
Chronos: A Tool for Handling Temporal Ontologies

in Protégé

Alexandros Preventis

Department of Electronics and Computer Engineering
Technical University of Crete

Dissertation Thesis Committee:
Euripides G.M. Petrakis, Associate Professor (Supervisor)

Minos Garofalakis, Professor
Michail G. Lagoudakis, Assistant Professor

2011

Acknowledgments

This thesis would not have been possible without the help of several
people who in one way or another, contributed and offered their valuable
assistance in the preparation and completion of this study.

First and foremost, my utmost gratitude to my advisor, Associate Pro-
fessor Euripides G. M. Petrakis for his supervision, advise and guidance from
the very early stage of this research. I am grateful for his encouragement
and precious contribution throughout this study. I would also like to thank
him for giving me the opportunity to work on this very interesting field of
research.

Also, I would like to thank Professor Minos Garofalakis and Assistant
Professor Michail G. Lagoudakis who agreed to evaluate my diploma thesis.

Moreover, I would like to thank my laboratory colleagues for their patient
and constructive comments.

I would like to thank all my friends for these great years we spent together
and for the many wonderful memories.

Most of all, I would like to thank my family for their enormous help,
understanding and support throughout all these years as a student.

1

Abstract

The Semantic Web is the extension of the World Wide Web that makes the
information machine-readable by using sets of concepts known as ontologies.
An ontology describes the concepts in a domain of interest and also the re-
lationships that hold between those concepts. The Web Ontology Language
OWL is a semantic markup language for publishing and sharing ontologies
on the World Wide Web. OWL is biased towards binary relations. Notice
that, relations that vary in time are in fact ternary. The representation of
ternary relations is a known problem whose solution calls for methods re-
ferred to as 4D-fluents [4] or N-ary relations [5], with the later being a W3C
recommendation. Apart from this, the two approaches are rather equivalent
so that, selecting either one is simply a matter of taste. However, the result-
ing ontologies (with both approaches) are rather complicated and difficult
to read or handle. Facilitating crafting (i.e., creating, editing) of temporal
ontologies in Protege [6] (a common OWL editor) is exactly the problem
this work is dealing with. In this thesis we introduce Chronos, a plug-in
for Protégé OWL editor (version 4.1) that facilitates creation and editing
of temporal ontologies. Chronos does not require the user to be familiar
with the peculiarities of the underlying representation model. Particular
emphasis has been given in the maintenance of the property semantics and
restrictions, even after a property has been converted from static to tempo-
ral.

Contents

1 Introduction 5
1.1 Problem Definition . 5
1.2 Proposed Solution . 6
1.3 Thesis outline . 7

2 Background and Related Work 8
2.1 Ontologies . 8
2.2 OWL . 8
2.3 SWRL . 9
2.4 OWL-Time Ontology . 9
2.5 Temporal Representation . 10
2.6 Protégé OWL Editor . 13
2.7 OWL API . 13

3 Chronos Tab Plug-in for Protégé 14
3.1 Handling Temporal Ontologies in Protégé 14
3.2 Moving from Static to Dynamic 15

3.2.1 Object Properties . 15
3.2.2 Data Properties . 16
3.2.3 Individuals . 17
3.2.4 Classes . 18

3.3 Dealing with Cardinality Constraints and Property Restrictions 18
3.3.1 Value Constraints . 19

3.3.1.1 owl:allValuesFrom 19
3.3.1.2 owl:someValuesFrom 19
3.3.1.3 owl:hasValue 20

3.3.2 Cardinality Constraints 21
3.3.2.1 owl:maxCardinality 21
3.3.2.2 owl:minCardinality 22
3.3.2.3 owl:cardinality 22

3.3.3 Global Cardinality Constraints on Properties 23
3.3.3.1 owl:FunctionalProperty 23
3.3.3.2 owl:InverseFunctionalProperty 24

1

3.3.4 Negative property assertions 24
3.3.5 Transitive Properties 24

4 Implementation 26
4.1 Use Cases . 26
4.2 Activity Diagrams . 44
4.3 User Interface Design . 58
4.4 Code Structure . 60
4.5 Plug-in Documentation . 62

5 Conclusion and Future Work 66

2

List of Figures

2.1 A ternary relationship. 10
2.2 Example of Reification. 11
2.3 Example of the 4D Fluents approach. 12
2.4 Example of the N-ary Relations representation. 12

3.1 Example of a temporal data property using N-ary Relations. 16
3.2 Example of a temporal object property between individuals. . 17

4.1 Activity Diagram 1 . 44
4.2 Activity Diagram 2 . 45
4.3 Activity Diagram 3 . 46
4.4 Activity Diagram 4 . 47
4.5 Activity Diagram 5 . 48
4.6 Activity Diagram 6 . 49
4.7 Activity Diagram 7 . 50
4.8 Activity Diagram 8 . 51
4.9 Activity Diagram 9 . 52
4.10 Activity Diagram 10 . 53
4.11 Activity Diagram 11 . 54
4.12 Activity Diagram 12 . 55
4.13 Activity Diagram 13 . 56
4.14 Activity Diagram 14 . 57
4.15 Class panel layout . 59
4.16 Object property panel layout 59
4.17 Data property panel layout 60
4.18 Individual panel layout . 61
4.19 The class diagram of the source code 63

3

List of Tables

4.1 Use Case 1 . 30
4.2 Use Case 2 . 31
4.3 Use Case 3 . 32
4.4 Use Case 4 . 33
4.5 Use Case 5 . 34
4.6 Use Case 6 . 35
4.7 Use Case 7 . 36
4.8 Use Case 8 . 37
4.9 Use Case 9 . 38
4.10 Use Case 10 . 39
4.11 Use Case 11 . 40
4.12 Use Case 12 . 41
4.13 Use Case 13 . 42
4.14 Use Case 14 . 43

4

Chapter 1

Introduction

The Semantic Web is the extension of the World Wide Web that enables
people to share content beyond the boundaries of applications and websites.
It makes the information machine-readable by using a formal representation
of knowledge as a set of concepts, called ontology.

An ontology describes the concepts in a domain of interest and also the
relationships that hold between those concepts. Many standard ontology
languages have been developed, the most recent of which is OWL [1]. OWL
enables greater machine interpretability of Web content than XML, RDF,
and RDF Schema (RDF-S) by providing additional vocabulary along with a
formal semantics. It is based on a logical model that allows to reason about
the entities and check whether or not all the statements and definitions
described in the ontology are mutually consistent. The basic elements of an
OWL ontology are classes, properties, instances of classes (individuals) and
relationships between these instances [2].

Properties in OWL are distinguished in two types, data properties which
relate an individual to an XML Schema data type and object properties,
which are relations on individuals. Both property types are binary. This
feature of OWL makes representation of relations that change over time
(temporal relations) a difficult task to deal with [4]. A temporal relation
is represented as a ternary relation between two instances and the interval
during which the relation holds, which is not permitted in OWL.

1.1 Problem Definition

The problem of representing temporal relationships in a binary-limited rep-
resentation is not new. Approaches to deal with this problem do exist (e.g.,
4D-fluents or N-ary relations) but all suffer from significant drawbacks (data
redundancy, object proliferation, limited reasoning support). In addition,
all, result in complicated ontologies compared with their static counterparts
where all relations do not change in time (as every temporal relation is

5

substituted by a set of binary OWL relations) [4].
OWL ontology editors such as Protégé [6] provide a well-suited envi-

ronment allowing users to create or edit static OWL ontologies with binary
relations. Yet, they provide no means for facilitating representation and
crafting of temporal ontologies with ternary relations. As it is common in
all known approaches for representing dynamic concepts (such as N-ary re-
lations, 4D-Fluents), ternary relations are decomposed into sets of binary
relationships. Those sets of binary relationships do not hold between entities
of the ontology as they used to, but they now refer to entities introduced by
the temporal representation model adopted.

The creation of a temporal ontology, or the conversion of a static ontology
to temporal, even with the use of ontology editors, can be a very complex,
time-consuming and error-prone procedure. The user must have very good
knowledge of the selected representation model and all of its peculiarities.
This is exactly the problem that this work is dealing with.

1.2 Proposed Solution

We introduce Chronos, a plug-in for Protégé OWL editor (version 4.1) that
facilitates creation and editing of temporal ontologies. Through Chronos,
the user can add the dimension of time in an ontology. Chronos enables han-
dling of temporal relations in Protégé the same way static ones are handled.
The representation model used for the creation of temporal relationships is
the N-ary model [5]. The user does not have to be familiar with the pe-
culiarities of the underlying model, as the instances and the relationships
between them that need to be added for the representation of the ternary
relations are handed by our tool. Chronos is implemented as a Tab plug-in
for Protégé, allowing the user to handle both static and temporal ontologies.

The contribution of this work is the development of Chronos, a tab
widget plug-in for Protégé 4.1, which has the following desirable features:

1. Chronos is easy to use, handles temporal ontologies as the static ones,
allowing the user not to be familiar with the peculiarities of the un-
derlying temporal representation model.

2. Supports restriction adding and checking both, on temporal properties
(e.g., an employee cannot work for two different companies at the same
time), classes (e.g., a company cannot employ more than 20 employees
at the same time) and on individuals.

3. Supports reasoning over the temporal ontologies using the standard
Pellet reasoner [7] for Protégé. Temporal reasoning is realized by a
set of SWRL rules [8] [9, 10] which provide reasoning capabilities over
time intervals.

6

4. Chronos interface is consistent with the layout of the default Protégé
tabs.

1.3 Thesis outline

Background knowledge and related work are discussed in Chapter 2. This
includes description of OWL and SWRL, the N-ary relations representation
model employed in Chronos and the Protégé OWL editor. The function-
alities of Chronos will be discussed in Section 3. More specifically, issues
related to the representation of temporal relations are discussed in Section
3.1. Our approach for moving from static to dynamic ontologies is presented
in Section 3.2 and Section 3.3 shows how we deal with property restrictions.
Chapter 4 presents Chronos’ interface, followed by use cases, activity dia-
grams and the plug-in documentation. Finally, conclusions and issues for
further research are discussed in Chapter 5.

