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Abstract

In this thesis, we present CHOROS, a qualitative spatial reasoning engine imple-
mented in Java. CHOROS provides consistency checking and query answering
over spatial data represented with the Region Connection Calculus (RCC) and
the Cone-Shaped directional logic formalism (CSD). It supports all RCC-8 and
CSD-9 relations as well as standard RDF/OWL semantic relations, both rep-
resented in RDF/OWL. As such, it can answer mixed SPARQL queries over
spatial and non-spatial relation types. CHOROS extends PelletSpatial’s [4]
hybrid architecture, which is based on a composition table that implements a
path-consistency algorithm. We also introduce a multithreading technique that
enables to execute CSD and RCC consistency checking concurrently. As a case
study and to objectively assess the performance of CHOROS we developed the
”TUC spatial ontology” providing a qualitative spatial description of the re-
gions, forming the campus of Technical University of Crete (TUC). Finally, we
discuss and evaluate possible optimizations of CHOROS and compare its per-
formance with that of a spatial reasoner implemented in SWRL and runs under
Protégé [2].
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Chapter 1

Introduction

Qualitative reasoning is an approach for dealing with commonsense knowledge
without using numerical computation. Instead, one tries to represent knowledge
using a limited vocabulary such as qualitative relationships between entities or
qualitative categories of numerical values. An important motivation for using a
qualitative approach is that it is considered to be closer to how humans represent
and reason about commonsense knowledge. Another motivation is that it is
possible to deal with incomplete knowledge.

A very important concept of commonsense knowledge is space. Because of
the richness of space and its multiple aspects, however, most work in qualita-
tive spatial reasoning has focused on single aspects of space. Two of the most
important aspects of space are topology and orientation.

1.1 Problem Definition

It is a common practice to use Web Ontology Language (OWL) ontologies to
describe spatial regions and relations between these regions, such as relative
directional position or spatial containment and overlap. However, it is not pos-
sible to directly encode the semantics of these relations using the expressivity
of OWL and the Description Logics (DL) that OWL is based on. As a con-
sequence, there might be inconsistencies in spatial relations that will not be
detected by an OWL reasoner or an OWL reasoner might not return all the
answers to spatial queries since it cannot compute all spatial inferences.

1.2 Background

The most popular reasoning methods used in qualitative spatial reasoning are
constraint based techniques adopted from previous work on temporal reasoning
[12, 13]. Reasoning applies on sets of qualitative spatial relations which are
jointly exhaustive and pairwise disjoint, i.e., between any two spatial entities
exactly one of the basic relations holds. The set of all possible relations is
then the set of all possible unions of the basic relations. Reasoning is realized
by exploiting composition of relations. For instance, if the binary relation R1
holds between entities A and B and the binary relation R2 holds between B and
C, then the composition of R1 and R2 restricts the possible relationship between
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CHAPTER 1. INTRODUCTION 5

A and C. Compositions of relations are usually pre-computed and stored in a
composition table [14].

The SOWL [7] spatial representation implements reasoning rules for RCC-8
relations and cone-shaped direction relations using SWRL and OWL 2.0 prop-
erty axioms. Path consistency is implemented by introducing rules defining com-
positions and intersections of supported relations until a fixed point is reached
or until an inconsistency is detected. Reasoners that support DL-safe rules
such as Pellet [5, 6] can be used for inference and consistency checking over
spatio-temporal relations.

PelletSpatial [4] extends Pellet OWL reasoner with qualitative spatial rea-
soning capabilities. It supports checking the consistency of spatial relations
expressed using RCC-8 and computes new spatial inferences from asserted rela-
tions. The spatial relations are expressed in RDF/OWL and and can be applied
on arbitrary domain ontologies. PelletSpatial implements two RCC reasoner
components: (a) A reasoner implementing the translation of RCC relations to
OWL-DL class axioms while preserving their semantics and (b) a reasoner oper-
ating on the RCC composition table implementing a path-consistency algorithm
[9].

1.3 Proposed Work

In this thesis, we present CHOROS which supports consistency checking and
query answering over spatial data represented with the Region Connection Cal-
culus (RCC) and the Cone-Shaped directional logic formalism (CSD). In that
respect, it extends PelletSpatial to support CSD-9 relations in addition to RCC-
8 relations as well as standard RDF/OWL semantic relations, both represented
in RDF/OWL. As such, it can answer mixed SPARQL queries over spatial and
non-spatial relation types.

