

ΠΟΛΥΤΕΧΝΕΙΟ ΚΡΗΤΗΣ
ΤΜΗΜΑ ΗΛΕΚΤΡΟΝΙΚΩΝ ΜΗΧΑΝΙΚΩΝ ΚΑΙ

ΜΗΧΑΝΙΚΩΝ ΗΛΕΚΤΡΟΝΙΚΩΝ ΥΠΟΛΟΓΙΣΤΩΝ

ΕΡΓΑΣΤΗΡΙΟ ΜΙΚΡΟΕΠΕΞΕΡΓΑΣΤΩΝ ΚΑΙ ΥΛΙΚΟΥ
ΔΙΠΛΩΜΑΤΙΚΗ ΕΡΓΑΣΙΑ

<<Development of an Experimental Framework & Evaluation of
Applications for Execution in Partial Reconfigurable FPGAs>>

Γεώργιος Νούλας

Επιβλέπων: Καθηγητής Απόστολος Δόλλας

Εξεταστική Επιτροπή:

Απόστολος Δόλλας
Διονύσης Πνευματικάτος
Ιωάννης Παπαευσταθίου

Καθ. Π.Κ
Καθ. Π.Κ

Επίκ. Καθ. Π.K

2

Ευχαριστίες

 Καταρχήν θα ήθελα να ευχαριστήσω τον καθηγητή μου Απόστολο Δόλλα για την ευκαιρία που

μου έδωσε να γνωρίσω το Hardware μέσα από τις δραστηριότητες του εργαστηρίου

Μικροεπεξεργαστών και Υλικού. Τον ευχαριστώ επίσης για την απόφαση του να με επιβλέψει για την

εκπόνηση της διπλωματικής μου εργασίας. Με τη συνεχή καθοδήγηση καθώς και το αμέριστο

ενδιαφέρον του κατά τη διάρκεια εκπόνησης αυτής της εργασίας έκανε δυνατή την επίτευξη του

στόχουμου.

 Επίσης, θα ήθελα να ευχαριστήσω την επιτροπή της διπλωματικής μου εργασίας, Καθηγητή Δ.

Πνευματικάτο και Επικουρο Καθηγητή Ι. Παπαευσταθίου για τη συμβολή τους στην εργασία αυτή.

 Ευχαριστώ τον διδακτορικό φοιτητή Κυπριανό Παπαδημητρίου για τη συνεχή καθοδήγηση

καθώς και την εντατική και πολύτιμη του βοήθεια σε όλα τα στάδια εκπόνησης της διπλωματικής

εργασίας μου.

 Επίσης θα ήθελα να ευχαριστήσω:

 Τον μεταπτυχιακό φοιτητή, Παναγιώτη Δαγριτζίκο για την πολύτιμη βοήθειά του με τους

κρυπτογραφικούς αλγορίθμους.

 Όλους τους φίλους μου για το συνεχές ενδιαφέρον τους και την αμέριστη ηθική τους

συμπαράσταση.

 Την αδελφή μου για την συμπαράσταση, υπομονή και φροντίδα τα φοιτητικά αυτά χρόνια.

 Τη Σεμίνα, που άντεξε εμένα και το Πολυτεχνείο ολο αυτόν τον καιρό και προσέφερε διαρκώς

κουράγιο και υποστήριξη.

 Τέλος, και περισσότερο απ' όλους, ευχαριστώ τους γονείς μου για την βοήθεια και υπομονή

τους σε όλα τα χρόνια των σπουδών μου. Με το συνεχές ενδιαφέρον τους σε κάθε βήμα μου και με την

ηθική και οικονομική συμπαράσταση τους έκαναν δυνατή την επίτευξη των στόχων μου. Θα ήταν

αδύνατη η ολοκλήρωση της εργασίας αυτής χωρίς το κουράγιο και την υποστήριξη που διαρκώς μου

έδιναν.

3

Table of Contents

Ευχαριστίες ... 2

Chapter 1 ... 5

Introduction .. 5

1.1 Reconfiguration ... 5

1.2 Advantages of Dynamic Reconfiguration .. 6

1.3 Contributions of This Work ... 7

1.4 Structure ... 8

Chapter 2 ... 9

Related Work .. 9

2.1 Recent Trends in PR Design Flow .. 9

2.2 Reconfiguration Overhead .. 11

2.3 Hiding Reconfiguration Overhead ... 15

2.4 Applications Designed in PR Systems .. 16

Chapter 3 ... 17

Partial Reconfiguration Tools and FPGAs .. 17

3.1 Operating System .. 17

3.2 Partial Reconfiguration Tools .. 17

3.3 Virtex 5 VLX-110t FPGA Board .. 18

3.4 Partial Reconfiguration ... 21

Chapter 4 ... 23

Evaluation Framework .. 23

4.1 Serial Port .. 23

4.2 BRAM access ... 25

Chapter 5 ... 29

4

Benchmarking ... 29

5.1 Algorithms for Cryptography .. 29

5.1.1 The Advanced Encryption Standard ... 29

5.1.2 Blowfish .. 33

5.2 Application Resource Analysis .. 35

5.2.1 Advanced Encryption Standard 128 PLB Bus Analysis ... 36

5.2.2 Advanced Encryption Standard FSL Analysis ... 41

5.2.3 Blowfish PLB Analysis ... 44

5.2.3 Blowfish FSL Analysis ... 46

Chapter 6 ... 48

Conclusions and Future Work ... 48

6.1 Conclusions ... 48

6.2 Future Work .. 49

References .. 50

Appendix A .. 52

A.1 Installing Cable Driver ... 52

A.2 Installing Terminal Program .. 52

A.3 Start Up Script for ISE ... 53

A.4 Start Up Script for EDK .. 53

Appendix B .. 55

B.1 When Creating a FSL Peripheral ... 55

B.2 When creating a PLB Peripheral ... 55

Appendix C .. 56

5

Chapter 1

Introduction

 In this chapter we will be getting a first look at partial reconfiguration, what it is, where it is

used, its advantages and disadvantages. Finally, information about this thesis will be given and the

contributions of our work are pointed out.

1.1 Reconfiguration

 One of the most interesting features in today's FPGAs is their ability to allow runtime-dynamic

reconfiguration. This feature allows replacing a module on the device, while the reset remains intact and

continues its operation. Run time reconfiguration is best used, when areas of a program are too complex

or too numerous to be loaded simultaneously onto the available hardware provided by the FPGA. Run-

time reconfiguration can be seen as virtual hardware. Like virtual memory, here, the physical hardware

present is much smaller than the sum of the resources required by each of the configurations.

 Reconfigurable computing is becoming an important part of research in computer architecture

and software systems. Due to their flexibility to change over time and provide a method to map circuits

into hardware, these systems have the potential to achieve far greater performance than software as

well as possibly exploiting a greater degree of parallelism. Reconfigurable computing is intended to fill

the gap between hardware and software, achieving potentially much higher performance than software

but also maintaining a higher level of flexibility than hardware. These systems use FPGAs or other

programmable hardware to accelerate algorithm execution by mapping compute-intensive calculations

to the reconfigurable substrate. A general microprocessor may also be used with the above hardware to

control the reconfigurable logic and to execute any program code that cannot be efficiently accelerated.

6

 FPGAs and reconfigurable computing are used today in several applications. Data encryption,

for example is able to leverage both parallelism and fine grained data manipulation. Other applications

that have been shown to exhibit significant speed-ups are automatic target recognition, string pattern

matching, Golobm Ruler Derivation and more. Partial reconfiguration is the cornerstone for power-

efficient and cost-effective software defined radios (SDR). SDRs are becoming reality for the defense

industries as an effective and necessary tool for communications. In [14] partial reconfiguration was

used in a video-based driver assistance system for cars.

1.2 Advantages of Dynamic Reconfiguration

 The two biggest problems designs face are fitting more logic into an existing device and fitting a

design into a smaller and cheaper devise. With the use of partial reconfiguration, a designer can

overcome these problems.

 Partial reconfiguration gives the ability for multiple design modules to share physical resources

on an FPGA board. This allows for reduction of the hardware resources being used, which means that

designs are smaller, therefore leading to smaller and cheaper FPAGs being used. This potential of using

less space on the board, leads to consuming less power, which is a huge factor in today's embedded

designs. Being able to change the hardware configuration allows for the implementation of highly

specialized circuits. Partial reconfigurable systems can adapt to changes in their environment, their

input data or their mission specifications. This capability makes the system more efficient as compared

to a generic one, which cannot be optimal for a number of different situations.

 The ability to change the hardware dynamically in a single FPGA also provides additional

advantages. Partial reconfiguration:

• Provides real-time flexibility in the choice of algorithms or protocols available to an application

at anytime.

• Enables the use of new techniques in design security.

• Improves FPGA fault tolerance

• Accelerates configurable computing

• Reduces bitstream storage requirements

7

 Figure 1 shows some of the advantages when using partial reconfiguration.

Figure 1. Modifying Functionality and Reducing Size using Partial Reconfiguration

 Of course, with the advantages come some tradeoffs, which must not be neglected. Due to the

time required to download the configuration data before the system is ready to execute can degrade

the execution time. This delay is known as reconfiguration overhead. As stated above, the configuration

bitstreams need to be stored somewhere in the system. The tradeoff here is the limited but fast on-chip

memory, and the slow but large and inexpensive external memory. Of course, using the external

memory means large reconfiguration overhead, due to the slow transfer rate. Due to the complex of the

design the design cycle is larger, which could mean to a slower time to market.