7

Chapter 2

Background and Related
Work

2.1 Ontologies

There have been several attempts to define the word ”ontology” in com-
puter science. Some of them approach “ontology” from a more philosophical
scope, while some others have tried to give a more practical definition of the
term. In our work, we go with the practical definition, that an ontology is a
method of representing items of knowledge (ideas, facts, things—whatever)
in a way that defines the relationships and classifications of concepts within
a specified domain of knowledge [11]. The four fundamental ingredients of
an ontology are classes, properties, individuals and datatypes.

Individuals represent objects in the domain of interest.

Properties represent relationships. They are distinguished in two types,
Object properties and Data properties. Object properties relate two
individuals to each other and data properties relate an individual to a
data value.

Classes represent sets of individuals (or sets of objects) that share some
common features, constraints and semantics.

Ontologies provide the semantic foundation, that allows agents and their hu-
man users to identify, collect and process suitable information by interpret-
ing the semantic metadata based on the task at hand. They also allow the
exchange of results and the communication by sharing such resources [12].

2.2 OWL

The Web Ontology Language OWL is a semantic markup language for pub-
lishing and sharing ontologies on the World Wide Web. It is developed as a

8

vocabulary extension of RDF (the Resource Description Framework) and is
derived from the DAML+OIL Web Ontology Language. OWL is intended
to provide a language that can be used to describe the classes and relations
between them that are inherent in Web documents and applications. OWL
provides three increasingly expressive sublanguages:

1. OWL Lite supports classification hierarchy and simple constraints.

2. OWL DL supports maximum expressiveness without loosing compu-
tational completeness and decidability.

3. OWL Full provides maximum expressiveness and the syntactic freedom
of RDF, but without computational guarantees.

Each of these sublanguages is an extension of it’s simpler predecessor.
OWL is part of W3C’s Semantic Web technology stack. In October 2007

a new W3C working group was started to extend OWL with several new
features. This new version was called OWL 2 [13].

2.3 SWRL

Semantic Web Rule Language (SWRL) [8] is a proposal for a semantic web
rules-language, combining sublanguages of OWL (OWL DL and OWL Lite)
and the Rule Markup Language. SWRL allows for rule expressions involv-
ing OWL concepts enabling more powerful deductive reasoning than OWL
alone. Semantically, SWRL is built on the same description logic foundation
as OWL and provides similar strong formal guarantees of inference.

A SWRL rule contains an antecedent part, which is referred to as the
body, and a consequent part, which is referred to as the head. Both the
body and head consist of positive conjunctions of atoms, meaning that all
atoms of the antecedent part must be satisfied in order for the consequent
to be applied.

2.4 OWL-Time Ontology

OWL-Time [3] is an OWL ontology of temporal concepts, for describing the
temporal contents of Web pages and the temporal properties of Web ser-
vices. It provides a vocabulary for describing topological relations between
temporal entities, such as instants or intervals, together with information
about durations. Allen [14] has developed a calculus of binary relations for
representing qualitative temporal information on intervals that addresses
the problem of reasoning over such information. OWL-Time also provides
these relations on the intervals.

9

2.5 Temporal Representation

Dealing with information that changes over time is a critical problem for
practical Knowledge Representation languages (OWL, RDF). These lan-
guage are based on binary relationships between concepts. In the following,
we discuss some of the representation models that we considered to use in
Chronos, along with their advantages and disadvantages. Figure 2.1 illus-
trates an example of a ternary relationship. Its representation using various
models is discussed next.

Figure 2.1: A relationship that holds during a specific time interval, repre-
sented as a ternary relationship.

Temporal Description Logics (TDLs) [15, 16] extend the standard de-
scription logics (DLs) that form the basis of Semantic Web standards
with additional constructs such as ‘until’ and ‘always in the past’. The
TDLs restrict the OWL operators in order to keep all the reasoning
problems in the language decidable. Most importantly for our work,
TDLs cannot support quantitative information, making it not possible
to use the full Allens calculus.

Versioning [17] suggests that an ontology has different versions (one per
instance of time). This method suffers from several disadvantages, as
a simple change on an attribute of the ontology requires the creation
of a new version of the ontology. This results to huge information
redundancy. Moreover, searching for an event that occurred at a spe-
cific time, requires exhaustive search between the different ontology
versions. Lastly, it is not clear how relations between evolving classes
is represented.

Reification is a general purpose technique for representing n-ary relations
using languages that only permit binary relations. An n-ary relation
is represented as an object, which is the subject of n+1 triples. Those
triples have as objects the participants of the n-ary relation plus one
triple has as object the predicate of the property. In our example,
supposing that we want to represent the statement “John has worked
for Apple from 2000 to 2005” is expressed as livesIn(John, Apple, t)

10

where t represents the interval ‘2000 to 2005’. Using reification, this
relationship is represented as a new object with John, Apple, t and
worksFor being objects of properties (Figure 2.2). Reification also
suffers from data redundancy, because a new object is created for ev-
ery reified relationship. This is a common problem to all approaches
that are not based on non temporal Description Logics. A major dis-
advantage of reification is that it offers limited reasoning capabilities.
This is a result of representing the predicate of the relation as an ob-
ject of a property thus the OWL semantics over the property are no
longer applicable.

Figure 2.2: Example of Reification.

4D Fluents (Four-Dimensional Approach) [4] considers entities to ex-
ist in time the same way that material objects exist in space—they oc-
cupy spacetime. These entities have temporal parts (time slices) that
represent the entity during a time interval. Therefore, according to
this approach, a temporal property does not hold between the static
entities but between their temporal parts. The time slices of an entity
have a specific lifetime, that is the time interval of the relation that
they participate in. Thus, a time slice can participate in more than
one temporal relations (fluents) only if they hold for precisely the same
time interval.

As shown in Figure 2.3 for every time interval during which the prop-
erty worksFor holds, two instances of the class TimeSlice are created.
These instances are related to the time interval that defines their “life-
time”, to the static entities whose they are temporal parts of and to
each other with the fluent property worksFor.

The 4D-fluents approach suffers from data redundancy, since two in-
dividuals and four properties between them have to be added to the
ontology. It also complicates the ontology. Nevertheless, it is a suffi-
cient way to represent relations that evolve over time, maintaining the
property semantics and offering reasoning capabilities.

N-ary Relations [5] is a general purpose technique for representing n-ary
relations. In N-ary Relations representation model, the static entities

11

Figure 2.3: Example of the 4D Fluents approach. The dotted arrows repre-
sent object properties between classes. The solid arrows represent the ‘isA’
relationship.

are considered to participate in events. A temporal property property
between two individuals (e.g. Employee works for Company) holds
as long as that event endures. The n-ary property is represented as a
class rather than as a property. Instances of such classes correspond to
instances of the relation. Additional properties provide binary links
to each argument of the relation. In contrast to reification, the n-
ary relation is not represented as the object of a property but as two
properties each related with the new object.

Figure 2.4: Example of the N-ary Relations representation.

As shown in Figure 2.4, for the representation of properties that change
over time the property’s domain and range are modified, in order to
connect to the new object that is added. The new domain is the union
of the old domain with the class that represents the n-ary property
(Event class). Likewise, the new range is a union of the old one with
the Event class.

The information redundancy using N-ary Relations is minimal in com-
parison to the other methods described (just one object and two prop-
erties have to be added to the ontology for each temporal triple).
Property semantics are maintained and it also offers reasoning capa-
bilities. Those reasons, along with the fact that the particular model

12

is a W3C recommendation for representing n-ary relations, have led
us to use this model in our work.

2.6 Protégé OWL Editor

Protégé [6] is a free, open-source platform that provides a suite of tools
for building domain models and knowledge-based applications with ontolo-
gies. It supports the creation, visualization and manipulation of ontolo-
gies in various representation formats. Protégé can be customized to pro-
vide domain-friendly support for creating knowledge models and entering
data. Further, Protégé can be extended by way of a plug-in architecture
and a Java-based Application Programming Interface (API) for building
knowledge-based tools and applications. The Protégé platform supports
two main ways of modeling ontologies, the Protégé-Frames editor and the
Protégé OWL editor.

The Protégé-OWL editor enables users to build ontologies for the Se-
mantic Web, in particular in the W3C’s Web Ontology Language (OWL) [2].
Version 4.1 of Protégé OWL provides full support of OWL 2.0 [13]. This is
the version which Chronos plug-in extends.

2.7 OWL API

The OWL API [18] is a Java interface and implementation for the W3C
Web Ontology Language (OWL), used to represent Semantic Web ontolo-
gies. OWL API has been designed to meet the needs of people developing
OWL based applications, OWL editors, such as Protégé and OWL reason-
ers. It is a high level API that is focused towards the OWL DL and OWL 2
specifications and supports ontology management, ontology change, ontol-
ogy parsing and rendering, data structure storage and reasoner interfaces.

13

Chapter 3

Chronos Tab Plug-in for
Protégé

Chronos is a tab plug-in for Protégé 4, that facilitates the creation and
editing of temporal ontologies. It is compatible with the OWL DL and
OWL 2.0 specifications. With the addition of a set of SWRL rules, created
by Batsakis et al. [9, 10], it supports reasoning capabilities and appliance of
temporal restrictions by using the build-in Pellet reasoner [7]. Static object
and data properties can be converted to temporal easily. New temporal
object or data properties can be added between individuals, that hold during
a specific or non-specific (qualitative) time interval. Cardinality constraints
and property restrictions on temporal properties can also be handled with
our tool (as described in section 3.3).

Chronos makes it possible to convert a static ontology to temporal, or
combined with Protégé’s standard tabs, to create a temporal ontology from
scratch. The user does not get involved with the confusing details of the
underlying model, as all the intermediate objects and the relationships be-
tween them are handed by Chronos. Anyone who is familiar with Protégé
editor and OWL language can use Chronos to add the dimension of time to
the ontologies he develops.

3.1 Handling Temporal Ontologies in Protégé

Protégé OWL is a platform that provides all the tools necessary for crafting
OWL ontologies. Although it is feasible to create a temporal ontology using
the standard Protégé tabs, it is a very complex and time-waisting procedure.
As described in section 2.5, a lot of changes have to take place in an ontology
in order to convert just one property from static to temporal. The property’s
domain and range have to be modified, new intermediate classes and objects
have to be added and new properties between them. The changes that are
introduced by the temporal representation model (the N-ary Relations model

14

in our case) have to be applied to all the objects that are connected through
this property. All the class expressions and restrictions that refer to the
converted property have to adjust to the changes made as well.

