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Chapter 1 
  

 

 

Introduction 
 

 In this chapter we will be getting a first look at partial reconfiguration, what it is, where it is 

used, its advantages and disadvantages. Finally, information about this thesis will be given and the 

contributions of our work are pointed out. 

 

 

1.1 Reconfiguration 
 

 One of the most interesting features in today's FPGAs is their ability to allow runtime-dynamic 

reconfiguration. This feature allows replacing a module on the device, while the reset remains intact and 

continues its operation. Run time reconfiguration is best used, when areas of a program are too complex 

or too numerous to be loaded simultaneously onto the available hardware provided by the FPGA. Run-

time reconfiguration can be seen as virtual hardware. Like virtual memory, here, the physical hardware 

present is much smaller than the sum of the resources required by each of the configurations.  

 Reconfigurable computing is becoming an important part of research in computer architecture 

and software systems. Due to their flexibility to change over time and provide a method to map circuits 

into hardware, these systems have the potential to achieve far greater performance than software as 

well as possibly exploiting a greater degree of parallelism. Reconfigurable computing is intended to fill 

the gap between hardware and software, achieving potentially much higher performance than software 

but also maintaining a higher level of flexibility than hardware. These systems use FPGAs or other 

programmable hardware to accelerate algorithm execution by mapping compute-intensive calculations 

to the reconfigurable substrate. A general microprocessor may also be used with the above hardware to 

control the reconfigurable logic and to execute any program code that cannot be efficiently accelerated. 
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 FPGAs and reconfigurable computing are used today in several applications. Data encryption,  

for example is able to leverage both parallelism and fine grained data manipulation. Other applications 

that have been shown to exhibit significant speed-ups are automatic target recognition, string pattern 

matching, Golobm Ruler Derivation and more. Partial reconfiguration is the cornerstone for power-

efficient and cost-effective software defined radios (SDR). SDRs are becoming reality for the defense 

industries as an effective and necessary tool for communications. In [14] partial reconfiguration was 

used in a video-based driver assistance system for cars. 

 

 

1.2 Advantages of Dynamic Reconfiguration 
 

 The two biggest problems designs face are fitting more logic into an existing device and fitting a 

design into a smaller and cheaper devise. With the use of partial reconfiguration, a designer can 

overcome these problems. 

  Partial reconfiguration gives the ability for multiple design modules to share physical resources 

on an FPGA board. This allows for reduction of the hardware resources being used, which means that 

designs are smaller, therefore leading to smaller and cheaper FPAGs being used. This potential of using 

less space on the board, leads to consuming less power, which is a huge factor in today's embedded 

designs. Being able to change the hardware configuration allows for the implementation of highly 

specialized circuits. Partial reconfigurable systems can adapt to changes in their environment, their 

input data or their mission specifications. This capability makes the system more efficient as compared 

to a generic one, which cannot be optimal for a number of different situations. 

 The ability to change the hardware dynamically in a single FPGA also provides additional 

advantages. Partial reconfiguration: 

• Provides real-time flexibility in the choice of algorithms or protocols available to an application 

at anytime. 

• Enables the use of new techniques in design security. 

• Improves FPGA fault tolerance 

• Accelerates configurable computing 

• Reduces bitstream storage requirements 

 



 

 
7 

 

 Figure 1 shows some of the advantages when using partial reconfiguration. 

 

 
Figure 1. Modifying Functionality and Reducing Size using Partial Reconfiguration 

 

 Of course, with the advantages come some tradeoffs, which must not be neglected. Due to the 

time required to download the configuration data before the system is ready to execute can degrade 

the execution time. This delay is known as reconfiguration overhead. As stated above, the configuration 

bitstreams need to be stored somewhere in the system. The tradeoff here is the limited but fast on-chip 

memory, and the slow but large and inexpensive external memory. Of course, using the external 

memory means large reconfiguration overhead, due to the slow transfer rate. Due to the complex of the 

design the design cycle is larger, which could mean to a slower time to market. 

 Before deciding to use dynamic reconfiguration, a performance evaluation is needed to study 

the system behavior and point out the bottlenecks. Only after these results, can we decide whether 

dynamic reconfiguration suits the needs of an application. 

 

 

1.3 Contributions of This Work 
 

 This work presents a detailed framework and evaluation of applications for execution using 

reconfigurable FPGAs. We were mostly interested in the reconfiguration time and the overhead added 

to our design. 

 For this work a Python script was created in order to gather all measurements taken during the 

experiments and import them to excel for further processing. A total of four systems were setup in 

order to test and evaluate the reconfiguration process. For evaluation of the setups the PRCC tool was 

used in order to provide theoretical results. 
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1.4 Structure 
 

 Chapter two provides references to related work to this thesis. Chapter three discusses the 

partial reconfiguration tools and the operating system used. It also provides an in depth description 

about the FPGA board that was used. Chapter four presents  a series of measurements that were taken 

regarding different components on the Virtex-5 such as the serial port and BRAM memories. Chapter 

five presents the two algorithms used for evaluation and the benchmark results for the partial 

reconfiguration evaluation. Finally, this thesis will close with chapter six were we will conclude this 

thesis and provide information about future work. 
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Chapter 2 
 

 

 

 Related Work 
 

 When considering building a design using partial reconfiguration several issues need to be 

studied. This chapter goes through the existing technology in order to discuss the problems that ... to be 

studied. It starts with the recent trends in PR design flow which demonstrate that although a significant 

amount of work has been done, PR flow is still at its early stage, especially with regard to developing a 

painless way if designing applications with PR. Then it examines the overhead added by reconfiguration 

process and the effect of the different setups have on it. It continues with ways that have been 

proposed in order to hide the reconfiguration overhead. Finally, applications that have been deployed 

using PR technology are discussed. 

 

 

2.1 Recent Trends in PR Design Flow 
 

 In [2], Lysaght et al. 2006 proposed a design methodology for partial reconfiguration using a 

Virtex-4 board. This paper introduces also the capabilities of the Virtex 4 family. The most important 

developments of this FPGA family are the following: 

i) The hardwired tri-state buffers have been replaced with pre routed bus macros. These provide better 

communication between static and dynamic regions and much more flexibility. 

ii) Reduction in the granularity of the unit of reconfiguration from a full device column to a smaller unit 

of 16 CLB's and is independent of device size or family. All the Virtex-4 configuration frames consist of 

forty-one 32-bit word resulting in a total of 1,312 bits per frame. 
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iii) The new ICAP port now has a 32 bit (old one was 8 bit wide) input and output and can communicate 

at a max speed of 100MHz. This, along with the 16 CLB's can increase the reconfiguration speed by as 

much as an order of magnitude for smaller modules.  

The design process is enabled by two key enhancements to the mainstream design tools. First, the 

region being reconfigured can be of any rectangular size. The second major change permits signals in the 

static design to cross through partially reconfigurable regions without the use of a bus macro. The new 

design flow is illustrated in Figure 2. 

 

 
Figure 2. Partial Reconfiguration flow as suggested by Xilinx 

 

 In [9] McCaskill 2010, provided information about the evolution of partial reconfiguration and 

why it's easier today for teams to use this new technology considering the tools and support. McCaskill 

also suggested to follow six simple steps when using partial reconfiguration. In particular, a "bottom up" 

synthesis flow should be used. According to which each partition will form a separate synthesis project 

with its own netlist. The steps for a design using PR are  

1. Set up the design structure, deciding on static versus reconfigurable logic. Synthesize all netlists, 

define RMs and create partitions. Then, assign RM netlists to the appropriate RPs.  

2. Provide the proper constraints for each RP based on the assigned RMs.  

3. Run the PR-specific design rule checks that are in PlanAhead.  
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4. Place and Route all design combinations. Create a 'golden reference' for the static logic and 

iterate to close all timing on all the combinations of static logic and RMs.  

5. Create the bit files.  

6. Test the design.  

 

  

2.2 Reconfiguration Overhead 
  

 In [4] Papademetriou et al. 2010 describe a framework to evaluate dynamic partial 

reconfiguration of an application using a Virtex II PRO FPGA. The reconfiguration overhead was broken 

down into the following times to allow better understanding.  

1) CF-PPC is the time to copy configuration data from the CF to the PPC memory with one 

transaction. 

2) PPC-HWICAP is the time to write configuration data from the PPC memory to the HWICAP 

BRAM. 

3) HWICAP BRAM-CM is the time to load the configuration data from one HWICAP BRAM to the 

FPGA CM. 