In our work we implement path-consistency algorithm 3.4, in Java, based on
the the composition tables of 3.1 for RCC-8 and 3.2 for CSD-9 which are also
implemented in SOWL. As Java supports multithreading natively, we introduce
a multithreading technique that enables ”parallel” execution of CSD and RCC
consistency checking.

1.4 Thesis Outline

Background knowledge and related research are discussed in Chapter 2. A
description of ontologies and of qualitative spatial calculi is presented. Basics
of reasoning are introduced as well. In Chapter 3 we discuss issues on the
representation of spatial information in RDF/OWL. CHOROS architecture and
reasoning are presented in the first two sections of Chapter 3 along with possible
optimizations in Section 3.3. Chapter 4 presents the results from an empirical
investigation of the practical efficiency of CHOROS. In particular, in Section
4.2 we introduce the ”TUC spatial ontology” which we use as a case study
for assessing the performance of CHOROS. Finally, conclusions and issues for
further research are discussed in Chapter 5.



Chapter 2

Related Work

2.1 Ontologies-OWL

Ontologies are used to capture knowledge on a domain of interest. An ontol-
ogy describes the concepts of the domain and also the relationships that hold
between those concepts. By defining shared and common domain theories, on-
tologies help both people and machines to communicate concisely, supporting
the exchange of semantics and not only syntax. In recent years, ontologies been
adopted in many business and scientific communities as a way to share, reuse
and process domain knowledge. In nowadays, they are used in applications
such as scientific knowledge portals, information management and integration
systems, electronic commerce, and semantic web services.

In Semantic Web the information contained in documents is given an explicit
meaning, making it easier to be processed by applications. OWL [1] can be
used to represent the meaning of terms and the relationships between those
terms. It is more expressive than XML, RDF and RDF-S, making it easier
to represent machine interpretable content on the Web. OWL ontologies may
be categorized into three species or sublanguages: OWL-Lite, OWL-DL and
OWL-Full. OWL 2 [15] is an extension and revision of the OWL, developed by
the W3C Web Ontology Working Group and published in 2004. OWL 2 adds
new functionality with respect to OWL. Some of the new features are syntactic
sugar (e.g., disjoint union of classes) while others offer new expressivity [18].

Languages of the OWL family are capable of creating classes, properties,
defining instances and its operations. An instance is an object. It corresponds
to a description logic individual. A class is a collection of objects. It corre-
sponds to a description logic [17] concept. A property is a directed binary
relation that specifies class characteristics. It corresponds to a description logic
role. Datatype properties are relations between instances of classes and RDF
literals or XML schema datatypes. Object properties are relations between in-
stances of two classes. OWL also supports various operations on classes such
as union, intersection and complement as well as class enumeration, cardinality,
and disjointness.
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CHAPTER 2. RELATED WORK 7

2.2 Reasoning

A semantic reasoner, reasoning engine, rules engine, or simply a reasoner, is a
piece of software able to infer logical consequences from a set of asserted facts
or axioms. The notion of a semantic reasoner generalizes that of an inference
engine, by providing a richer set of mechanisms to work with. The inference
rules are commonly specified by means of an ontology language, and often a
description language.

2.2.1 Pellet

Pellet [5, 6] is a complete OWL reasoner with very good performance and a
number of unique features. It is written in Java and is open source under a very
liberal license. It has been adopted in projects and application from pure re-
search to industrial settings. Pellet supports reasoning with the full expressivity
of OWL-DL (SHOIN(D) in Description Logic jargon) and has been extended to
support the more recent OWL 2 specification (SROIQ(D)). It provides all the
standard inference services that are traditionally provided by DL reasoners:

∙ Consistency checking: Ensures that an ontology does not contain any
contradictory facts. The OWL 2 Direct Semantics provides the formal
definition of ontology consistency used by Pellet.

∙ Concept satisfiability: Determines whether its possible for a class to have
any instances. If a class is unsatisfiable, then defining an instance of that
class makes the entire ontology inconsistent.