 Before deciding to use dynamic reconfiguration, a performance evaluation is needed to study

the system behavior and point out the bottlenecks. Only after these results, can we decide whether

dynamic reconfiguration suits the needs of an application.

1.3 Contributions of This Work

 This work presents a detailed framework and evaluation of applications for execution using

reconfigurable FPGAs. We were mostly interested in the reconfiguration time and the overhead added

to our design.

 For this work a Python script was created in order to gather all measurements taken during the

experiments and import them to excel for further processing. A total of four systems were setup in

order to test and evaluate the reconfiguration process. For evaluation of the setups the PRCC tool was

used in order to provide theoretical results.

8

1.4 Structure

 Chapter two provides references to related work to this thesis. Chapter three discusses the

partial reconfiguration tools and the operating system used. It also provides an in depth description

about the FPGA board that was used. Chapter four presents a series of measurements that were taken

regarding different components on the Virtex-5 such as the serial port and BRAM memories. Chapter

five presents the two algorithms used for evaluation and the benchmark results for the partial

reconfiguration evaluation. Finally, this thesis will close with chapter six were we will conclude this

thesis and provide information about future work.

9

Chapter 2

 Related Work

 When considering building a design using partial reconfiguration several issues need to be

studied. This chapter goes through the existing technology in order to discuss the problems that ... to be

studied. It starts with the recent trends in PR design flow which demonstrate that although a significant

amount of work has been done, PR flow is still at its early stage, especially with regard to developing a

painless way if designing applications with PR. Then it examines the overhead added by reconfiguration

process and the effect of the different setups have on it. It continues with ways that have been

proposed in order to hide the reconfiguration overhead. Finally, applications that have been deployed

using PR technology are discussed.

2.1 Recent Trends in PR Design Flow

 In [2], Lysaght et al. 2006 proposed a design methodology for partial reconfiguration using a

Virtex-4 board. This paper introduces also the capabilities of the Virtex 4 family. The most important

developments of this FPGA family are the following:

i) The hardwired tri-state buffers have been replaced with pre routed bus macros. These provide better

communication between static and dynamic regions and much more flexibility.

ii) Reduction in the granularity of the unit of reconfiguration from a full device column to a smaller unit

of 16 CLB's and is independent of device size or family. All the Virtex-4 configuration frames consist of

forty-one 32-bit word resulting in a total of 1,312 bits per frame.

10

iii) The new ICAP port now has a 32 bit (old one was 8 bit wide) input and output and can communicate

at a max speed of 100MHz. This, along with the 16 CLB's can increase the reconfiguration speed by as

much as an order of magnitude for smaller modules.

The design process is enabled by two key enhancements to the mainstream design tools. First, the

region being reconfigured can be of any rectangular size. The second major change permits signals in the

static design to cross through partially reconfigurable regions without the use of a bus macro. The new

design flow is illustrated in Figure 2.

Figure 2. Partial Reconfiguration flow as suggested by Xilinx

 In [9] McCaskill 2010, provided information about the evolution of partial reconfiguration and

why it's easier today for teams to use this new technology considering the tools and support. McCaskill

also suggested to follow six simple steps when using partial reconfiguration. In particular, a "bottom up"

synthesis flow should be used. According to which each partition will form a separate synthesis project

with its own netlist. The steps for a design using PR are

1. Set up the design structure, deciding on static versus reconfigurable logic. Synthesize all netlists,

define RMs and create partitions. Then, assign RM netlists to the appropriate RPs.

2. Provide the proper constraints for each RP based on the assigned RMs.

3. Run the PR-specific design rule checks that are in PlanAhead.

11

4. Place and Route all design combinations. Create a 'golden reference' for the static logic and

iterate to close all timing on all the combinations of static logic and RMs.

5. Create the bit files.

6. Test the design.

2.2 Reconfiguration Overhead

 In [4] Papademetriou et al. 2010 describe a framework to evaluate dynamic partial

reconfiguration of an application using a Virtex II PRO FPGA. The reconfiguration overhead was broken

down into the following times to allow better understanding.

1) CF-PPC is the time to copy configuration data from the CF to the PPC memory with one

transaction.

2) PPC-HWICAP is the time to write configuration data from the PPC memory to the HWICAP

BRAM.

3) HWICAP BRAM-CM is the time to load the configuration data from one HWICAP BRAM to the

FPGA CM.

4) Rec-HWICAP is the time elapsed between the PPC detection that a reconfiguration has been

fired and the first launch of the configuration data from the HWICAP BRAM to the FPGA CM.

5) HWICAP-CM is the time for loading all configuration data from the HWICAP BRAM to the FPGA

CM, including the pad frame.

6) RT is the time elapsed between the PPC detection that a reconfiguration has been fired and

switching to the new execution, this is the total reconfiguration time.

 The results showed that in most cases the delay, linearly increased with respect to the size of

the bitstream with a fixed processor array. In general, depending on the size of the partial bitstreams,

the selection of the system parameters might improve or degrade the performance.

 The traditional way of accessing the ICAP was either through the OPB (OPBHWICAP) or PLB (IPIF)

bus. The use of these busses though, takes up a large amount of resources; their use is complex and

was designed to work with particular bus systems in each case, therefore not allowing them to be

reused. In [7], Victor Lai and Oliver Diessel introduced a new interface for accessing the ICAP, the ICAP-I.

The interface implements a wrapper that provides a new easy to use interface for accessing the ICAP

12

without the need of a bus, or a processor core but can still be used with other bus systems such as the

OPB and PLB. The ICAP-I is a set of VHDL modules. The storage device provides configuration data for

the ICAP and stores configuration data that is read from the ICAP while allowing other devices to use the

storage device. The ICAP IF module accepts the read and write requests from the storage device and the

application. The ICAP control arbiter controls the requests from the application and the BTU allows

access to the ICAP. The storage device provides pre-generated bitstreams to the ICAP-I, where as the

application provides on the fly bitstreams, generated during run time. Both bitstreams are loaded to the

ICAP while the application is running. One of the main problems with the ICAP-I was its inefficient way of

transferring data. Finally, a comparison between the performance of the ICAP-I , the OPB and the PLB

based ICAP implementations is provided using a Virtex 4 FPGA board. The results showed that the ICAP-I

uses a lot less resources, which is due to not using CPU cores. The ICAP-I also achieved a much higher

throughput to the ICAP, 180 MB/s compared to the 95 MB/s achieved by the PLB. The only problem with

the ICAP-I implementation is the storage device used to store bitstreams; this was the bottle neck of the

setup. The device used, impacted the performance of the ICAP-I, the slower the device the less

throughput achieved.

 In [8] Shaoshan Liu et al. 2009 proposed two techniques to minimize the reconfiguration

overhead. To improve the reconfiguration speed, a method using streaming DMA engines (direct

memory access) to transfer the configuration data directly to the ICAP was proposed. A master DMA

engine was added in the ICAP controller and communicates with the ICAP FSM and the slave DMA

engine. The slave DMA engine was placed in the SRAM controller and communicates with the SRAM

bridge and the master DMA engine. A FIFO was placed between the master and slave DMA engines to

increase the throughput. The burst mode of the SRAM was also activated. The setup proposed can be

seen in Figure 3. The FPGA board used was a Virtex 4. This method achieved an ICAP throughput of 395

Mbytes/s very close to the ideal 400 Mbytes/s. This design improved the simple use of DMAs proposed

in [10], which achieved a speed of only 82 Mbytes/sec. The reason for not achieving maximum

throughput was due to the master slave handshaking. This process took 12 cycles to complete, after the

12 cycles the FIFO is no longer empty. After the DMA operation is complete, it takes another 5 cycles to

reset the two state machines. Therefore, there is a total overhead of 17 cycles. During the rest of the

operation the throughput was 400 Mbytes/s.

 The second way to reduce configuration time was by decreasing the configuration file size with

compression techniques. To achieve this, they tried to find words that repeated themselves. The main

advantage of this method was that it was simple and minimized the overhead of the decompression

13

circuit. When the ICAP receives a word it determines if decompression is necessary, if so, the ICAP

controller performs decompression and then sends the configuration data to the ICAP port. The

intelligent ICAP controller adds only a very little hardware overhead. Other methods to improve

configuration performance include prefetching the configuration bitstream files and bitstream file

relocation. After performing tests on the Intelligent ICAP controller the results showed that, by

combining the DMA engines with the intelligent ICAP controller, they achieved an effective data transfer

throughput of 1.2 GBytes/s in some cases, that well surpassed the upper bound of data transfer

throughput of 400 Mbytes/s.

Figure 3. Structure of the master-slave DMA for PR

 In [10] Ming Liu et al. evaluated nine different setups for their reconfiguration speeds on a

Virtex-4 FPGA. Results showed that using a Master burst or a Direct Memory Access we can achieve the

best times compared to the resources used (234.5 MB/s for MST and 82.1 MB/s for DMA). Use of

BRAMS can approach the reconfiguration speed limit of the ICAP at the cost of large Block RAM

utilization (332.1 MB/s). PLB and OBP setups were also studied but the reconfiguration times were much

slower than the three setups above.

14

Figure 4. Reconfiguration times for different setups

 In [5] Papadimitriou et al. 2011 produced a cost model of partial reconfiguration and surveyed

the performance of the factors that contribute to the reconfiguration speed. They concentrated on the

three following factors of partially reconfigurable systems, the external storage, the configuration

controller and last, the phases of the reconfiguration process and the formulas used to calculate the

reconfiguration times. It is explained, how the external memory used to store the bitsteams, plays a

major factor in the reconfiguration overhead, the slower the memory the bigger the overhead becomes.