4) Rec-HWICAP is the time elapsed between the PPC detection that a reconfiguration has been 

fired and the first launch of the configuration data from the HWICAP BRAM to the FPGA CM. 

5) HWICAP-CM is the time for loading all configuration data from the HWICAP BRAM to the FPGA 

CM, including the pad frame. 

6) RT is the time elapsed between the PPC detection that a reconfiguration has been fired and 

switching to the new execution, this is the total reconfiguration time. 

 The results showed that in most cases the delay, linearly increased with respect to the size of 

the bitstream with a fixed processor array. In general, depending on the size of the partial bitstreams, 

the selection of the system parameters might improve or degrade the performance. 

 The traditional way of accessing the ICAP was either through the OPB (OPBHWICAP) or PLB (IPIF) 

bus. The use of these busses though, takes up a large amount of resources; their use is complex and  

was designed to work with particular bus systems in each case, therefore not allowing them to be 

reused. In [7], Victor Lai and Oliver Diessel introduced a new interface for accessing the ICAP, the ICAP-I. 

The interface implements a wrapper that provides a new easy to use interface for accessing the ICAP  
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without the need of a bus, or a processor core but can still be used with other bus systems such as the 

OPB and PLB. The ICAP-I is a set of VHDL modules. The storage device provides configuration data for 

the ICAP and stores configuration data that is read from the ICAP while allowing other devices to use the 

storage device. The ICAP IF module accepts the read and write requests from the storage device and the 

application. The ICAP control arbiter controls the requests from the application and the BTU allows  

access to the ICAP. The storage device provides pre-generated bitstreams to the ICAP-I, where as the 

application provides on the fly bitstreams, generated during run time. Both bitstreams are loaded to the 

ICAP while the application is running. One of the main problems with the ICAP-I was its inefficient way of 

transferring data. Finally, a comparison between the performance of the ICAP-I , the OPB and the PLB 

based ICAP implementations is provided using a Virtex 4 FPGA board. The results showed that the ICAP-I 

uses a lot less resources, which is due to not using CPU cores. The ICAP-I also achieved a much higher 

throughput to the ICAP, 180 MB/s compared to the 95 MB/s achieved by the PLB. The only problem with 

the ICAP-I implementation is the storage device used to store bitstreams; this was the bottle neck of the 

setup. The device used, impacted the performance of the ICAP-I, the slower the device the less 

throughput achieved. 

 In [8] Shaoshan Liu et al. 2009 proposed two techniques to minimize the reconfiguration 

overhead. To improve the reconfiguration speed, a method using streaming DMA engines (direct 

memory access) to transfer the configuration data directly to the ICAP was proposed. A master DMA 

engine was added in the ICAP controller and communicates with the ICAP FSM and the slave DMA 

engine. The slave DMA engine was placed in the SRAM controller and communicates with the SRAM 

bridge and the master DMA engine. A FIFO was placed between the master and slave DMA engines to 

increase the throughput. The burst mode of the SRAM was also activated. The setup proposed can be 

seen in Figure 3. The FPGA board used was a Virtex 4.  This method achieved an ICAP throughput of 395 

Mbytes/s very close to the ideal 400 Mbytes/s. This design improved the simple use of DMAs proposed 

in [10], which achieved a speed of only 82 Mbytes/sec. The reason for not achieving maximum 

throughput was due to the master slave handshaking. This process took 12 cycles to complete, after the 

12 cycles the FIFO is no longer empty. After the DMA operation is complete, it takes another 5 cycles to 

reset the two state machines. Therefore, there is a total overhead of 17 cycles. During the rest of the 

operation the throughput was 400 Mbytes/s. 

 The second way to reduce configuration time was by decreasing the configuration file size with 

compression techniques. To achieve this, they tried to find words that repeated themselves. The main 

advantage of this method was that it was simple and minimized the overhead of the decompression 
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circuit. When the ICAP receives a word it determines if decompression is necessary, if so, the ICAP 

controller performs decompression and then sends the configuration data to the ICAP port. The 

intelligent ICAP controller adds only a very little hardware overhead. Other methods to improve 

configuration performance include prefetching the configuration bitstream files and bitstream file 

relocation. After performing tests on the Intelligent ICAP controller the results showed that, by 

combining the DMA engines with the intelligent ICAP controller, they achieved an effective data transfer 

throughput of 1.2 GBytes/s in some cases, that well surpassed the upper bound of data transfer 

throughput of 400 Mbytes/s. 

 

 
Figure 3. Structure of the master-slave DMA for PR 

 

 In [10] Ming Liu et al. evaluated nine different setups for their reconfiguration speeds on a 

Virtex-4 FPGA. Results showed that using a Master burst or a Direct Memory Access we can achieve the 

best times compared to the resources used (234.5 MB/s for MST and 82.1 MB/s for DMA). Use of 

BRAMS can approach the reconfiguration speed limit of the ICAP at the cost of large Block RAM 

utilization (332.1 MB/s). PLB and OBP setups were also studied but the reconfiguration times were much 

slower than the three setups above. 
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Figure 4. Reconfiguration times for different setups 

 

 In [5] Papadimitriou et al. 2011 produced a cost model of partial reconfiguration and surveyed 

the performance of the factors that contribute to the reconfiguration speed. They concentrated on the 

three following factors of partially reconfigurable systems, the external storage, the configuration 

controller and last, the phases of the reconfiguration process and the formulas used to calculate the 

reconfiguration times. It is explained, how the external memory used to store the bitsteams, plays a 

major factor in the reconfiguration overhead, the slower the memory the bigger the overhead becomes. 

To overcome this problem, the bitstreams can be loaded to a high speed memory after the systems 

boots, to achieve faster reconfiguration. Concerning the reconfiguration controller, many solutions have 

been proposed, depending on the application. Customized controllers aim to speed up the process and 

allow the processor to do other tasks, in this case a DMA (direct memory access) controller is used. 

When the processor acts as the reconfiguration controller, the system suffers from long delays due to 

the time needed to access the memory, to call and execute the software instructions. The number of 

modules on the bus also plays a role on the delay, the more the devices the longer the delay. They then 

split the reconfiguration process into three different phases, i) Phase to pull the bitstream from the off 

chip memory to the memory of the processor, ii) Copy it from the from the processor memory to the 

ICAP cache, iii) Send it from the ICAP cache to the configuration memory of the FPGA. It has been shown 

that the largest overhead occurs from the first two phases since the third phase has a standard time of 

execution. A comparison between the bandwidth of the configuration port and the actual 
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reconfiguration throughput is presented, using different ports, controllers and external memories. In 

most cases the Actual Reconfiguration Throughput is much less than the bandwidth given for the 

configuration port. Results showed using a faster memory improves the ARTH dramatically even when 

an older OPB controller was used. In some cases the throughput was larger than that of a PLB controller. 

 

 

2.3 Hiding Reconfiguration Overhead 
 

 In [11] Papademetriou and Dollas evaluated a preloading model to hide configuration overhead. 

The problem studied, was the delay to load a second configuration into the reconfiguration region when 

it did not fit in the region, simultaneously with the first. To solve this problem the bitstream that was 

most likely to be executed was preloaded and the second was transformed. It was split into two 

subtasks so that one portion fits on the remaining hardware. Therefore, if the second task was required 

to be executed, only the second subtask needs to be loaded. For the experiments a Virtex-II XC2V500 

devise was used. Results showed that as the volume of the CLB columns that can be utilized for 

preloading the least likely to be executed operation increased, the execution length of the augmented 

model decreased compared to the original model. The largest improvement obtained was for seven 

available CLBs and was equal to 86.55%. The results showed the relationship between configuration 

latency and reconfiguration overhead and whether reconfiguration can be hidden by the processor's 

execution. The main advantage of the proposed model is the increase in the utilization of the available 

hardware achieved by splitting the least likely to be executed task.  

 In [13] Liu et al. introduced a new concept of Virtual Configurations for shortening the FPGA 

reconfiguration time by hiding it in the background. The solution they gave was to have two copies of 

configuration contexts; these represented a VCF and were located on a single Partial Reconfiguration 

Region. The active VCF could still keep working in the foreground when module switching was expected. 

When a new partial bitstream was needed, it was loaded into the second context. Once the 

reconfiguration was done, the newly loaded module started working by being swapped with the first 

context. This can be seen in Figure 5 for switching the two contexts a multiplexer was used to only 

switch the control outputs; therefore the context swapping only took a very short time. To see the 

impact of the VCFs they set up a producer consumer design with run time reconfiguration capability. 