∙ Classification: Computes the subclass relations between every named class
to create the complete class hierarchy. The class hierarchy can be used to
answer queries such as getting all or only the direct subclasses of a class.

∙ Realization: Finds the most specific classes that an individual belongs
to; i.e., realization computes the direct types for each of the individuals.
Realization can only be performed after classification since direct types are
defined with respect to a class hierarchy. Using the classification hierarchy,
it is also possible to get all the types for each individual.

Pellet relies on an implementation of a direct tableau algorithm [19, 20] for a
DL-safe rules extension to OWL-DL. This implementation allows one to load
and reason with DL-safe rules encoded in SWRL [16] and includes support for
some SWRL built-ins.

2.2.2 SWRL

The Semantic Web Rule Language (SWRL) [16] is an expressive OWL-based
rule language. SWRL allows users to write rules that can be expressed in terms
of OWL concepts to provide more powerful deductive reasoning capabilities
than OWL alone. Semantically, SWRL is built on the same description logic
foundation as OWL does and provides similar strong formal guarantees when
performing inference.
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2.3 Qualitative Spatial Models

The qualitative approach to spatial as well as to temporal information is popular
in Artificial Intelligence and related research fields [21, 22]. This is mainly
because precise numerical information is often unavailable or not necessary in
many real world applications. Typically, the qualitative approach represents
spatial information by introducing a (binary) relation model on the universe
of spatial entities, which contains a finite set of binary relations defined on the
universe. Finding a proper relation model, or a qualitative calculus, is the key to
the success of the qualitative approach to spatial reasoning. In the past twenty
years, dozens of spatial relation models have been developed. Since relations
in the same model are ideally homogenous, most spatial calculi focus on one
single aspect of space, e.g. topology, direction, distance, or position. When
representing spatial direction it is convenient to approximate spatial entities by
points. But this is inappropriate as far as spatial topological information is
concerned: topology concerns sets of points, i.e. regions.

2.3.1 RCC-8 Topological Relations

Figure 2.1: The set of RCC-8 Topologic Relations

The region connection calculus (RCC) serves for qualitative spatial represen-
tation and reasoning. RCC abstractly describes regions (in Euclidean space, or
in a topological space) by their possible relations to each other. RCC8 (Figure
2.1) consists of 8 basic relations that are possible between two regions:

∙ disconnected (DC)

∙ externally connected (EC)

∙ equal (EQ)

∙ partially overlapping (PO)

∙ tangential proper part (TPP)

∙ tangential proper part inverse (TPPi)

∙ non-tangential proper part (NTPP)

∙ non-tangential proper part inverse (NTPPi)
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2.3.2 Cone-shaped Directional Relations

Figure 2.2: The set of Cone Shaped Directional Relations

The goal of a qualitative representation of the direction between points in
two-dimensional space is to specify a limited number of relations such that
each relation covers a part of the 360 degrees range and all relations taken
together cover the 360 degrees range completely. If in addition the relations
do not overlap, they form a jointly exhaustive and pairwise disjoint (JEPD)
set of relations, called basic relations. In CSD model an angular direction is
assigned the nearest named direction which results in cone-shaped areas for
which a symbolic direction is applicable. This model has the property that ”the
area of acceptance for any given direction increases with distance” [23] and
is sometimes called ’triangular’. Cone-shaped Directional (Figure 2.2) defines
the set of 9 basic relations that are possible between two points (e.g., region’s
centroid), with 8 turns of 45 degrees being the identity function:

∙ north (N)

∙ north-east (NE)

∙ east (E)

∙ south-east (SE)

∙ south (S)

∙ south-west (SW)

∙ west (W)

∙ north-west (NW)

∙ identical (O)

One can also form a subset without 0 {N,NE,E, SE, S, SW,W,NW} .
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2.4 SOWL

SOWL [7], is an ontology for representing and reasoning over spatio-temporal
information in OWL. Building upon well established standards of the semantic
web (OWL 2.0, SWRL) SOWL enables representation of static as well as of
dynamic information based on the 4D-fluents (or, equivalently, on the N-ary)
approach [25, 26] . Both RCC-8 toplogical and cone-shaped directional relations
are integrated in SOWL. Representing both qualitative temporal and spatial
information (i.e., information whose temporal or spatial extents are unknown
such as ”left-of” for spatial and ”before” for temporal relations) in addition to
quantitative information (i.e., where temporal and spatial information is defined
precisely) is a distinctive feature of SOWL. The SOWL reasoner is capable of
inferring new relations and checking their consistency, while retaining soundness,
completeness, and tractability over the supported sets of relations.

