes of weaker sinusoids. To avoid such phenomena we can use other non-

rectangular windows, such as the Hamming window, which is defined as:

16

T(�) = s0.C4 − 0.46 cFs I�45
Y2�N , �V' 0 ≤ � ≤ > − 1

0, &*#&Tℎ&'& X (2.9)

As we can see in Fig. 2.5, the use of a hamming window suppresses the side-lobes by

cutting off to zero less sharply than the rectangular one. The trade-off is that the main

lobe becomes wider and shorter, reducing the frequency resolution capability. In the

present work we are using a hann-window, otherwise known as raised cosine window,

which is quite similar to the Hamming-window and is given by the equation below:

T(�) = s0.C I1 − cFs I�45
Y2�NN , �V' 0 ≤ � ≤ > − 1

0 , &*#&Tℎ&'& X (2.10)

An additionalaspect to consider when windowing is that if we append windows one

after the other there is a risk that some of the signal’s information could be excluded.

This occurs in cases where the signal’s information appears when a window is

decaying.This can be seen in Fig. 2.6. To overcome this issue, instead of appending

the windows we shift them in a way that they overlap with each other so that no

information is omitted.

Figure 2.5: Differences between rectangular and Hamming window in time and frequency

 17

Figure 2.6: Example of the use of overlapping windows. In the above figure the information of the signal (B) is not

included (B1)

2.1.4. Filters

The process of removing a signal’s unwanted components is known as filtering.

Usually this means the removal of certain frequencies and the non-removal of others,

with a view to suppressing interfering signals or reducing background noise. Digital

filters can be classified into FIR-filters and IIR-filters based on their impulse response.

An impulse response sequence h(n) (Fig. 2.7), is defined as the response of a system

to a unit impulse δ(n), where the latter is defined as the discrete-time analog of the

Dirac delta functionδ(τ) and is defined as:

v(�) = U1 , "� � = 00 , "� � ≠ 0X (2.11)

18

Figure 2.7: Impulse response sequence of a system

Consequently, if the impulse response is finite meaning that it extends only over a

finite time interval, say 0 ≤ � ≤ x, and it is equal to zero beyond that, then it is the

case of a finite impulse response, or FIR-filter. Alternatively, the impulse response is

infinite in duration and it is the case of an infinite impulse response, or IIR filter (Fig.

2.8).

Figure 2.8: The impulse response of a FIR (left) and an IIR (right) filter

For the purposes of the present work only FIR-filters will be used. For a discrete-time

FIR-filter the I/O equation is obtained as a weighted sum of the present input sample

x(n) and the past M samples:

�(�) = / ℎ(y)�(� − y)z�7H (2.12)

where x(n) is the input signal, y(n) is the output signal, hi are the filter coefficients

(otherwise known as filter taps or filter weights) and M is the order of the filter having

M+1 terms on the right-hand side. For example, a 3
rd
 order FIR-filter is described by

its four filter coefficients { = [ℎH, ℎ�, ℎ�, ℎ|] and is equal to:

�(�) = ℎH�(�) J ℎ��(� − 1) J ℎ��(� − 2) J ℎ|�(� − 3)

 19

Digital filters are further divided into several categories, some of which are described

and displayed below (Fig.2.9):

• Low-pass filters: where low frequencies are passed and high frequencies are

suppressed

• High-pass filters: where low frequencies are cut-off and high frequencies are

passed

• Band-pass filters: where only a specified range of frequencies is passed and

the rest is cut off

• Band-stop filters: where only frequencies in a specified range are cut-off and

the rest is passed.

Figure 2.9: Ideal lowpass, highpass, bandpass and bandstop filters

20

2.1.5. Cross-correlation

Cross-correlation is a method used to measure similarity between two signals. One

signal is shifted in time and is then multiplied by the other signal resulting in a

function which displays similarity over lag. Cross-correlation is often used when a

short signal is to be found within a longer one. The values of the cross-correlation at

the lags at which the shorter signal has a good alignment with the longer one will

result into high peaks which denote good correlation between the two signals at this

particular lag. The output values for each lag are normalized to range from -1 to 1, so

that the closer the cross-correlation is to 1, the more similarity there is between the

two signals.

The cross-correlation between two discrete-time signals x(n) and y(n) is a sequence

Rxy(l) and is given by:

}�~(*) = / �(�)�(� − *) * = 0, ±1, ±2, …65726 (2.13)

It is noted that the nature of cross-correlation is similar to the one of convolution.

Whereas convolution involves reversing a signal, then shifting it and multiplying by

another signal, correlation only involves shifting it and multiplying (no reversing).

A special case of cross-correlation is auto-correlation whereby a signal is cross-

correlated with itself. Obviously the autocorrelation of a signal will have a maximum

peak at the lag equal to zero. A periodic signal will have maxima in its autocorrelation

at lags which correspond to the period of the signal. Autocorrelation is often used to

find repeated patterns within a signal. The auto-correlation of a discrete signal x(n) is

given by [38]:

}��(*) = / �(�)�(� − *) * = 0, ±1, ±2, …65726 (2.14)

 21

2.1.6. Self-similarity matrix

The self-similarity matrix (SSM) is the opposite concept to the distance matrix. For

the purposes of the present work the distance is set to be the Euclidian distance. The

similarity matrix of a length N signal is a symmetric � ∗ � matrix, containing

elements which display the similarity of the points in the signal to each other, taken

pair wise. The greater the similarity between two points in the signal, the greater the

numerical value of the point in the similarity matrix corresponding to that particular

pair. There are five characteristics which describe a similarity matrix M. 1) M must

have the same number of rows and columns, 2) all elements in M must be real, non-

negative numbers, 3) all elements in M must have values between 0 and 1, 4) all

elements that are located on the main diagonal must all have the value 1, and 5) each

element located at the point (i,j) must have the same value with the element found at

the point (j,i). If any of these characteristics is not met, then it is not the case of a

SSM. The fact that the SSM is symmetric implies that all information is calculated

twice, once for each side of the diagonal. For practical reasons, implementations of

the SSM usually calculate only one side of the diagonal resulting in a triangular

matrix.

The similarity matrix described above has both axes representing absolute time. A

different visualization of the similarity matrix arises when one of the axes is changed

to correspond to a time-lag rather than time itself. Thus one of the axes’ indexing is

relative to the other. The resulting matrix is a time-lag similarity matrix >(*, $) and is
derived from the time-time similarity matrix �($�, $�) using the equation below:

>(*, $) = �((�, (�2B) (2.15)

22

The time-time SSM and the time-lag SSM are presented in figure 2.10.

Figure 2.10: The time-time SSM (left) and the time-lag SSM (right) of an example song

 23

2.2. Dynamic programming

The term “programming” does not refer to writing code for computer programs, but

rather it relates to the word “planning” and to the description of a set of rules which

anyone can follow in order to solve a problem. In mathematics and computer science

dynamic programming is a method for solving problems much like the divide-and-

conquer method. These types of methods break down the problem into smaller,

simpler sub-problems, solve the latter and combine the solutions of the sub-problems

to reach an overall solution to the initial problem. In cases where sub-problems

overlap, a divide-and-conquer algorithm would solve every sub-problem regardless if

they are the same, whereas a dynamic programming algorithm would solve each sub-

problem only once, and then store its solution for future use. This results in a

significant computation number reduction, especially if the number of repeating sub-

problems is exponentially large. Dynamic programming is usually used to solve a

broad range of search and optimization problems which exhibit the characteristics of

overlapping sub-problems and optimal sub-structure. Such an optimal sub-structure

means that an optimal solution of a problem can be derived from the optimal solutions

of its sub-problems. Top-down dynamic programming means storing the results of

certain calculations which are later used again since the completed calculation is a

sub-problem of a larger calculation. Bottom-up dynamic programming involves

formulating a complex calculation as a recursive series of simpler calculations [39]

[40].

A dynamic programming algorithm can be analyzed into four steps:

1. Characterize structure of an optimal solution

2. Define value of optimal solution recursively

3. Compute optimal solution values either top-down or bottom-up

4. Construct an optimal solution from computed values.

24

2.3. Music feature extraction

A feature is a characteristic part of something. It is a way to describe the nature and

properties of a subject making it possible to decide if two subjects are similar or not,

and/or to assemble subjects with similar attributes into particular groups. When

dealing with music, measurable content-based features that describe the audio signal

are known as acoustic features. Many acoustic features have been used in different

music information retrieval systems with the aim of measuring the similarity between

two songs. Acoustical features could be classified in 3 categories: rhythmic content

features, timbral textural features and pitch content features. Rhythmic content

features describe the speed of the music signal in time. They try to catch the rhythm of

a song, as a human would try to catch it by tapping with his hand or foot. If we think

about it, the rhythm is also a good feature to describe the mood of a song, since for a

low speed we have a relaxing song, and for a faster speed we have a more uplifting

song. The tempo and the beat of a signal which are features of this category are

described in section 2.3.3. Timbral textural features are used to distinct similar

sounds. Timbre, or ‘tone color’, is what makes a sound unique. As quoted by [41],

page 49, the American Standards Association (ASA) defines timbre as “that attribute

of sensation in terms of which a listener can judge that two sounds having the same

loudness and pitch are dissimilar [42].” For example, if two different instruments play

the same note we can still understand which sound came from which instrument. The

disadvantage of timbral features is that they do not include the melody and harmony

of the signal in their representations. Known timbral features are the spectral centroid,

the spectral rolloff, the spectral flux, the zero-crossings, the low-energy and the

widely used mel-frequency cepstral coefficient or else known as MFCC [43]. MFCCs

are short-term spectral-based features commonly used for state-of-the-art speech

recognition systems. Since the present work will not get more into detail regarding

this particular musical feature, more information can be found in [44] [45]. Finally,

the pitch content features are a means to keep track of the melody and/or harmony of

a musical signal. These features capture sound as a pitch regardless of where it came

from, making them as a result unsuitable for timbral analysis.Such pitch content

 25

features are, for example, tonal sequence representations which can be understood, in

a broad sense, as a sequentially-played series of different note combinations. These

notes can be either unique for each time slot, representing the main melody of a song,

or they can be played jointly with others, expressing in this way the chord or the

harmonic progressions.

2.3.1. Pitch and musical notes

Musical sound signals can be characterized by their pitch. The pitch perceived by a

listener is his ear’s response to the sound’s frequency. Thus pitch is directly

dependant on the sound’s frequency, though it is not to be confused with the scientific

term of frequency itself. Pitch is measured in Hertz(Hz) and defines how high or low a

musical tone is.

In music, only a selected number of pitches are ever played and thus notations for

these particular pitches and their duration are represented by notes. The range of

pitches is divided into octaves, in a way so that if a note’s frequency value is double

to another note’s frequency, then these two notes are separated by one octave. This is

valid for any ratio of power of two between their frequencies. For example, if three

notes, say N1, N2 and N3, are equal to �1 = �, �2 = 2�, �3 = 4�, then N1 and N2
are separated by one octave and N1 and N3 by two. An octave is further divided into

twelve semitones which correspond to the different notes (pitch values). Thus a

semitone (or half-step interval) can be defined as the distance between each

successive white and black piano key, and its frequency difference is equal to 2
(1/12)

times the initial frequency.

The twelve distinct notes in an octave are generally depicted by the following

symbols: C, C#, D, D#, E, F, F#, G, G#, A, A# and B. The result is a set of 12

pitches, named individually, which repeat themselves for each upper or lower octave.

In table 2.1 in page 28we can see the first nine octaves (starting from A=27.5 Hz)

with their 12 distinct notes and their frequency values.

26

2.3.2. Pitch class – chroma

On the basis of the above information it is possible, given an octave number and a

note’s name (i.e. the note A in the 4
th
 octave, or simpler, A4), to ‘play’ the desired

pitch (440Hz). The fact that the note’s names repeat for each octave helps us create a

new term called the pitch class, or else named chroma. The pitch class (chroma) of a

note’s name is simply a set of all pitches corresponding to this note’s name,

independent of its octave. For example the pitch class of A corresponds to all the

pitches of A0, A1, A2 etc. From this observation derives the Shepard’s pitch helix

[46] which is a model that maps all the pitches based on the following two criteria:

firstly the chroma, which indicates the cyclical position of the desired pitch on the

model (helix); and secondly the height, indicating the vertical height in the model

(helix), which is measured in octaves. Fig. 2.11 shows the above mentioned model.

Figure 2.11: Shepard’s pitch helix

 27

Shepard gave birth to a logarithmic unit of measure for music intervals, called cents.

He divided the interval between two semitones in 100 cents, and the interval between

two octaves in 1200 cents respectively. The distance n, in cents, between a notea and

a note b given in Hertz is provided by the following equation:

��A5� = 1200 EFG� I�
�N (2.16)

And given a note a and the cents of the interval between a and b, then b is provided

by:

� =) ∗ 2��P���:�� (2.17)

Thus, if we center our helix so that its first note is a=A0=27.5 Hz, then we are able to

measure each note’s distance from the first note (A0) in cents. The equations (2.16)

and (2.17) thus become:

��A5�(�?@) = 1200 EFG� �KL
�M.� (2.18)

and

�?@ = 2O.C ∗ 2��P���:�� (2.19)

Shepard’s equation (2.20) below is able to map any note’s distance (in cents) from the

initial note by using variables c and h, where c stands for the 12 distinct pitch classes

and takes values from 1 to 12, and hcorresponds to the height and takes positive

integer values starting from 0.