Results showed up to 29.9% throughput improvement of received packets by each consumer node. The 
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use VCFs is better suited for multi context FPGAs, since single context FPGAs, would require the 

reservation of two duplicate PRRs. 

 

 
Figure 5. Virtual reconfigurations on multi-context FPGAs 

 

  

2.4 Applications Designed in PR Systems 
 

 In [17] Nikoloudakis researched the advantages and disadvantages using reconfigurable logic 

with encryption applications such as the Advanced Encryption Standard (AES). He also created an 

embedded system which allowed different algorithms for cryptography, to be partially reconfigured on a 

FPGA board. 
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Chapter 3 
  

 

 

Partial Reconfiguration Tools and FPGAs 
 

 In this chapter we will be introduced to the operating system, the Xilinx software and the FPGA 

board that was used throughout the process of the thesis. 

 

 

3.1 Operating System 
 

 During this thesis it was decided to use a Linux based operating system. For better support and 

easier installation Xilinx, suggested the use of SUSE. Therefore, a 32-bit version of SUSE Enterprise 

Desktop Edition 11.1 was installed on a computer. Even though it was a 60 day trial version (did not 

receive updates after this period), this did not cause any problems. The software was downloaded from 

the Novell website, which can be found at www.novell.com/products/desktop/. The installation was 

straightforward and no problems occurred at this point.  

 

 

3.2 Partial Reconfiguration Tools 
 

 The Xilinx design tools used were the ISE Design Suite 12.3, which was downloaded from the 

Xilinx website (www.xilinx.com/products/design-tools/ise-design-suite/system-edition.htm). The 

installation of the Xilinx tools consists of two steps. First, installing the software and second installing 

the platform cable driver for downloading the designs to the board.  

http://www.novell.com/products/desktop/
http://www.xilinx.com/products/design-tools/ise-design-suite/system-edition.htm
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 The installation of the Xilinx software was quite simple and straightforward with the help 

provided in [14]. Unlike Windows, to run the Xilinx software, a script was written for this task, which can 

be found in the appendix.  

 On the other hand, the installation of the cable driver caused quite a few problems. Although 

Xilinx recommends SUSE, and insures a simple and straightforward installation, our first attempt to use 

the drivers provided by Xilinx, did not work. Therefore a different method needed to be used to install 

the software drivers. The solution came from a library found in [17]. The libsub library that was installed, 

allows the tools to access the JTAG cable without the need for a proprietary kernel module. For further 

information details on installing the drivers can be found in the appendix.  

 Therefore, due to the above difficulties there is no reason for the use of Suse, even though it is 

recommended by Xilinx. The same library can be used with the Ubuntu operating system and the 

supplied driver works with Windows. 

 Unlike Windows, Suse had no pre-installed terminal program (like HyperTerminal) to display the 

output from the serial cable. After some searching, it was decided to use CuteCom. CuteCom is a 

graphical serial terminal and is more user friendly compared to minicom, which is also a terminal 

program. Information about the installation can be found in the appendix.  

 

 

3.3 Virtex 5 VLX-110t FPGA Board 
 

 The FPGA board used during this thesis was a Virtex 5 VLX-110t. It included all the necessary 

components for dynamic reconfiguration. The basic element is the configurable logic block (CLB), which 

contains look-up tables (LUT) as the basic function generators. The FPGA also contains several 

specialized circuits such as Block SelectRAM (BRAM) resources, multiplier blocks and Digital Clock 

Manager (DCM) modules. The FPGA has a total of 17,280 slices; each slice contains four LUTs and four 

flip-flops. Compared to older Virtex families the PowerPC and the OPB bus have been removed and are 

no longer used. 

 

 



 

 
19 

 

 
Figure 6. Virtex-5 slice 

 

 The serial JTAG, the SPI and the parallel SelectMAP allow for external configuration, where as 

the parallel Internal Configuration Access Port (ICAP) allows for internal, partial only, configuration. The 

ICAP on the Virtex-5 can support up to 32-bit transfers. The maximum operational frequency of the ICAP 

is 100 MHz. The block level diagram for the ICAP controller can be seen in Figure 7. 

 

 
Figure 7. Top level block diagram for the XPS HWICAP Core 
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 The XPS HWICAP controller provides the interface necessary to transfer bitstreams to and from 

the ICAP. The CPU bursts the required bitstream data directly from the main memory. Incoming data is 

stored within a Write FIFO, from where it can be fed to the ICAP. All the bitstreams must be stored in 

main memory before they can be used to reconfigure the FPGA. 

 The configuration data is stored in RAM memory called configuration memory. Configuration 

memory is arranged in frames that are tiled about the device. A frame is the smallest amount of 

configuration information that can be accessed and has a width of one bit. All operations must act upon 

whole configuration frames. On the newer Virtex 4 and 5 FPGA boards the height of the frames is 1,312 

bits, compared to the older boards were the height varied depending on the devise. The frames stretch 

from the top edge of the device to the bottom edge. The devise has a total of 24,304 frames, from which 

23,712 of those frames are configuration frames. Figure 8 displays the configuration architecture of the 

Virtex 5 FPGA. 

 

 
Figure 8.  Xilinx Virtex configuration architecture 
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CLBs 
Slices 

 
Array  
(row x 

col) 

Max        
Distributed 

Ram(kB) 

Total 
CLBs 

Slice/CLB Total 
config. bits 

Config. 
Frames 

Frame 
size 
(bit) 

DSP48E 
Slices 

Block 
Ram 

(36kB) 
17,280 160x54 1,120 8,640 2 31,118,848 23,712 1,312 64 148 

Table 1. Virtex 5 VLX110t Device Features 

  

 In Table 1 we have listed the sizes of all the features included on the VLX110t. Each CLB contains 

two slices. The total memory used by the BRAMS is 5328 kB; the designer has the choice  of splitting the 

36 kB block ram into two smaller 18kB block rams, therefore having a total of 296 BRAMs. Each DSP48E 

slice contains a 25 x 18 multiplier, an adder, and an accumulator. 

 Finally, each block type (CLB, DSP48E, etc.), contains a different number of frames. The 

approximate number of configuration bits for each devise feature, along with the frames per slice can 

been seen in Table 2. 

 

Device Feature Approximate Number of Configuration Bits Frames per Slice 
1 Logic slice 1,181 0.9 

1 Block Ram (36kb) 1,170 0.8917 
1 Block Ram (18kb) 585 0.446 

1 I/O block 2,657 2.025 
1 DSP48E slice 4,592 3.5 

Table 2. Number of Configuration Bit for Different Block Types 
 
 

3.4 Partial Reconfiguration 
 

 As seen earlier, partial reconfiguration allows designers to reconfigure selected areas of a FPGA 

board. The swapping of the reconfigurable modules can be seen in Figure 8. Both partial and static 

regions are pre-defined and cannot be changed during run-time. This means that the user must make 

sure that all the designs will fit into the partial reconfiguration region. 
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Figure 9. Swapping modules in and out of PRR 

 

 Partial reconfiguration can be divided into two separate categories, dynamic and static. Dynamic 

reconfiguration takes place while the device is running, while static reconfiguration is performed when 

the device is inactive. An extension of the dynamic concept is self-reconfiguration. It assumes that 

special circuits on the logic array are used to control the reconfiguration of other parts of the FPGA. 

When using dynamic reconfiguration, the part of the FPGA that is undergoing reconfiguration is also 

known as Partial Reconfiguration Region (PPR). This region is static and cannot be changed. The modules 

being swapped in and out of these regions are known as Partial Reconfigurable Modules (PRM) and are 

stored as partial bitstreams in a memory. This memory may be external such as a compact flash or on 

board the FGPA, for example BRAMs. The memory used for storing this data plays a major factor on the 

reconfiguration time.  

 Communication between the modules in the design is achieved by using special bus macros. 

These bus macros are fixed data paths for signals going between a reconfigurable module and another 

module. The bus macro can be wired so that signals can go in either direction (left-to-right or right-to-

left) and is strongly recommended that once a direction is defined, it should not change for that 

particular FPGA design. During the reconfiguration process it is very important that communication 

between the modules is stopped due to the unknown state of the signals. 

 

 

 

Figure 10. Use of bus macros for communication between PRR and static region  
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Chapter 4 
 

 

 

Evaluation Framework 
  

 In this chapter we will see a series of tests that were performed on the Virtex-5 vlx110t board. 