Chronos plug-in is designed to enable the user create temporal ontologies,
or edit existing ones as they were static. The user does not have to get
involved with intermediate objects or relationships between them. All the
peculiarities of the model that may be complex and confusing are hidden by
the user, keeping the ontology simple.

3.2 Moving from Static to Dynamic

The conversion of an ontology from static to dynamic requires a lot of
changes. Different types of entities (e.g., object properties, data proper-
ties) are handled differently. Particular emphasis is given on maintaining
the semantics of those entities, after they are converted to temporal.

In order to implement the changes suggested by the N-ary Relations
model [5] the following new objects are introduced into the ontology.

• Event, the class that represents the n-ary property.

• during, an object property that relates the event to the time interval
during which it holds.

• participatesIn, an object property that relates the individuals that
participate in an event, to that specific event individual. The object
properties that are converted to temporal become sub-properties of
this property.

• overlaps, an object property that relates two time intervals. This
property implies that those time intervals, in some way overlap to
each other.

In the following subsections, we describe the way that Chronos handles
the different kinds of OWL entities, using the specifications introduced by
the N-ary Relations model.

3.2.1 Object Properties

The representation of a temporal object property, according to the N-ary
Relations representation model, suggests that an intermediate object (in-
stance of the Event class) is introduced between the subject and the object
of the static object property. This object appears as both, an object and a
subject in two triples, whose predicate is the specific object property, and to-
gether represent the temporal relationship. To make this possible, the static
property’s domain and range have to be modified. The dynamic property’s
domain/range will be the union of the static property’s domain/range and

15

the Event class. Moreover, the converted object property is made a sub-
property of the participatesIn property. Lastly, the Event class is related to
the time interval class(Interval) with the object property during.

In our example (Figure 2.4), the domain of the static object property
worksFor is class Employee. After conversion, the domain of the dynamic
object property will be the anonymous class (Employee OR Event), that rep-
resents the union of the classes Event and Employee. The static property’s
range is modified respectively, from Company to (Company OR Event).

3.2.2 Data Properties

Data properties are handled by Chronos in a similar way to object properties.
The dynamic data property’s domain is the union of the static property’s
domain and the Event class. The main difference with the object proper-
ties is that the range cannot be the union of a data type and the Event
class1. To overcome this problem, we create an object property named by
the data property, and followed by “OP”. This object property will relate
the static data property’s domain to the Event class. This is also made a
sub-property of the participatesIn object property. The data property with
the modified domain, will connect the event to the data type. As in object
property conversion, the Event is related to the Interval with the during
object property.

An example of a converted data property is illustrated in Figure 3.1.
The examples shows how would the temporal data property hasPrice be
represented, according to our approach.

Figure 3.1: Example of a temporal data property using N-ary Relations.

1In OWL DL there is a concrete distinction between OWL Data Types and OWL
Classes. OWL Full, on the other hand, allows the union of data types and classes. The
Proteégé editor and the OWL API though, support the OWL DL expressiveness, not the
OWL Full.

16

3.2.3 Individuals

Individuals represent objects in the domain of interest. For example, ‘John’
is an individual of the class ‘Person’. The statement “John has lived from
1920 to 1998” does not require a temporal property for its representation.
However, when a property evolves over time, such as in the statement “John
has lived in Athens from 1950 to 1985”, the property livesIn is a temporal
property that holds during a specific time interval. John still lived after
the year 1985, but in a different place. In this case, temporal relations
are defined in terms of relations between individuals rather than temporal
individuals (i.e., temporal properties).

When a property is converted to temporal, all the triples that contain this
property are converted too. For each triple in the ontology, a new instance
of the Event class is created and introduced between the subject and the
object, as explained in subsections 3.2.1 and 3.2.2. This event individual
is connected to a TimeInterval instance with the during object property.
The TimeInterval individual is related to two Instant individuals, one that
represents the starting point of the interval and one that represents the
ending point of the interval. Each of these Instant individuals are connected
to a dateTime data type with the data property inXSDDateTime. Figure 3.2
illustrates the individuals and the relationships between them for a temporal
object property.

Figure 3.2: Example of a temporal object property between individuals.

It is now clear that the creation of a temporal ontology using the conven-
tional Proteégé tabs proves to be a very difficult task. Chronos enables the
user to create a new individual related to an other with a temporal prop-
erty, add temporal object or data property assertions to already existing
individuals, or edit the time intervals during which the temporal property

17

assertions hold. The user does not have to intervene with the intermediate
objects or with their relationships, making the manipulation of temporal
relationships between individuals as easy as the manipulation of the static
ones.

3.2.4 Classes

Classes provide an abstraction mechanism for grouping resources with simi-
lar characteristics. Every OWL class is associated with a set of individuals,
called the class extension. The individuals in the class extension are called
the instances of the class. A class has an intensional meaning (the underly-
ing concept) which is related but not equal to its class extension. Thus, two
classes may have the same class extension, but still be different classes.

In the same way to individuals, classes cannot be converted to temporal.
So, when we use the term “convert a class”, we refer to the object and data
properties that relate to this class. More specifically, when the user converts
a class to temporal using Chronos, the entities that will be affected are: (a)
the object and data properties that relate members of the selected class, (b)
the object and data properties where this class appears as a Domain and
(c) the restrictions where one of these object or data properties appear in.

It is easily concluded that the “class conversion” does not provide any
additional functionality to our tool. It is just a convenient way to convert
multiple object and data properties to temporal.

3.3 Dealing with Cardinality Constraints and Prop-
erty Restrictions

OWL classes are described through ‘class descriptions’. A class description
is the term used in this document for the basic building blocks of class
axioms (informally called class definitions). A class description describes an
OWL class, either by a class name or by specifying the class extension of an
unnamed anonymous class.

OWL distinguishes six types of class descriptions:

1. A class identifier (a URI reference).

2. An exhaustive enumeration of individuals that together form the in-
stances of a class.

3. A property restriction.

4. The intersection of two or more class descriptions.

5. The union of two or more class descriptions.

6. The complement of a class description.

18

A property restriction is a special kind of class description. It describes an
anonymous class, namely a class of all individuals that satisfy the restriction.
OWL distinguishes two kinds of property restrictions: value constraints and
cardinality constraints.

Chronos enables the addition of temporal constraints to ontologies. A
temporal constraint can be added to the active ontology either as a complex
class description, or as a SWRL rule. In the first case, the constraint can
be applied as a necessary and sufficient condition. In the case of a SWRL
rule constraint though, it can only be applied as a necessary condition.

All the definitions given in this section are taken from the “OWL Web
Ontology Language Reference” [19].

3.3.1 Value Constraints

3.3.1.1 owl:allValuesFrom

The value constraint owl:allValuesFrom is a built-in OWL property that
links a restriction class to either a class description or a data range. A re-
striction containing an owl:allValuesFrom constraint is used to describe a
class of all individuals for which all values of the property under consider-
ation are either members of the class extension of the class description or
are data values within the specified data range. In other words, it defines
a class of individuals x for which holds that if the pair (x,y) is an instance
of P (the property concerned), then y should be an instance of the class
description or a value in the data range, respectively.

In the case that the property concerned is temporal, the form of the
constraint is different. The restriction is used to describe a class of all
individuals for which all values of the property under consideration are those
members of the Event class that are connected with the concerned property
to either members of the class extension of the class description or are data
values within the specific data range.

For example, a restriction on a class ‘Company’ (in Manchester OWL
syntax [20]) could be

employs only Employee

If the object property employs is temporal, the restriction becomes:

employs only (Event and (employs only Employee))

3.3.1.2 owl:someValuesFrom

The value constraint owl:someValuesFrom is a built-in OWL property that
links a restriction class to a class description or a data range. A restriction

19

containing an owl:someValuesFrom constraint describes a class of all indi-
viduals for which at least one value of the property concerned is an instance
of the class description or a data value in the data range. In other words,
it defines a class of individuals x for which there is at least one y (either an
instance of the class description or value of the data range) such that the
pair (x,y) is an instance of P. This does not exclude that there are other
instances (x,y’) of P for which y ’ does not belong to the class description
or data range.

The restriction, in the case that a temporal property is concerned, is
used to describe a class of all individuals for which at least one value of
the property concerned is an Event individual that is connected with the
concerned property to an instance of the class description or a data value in
the data range.

For example, a restriction on a class ‘Company’ could be:

employs some Employee

If the object property employs is temporal, the restriction becomes:

employs some (Event and (employs some Employee))

3.3.1.3 owl:hasValue

The value constraint owl:hasValue is a built-in OWL property that links a
restriction class to a value V, which can be either an individual or a data
value. A restriction containing a owl:hasValue constraint describes a class
of all individuals for which the property concerned has at least one value
semantically equal to V (it may have other values as well).

Our approach for the temporal form of that restriction is that it describes
a class of all individuals for which the property concerned has at least one
value semantically equal to V, for each event that these individuals partici-
pate in.

This temporal constraint is applied with the addition of an SWRL rule
that to the ontology. For example, an owl:hasValue restriction on a class
‘Company’ is:

employs value John

where ‘John’ is an individual of the class Employee. The SWRL rule that
would be added to the ontology to apply the temporal constraint would be:

Company(?x)∧participatesIn(?x, ?e)∧Event(?e) → employs(?e,
John)∧employs(?x, ?e)

meaning that for each event that an individual of the class ‘Company’ par-
ticipates in, that company individual is also related to the Employee ‘John’
with the temporal object property employs.

20

3.3.2 Cardinality Constraints

In OWL, like in RDF, it is assumed that any instance of a class may have an
arbitrary number (zero or more) of values for a particular property. To make
a property required (at least one), to allow only a specific number of values
for that property, or to insist that a property must not occur, cardinality
constraints can be used. OWL provides three constructs for restricting the
cardinality of properties locally within a class context.

3.3.2.1 owl:maxCardinality

The cardinality constraint owl:maxCardinality is a built-in OWL property
that links a restriction class to a data value belonging to the value space
of the XML Schema datatype nonNegativeInteger. A restriction containing
an owl:maxCardinality constraint describes a class of all individuals that
have at most N semantically distinct values (individuals or data values) for
the property concerned, where N is the value of the cardinality constraint.
Syntactically, the cardinality constraint is represented as an RDF property
element with the corresponding rdf:datatype attribute.