���A����(�, ℎ) = 1200ℎ J 100(� − 1) (2.20)

28

The tables below indicate in Hertz and in cents the 12 notes for the nine first octaves.

c\h 0 1 2 3 4 5 6 7 8

A 27.5 55 110 220 440 880 1760 3520 7040

A# 29.1 58.3 116.5 223.1 466.16 932.33 1864.66 3729.31 7458.6

B 30.9 61.7 123.5 246+.9 493.88 987.77 1975.53 3951.07 7902.1

C 32.7 65.4 130.8 261.6 523.25 1046.5 2093 4186.01 8372

C# 34.6 69.3 138.6 277.2 554.37 1108.73 2217.46 4434.92 8869.8

D 36.7 73.4 146.8 293.66 587.33 1174.66 2349.32 4698.64 9397.3

D# 38.9 77.8 155.6 311.13 622.25 1244.51 2489.02 4978.03 9956.1

E 41.2 82.4 164.8 329.63 659.26 1318.51 2637.02 5274 10548.1

F 43.7 87.3 174.6 349.23 698.46 1396.91 2793.83 5587.6 11175.3

F# 46.2 92.5 185 369.99 739.99 1479.98 2959.96 5919.9 11839.8

G 49 98 196 392 783.99 1567.98 3135.96 6271.9 12543.8

G# 51.9 103.8 207.7 415.3 830.61 1661.22 3322.44 6644.9 13289.7

Table 2.1 Notes’ frequencies over nine octaves in Hz

c\h 0 1 2 3 4 5 6 7 8

1(A) 0 1200 2400 3600 4800 6000 7200 8400 9600

2(A#) 100 1300 2500 3700 4900 6100 7300 8500 9700

3(B) 200 1400 2600 3800 5000 6200 7400 8600 9800

4(C) 300 1500 2700 3900 5100 6300 7500 8700 9900

5(C#) 400 1600 2800 4000 5200 6400 7600 8800 10000

6(D) 500 1700 2900 4100 5300 6500 7700 8900 10100

7(D#) 600 1800 3000 4200 5400 6600 7800 9000 10200

8(E) 700 1900 3100 4300 5500 6700 7900 9100 10300

9(F) 800 2000 3200 4400 5600 6800 8000 9200 10400

10(F#) 900 2100 3300 4500 5700 6900 8100 9300 10500

11(G) 1000 2200 3400 4600 5800 7000 8200 9400 10600

12(G#) 1100 2300 3500 4700 5900 7100 8300 9500 10700

Table 2.2: Notes’ distances in cents in relation to A0 over nine octaves

 29

2.3.3. Tempo and beat

Tempo and beats are two important attributes of an audio signal which determine the

rhythmic content of a music piece, and is thus a relevant task to create techniques

such as tempo estimation and beat tracking systems in order to be able to measure and

use those features. A number of applications are based on these features such as video

editing, audio editing, stage lightning control and many others.A beat is an event

occurrence or a wave pulse driven usually by instruments which operate in lower

frequencies (drums, base) and is considered to be a base time unit for songs. A

metronome is a tool that keeps track of this time units and by listening to it we

perceive regular ticks, where each tick corresponds to a beat. Humans perceive beats

as binary regular pulses determining the rhythm of a song. By calculating the number

of beats at a given time interval we are able to determine its tempo, or in other words

the global speed of playing a piece of music. Tempo is typically measured in beats

per minute, or BPM. When describing musical tempo for an audio signal, it is

important to differentiate between two different meanings of tempo, ‘notated’ tempo

and ‘perceptual’tempo [47] [48]. Notated tempo is the tempo derived from the

music’s notation in the music score, and it is a mark on the top of the general music

staff which has a single value over the whole song; perceptual tempo is the tempo

which is perceived by a listener unfamiliar with the notated tempo and may exist at

different metrical levels during the song.It is of interest to create a representation of

the perceptual tempo rather than the notated tempo, especially in cases where the

latter is unknown (as is in our case). This is because for many applications perceived

tempo is considered to be a more relevant feature than the notated tempo, since it

captures the ‘feel’ of the music.The perceptual tempo is sometimes equal to the

notated tempo, but not always, since a musical piece may ‘feel’ faster or slower than

its notated tempo. This happens if the perceived tempo is a metrical level higher or

lower than the notated tempo.

But how do we capture the perceived tempo? Having listeners, including expert

musicians, tap along to music excerpts is a good way to annotate the perceived tempo,

but there are some drawbacks. Not all people tap exactly the same way, because

30

different people might have different interpretations for what they are ‘feeling’ to be

the perceptual tempo and therefore are tapping at different metrical levels. For some

excerpts, the perceptual tempo is less ambiguous and listeners tap at the same metrical

level, whilst for other excerpts the tempo can be quite ambiguous and listeners tap at

different metrical levels resulting in a complete split across the listener’s tapping.

Thus an explicit answer cannot be obtained, though previous studies have shown that

listeners tend to tap at tempi near a ‘resonance’ of around 120 BPM [49] [50].

For an audio signal’s beat analysis we first estimate the tempo and then we try to

determine the temporal position of each individual beat. Such information may be

useful as melody and chord changes of a music piece tend to coincide with the beat

times.The exact method used in this work is described in section 4.2.

 31

CHAPTER 3

Query-By-Example

In this chapter a basic Query-By-Example (QBE) system is described. As already

mentioned in the introductory chapter, a QBE system provides the means to a user to

navigate a large music database by using audio inputs as queries. It is understandable

how such a system may be useful to a large number of applications. A typical scenario

of such a system’s use in an application would be a user who wishes to retrieve

information on a piece of music that is playing at that time by recording a portion of

that music with his cell phone and querying a database with the recorded data in order

to obtain information concerning that particular song. It is noted that this recording

could be very noisy, proportional to the noisy environment it was recorded from and

could be encoded in a very poor form (lossy cellular phone encoding as GSM 6.10

compression). Theoretically, a query in a QBE system could be either a recording of a

cover-version of a song, or a user-sung melody, or a possibly degraded portion of the

desired recording itself. The present chapter considers the latter case whereby we

would like to find an exact instance of the given query inside a database, reflecting the

example of the application mentioned above. A naive approach would be to store the

whole query and compare it with each entry in the database on a sample-by-sample

basis. Obviously this is not an effective method, since it would be very expensive to

search and even more expensive to keep as the database would be very large,

considering music pieces with an average duration time of 4 minutes each and a

sampling rate of 44.1KHz. Instead, an audio-fingerprinting approach is used for this

purpose and the above expensive drawbacks cease to exist.

32

3.1.Audio fingerprinting

An audio fingerprint (AFP) is a compact set of features derived from the signal that

uniquely identifies the signal [1]. This representation uses a much smaller amount of

data and can therefore be used and stored instead of the whole signal. The prime aim

of multimedia fingerprinting is to develop an efficient mechanism for establishing the

perceptual equality of two multimedia objects by comparing the associated

fingerprints (small by design), rather than by comparing the (typically large) objects

themselves [51]. This is a reminder of the hash function known in cryptography,

whereby a usually large object is mapped to a smaller object using a hash function.

The larger object can then be retrieved by searching the smaller one. This similarity in

the systems is the reason why audio fingerprinting is also referred to as robust or

perceptual hashing. One could ask why we are not using hash functions for audio

fingerprinting. It must be pointed out that we are not interested in mathematical

equality of two pieces of songs but rather to their perceptual similarity. For example,

an original CD quality of a particular song and its MP3 version may sound the same

(perceptual similarity) but mathematically they are quite different.

Our system is therefore transformed into a system where each audio file in the

database is represented by its AFP, forming a fingerprint database. By querying an

unknown audio sample in the system we may subsequently compute its AFP in the

same way. The fingerprint from the unknown audio sample is then matched against

the fingerprints found in the fingerprint database. Thus, a fingerprint-based system

consists of two methods: first, of a fingerprint extraction one and, second, a method

that efficiently searches for matches of a fingerprint in a fingerprint database. This

system presents the following advantages: less memory needed for storing the

database as the fingerprints are relatively small; more efficient searching since the

dataset to be searched is also much smaller; and more efficient comparison between

fingerprints as the fingerprints have been stripped down of perceptual irrelevancies.

Such a system is depicted in Fig. 3.1 below. An AFP should be robust to noise and

distortion. This means that the fingerprint extracted from an original ‘clean’ track

should be the same with the fingerprint extracted from a degraded copy of the same

 33

track. This is achieved by using perceptual features which are invariant to signal

degradation. Robustness is measured using the false negative rate, which corresponds

to the case when two fingerprints of the same audio segment are too different to lead

to a positive match. Furthermore, an AFP should be reliable, meaning that we do not

wish incorrect matches. Reliability is measured using the false positive rate, which

measures the rate at which songs are incorrectly identified.

Figure 3.1: Overview of a QBE system

In what follows two approaches describing the method of extracting an AFP are

presented. The first corresponds to a frame-based approach used inMusiwave

developed by J. Haitsma and A. Kalker [51] and the second, more recent, corresponds

to a landmark-based approachdeveloped by A. Wang and used by Shazam [52]. In

the present work we experiment with the latter case.

3.2.Frame-based analysis

The natural approach in calculating a feature representation of a music signal would

be a standard frame-based analysis in which we divide the signal into short-time

frames, calculate a feature vector for each of those frames, and obtain a sequence of

feature vectors which represent the signal. Subsequently we would try to match our

music piece on this basis. The method presented in [51] does exactly that.

34

The audio signal is first segmented into overlapping frames with a length of 0.37

seconds and an overlapping factor of 31/32, resulting in a feature vector every 11.6

milliseconds. The feature vector extracted from each frame is denoted as a sub-

fingerprint. A single sub-fingerprint does not contain enough data to permit

identification of an audio clip. The unit that allows such identification consists of 256

subsequent sub-fingerprints andis denoted as a fingerprint-block. As the most

important perceptual audio features lie within the frequency domain, the Fourier

Transform is applied to every frame. The range of frequencies taken into

consideration is from 300 Hz to 2000 Hz. This range is further split into 33 non-

overlapping and logarithmically spaced frequency bands. It was experimentally

verified by the authors that the sign of energy differences along the time and the

frequency axes simultaneously is a property that is very robust to many kinds of

processing. This can be expressed by the equation below where E(n,m) denotes the

energy of band m of frame n and F(n,m) denotes the m-th bit of the sub-fingerprint of

frame n:

�(�, y) = s1 "� �(�, y) − �(�, y J 1) − ��(� − 1, y) − �(� − 1, y J 1)� > 0
0 "� �(�, y) − �(�, y J 1) − ��(� − 1, y) − �(� − 1, y J 1)� ≤ 0X

(3.1)

This results in a 32-bit sub-fingerprint which contains the sign of the energy

difference between adjacent bands and windows. The overview of the fingerprint

extraction scheme is presented in Fig. 3.2.

Figure 3.2: Overview of the fingerprint extraction scheme

 35

A signal is then represented by a train of sub-fingerprints. Next, to measure the

similarity between two recordings, we calculate the bit difference between the

fingerprint of the query recording and the fingerprint of the reference song. The track

which holds a fingerprint-block with the least bit differences is considered as the

target recording. To avoid a brute force of comparison of an immense number of sub-

fingerprints, [51] presents an efficient and very fast search algorithm for his system.

3.3.Landmark-based analysis

The idea behind the landmark-based approach developed by Shazam (A. Wang) [52]

is to use the signal itself in trying to find some unique structure within it which can be

used as a fingerprint, rather than creating a representation based on each frame of the

signal. This analysis is based on the observation that prominent onsets within a

signal’s time-frequency representation are to be sustained under GSM encoding and

the addition of noise. Spectrogram peaks are used as a feature in this method. These

peaks correspond to points in the time-frequency representation with energy higher

than all neighboring points in a region centered around that particular point [52][53].

Candidate points are then selected based on a density criterion and an amplitude

criterion. These points are found for the entire signal, reducing its representation to a

sparse set of peak-coordinates which is denoted as constellation-map.The

constellation map of a spectrogram example can be seen in Fig. 3.3.Next,

landmarkhashes are formed from the constellation map by forming the peaks into

pairs and parameterize them by their frequencies and their time difference. In more

detail, we choose an anchor point within the constellation and sequentially pair it with

other points within a certain target zone associated to that anchor point. The

information stored for each pair of peaks is the start-frequency, the end-frequency,

and the time difference between them. These values tend to remain constant between

the original and the distorted query signal and are thus the values to be used to

represent the signal’s identity. The values are quantized in order to give a relatively

26

large number of distinct landmark hashes. Each song in the database and the sample

query song are

36

subjected to the same fingerprint analysis. The landmark hashes are subsequently held

in an inverted index which lists the songs of the database in which they occur, and

when they occur in the songs. The fingerprint of the query is then compared to the

fingerprint for each database element by counting the number of matching anchor

point pairs (landmarks).

A match can be declared once a sufficient number of landmarks have been identified.

Since exact matches are very unlikely to take place, a small number of matches (e.g.

5) are sufficient to declare a match. Even in the presence of spurious time-frequency

peaks injected due to noise, or when some peaks are missing, or even when the query

example is strongly filtered, a sufficient number of hashed landmarks are to be

sustained in order to correctly identify a match.