The SOWL spatial representation implements reasoning rules for RCC-8 re-
lations and cone-shaped direction relations using SWRL and OWL 2.0 property
axioms. Specifically, the nine direction relations have been declared as transi-
tive OWL relations (i.e., a relation such as South is transitive meaning that if
the relation holds between locations A and B, and between locations B and C,
it also holds between locations A and C). Their inverse relations (e.g., North
is the inverse of South) are defined as well. Furthermore, the identity relation
(O) is symmetric. All basic relations are pairwise disjoint. Path consistency
is implemented by introducing rules defining compositions and intersections of
supported relations until a fixed point is reached or until an inconsistency is
detected. Reasoners that support DL-safe rules such as Pellet can be used for
inference and consistency checking over spatio-temporal relations.

2.5 PelletSpatial

PelletSpatial [4] extends Pellet OWL reasoner with qualitative spatial reasoning
capabilities. It supports checking the consistency of spatial relations expressed
using RCC-8 and computes new spatial inferences from asserted relations. The
spatial relations are expressed in RDF/OWL and can be combined with arbi-
trary domain ontologies. PelletSpatial can answer SPARQL queries that mix
spatial relations with arbitrary RDF/OWL relations. PelletSpatial implements
two RCC reasoners: (a) A reasoner based on the semantics preserving transla-
tion of RCC relations to OWL-DL class axioms and (b) a reasoner based on the
RCC composition table that implements the path-consistency algorithm of 3.4.

Results show that, without further optimizations, the first reasoner based on
the translation of RCC relations to OWL-DL class axioms lacks practicability
even for small datasets. In addition to translation RCC relations to OWL class
axioms, one axiom is defined for each region to satisfy the regularity condition
of region (to be a non-empty concept and to contain all of the regions interior
points). This axiom significantly affects non-determinism as well as the num-
ber of qualified existential quantifiers in the ontology. Qualified existential and
universal quantifiers, is one of the source of complexity (AND-branching) in DL
reasoning [17]. The second spatial reasoner based on a path-consistency algo-
rithm and the RCC-8 composition table has been shown to be more promising
with regards to performance.
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2.6 SPARQL

The SPARQL query language [24] can be used to express queries across diverse
data sources, whether the data is stored natively as RDF or viewed as RDF via
middleware. SPARQL contains capabilities for querying required and optional
graph patterns along with their conjunctions and disjunctions. SPARQL also
supports extensible value testing and constraining queries by source RDF graph.
The results of SPARQL queries can be results sets or RDF graphs.

2.7 Jena

Jena [27] is an open source Semantic Web framework for Java. It provides
an API for reading as well as for writing to RDF graphs. The graphs are
represented as an abstract ”model”. A model can be sourced with data from
files, databases, URLs or a combination of these. A model can also be queried
using SPARQL [24] and updated using SPARUL. Jena also works with OWL
(Web Ontology Language). The framework has various internal reasoners such
as Pellet [5, 6].

2.8 Protégé editor

Protégé [2] is a free, open-source platform that provides tools to construct do-
main models and knowledge-based applications with ontologies. It supports the
creation, visualization and manipulation of ontologies in various representation
formats. Protégé can be extended by way of a plug-in architecture and a Java-
based Application Programming Interface (API) for building knowledge-based
tools and applications.

The Protégé platform supports two main ways of modeling ontologies: the
Protégé-Frames editor and the Protégé-OWL editor. The Protégé-OWL editor
enables users to build ontologies for the Semantic Web in the W3C’s Web Ontol-
ogy Language (OWL). “An OWL ontology may include descriptions of classes,
properties and their instances. Given such an ontology, the OWL formal se-
mantics specifies how to derive its logical consequences, i.e., facts not literally
present in the ontology, but entailed by the semantics. These entailments may
be based on a single document or multiple distributed documents that have
been combined using defined OWL mechanisms” [1].