To overcome this problem, the bitstreams can be loaded to a high speed memory after the systems

boots, to achieve faster reconfiguration. Concerning the reconfiguration controller, many solutions have

been proposed, depending on the application. Customized controllers aim to speed up the process and

allow the processor to do other tasks, in this case a DMA (direct memory access) controller is used.

When the processor acts as the reconfiguration controller, the system suffers from long delays due to

the time needed to access the memory, to call and execute the software instructions. The number of

modules on the bus also plays a role on the delay, the more the devices the longer the delay. They then

split the reconfiguration process into three different phases, i) Phase to pull the bitstream from the off

chip memory to the memory of the processor, ii) Copy it from the from the processor memory to the

ICAP cache, iii) Send it from the ICAP cache to the configuration memory of the FPGA. It has been shown

that the largest overhead occurs from the first two phases since the third phase has a standard time of

execution. A comparison between the bandwidth of the configuration port and the actual

15

reconfiguration throughput is presented, using different ports, controllers and external memories. In

most cases the Actual Reconfiguration Throughput is much less than the bandwidth given for the

configuration port. Results showed using a faster memory improves the ARTH dramatically even when

an older OPB controller was used. In some cases the throughput was larger than that of a PLB controller.

2.3 Hiding Reconfiguration Overhead

 In [11] Papademetriou and Dollas evaluated a preloading model to hide configuration overhead.

The problem studied, was the delay to load a second configuration into the reconfiguration region when

it did not fit in the region, simultaneously with the first. To solve this problem the bitstream that was

most likely to be executed was preloaded and the second was transformed. It was split into two

subtasks so that one portion fits on the remaining hardware. Therefore, if the second task was required

to be executed, only the second subtask needs to be loaded. For the experiments a Virtex-II XC2V500

devise was used. Results showed that as the volume of the CLB columns that can be utilized for

preloading the least likely to be executed operation increased, the execution length of the augmented

model decreased compared to the original model. The largest improvement obtained was for seven

available CLBs and was equal to 86.55%. The results showed the relationship between configuration

latency and reconfiguration overhead and whether reconfiguration can be hidden by the processor's

execution. The main advantage of the proposed model is the increase in the utilization of the available

hardware achieved by splitting the least likely to be executed task.

 In [13] Liu et al. introduced a new concept of Virtual Configurations for shortening the FPGA

reconfiguration time by hiding it in the background. The solution they gave was to have two copies of

configuration contexts; these represented a VCF and were located on a single Partial Reconfiguration

Region. The active VCF could still keep working in the foreground when module switching was expected.

When a new partial bitstream was needed, it was loaded into the second context. Once the

reconfiguration was done, the newly loaded module started working by being swapped with the first

context. This can be seen in Figure 5 for switching the two contexts a multiplexer was used to only

switch the control outputs; therefore the context swapping only took a very short time. To see the

impact of the VCFs they set up a producer consumer design with run time reconfiguration capability.

Results showed up to 29.9% throughput improvement of received packets by each consumer node. The

16

use VCFs is better suited for multi context FPGAs, since single context FPGAs, would require the

reservation of two duplicate PRRs.

Figure 5. Virtual reconfigurations on multi-context FPGAs

2.4 Applications Designed in PR Systems

 In [17] Nikoloudakis researched the advantages and disadvantages using reconfigurable logic

with encryption applications such as the Advanced Encryption Standard (AES). He also created an

embedded system which allowed different algorithms for cryptography, to be partially reconfigured on a

FPGA board.

17

Chapter 3

Partial Reconfiguration Tools and FPGAs

 In this chapter we will be introduced to the operating system, the Xilinx software and the FPGA

board that was used throughout the process of the thesis.

3.1 Operating System

 During this thesis it was decided to use a Linux based operating system. For better support and

easier installation Xilinx, suggested the use of SUSE. Therefore, a 32-bit version of SUSE Enterprise

Desktop Edition 11.1 was installed on a computer. Even though it was a 60 day trial version (did not

receive updates after this period), this did not cause any problems. The software was downloaded from

the Novell website, which can be found at www.novell.com/products/desktop/. The installation was

straightforward and no problems occurred at this point.

3.2 Partial Reconfiguration Tools

 The Xilinx design tools used were the ISE Design Suite 12.3, which was downloaded from the

Xilinx website (www.xilinx.com/products/design-tools/ise-design-suite/system-edition.htm). The

installation of the Xilinx tools consists of two steps. First, installing the software and second installing

the platform cable driver for downloading the designs to the board.

http://www.novell.com/products/desktop/
http://www.xilinx.com/products/design-tools/ise-design-suite/system-edition.htm

18

 The installation of the Xilinx software was quite simple and straightforward with the help

provided in [14]. Unlike Windows, to run the Xilinx software, a script was written for this task, which can

be found in the appendix.

 On the other hand, the installation of the cable driver caused quite a few problems. Although

Xilinx recommends SUSE, and insures a simple and straightforward installation, our first attempt to use

the drivers provided by Xilinx, did not work. Therefore a different method needed to be used to install

the software drivers. The solution came from a library found in [17]. The libsub library that was installed,

allows the tools to access the JTAG cable without the need for a proprietary kernel module. For further

information details on installing the drivers can be found in the appendix.

 Therefore, due to the above difficulties there is no reason for the use of Suse, even though it is

recommended by Xilinx. The same library can be used with the Ubuntu operating system and the

supplied driver works with Windows.

 Unlike Windows, Suse had no pre-installed terminal program (like HyperTerminal) to display the

output from the serial cable. After some searching, it was decided to use CuteCom. CuteCom is a

graphical serial terminal and is more user friendly compared to minicom, which is also a terminal

program. Information about the installation can be found in the appendix.

3.3 Virtex 5 VLX-110t FPGA Board

 The FPGA board used during this thesis was a Virtex 5 VLX-110t. It included all the necessary

components for dynamic reconfiguration. The basic element is the configurable logic block (CLB), which

contains look-up tables (LUT) as the basic function generators. The FPGA also contains several

specialized circuits such as Block SelectRAM (BRAM) resources, multiplier blocks and Digital Clock

Manager (DCM) modules. The FPGA has a total of 17,280 slices; each slice contains four LUTs and four

flip-flops. Compared to older Virtex families the PowerPC and the OPB bus have been removed and are

no longer used.

19

Figure 6. Virtex-5 slice

 The serial JTAG, the SPI and the parallel SelectMAP allow for external configuration, where as

the parallel Internal Configuration Access Port (ICAP) allows for internal, partial only, configuration. The

ICAP on the Virtex-5 can support up to 32-bit transfers. The maximum operational frequency of the ICAP

is 100 MHz. The block level diagram for the ICAP controller can be seen in Figure 7.

Figure 7. Top level block diagram for the XPS HWICAP Core

20

 The XPS HWICAP controller provides the interface necessary to transfer bitstreams to and from

the ICAP. The CPU bursts the required bitstream data directly from the main memory. Incoming data is

stored within a Write FIFO, from where it can be fed to the ICAP. All the bitstreams must be stored in

main memory before they can be used to reconfigure the FPGA.

 The configuration data is stored in RAM memory called configuration memory. Configuration

memory is arranged in frames that are tiled about the device. A frame is the smallest amount of

configuration information that can be accessed and has a width of one bit. All operations must act upon

whole configuration frames. On the newer Virtex 4 and 5 FPGA boards the height of the frames is 1,312

bits, compared to the older boards were the height varied depending on the devise. The frames stretch

from the top edge of the device to the bottom edge. The devise has a total of 24,304 frames, from which

23,712 of those frames are configuration frames. Figure 8 displays the configuration architecture of the

Virtex 5 FPGA.

Figure 8. Xilinx Virtex configuration architecture

21

CLBs
Slices

Array
(row x

col)

Max
Distributed

Ram(kB)

Total
CLBs

Slice/CLB Total
config. bits

Config.
Frames

Frame
size
(bit)

DSP48E
Slices

Block
Ram

(36kB)
17,280 160x54 1,120 8,640 2 31,118,848 23,712 1,312 64 148

Table 1. Virtex 5 VLX110t Device Features

 In Table 1 we have listed the sizes of all the features included on the VLX110t. Each CLB contains

two slices. The total memory used by the BRAMS is 5328 kB; the designer has the choice of splitting the

36 kB block ram into two smaller 18kB block rams, therefore having a total of 296 BRAMs. Each DSP48E

slice contains a 25 x 18 multiplier, an adder, and an accumulator.

 Finally, each block type (CLB, DSP48E, etc.), contains a different number of frames. The

approximate number of configuration bits for each devise feature, along with the frames per slice can

been seen in Table 2.

Device Feature Approximate Number of Configuration Bits Frames per Slice
1 Logic slice 1,181 0.9

1 Block Ram (36kb) 1,170 0.8917
1 Block Ram (18kb) 585 0.446

1 I/O block 2,657 2.025
1 DSP48E slice 4,592 3.5

Table 2. Number of Configuration Bit for Different Block Types

3.4 Partial Reconfiguration

 As seen earlier, partial reconfiguration allows designers to reconfigure selected areas of a FPGA

board. The swapping of the reconfigurable modules can be seen in Figure 8. Both partial and static

regions are pre-defined and cannot be changed during run-time. This means that the user must make

sure that all the designs will fit into the partial reconfiguration region.

22

Figure 9. Swapping modules in and out of PRR

 Partial reconfiguration can be divided into two separate categories, dynamic and static. Dynamic

reconfiguration takes place while the device is running, while static reconfiguration is performed when

the device is inactive. An extension of the dynamic concept is self-reconfiguration. It assumes that

special circuits on the logic array are used to control the reconfiguration of other parts of the FPGA.