Figure 3.3: Spectrogram example (left) and its constellation map (right)

Even though a fingerprint-based system is very efficient in identifying a recording

from a database, it is also very ‘fragile’ in as far as it is not able to identify alternate

versions of a song (cover songs). In such cases fingerprints will differ significantly.

Querying with one version will not return the other version, since they will not both

have similar fingerprints because they will not have peaks at the same positions. Even

if a human ear would mistake a song for another because of their similarity, an audio

fingerprinting system would be able to tell them apart. For the case of cover song

identification, features other than audio fingerprints should be used for matching.

Such a system is described in the following chapter.

 37

CHAPTER 4

Automatic Cover Song (ACS) Identification Method

This chapter describes the methodology of the cover song identification task. For each

system it is essential to find the feature that maximizes the description of the desired

attribute. Since our work is focused on cover-song detection we are neither interested

whether the song is played with a particular instrument, nor if it is sung by a male or a

female voice, nor if the song has a fast rhythm or not. Quite the contrary, we seek a

feature which is robust in the above characteristics, reflecting changes in tempo,

instrumentation and transposition. Moreover this feature should be able to track the

music signal’s melody which, by and large, remains the same in different renditions of

the same song. In other words we are not interested in using timbral features, since

these features are to differ the most. Instead, for the purposes of our research use is

made of rhythmic and pitch content features for building a signal representation which

satisfies our needs. First, a time-by-chroma representation of the signal is computed

which is then averaged by the beat temporal locations derived from a beat-tracking

module. Next the similarity between two songs is measured by cross-correlating these

representations in respect to lag and transposition (key shifts) (Fig. 4.1).

Figure 4.1: General block diagram of the cover song identification system

38

4.1. Extraction of chroma-vectors and chromagram

In section 2.3.2.we introduced the concept of chroma. As demonstrated by [54] it is

useful to construct a signal’s representation of chroma over time, known as

chromagram. With its use we are able to track an audio signal’s pitch, and thus

melody (dominant note) and harmony over time, since both refer to a combination of

pitches, either sequential or simultaneous respectively [55][32] [56]. An audio

signal’s chroma-vector is a representation of the spectral magnitude’s distribution on

the 12 different pitch-classes. To extract a music signal’s chroma-vectors, which in

their turn form the chromagram, one has to first look at a signal’s frequency domain.

Thus, we first split our music signal into time segments (frames) by multiplying our

signal with a shifted hann-window of length N=2048 and a hop-size of 1024 samples;

we then compute theFFT for each resulting frame using 4096 FFT-bins. As a result

we obtain the frequency spectrum as shown in Fig. 4.2.

Figure 4.2: Frequency spectrum of an example signal

As proposed by many authors e.g. [14] [56], and as it turns out to result in better

performance, only local maxima of the frequency spectrum are used for further

0 1000 2000 3000 4000 5000 6000 7000 8000
0

5

10

15

20

25

30

35

40

45

50
FFT

Frequency

M
a
g
n
it
u
d
e

 39

processing. These local maxima are found when a point has a higher value than both

its preceding and its following points (Fig. 4.3).

Figure 4.3: Peak picking of the example frequency spectrum

Given the local maxima of the frequency spectrum, the next stage is to map each

frequency bin (fft-bin) to one of the 12 corresponding chroma-bins. The basic idea is

to coil the magnitude spectrum around the pitch helix model (Fig. 2.11) and squash it

flat to project the frequency axis to the chroma[30]. This is achieved by designing

twelve different band-pass filters (BPF), one for each pitch class, that collect the

frequencies corresponding to the correct chroma. Those BPFs are constructed by

placing hann-windows centered on every pitch of the desired pitch-class. For

example, the band-pass filter for the pitch-class C would have hann-windows centered

at C0,C1,C2…etc, as shown in Fig. 4.4. The equation representing one ‘lobe’ created

of a hann-window centered at frequency FShepard given in cents, is provided by:

����,�(�) = 0.C ∗ �1 − cFs �4I��P��(�)2����P����(�,�)2�HH�N
�HH (4.1)

wheref is the frequency in Hertz converted into cents according to equation (2.16).

Thus, the final equation for the BPF of a pitch-class c is:

����(�) = / ����,�(�)¡�7H (4.2)

0 1000 2000 3000 4000 5000 6000 7000 8000
0

5

10

15

20

25

30

35

40

45

50
local peaks of the FFT - (PPM)

Frequency

M
a
g
n
it
u
d
e

40

Figure 4.4: Placing of Hann-windows in the logarithmic power spectrum

An example of the band-pass filter corresponding to the pitch class A is presented in

the figure below:

Figure 4.5: Band-pass filter for the pitch-class A

The BPFs so obtained are then zero-padded for FFT-bins greater than 2048 and a

scaling process is applied to the bins in order to favor lower frequencies. The scaling

process is achieved by multiplying each BPF with a Gaussian function defined as:

�(��A5�) = &2�
:I��P��¢��P������:�� N:

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
BPF for pitch class A

FFT bins

 41

where��A5����=4635 cents corresponding to FHzctr=400 Hz (Fig. 4.6), and a width of

one octave corresponding to 1200 cents. The scaling function and the result of its

application to the initial filter are shown in Fig. 4.6 and Fig. 4.7 below:

Figure 4.6: Scaling function centered at 400 Hz and base width of 1 octave

Figure 4.7: Result of the application of the scaling function to the BPF of pitch class A

By multiplying the scaled BPFs with the function corresponding to the local maxima

of the frequency spectrum we obtain the values which need to be summed together in

order to measure the magnitude distribution on each chroma-bin. This results in a

12x1 chroma vector which represents the spectral magnitude’s distribution on the 12

different pitch-classes for the particular frame. This vector is subsequently stored. A

representation of a chroma-vector is displayed in Fig 4.8. By repeating this process for

0 500 1000 1500 2000 2500 3000 3500 4000 4500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
scaling function

FFT bins

0 500 1000 1500 2000 2500
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
scaled BPF filter for pitch class A

42

each frame of the song and by appending the resulting chroma-vectors one after the

other we produce a 12xN (where N=number of frames) matrix, the chromagram. In

Fig. 4.9 and Fig. 4.10 we may observe the resulting chromagram representations of

two different audio signals, one of which follows the note sequence of an octave and

the other is an example song (Madonna - Like a virgin).

Figure 4.8: Visualization of a chroma-vector

Figure 4.9: Chromagram of an audio signal which follows the note sequence of an octave

1 2 3 4 5 6 7 8 9 10 11 12
0

5

10

15

20

25
Intensity in each pitch class

pitch classes

s
u
m
 o
f
m
a
g
n
it
u
d
e
s
 i
n
 e
a
c
h
 p
it
c
h
 c
la
s
s

Chromagram

frames

c
h
ro
m
a

20 40 60 80 100 120 140 160 180

2

4

6

8

10

12

 43

Figure 4.10: Chromagram of an example song

An interesting aspect in the use of chroma representations is that key transpositions

are simply circular shifts of the rows of the chroma. Since cover versions are

commonly transposed in respect to the main key, achieving key transposition

invariance is usually reached by examining each and every possible key transposition

of the feature. This method will be further examined in section 4.4.

It is worth noting that in the work performed by Ellis and Poliner [14], instead of

using a coarse mapping of FFT bins to one of the 12 chroma classes, they use the

phase derivative (instantaneous frequency)[57] [58] within each FFT bin to identify

strong tonal components in the spectrum as well as to get a higher-resolution estimate

of the underlying frequency. For the purposes of the present work,however,

instantaneous frequency was not taken into consideration.

Chromagram

frames

c
h
ro
m
a

500 1000 1500 2000 2500 3000

2

4

6

8

10

12

44

4.2. Tempo estimation and beat tracking

As mentioned in chapter 2.3.3. tempo estimation and beat tracking systems describe

the temporal structure of a music signal, and thus are fundamental processes in

automatic music processing. For the task of tracking a music signal’s tempo and beat

locations we use Ellis’s method of beat-tracking with dynamic programming [29]. A

more thorough survey on different approaches used for beat tracking can be found in

[59].The method used in this work consists of three stages (Fig. 4.11). First, we

extract from the signal an onset-strength signal which is a representation of the

succession of discrete acoustic events such as beats, or note changes in the music

signal. This onset-strength signal is further processed in order to derive an estimation

of the global tempo of the musical piece which is based on periodicity estimation

algorithms. Finally, by using dynamic programming we find the temporal locations of

each beat, so that it is placed on a moment which has high onset-strength and agrees

with the spacing of the global tempo simultaneously.

Figure 4.11: Overview of the beat tracking algorithm

Figure 4.12: Ideal sound wave signal and its four constituted parts

 45

4.2.1. Extraction of the onset-strength signal

An ideal sound wave signal and its four constituted parts (onset, attack, transient and

decay) as presented by [60], is displayed in Fig. 4.12 above. Audio is often considered

to be a succession of discrete acoustic events (such as beats, pitch changes etc.) and an

onset detection process is a way to determine the temporal position at which those

events begin. In a real polyphonic music signal where different sound objects occur

simultaneously, it is highly unlikely to get an ideal audio wave and thus onset

positions found by different algorithms might not be exactly the same. The desired

system should take an audio signal as an input and extract a detection function which

will indicate the location of the most salient features, such as note changes, harmonic

changes or percussive events, since beats tend to occur at these time instants. The fact

that note onsets or percussion hits are easily masked in the overall energy of the time-

domain signal by continuous tones of higher frequency (such as bass notes)

encourages frequency-domain processing [61], where such events are detected even if

they are of much lower energy than other continuous signals in the audio. This leads

to a system that tries to locate areas in time and frequency where there is a sudden

energy increase. This can be achieved by building a function which represents the

energy of a sound at a particular time, or in other words this function is a result of

summing energy across frequency.

In order to construct the onset-strength signal, the analyzed music input signal is first

downsampled to 8 KHz and then divided into frames of length N=512 and an

overlapping factor of N/8. Each frame is then multiplied by a hann-window of the

same length and is then processed by a FFT-function resulting in the frame’s

frequency spectrum.The fact that these onsets are clearly audible by a human’s ear

leads to the use of an auditory model using a mel-scaled frequency representation of

the signal’s frequency, in which the relationship between Hertz-frequency and mel-

frequency are given by the equations (2.7) and (2.8) referred to above in section 2.1.2.

This is done with a view to better approximating the beats from a human’s auditory

system perspective. A driving function could be derived at that point from the

46

resulting representation by summing the magnitudes across frequency, resulting to a

plot which represents the running energy of the audio signal in respect to time.

Another aspect that must be considered, though, when summing energy across

frequency is where energy shifts in frequency, as for example when an instrument (i.e.

saxophone) plays a note and then plays another note continuously. The total energy in

that case might not change that much, though a human’s ear still hears that as an

onset. To overcome this particular case of energy shift, we divide the frequency range

into multiple bands and calculate an onset function within each band individually.Just

like the mapping of FFT-bins into chroma-bins in the previous section, we map the

FFT-bins into 40 different mel-bands by multiplying the frequency representation

with a suitable BPF expressing each separate band resulting in a 40xNmel-

spectrogram (where N=number of frames of the analyzed sampled signal). Next, we

convert the magnitude into decibels and look only at the top 80 dB of the

representation.

Then a first-order difference from frame to frame is calculated for each separate band

and the result is half-wave rectified. This is done in order to keep only positive values

and leave only onset information resulting in a driving function for each band. These

driving functions exhibit sharp maxima (peaks) at the desired temporal locations

(onset times).Next, by summing the differences, or by taking the vertical mean of the

differences for each frame across bands (frequency), we obtain a function which

exhibits large values at onset times and corresponds to the final onset-strength

signal.We finally filter this driving function with a high pass filter corresponding to

global gain variations in the original signal. The resulting driving function can be

depicted in Fig. 4.13 below.

 47

Figure 4.13: Onset-strength signal from a part of a song

4.2.2. Estimating the global tempo

The onset-strength signal derived from the previous stage is then passed to a

periodicity estimation block in order to try and find a sequence of onsets in the signal

which are on a regular pattern. Given that the onset function can be seen as a quasi-

periodic and noisy pulse-train that has large peaks at note attacks, a natural approach

to compute the tempo would be to compute a beat histogram by taking the difference

in time between each successive pair of onsets and build a histogram of those

differences. In this case, if there is a value in the histogram which indicates that pairs

are closely spaced around a specific value, then the tempo can be derived from that

information. Other methods in calculating the periodicity from the onset locations are

the spectral product and the autocorrelation function (ACF), which is a classical

method in periodicity estimation. Results calculated using the autocorrelation function

are usually better than those stemming from the spectral product (and the histogram)

and therefore we choose to use autocorrelation for this purpose as well. The

autocorrelation function is a special case of the cross-correlation described in chapter

(2.1.5), and can be regarded as a cross-correlation of a signal with itself. In other

words it is a signal that is multiplied by itself while it is being shifted in time. The

signal that we are going to correlate with itself is the output of the onset detection

0 200 400 600 800 1000 1200 1400 1600 1800
-2

0

2

4

6

8

10

12
Onset Strength Signal (Part)

frames

48

block and since it can be regarded as a kind of periodic pulse train, we expect to see

peaks in the autocorrelation spectrum at the times where the shifted signal aligns well

with its original. To give an example, if the onset function has sharp periodic pulses,

or pulses which form repeated patterns, its autocorrelation will exhibit peaks at times

which correspond to one period or any integer number of periods of those events (or

pattern of events), since for any number of periods the original and the shifted version

of the onset function will line-up well. Consequently, to estimate the driving

function’s periodicity and hence the audio’s global tempo, we auto-correlate the

onset-strength signal with itself out to a maximum lag of 4 sec. It can be pointed out

that it is not necessary to auto-correlate the entire signal and that only a portion of it,

which retains the basic information, can be used instead. A peak picking process is

then applied to the autocorrelation in order to find local maxima within the function.