Protégé also supports the editing and execution of SWRL rules. It provides a
set of libraries that can be used in rules, including libraries to interoperate with
XML documents, and spreadsheets, and libraries with mathematical, string,
RDFS, and temporal operators.



Chapter 3

CHOROS Reasoning

3.1 Handling Spatial Ontologies

Spatial relations are expressed in RDF/OWL and can be combined with stan-
dard RDF/OWL semantic relations forming an ontology. A relation is rep-
resented as a triple. The predicate will be one of the terms used to express a
spatial relation, while the subject and object will be the regions or the points in-
volved in the relation. In OWL, such a statement is called an ”Object Property
Assertion Axiom” (e.g., Individual:Region1 ObjectProperty:disconnectedFrom
Individual:Region2).

Figure 3.1: RCC-8 and CSD as object properties, in Protégé

CHOROS defines an RDF/OWL vocabulary for expressing qualitative spa-
tial relations, with both the RCC-8 topological and Cone-shaped Directional
models. Henceforth, we refer to these calculi as RCC and CSD respectively.
As illustrated in Fig. 3.1, RCC and CSD terms are defined as simple object
properties with no extra characteristics(e.g., inverse, transitive). One can either
use the vocabulary provided, or use its own by defining sub-property axioms.

Katz et al. [8] propose representing RCC-8 as OWL-DL class axioms, but
this approach does not scale-up well for many relations [4].

12
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3.2 Reasoning Architecture

In CHOROS spatial knowledge is represented by an OWL ontology. Briefly,

∙ we represent every region as an OWL individual (e.g., Individual:Town1,
Individual:Town2 of type Class:Town)

∙ we define an OWL object property for each spatial relation (see Fig. 3.1)

∙ a spatial relation between two regions is represented as an OWL object
property assertion (e.g., Individual:Town1 ObjectProperty:westOf Indi-
vidual:Town2).

Non-spatial relations, such as region type, size, etc., are represented as ordinary
OWL assertions (e.g., Individual:Town1 DatatypeProperty:hasName Individ-
ual:Chania). This approach helps us to support reasoning and querying for
both spatial relations and standard RDF semantic relations by setting apart
each problem. Thus, CHOROS strictly separates spatial reasoning from se-
mantic OWL-DL reasoning by using an exclusive spatial reasoner component
(CT Reasoner).

Figure 3.2: Main Components of the CHOROS reasoner

Fig. 3.2 illustrates the main components of the CHOROS reasoner. Ontolo-
gies are loaded into the Parser after a step of validation. This step ensures
that all resources have a valid triple form. During the loading phase (RDF-
Parsing), spatial property assertions are put into a constraint network (CN)
and non-spatial standard OWL assertions are stored in a knowledge base (KB).
The core of the system is the Reasoner component. The Composition Table
Reasoner (CT Reasoner) checks the consistency of a constraint network, while
Pellet checks the consistency of the knowledge base.

The queries are also loaded after validation. During the loading phase (AR-
QParsing), a query structure (Choros Query) is created in order to compartmen-
talize query atoms into spatial and non-spatial. The Query Engine component
applies a dual stage query answering technique. The First Stage returns a set of
spatial query results (spatial RS). This set is given as input to the Second Stage,
consisting of further constraining such that the non-spatial query is satisfied.
Thus, we get the final set of query results (final RS).
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We described the main idea of reasoning architecture of PelletSpatial, that we
also followed in CHOROS. In the next three subsections we describe our imple-
mentation and its extensions in detail. But for a closer look, we must first give
a short explanation of some commonly used terms:

∙ A Knowledge base (KB) is a special kind of database for knowledge
management, providing the means for the computerized collection, orga-
nization, and retrieval of knowledge. The Pellet KB is a combination of
an assertional box (component that contains assertions about individuals)
and a terminological box (component that contains axioms about classes),
which provides consistency checking and query services.

∙ A constraint network (CN) is a set of variables together with a set
of constraints and perhaps also one or more objective functions. Spatial
constraint networks allows to store and handle spatial knowledge by pro-
viding similar to a KB functionality for checking consistency as well as for
querying.