When using dynamic reconfiguration, the part of the FPGA that is undergoing reconfiguration is also

known as Partial Reconfiguration Region (PPR). This region is static and cannot be changed. The modules

being swapped in and out of these regions are known as Partial Reconfigurable Modules (PRM) and are

stored as partial bitstreams in a memory. This memory may be external such as a compact flash or on

board the FGPA, for example BRAMs. The memory used for storing this data plays a major factor on the

reconfiguration time.

 Communication between the modules in the design is achieved by using special bus macros.

These bus macros are fixed data paths for signals going between a reconfigurable module and another

module. The bus macro can be wired so that signals can go in either direction (left-to-right or right-to-

left) and is strongly recommended that once a direction is defined, it should not change for that

particular FPGA design. During the reconfiguration process it is very important that communication

between the modules is stopped due to the unknown state of the signals.

Figure 10. Use of bus macros for communication between PRR and static region

23

Chapter 4

Evaluation Framework

 In this chapter we will see a series of tests that were performed on the Virtex-5 vlx110t board.

The tests provided us with measurements concerning time requirements to perform different actions

such as communication over the serial port and access of a BRAM.

4.1 Serial Port

 The purpose of this test was to determine the total clock cycles required to send data from the

FPGA to the computer over the RS 232 serial port. For the communication between the PC and the FPGA

board, a simple design was setup using the EDK 12.3 software. The design parameters were the

following, a microblaze processor, the system clock frequency was set to 125 MHz and the local memory

had a size of 8 KB. The only peripheral attached to the design was a RS 232 port, with a baud rate of

9600.

 In order to measure the clock cycles between actions, the XPS timer was used. This is provided

by the EDK tools and sits on the PLB bus of the design. Using software we were able to start and stop the

timer when desired.

 For the testing, we sent different messages over the serial port. We started by sending each

character, in the phase "Hello World" one at a time over the serial port. The results for the cycles

needed to transfer each group of characters can be seen in Table 1. The first column shows the data that

was sent over the RS232 port, the second column are the cycles needed to transfer the data and in the

third column we have the increase in cycles compared to the pervious data that was sent. In Figure 11, a

graph is presented which shows the increase of cycles needed compared to the characters being sent.

24

Text sent in printf() command Time elapsed (cycles) Increase

H 1583 0
He 260209 258626
Hel 390284 130075
Hell 520364 130080

Hello 650439 130075
Hello 780514 130075

Hello W 910609 130095
Hello Wo 1040697 130088
Hello Wor 1170772 130075
Hello Worl 1300847 130075

Hello World 1430942 130095
Hello World! 1561010 130068
Hello World!! 1691085 130075
Hello World!!! 1821180 130095

Table 3. Serial Port testing results

Figure 11. Cycles required to transfer data over the RS232 port

 Results showed that the serial port needs a total of 1.583 cycles to send one character but when

increasing the number of characters to two, there was a dramatic increase of 258626 cycles. After this

0

20

40

60

80

100

120

140

160

180

200

1 2 3 4 5 6 7 8 9 10 11 12 13 14

Cy
cl

es

x
10

00
0

Characters

Cycles Needed for Transfer

CYCLES

25

point and for every other character we saw a liner increase of required cycles. The slow communication

speed achieved was also due to the low baud rate of 9600bps that was used. A possible increase in the

rate would most lucky show us a decrease in the required cycles.

 A part of the code used for the above testing can be seen below

XTmrCtr XPS_Timer; //name the timer
XTmrCtr_Initialize(&XPS_Timer, XPAR_XPS_TIMER_0_DEVICE_ID);
XTmrCtr_SetResetValue(&XPS_Timer, XPAR_XPS_TIMER_0_DEVICE_ID, 0);
XTmrCtr_Reset(&XPS_Timer, 0);
XTmrCtr_Start(&XPS_Timer, 0); //start timer
printf("Hello world!!!");
XTmrCtr_Stop(&XPS_Timer, 0); //stop timer
long int cycles;
cycles = XTmrCtr_GetValue(&XPS_Timer, 0); //get number of cycles
xil_printf("\ncycles: %d\r\n",cycles);

 As can be seen in the above code, before the XPS_Timer can be used, it must be declared and

initialized. These actions can be seen in line 1 and 2 of the above code.

4.2 BRAM access

 The purpose of this test was to determine the total clock cycles required to read and write from

a BRAM memory. Once again, a design was created in EDK using the same parameters used to test the

serial port. In this case though, we added a BRAM memory and controller in order to test.

 For the first series of tests, we wrote 1 Byte of data to an offset of the memory address and

timed this function. Next, we read back the same data and also timed the function (Figure 12). For the

second test, we sent 4 Bytes to an address of the BRAM and then read it back (Figure 13). The third test

consisted of writing one Byte at a time to the BRAM and also reading back one byte at a time (Figure

14). Finally, we placed the read and write command in a for-loop and wrote and read 1 byte for each

loop (FIGURE). The cycles measured during the experiments are shown in Table 2.

26

XTmrCtr XPS_Timer; //name the timer
XTmrCtr_Initialize(&XPS_Timer, XPAR_XPS_TIMER_0_DEVICE_ID);
XTmrCtr_SetResetValue(&XPS_Timer,XPAR_XPS_TIMER_0_DEVICE_ID, 0);
XTmrCtr_Reset(&XPS_Timer, 0); //reset timer
Xuint32 data;
XTmrCtr_Start(&XPS_Timer, 0); //start timer
XIo_Out32(XPAR_XPS_BRAM_IF_CNTLR_0_BASEADDR,
0x00000000000000000000000000001131);
XTmrCtr_Stop(&XPS_Timer, 0); //stop timer

long int cycles;
cycles = XTmrCtr_GetValue(&XPS_Timer, 0);
xil_printf("write cycles: %d\r\n",cycles);

XTmrCtr_Reset(&XPS_Timer, 0);
XTmrCtr_Start(&XPS_Timer, 0);
data = XIo_In32(XPAR_XPS_BRAM_IF_CNTLR_0_BASEADDR); //read data
XTmrCtr_Stop(&XPS_Timer, 0);
xil_printf("Read from BRAM : 0x%X\r\n",data);
long int cycles2;
cycles2 = XTmrCtr_GetValue(&XPS_Timer, 0);
xil_printf("read cycles: %d\r\n",cycles2);

Figure 12. Code for testing BRAM with 32bit input

XIo_Out32(XPAR_XPS_BRAM_IF_CNTLR_0_BASEADDR+0*32,0x00000031); //writes offset
XIo_Out32(XPAR_XPS_BRAM_IF_CNTLR_0_BASEADDR+4*32,0x00000032);
XIo_Out32(XPAR_XPS_BRAM_IF_CNTLR_0_BASEADDR+8*32,0x00000033);
XIo_Out32(XPAR_XPS_BRAM_IF_CNTLR_0_BASEADDR+12*32,0x00000034);

data = XIo_In32(XPAR_XPS_BRAM_IF_CNTLR_0_BASEADDR+0*32); //reads offset
data2 = XIo_In32(XPAR_XPS_BRAM_IF_CNTLR_0_BASEADDR+4*32);
data3 = XIo_In32(XPAR_XPS_BRAM_IF_CNTLR_0_BASEADDR+8*32);
data4 = XIo_In32(XPAR_XPS_BRAM_IF_CNTLR_0_BASEADDR+12*32);

Figure 13. Code to write and read from different offsets

27

input=0x00000030;
int i;
XTmrCtr_Start(&XPS_Timer, 0);
for (i=0; i<13; i=i+4)
 {
 XIo_Out32(XPAR_XPS_BRAM_IF_CNTLR_0_BASEADDR+i*32,input);
 input=input+1;
 }

int tmp[4];
for (i=0; i<13; i=i+4)
 {
 data=XIo_In32(XPAR_XPS_BRAM_IF_CNTLR_0_BASEADDR+i*32);
 tmp[i+1]=data;
 }

Figure 14. Code to write and read using for-loop

Test Cycles without I/D cache Cycles with I/D cache

 Write Read Write Read

1 Byte 66 70 61 63

4 Bytes sent with one command 66 70 61 63

4 Bytes using four commands to
access each offset

93 122 82 87

Using for-loop to access each
offset

198 222

Table 4. BRAM testing results

 The results of the tests showed that, the time to write or read one byte or 4 bytes is the same if

using one command. When using four commands, to either write or read each offset of the address, we

observed an increase of 27 cycles to write and 52 cycles to read from the BRAM compared to writing all

the bytes to the memory at once. This could be due to the number of commands used in the program

which are now four compared to when using one to access the memory. When adding a "for loop" to

read and write we observed an even larger increase in the cycles required. When writing 105 cycles

more were needed and when reading 100 more cycles, compared to when using four separate

commands to access our BRAM. The increase we saw was due to the for-loop, which requires a number

of cycles to cheek the statement and decide whether or not to execute the loop. In both cases more

cycles where required to read from a BRAM than to write.

28

 Using the same design we enabled the I/D cache to see how much of an effect it would have on

accessing the BRAM. Two different types of memories were used as cache, a DDR2 and a SRAM, each

4K. The results although, were the same for both memories. We executed the same test as above; the

results can be seen in Table 2. Once again, when we used one command to write or read either 1 byte or

4 bytes, the same number of cycles were required. When using more than one command to access we

also saw an increase in the cycles required.

 Comparing the two designs (with and without cache), we saw that there was a small decrease

when using one command, 5 cycles when writing and 7 when reading. When accessing four different

offsets, there was a decrease of 11 cycles to write and 35 cycles to read, this is where the cache had the

largest effect.