The tests provided us with measurements concerning time requirements to perform different actions 

such as communication over the serial port and access of a BRAM.  

 

 

4.1 Serial Port 
  

 The purpose of this test was to determine the total clock cycles required to send data from the 

FPGA to the computer over the RS 232 serial port. For the communication between the PC and the FPGA 

board, a simple design was setup using the EDK 12.3 software. The design parameters were the 

following, a microblaze processor, the system clock frequency was set to 125 MHz and the local memory 

had a size of 8 KB. The only peripheral attached to the design was a RS 232 port, with a baud rate of 

9600. 

 In order to measure the clock cycles between actions, the XPS timer was used. This is provided 

by the EDK tools and sits on the PLB bus of the design. Using software we were able to start and stop the 

timer when desired.  

 For the testing, we sent different messages over the serial port. We started by sending each 

character, in the phase "Hello World" one at a time over the serial port. The results for the cycles 

needed to transfer each group of characters can be seen in Table 1. The first column shows the data that 

was sent over the RS232 port, the second column are the cycles needed to transfer the data and in the 

third column we have the increase in cycles compared to the pervious data that was sent. In Figure 11, a 

graph is presented which shows the increase of cycles needed compared to the characters being sent. 
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Text sent in printf() command Time elapsed (cycles) Increase 

H 1583 0 
He 260209 258626 
Hel 390284 130075 
Hell 520364 130080 

Hello 650439 130075 
Hello  780514 130075 

Hello W 910609 130095 
Hello Wo 1040697 130088 
Hello Wor 1170772 130075 
Hello Worl 1300847 130075 

Hello World 1430942 130095 
Hello World! 1561010 130068 
Hello World!! 1691085 130075 
Hello World!!! 1821180 130095 

Table 3. Serial Port testing results 

  

 

 
Figure 11. Cycles required to transfer data over the RS232 port 

  

 Results showed that the serial port needs a total of 1.583 cycles to send one character but when 

increasing the number of characters to two, there was a dramatic increase of 258626 cycles. After this 
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point and for every other character we saw a liner increase of required cycles. The slow communication 

speed achieved was also due to the low baud rate of 9600bps that was used. A possible increase in the 

rate would most lucky show us a decrease in the required cycles. 

 A part of the code used for the above testing can be seen below  

 

XTmrCtr XPS_Timer; //name the timer 
XTmrCtr_Initialize(&XPS_Timer, XPAR_XPS_TIMER_0_DEVICE_ID);                       
XTmrCtr_SetResetValue(&XPS_Timer, XPAR_XPS_TIMER_0_DEVICE_ID, 0); 
XTmrCtr_Reset(&XPS_Timer, 0); 
XTmrCtr_Start(&XPS_Timer, 0); //start timer 
printf("Hello world!!!"); 
XTmrCtr_Stop(&XPS_Timer, 0); //stop timer 
long int cycles; 
cycles = XTmrCtr_GetValue(&XPS_Timer, 0); //get number of cycles 
xil_printf("\ncycles: %d\r\n",cycles); 

 

  

 As can be seen in the above code, before the XPS_Timer can be used, it must be declared and 

initialized. These actions can be seen in line 1 and 2 of the above code. 

 

 

4.2 BRAM access 
 

 The purpose of this test was to determine the total clock cycles required to read and write from 

a BRAM memory. Once again, a design was created in EDK using the same parameters used to test the 

serial port. In this case though, we added a BRAM memory and controller in order to test. 

 For the first series of tests, we wrote 1 Byte of data to an offset of the memory address and 

timed this function. Next, we read back the same data and also timed the function (Figure 12). For the 

second test, we sent 4 Bytes to an address of the BRAM and then read it back (Figure 13). The third test 

consisted of writing one Byte at a time to the BRAM and also reading back one byte at a time (Figure 

14). Finally, we placed the read and write command in a for-loop and wrote and read 1 byte for each 

loop (FIGURE). The cycles measured during the experiments are shown in Table 2. 
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XTmrCtr XPS_Timer; //name the timer 
XTmrCtr_Initialize(&XPS_Timer, XPAR_XPS_TIMER_0_DEVICE_ID);  
XTmrCtr_SetResetValue(&XPS_Timer,XPAR_XPS_TIMER_0_DEVICE_ID, 0); 
XTmrCtr_Reset(&XPS_Timer, 0); //reset timer 
Xuint32 data; 
XTmrCtr_Start(&XPS_Timer, 0); //start timer 
XIo_Out32(XPAR_XPS_BRAM_IF_CNTLR_0_BASEADDR, 
0x00000000000000000000000000001131); 
XTmrCtr_Stop(&XPS_Timer, 0); //stop timer 
 
long int cycles; 
cycles = XTmrCtr_GetValue(&XPS_Timer, 0); 
xil_printf("write cycles: %d\r\n",cycles); 
 
XTmrCtr_Reset(&XPS_Timer, 0); 
XTmrCtr_Start(&XPS_Timer, 0); 
data = XIo_In32(XPAR_XPS_BRAM_IF_CNTLR_0_BASEADDR); //read data 
XTmrCtr_Stop(&XPS_Timer, 0); 
xil_printf("Read from BRAM : 0x%X\r\n",data); 
long int cycles2; 
cycles2 = XTmrCtr_GetValue(&XPS_Timer, 0); 
xil_printf("read cycles: %d\r\n",cycles2); 

 

Figure 12. Code for testing BRAM with 32bit input 

 

 

XIo_Out32(XPAR_XPS_BRAM_IF_CNTLR_0_BASEADDR+0*32,0x00000031); //writes offset 
XIo_Out32(XPAR_XPS_BRAM_IF_CNTLR_0_BASEADDR+4*32,0x00000032); 
XIo_Out32(XPAR_XPS_BRAM_IF_CNTLR_0_BASEADDR+8*32,0x00000033); 
XIo_Out32(XPAR_XPS_BRAM_IF_CNTLR_0_BASEADDR+12*32,0x00000034); 
 
data = XIo_In32(XPAR_XPS_BRAM_IF_CNTLR_0_BASEADDR+0*32); //reads offset 
data2 = XIo_In32(XPAR_XPS_BRAM_IF_CNTLR_0_BASEADDR+4*32); 
data3 = XIo_In32(XPAR_XPS_BRAM_IF_CNTLR_0_BASEADDR+8*32); 
data4 = XIo_In32(XPAR_XPS_BRAM_IF_CNTLR_0_BASEADDR+12*32); 
 

Figure 13. Code to write and read from different offsets 
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input=0x00000030; 
int i; 
XTmrCtr_Start(&XPS_Timer, 0); 
for (i=0; i<13; i=i+4) 
 { 
  XIo_Out32(XPAR_XPS_BRAM_IF_CNTLR_0_BASEADDR+i*32,input); 
  input=input+1; 
 } 
 
int tmp[4]; 
for (i=0; i<13; i=i+4) 
 { 
  data=XIo_In32(XPAR_XPS_BRAM_IF_CNTLR_0_BASEADDR+i*32); 
  tmp[i+1]=data; 
 } 
 

Figure 14. Code to write and read using for-loop 

 
 

Test Cycles without I/D cache Cycles with I/D cache 

 Write Read Write Read 

1 Byte 66 70 61 63 

4 Bytes sent with one command 66 70 61 63 

4 Bytes using four commands to 
access each offset 

93 122 82 87 

Using for-loop to access each 
offset 

198 222   

Table 4. BRAM testing results 

 

 The results of the tests showed that, the time to write or read one byte or 4 bytes is the same if 

using one command. When using four commands, to either write or read each offset of the address, we 

observed an increase of 27 cycles to write and 52 cycles to read from the BRAM compared to writing all 

the bytes to the memory at once. This could be due to the number of commands used in the program 

which are now four compared to when using one to access the memory. When adding a "for loop" to 

read and write we observed an even larger increase in the cycles required. When writing 105 cycles 

more were needed and when reading 100 more cycles, compared to when using four separate 

commands to access our BRAM. The increase we saw was due to the for-loop, which requires a number 

of cycles to cheek the statement and decide whether or not to execute the loop. In both cases more 

cycles where required to read from a BRAM than to write. 
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 Using the same design we enabled the I/D cache to see how much of an effect it would have on 

accessing the BRAM. Two different types of memories were used as cache, a DDR2 and a SRAM, each 

4K. The results although, were the same for both memories. We executed the same test as above; the 

results can be seen in Table 2. Once again, when we used one command to write or read either 1 byte or 

4 bytes, the same number of cycles were required. When using more than one command to access we 

also saw an increase in the cycles required.  