An autocorrelation example and its result after finding its local maxima are depicted

below in Fig. 4.14 and Fig. 4.15:

Figure 4.14: Autocorrelation function of an example onset-strength signal

0 100 200 300 400 500 600 700 800 900 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Autocorrelation

lag

 49

Figure 4.15: Peak picking applied to the autocorrelation function

 By considering the human tapping experiment [49] [50] and the fact that humans tend

to tap toward a particular range of tempi, we scale the resulting autocorrelation signal

which has typically multiple peaks in order to enhance periodicities preferred by

listeners and extract one dominant peak, which also indicates the most likely tempo.

To this effect a ‘human preference’ weighting window is created. This window is a

Gaussian on a log-time axis and is characterized by its center (the BPM at which it is

largest) and its half-width (the sigma of the Gaussian, in units of octaves on the BPM

scale, since the axis is in fact logarithmic) [29].In other words, we use the weighting

window to adjust the autocorrelation peak’s heights so that these favor the peaks that

are located around the right tempo. The best center of the window was found to be at

120 BPM, agreeing with the results of the human tapping experiment, and the width

was set to be 1.4 octaves. Two weighting windows centered at 120 and 240 BPM

respectively are shown in Fig. 4.16.

Finally, the lag in the scaled autocorrelation (Fig. 4.17) which has the maximum

value is chosen to correspond to the main tempo. Taking into account that humans

0 100 200 300 400 500 600 700 800 900 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
local peaks of autocorrelation

lag

50

might tend to tap in different metrical levels and that those levels are usually

separated by a ratio of 2 or 3, a secondary tempo is computed in addition to the main

tempo, which is chosen to be the largest value of the peaks closest to 0.33, 0.5, 2 and

3 times the main tempo, respectively.

Figure 4.16: ‘Human preference window’ biased around 120 BPM (left) and 240 BPM (right)

Figure 4.17: Scaled local maxima of the autocorrelation favoring peaks around 120 BPM

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
human preference window (biased around 120 BPM)

lag

0 200 400 600 800 1000 1200
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
human preference window (biased around 240 BPM)

lag

0 100 200 300 400 500 600 700 800 900 1000

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
scaled local peaks of autocorrelation

lag

 51

4.2.3. Temporal beat-location retrieval

In order to obtain the beats position in time we use a beat tracking module that will try

to detect and mark all the beats temporal locations using the information obtained

from the previous stages (onset-strength signal extraction stage and global tempo

estimation stage). The idea is to create an algorithm which will decide for any given

time t, if there is a beat or not and find a sequence of those beat times {ti}that all

correspond to large values in the onset function and their spacing agrees to the

estimated global tempo. Meaning, we want the sum of the onset function at those

times to be as high as possible and that the differences between successive beat times

to be consistent. These conditions can be expressed with the equationsbelow, where

O(t) is the onset-strength signal, F(∆t,τ) is the tempo consistency score and a is a

balance function whichdefines how rigidly we stick to the tempo £� and how well we

hit the high score times on the onset function:

¤(¥$¦§) = / ¨($¦) J) / �($¦ − $¦2�, £�)©¦7�©¦7� (4.3)

�(ª$, £) = exp ¥− �
� I$"«ℎ$�&## ∗ *V« ¬�

 N�§ (4.4)

The tempo consistency function Fis just a way to compute if the spacing between two

beat times agrees (or not) with a given ideal spacing (τp), in our case the global tempo.

If ∆tand τare equal, then the ratio within the log will be equal to 1 and hence the log

will be equal to zero, making this the best case of F being one.If, on the other hand, ∆t

and τ are different, then the log of their ratio will have any value other than zero and

by taking the negative value of its square the final value of F will be a real number

between 0 and 1.

So in theory, if we could calculate the above cost function for every possible beat

sequences, which is an exponential set, and find the sequence that has the maximum

score, then that set of beat times would be the most probable beat sequence. This is

not feasible, however, since coming up with all possible time sequences is an

exponential problem and is not solvable for a large amount of data. Dan Ellis [29]

formulated the above problem intoa dynamic programming one, in a way that onset

52

times correspond to local information subject to a long-term constraint reflecting that

we want to form a regularly spaced set of events. In dynamic programming we are

trying to find an optimal combination of a local cost function and a transition function

of a path cost within a space. Hence by decomposing the problem as mentioned above

and by using dynamic programming we are able to solve it in linear time. In our case,

since any sequence of beat times corresponds to a different path in space, by taking a

particular time-point we observe that several sequences lead up to that point, but there

is only one that is optimal. This optimal sequence is found by calculating each

sequence’s score and by keeping the one that has the maximum score. Given that the

cost function’s structure is using only past information in time, any path that leads to a

particular point ends its influence to the total cost at that point and thus anything that

happens after that time is not affecting the score. So basically we calculate the score

for every possible t, even though the majority of the times will not correspond to beat

times.We do so by adding the local cost score (onset function), by searching over

some preceding window the best score up to that time and by multiplying some

transition cost which shows how well we can move from the preceding point to the

new one (tempo consistency cost). The preceding window covers a range of 2 to 0.5

beat periods into the past. This can be expressed by the equation below, where C
*
(t)

corresponds to the best score up to time t, O(t) is the onset signal, F(∆t,τ) is the tempo

consistency cost function and a is the balance function that scales the best score at the

preceding beat in order to keep balance between past scores and local match:

¤∗($) = (1 −))¨($) J max¥)��$ − £, £�� ∗ ¤∗(£)§ (4.5)

This process can be depicted in the figure below:

Figure 4.18: Finding the best predecessor beat for a given time t

 53

The largest scaled value by the transition weight corresponds to the best predecessor

beat of the current time t and is then added to the onset value of t which makes the

best cumulative score C
*
(t), which is stored along with the best predecessor beat.

Doing so for all the times, and finding the most probable last beat time, we can trace

back through the stored beat times and acquire the entire final beat sequence. The

back-trace function can be defined as:

�($) = arGmax¥)��$ − £, £�� ∗ ¤∗(£)§ (4.6)

The fact that the algorithm uses back-trace makes the above beat-tracking system

intrinsically non-real-time. In addition it relies only on a single global tempo making

it unable to track large (>10%) tempo drifts. As our work is mainly focused on

popular music corresponding to music genres with a more or less invariant

straightforward rhythm, the current beat-tracker indicates high performance.

4.3. Beat-synchronous chromagram

As it turns out tempo, and therefore beat times, are a useful time-normalization metric

and thus through averaging our chromagram (the output of our chromagram extraction

stage) according to the beat times (the output of the beat tracker) in order to have one

chroma-vector per beat, we may overcome the variability in time (time-shifts, tempo)

between two songs. This is achieved by implementing a function which takes the

chromagram and the beat times as an input and by creating an 12xB (where B are the

number of beats) matrix representation which consists of Bchroma-vectors whose

values are derived by averaging the originalchromagram in time intervals defined by

the beat times.As a result we obtain a feature representation of the song which is

invariant to instrumentation due to the use of 12-dimensional chroma vectors which

collect spectral energy supporting each semitone of the octave, and invariant to tempo

changes, as a result of the use of beat-synchronous features. The case of variation in

transposition (key shift) will be examined during the matching module.

54

Figure 4.19: Beat-synchronous chromagram of the example chromagram in Fig.4.9

Figure 4.20: Part of a chromagram of an example song

Chromagram averaged by beat times

frames

c
h
ro
m
a

5 10 15 20 25

2

4

6

8

10

12

Chromagram (part)

frames

c
h
ro
m
a

50 100 150 200 250 300 350 400

2

4

6

8

10

12

 55

Figure 4.21: Beat-synchronous chromagram of the above example

4.4. Matching

To compare two music pieces we follow the method of cross-correlating their entire

beat-by-chroma matrix representations. This correlation will exhibit sharp peaks

expressing good local alignment of the two pieces at a precise lag. In other words, if

there is a subsequence of chroma-vectors in the reference song which is similar to a

subsequence of the test song, this will result in a local peak in the cross-correlation at

the appropriate lag. The length of the matching subsequence and the degree of their

similarity are directly related to the size of the peak in the cross-correlation, meaning

that the bigger the length of the subsequence or the bigger the degree of similarity, the

higher the height of the peak. The disadvantage of this method is that it is not possible

to reward the case where multiple parts align at different relative positions. On the

Chromagram averaged by beat times (part)

frames

c
h
ro
m
a

10 20 30 40 50 60 70 80 90 100

2

4

6

8

10

12

56

other hand, a small fragment of the total track which has high similarity will still

contribute in a peak high enough to correctly point out a match between two tracks.

Before proceeding to cross-correlating the representations a normalization step is

involved. This normalization consists of square-root compressing the amplitude of the

representations followed by scaling each chroma-vector of the beat-synchronous

chromagrams to have unit norm. Consequently, to overcome variability in key

transposition the cross-correlation is performed between all twelve possible semitone

transpositions (circular rotations in respect to the pitch axis) of the chromagram and

the rotation for which we have the highest score is selected. Through experimentation

it was found that many tracks appear to have false large correlations due to sustained

sequences of a single chroma-bin with a large value. If we think about it, if we cross-

correlate in relation to time and key transpositions, sustained blocks of a single

chroma value (any chroma) in both pieces will result in a correlation peak, without

witnessing any ‘true’ similarity. To overcome this case of false similarity, we de-

emphasize prolonged chroma values and instead are focusing on the changes of the

representation which is more informative. This is done by high-pass-filtering the beat-

by-chroma representations for each song. Last but not least, it was observed that

representations which are averaged based on beats with different metrical levels,

having for example twice as many beats per song phrase as its other version,

prevented a correct match. In order to accommodate this case, we created two

representations of each song. The first representation averages the chroma-vectors

using beats derived from the beat tracker which makes use of a 120 BPM biased

window, whereas the second representation is using a 240 BPM biased one. Cross-

correlation is then performed between the two representations of the query song and

the two representations of the reference song and the single largest value of the four

cross-correlations is taken to be the final similarity score.

 57

CHAPTER 5

Automatic Chorus Detection Method

In the work presented by Serra et al. [15][26] it has been demonstrated that song

structure is a key factor to consider for cover song similarity measurement. To this

endwe opted to present an approach which consists in extracting a music summary of

a given song representing its most representative or repeated parts [29][49]. Bartsch

and Wakenfield [32] argue that, in the context of popular music, extracting a music

summary amounts to picking up the chorus, which is likely to be recognized or

remembered by a listener. Such a summary representation is thought to provide the

main characteristics of a title in a more compact form allowing for instance a faster

music similarity search amongst a set of music pieces. Therefore, a hypothesis can be

made that by making use of such summary information one could increase a cover

song identification system's performance [15]. Moreover, a system which identifies

repeated parts within a song has interesting applications in other systems, as for

example in an enhanced music player where the sense of an 'intelligent fast-forward'

mode is introduced. For instance, a user may move automatically to the next chorus of

the song or move to the next occurrence of what is currently being played. Given the

above attractions and the fact that a structure analysis system can be developed by

using the features already described in the present work, it was considered useful to

make also reference to automatic chorus detection (ACD) systems. Having said this,

it should also be pointed out that trying to achieve structure invariance in a cover song

identification system by using a song summarization approach may be error-prone.

This is because it cannot be ascertained that the most representative part of a song is

included in the extracted music summary i.e. the chorus, as this may be located in

another part of the song, for example the introduction, the bridge, or other. Also it is

acknowledged that music structure systems are in need of further refinement [4][34].

58

In what follows a method which automatically detects a chorus for a given song with

no prior information on acoustic features unique to choruses is presented. The basic

idea of this method is to find sections in a song that repeat themselves and output the

one that is most likely to correspond to the chorus. To identify the repetitions in a

song we make use of its beat-synchronous chromagram representation examined in

the previous Chapter (section 4.3) and a self-similarity matrix (SSM).

 The SSM calculates the similarity between each pair of frames so that repeated

sections are shown as diagonal lines with high similarity. These diagonal lines, which

correspond to precise music segments, are then listed and only one line segment is

selected as the chorus, utilizing a novel heuristic scoring scheme presented by [31]. It

is important to mention that a frame segmentation of the given song is necessary. We

follow the method used in [31] and [32] by making use of dynamic beat-synchronous

frame segmentation, having one feature vector per beat and thus measuring time in

beat units. This is a crucial process which lessens greatly the computational load of

the system. The use of chroma vectors to represent the song is proposed by many

authors [30] [31] [32] [33], since its ability to encode harmonic relationships is critical

for this task.