29

Chapter 5

Benchmarking

5.1 Algorithms for Cryptography

 To evaluate partial reconfiguration on the Virtex-5, it was decided to use algorithms used for

cryptography. The algorithms used were the following, the Advanced Encryption Standard (AES) and

Blowfish. For both algorithms we only used the encryption mode to evaluate reconfiguration on the

FPGA. Encryption is the process of converting information (which is called plaintext) into ciphertext,

which is not understood to a third person. To convert the plain text to a ciphertext a key is used, which

is known only to the communicants. Cryptography is mainly used to transfer data in a secure manner

and ensure that it is not tampered with by intruders.

5.1.1 The Advanced Encryption Standard

 The Advanced Encryption Standard (AES) is a symmetric-key encryption standard. It was

developed in order to substitute the older Data Encryption Standard. The standard comprises three

block ciphers, AES-128, AES-192 and AES-256 and are known as the Rijndael algorithms. Each of these

ciphers has a 128-bit block size, with key sizes of 128, 192 and 256 bits respectively. The algorithm used

by us was the AES-128.

http://en.wikipedia.org/wiki/Encryption

30

 AES is based on a design principle known as a substitution permutation network; it is fast on

both hardware and software. The AES cipher is specified as a number of repetitions of transformation

rounds, that convert the input plaintext into the final output of ciphertext. Each round consists of

several processing steps, including one that depends on the encryption key. The number of rounds

depends on the block and key size. In our case we had a total of nine rounds. AES operates on a 4x4

matrix of bytes which is known as the state. Each block contains 1 Byte and the table has a total of 16

Bytes (128 bits) of data.

 The Algorithm consists of the following steps:

1. Key Expansion: round keys are derived from the cipher key using Rijndael's key schedule.

2. Initial Round

2.1. Add Round Key: each byte of the state is combined with the round key using bitwise xor

3. Round

3.1. Sub Bytes: a non-linear substitution step where each byte is replaced with another according to

a look up table

3.2. Shift Rows: a transposition step where each row of the state is shifted cyclically a certain

number of steps.

3.3. Mix Columns: a mixing operation which operates on the columns of the state, combining the

four bytes in each column.

3.4. Add Round Key

4. Final Round

4.1. Sub Bytes

4.2. Shift Rows

4.3. Add Round Key

31

Figure 15. AES algorithm

 In the SubBytes step, each byte in the matrix is updated using an 8-bit substitution box know as

the Rijndael S-box. This step can be seen in Figure 16.

Figure 16. SubBytes

 In the Shift Rows step, each row is shifted to the left by a certain offset as see in Figure 17. For

AES, the first row is left unchanged. Each byte of the second row is shifted one to the left. Similarly, the

third and fourth rows are shifted by offsets of two and three respectively.

32

Figure 17. ShiftRows

 In the Mix Columns step, each column of the state is multiplied with a fixed polynomial c(x) as

seen in Figure 18.

Figure 18. MixColumns

 In the Add Round Key step, the sub key is combined with the state, as seen in Figure 19. For

each round, a subkey is derived from the main key using Rijndael's key schedule. Each subkey is the

same size as the state. The subkey is added by combining each byte of the state with the corresponding

byte of the subkey using bitwise XOR.

33

Figure 19. AddRoundKey

5.1.2 Blowfish

 Blowfish is a keyed, symmetric block cipher. It has a block size of 64 bits and its key can be

anywhere between 1 and 448 bits. In our study, the algorithm used had a 16-bit input and a key size of

32-bits. The algorithm consists of two parts: a key-expansion part and a data- encryption part. Key

expansion converts a key of at most 448 bits into several subkey arrays totaling 4168 bytes.

 Data encryption occurs via a 16-round Feistel network. Each round consists of a key-dependent

permutation, and a key - and data - dependent substitution. All operations are XORs and additions on

32-bit words. The only additional operations are four indexed array data lookups per round. The

encryption of data is very efficient despite the fact that there is a complex initialization phase required

before any encryption takes place.

 Blowfish uses a large number of sub-keys. These keys must be precomputed before any data

encryption or decryption.

• The P-array consists of 18 32-bit sub-keys:

 P1, P2, P3, P4...., P18.

• There are four 32-bit S-boxes (see Figure 20) with 256 entries each

34

 S1,0, S1,1,..., S1,255;

 S2,0, S2,1,..., S2,255;

 S3,0, S3,1,..., S3,255;

 S4,0, S4,1,..., S4,255.

Figure 20. Blowfish S-boxes

 Function F, the non-reversible function, gives Blowfish the best possible avalanche effect for a

Feistel network: every text bit on the left half of the round affects every text bit on the right half.

Additionally, since every sub-key bit is affected by every key bit, the function also has a perfect

avalanche effect between the key and the right half of the text after every round. Hence, the algorithm

exhibits a perfect avalanche effect after three rounds as well as every two rounds after that. The use of

the F function and the complete data flow of the Blowfish cipher can be seen in Figure 21.

35

Figure 21. Data flow of Blowfish block cipher

5.2 Application Resource Analysis

 In order to calculate the theoretical Partial Reconfiguration Time using the PRCC website, an

analysis of the recourses used by each algorithm had to be done. By using EDK we were able to estimate

these resources and calculate the partial bitstream size, depending on the frames used by our design.

The flow of our experiments can be seen in Figure 22. By using the PRCC tool, we are given the

opportunity in deciding whether the use of partial reconfiguration suits our design or not. Although, this

tool has been made for the Power PC processor, it can provide reasonable results when using the

Microblaze processor. Finally, we can test different setups for our design in order to choose the one that

provides the fastest execution. All this can be done by changing only the setting on the PRCC and not

creating a new project for each case.

36

Figure 22. Experimental Flow

5.2.1 Advanced Encryption Standard 128 PLB Bus Analysis

 The AES algorithm downloaded to our FPGA board works with the following steps:

1. Design downloads to board and awaits for data from PC

2. User enter a 128 bit key using a terminal program from the PC

3. User enters data with a width of 128 bits or a text file

4. Microblaze returns a 128bit result to PC and user can see encrypted data

5. User may enter more data with a width of 128bits, using the same key

Create Design

Calculate
Bitstream

Enter settings for
PRCC

View results

Change
settings?

Is PR
worth
using

Static Design PRM

YES

NO

Find Number of
Occupied Slices

Multiply with
Frame Size

NO YES

37

 The resources consumed by the AES algorithm can be seen in Table 5. The second column shows

the total resources used by the complete system created in EDK, which contains the Microblaze

processor, the AES peripheral and the RS232 port, used for communication with the PC. Therefore,

these numbers were not accurate in order to calculate the bitstream size of the AES algorithm. The third

column shows the resources used only by the AES algorithm, as calculated from the design in ISE 12.3. In

the fourth column we can see the total number of configuration bits used by the algorithm. This was

calculated by using the configuration bits used by each device feature, which can be found in Table 2.

Table 5. Resources used by the AES algorithm

 In Table 6 we have provided the resources used by the Microblaze processor.

Table 6. Microblaze Resources

 As we can see in Table 5 column 2 and column 3 are very different despite the fact that we are

using the same design. This is due to the size of the microblaze processor which is not calculated when

using any ISE program. When adding the data in column 3 of Table 3 and column 2 of Table 6 the total is

almost equal to the resources in column 2 of Table 5. The remaining resources used, are due to the PLB

buses that also consume resources.

 The total cycles required for encryption were also calculated at this point. The XPS_Timer was

added to the design through the EDK software. A total of 669 cycles were needed to encrypt a 128 bit

Device Feature Total Resources Used in
EDK 12.3

Resources Used in
ISE 12.3

Configuration Bits Used

Slice Registers 2748 out of 69120 (3%) 676 out of 69120 (1%) -
Slice LUTs 3655 out of 69120 (5%) 1424 out of 69120 (2%) -
Occupied Slices 1628 out of 17280 (9%) 558 out of 17280 (3%) 658998
Block RAM (36k) 8 out of 148 (5%) 0 out of 148 (0%) -
External IOBs 6 out of 640 (1%) 389 out of 640 (60%) -
DSP48E 3 out of 64 (4%) 0 out of 64 (0%) -

Device Feature Miroblaze resources
Slice Registers 1340 out of 69120 (1%)
Slice LUTs 1660 out of 69120 (2%)
Occupied Slices 793 out of 17280 (4%)
Block RAM (36k) 8 out of 148 (5%)
External IOBs 2 out of 640 (1%)
DSP48E 3 out of 64 (4%)

38

block using a 128 bit key. These cycles do not include the time required by the user to enter the data

and the time required to transfer the result to the PC. We next tested if these cycles would change with

a large text file as an input instead of just 128 bits. When using a file, the time required to produce the

output did not change, the algorithm produced all the outputs in a steady number of cycles.

 In order to use the PRCC we needed to calculate the bitstream size in KBytes. A total of 80.44

Kbytes are needed for our AES partial bitstream. The reason for using only the occupied slices consumed

by our design to calculate the configuration bits needed by the bitstream and not including the I/Os, is

that the inputs and outputs are a parameter of the Partial Reconfiguration Region and do not affect the

design placed in the region.

 The first step for calculating the Reconfiguration Time and Throughput, was to choose our

design parameters then select a FPGA and last enter our bitstream size. The data entered and the results

can be found in Table 7. The reason we can choose any Virtex-5 FPGA and see no change in the

reconfiguration times is that the frame size for the entire Virtex-5 family is 164 Bytes.