Our approach for the maxCardinality constraint when concerning tempo-
ral properties is that it is a constraint that describes a class of all individuals
that have at most N semantically distinct values at the same time, for the
property concerned. This temporal constraint is applied with the addition
of a SWRL rule to the ontology. For example, the owl:maxCardinality con-
straint in Manchester syntax is:

employs max 2 Employee

It implies that an individual of the class ‘Company’ cannot be related to
more than two individuals of the class Employee with the object property
employs. The SWRL rule that would be added to the ontology to apply the
temporal version of the constraint would be:

Event(?e0) ∧Event(?e1) ∧Event(?e2) ∧Company(?x) ∧Employee(?y0)
∧Employee(?y1)∧Employee(?y2)∧during(?e0, ?i0)∧during(?e1, ?i1)
∧during(?e2, ?i2) ∧overlaps(?i0, ?i1) ∧overlaps(?i0, ?i2)
∧overlaps(?i1, ?i2) ∧employs(?e0, ?y0) ∧employs(?e1, ?y1)
∧employs(?e2, ?y2) ∧employs(?x, ?e0)∧employs(?x, ?e1)
∧employs(?x, ?e2)∧DifferentFrom(?y0, ?y1)
∧DifferentFrom(?y0, ?y2) ∧DifferentFrom(?y1, ?y2)
→ Nothing(?x)

This means that if there are three different individuals of the class ‘Em-
ployee’ that relate through the temporal property employs to the same indi-
vidual of the class ‘Company’, and the time intervals associated with those
temporal properties pairwise overlap.

21

3.3.2.2 owl:minCardinality

The cardinality constraint owl:minCardinality is a built-in OWL property
that links a restriction class to a data value belonging to the value space
of the XML Schema datatype nonNegativeInteger. A restriction containing
an owl:minCardinality constraint describes a class of all individuals that
have at least N semantically distinct values (individuals or data values) for
the property concerned, where N is the value of the cardinality constraint.
Syntactically, the cardinality constraint is represented as an RDF property
element with the corresponding rdf:datatype attribute.

Our approach for the temporal version of this constraint is that it de-
scribes a class of all individuals that are connected to at least N members
of the Event class with the property concerned. The event individuals have
at least one value for the property concerned.

OWL adopts the open world assumption, thus if a member of a class
restricted with a minCardinality constraint has less than N distinct values
for the concerned property, no inconsistency will result.

An example of an owl:minCardinality constraint would be:

employs min 2 Employee

The temporal version of that minCardinality constraint is:

employs min 2 (Event and (employs some Employee))

Actually this interpretation of the constraint does not imply that the indi-
viduals of the class ‘Company’ have at least 2 employees at the same time,
but just that they have two employees in their existence, connected with
the temporal property employs. This is a less strict appliance of the right
constraint which would require all the company individuals to have at least
2 employees at the same time. This was the only temporal interpretation of
the minCardinality constraint we were able to implement, given the current
expressiveness of property restrictions and SWRL rules.

3.3.2.3 owl:cardinality

The cardinality constraint owl:cardinality is a built-in OWL property that
links a restriction class to a data value belonging to the range of the XML
Schema datatype nonNegativeInteger. A restriction containing an owl:cardinality
constraint describes a class of all individuals that have exactly N semanti-
cally distinct values (individuals or data values) for the property concerned,
where N is the value of the cardinality constraint. Syntactically, the car-
dinality constraint is represented as an RDF property element with the
corresponding rdf:datatype attribute.

Our approach for this constraint as temporal is that it describes a class
of all individuals that are related to Event individuals with the property

22

concerned and those event individuals have exactly N semantically distinct
values for the property concerned. An example of an owl:cardinality con-
straint would be:

employs exactly 2 Employee

It implies that an individual of the class ‘Company’ can be related to exactly
two individuals of the class Employee with the object property employs.
The SWRL rule that would be added to the ontology to apply the temporal
version of the constraint would be:

Event(?e0) ∧Event(?e1) ∧Event(?e2) ∧Company(?x) ∧Employee(?y0)
∧Employee(?y1)∧Employee(?y2)∧during(?e0, ?i0)∧during(?e1, ?i1)
∧during(?e2, ?i2) ∧overlaps(?i0, ?i1) ∧overlaps(?i0, ?i2)
∧overlaps(?i1, ?i2) ∧employs(?e0, ?y0) ∧employs(?e1, ?y1)
∧employs(?e2, ?y2) ∧employs(?x, ?e0)∧employs(?x, ?e1)
∧employs(?x, ?e2)∧DifferentFrom(?y0, ?y1)
∧DifferentFrom(?y0, ?y2) ∧DifferentFrom(?y1, ?y2)
→ Nothing(?x)

This rule would result in inconsistency if an individual of the class ‘Company’
was related to more than two instances of the class ‘Employee’, with the
temporal object property employs, but not if it was related to only one
‘Employee’ individual. So, the behavior of the temporal versions of the
maxCardinality and the cardinality constraint coincides.

3.3.3 Global Cardinality Constraints on Properties

3.3.3.1 owl:FunctionalProperty

A functional property is a property that can have only one (unique) value y
for each instance x, i.e. there cannot be two distinct values y1 and y2 such
that the pairs (x, y1) and (x, y2) are both instances of this property. Both
object properties and datatype properties can be declared as “functional”.
For this purpose, OWL defines the built-in class owl:FunctionalProperty as
a special subclass of the RDF class rdf:Property.

A temporal functional property can have only one value in each time
interval during which the property holds. This is attainable by adding a
SWRL rule to the ontology. For the temporal property employs to be func-
tional, the rule added would be:

Event(?e1)∧Event(?e2)∧during(?e1, ?i1) ∧ during(?e2, ?i2)
∧overlaps(?i1, ?i2) ∧employs(?e1, ?y1)∧employs(?e2, ?y2)
∧employs(?x, ?e1) ∧employs(?x, ?e2) ∧DifferentFrom (?y1, ?y2)
→ SameAs (?y1, ?y2)

23

3.3.3.2 owl:InverseFunctionalProperty

If a property is declared to be inverse-functional, then the object of a prop-
erty statement uniquely determines the subject (some individual). More
formally, if we state that P is an owl:InverseFunctionalProperty, then this
asserts that a value y can only be the value of P for a single instance x,
i.e. there cannot be two distinct instances x1 and x2 such that both pairs
(x1, y) and (x2, y) are instances of P.

When a temporal property is inverse-functional the object uniquely de-
termines the subject for each time instant, i.e. there can be two instances
x1, x2 such that (x1, y, interval1) and (x2, y, interval2) are instances of P
as long as the interval1 and interval2 do not overlap. The SWRL rule to
make the temporal property worksFor inverse-functional is:

Event(?e1)∧Event(?e2)∧during(?e1, ?i1) ∧ during(?e2, ?i2)
∧overlaps(?i1, ?i2) ∧worksFor(?e1, ?y)∧worksFor(?e2, ?y)
∧worksFor(?x1, ?e1) ∧worksFor(?x2, ?e2)
∧DifferentFrom(?x1, ?x2) → SameAs (?x1, ?x2)

3.3.4 Negative property assertions

A negative property assertion is a feature introduced by OWL 2 and it is
a kind of restriction applied on individuals, not allowing them to have a
specific value (individual or data value). More formally, a negative property
assertion between the individual x, the value y, connected with the property
P asserts that there cannot be an instance of the property such as P(x,y).
A temporal negative property assertion restricts an individual x in a way
that it cannot be connected with a temporal property P to a specific value
y during a time interval interval1, thus the P(x,y,interval1) cannot be an
instance of the temporal property P. The SWRL rule added to the ontology
would be:

Event(?e)∧during(?e, ?i)∧overlaps(?i, interval1)
∧employs(?e, John)∧employs(Company1, ?e)
→ Nothing(Company1)

This rule forbids the individual ‘Company1’ to employ ‘John’ during any
time interval that somehow overlaps with the specified time interval ‘inter-
val1’.

3.3.5 Transitive Properties

When a property is defined to be transitive, this means that if a pair (x, y)
is an instance of P, and the pair (y, z) is an instance of P, then we can infer
that the pair (x, z) is also an instance of P.

24

The instances of the properties are considered to hold for a specific time
interval. If a temporal property P is transitive and (x, y, interval1) is an
instance of P and (y, z, interval2) is an instance of P, then we can infer that
(x, z, interval1∩interval2) is also an instance of P. The SWRL expressiveness
though does not allow the creation of instances of classes. Thus, the creation
of such a rule was not possible.

In our implementation the transitivity between instances of a temporal
property takes place only if those instances hold for same time intervals.
The SWRL applying that effect on the temporal property worksFor, would
be:

Event(?e1)∧Event(?e2)∧during(?e1, ?i1)∧during(?e2, ?i2)
∧worksFor(?e1, ?y)∧worksFor(?e2, ?z)∧worksFor(?x, ?e1)
∧worksFor(?y, ?e2)∧intervalEquals(?i1, ?i2)
∧DifferentFrom (?y, ?z) → worksFor(?x, ?e2)

25

Chapter 4

Implementation

4.1 Use Cases

Chronos is a plug-in used for representing temporal information in Protégé.
It requires a vocabulary that describes temporal concepts. Our version of
OWL-Time [3] distributed with Chronos provides this vocabulary along with
a set of SWRL rules, developed by Batsakis [9, 10], that allow reasoning over
temporal relations and temporal concepts.

When someone selects Chronos Tab for the first time, our tool checks
if the active ontology is merged with the OWL-Time ontology. If it is not,
a pop-up window will appear, prompting the user to merge the ontology
with the OWL-Time ontology. The user may select not to merge the active
ontology. In that case, Chronos will add to the ontology only the OWL
entities required for the representation of temporal relationships, but will not
provide any reasoning capabilities or consistency checking over the temporal
concepts of the ontology.

Table 4.1 describes the use case where the user converts an object prop-
erty to temporal. The user selects an object property and presses the “Con-
vert” button1. Since this property will be converted to temporal, all the
triples containing it will be converted too. A pop-up dialog window appears
that informs the user about the triples that will be affected by the conver-
sion. The user may specify a time interval during which those temporal
triples will hold, or leave that field blank. In the later case Chronos con-
nects each temporal triple to an (different) unknown time interval. The user
may also cancel the conversion. In that case no changes will occur in the
ontology.

The case of the conversion of a data property to temporal is identical to
that of the object property. When the user clicks on the “Convert” button,

1Chonos will only allow the conversion of entities that do not belong in OWL-Time
ontology, and they are not used by the N-ary Relations model to represent temporal
properties (i.e. the object property during).