AntiiEronen [31] used a combination of two SSM, one corresponding to beat-

synchronous chroma-vectors and the other corresponding to beat-synchronous

MFCC-vectors. However, for the purposes of the present work we limit our analysis

to the use of only one SSM derived from the beat-synchronous chroma feature on the

grounds that the information retrieved is sufficient. Nevertheless extending the model

to include information derived from MFCC features could enhance its overall

performance.

 59

5.1. Obtaining the SSM

As we are working with chroma-vectors, two audio frames with similar harmonic

content will have “similar” feature vectors. We define the similarity between two

chroma vectors v(i) and v(j) as:

 #(", ®) = 1 − ¯ °±±²(³)
´µ¶� °�(³) 2 °±±²(·)

´µ¶� °�(·)¯:
¸�� (5.1)

where1 ≤ ", ® ≤ � and N is the total number of beats in the song.

Each vector is normalized by dividing it with its maximum element. Then the

normalized vectors are subtracted from each other and the Euclidean norm is

calculated taking the squared root of the sum of the squared elements of the vector,

resulting to the Euclidean distance of the two vectors. Next, we divide the Euclidean

distance with ¸12 which is the diagonal line of a 12-dimensional hypercube with

edge length equal to 1, guaranteeing that the condition 0 ≤ #(", ®) ≤ 1 is satisfied.
Finally, the result is subtracted from 1 in order to obtain the similarity measure.

Doing so for all i,j∈ ¥1, �§ results in a � ∗ � SSM (where N is the number of chroma

vectors) which represents the similarities of each set of points taken pair-wise. This

can be observed in Fig. 5.1. For example #(", ®) is an element in the similarity matrix

that represents the similarity between the i
th
 and the j

th
chroma-vector of the song’s

representation. The higher the similarity between those two frames the darker the

point in the visualization of the SSM. Hence, extended regions of high similarity such

as choruses or other repeated sections, result in extended areas of high similarity in

the SSM and are pointed out by darker diagonal line segments. Our objective is to

detect and list all those line segments in the SSM and examine which one is most

suitable for the system’s output. It is important to point out that the Euclidean distance

is symmetric and thus the similarity matrix is symmetric as well. Therefore, all the

following operations take into account only the lower triangular part of the SSM,

resulting in a significant computational time reduction. In order to process the

similarity matrix it is strongly advised by [30][31] to enhance the similarity matrix.

60

Figure 5.1: SSM of a particular song (Madonna: ‘Like a virgin’)

5.2. Enhancing the similarity matrix

Due to variations in the performance within a song at different times, such as

articulation, improvisations, changing instrumentation or even key modulation,

diagonal stripes in the SSM corresponding to repeated sections are not always clearly

visible. On the contrary, the SSM is often very noisy and contains irrelevant line

segments that do not correspond to repetitions. Therefore the enhancement of the

SSM is a vital process. The aim of this enhancement process is to suppress the

unwanted line segments and emphasize the desired ones to the extent possible. This is

done by examining each point in the similarity matrix to see if it is a part of a desired

line segment or not. A 5x5 kernel is used for this purpose. When the kernel is centered

Self-Similarity Matrix

No. of chroma vectors

N
o
.
o
f
c
h
ro
m
a
 v
e
c
to
rs

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

 61

at a point, say (i,j), six directional local mean values are calculated along the right,

left, upper, lower, upper-right and lower-left dimensions of the kernel and the

maximum and minimum values are obtained. Since we are working with the lower

part of a time-time similarity matrix, the desired line segments are parallel to the main

diagonal. Thus, if the maximum of the local mean values happens to be either the

upper-right or lower-left mean, then the point (i,j) is considered to be part of a desired

line segment and must be emphasized. Otherwise, it is considered noise which tends

to form lines along the left, right, upper and lower directions and must be suppressed.

The process of suppressing a point is done by subtracting the maximum of the mean

values from the point (i,j) and the process of emphasizing a point is done by

subtracting the minimum of the mean values from the point (i,j). In addition, noise

flooring is performed by setting the value of (i,j) equal to zero if its new value doesn’t

exceed a given threshold (in our case threshold=0.6). To avoid over-indexing, the

SSM is divided into nine different parts, six if we consider only the lower triangular

part of the SSM, which are defined as A, B, C, D, H and J (the rest are omitted). As

shown in Fig. 5.2 below the enhancement process is carefully calculated for each

section.The resulting enhanced SSM is displayed belowin Fig. 5.3.

Figure 5.2: SSM division into 9 parts. Gray parts are omitted for the enhancement process

62

Figure 5.3: Enhanced SSM of the example song

5.3. Detecting repetition

The enhanced SSM is then further processed in order to examine whether a diagonal

line in the matrix is likely to contain a line segment or not. To do so, an average in

magnitude is calculated along each diagonal corresponding to the possibility of a

diagonal containing one or more line segments [30][31]. Diagonals which contain line

segments will have a higher possibility than the ones which do not. This possibility for

a diagonal containing a line segment is defined as follows:

�(º) = �
©2» / #(� J º, �)©2»�7� , Tℎ&'& º = 1, … , � − 1 (5.2)

whereN is the number of beats in the song.

SSM line emphasized with noise flooring

No. of chroma vectors

N
o
.
o
f
c
h
ro
m
a
 v
e
c
to
rs

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

 63

Thus P(1) corresponds to the first diagonal below the main, P(2) corresponds to the

second diagonal below the main diagonal, and so on. The resulting function P(k)

contains higher peaks at the diagonals k below the main, where the possibility of

finding line segments is high. The only disadvantage of this equation is that there is a

possibility that some high-similarity values along a diagonal are masked by lower-

similarity values at the same diagonal.However this possibility is relatively small and

the system performs well as it is.

The method subsequently selects a certain number of diagonals for further processing

which correspond to maxima in P(k). The selection of those diagonals is done as

follows. First, cumulative noise is removed from the function P(k). This is done by

calculating a lowpass-filtered version of P(k), say Plp(k), which is then subtracted

from P(k). Next the smoothed differential of P(k) is calculated. This is provided by the

equation:

#;(º) = / T}�BB($, * J T)¼�³LP½72¼�³LP , Tℎ&'& ¾�¦@A = 2 ¿V"�$# (5.3)

 The points where the smoothed differential changes sign from positive to negative

correspond to the positions of the peaks in P(k). These peaks are then examined and

only peaks higher than a threshold are selected. This threshold is automatically set for

each song and is based on a discriminant criterion [62].This criterion is based on the

number of peaks above and below the threshold and is given by the equation below:

ÀÁ� = r�r�(Â� − Â�)� (5.4)

wherer�and r� represent the number of peaks in each class divided by the total

number of peaks and Â�and Â�correspond to the means of the peak heights in each

class. The threshold is selected to be the one maximizing the discriminant criterion.

The sequence contained in Fig. 5.4 below provides an overview of the process by

which we select the diagonals to be used for further processing, where P(k) stands for

the function which contains the possibility of a diagonal containing a line segment.

64

Figure 5.4:Overview of selecting diagonals for further processing

The diagonals of the SSM which are selected for further processing are then smoothed

using a low pass filter to ‘repair’ small imperfections in the diagonals. A new

threshold is then calculated in order to detect line segments from the diagonals. All

the points contained by the selected diagonals are compared to this threshold. Points

which exceed the threshold are set to one; otherwise they are set to zero. The result of

this process is a binarized matrix where the value one indicates that a particular point

is a part of a line segment (repeated section) and zero indicates that it is not. Goto[30]

performed another threshold selection based on the Otsu method [62], though in the

present work we follow the method used in [31]. We select a threshold so that 20% of

all the processed values are considered parts of a repetitive segment. This is done by

concatenating the points of all the processed diagonals in a large array which is then

sorted in a descending order. We then simply adjust our threshold so that 20% of the

array’s values are greater than the threshold. The binarized SSM of the example song

is displayed in Fig. 5.5.

 65

Figure 5.5:Binarized SSM of the example song

The binarized matrix is then processed by an enhancement method presented in [31]

which tries to remove gaps of a small number of beats. In other words, for a line

segment which is long enough and where most of its values are ones, enhancing this

line segment would lead to all the points within the line segment having the value one.

This enhancement process is performed only when certain conditions are met. Hence,

each point in the binarized SSM, B(i,j), is examined to establish whether an

enhancement step is approved. The conditions are: first, at least 65% of the values

between B(i,j) and B(i+FiltLen , j+FiltLen) are ones; second, that B(i,j)=1; and third,

that either of B(i+FiltLen-2 , j+FiltLen-2)=1 or B(i+FiltLen-1 ,j+FiltLen-1)=1 must

be true. FiltLenis a parameter of the system and is chosen to be 25 points of length.

Although [30] did not mention the need for such a process, [31] found it vital to

include an enhancement process to the binarized matrix. The resulting enhanced

binarized SSM is presented in Fig. 5.6 below:

Binarized SSM

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

66

Figure 5.6: Enhanced binarized SSM of the example song

The resulting enhanced binarized matrix is then processed point by point in order to

extract and list all the line segments contained in the matrix. We are interested in line

segments which have a possibility of corresponding to the chorus section of the song,

hence line segments indicating too short repetitions (i.e. shorter than 6.4 seconds) are

omitted. Thus, the enhanced binarized SSM is searched for line segments longer than

6.4 seconds, and each line segment found is stored as � = [", ®, "Ã, ®Ã], where (i,j)

denotes the diagonal segment’s start point and (i
’
,j
’
) denotes the segment’s end point.

The length of the segment’s duration is given by:

∆��� = ®Ã − ® J 1 (5.4)

In case where no segments longer than 6.4 seconds are found the time threshold is

decreased until a segment is detected. Finally, the line segments which have been

identified throughout the above process are passed for further processing.

Enhanced Binarized SSM

100 200 300 400 500 600 700 800

100

200

300

400

500

600

700

800

 67

At this point it is noted that by using the matrix' symmetric characteristics we may

change the matrix as shown below, without changing its content. The following

equations and calculations take into account the right form of the similarity matrix.

5.4. Selecting the desired repetition – chorus

For cases whereby too many line segments are detected, a line removal process is

performed to remove lines which are considered to be too close to each other. This is

achieved by using a combination of conditions defined by [31], which examine

whether two line segments, x1 and x2, are consideredto be too close to each other or

not. These conditions are:

��(1) ≥ ���(1) − C�)�; ��(3) ≤ ���(3) J 20�)�;

Ä��(2) − ��(2)Ä ≤ 20)�; ��(4) ≤ (��(4) J C) (5.5)

All the different pairs of line segments are then searched one by one examining

whether the above conditions are satisfied, and all the close segments for each

segment are listed. Next, if a line segment happens to have more than three close

segments, then these extra segments are to be removed. The only case where an extra

segment is not removed is if that particular segment has also more than three close

segments by itself.

68

The remaining line segments are considered the chorus candidates and are

subsequently examined with a view to selecting only one line segment to output as the

most probable chorus section. This is done by utilizing the novel heuristic scoring

scheme used by [31], with the difference that we are working with similarities and not

distances. Aspects considered in the final score of each line segment are the

following: position of the repetition in the SSM; position of the repetition in relation

to other repetitions; average energy and the average similarity in the SSM during the

repetition; and the number of times the repetition occurs in the musical piece. In what

follows these aspects are considered separately. The line segment with the maximum

score is then output as the most likely chorus section.

5.4.1. Scoring the position of the repetition in the SSM

This score examines whether a specified line segment � is found to be close to an
expected chorus position. In pop music, the chorus is usually located at approximately

one quarter, or three quarters, of the song’s length. Consequently, we measure the

difference between the middle column of the segment and the column corresponding

to one quarter of the song’s length (Eq. 5.6). In addition we calculate the difference

between the middle row of the line segment and the location corresponding to three

quarters of the song’s length (Eq. 5.7). In so doingwe favor line segments that are

found in the lower-left hand corner of the SSM which corresponds to the first

occurrence of the chorus which matches to the chorus located at three quarters of the

song’s length.

#���� = 1 − ÅÆ3Ç∆���
: È2�ÉÊ5�IË

Ì NÅ
�ÉÊ5�IË

Ì N (5.6)

#���� = 1 − ÅÆ¦Ç∆���
: È2�ÉÊ5�IÍË

Ì NÅ
�ÉÊ5�IË

Ì N (5.7)

where∆��� corresponds to the line segment’s length given by (4.4), and M

corresponds to the number of beats within the song.

 69

5.4.2. Scoring the position of the repetition in relation to other repetitions

For this score we examine the position of a repetition in relation to other repetitions

by searching for possible groups of three line segments (triads) within the SSM,

which may correspond to three repetitions of the chorus. An ideal case of the three

segments described is presented in Fig. 5.7. This search is done for each candidate

line segment (�Ê). First, the search method examines whether a line segment is found

below �Ê, by searching for a line segment �� which satisfies the condition given by

��(1) > �Ê(3). This condition denotes that there should be no overlap between the

rows of �Ê and �� and that there must be some overlap between the columns of �Ê
and �� (we used an overlap greater than 25%). If such a segment is found, the method

then searches a line segment �� located on the right hand side of the below segment

and whose rows are overlapping with the rows of the segment �� (by at least 25%).