 Comparing the two designs (with and without cache), we saw that there was a small decrease 

when using one command, 5 cycles when writing and 7 when reading. When accessing four different 

offsets, there was a decrease of 11 cycles to write and 35 cycles to read, this is where the cache had the 

largest effect.  
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Chapter 5 
 

 

 

Benchmarking 
  

  

 

 

5.1 Algorithms for Cryptography 
 

 To evaluate partial reconfiguration on the Virtex-5, it was decided to use algorithms used for 

cryptography. The algorithms used were the following, the Advanced Encryption Standard (AES) and 

Blowfish. For both algorithms we only used the encryption mode to evaluate reconfiguration on the 

FPGA. Encryption is the process of converting information (which is called plaintext) into ciphertext, 

which is not understood to a third person. To convert the plain text to a ciphertext a key is used, which 

is known only to the communicants. Cryptography is mainly used to transfer data in a secure manner 

and ensure that it is not tampered with by intruders.   

 

 

5.1.1 The Advanced Encryption Standard 
 

 The Advanced Encryption Standard (AES) is a symmetric-key encryption standard. It was 

developed in order to substitute the older Data Encryption Standard. The standard comprises three 

block ciphers, AES-128, AES-192 and AES-256 and are known as the Rijndael algorithms. Each of these 

ciphers has a 128-bit block size, with key sizes of 128, 192 and 256 bits respectively. The algorithm used 

by us was the AES-128. 

http://en.wikipedia.org/wiki/Encryption
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 AES is based on a design principle known as a substitution permutation network; it is fast on 

both hardware and software. The AES cipher is specified as a number of repetitions of transformation 

rounds, that convert the input plaintext into the final output of ciphertext. Each round consists of 

several processing steps, including one that depends on the encryption key. The number of rounds 

depends on the block and key size. In our case we had a total of nine rounds. AES operates on a 4x4 

matrix of bytes which is known as the state. Each block contains 1 Byte and the table has a total of 16 

Bytes (128 bits) of data. 

 The Algorithm consists of the following steps: 

1. Key Expansion: round keys are derived from the cipher key using Rijndael's key schedule. 

2. Initial Round  

2.1. Add Round Key: each byte of the state is combined with the round key using bitwise xor 

3. Round 

3.1. Sub Bytes: a non-linear substitution step where each byte is replaced with another according to 

a look up table 

3.2. Shift Rows: a transposition step where each row of the state is shifted cyclically a certain 

number of steps. 

3.3. Mix Columns: a mixing operation which operates on the columns of the state, combining the 

four bytes in each column. 

3.4. Add Round Key 

4. Final Round 

4.1. Sub Bytes 

4.2. Shift Rows 

4.3. Add Round Key 
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Figure 15. AES algorithm 

 

 In the SubBytes step, each byte in the matrix is updated using an 8-bit substitution box know as 

the Rijndael S-box. This step can be seen in Figure 16. 

 

 
Figure 16. SubBytes 

 

 In the Shift Rows step, each row is shifted to the left by a certain offset as see in Figure 17. For 

AES, the first row is left unchanged. Each byte of the second row is shifted one to the left. Similarly, the 

third and fourth rows are shifted by offsets of two and three respectively. 
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Figure 17. ShiftRows 

 

 In the Mix Columns step, each column of the state is multiplied with a fixed polynomial c(x) as 

seen in Figure 18. 

 

 
Figure 18. MixColumns 

 

 In the Add Round Key step, the sub key is combined with the state, as seen in Figure 19. For 

each round, a subkey is derived from the main key using Rijndael's key schedule. Each subkey is the 

same size as the state. The subkey is added by combining each byte of the state with the corresponding 

byte of the subkey using bitwise XOR.  
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Figure 19. AddRoundKey 

 

 

 

5.1.2 Blowfish 
  

 Blowfish is a keyed, symmetric block cipher. It has a block size of 64 bits and its key can be 

anywhere between 1 and 448 bits. In our study, the algorithm used had a 16-bit input and a key size of 

32-bits. The algorithm consists of two parts: a key-expansion part and a data- encryption part. Key 

expansion converts a key of at most 448 bits into several subkey arrays totaling 4168 bytes. 

 Data encryption occurs via a 16-round Feistel network. Each round consists of a key-dependent 

permutation, and a key - and data - dependent substitution. All operations are XORs and additions on 

32-bit words. The only additional operations are four indexed array data lookups per round. The 

encryption of data is very efficient despite the fact that there is a complex initialization phase required 

before any encryption takes place. 

 Blowfish uses a large number of sub-keys. These keys must be precomputed before any data 

encryption or decryption. 

• The P-array consists of 18 32-bit sub-keys: 

   P1, P2, P3, P4...., P18. 

• There are four 32-bit S-boxes (see Figure 20) with 256 entries each 
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    S1,0, S1,1,..., S1,255; 

    S2,0, S2,1,..., S2,255; 

     S3,0, S3,1,..., S3,255;  

    S4,0, S4,1,..., S4,255. 

 

 

 
Figure 20. Blowfish S-boxes 

 

 Function F, the non-reversible function, gives Blowfish the best possible avalanche effect for a 

Feistel network: every text bit on the left half of the round affects every text bit on the right half. 

Additionally, since every sub-key bit is affected by every key bit, the function also has a perfect 

avalanche effect between the key and the right half of the text after every round. Hence, the algorithm 

exhibits a perfect avalanche effect after three rounds as well as every two rounds after that. The use of 

the F function and the complete data flow of the Blowfish cipher can be seen in Figure 21. 
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Figure 21. Data flow of Blowfish block cipher 

 

 

5.2 Application Resource Analysis 
  
 
 In order to calculate the theoretical Partial Reconfiguration Time using the PRCC website, an 

analysis of the recourses used by each algorithm had to be done. By using EDK we were able to estimate 

these resources and calculate the partial bitstream size, depending on the frames used by our design. 

The flow of our experiments can be seen in Figure 22. By using the PRCC tool, we are given the 

opportunity in deciding whether the use of partial reconfiguration suits our design or not. Although, this 

tool has been made for the Power PC processor, it can provide reasonable results when using the 

Microblaze processor. Finally, we can test different setups for our design in order to choose the one that 

provides the fastest execution. All this can be done by changing only the setting on the PRCC and not 

creating a new project for each case. 
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Figure 22. Experimental Flow 

 

 

5.2.1 Advanced Encryption Standard 128 PLB Bus Analysis 
 

 The AES algorithm downloaded to our FPGA board works with the following steps: 

1. Design downloads to board and awaits for data from PC 

2. User enter a 128 bit key using a terminal program from the PC 

3. User enters data with a width of 128 bits or a text file 

4. Microblaze returns a 128bit result to PC and user can see encrypted data 

5. User may enter more data with a width of 128bits, using the same key 
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 The resources consumed by the AES algorithm can be seen in Table 5. The second column shows 

the total resources used by the complete system created in EDK, which contains the Microblaze 

processor, the AES peripheral and the RS232 port, used for communication with the PC. Therefore, 

these numbers were not accurate in order to calculate the bitstream size of the AES algorithm. The third 

column shows the resources used only by the AES algorithm, as calculated from the design in ISE 12.3. In 

the fourth column we can see the total number of configuration bits used by the algorithm. This was 

calculated by using the configuration bits used by each device feature, which can be found in Table 2. 

 

Table 5. Resources used by the AES algorithm 
 

 In Table 6 we have provided the resources used by the Microblaze processor.  

 

 

 

 

 

 
 

Table 6. Microblaze Resources 
 

 As we can see in Table 5 column 2 and column 3 are very different despite the fact that we are 

using the same design. This is due to the size of the microblaze processor which is not calculated when 

using any ISE program. When adding the data in column 3 of Table 3 and column 2 of Table 6 the total is 

almost equal to the resources in column 2 of Table 5. The remaining resources used, are due to the PLB 

buses that also consume resources.  