26

the “Affected triples” dialog window will pop-up, informing him of the triples
that will also be converted to temporal. The user may either proceed to the
conversion by clicking on the “Yes” button, or cancel it by clicking on the
“Cancel” button. Table 4.2 describes this use case.

Chronos also enables the user to convert classes to temporal (as explained
in subsection 3.2.4). When a class is selected from the “Class Hierarchy
View”, the “Class” panel is displayed and the “Convert” button is enabled.
When the “Convert” button is pressed, a pop-up window appears informing
the user about the object and data properties that will be converted to tem-
poral as well as about the triples that will be affected by those conversions.
Similarly to the object property use case, the user may select the time in-
terval during which all these temporal properties will hold. This use case is
described in table 4.3.

The user can add a temporal restriction on a class. In order to add a
constraint as an equivalent class or as a superclass, the user selects a class
and presses the “Add” button in the “Classes” panel next to the “Equivalent
classes” or the “Superclasses” list respectively. Then, the “Class restriction
editor” window will appear, where the user can create the temporal property
restriction. The user must specify:

1. the temporal restricted property,

2. the restriction filler,

3. the restriction type (and the cardinality for cardinality constraints).

By clicking on the “OK” button the restriction is added on the selected
class. This use case is described in table 4.4.

Editing a temporal property constraint is similar to this of the addi-
tion. The user selects a temporal property constraint from the “Equivalent
classes” or the “Superclasses” list and clicks on the “Edit” button. Then
the “Class restriction editor” window appears and the user creates the re-
striction exactly in the same way to the addition of a temporal property
constraint. This use case is described in table 4.5.

The added restrictions can easily be removed by clicking on the “Re-
move” button next to the “Equivalent classes” or the “Superclasses” list in
the “Class” panel. Table 4.6 describes this use case.

One can also create an individual that is in advance related with a tem-
poral object or data property to another individual. The user selects a class
from the “Class Hierarchy View” and then presses the “New Individual”
button from the “Class” panel. Then the “Individual Wizard” window will
appear, that is a four-step wizard which will guide the user through the
creation of the temporal triple. In these steps the user:

1. Sets the name of the new individual.

27

2. Selects the temporal object or data property that will connect the new
individual (subject) to an already existing individual (object).

3. Sets the time interval. This interval may have specified bounds or
non-specified bounds (qualitative).

4. Reviews the selections made and confirms the creation of the temporal
triple.

The use case of the creation of a temporal triple is described in table 4.7.
An object or data property assertion can be added to an individual even

after its creation. The user selects an individual and he presses the “Add”
button next to the “Object property assertions” or the “Data property as-
sertions” list. The “Individual Wizard” window appears, guiding the user
just as in the creation of a temporal triple. This use case is described in
table 4.8.

The interval during which a temporal property assertion holds can also
be edited. The user selects the concerned individual from the “Individual
by type” view and the “Individual” panel is displayed, showing the object
and data property assertions of the selected individual. The user selects a
temporal object or data property assertion and presses the “Edit” button
that is next to the “Object property assertions” or the “Data property asser-
tions” list respectively. Then, the “Individual Wizard” pops-up, displaying
the step where the user sets the time interval. Finally, the interval is created
and it is connected to the temporal triple. The time interval that has been
replaced is not removed from the ontology, as it may be connected to other
temporal triples. This use case is described in table 4.9.

Chronos facilitates the creation and the editing of temporal triples as
well as their removal. The user selects the temporal object or data property
assertion and presses the “Remove” button next to the corresponding list.
This use case is described in table 4.10.

The user may also add, edit or remove temporal negative object or data
property assertions on individuals. This can be done in the same way to
temporal object and data property assertions. The only difference is that
the user must press the “Add”, “Edit” or “Remove” button next to the
“Negative object property assertions” and “Negative data property asser-
tions” in the “Individual” panel. The use cases concerning these operations
are described in tables 4.11, 4.12 and 4.13, respectively.

The selection of the time interval is a basic step in almost every use
case mentioned. The time interval may or may not have specific bounds. A
time interval may have (a) unknown bounds, (b) specific start or end (but
not both) or (c) it can be qualitative, meaning that it is connected with a
qualitative property (Allens relations [14] such as ’after’, ’before’ etc.) to
another time interval. Table 4.14 describes the steps of the creation of time

28

intervals, either during the conversion of an entity to temporal, or during
the creation of property assertions between individuals.

29

Use Case 1 Convert an object property to temporal

Goal In Context The user wants to convert a static object property to
temporal

Scope & Level System, Main functionality

Preconditions There are object properties in the ontology
Chronos Tab is selected

Success End Condition The object property and all the triples, where it ap-
pears in as a predicate, are temporal

Failed End Condition The object property is static. No changes have oc-
curred in the ontology

Primary Actors User

Trigger The user selects an object property and presses the
“Convert” button from the “Object Property” panel

Main Path Step Action

1 The “Affected Triples” dialog window is dis-
played

2 The user specifies the interval during which the
temporal triples hold

3 The user presses the “Yes” button
4 The object property, the triples and the restric-

tions containing it are converted to temporal
5 The system displays the “Object Property”

panel for the selected object property

Alternative Path (A1) Step Branching Action

3a The user presses the “No” button
4a The selected object property remains static
5a The “Object Property” panel is displayed

Sub-Variation Step Variation

2.1 The user presses the “Add” button in the “Af-
fected Triples” dialog window

2.1.1 The “Interval Creator” window is displayed
2.1.2 The user selects the interval during which the

temporal property holds
2.1.3a.1 The user presses the “OK” button
2.1.3a.2 The “Affected Triples” dialog is displayed, with

the “Selected interval” field completed
2.1.3b.1 The user presses the “Cancel” button
2.1.3b.1 The “Affected Triples” dialog is displayed, with

the “Selected interval” field empty
2.2 The user presses the “Clear” button in the “Af-

fected Triples” dialog window
2.2.1 The “Selected interval” field is cleared

Table 4.1: Use Case 1. Convert an object property to temporal

30

Use Case 2 Convert a data property to temporal

Goal In Context The user wants to convert a static data property to
temporal

Scope & Level System, Main functionality

Preconditions There are data properties in the ontology
Chronos Tab is selected

Success End Condition The data property and all the triples, where it appears
in as a predicate, are temporal

Failed End Condition The data property is static. No changes have occurred
in the ontology

Primary Actors User

Trigger The user selects a data property and presses the “Con-
vert” button from the “Data Property” panel

Main Path Step Action

1 The “Affected Triples” dialog window is dis-
played

2 The user specifies the interval during which the
temporal triples hold

3 The user presses the “Yes” button
4 The data property, the triples and the restric-

tions containing it are converted to temporal
5 The system displays the “Data Property” panel

for the selected object property

Alternative Path (A1) Step Branching Action

3a The user presses the “No” button
4a The selected data property remains static
5a The “Data Property” panel is displayed

Sub-Variation Step Variation

2.1 The user presses the “Add” button in the “Af-
fected Triples” dialog window

2.1.1 The “Interval Creator” window is displayed
2.1.2 The user selects the interval during which the

temporal property holds
2.1.3a.1 The user presses the “OK” button
2.1.3a.2 The “Affected Triples” dialog is displayed, with

the “Selected interval” field completed
2.1.3b.1 The user presses the “Cancel” button
2.1.3b.1 The “Affected Triples” dialog is displayed, with

the “Selected interval” field empty
2.2 The user presses the “Clear” button in the “Af-

fected Triples” dialog window
2.2.1 The “Selected interval” field is cleared

Table 4.2: Use Case 2. Convert a Data property to temporal

31

Use Case 3 Convert a class to temporal

Goal In Context The user wants to convert a static class to temporal

Scope & Level System, Main functionality

Preconditions There are classes in the ontology
Chronos Tab is selected

Success End Condition All the object and data properties that are related
to the selected class, as well as the properties that
connect instances of the selected class, are temporal.

Failed End Condition The properties related to this class are static. No
changes have occurred in the ontology

Primary Actors User

Trigger The user selects a class and presses the “Convert” but-
ton from the “Class” panel

Main Path Step Action

1 The “Affected Entities” dialog window is dis-
played

2 The user specifies the interval during which the
temporal properties and triples will hold

3 The user presses the “Yes” button
4 The object and data properties and the restric-

tions concerning this class, as well as its individ-
uals are converted to temporal

5 The system displays the “Class” panel for the
selected temporal class

Alternative Path (A1) Step Branching Action

3a The user presses the “No” button
4a The selected class remains static
5a The “Class” panel is displayed

Sub-Variation Step Variation

2.1 The user presses the “Add” button in the “Af-
fected Triples” dialog window

2.1.1 The “Interval Creator” window is displayed
2.1.2 The user selects the interval during which the

temporal property holds
2.1.3a.1 The user presses the “OK” button
2.1.3a.2 The “Affected Triples” dialog is displayed, with

the “Selected interval” field completed
2.1.3b.1 The user presses the “Cancel” button
2.1.3b.1 The “Affected Triples” dialog is displayed, with

the “Selected interval” field empty
2.2 The user presses the “Clear” button in the “Af-

fected Triples” dialog window
2.2.1 The “Selected interval” field is cleared

Table 4.3: Use Case 3. Convert a class to temporal

32

Use Case 4 Add a temporal property restriction

Goal In Context The user wants to add a temporal property constraint
as an equivalent or a superclass to the selected class

Scope & Level System, Main functionality

Preconditions There is at least one temporal object or data property
in the ontology. Chronos Tab is selected

Success End Condition The temporal property constraint has been added as
an equivalent or a superclass to the selected class

Failed End Condition No changes have occurred in the ontology

Primary Actors User

Trigger The user selects a class and presses the “Add” button
next to the “Equivalent class” or the “Superclass” list
in the “Class” panel

Main Path Step Action

1 The “Class restriction editor” window pops-up
2 The user selects the property to be restricted
3 The user selects the restriction filler from the

“Restriction filler” list
4 The user specifies the restriction type
5 The user presses the “OK” button and the cre-

ation is complete
6 The system displays the “Class” panel and the

created restriction appears in the “Equivalent
class” or the “Superclass” list

Alternative Path (A1) Step Branching Action

2a The user presses the “Cancel” button
3a The creation is canceled
4a The “Class” panel is displayed