All the groups of three segments found are listed as a triad, say y@ = [!, �, '], and are
then scored based on how close to the ideal case each group is. This is done by

computing the average value of four different partial scores which are presented

below:

1. The first partial score σ1examines the end columns of the upper (�Ê(Î)) and
below segments (��(Î)) and gives a high score when those columns are found

to be close to each other. The score σ1is given by:

À�(Ï) = 1 − 2 ∗ Ä�Ð(Î)2�Ñ(Î)Ä
∆(�Ñ)Ç∆(�Ð) (5.8)

2. The second partial score σ2considers the vertical alignment of �Êand ��,
whereby if the start column of the below segment is under the upper segment

then the score gets a value of 1. Otherwise, if the below segment starts before

the upper segment, it will get penalized and obtain a score smaller than 1. This

scoring is handled by the equationbelow:

À�(Ï) = s1 − �Ð(�)2�Ñ(�)
∆��Ñ� "� ��(2) < �Ê(2)

1 V$ℎ&'T"#&
X (5.9)

70

3. The third partial score σ3 examines the length of the below segment �� and the
right segment �� and awards a higher score if �� and �� are both of equal
length. This can be implemented as follows:

À|(Ï) = 1 − Ä∆����2∆��Ñ�Ä
∆��Ñ� (5.10)

4. Finally, the fourth partial score σ4 depends on the difference in the position of

the below and right segments and is given by:

ÀÎ(Ï) = 1 − �∗ÒÓÔ(Ä�Ñ(�)2��(�)Ä,Ä�Ñ(|)2��(|)Ä)
∆��Ñ�Ç∆���� (5.11)

The final score to be awarded to each group of three segments found is then calculated

by taking the average value of the four partial scores described above and given to the

below segment ��. The score is given to the below segment, as this segment’s length

is often closer to the exact length of the chorus. Since �� may be a below segment for

many groups of threes, the maximum value is retained and stored as its value. If no

groups of three are found, then #|���� = 0.

Figure 5.7: Ideal case of the position of three line segments, corresponding to three repetitions of the chorus

 71

5.4.3. Scoringthe average energy of the line segment

For this score, [31] measured the average logarithmic energy with the use of the

zerothcepstral coefficient over the segment. Since in this work we are not using

MFCC features, we approximated it by computing the vertical sum of each frame

from the beat-synchronous representation of the song across frequency and then

calculated the mean of that resulting function, and denoted the mean value as

Eav.Next, we repeat the process but only for the frames defined by the line segment’s

columns and denoted it as Eseg. The ratio Eseg / Eav is taken to be the score (Eq. 5.12).

The score thus obtained favors segments which have high energy, often a

characteristic of chorus sections.

#Î��� = Õ�PÖ
Õ�° (5.12)

5.4.4. Scoring the average similarity of the line segment

This score takes into consideration the average similarity in the SSM and the average

similarity in the line segment. The greater the similarity during the line segment, the

higher the chance that it corresponds to a chorus section. Consequently, if SSMavg is

the average similarity of the SSM and LSmedian is the median similarity value of the

line segment, then the score is taken to be:

#���� = 1 − �2Y��P�³��
�2��z�°Ö (5.13)

72

5.4.5. Scoring the number of times the repetition occurs

This score looks for line segments located above or below the examined line segment.

If a line segment (��) is found to be on top of, or below, the examined segment (��) it
is considered an indication that this repetition is repeated more than once. The

condition which examines whether two line segments (��and ��) are on top of, or
below, each other is given by:

Ä��(2) − ��(2)Ä ≤ 0.2 ∗ ∆����)�; Ä��(4) − ��(4)Ä ≤ 0.2 ∗ ∆���� (5.14)

Hence, a count is performed for each segment to establish how many segments are

above or below it, and this count is denoted as Nseg. The maximum count obtained for

all segments is denoted as Nseg_max. The score is then taken to be:

#×��� = ©�PÖ
©�PÖ_��� (5.15)

5.4.6. Chorus selection

The above partial scores are then combined in order to obtain a final score S which

will describe the likelihood of a line segment being the chorus. A. Eronen[31]

combined the scores as follows:

���� = 0.C ∗ #���� J 0.C ∗ #���� J #|��� J 0.C ∗ #Î��� J #���� J 0.C ∗ #×(�)
(5.16)

In the case where no groups of threes where found, which means that for each

segment #|��� = 0 is true, the segment which has the maximum value S is chosen to

be the chorus segment. Otherwise, the selection is performed among the line segments

that have #|(�) ≠ 0.At this point a search for the exact pin point temporal location of

the chorus might be implemented. Such a search method could be achieved by making

use of image processing techniques such as 2D kernel filters as presented in [31].

However this processing step is omitted to avoid further complication.

 73

CHAPTER 6

Implementation

The present chapter describes the experimental part of this work in which the systems

of AFP matching, ACS identification and ACD are implemented, reflecting the

models described in Chapters 3, 4 and 5. Implementation is performed mainly using

the MATLAB programming language with the intension of examining the systems'

performance and accuracy. To do so, each system is handled and examined separately.

6.1. Experimental Setup

6.1.1. AFP matching

With a view to examining an audio-fingerprinting based music matching system we

make use of the MATLAB code provided by D. Ellis in [53]. This implementation is a

close approximation to the landmark-based approach used by Shazam [52] presented

in section 3.3. A music collection is formed selecting random pieces of our own music

collection. A total of 1062 songs were selected representing a wide range of musical

genres. As our implementation does not handle .mp3 formats, each and every song

was converted into a .wav format using the lame decoder [63], which is an open

source tool. To avoid converting each song individually an executable (.exe) file

named convertmp3stowavs was created using MATLAB's compiler, which carries out

the conversion for all files automatically. Another executable file was created in the

74

same way in order to overcome an 'incorrect chunk size information' issue while

reading the data, and was denoted as fixWavs. These songs are then placed at the

system's root directory.

Landmark pairs are formed in a 4-tuples basis corresponding to start-time, start-

frequency, end-frequency and time-difference using the function find_landmarks.

These landmarks are then quantized using the function landmark2hash, and the

inverse action is performed using hash2landmark. Songs are integrated into the

system's music database by using the function add_tracks, whereby each song (found

in the root directory) is converted into landmarks, which in turn are converted into

hashes and are stored within an 'inverted index' hashtable representing the music

database. Next, given an audio query, a search for a possible match is done throughout

the music database using the function match_query. A successive match is depicted in

Fig. 6.1 below, where the green connected dots are referring to matching landmark

pairs in the two audio recordings. This particular example demonstrates a match of an

audio snippet which is found to be an excerpt of the song 'Slogans' by Bob Marley at

precise 59.904 sec within the song.

Figure 6.1: Example of the AFP matching system's output

Query audio

0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

1000

2000

3000

4000

Match: 41 - 19 Slogans at 59.904 sec

60 60.5 61 61.5 62 62.5 63 63.5 64 64.5 65
0

1000

2000

3000

4000

 75

To make this program more interactive a graphical user interface(GUI) was

developed using the ECLIPSE software development environment. The GUI allows a

user to either record a new audio recording with the use of a microphone pressing the

'Capture sound from mic...'- and 'Stop recording...'-buttons (Fig. 6.2), or to load an

already existing audio recording into the system using the 'Open a File...'-button (Fig.

6.3). As soon as an audio recording is loaded or captured it is played back to the user.

The user can then either select or record a new audio recording, or proceed in finding

a match for his previous recording. This is done by clicking on the 'Match your clip.'-

button.

Figure 6.2: Recording a new audio recording using the GUI

76

Figure 6.3: Opening an existing audio recording using the GUI

Clicking on the 'Match your clip.'-button is equivalent to running the MATLAB script

described earlier. To link the ECLIPSE and MATLAB environments we make use of

an open source tool called JAMAL (JAvaMAtlab Linking). This tool is based on a

client-server approach which makes it possible to call MATLAB functions from Java

programs without reading and writing to a temporary file [64]. In doing so, the results

of the MATLAB function are presented in the GUI's text box, as seen in Fig. 6.4.

Figure 6.4: Matching a clip using the GUI

 77

6.1.2. ACS identification

The ACS identification system was implemented following the steps described in

Chapter 4. A chromagram extraction function, as well as a beat-location extraction, an

averaging function of these two and a similarity measure function were created using

MATLAB. These functions where denoted as chromagramExtr, beatLocationExtr,

beatSynchChromReprand search4CSinDB respectively. The similarity function has

the ability to handle three different approaches, namely the one described by Ellis in

[14], its upgrade in [13] and a combination of the latter case usingmultiple tempi.

Hence, the function is given a parameter which dictates which approach will be

followed.

It should be pointed out here that currently there exists no standard music collection

available which is used for evaluation purposes. A close approximation to an 'all-

modulation-including' dataset would be the one used during the MIREX contest [2].

This data evaluation set, however, is being kept secret in order to prevent over-tuning

of approaches. Consequently as an evaluation dataset we use the so-called 'covers80'

cover song dataset [65] which is a musical collection consisting of 80 different cover-

sets, each having two different renditions of each song. This gives a total of 160 music

tracks covering a wide range of different modulation in several musical features.

Next, two experiments are carried out. The first creates two lists of 15 songs. The first

list includes the first version of 15 different songs, whilst the second contains their

alternate versions. A search is performed for each song in the first list searching for its

cover version in the second. This results in a total of 15 queries. A correct match of

the system is defined as the case whereby the song that is outputted as the one having

the highest similarity happens also to be the cover version of the particular query.

The number of correct matches amongst the 15 queries is then stored. This experiment

is conducted 250 times and the mean of correct matches is outputted as an evaluation

measure. The second experiment takes into account all 160 songs which are also

divided into two lists of 80 songs, each containing one version of each pair of songs.

Next, for each song in the first list a search is performed within the second to find its

cover. The system's rank defines the tolerance of what is considered to be a

78

correct match. If rank=N, then if for a query the correct cover is found to be amongst

the first N results, it is considered to be a successful match. In addition the system's

mean reciprocal rank (MRR) is calculated. MRR is simply the average of the ranks

corresponding to the correct match. This measure can be given by the equation below:

x}} = �
Ù / �

��5»³
Ù¦7� (7.1)

6.1.3. ACD

With a view to analyzing the song's structure an automatic audio summary

(thumbnail) extraction system has been implemented, following the steps described in

Chapter 5. Since for popular music this usually corresponds in identifying the chorus

of a song, the system is denoted as anautomatic chorus detection system respectively.

For some songs, though, it is not possible to find the chorus, as a song might not have

one, or might have one which is not clearly standing out to be identified. In addition a

chorus might not be anaccurate representation for the song as it might be too short or

not clearly audible. In such cases, the verse or even the basic short music theme often

identified in an intro can be more informative than the chorus. For the above reasons

this system is thought of providing the most representative part of the song as a person

would pick it out, trying to put more weight on selecting the chorus part if such one

exists.

For the implementation of the system described above, three basic functions were

created: createSSM, enhanceSSM, and lineSelection. Function createSSMgenerates

the self-similarity matrix of the song, where function enhanceSSMenhances it and lists

all the line segments found. The line segments are then passed to

functionlineSelection where they are examined in order to select the segment

corresponding to the chorus.

Further tuning was performed to the system in order to retrieve not one, but two

possible chorus candidates. The second chorus candidate was chosen to correspond to

the line segment with the next maximum score value which also has no temporal

overlap with the first line segment. If such a condition was not met for any of the line

 79

segments, then it was omitted and the segments with the second largest value was

selected. We believe that this condition improved the system's performance, since if

the correct part was not selected in the first part, usually it was selected in the

second.Moreover, when selecting the two chorus candidates we increased the

segments duration by 2 seconds by moving the end-point of the segment. This was

performed following the observation that the chorus' section identified cut off

approximately 2 seconds from the end. This effect could have been caused by

smoothing functions used in the algorithm.

It was observed that by using the ACD system described in this study in order to find

the most representative part within a song resulted to acceptable results.For songs

with a straight-forward music structure, such as clearly distinguishable intro, verse,

chorus, bridge and outro sections, the system could trace the chorus section in most of

the cases. If no chorus was present in the song, then usually the verse or the basic tune

of the song is returned as the most representative part.Only on very few occasionsdid

the system select a poor part of the song as being most representative. In the case

where a chorus was present in the song but the system outputted another part of being

more representative, we observed that the system's choice is considered reasonable, as

in many of those cases the catchiest part of the song is the verse or the melody in the

intro or bridge,rather than the chorus itself.

Due to all the above considerations and the fact that the investigation of a music

structure analysis system is of a preliminary nature, no exhaustive evaluation of the

described system was performed, however some examples and comments are

presented in section 6.2.3.

6.2. Evaluation Results

6.2.1. AFP matching

In order to evaluate the AFP matching system's performance we randomly chose 50

music pieces out of the music collection. For each piece three segments of different

80

duration were extracted. The segments duration were 5, 10 and 15 seconds

respectively. Each of these segments where used as queries in the AFP matching

system in order to retrieve their origin music piece. Without the addition of any noise,

even for the 5 seconds segments we achieve a 100% accuracy of music matching.