External
Memory

Memory
Bus Clock

(MHz)

Memory
Interface width

(bits)

Processor
Cache

Device Reconfiguration
Time

 (msec)

Reconfiguration
Throughput

(MB/sec)

DDR 100 8 ON Any
Virtex 5

9.483 9.105

DDR 100 8 OFF Any
Virtex 5

157.419 0.548

DDR 100 16 ON Any
Virtex 5

7.009 12.319

DDR 100 16 OFF Any
Virtex 5

116.35 0.742

DDR 100 32 ON Any
Virtex 5

5.772 14.959

DDR 100 32 OFF Any
Virtex 5

95.815 0.901

DDR 100 64 ON Any
Virtex 5

5.772 14.959

DDR 100 64 OFF Any
Virtex 5

95.815 0.901

Table 7. PRCC Settings and Results for AES

39

 The results showed that the processer cache plays a major role in the reconfiguration time and

throughput. With the cache turned on the reconfiguration time and throughput are about sixteen times

smaller compared to the time needed when the cache is turned off. The reconfiguration time and

throughput are also affected by the memory bus interface. We observed that, with increasing the width

of the interface we can achieve slightly better performance of our design. Finally, there was no change

in the reconfiguration time and throughput despite using a 32 or 64 bit memory interface width.

 Comparing our theoretical results with the results seen in [10], when using a PLB bus and the

cache enabled, we saw that our measurements do not differ by a large margin. We also took into

consideration that those experiments were done with the Virtex-4.

 Figure 23 shows a layout of the AES design on the FPGA board. The Microblaze processor is

connected to its memory through the dlmb and ilmb memory busses. Next, through the PLB bus the

processor is connected the various IPs of the design. In our case, we had an AES 128, which is a custom

IP designed by us and the RS232 interface used for communication with a terminal program on the

computer. The PLB is 32bits wide, the system clock frequency is 125MHz and the Microblaze memory is

32Kb.

 Figure 24 illustrates the steps followed when running the AES algorithm on the FPGA board

which is connected to the computer. Once the design is downloaded to the FPGA, the Microblaze

processor waits for data from the RS port. The user first enters the key which is to be used for

encryption; it must be 128 bits before the design can continue to function. Next, follows the data for

encryption and the same rules apply as above for the size. Once all data has been received by the

processor, it is forwarded to our AES peripheral. After the encryption is complete, the result is sent to

the processor and from there, to the RS232 peripheral port, in 32 bit blocks, due to the size limitation of

the PLB bus.

40

Microblaze

dlmb
Controller

ilmb
Controller

BRAM Block

ilmb
dlmb

mb_plb

mdm

Microblaze mdm bus

AES 128 RS232

Slaves of mb_plb

Figure 23. AES layout on FPGA

41

Microblaze waits for
data from RS port

User enters key
using terminal

Have
128bits
been

received

NO

YES

User enters data
using terminal

Have
128bits
been

received

YES

NO

AES Encryption

MicroBlaze sends
data to RS

Has all
data
been
sent

NOYES

Figure 24. Flow chart for AES design

5.2.2 Advanced Encryption Standard FSL Analysis

 In order to compare speed and resource consumption of our design on the PLB, the AES

algorithm was placed on a Fast Simplex Link (FSL). In order to connect our peripheral to the FSL, a

controller was written in VHDL, to control the reads and writes to the FIFO.

 Table 8 shows the resources consumed by our new design. Compared to the results in Table 5

we observed a slight, in the data in column 2, such as slice registers and occupied slices. Although, there

42

was an increase in the slice LUTs needed. Column 2 displays the total resources our design consumed

when placed on the FPGA board, this includes all peripherals, busses and the Microblaze processor.

 The opposite occurs in column 3 of Table 8, here we observed an increase in the resources

consumed by the AES peripheral alone. Due to the fact that our FSL design occupies more slices

compared to the PLB design, more configuration bits are also needed.

Table 8. Resources used by AES on FSL

 Figure 26 shows the block diagram of our design using the FSL. The only changes made in

comparison to Figure 23, is the fact that the AES peripheral is now connected to microblaze processor

through a master and slave FSL. The processor places data in the master FSL and reads data out of the

slave FSL, the AES peripheral operates in the same manner.

 Finally, the cycles required to encrypt the input were calculated. Using the same method with

the PLB design, a total of 740 cycles were needed. This number is 71 cycles larger than the cycles

required by the PLB design. This is mainly due to the software code used to run the algorithm, which

consists of for-loops. We have previously shown in chapter 3, that these loops consume a large number

of cycles. Although the FSL is faster than the PLB bus, a total of 5 cycles are required to write to the FSL

when the PLB needs 10, the controller used to run our algorithm using the FSL is slower than that used

to control the peripheral on the PLB. Unfortunately, we were forced to use different controllers due to

the fact that the PLB works with registers and the FSL with FIFOs. Attempts were made to speed up the

FSL controller.

 Tests were also run using larger inputs such as a file. In order to gather and evaluate the results

our python script was used to export the results from CuteCom to Excel. The file used had a total of 23

inputs, each 128bits long and the same key was used for each run. In order for CuteCom to send all data

to the Microblaze processor correctly, a char delay of 10ms was required. This setting can be found in

Device Feature Total Resources Used in
EDK 12.3

Resources Used in
ISE 12.3

Configuration Bits Used

Slice Registers 2557 out of 69120 (3%) 981 out of 69120 (1%) -
Slice LUTs 3729 out of 69120 (5%) 1771 out of 69120 (2%) -
Occupied Slices 1510 out of 17280 (8%) 685 out of 17280 (3%) 808985
Block RAM (36k) 8 out of 148 (5%) 0 out of 148 (0%) -
External IOBs 11 out of 640 (1%) 76 out of 640 (11%) -
DSP48E 3 out of 64 (4%) 0 out of 64 (0%) -

43

CuteCom. The results showed that the time required to encrypt the data was not steady but had two

different values 740 and 725 cycles. The results can be seen in Figure 25.

Figure 25. Cycles Required for AES Encryption on FSL

Microblaze

dlmb
Controller

ilmb
Controller

BRAM Block

ilmb
dlmb

mb_plb

mdm

Microblaze mdm bus

RS232

Slaves of mb_plb

SFSLMFSL

FSL

AES_on_FSL

FSL

Figure 26. AES FSL Block Diagram

720
725
730
735
740
745

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23

Cycles Required for AES FSL

Cycles

44

 Table 9 places the two complete designs side by side in order to allow comparison. As we can

see, the FSL design required less resources in every feature except for the number of slice LUTS. It

needed 188 fewer than the PLB design.

 Table 10 illustrates the resources consumed only by the two peripherals and not the complete

design. Once again, the FSL peripheral required more resources than the PLB peripheral.

Table 9. AES PLB design vs. FSL design

Table 10. AES PLB Peripheral vs. AES FSL Peripheral

5.2.3 Blowfish PLB Analysis

 Using the same method with the AES algorithm we estimated the resources used by the

Blowfish encryption algorithm, these can be found in Table 9. Once again, in the second column we see

the total resources needed by the design, which contains a Microblaze processor, our custom Blowfish

peripheral, the RS232 interface and the LED_display interface. The third column shows the resources

used only by our Blowfish encryption algorithm which were estimated using the ISE 12.3 software. Due

Device Feature Total PLB Resources Total FSL Resources

Slice Registers 2748 out of 69120 (3%) 2557 out of 69120 (3%)
Slice LUTs 3655 out of 69120 (5%) 3729 out of 69120 (5%)
Occupied Slices 1628 out of 17280 (9%) 1510 out of 17280 (8%)
Block RAM (36k) 8 out of 148 (5%) 8 out of 148 (5%)
External IOBs 6 out of 640 (1%) 11 out of 640 (1%)
DSP48E 3 out of 64 (4%) 3 out of 64 (4%)

Device Feature PLB Peripheral Resources FSL Peripheral Resources

Slice Registers 676 out of 69120 (1%) 981 out of 69120 (1%)
Slice LUTs 1424 out of 69120 (2%) 1771 out of 69120 (2%)
Occupied Slices 558 out of 17280 (3%) 685 out of 17280 (3%)
Block RAM (36k) 0 out of 148 (0%) 0 out of 148 (0%)
External IOBs 389 out of 640 (60%) 76 out of 640 (11%)
DSP48E 0 out of 64 (0%) 0 out of 64 (0%)

45

to the fact that the Blowfish algorithm uses a small amount of resources, it could be better to have it as

a static region on the FPGA instead of swapping it in and out of our design.

Table 11. Resources used by the Blowfish algorithm

 Using the results from Table 11, our bitstream size for the Blowfish algorithm had a total size of

9.66 KBytes. Once again, using the PRCC website we measured the theoretical reconfiguration time and

throughput for the encryption algorithm.

External
Memory

Memory
Bus Clock

(MHz)

Memory
Interface width

(bits)

Processor
Cache

Device Reconfiguration
Time

 (msec)

Reconfiguration
Throughput

(MB/sec)

DDR 100 8 ON Any
Virtex 5

1.051 8.973

DDR 100 8 OFF Any
Virtex 5

17.453 0.543

DDR 100 16 ON Any
Virtex 5

0.777 12.14

DDR 100 16 OFF Any
Virtex 5

12.9 0.731

DDR 100 32 ON Any
Virtex 5

0.64 14.741

DDR 100 32 OFF Any
Virtex 5

10.623 0.888

DDR 100 64 ON Any
Virtex 5

0.64 14.741

DDR 100 64 OFF Any
Virtex 5

10.623 0.888

Table 12. PRCC Settings and Results for Blowfish

 Results from Table 12 once again, showed that the processor cache plays a major factor in the

reconfiguration time and throughput. By enabling the cache we can achieve results about sixteen times

better than with the cache disabled.