Sub-Variation Step Variation

2a The user selects the “Object property” radio but-
ton

2a.1 The “Restricted property” list is filled with the
available temporal object properties and the
“Restriction filler” list is filled with the avail-
able classes

2b The user selects the “Data property” radio but-
ton

2b.1 The “Restricted property” list is filled with the
available temporal data properties and the “Re-
striction filler” list is filled with the available
data types

4a The user selects a cardinality constraint
4a.1 The cardinality selection field is enabled
4a.2 The user sets the desired cardinality

Table 4.4: Use Case 4. Add a temporal property restriction33

Use Case 5 Edit a temporal property restriction

Goal In Context The user wants to edit a temporal property constraint
that appears as an equivalent or a superclass to the
selected class

Scope & Level System, Main functionality

Preconditions There is at least one temporal property restriction.
Chronos Tab is selected

Success End Condition The temporal property constraint has been modified

Failed End Condition The temporal property constraint has not been mod-
ified

Primary Actors User

Trigger The user selects a temporal property constraint from
the “Equivalent classes” or the “Superclasses” list and
presses the “Edit” button that is next to this list in
the “Class” panel

Main Path Step Action

1 The “Class restriction editor” window pops-up.
The “Restricted property”, “Restriction filler”
and “Restriction type” selections are set to those
of the restriction to be edited

2 The user selects the property to be restricted
3 The user selects the restriction filler from the

“Restriction filler” list
4 The user specifies the restriction type
5 The user presses the “OK” button and the cre-

ation is complete
6 The system displays the “Class” panel and the

created restriction appears in the “Equivalent
class” or the “Superclass” list

Alternative Path (A1) Step Branching Action

2a The user presses the “Cancel” button
3a The creation is canceled
4a The “Class” panel is displayed

Sub-Variation Step Variation

2a The user selects the “Object property” radio but-
ton

2a.1 The “Restricted property” list is filled with the
available temporal object properties and the
“Restriction filler” list is filled with the avail-
able classes

2b The user selects the “Data property” radio but-
ton

2b.1 The “Restricted property” list is filled with the
available temporal data properties and the “Re-
striction filler” list is filled with the available
data types

4a The user selects a cardinality constraint
4a.1 The cardinality selection field is enabled
4a.2 The user sets the desired cardinality

Table 4.5: Use Case 5. Edit a temporal property restriction

34

Use Case 6 Remove a class description

Goal In Context The user wants to remove a class description that ap-
pears as an equivalent or a superclass to the selected
class

Scope & Level System, Main functionality

Preconditions The selected class has at least one class description as
an equivalent class or superclass.
Chronos Tab is selected

Success End Condition The class description has been removed

Failed End Condition The class description has not been modified

Primary Actors User

Trigger The user selects a class description from the “Equiv-
alent classes” or the “Superclasses” list and presses
the “Remove” button that is next to this list in the
“Class” panel

Main Path Step Action

1 The “Removal Confirmation” dialog window
pops-up

2 The user presses the “Yes” button
3 The class description has been removed
4 The system displays the “Class” panel

Alternative Path (A1) Step Branching Action

2a The user presses the “No” button
3a The removal is canceled
4a The “Class” panel is displayed

Table 4.6: Use Case 6. Remove a class description

35

Use Case 7 Create a temporal individual

Goal In Context The user wants to create an individual that is con-
nected with a temporal property to an already existing
individual or data value

Scope & Level System, Main functionality

Preconditions There is at least one temporal object or data property
in the ontology. Chronos Tab is selected

Success End Condition The temporal triple has been created and added to the
ontology

Failed End Condition No changes have occurred in the ontology

Primary Actors User

Trigger The user selects a class and presses the “New Individ-
ual” button from the “Class” panel

Main Path Step Action

1 The “Individual Wizard” window pops-up
2 The user sets the name of the new individual
3 The user selects the property that will connect

the subject individual to the object individual.
4 The user specifies the interval during which the

assertion will hold
5 The user presses the “Finish” button and the

creation is complete
6 The system displays the “Class” panel

Alternative Path (A1) Step Branching Action

any The user presses the “Cancel” button
.1 The creation is canceled
.2 The “Class” panel is displayed

Alternative Path (A2) Step Branching Action

any The user presses the “Previous” button
.1 The system returns to the previous step of the

creation

Sub-Variation Step Variation

4.1a The user selects the “Create a new interval” ra-
dio button

4.1a.1a The user selects the “Specific interval” radio
button. and specifies the start date AND the
end date of the interval

4.1a.1b The user selects the “Non-specific” interval ra-
dio button and specifies the start date OR the
end date of the interval. He may select a qualita-
tive property which will relate the new interval
to an already existing one.

4.1b The user selects the “Select an existing interval”
radio button and selects one of the intervals of
the list

4.2 The user presses the “Add interval” button and
the new interval appears in the “Selected inter-
val” text field

4.3 The user clicks on the “Next” button

Table 4.7: Use Case 7. Create a temporal individual

36

Use Case 8 Add a temporal object or data property asser-
tion

Goal In Context The user wants to add a temporal property assertion
to the selected individual

Scope & Level System, Main functionality

Preconditions There is at least one temporal object or data property
in the ontology. Chronos Tab is selected

Success End Condition The created property assertion has been added to the
selected individual

Failed End Condition No changes have occurred in the ontology

Primary Actors User

Trigger The user selects an individual and presses the “Add”
button, next to the “Object property assertions” or
the “Data property assertions” in the “Individual”
panel

Main Path Step Action

1 The “Individual Wizard” window pops-up
2 The user selects one of the available properties
3 The user specifies the interval during which the

assertion will hold
4 The user presses the “Finish” button and the

creation is complete
5 The system displays the “Class” panel

Alternative Path (A1) Step Branching Action

any The user presses the “Cancel” button
.1 The addition is canceled
.2 The “Class” panel is displayed

Alternative Path (A2) Step Branching Action

any The user presses the “Previous” button
.1 The system returns to the previous step of the

creation

Sub-Variation Step Variation

4.1a The user selects the “Create a new interval” ra-
dio button

4.1a.1a The user selects the “Specific interval” radio
button. and specifies the start date AND the
end date of the interval

4.1a.1b The user selects the “Non-specific” interval ra-
dio button and specifies the start date OR the
end date of the interval. He may select a qualita-
tive property which will relate the new interval
to an already existing one.

4.1b The user selects the “Select an existing interval”
radio button and selects one of the intervals of
the list

4.2 The user presses the “Add interval” button and
the new interval appears in the “Selected inter-
val” text field

4.3 The user clicks on the “Next” button

Table 4.8: Use Case 8. Add a temporal property assertion

37

Use Case 9 Edit the interval of a temporal object or data
property assertion

Goal In Context The user wants to edit the interval during which a
temporal triple holds

Scope & Level System, Main functionality

Preconditions There is at least one individual connected with a tem-
poral object or data property. Chronos Tab is selected

Success End Condition The existing time interval has been replaced with the
one specified by the user

Failed End Condition The existing time interval has not been replaced

Primary Actors User

Trigger The user selects a temporal object or data property
assertion and presses the “Edit” button, next to the
“Object property assertions” or the “Data property
assertions” in the “Individual” panel

Main Path Step Action

1 The “Individual Wizard” window pops-up
2 The user specifies the interval during which the

assertion will hold
3 The user presses the “Finish” button and the

creation is complete
4 The system displays the “Class” panel

Alternative Path (A1) Step Branching Action

any The user presses the “Cancel” button
.1 The replacement of the interval is canceled
.2 The “Class” panel is displayed

Alternative Path (A2) Step Branching Action

any The user presses the “Previous” button
.1 The system returns to the previous step of the

creation

Sub-Variation Step Variation

2.1a The user selects the “Create a new interval” ra-
dio button

2.1a.1a The user selects the “Specific interval” radio
button. and specifies the start date AND the
end date of the interval

2.1a.1b The user selects the “Non-specific” interval ra-
dio button and specifies the start date OR the
end date of the interval. He may select a qualita-
tive property which will relate the new interval
to an already existing one.

2.1b The user selects the “Select an existing interval”
radio button and selects one of the intervals of
the list

2.2 The user presses the “Add interval” button and
the new interval appears in the “Selected inter-
val” text field

2.3 The user clicks on the “Next” button

Table 4.9: Use Case 9. Edit the interval of a temporal property assertion

38

Use Case 10 Remove an object or data property assertion

Goal In Context The user wants to remove an object property assertion

Scope & Level System, Main functionality

Preconditions The selected individual participates in at least one
triple.
Chronos Tab is selected

Success End Condition The property assertion has been removed

Failed End Condition The property assertion has not been removed

Primary Actors User

Trigger The user selects a property assertion from the “Object
property assertions” or the “Data property assertions”
list and presses the “Remove” button that is next to
this list in the “Individual” panel

Main Path Step Action

1 The “Removal Confirmation” dialog window
pops-up

2 The user presses the “Yes” button
3 The class description has been removed
4 The system displays the “Individual” panel

Alternative Path (A1) Step Branching Action

2a The user presses the “No” button
3a The removal is canceled
4a The “Individual” panel is displayed

Table 4.10: Use Case 10. Remove a property assertion

39

Use Case 11 Add a temporal negative object or data prop-
erty assertion

Goal In Context The user wants to add a temporal negative property
assertion to the selected individual

Scope & Level System, Main functionality

Preconditions There is at least one temporal object or data property
in the ontology. Chronos Tab is selected

Success End Condition The created negative property assertion has been
added to the selected individual

Failed End Condition No changes have occurred in the ontology

Primary Actors User

Trigger The user selects an individual and presses the “Add”
button, next to the “Negative object property asser-
tions” or the “Negative data property assertions” in
the “Individual” panel

Main Path Step Action

1 The “Individual Wizard” window pops-up
2 The user selects one of the available properties
3 The user specifies the interval during which the

negative assertion will hold
4 The user presses the “Finish” button and the

creation is complete
5 The system displays the “Class” panel

Alternative Path (A1) Step Branching Action

any The user presses the “Cancel” button
.1 The addition is canceled
.2 The “Class” panel is displayed

Alternative Path (A2) Step Branching Action

any The user presses the “Previous” button
.1 The system returns to the previous step of the

creation

Sub-Variation Step Variation

4.1a The user selects the “Create a new interval” ra-
dio button

4.1a.1a The user selects the “Specific interval” radio
button. and specifies the start date AND the
end date of the interval

4.1a.1b The user selects the “Non-specific” interval ra-
dio button and specifies the start date OR the
end date of the interval. He may select a qualita-
tive property which will relate the new interval
to an already existing one.