 The total cycles required for encryption were also calculated at this point. The XPS_Timer was 

added to the design through the EDK software. A total of 669 cycles were needed to encrypt a 128 bit 

Device Feature Total Resources Used in 
EDK 12.3 

Resources Used in   
ISE 12.3 

Configuration Bits Used 

Slice Registers 2748 out of 69120 (3%) 676 out of 69120 (1%) - 
Slice LUTs 3655 out of 69120 (5%) 1424  out of 69120 (2%) - 
Occupied Slices  1628 out of 17280 (9%) 558  out of 17280 (3%) 658998 
Block RAM (36k) 8 out of 148 (5%) 0 out of 148 (0%) - 
External IOBs 6 out of 640 (1%) 389  out of 640 (60%) - 
DSP48E 3 out of 64 (4%) 0 out of 64 (0%) - 

Device Feature Miroblaze resources 
Slice Registers 1340 out of 69120 (1%) 
Slice LUTs 1660 out of 69120 (2%) 
Occupied Slices  793 out of 17280 (4%) 
Block RAM (36k) 8 out of 148 (5%) 
External IOBs 2 out of 640 (1%) 
DSP48E 3 out of 64 (4%) 
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block using a 128 bit key. These cycles do not include the time required by the user to enter the data 

and the time required to transfer the result to the PC. We next tested if these cycles would change with 

a large text file as an input instead of just 128 bits. When using a file, the time required to produce the 

output did not change, the algorithm produced all the outputs in a steady number of cycles.  

 In order to use the PRCC we needed to calculate the bitstream size in KBytes. A total of 80.44 

Kbytes are needed for our AES partial bitstream. The reason for using only the occupied slices consumed 

by our design to calculate the configuration bits needed by the bitstream and not including the I/Os, is 

that the inputs and outputs are a parameter of the Partial Reconfiguration Region and do not affect the 

design placed in the region.  

 The first step for calculating the Reconfiguration Time and Throughput,  was to choose our 

design parameters then select a FPGA and last enter our bitstream size. The data entered and the results 

can be found in Table 7.  The reason we can choose any Virtex-5 FPGA and see no change in the 

reconfiguration times is that the frame size for the entire Virtex-5 family is 164 Bytes. 

 

External 
Memory 

Memory 
Bus Clock 

(MHz) 

Memory 
Interface width 

(bits) 

Processor 
Cache 

Device Reconfiguration 
Time 

 (msec) 

Reconfiguration 
Throughput  

(MB/sec) 

DDR 100 8 ON Any 
Virtex 5 

9.483 9.105 

DDR 100 8 OFF Any 
Virtex 5 

157.419 0.548 

DDR 100 16 ON Any 
Virtex 5 

7.009 12.319 

DDR 100 16 OFF Any 
Virtex 5 

116.35 0.742 

DDR 100 32 ON Any 
Virtex 5 

5.772 14.959 

DDR 100 32 OFF Any 
Virtex 5 

95.815 0.901 

DDR 100 64 ON Any 
Virtex 5 

5.772 14.959 

DDR 100 64 OFF Any 
Virtex 5 

95.815 0.901 

Table 7. PRCC Settings and Results for AES 
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 The results showed that the processer cache plays a major role in the reconfiguration time and 

throughput. With the cache turned on the reconfiguration time and throughput are about sixteen times 

smaller compared to the time needed when the cache is turned off. The reconfiguration time and 

throughput are also affected by the memory bus interface. We observed that, with increasing the width 

of the interface we can achieve slightly better performance of our design. Finally, there was no change 

in the reconfiguration time and throughput despite using a 32 or 64 bit memory interface width.  

 Comparing our theoretical results with the results seen in [10], when using a PLB bus and the 

cache enabled, we saw that our measurements do not differ by a large margin. We also took into 

consideration that those experiments were done with the Virtex-4. 

 Figure 23 shows a layout of the AES design on the FPGA board. The Microblaze processor is 

connected to its memory through the dlmb and ilmb memory busses. Next, through the PLB bus the 

processor is connected the various IPs of the design. In our case, we had an AES 128, which is a custom 

IP designed by us and the RS232 interface used for communication with a terminal program on the 

computer. The PLB is 32bits wide, the system clock frequency is 125MHz and the Microblaze memory is 

32Kb. 

 Figure 24 illustrates the steps followed when running the AES algorithm on the FPGA board 

which is connected to the computer. Once the design is downloaded to the FPGA, the Microblaze 

processor waits for data from the RS port. The user first enters the key which is to be used for 

encryption; it must be 128 bits before the design can continue to function. Next, follows the data for 

encryption and the same rules apply as above for the size. Once all data has been received by the 

processor, it is forwarded to our AES peripheral. After the encryption is complete, the result is sent to 

the processor and from there, to the RS232 peripheral port, in 32 bit blocks, due to the size limitation of 

the PLB bus. 
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Figure 23. AES layout on FPGA 
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Figure 24. Flow chart for AES design 

 
 
 

5.2.2 Advanced Encryption Standard FSL Analysis 
 

 In order to compare speed and resource consumption of our design on the PLB, the AES 

algorithm was placed on a Fast Simplex Link (FSL). In order to connect our peripheral to the FSL, a 

controller was written in VHDL, to control the reads and writes to the FIFO. 

 Table 8 shows the resources consumed by our new design. Compared to the results in Table 5 

we observed a slight, in the data in column 2, such as slice registers and occupied slices. Although, there 
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was an increase in the slice LUTs needed. Column 2 displays the total resources our design consumed 

when placed on the FPGA board, this includes all peripherals, busses and the Microblaze processor. 

 The opposite occurs in column 3 of Table 8, here we observed an increase in the resources 

consumed by the AES peripheral alone. Due to the fact that our FSL design occupies more slices 

compared to the PLB design, more configuration bits are also needed. 

 

Table 8. Resources used by AES on FSL 

  

 Figure 26 shows the block diagram of our design using the FSL. The only changes made in 

comparison to Figure 23, is the fact that the AES peripheral is now connected to microblaze processor 

through a master and slave FSL. The processor places data in the master FSL and reads data out of the 

slave FSL, the AES peripheral operates in the same manner.  

 Finally, the cycles required to encrypt the input were calculated. Using the same method with 

the PLB design, a total of 740 cycles were needed. This number is 71 cycles larger than the cycles 

required by the PLB design. This is mainly due to the software code used to run the algorithm, which 

consists of for-loops. We have previously shown in chapter 3, that these loops consume a large number 

of cycles. Although the FSL is faster than the PLB bus, a total of 5 cycles are required to write to the FSL 

when the PLB needs 10, the controller used to run our algorithm using the FSL is slower than that used 

to control the peripheral on the PLB. Unfortunately, we were forced to use different controllers due to 

the fact that the PLB works with registers and the FSL with FIFOs. Attempts were made to speed up the 

FSL controller. 

 Tests were also run using larger inputs such as a file. In order to gather and evaluate the results 

our python script was used to export the results from CuteCom to Excel. The file used had a total of 23 

inputs, each 128bits long and the same key was used for each run. In order for CuteCom to send all data 

to the Microblaze processor correctly, a char delay of 10ms was required. This setting can be found in 

Device Feature Total Resources Used in 
EDK 12.3 

Resources Used in   
ISE 12.3 

Configuration Bits Used 

Slice Registers 2557 out of 69120 (3%) 981 out of 69120 (1%) - 
Slice LUTs 3729 out of 69120 (5%) 1771  out of 69120 (2%) - 
Occupied Slices  1510 out of 17280 (8%) 685  out of 17280 (3%) 808985 
Block RAM (36k) 8 out of 148 (5%) 0 out of 148 (0%) - 
External IOBs 11 out of 640 (1%) 76  out of 640 (11%) - 
DSP48E 3 out of 64 (4%) 0 out of 64 (0%) - 
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CuteCom. The results showed that the time required to encrypt the data was not steady but had two 

different values 740 and 725 cycles. The results can be seen in Figure 25. 

 

 
Figure 25. Cycles Required for AES Encryption on FSL 

 

Microblaze

dlmb 
Controller

ilmb 
Controller

BRAM Block

ilmb
dlmb

mb_plb

mdm

Microblaze mdm bus

RS232

Slaves of mb_plb

SFSLMFSL

FSL

AES_on_FSL

FSL

 
Figure 26. AES FSL Block Diagram 
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 Table 9 places the two complete designs side by side in order to allow comparison. As we can 

see, the FSL design required less resources in every feature except for the number of slice LUTS. It 

needed 188 fewer than the PLB design. 

 Table 10 illustrates the resources consumed only by the two peripherals and not the complete 

design. Once again, the FSL peripheral required more resources than the PLB peripheral. 