Next, several types of noises were added to the segments in order to evaluate the

system's robustness to noise. The noise types where selected from a noise database

called NOISEX [66]. The noise types that were used are: speech babble, destroyer

engine room noise, factory floor noise 1, car interior noise (Volvo), white noise, pink

noise, F-16 cockpit noise and leopard (tank) noise. These noises were added to each

and every music segment achieving a signal-to-noise ratio (SNR) equal to -15 dB, -12

dB, -9dB, -6 dB, -3 dB, 0 dB, 3 dB, 6 dB, 9 dB, 12 dB and 15 dB respectively. This

process is implemented in the function denoted as addNoise. It is understood that in

order to add noise of a specific SNR amount to a signal we scale the signal

appropriately. The equation providing the SNR value is given below:

��} = 10 EFG�H(Ú�³Ö:
ÚÛÜ³�P:) (6.1)

whereÀ�¦Ý� corresponds to the variance of the initial signal and À©É¦�A� to the variance

of the noise signal. Rearranging the above equation results in:

À�¦Ý� = À©É¦�A� 10�ÛÞ
�� (6.2)

Consequently, our scaled signal is given by:

#�)*#"«($) = ÚÛÜ³�Pß�H�ÛÞ��
Ú�³Ö #"«($) (6.3)

Finally the output signal with the required amount of SNR is given by:

�V"#&#"«($) = #�)*#"«($) J �V"#&($) (6.4)

The possibility of correct recognition rate of the pre-described evaluation are shown

in table 6.1 below.

 81

Table 6.1: AFP matching evaluation results

82

As can be observed from the experimental results we may conclude that the system

performs satisfactorily, even in the presence of noise. In particular, in cases where

either no noise or noise with an amount of SNR equal to 12 or 15 dB is added in

segments of 10 seconds or longer, the accuracy approximates 100%. In general it may

be argued that the higher the degree of noise, the lower the system's accuracy in

finding the correct origin song, with the exceptions of car interior (Volvo) and leopard

(tank) noises which have no effect on accuracy results. Also, as expected, longer-time

segments help counterbalance the impact of noise in respect to accuracy. This can be

seen in the graph below, indicating how longer-time segments improve performance

in accuracy by using the example of babble noise which is closer to 'real-life'

situations.

Figure 6.5: Recognition rate for segments of 5, 10 and 15 seconds with additive babble-noise

-15 -10 -5 0 5 10 15
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1
Recognition rate for segments with added noise

SNR (dB)

R
e
c
o
g
n
it
io
n
 r
a
te

5 sec segments

10 sec segments

15 sec segments

 83

6.2.2. ACS identification

In section 6.1.2 we described two experiments performed in order to evaluate the ACS

identification system's performance. The results of those experiments are shown in

table 6.2 below.

Table 6.2: Results of ACS identification system

Examining the evaluation results we draw the conclusion that the system described

throughout this work, while not perfect, has an acceptable performance. This in turn

implies that the use of beat-synchronous chroma features is a correct method of

approaching the implementation of an ACS identification system. Moreover,

weobserve that better results are obtained when using chroma features averaged by

beat times extracted from a beat-tracker biased around 120 BPM than from one biased

around 240 BPM. Using the information of both tempi, though, results in a slight

improvement of the system's performance.

For the first experiment, where cover songs are searched within a music collection of

15 tracks, an average of 9.9 correct matches is achieved. This number of correct

matches greatlyexceeds the case of random matching, since guessing the right cover

song would give an average of only 1 correct match. This verifies the above

implication.

84

For the second experimentthe system resulted in a 52.5% accuracy considering only

the first rank. We also examined the accuracy for different ranks. We observe that by

considering more ranks as correct results we get a higher performance. As music

similarity is difficult to measure in some examples of cover songs due to their radical

modifications, the correct cover may not be selected as the most similar song

(rank=1).Considering more ranks as correct results may result to higher accuracy. The

mean reciprocal rank of the system tested on the music collection of 80 cover sets is

equal to: MRR=0.6070, which indicates the rank of the correct match based on the

ordered returns of similarity.

However, sometimes cover versions are simply too different to be considered similar

based on the features described in this work. As the cover80 dataset covers a wide

range of modulations between cover versions, sometimes to a radical degree, we

believe that the results provided by the system tested on this dataset may be

considered as satisfactory.

6.2.3. ACD

In this section a rough evaluation of the ACD system is given based on a subset of the

covers80 music dataset (125 out of 180 songs), containing the music tracks which

were considered as easy to comment. Extracted chorus parts were divided into 3

categories: a good match, a medium match and a low match (Table 6.3).

Consequently 6 query-examples are given into the system and its outputis presented.

Good match (±5 sec) (in

case of no chorus in song, the

verse = good match)

Medium match (e.g. half-

chorus found / or verse

identified instead of chorus)

Low match (e.g. very short

snippet that doesn’t make

sense,basic tune or solo part)

85 cases 28 cases 12 cases

Table 6. 3: rough evaluation results

 85

The example query-songs presented in this section are listed in Table 6.3.

Table 6.4: Example songs tested for the ACD system

Each and every song of the above table-list was given to our ACD system as input and

2 segments were selected as the most probable chorus representations. Consequently

we compare the times outputted by the system with the chorus start and end times

extracted by manually segmenting each song.

Abracadabra by Steve Miller Band:

This particular song belongs to the popular dance

music genre. It has a straight-forward structure with

notable chorus sections repeating several times. The

verses are also considered similar to each other,

making the selection of the chorus more

complicated. The song’s structure is displayed in

Table 6.4.

The song is then represented by a 12x475 beat-

synchronous chromagram which has one single

chroma-vector for each beat of the song. The two

outputted chorus start and end times extracted for the

given song by our ACD systems are:

Table 6. 5: Song parts of “Abracadabra”

by Steve Miller Band

86

Chorus 1: 43.2 sec – 62.4 sec Chorus 2: 17.4 sec – 36 sec

It is observed that the first chorus start and end times extracted by the system includes

the complete first chorus of the song. The exact start and end times extracted from the

system differ from the manually selected chorus times by only a few seconds. The

second chorus part, as it is selected to not overlap with the first chorus-times

represents a part of the song which is found between verse 1 and verse 2, a part which

also repeats in the song.Having correctly identified a chorus section with the first

extracted possible chorus-part times is considered a satisfactory result.

I don’t want to miss a thing by Aerosmith:

This song is found under the genre slow rock or blues rock music. It has a well-

defined chorus which repeats three times throughout the song. The song is then

represented by a 12x596 beat-synchronous chromagram. The manual segmentation of

the song is depicted in Table 6.5.

The two outputted chorus parts are:

Chorus 1: 73.4 sec – 100.1 sec

Chorus 2: 131.9 sec – 157.2 sec

For this example song, both extracted possible chorus parts correspond to two chorus

repetitions within the song (‘Chorus 1’ and ‘Chorus 2’). The start and end times

extracted differ only for a couple of seconds. Having identified not one, but two

choruses within the song is considered as a highly satisfactory result.

Table 6. 6: Song parts of “I don’t want to miss a thing” by

Aerosmith

 87

It’s tricky by Run-D.M.C.:

This song belongs to the category of hip-hop/rap

music. It has many repetitions including

choruses, verses as well as short-time melodic or

rhythmic patterns. The song has four repetitions

of the chorus which are distinguishable through

the fact that these parts are more “energetic”.

The musical form of the song is depicted in

Table 6.6. The song is represented by a

12x391beat-synchronous chromagram.

The outputted chorus parts from our ACD system are:

Chorus 1: 68.5 sec – 84 sec

Chorus 2: 18.7 sec – 30.9 sec

It is observed that the first chorus part corresponds to the ‘Chorus 3’ part of the song

whereas the second outputted chorus corresponds to a segment between the first

chorus and the first verse. Having correctly identified a chorus section with the first

extracted possible chorus start and end times is considered a satisfactory result.

Let it be by The Beatles:

This particular song belongs to the genre of popular rock music. It has three choruses

that stand out and one more chorus repeating at the end of the song followed by the

outro. Moreover it has three verses that are also similar with each other and a bridge

part which contains a solo. The times of each part are shown in the Table 6.7 below.

The song is then converted into a 12x534 beat-synchronous chromagram.

Table 6. 7: Song parts of “It’s tricky” by Run

D.M.C.

88

The chorus parts extracted from our

ACD system are:

Chorus 1: 30.4 sec – 50.8 sec

Chorus 2: 14.2 sec – 26 sec

The first extracted chorus surrounds the ‘Chorus 1’ part of the manual segmentation.

The reason for including 8 seconds from ‘Verse 1’ as well in the representation is due

to the similarity of the verses. We conclude that the system provided reasonable

results for the particular example.

Little Wings byTheCorrs:

This song belongs to the Celtic/pop/rock music. It is an example of a song which does

not contain a chorus part. Instead it

has two different instrumental parts

with two identical verses which repeat

themselves throughout the song. The

times of the different parts are

presented in the Table 6.8. It was

considered a challenge whether the

system would pick the instrumental

part as the most representative for the

song or if it would select the identical verses. The song is consequently represented by

a 12x717 beat-synchronous chromagram matrix.

The outputted chorus parts from our ACD system given the particular song are:

Chorus 1: 102.2 sec – 129.2 sec

Chorus 2:77.1 sec – 88.7 sec

Table 6. 8:Song parts of “Let it be” by The Beatles

Table 6. 9: Song parts of “Little Wings” by The Corrs

 89

Interestingly the first extracted chorus part corresponds to the instrumental part within

the song. This is considered as reasonable as for the particular song the instrumental

part would be characterized as the most representative one.

Never let me down again by Depeche Mode:

This song is considered to belong in the popular music genre. It is a song with a not

so straight-forward song structure as it has several interlude-parts with the same

melodic background as well as a whole new section in the end of the song which

consists of loud dynamics, and repeatable chanting (‘B section’), followed by the

outro. The complete song segmentation can be seen in Table 6.9. Next the song is

converted into a 12x1017 beat-

synchronous chromagram matrix.

The outputted chorus parts from our ACD

system given the particular song as input

are:

Chorus 1:78.4 sec – 87.5 sec

Chorus 2:87.6 sec – 96.9 sec

For this example, we observe that both extracted chorus parts correspond to the first

repetition of the chorus within the song, where one represents the first half and the

other the second half. Although these results were not considered as optimal, it was

thought that the results were acceptable on the grounds that the summing of the two

parts result in the complete chorus.

Table 6.10: Table 6. 11: Song parts of “Never let me down

again” by Depeche Mode

90

CHAPTER 7

Conclusion and Future Work

The aim of the present study was to examine whether it is possible for a system to be

able to recognize cover versions of a given query-song by making use of

automatically extracted audio features. Such work might be of relevance on the

grounds that content-based search techniques are of particular interest for handling

large music databases as their main purpose is to make music or information about

music easier to find. Moreover, cover song identification may supply knowledge to

improve measurement and modeling of musical similarity which in turn may be used

for organizing large music collections. Managing musical rights and licenses can also

benefit by making use of such works since similar techniques could facilitate

identification of unauthorized moneymaking renditions of a particular song.

Extending the idea of cover song music similarity systems to the degree of a QBH-

ones which share by and large the same principles, whereby music similarity is

performed between reference songs within a database and a user's humming, might

have benefits from a user's point of view, as someone facing a large database

(YouTube, Amazon, Google) is given a choice to query this database using audio as

an input. Such queries would have a wide range of applications as for example in a

music pre-listening station found in a music store or in portable devices such as

smartphones, portable music players, or even in car music stereo devices.

Consequently, examining ACS identification is considered to be a good starting point

for music similarity research, providing an analysis of which features are considered

relevant for quantitative musical similaritymeasurement.

Since ACS identification systems follow a more general QBE framework, a basic

introduction to QBE systems was performed by presenting two AFP matching

methods, one of which was implemented and rapidly provided very satisfactory

 91

results, even in the presence of noise. Real-world example applications of such

systems are Shazam and Musiwave. However, such systems are 'fragile' to musical

changes because they are based on an exact matching scheme and as a result they are

unable to identify altered versions of a song.

Cover songs are known to differ in several musical dimensions, as for example

instrumentation, tempo and key transposition. The only feature that is more or less

retained between two different versions of a particular song is melody and/or

harmony. Therefore to accommodate these characteristics use was made of beat-

synchronous chroma features. Chroma features were chosen in order to overcome

variability in instrumentation. Beat averaging of the chroma features by making use of

beats locations derived from the use of a beat tracker dealt with variability in tempo.

Matching was then performed by cross-correlating the entire representations by taking

into account all possible key transpositions.

The above approach has demonstrated that the use of beat-synchronous chroma

features contributes to the task of identifying cover versions. This conclusion derives

from the experimental results provided in the present work, whereby it is shown that

the use of beat-synchronous chroma features grants better results in identifying the

correct cover version than when songs are selected randomly within a database.

However, results are farfrom perfect due to the abstract nature of the similarity

defined for this task. Sometimes cover versions are simply too different to be

considered similar based on the above mentioned features. This in turn creates

demand for multi-level musical descriptors which take into account more information

about a song. One example of such an enhancement process could be the

consideration of the musical structure of a particular title within its representation, as

for example a summarization of its most representative parts.

To this end it was found useful to include a presentation of a music structure analysis

algorithm which identifies the most repeated part of a song, usually the chorus. For

songs which are well-structured, meaning that a clear intro, verse, chorus, bridge and

outro are identifiable, the system was quite accurate in identifying the song's chorus.

However, for other songs with a less straight-forward structure, which for instance

might not even have a chorus, the system's performance was not so precise. Having

said this it can be concluded that trying to achieve structure invariance by this means

92

is prone to errors for mainly two reasons: firstly because automatic structure analysis

systems are not totally accurate, and secondly because the part of a song which might

be the most representative and identifiable might not be included in the most repeated

part, but in another part of the song such as the intro, outro, solo or other. As a result

the link of these two systems was not further examined.It would, however, be useful if

this topic becomes a subject for further research.