4.1b The user selects the “Select an existing interval”
radio button and selects one of the intervals of
the list

4.2 The user presses the “Add interval” button and
the new interval appears in the “Selected inter-
val” text field

4.3 The user clicks on the “Next” button

Table 4.11: Use Case 11. Add a temporal negative property assertion

40

Use Case 12 Edit the interval of a temporal negative prop-
erty assertion

Goal In Context The user wants to edit the interval of a temporal neg-
ative property assertion to the selected individual

Scope & Level System, Main functionality

Preconditions There is at least one temporal negative property as-
sertion in the ontology. Chronos Tab is selected

Success End Condition The interval of the negative property assertion has
been replaced

Failed End Condition The existing time interval has not been replaced

Primary Actors User

Trigger The user selects an individual and presses the “Edit”
button, next to the “Negative object property asser-
tions” or the “Negative data property assertions” in
the “Individual” panel

Main Path Step Action

1 The “Individual Wizard” window pops-up
2 The user specifies the interval during which the

negative assertion will hold
3 The user presses the “Finish” button and the

creation is complete
4 The system displays the “Class” panel

Alternative Path (A1) Step Branching Action

any The user presses the “Cancel” button
.1 The addition is canceled
.2 The “Class” panel is displayed

Alternative Path (A2) Step Branching Action

any The user presses the “Previous” button
.1 The system returns to the previous step of the

creation

Sub-Variation Step Variation

4.1a The user selects the “Create a new interval” ra-
dio button

4.1a.1a The user selects the “Specific interval” radio
button. and specifies the start date AND the
end date of the interval

4.1a.1b The user selects the “Non-specific” interval ra-
dio button and specifies the start date OR the
end date of the interval. He may select a qualita-
tive property which will relate the new interval
to an already existing one.

4.1b The user selects the “Select an existing interval”
radio button and selects one of the intervals of
the list

4.2 The user presses the “Add interval” button and
the new interval appears in the “Selected inter-
val” text field

4.3 The user clicks on the “Next” button

Table 4.12: Use Case 12. Edit the interval of a temporal negative property
assertion

41

Use Case 13 Remove a negative object or data property as-
sertion

Goal In Context The user wants to remove a negative object property
assertion

Scope & Level System, Main functionality

Preconditions The selected individual participates in at least one
negative property assertion.
Chronos Tab is selected

Success End Condition The negative property assertion has been removed

Failed End Condition The negative property assertion has not been removed

Primary Actors User

Trigger The user selects a negative property assertion from
the “Negative object property assertions” or the “Neg-
ative data property assertions” list and presses the
“Remove” button that is next to this list in the “In-
dividual” panel

Main Path Step Action

1 The “Removal Confirmation” dialog window
pops-up

2 The user presses the “Yes” button
3 The class description has been removed
4 The system displays the “Individual” panel

Alternative Path (A1) Step Branching Action

2a The user presses the “No” button
3a The removal is canceled
4a The “Individual” panel is displayed

Table 4.13: Use Case 13. Remove a negative property assertion

42

Use Case 14 Create a time interval

Goal In Context The user wants to create the time interval during
which some temporal properties hold.

Scope & Level System, Sub functionality

Preconditions – –

Success End Condition All the required information to create the time interval
have been inserted

Failed End Condition No adequate information

Primary Actors User

Trigger “Add” button from in the “Affected triples” window
(whilst object/data property conversion, class conver-
sion)
“Step 3” of the “Individual Wizard” window

Main Path Step Action

1 The user selects the “Create a new interval” ra-
dio button

2 The user selects the “Specific interval” radio
button

3 The user specifies the start AND end date
4 The user presses the “Add interval” button
5 The “Selected interval” field displays the se-

lected interval
6 The “OK” or the “Next” button is enabled
7 The user presses the “OK” or the “Next” button

Alternative Path (A1) Step Branching Action

1a The user selects the “Select an existing interval”
radio button

2a A list containing all the existing intervals ap-
pears

3a The user selects an interval from the list

Alternative Path (A2) Step Branching Action

2b The user selects the “Non-specific interval” ra-
dio button

3b The user specifies the start OR end date, or none

Sub-Variation Step Variation

3b.1 The user presses the “Qualitative relation” check
box

3b.2 The “Qualitative properties” combo box is en-
abled and the Existing intervals list is filled

3b.3 The user selects a qualitative property
3b.4 The user selects an existing interval

Table 4.14: Use Case 14. Create a time interval

43

4.2 Activity Diagrams

In this section we illustrate the activity diagrams of the use cases presented
in 4.1. Each activity diagram corresponds to the use case with the same
number. They present the stepwise activities and actions performed by the
user of Chronos.

Figure 4.1: Activity Diagram 1. Convert an object property to temporal.

44

Figure 4.2: Activity Diagram 2. Convert a data property to temporal.

45

Figure 4.3: Activity Diagram 3. Convert a class to temporal.

46

Figure 4.4: Activity Diagram 4. Add a temporal property restriction.

47

Figure 4.5: Activity Diagram 5. Edit a temporal property restriction.

48

Figure 4.6: Activity Diagram 6. Remove a class description.

49

Figure 4.7: Activity Diagram 7. Create a temporal individual.

50

Figure 4.8: Activity Diagram 8. Add a temporal property assertion.

51

Figure 4.9: Activity Diagram 9. Edit the interval of a temporal property
assertion.

52

Figure 4.10: Activity Diagram 10. Remove a property assertion.

53

Figure 4.11: Activity Diagram 11. Add a temporal negative property asser-
tion.

54

Figure 4.12: Activity Diagram 12. Edit the interval of a temporal negative
property assertion.

55

Figure 4.13: Activity Diagram 13. Remove a negative property assertion.

56

Figure 4.14: Activity Diagram 14. Create a time interval.

57

4.3 User Interface Design

The interface layout used in Chronos was originally created by Polyxeni
Makri in her work on 4D-Fluents Plug-in [21]. Several improvements and
modifications have been made though, in order to serve the purposes of
our tool. The layout was inspired from the structure of standard Protégé
tabs. This way, users of Protégé will not experience any difficulties in using
Chronos.

We provide four different views on the left of the screen, one for each en-
tity type. These are the “Class hierarchy”, the “Object property hierarchy”,
the “Data property hierarchy” and the “Individuals by type” views. The
main Chronos’ panel is on the right of the screen and it is called “Chronos
View Component”. The user can select a class, an object property, a data
property or an individual from the views on the left and “Class”, “Object
property”, “Data property” or “Individual” panel will be be displayed re-
spectively, in “Chronos View Component”.

The north part of “Chronos View Component” is common in all four
panels. It contains the buttons for the conversion of the entity (and in the
case of class, the button for the creation of a new instance), a help text that
guides the user through the selections and an “Info” panel that provides
useful information about the selected entity. The rest of the view differs
depending on the type of the entity.

In the case that the user selects a class from the “Class hierarchy” view,
the class panel will be displayed in “Chronos View Component” and the
layout will look like that illustrated in figure 4.15. In the center of the view
there are two lists. One that displays the equivalent classes of the selected
class and one that displays its superclasses. At the right of each list, there
are three button that manipulate it.

If an object property is selected, the “Chronos View Component” will
display the “Object property” panel that is illustrated in figure 4.16. The
central layout is designed according to the default Protégé object prop-
erty tab. It includes the “Object property characteristics”, which is a list
of check-boxes that indicate whether the selected object property is func-
tional, inverse functional, transitive, symmetric, asymmetric, reflexive and
irreflexive. The “Object property description” contains information about
the property’s domain, range, equivalent properties, super properties, in-
verse properties and disjoint properties. There is also a panel at the bottom
of our view, which expands at the click of the “Show” button, and illustrates
the representation of the selected object property.

Similarly, in the case of a selected data property, the “Data property”
panel is illustrated in figure 4.17. It also includes the “Data property char-
acteristics” panel, which contains a check-box that indicates whether the
selected data property is functional. The “Data property description” panel
contains information about the property’s domain, range, equivalent prop-

58

Figure 4.15: Class panel layout

Figure 4.16: Object property panel layout

59

erties, super properties and disjoint properties. Just as in object properties,
there is a graphical representation panel at the bottom of the “Data prop-
erty” panel, too.

Figure 4.17: Data property panel layout

Finally, when the user selects an individual, the “Individual” panel will
be displayed. It is also designed according to the default Protégé’s individ-
ual panel. On its left side there is the “Description” panel, which includes
three lists. The first displays the types of the selected individual, the sec-
ond displays the individuals that are declared to be the same with the one
selected and the third displays those individuals that are declared to be dif-
ferent from the one selected. On the right side of the “Individual” panel
there is the “Property assertions” panel. It includes four lists, one for the
object property assertions, one for the data property assertions, one for the
negative object property assertions and one for the negative data property
assertions. On the right side of each of these lists there are three buttons
used for manipulating them. The layout of the “Individual” panel is illus-
trated in figure 4.18.

4.4 Code Structure

The source code that implements Chronos was organized in several packages,
in order to make it more flexible and easily expandable. The classes that
implement the graphic user interface were stored in different packages to

60

Figure 4.18: Individual panel layout

those that implement the temporal representation model. More specifically
the packages used are:

classPanels, objectPropertyPanels, dataPropertyPanels, individualPanels
they contain classes that implement panels that are included in the
main window of Chronos and the dialog windows that are created.
As explained in the previous section, for each different type of entity
selected, a different panel is displayed. Each one of these packages con-
tain the basic components that combine to create those panels. For
instance, the classPanels package contains all the classes that take
part in the creation of the “Class” panel illustrated in figure 4.15.

structures contains classes whose main purpose is to store and distribute
data between other classes. It includes data structures that hold the
participants of each temporal constraint, temporal triples or temporal
negative triples. For example, an instance of the class TemporalOb-
jectPropertyTriple stores the subject and object individual, the event
individual, the interval individual during which the temporal triple
holds and the object property that is the predicate of the triple, and
provides the setters and the getters methods to access that data.

tab it only contains the class that implement the Chronos tab.

time this package contains two classes. The TimeFactory class, which con-
tains the methods used for the conversion of the entities, and the

61

ConstraintFactory that creates the temporal constraints. The Time-
Factory class is the most frequently accessed class, and it is called
almost from every other class in our implementation. The Constraint-
Factory is only accessed by the TimeFactory.

view contains the top level class ChronosViewComponent, the MergeDialog
class that implements a dialog window that appears when clicking on
Chronos tab for the first time, a Renderer class and the Updatable
interface that is implemented by all the panel classes.