 

Table 9. AES PLB design vs. FSL design 

Table 10. AES PLB Peripheral vs. AES FSL Peripheral 

 

 

5.2.3 Blowfish PLB Analysis  
 

 Using the same method with the AES algorithm we estimated the resources used by the 

Blowfish encryption algorithm, these can be found in Table 9. Once again, in the second column we see 

the total resources needed by the design, which contains a Microblaze processor, our custom Blowfish 

peripheral, the RS232 interface and the LED_display interface. The third column shows the resources 

used only by our Blowfish encryption algorithm which were estimated using the ISE 12.3 software. Due 

Device Feature Total PLB Resources Total FSL Resources 

Slice Registers 2748 out of 69120 (3%) 2557 out of 69120 (3%) 
Slice LUTs 3655 out of 69120 (5%) 3729 out of 69120 (5%) 
Occupied Slices  1628 out of 17280 (9%) 1510 out of 17280 (8%) 
Block RAM (36k) 8 out of 148 (5%) 8 out of 148 (5%) 
External IOBs 6 out of 640 (1%) 11 out of 640 (1%) 
DSP48E 3 out of 64 (4%) 3 out of 64 (4%) 

Device Feature PLB Peripheral Resources FSL Peripheral Resources 

Slice Registers 676 out of 69120 (1%) 981 out of 69120 (1%) 
Slice LUTs 1424  out of 69120 (2%) 1771  out of 69120 (2%) 
Occupied Slices  558  out of 17280 (3%) 685  out of 17280 (3%) 
Block RAM (36k) 0 out of 148 (0%) 0 out of 148 (0%) 
External IOBs 389  out of 640 (60%) 76  out of 640 (11%) 
DSP48E 0 out of 64 (0%) 0 out of 64 (0%) 
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to the fact that the Blowfish algorithm uses a small amount of resources, it could be better to have it as 

a static region on the FPGA instead of swapping it in and out of our design. 

Table 11. Resources used by the Blowfish algorithm 

 

 Using the results from Table 11, our bitstream size for the Blowfish algorithm had a total size of 

9.66 KBytes. Once again, using the PRCC website we measured the theoretical reconfiguration time and 

throughput for the encryption algorithm. 

 

External 
Memory 

Memory 
Bus Clock 

(MHz) 

Memory 
Interface width 

(bits) 

Processor 
Cache 

Device Reconfiguration 
Time 

 (msec) 

Reconfiguration 
Throughput  

(MB/sec) 

DDR 100 8 ON Any 
Virtex 5 

1.051 8.973 

DDR 100 8 OFF Any 
Virtex 5 

17.453 0.543 

DDR 100 16 ON Any 
Virtex 5 

0.777 12.14 

DDR 100 16 OFF Any 
Virtex 5 

12.9 0.731 

DDR 100 32 ON Any 
Virtex 5 

0.64 14.741 

DDR 100 32 OFF Any 
Virtex 5 

10.623 0.888 

DDR 100 64 ON Any 
Virtex 5 

0.64 14.741 

DDR 100 64 OFF Any 
Virtex 5 

10.623 0.888 

Table 12. PRCC Settings and Results for Blowfish 

  

 Results from Table 12 once again, showed that the processor cache plays a major factor in the 

reconfiguration time and throughput. By enabling the cache we can achieve results about sixteen times 

better than with the cache disabled. 

Device Feature Total Resources Used in 
EDK 12.3 

Resources Used in   
ISE 12.3 

Configuration Bits Used 

Slice Registers 2075 out of 69120 (3%) 70 out of 69120 (1%) - 
Slice LUTs 2256 out of 69120 (3%) 134 out of 69120 (1%) - 
Occupied Slices  1193 out of 17280 (6%) 67 out of 17280 (1%) 79127 
Block RAM (36k) 8 out of 148 (5%) 0 out of 148 (0%) - 
External IOBs 10 out of 640 (1%) 180  out of 640 (28%) - 
DSP48E 3 out of 64 (4%) 0 out of 64 (0%) - 
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5.2.3 Blowfish FSL Analysis  
 

 Changes were made to our Blowfish peripheral in order to connect it to the Microblaze 

processor using the Fast Simplex Links (FSL). After the peripheral was successfully added to the design 

measurements were taken to determine the size and speed of the new peripheral. Table 13 in column 

two, shows the resources used by our design, including all of the peripheral implemented into the 

design. Column three on the other hand, shows the resources used only by the blowfish peripheral. 

 

Table 13. Blowfish FSL Peripheral Resources 
 

 Tests showed the total number if cycles required for our peripheral to encrypt the data was 54 

cycles. This time only includes the cycles required to receive the data from the processor for encryption 

and calculate the output. It does not include the time to send the data on the PC. We next entered more 

data using a text using the same method as with the FSL AES design. The results showed that the time 

required to encrypt the data was not steady but had two values, 54 and 39 cycles. We used a total of 42 

16 bit inputs for this test. The results can be seen in Figure 27. 

 

 
Figure 27. Cycles Required for FSL Blowfish 
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Device Feature Total Resources Used in 
EDK 12.3 

Resources Used in   
ISE 12.3 

Configuration Bits Used 

Slice Registers 1787 out of 69120 (2%) 222 out of 69120 (1%) - 
Slice LUTs 2142 out of 69120 (3%) 185 out of 69120 (1%) - 
Occupied Slices  1035 out of 17280 (5%) 126 out of 17280 (1%) 148806 
Block RAM (36k) 8 out of 148 (5%) 0 out of 148 (0%) - 
External IOBs 10 out of 640 (1%) 73  out of 640 (11%) - 
DSP48E 3 out of 64 (4%) 0 out of 64 (0%) - 
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Table 14. Blowfish PLB Design vs. FSL Design 

 

 Table 14 shows a comparison between the PLB design and the FSL design. As we can see the FSL 

design is smaller than the PLB design in all the categories. 

 

Table 15. PLB Blowfish Peripheral vs. FSL Peripheral 
 

 Table 15 compares the resources consumed only by the two Blowfish peripheral. As we can see 

the FSL peripheral uses more compared to the PLB. Due to the fact that the FSL peripheral occupies 

more slices, the bitstream will also be larger. In fact, the FSL bitstream is 69679 bits larger, almost twice 

the size of our PLB design. 

  

Device Feature Total PLB Resources Total FSL Resources 

Slice Registers 2075 out of 69120 (3%) 1787 out of 69120 (2%) 
Slice LUTs 2256 out of 69120 (3%) 2142 out of 69120 (3%) 
Occupied Slices  1193 out of 17280 (6%) 1035 out of 17280 (5%) 
Block RAM (36k) 8 out of 148 (5%) 8 out of 148 (5%) 
External IOBs 10 out of 640 (1%) 8 out of 640 (1%) 
DSP48E 3 out of 64 (4%) 3 out of 64 (4%) 

Device Feature PLB Peripheral Resources FSL Peripheral Resources 

Slice Registers 70 out of 69120 (1%) 222 out of 69120 (1%) 
Slice LUTs 134 out of 69120 (1%) 185 out of 69120 (1%) 
Occupied Slices  67 out of 17280 (1%) 126 out of 17280 (1%) 
Block RAM (36k) 0 out of 148 (0%) 0 out of 148 (0%) 
External IOBs 180  out of 640 (28%) 73  out of 640 (11%) 
DSP48E 0 out of 64 (0%) 0 out of 64 (0%) 
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Chapter 6 
 

 

 

Conclusions and Future Work 
 

 

 

6.1 Conclusions 

 

 This work introduces a complete system that uses the AES and Blowfish algorithms for data 

encryption running on a Virtex-5 VLX-110t FPGA board. Both algorithms were placed on the design as a 

PLB and FSL peripheral. The systems created during this thesis can be used for projects currently running 

in the lab, such as the S.M.A.R.T project. The purpose of this work was to analyze the reconfiguration 

times and consider whether this approach was suitable for our design. 

 In order to measure the reconfiguration time and throughput of our design, the Partial 

Reconfiguration Cost Calculator was used. This tool allowed us get an idea of the times needed for the 

reconfiguration process. Even though this tool was developed for the Power PC processor we saw that 

our results did not differ very much from those seen in [10]. 

 In order to collect and process faster the results from our setups, a Python script was developed. 

This script creates a new file which puts our results in a table. This new file can then be used with Excel 

to develop graphs and charts to further analyze the results of the experiments. One of the main 

advantages of this script is that it can be used with any application, allowing users to collect their results. 