Cover song identification is still an open research topic which needs improvement.

Future work might for example focus on examining the impact of additional musical

features, such as timbre features in the computation of musical similarity granting a

higher similarity measurement to a cover with the same timbre than to a cover with a

different timbre. However, such an addition of extra features might be misleading.

Another observation in current ACS identification systems is that in order to find a

potential cover version of a query song a comparison between each and every song's

representation in the music collection and the query's representation must be made.

This can amount to a large number of comparisons for a large music collection,

decreasing such a system's speed of interaction. Work could be focused on finding a

collection of musical motifs which would cover the range of a large music database

making these motifs suitable for indexing and therefore allowing for faster search

methods. Moreover, excluding karaoke versions future work may concern cover song

identification systems furthered by automatic lyrics extraction systems. Identified

lyrics might then serve to ease the process of indexing the songs within a database and

to speed up search methods. Translation of these lyrics may help finding translated

cover versions as well. In addition, for remixed or other cover versions which make

short quotations of other musical pieces, already existing algorithms may be altered in

order to cater for such cases.

Finally, it could be argued that what had begun as a technologically-based trend in the

musical sphere has now developed into a serious scientific endeavor.

 93

References

[1] B. Pardo (2006). Finding structure in audio for music information retrieval.

IEEE Signal Processing Magazine vol. 23, no. 3, pp. 126-132.

[2] J. S. Downie, M, Bay, A. F. Ehmann and M. C. Jones (2008). Audio cover

song identification MIREX 2006-2007 results and analyses. The International

Music Information Retrieval Systems Evaluation Laboratory (IMIRSEL), pp.

468-473

[3] MIREX homepage, available at:http://www.music-

ir.org/mirex/wiki/2011:Main_Page

[4] J. Serrà, E. Gòmez, P. Herrera (2009). Audio cover song identification and

similarity. Background, approaches, evaluation and beyond. Spirngerat press.

[5] M. Casey, R. C. Veltkamp, M. Goto, M. Leman, C. Rhodes and M.. Slaney

(2008). Content-based music information retrieval: current directions and

future challenges. Proceedings of the IEEE 96(4), 668-696.

[6] A. Markaki (2008). Music genre classification using temporal and spectral

features. Diploma dissertation, Technical university of Crete.

[7] M. Marolt (2006). A mid-level melody-based representation for calculating

audio similarity. Int. Symp. on Music Information Retrieval (SMIR), pp. 280-

285.

[8] M. Marolt (2008). A mid-level representation for melody-based retrieval in

audio collections. IEEE Trans. on Multimedia 10(8), 1617-1625.

[9] C. Sailer and K. Dressler (2006). Finding cover songs by melodic similarity.

MIREX extended abstract.

[10] W. H. Tsai, H. M. Yu and H.M. Wang (2005). A query-by-example technique

for retrieving cover versions of popular songs with similar melodies. Int.

Symp. on Music Information Retrieval (ISMIR), pp. 183-190.

[11] W. H. Tsai, H. M. Yu and H.M. Wang (2008). Using the similarity of main

melodies to identify cover versions of popular songs for music document

retrieval. Journal of Information Science and Engineering 24(6), 1669-1687.

[12] A. Egorov and G. Linetsky (2008).Cover song identification with IF-F0 pitch

class profiles. MIREX extended abstracts.

[13] D. P. W. Ellis and C. Cotton (2007). The 2007 labrosa cover song detection

system. MIREX extended abstracts.

[14] D. P. W. Ellis and G. Poliner (2007). Identifying ‘cover songs’ with

chromafeatures and dynamic programming beat tracking. In Proc. Int. Conf.

on Acoustics, Speech & Sig. Proc. ICASSP-07, pages IV-1429-1432, Hawai’i.

94

[15] E. Gòmez and P. Herrera (2006). The song remains the same: identifying

versions of the same song using tonal descriptors. Int. Symp. on Music

Information Retrieval (ISMIR), pp. 180-185.

[16] E. Gòmez, B. Ong and P. Herrera (2006). Automatic tonal analysis from music

summaries for version identification. Conv. of the Audio Engineering Society

(AES), paper no. 6902.

[17] J. H. Jensen, M. G. Christensen, D.P.W. Ellis and S. H. Jensen (2008). A

tempo-insensitive distance measure for cover song identification based on

chroma features. IEEE Int. Conf. on Acoustics, Speech and Singal Processing

(ICASSP), pp. 2209-2212.

[18] J. H. Jensen, M. G. Christensen and S. H. Jensen (2008). A chroma-based

tempo-insensitive distance measure for cover song identification using the 2D

autocorrelation. MIREX extended abstract.

[19] S. Kim and S. Narayanan (2008). Dynamic chroma feature vectors with

applications to cover song identification.IEEE Workshop on Multimedia

Signal Processing (MMSP), pp. 984-987.

[20] S. Kim, E. Unal and S. Narayanan (2008). Fingerprint extraction for classical

music cover song identification. IEEE Int. Conf. on Multimedia and Expo

(ICME), pp. 1261-1264.

[21] Y.E. Kim and D. Perelstein (2007). MIREX-2007: audio cover song detection

using chroma features and hidden markov model. MIREX extended abstract.

[22] F. Kurth and M. Müller (2008). Efficient index-based audio matching. IEEE

Trans. on Audio, Speech, and Language Processing 16(2), 382-395.

[23] M. Müller, F. Kurth and M. Clausen (2005). Audio matching via chroma-

based statistical features. Int. Symp. on Music Information Retrieval (ISMIR),

pp. 288-295.

[24] H. Nagano, K. Kashino and H. Murase (2002). Fast music retrieval using

polyphonic binary feature vectors. IEEE Int. Conf. on Multimedia and Expo

(ICME), vol. 1, pp. 101-104.

[25] J. Serrà, X. Serra and R. G. Andzejak (2009). Cross recurrence quantification

for cover song identification. New Journal of Physics 11, art. 093017.

[26] J. Serrà, E. Gòmez, P. Herrera and X. Serra (2008). Chroma binary similarity

and local alignment applied to cover song identification. IEEE Trans. on

Audio, Speech, and Language Processing 16(6), 1138-1152.

[27] J. P. Bello (2007). Audio-based cover song retrieval using approximate chord

sequences: testing shifts, gaps, swaps and beats. Int. Symp. on Music

Information Retrieval (ISMIR), pp. 239-244.

[28] K. Lee (2006). Identifying cover songs from audio using harmonic

representation. MIREX extended abstract.

[29] D. P. W. Ellis (2007). Beat tracking by dynamic programming. J. New Music

Research. Special Issue on Tempo and Beat Extraction.

 95

[30] M. Goto (2003). A chorus-section detecting method for musical audio signals.

IEEE International Conference on Acoustics, Speech and Signal Processing

(ICCASP), pp V-437-440.

[31] A. Eronen (2007). Chorus detection with combined use of mfcc and chroma

features and image processing filters. In Proc. Of the 10
th
 Int. Conference on

Digital Audio Effects (DAFx-07), Bordeux, France.

[32] M. A. Bartsch and G. H. Wakefield (2001). To catch a chorus: Using chroma-

based representations for audio thumbnailing. In Proc. IEEE Workshop on

Applications of Signal Processing to Audio and Acoustics, Mohonk, New

York.

[33] M. A. Bartsch and G. H. Wakefield (2005). Audio thumbnailing of popular

music using chroma-based representations. IEEE Transaction on multimedia,

vol.7, no. 1, pp.96-104.

[34] B. S. Ong (2007). Structural analysis and segmentation of music signals. PhD

thesis, IniversitatPompeuFabra, Barcelona, Spain. Available at:

http://mtg.upf.edu/node/508

[35] B. S. Ong, E. Gómez and S. Streich (2006). Automatic extraction of musical

structure using pitch class distribution features. In Proceedings of the

Workshop in Learning the Semantics of Audio Signals (LSAS), Athens,

Greece, pp. 53-65.

[36] J. Paulus, M. Müller and A. Klapuri (2010). Audio-based music structure

analysis. Proc. of the 11th International Society for Music Information

Retrieval Conference (ISMIR), Utrecht, Netherlands, pp. 625-636.

[37] S. J. Orfanidis (1996). Introduction to signal processing. Pearson Education

Inc., available at: http://www.ece.rutgers.edu/~orfanidi/intro2sp/orfanidis-

i2sp.pdf

[38] S. R. Taghizadeh (2000). Digital signal processing - part 3: Discrete-time

signals and systems case studies. School of communications technology and

mathematical sciences. Available at:

 http://www.abiscus.com/resources/Signals/matlabsignal.pdf

[39] T. H. Cormen, C. E. Leiserson, R. L. Rivest, C. Stein (2001). Introduction to

Algorithms (2
nd
ed.). MIT Press and McGraw-Hill, P.323.

[40] S. Dasgupta, C.H. Papadimitriou, and U.V. Vazirani (2006). Algorithms.

McGraw-Hill, p.169, available at:

http://www.cs.berkeley.edu/~vazirani/algorithms.html

[41] T. Jehan (2005). Creating music by listening. PhD thesis, MIT Media Lab,

Cambridge, MA.

[42] A. S. Association (1960). American standard acoustical terminology.

Definition 12.9. timbre.

[43] G. Tzanetakis (2002). Manipulation, analysis and retrieval systems for audio

signals. PhD thesis, Princeton University.

96

[44] B. Logan (2000). Mel frequency cepstral coefficients for music modeling,

Proc. Int. Symp. on Music Information Retrieval (ISMIR).

[45] L. R. Rabiner and B. H. Juang (1993). Fundamentals of speech recognition,

Prentice Hall, New Jersey.

[46] R. Shepard (1964). Circularity in judgments of relative pitch. J. Acoust. Soc.

Am., 36, pp. 2346-2353.

[47] M. Y. Kao, C. B. Yang and S. H. Shiau (2009). Tempo and beat tracking for

audio signals with music genre classification, Int. Journal of Intelligent

Information and Database Systems (IJIIDS), 3(3): 275-290

[48] M. F. McKinney and D. Moelants (2004). Extraccting the perceptual tempo

from music, ISMIR, 5th International Conf. on Music Information Retrieval,

Barcelona, Spain

[49] M. F. McKinney and D. Moelants (2004). Deviations from the resonance

theory of tempo induction. Conference on Interdisciplinary Musicology.

[50] M. F. McKinney and D. Moelants (2004). Ambiguity in tempo perception:

What draws listeners to different metrical levels? Music Perception, vol. 24

no. 2 pp. 155-166.

[51] J. Haitsma and A. Kalker (2002). A highly robust audio fingerprinting system,

in Proc. 3rd Int. Conf. Music Retrieval (ISMIR), Paris.

[52] A. Wang (2003). An industrial strength audio search algorithm, in Proc. 4th

Int. Conf. Music Retrieval (ISMIR), Baltimore, MD.

[53] D. Ellis (2009). Robust landmark-based audio fingerprinting, web resource,

available at: http://labrosa.ee.columbia.edu/matlab/fingerprint

[54] G. H. Wakefield (1999). Mathematical representation of joint time-chroma

distributions. Int. Symp. on Opt. Sci., Eng., and Instr.,SPIE'99, Denver

Colorado.

[55] T. Fujishima (1999). Realtime chord recognition of musical sound: A system

using common lisp music. In Proc. ICMC, pages 464-467, Beijing.

[56] E. Gòmez (2006). Tonal description of music audio signals. PhD thesis,

UniversitatPompeuFabra, Barcelona, Spain. Available at:

http://mtg.upf.edu/node/472

[57] T. Abe and M. Honda (2006). Sinusoidal model based on instantaneous

frequency attractors. IEEE Tr. Audio, Speech and Lang. Proc., 14(4): 1292-

1300.

[58] F. J. Charpentier (1986). Pitch detection using the short-term phase spectrum.

In Proc. ICASSP-86, pages 113-116, Tokyo.

 97

[59] M. F. McKinney, D. Moelants, M. Davies and A. Klapuri (2007). Evaluation

of audio beat tracking and music tempo extraction algorithms. Journal of New

Music Research.

[60] J. P. Bello, L. Daudet, S. Abadia, C. Duxbury, M. Davies and M. B. Sandler

(2005). A tutorial on onset detection in music signals, IEEE Transactions on

Speech and Audio Processing, Vol. 13, Nr. 5, pp.1035-1047

[61] J. Laroche (2003). Efficient tempo and beat tracking in audio recordings. J.

Audio Eng. Soc., 51(4): p. 226-233.

[62] N. Otsu (1979). A threshold selection method from gray-level histograms.

IEEE Trans. Syst., ManmCybern, vol. SMC-9, no.1, pp. 62-66

[63] The lame project. Download available at: http://lame.sourceforge.net/

[64] M. Khadkevich (2010). JAMAL Manual, available at:

http://jamal.sourceforge.net/documentation.shtml .

[65] D. P. W. Ellis (2007). The “covers80” cover song data set. Web resource,

available: http://labrosa.ee.columbia.edu/projects/coversongs/covers80/ .

[66] NOISEX-92. Download available at:

 http://spib.rice.edu/spib/select_noise.html