Device Feature Total Resources Used in
EDK 12.3

Resources Used in
ISE 12.3

Configuration Bits Used

Slice Registers 2075 out of 69120 (3%) 70 out of 69120 (1%) -
Slice LUTs 2256 out of 69120 (3%) 134 out of 69120 (1%) -
Occupied Slices 1193 out of 17280 (6%) 67 out of 17280 (1%) 79127
Block RAM (36k) 8 out of 148 (5%) 0 out of 148 (0%) -
External IOBs 10 out of 640 (1%) 180 out of 640 (28%) -
DSP48E 3 out of 64 (4%) 0 out of 64 (0%) -

46

5.2.3 Blowfish FSL Analysis

 Changes were made to our Blowfish peripheral in order to connect it to the Microblaze

processor using the Fast Simplex Links (FSL). After the peripheral was successfully added to the design

measurements were taken to determine the size and speed of the new peripheral. Table 13 in column

two, shows the resources used by our design, including all of the peripheral implemented into the

design. Column three on the other hand, shows the resources used only by the blowfish peripheral.

Table 13. Blowfish FSL Peripheral Resources

 Tests showed the total number if cycles required for our peripheral to encrypt the data was 54

cycles. This time only includes the cycles required to receive the data from the processor for encryption

and calculate the output. It does not include the time to send the data on the PC. We next entered more

data using a text using the same method as with the FSL AES design. The results showed that the time

required to encrypt the data was not steady but had two values, 54 and 39 cycles. We used a total of 42

16 bit inputs for this test. The results can be seen in Figure 27.

Figure 27. Cycles Required for FSL Blowfish

36
38
40
42
44
46
48
50
52
54
56

1 3 5 7 9 11 13 15 17 19 21 23 25 27 29 31 33 35 37 39 41

Cycles Required for FSL Blowfish

cycles

Device Feature Total Resources Used in
EDK 12.3

Resources Used in
ISE 12.3

Configuration Bits Used

Slice Registers 1787 out of 69120 (2%) 222 out of 69120 (1%) -
Slice LUTs 2142 out of 69120 (3%) 185 out of 69120 (1%) -
Occupied Slices 1035 out of 17280 (5%) 126 out of 17280 (1%) 148806
Block RAM (36k) 8 out of 148 (5%) 0 out of 148 (0%) -
External IOBs 10 out of 640 (1%) 73 out of 640 (11%) -
DSP48E 3 out of 64 (4%) 0 out of 64 (0%) -

47

Table 14. Blowfish PLB Design vs. FSL Design

 Table 14 shows a comparison between the PLB design and the FSL design. As we can see the FSL

design is smaller than the PLB design in all the categories.

Table 15. PLB Blowfish Peripheral vs. FSL Peripheral

 Table 15 compares the resources consumed only by the two Blowfish peripheral. As we can see

the FSL peripheral uses more compared to the PLB. Due to the fact that the FSL peripheral occupies

more slices, the bitstream will also be larger. In fact, the FSL bitstream is 69679 bits larger, almost twice

the size of our PLB design.

Device Feature Total PLB Resources Total FSL Resources

Slice Registers 2075 out of 69120 (3%) 1787 out of 69120 (2%)
Slice LUTs 2256 out of 69120 (3%) 2142 out of 69120 (3%)
Occupied Slices 1193 out of 17280 (6%) 1035 out of 17280 (5%)
Block RAM (36k) 8 out of 148 (5%) 8 out of 148 (5%)
External IOBs 10 out of 640 (1%) 8 out of 640 (1%)
DSP48E 3 out of 64 (4%) 3 out of 64 (4%)

Device Feature PLB Peripheral Resources FSL Peripheral Resources

Slice Registers 70 out of 69120 (1%) 222 out of 69120 (1%)
Slice LUTs 134 out of 69120 (1%) 185 out of 69120 (1%)
Occupied Slices 67 out of 17280 (1%) 126 out of 17280 (1%)
Block RAM (36k) 0 out of 148 (0%) 0 out of 148 (0%)
External IOBs 180 out of 640 (28%) 73 out of 640 (11%)
DSP48E 0 out of 64 (0%) 0 out of 64 (0%)

48

Chapter 6

Conclusions and Future Work

6.1 Conclusions

 This work introduces a complete system that uses the AES and Blowfish algorithms for data

encryption running on a Virtex-5 VLX-110t FPGA board. Both algorithms were placed on the design as a

PLB and FSL peripheral. The systems created during this thesis can be used for projects currently running

in the lab, such as the S.M.A.R.T project. The purpose of this work was to analyze the reconfiguration

times and consider whether this approach was suitable for our design.

 In order to measure the reconfiguration time and throughput of our design, the Partial

Reconfiguration Cost Calculator was used. This tool allowed us get an idea of the times needed for the

reconfiguration process. Even though this tool was developed for the Power PC processor we saw that

our results did not differ very much from those seen in [10].

 In order to collect and process faster the results from our setups, a Python script was developed.

This script creates a new file which puts our results in a table. This new file can then be used with Excel

to develop graphs and charts to further analyze the results of the experiments. One of the main

advantages of this script is that it can be used with any application, allowing users to collect their results.

 After analyzing the results from the PRCC we came to the conclusion that using Partial

Reconfiguration for the AES and Blowfish algorithm has no advantages. This is mainly due to the large

difference in their bitstream size. For example, when placing the Blowfish algorithm in the Partial

Reconfiguration Region, more than half of it will be empty due to its small size. In order to benefit from

partial reconfiguration we need to use bitstreams that do not have a large difference in size.

49

 Must of the time spent in this thesis was to first get the tools to work with the operating system

and second to make changes to the AES and Blowfish algorithm in order to automate the design and

also to place both modules on the FSL. The most complex part of the design process was working with

the Xilinx EDK software.

 Finally, due to difficulties such as obtaining licenses for our software, we were not able to

perform partial reconfiguration on our design and had to rely on our theoretical measurements using

the PRCC. Partial reconfiguration will be attempted in future work.

6.2 Future Work

 Due to Xilinx presenting new software tools with such a fast rate and fixing bus from previous

editions, it is necessary for our design to be upgraded to the newer tools. As we have seen there were

several bugs in the EDK 12.3 edition. Probably, with the newer versions the bugs will be fixed and better

cores will be provided.

 A real application using partial reconfiguration should be implemented and evaluated in order to

compare our theoretical results with real experimental results. Due to the large difference in the size of

the two bitstreams it may also be a good idea to use a different algorithm than the Blowfish. This

algorithm should have a bitstream size closer to that of the AES algorithm.

50

References

1. Katherine Compton - Scott Hauck, "Reconfigurable Computing: A Survey of Systems and

Software", in ACM Computing Surveys, Vol. 34, June 2002, pp. 171-210.

2. Patrick Lysaght, Brandon Blodget, Jeff Mason, Jay Young and Brendan Bridgford, "Invited Paper :

Enhanced Architecture, design Methodologies and CAD Tools for Dynamic Reconfiguration of

Xilinx FPGAS".

3. Brandon Blodget, Philip James-Roxby, Eric Keller, Scott McMillan and Prasanna Sundarrajan, "A

Self-reconfiguring Platform" , in FPL 2003, LNCS 2778, pp. 565-574, 2003.

4. Kyprianos Papadimitriou, Antonis Anyfantis and Apostolos Dollas, "An Effective Framework to

Evaluate Dynamic Partial Reconfiguration in FPGA Systems", in IEEE transactions on

instrumentation and measurement, Vol. 59, No. 6, June 2010.

5. Kyprianos Papadimitriou, Apostolos Dollas and Scott Hauck "Performance of Partial

Reconfiguration in FPGA Systems: A Survey and a Cost Model", in ACM Transactions on

Reconfigurable Technology and Systems.

6. "Two Flows for Partial Reconfiguration: Module Based or Difference Based", Xilinx Application

note (v1.2) September 9, 2004.

7. Victor Lai and Oliver Diessel "ICAP-I: A Reusable Interface for the Internal Reconfiguration of

Xilinx FPGAs".

8. Shaoshan Liu, Richard Neil Pittman, Alessandro Forin Microsoft Research "Minimizing Partial

Reconfiguration Overhead with Fully Streaming DMA Engines and Intelligent ICAP Controller",

Technical Report MSR-TR-2009-150 September 2009.

9. John McCaskill and David Lautzenheiser "FPGA Partial Reconfiguration Goes Mainstream", Xcell

Journal Fourth Quarter 2010.

10. Ming Liu, Wolfgang Kuehn, Zhonghao Lu, Axel Janstsch "Run-Time Partial Reconfiguration Speed

Investigation and Architectural Design Space Exploration".

11. Kyprianos Papademetriou, Apostolos Dollas "Performance evaluation of a Preloading Model In

Dynamically Reconfigurable Processors".

12. Valery Sklyarov, Iouliia Skliarona, Arnaldo Oliveira, Antonio B. Ferrari "A Dynamically

Reconfigurable Accelerator for Operations over Boolean and Ternary Vectors", Proceedings of

the Euromicro Symposium on Digital System Design 2003 IEEE.

51

13. Ming Liu, Zhonghai Lu, Wolfgang Kuehn, Axel Jantsch "Reducing FPGA Reconfiguration Time

Overhead using Virtual Configurations".

14. Christopher Claus, Rehan Ahmed, Florian Altenried, Walter Stechele "Towards Rapid Dynamic

Partial Reconfiguration in Video-Based Driver Assistance System", ARC 2010, LNCS, pp. 55-67.