 After analyzing the results from the PRCC we came to the conclusion that using Partial 

Reconfiguration for the AES and Blowfish algorithm has no advantages. This is mainly due to the large 

difference in their bitstream size. For example, when placing the Blowfish algorithm in the Partial 

Reconfiguration Region, more than half of it will be empty due to its small size. In order to benefit from 

partial reconfiguration we need to use bitstreams that do not have a large difference in size. 
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 Must of the time spent in this thesis was to first get the tools to work with the operating system 

and second to make changes to the AES and Blowfish algorithm in order to automate the design and 

also to place both modules on the FSL. The most complex part of the design process was working with 

the Xilinx EDK software. 

 Finally, due to difficulties such as obtaining licenses for our software, we were not able to 

perform partial reconfiguration on our design and had to rely on our theoretical measurements using 

the PRCC. Partial reconfiguration will be attempted in future work.  

 

 

6.2 Future Work 
 

 Due to Xilinx presenting new software tools with such  a fast rate and fixing bus from previous 

editions, it is necessary for our design to be upgraded to the newer tools. As we have seen there were 

several bugs in the EDK 12.3 edition. Probably, with the newer versions the bugs will be fixed and better 

cores will be provided. 

 A real application using partial reconfiguration should be implemented and evaluated in order to 

compare our theoretical results with real experimental results. Due to the large difference in the size of 

the two bitstreams it may also be a good idea to use a different algorithm than the Blowfish. This 

algorithm should have a bitstream size closer to that of the AES algorithm.  
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Appendix A 
 

 This appendix includes all the details for installing and running the required software used 

throughout this thesis.  

 

A.1 Installing Cable Driver 
 

 A series of steps were followed in order to install the drivers required for the Xilinx cable. 

1. download usb-driver-HEAD.tar.gz 

2. Run command "gunzip usb-driver-HEAD.tar.gz" 

3. Run command "tar -xf usb-driver-HEAD.tar" 

4. Run command "cd usb-driver" 

5. Run command "make" 

6. Run command "ls libusb-driver.so" 

7. export LD PRELOAD=/path/to/libusb-driver.so 

8. Reboot PC 

9. The LED on the USB cable should light up yellow 

In order to check if the driver was installed correctly, log in as root in a terminal and run command 

"lsusb | grep Xilinx" the output should be: 

Bus 004 Device 004: ID 03fd:0008 Xilinx, Inc. 

It is important that the number is marked in red. This states that the cable firmware was loaded 

correctly. 

 

 

A.2 Installing Terminal Program 
 

1. Download cutecom from "cutecom.sourceforge.net/" 

2. Instructions on how to install can be found in folder downloaded 

3. After installation enter YAST 

4. Add uucp to user group and logout 

http://git.zerfleddert.de/cgi-bin/gitweb.cgi/usb-driver?a=snapshot;h=HEAD;sf=tgz
http://git.zerfleddert.de/cgi-bin/gitweb.cgi/usb-driver?a=snapshot;h=HEAD;sf=tgz
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5. Change mode on serial port to using command "/sbin/chmod 666 /dev/ttyS0". 

 

A.3 Start Up Script for ISE 
 

1. Open a new script 

2. Write the following commands in the script:  

 #! /bin/sh 

 source /opt/Xilinx/12.3/ISE/settings32.sh 

 export LD_PRELOAD=/home/your_home_directory/usb-driver/libusb-driver.so  

 ise 

 #impact 

 exit 

3. Save file 

4. In a terminal window run command "chmod 775 fileName" 

When running this script ISE should open. 

 

 

A.4 Start Up Script for EDK 
 

1. Open a new script 

2. Write the following commands in the script:  

 #!/bin/bash 

 

 # Please adapt these values to your system configuration. 

 XILINX_DIR=/opt/Xilinx/12.3/ISE_DS/ 

 EDK_DIR=/opt/Xilinx/12.3/ISE_DS/EDK 

 

 # load settings  

 . ${XILINX_DIR}/settings32.sh 

 export XILINX_EDK=/opt/Xilinx/12.3/ISE_DS/EDK 

 export LD_LIBRARY_PATH=${XILINX_EDK}/bin/lin:${LD_LIBRARY_PATH} 

 export 

 PATH=${XILINX_EDK}/bin/lin:${XILINX_EDK}/gnu/microblaze/lin/bin:\ 
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 ${XILINX_EDK}/gnu/powerpc-eabi/lin/bin:${PATH} 

 

 # start xilinx ise 

 ${EDK_DIR}/bin/lin/xps 

Save file 

3. In a terminal window run command "chmod 775 fileName" 

When running this script EDK should open. 
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Appendix B 
 

 In this appendix we will review the bugs we encountered during the use of the Xilinx 12.3 

software. 

 

 

B.1 When Creating a FSL Peripheral 
 

 The first bug we encountered during the use of EDK 12.3 was when creating a FSL peripheral 

using the wizard. Once the peripheral was made, we observed that in the peripheral_name.vhd file the 

FSL_S_Clk and FSL_M_Clk were set to outputs. In order for our design and any design to work correctly, 

these had to change to inputs each time we created a new FSL peripheral. 

 

 

B.2 When creating a PLB Peripheral 
 

 After creating a PLB peripheral and attempting to build the user applications, we received an 

error stating that XIo_Out32 and XIo_In32 were not declared. In order to fix this problem we had to 

make changes to the peripheral_name.h file. In this file, instead of using XIo_Out32 and XIo_In32, the 

older commands xil_IO_out32 and xil_IO_in32 were used. After making the changes, the above error did 

not appear. 
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Appendix C 
 

 In this appendix we provide the Python script used to gather the results from the experiments in 

order to import them to Excel for further analysis. This script can be used to locate any word in any file. 

In order for the script to locate the number of cycles, the output from the Cutecom log must have the 

following format, "Cycles: number". This can be done when writing the C-script that controls our system. 

This way when we ask the script to locate the word cycles it will also save the next word in the file, in a 

table, which in our case will be the cycles required to execute a series of commands. 

 

import re 
repeat=1 
while (repeat==1): #while will continue until y or n is given 
 question=raw_input("Will you be using CuteCom's output (y or n)?: ") 
 if question=='y': 
  openFile = '/home/yorgon/cutecom.log' #Opens the cutecom log 
  repeat=0 #set repeat to 0 to exit loop 
 elif question=='n': 
  openFile = raw_input("Please enter a file to open: ") 
  repeat=0 
 else: 
  repeat=1 
f= open(openFile, "r")  
fileToWrite= open("/home/yorgon/Desktop/results", "w")  #file to write data 
pattern = raw_input("Enter a word to locate in file: ")#Enter word to locate 
regexp=re.compile('^'+pattern+'$',re.I)  #creates the pattern to match 
lineNum= 0 
wordNum= 0 
match=0 
fileToWrite.writelines('The word you are trying to match is: ' +pattern+'\n') 
wordList=[]  #list for all the words in the input file 
wordMatches=[] #list for the spot of the match in the input file 
with f as searchfile: #Search the whole file 
    for line in searchfile: 
 lineNum=lineNum + 1 
        lineL = line.split()  #split line into words 
 for word in lineL: 
  word=re.sub(r'\W+', '', word)    #Ignore all '.', ',', '!' etc. 
  wordList.append(word)      # put all words in a list 
  result=regexp.match(word) 
  if result: 
   match=match+1; 
   wordMatches.append(wordNum) #puts location of match in list 
   value=str(wordNum) #Make match a string to be able to write 
   fileToWrite.writelines('We have a match! It is word number: 
' +value+'\n') 
   print 'Your word was found in line',lineNum, 'and is 
word',wordNum 
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  wordNum=wordNum+1  #number of next word 
print 'Total matches in text:', match 
x1='TEST' 
x2='CYCLES' 
print '{0:2}  {1:10}'.format(x1, x2) 
fileToWrite.writelines('{0:2}  {1:10}'.format(x1, x2)+'\n') 
for index in range(len(wordMatches)):  #loop prints the next word after the 
match 
 nextWord=wordMatches[index] +1   #go to next word  
 testNum=index 
 print '{0:2}    {1:10}'.format(testNum, wordList[nextWord]) 
 fileToWrite.writelines('{0:2}    {1:10}'.format(testNum, 
wordList[nextWord])+'\n')  #writes to file in two columns  
f.close() 
fileToWrite.close() 
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