Figure 4.19 illustrates the class diagram of the source code of our application.

4.5 Plug-in Documentation

As we have already mentioned, all the methods that are used for adding the
dimension of time in the active ontology are included in the TimeFactory
class. In this section, we present the most important methods that are used
for implementing the N-ary relations.

• boolean containsOWLTime(OWLOntology) is a boolean method that
iterates over the entities of the ontology that is given as an argument
looking for the namespace of the OWL-Time ontology. If there are
entities that start with that namespace, they are OWL-Time entities
and the method return true.

• createRequiredEntities() As explained in section 3.2, there are
some entities that are required in order to implement the N-ary relation
representation. This void method inserts these entities in the ontology.

• isTemporalProperty(OWLEntity) is a boolean method that returns
true if the entity given as an argument is a temporal object or data
property, false otherwise. What this method actually does is to check
the property’s domain and range whether or not it is a union of some
class expression and an Event class. In the case of a data property,
only the domain is checked.

• convertObjectPropertyToTemporal(OWLObjectProperty, OWLNamedIndividual)

is a void method that converts the given object property to temporal.
The property’s domain and range will be changed as explained in 3.2.1.
Then two other methods are called, the convertObjectPropertyTriples
and the applyConstraintsOnObjectproperty, which are explained
below.

• convertObjectPropertyTriples(OWLObjectProperty, OWLNamedIndividual)

is a method that iterates over the object property and the negative

62

Figure 4.19: The class diagram of the source code

63

object property axioms that contain the given object property and
converts them according to the N-ary relations model, as described
in 3.2.3. The given individual is the time interval individual during
which all the temporal triples hold. If it is null, each triple will hold
for a (different) unknown time interval.

• convertDataPropertyToTemporal(OWLDataProperty, OWLNamedIndividual)

similarly to object properties, this method converts the given data
property to temporal as described in 3.2.2. Afterwards, it calls the
convertDataPropertyTriples and the applyConstraintsOnDataproperty,
which are explained below.

• convertDataPropertyTriples(OWLDataProperty, OWLObjectProperty,

OWLNamedIndividual) is a method that iterates over the data prop-
erty and the negative data property axioms that contain the given data
property and converts them according to the N-ary relations model.
The given individual is the time interval individual during which all the
temporal triples hold. If it is null, each triple will hold for a (different)
unknown time interval.

• createTemporalObjectPropertyAxiom(OWLClassExpression, OWLNamedIndividual,

String, OWLObjectProperty, OWLNamedIndividual, Sting, String, String,

OWLNamedIndividual) is a method that creates a new individual and
all the axioms needed to connect it to an already existing individual
with a temporal object property.

• createTemporalDataPropertyAxiom(OWLClassExpression, OWLNamedIndividual,

String, OWLDataProperty, String, Sting, String, String, OWLNamedIndividual)

is a method that creates a new individual and all the axioms needed
to connect it to an already existing individual with a temporal data
property.

• createInterval(String, String, String, OWLNamedIndividual)

is a method that return the OWLNamedIndividual that represents a
time interval. This interval can be specific or non-specific, depending
on the adequacy of the given arguments.

• applyConstraintsOnObjectProperty(OWLObjectProperty) adds the
SWRL rules and the axioms needed in order to convert to temporal the
object property restrictions of the given object property, as described
in 3.3.

• applyConstraintsOnDataProperty(OWLDataProperty) adds the SWRL
rules and the axioms needed in order to convert to temporal the data
property restrictions of the given data property, as described in 3.3.

64

• convertClassToTemporal(OWLClass, OWLNamedIndividual) iterates
over the properties that are related to the given class and depending on
the type of the property, it calls the convertObjectPropertyToTemporal
or the convertDataPropertyToTemporal method. The given individ-
ual is the time interval and it is passed to the called methods.

• id() returns a long integer that is used for giving different names
to the entities that are created by our application (individuals of the
type Interval, Event, etc.). The number returned is the current time
in milliseconds, possibly incremented.

There are many other methods in TimeFactory that are called by those
presented, but most of them are utility methods, or are created to simplify
the code.

The ConstraintFactory class contains methods that return sets of OWL
axioms or SWRL rules, which implement the temporal version of the prop-
erty restrictions described in 3.3.

65

Chapter 5

Conclusion and Future Work

We introduce Chronos, a tab plug-in for Protégé editor that facilitates the
creation and editing of temporal OWL 2.0 ontologies. The temporal con-
cepts as well as the properties that evolve over time are represented by means
of the N-ary Relations model [5], that is a W3C recommendation. Chronos
enables the use of restrictions on temporal properties, which have different
semantical meaning than those applied on static properties. The user does
not have to be familiar with the peculiarities of the temporal representation
model, thus making the manipulation of temporal entities as easy as if they
were static.

Extending Chronos to include a query language that supports querying
over temporal ontologies is an interesting issue for future work.

66

Bibliography

[1] Deborah L. McGuinness, Frank van Harmelen: “OWL Web Ontology
Language Overview”. W3C Recommendation, February 2004.
http://www.w3.org/TR/owl-features/

[2] Michael K. Smith, Chris Welty, Deborah L. McGuinness: “OWL Web
Ontology Language Guide”. W3C Recommendation, February 2004.
http://www.w3.org/TR/owl-guide/

[3] Jerry R. Hobbs, Feng Pan: “Time Ontology in OWL”. W3C Recom-
mendation, September 2006.
http://www.w3.org/TR/owl-time/

[4] C. Welty and R. Fikes: “A Reusable Ontology for Fluents in OWL”.
Frontiers in Artificial Intelligence and Applications, 150:226236, 2006.

[5] Natasha Noy, Alan Rector: “Defining N-ary Relations on the Semantic
Web”. W3C Working Group Note, April 2006.
http://www.w3.org/TR/swbp-n-aryRelations/

[6] http://protege.stanford.edu/

[7] B. Parsia, E. Sivrin: “Pellet: an OWL-DL Reasoner”. ISWC 2004 Pro-
ceedings.
http://clarkparsia.com/pellet/protege/

[8] I. Horrocks, P.F. Patel-Schneider, H. Boley, S. Tabet, B. Grosof and
M. Dean “SWRL: A Semantic Web Rule Language Combining OWL
and RuleML”. W3C Member submission, 2004.
http://www.w3.org/Submission/SWRL/

[9] Sotiris Batsakis, Euripides G.M. Petrakis: “Representing Temporal
Knowledge in the Semantic Web: The Extended 4D Fluents Approach”,
2nd International Workshop on Combinations of Intelligent Methods
and Applications (CIMA’ 2010), October 2010.

67

[10] Sotiris Batsakis, Euripides G.M. Petrakis: “SOWL: Spatio-temporal
Representation, Reasoning and Querying over the Semantic Web”, 6th
International Conference on Semantic Systems (I-SEMANTICS’ 2010),
September 2010.

[11] Thomas C. Jepsen: “Just What Is an Ontology, Anyway?”, IT Pro
September/October 2009, Published by the IEEE Computer Society,
1520-9202/09/26.00 2009 IEEE.

[12] A. Johannes Pretorius: “Ontologies - Introduction and Overview”,
Adapted from: PRETORIUS, A.J., Lexon Visualisation: Visualising
Binary Fact Types in Ontology Bases, Chapter 2, Unpublished MSc
Thesis, Brussels, Vrije Universiteit Brussel, 2004.

[13] http://www.w3.org/TR/owl2-overview/

[14] J. F. Allen: “Maintaining Knowledge About Temporal Intervals”. Com-
munications of the ACM, 26:832-843, 1983.

[15] A. Artale, E. Franconi: “A Survey of Temporal Extensions of Descrip-
tion Logics”, Annals of Mathematics and Artificial Intelligence, 30(1-4),
2001.

[16] C. Lutz, F. Wolter, M. Zakharyaschev: “Temporal Description Logics:
A Survey”, In Proc. TIME08, IEEE Press, 2008.

[17] M. Klein, D. Fensel: “Ontology Versioning for the Semantic Web, In
International Semantic Web Working Symposium (SWWS01), pages
7592, California, USA, JulyAugust 2001.

[18] Matthew Horridge, Sean Bechhofer: “The OWL API: A Java API for
Working with OWL 2 Ontologies”, The University of Manchester, UK.

[19] Sean Bechhofer, Frank van Harmelen, Jim Hendler, Ian Horrocks, Deb-
orah L. McGuinness, Peter F. Patel-Schneider, Lynn Andrea Stein:
“OWL Web Ontology Language Reference”, W3C Recommendation,
February 2004
http://www.w3.org/TR/owl-ref/

[20] Matthew Horridge, Peter F. Patel-Schneider: “OWL 2 Web Ontology
Language Manchester Syntax”, W3C Working Group Note, October
2009.
http://www.w3.org/TR/owl2-manchester-syntax/

[21] Polyxeni Makri: 4D-Fluents Plug-In: A Tool for Handling Temporal
Ontologies in Protégé, Diploma Thesis, Department of Electonic and
Computer Engineering, Technical University of Crete, May 2011

68

	Introduction
	Problem Definition
	Proposed Solution
	Thesis outline

	Background and Related Work
	Ontologies
	OWL
	SWRL
	OWL-Time Ontology
	Temporal Representation
	Protégé OWL Editor
	OWL API

	Chronos Tab Plug-in for Protégé
	Handling Temporal Ontologies in Protégé
	Moving from Static to Dynamic
	Object Properties
	Data Properties
	Individuals
	Classes

	Dealing with Cardinality Constraints and Property Restrictions
	Value Constraints
	owl:allValuesFrom
	owl:someValuesFrom
	owl:hasValue

	Cardinality Constraints
	owl:maxCardinality
	owl:minCardinality
	owl:cardinality

	Global Cardinality Constraints on Properties
	owl:FunctionalProperty
	owl:InverseFunctionalProperty

	Negative property assertions
	Transitive Properties

	Implementation
	Use Cases
	Activity Diagrams
	User Interface Design
	Code Structure
	Plug-in Documentation

	Conclusion and Future Work