15. "ISE Design Suite 12: Installation, Licensing and Release Notes", UG 631 ver.12.3 September 21,

2010.

16. "Virtex-5 Family Overview", DS100 (v 5.0) February 6, 2009.

17. Nikoloudakis Georgios "Encryption Applications Using Reconfigurable Logic", Diploma Thesis,

University Of Crete, 2009.

18. www.rmdir.de/~michael/xilinx/.

19. www.fpgadeveloper.com.

20. "ML505/ML506/ML507 Evaluation Platform" Xilinx User Guide, UG347 (ver. 3.1.1) October 7,

2009.

21. http://en.wikipedia.org/wiki/Advanced_Encryption_Standard.

22. http://en.wikipedia.org/wiki/Blowfish_%28cipher%29.

23. "Virtex-5 FPGA Configuration User Guide" Xilinx User Guide, UG191 (v3.5) October 29, 2008.

24. "SEU Strategies for Virtex-5 Devices", Xilinx Application Note, XAPP864 (v2.0) April 1, 2010.

25. http://users.isc.tuc.gr/~kpapadimitriou/prcc.html.

26. Papadopoulos Konstantinos "Implementation of Security Algorithms for Wireless Sensor

Networks Using Reconfigurable Devices", Master Thesis, Technical University of Crete, October

2009.

http://www.rmdir.de/_michael/xilinx/
http://www.fpgadeveloper.com/
http://en.wikipedia.org/wiki/Advanced_Encryption_Standard
http://en.wikipedia.org/wiki/Blowfish_%28cipher%29
http://users.isc.tuc.gr/~kpapadimitriou/prcc.html

52

Appendix A

 This appendix includes all the details for installing and running the required software used

throughout this thesis.

A.1 Installing Cable Driver

 A series of steps were followed in order to install the drivers required for the Xilinx cable.

1. download usb-driver-HEAD.tar.gz

2. Run command "gunzip usb-driver-HEAD.tar.gz"

3. Run command "tar -xf usb-driver-HEAD.tar"

4. Run command "cd usb-driver"

5. Run command "make"

6. Run command "ls libusb-driver.so"

7. export LD PRELOAD=/path/to/libusb-driver.so

8. Reboot PC

9. The LED on the USB cable should light up yellow

In order to check if the driver was installed correctly, log in as root in a terminal and run command

"lsusb | grep Xilinx" the output should be:

Bus 004 Device 004: ID 03fd:0008 Xilinx, Inc.

It is important that the number is marked in red. This states that the cable firmware was loaded

correctly.

A.2 Installing Terminal Program

1. Download cutecom from "cutecom.sourceforge.net/"

2. Instructions on how to install can be found in folder downloaded

3. After installation enter YAST

4. Add uucp to user group and logout

http://git.zerfleddert.de/cgi-bin/gitweb.cgi/usb-driver?a=snapshot;h=HEAD;sf=tgz
http://git.zerfleddert.de/cgi-bin/gitweb.cgi/usb-driver?a=snapshot;h=HEAD;sf=tgz

53

5. Change mode on serial port to using command "/sbin/chmod 666 /dev/ttyS0".

A.3 Start Up Script for ISE

1. Open a new script

2. Write the following commands in the script:

 #! /bin/sh

 source /opt/Xilinx/12.3/ISE/settings32.sh

 export LD_PRELOAD=/home/your_home_directory/usb-driver/libusb-driver.so

 ise

 #impact

 exit

3. Save file

4. In a terminal window run command "chmod 775 fileName"

When running this script ISE should open.

A.4 Start Up Script for EDK

1. Open a new script

2. Write the following commands in the script:

 #!/bin/bash

 # Please adapt these values to your system configuration.

 XILINX_DIR=/opt/Xilinx/12.3/ISE_DS/

 EDK_DIR=/opt/Xilinx/12.3/ISE_DS/EDK

 # load settings

 . ${XILINX_DIR}/settings32.sh

 export XILINX_EDK=/opt/Xilinx/12.3/ISE_DS/EDK

 export LD_LIBRARY_PATH=${XILINX_EDK}/bin/lin:${LD_LIBRARY_PATH}

 export

 PATH=${XILINX_EDK}/bin/lin:${XILINX_EDK}/gnu/microblaze/lin/bin:\

54

 ${XILINX_EDK}/gnu/powerpc-eabi/lin/bin:${PATH}

 # start xilinx ise

 ${EDK_DIR}/bin/lin/xps

Save file

3. In a terminal window run command "chmod 775 fileName"

When running this script EDK should open.

55

Appendix B

 In this appendix we will review the bugs we encountered during the use of the Xilinx 12.3

software.

B.1 When Creating a FSL Peripheral

 The first bug we encountered during the use of EDK 12.3 was when creating a FSL peripheral

using the wizard. Once the peripheral was made, we observed that in the peripheral_name.vhd file the

FSL_S_Clk and FSL_M_Clk were set to outputs. In order for our design and any design to work correctly,

these had to change to inputs each time we created a new FSL peripheral.

B.2 When creating a PLB Peripheral

 After creating a PLB peripheral and attempting to build the user applications, we received an

error stating that XIo_Out32 and XIo_In32 were not declared. In order to fix this problem we had to

make changes to the peripheral_name.h file. In this file, instead of using XIo_Out32 and XIo_In32, the

older commands xil_IO_out32 and xil_IO_in32 were used. After making the changes, the above error did

not appear.

56

Appendix C

 In this appendix we provide the Python script used to gather the results from the experiments in

order to import them to Excel for further analysis. This script can be used to locate any word in any file.

In order for the script to locate the number of cycles, the output from the Cutecom log must have the

following format, "Cycles: number". This can be done when writing the C-script that controls our system.

This way when we ask the script to locate the word cycles it will also save the next word in the file, in a

table, which in our case will be the cycles required to execute a series of commands.

import re
repeat=1
while (repeat==1): #while will continue until y or n is given
 question=raw_input("Will you be using CuteCom's output (y or n)?: ")
 if question=='y':
 openFile = '/home/yorgon/cutecom.log' #Opens the cutecom log
 repeat=0 #set repeat to 0 to exit loop
 elif question=='n':
 openFile = raw_input("Please enter a file to open: ")
 repeat=0
 else:
 repeat=1
f= open(openFile, "r")
fileToWrite= open("/home/yorgon/Desktop/results", "w") #file to write data
pattern = raw_input("Enter a word to locate in file: ")#Enter word to locate
regexp=re.compile('^'+pattern+'$',re.I) #creates the pattern to match
lineNum= 0
wordNum= 0
match=0
fileToWrite.writelines('The word you are trying to match is: ' +pattern+'\n')
wordList=[] #list for all the words in the input file
wordMatches=[] #list for the spot of the match in the input file
with f as searchfile: #Search the whole file
 for line in searchfile:
 lineNum=lineNum + 1
 lineL = line.split() #split line into words
 for word in lineL:
 word=re.sub(r'\W+', '', word) #Ignore all '.', ',', '!' etc.
 wordList.append(word) # put all words in a list
 result=regexp.match(word)
 if result:
 match=match+1;
 wordMatches.append(wordNum) #puts location of match in list
 value=str(wordNum) #Make match a string to be able to write
 fileToWrite.writelines('We have a match! It is word number:
' +value+'\n')
 print 'Your word was found in line',lineNum, 'and is
word',wordNum

57

 wordNum=wordNum+1 #number of next word
print 'Total matches in text:', match
x1='TEST'
x2='CYCLES'
print '{0:2} {1:10}'.format(x1, x2)
fileToWrite.writelines('{0:2} {1:10}'.format(x1, x2)+'\n')
for index in range(len(wordMatches)): #loop prints the next word after the
match
 nextWord=wordMatches[index] +1 #go to next word
 testNum=index
 print '{0:2} {1:10}'.format(testNum, wordList[nextWord])
 fileToWrite.writelines('{0:2} {1:10}'.format(testNum,
wordList[nextWord])+'\n') #writes to file in two columns
f.close()
fileToWrite.close()

	Ευχαριστίες
	Chapter 1
	Introduction
	1.1 Reconfiguration
	1.2 Advantages of Dynamic Reconfiguration
	1.3 Contributions of This Work
	1.4 Structure

	Chapter 2
	Related Work
	2.1 Recent Trends in PR Design Flow
	2.2 Reconfiguration Overhead
	2.3 Hiding Reconfiguration Overhead
	2.4 Applications Designed in PR Systems

	Chapter 3
	Partial Reconfiguration Tools and FPGAs
	3.1 Operating System
	3.2 Partial Reconfiguration Tools
	3.3 Virtex 5 VLX-110t FPGA Board
	3.4 Partial Reconfiguration

	Chapter 4
	Evaluation Framework
	4.1 Serial Port
	4.2 BRAM access

	Chapter 5
	Benchmarking
	5.1 Algorithms for Cryptography
	5.1.1 The Advanced Encryption Standard
	5.1.2 Blowfish

	5.2 Application Resource Analysis
	5.2.1 Advanced Encryption Standard 128 PLB Bus Analysis
	5.2.2 Advanced Encryption Standard FSL Analysis
	5.2.3 Blowfish PLB Analysis
	5.2.3 Blowfish FSL Analysis

	Chapter 6
	Conclusions and Future Work
	6.1 Conclusions
	6.2 Future Work

	References
	Appendix A
	A.1 Installing Cable Driver
	A.2 Installing Terminal Program
	A.3 Start Up Script for ISE
	A.4 Start Up Script for EDK

	Appendix B
	B.1 When Creating a FSL Peripheral
	B.2 When creating a PLB Peripheral

	Appendix C