3.2.1 Parser

The Parser component is composed of a RDF parser for loading ontologies and
an ARQ parser for loading queries.

Figure 3.3: Parser Component

In RDF parsing, we use Jena API (2.7) and internal spatial vocabularies of
the Parser component to extract data from the RDF graph. We have created
theses vocabularies (as Jena model properties) to define the basic relations of
RCC-8 and CSD formalisms. Respectively, we create two constraint networks,
one for each of the above spatial calculus. Thus, we can track and remove any
spatial triple from the graph, in order to store it in the corresponding constraint
network. The rest of the graph will be managed as a Pellet KB.

In ARQ parsing, we use Jena API and internal query formats (RCCQuery,
CSDQuery) in order to divide query atoms into topological RCC-8, cone-shaped
directional and non-spatial. The same spatial vocabularies are used to map
triple predicates to spatial relations.
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3.2.2 Reasoner

The core of the system is the Reasoner component. CHOROS strictly separates
spatial reasoning from semantic OWL-DL reasoning, as it uses one exclusive
reasoner for each calculus: RCC relations are managed as a RCC constraint
network, CSD relations are managed by a CSD constraint network as well.
Non-spatial relations are managed by Pellet as a KB.

In both CSD and RCC-8 qualitative formalisms, relations are expressed
based on a set of jointly exhaustive and pairwise disjoint basic relations which
is closed under several operations. Thus, it is possible to apply constraint based
methods for reasoning over these relations. For this, it is necessary to give a
composition table either for all relations, or for the basic relations only together
with procedures for computing the compositions of complex relations. A com-
position table is defined using the formal semantics of the relations. Otherwise
it is not possible to verify correctness and completeness of the inferences. For-
mal semantics of the relations are also necessary for finding efficient reasoning
algorithms which are essential for most applications. Without formal seman-
tics it is sometimes not even possible to show that reasoning over a system of
relations is decidable.

DC EC PO TPP NTPP TPPi NTPPi EQ

DC DC, EC,
PO, TPP,
NTPP,
TPPi,
NTPPi,
EQ

DC, EC,
PO, TPP,
NTPP

DC, EC,
PO, TPP,
NTPP

DC, EC,
PO, TPP,
NTPP

DC, EC,
PO, TPP,
NTPP

DC DC DC

EC DC,
EC, PO,
TPPi,
NTPPi

DC,
EC, PO,
TPP,
TPPi,
EQ

DC, EC,
PO, TPP,
NTPP

EC, PO,
TPP,
NTPP

PO, TPP,
NTPP

DC, EC DC EC

PO DC,
EC, PO,
TPPi,
NTPPi

DC,
EC, PO,
TPPi,
NTPPi

DC, EC,
PO, TPP,
NTPP,
TPPi,
NTPPi,
EQ

PO, TPP,
NTPP

PO, TPP,
NTPP

DC,
EC, PO,
TPPi,
NTPPi

DC,
EC, PO,
TPPi,
NTPPi

PO

TPP DC DC, EC DC, EC,
PO, TPP,
NTPP

TPP,
NTPP

NTPP DC, EC,
PO, TPP,
NTPP

DC,
EC, PO,
TPPi,
NTPPi

TPP

NTPP DC DC DC, EC,
PO, TPP,
NTPP

NTPP NTPP DC, EC,
PO, TPP,
NTPP

DC, EC,
PO, TPP,
NTPP,
TPPi,
NTPPi,
EQ

NTPP

TPPi DC,
EC, PO,
TPPi,
NTPPi

EC, PO,
TPPi,
NTPPi

PO,
TPPi,
NTPPi

EQ, PO,
TPPi,
TPP

PO, TPP,
NTPP

TPPi,
NTPPi

NTPPi TPPi

NTPPi DC,
EC, PO,
TPPi,
NTPPi

PO,
TPPi,
NTPPi

PO,
TPPi,
NTPPi

PO,
TPPi,
NTPPi

PO, TPP,
NTPP,
EQ,
TPPi,
NTPPi

NTPPi NTPPi NTPPi

EQ DC EC PO TPP NTPP TPPi NTPPi EQ

Table 3.1: RCC Composition Table
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N NE E SE S SW W NW O

N N N,NE N,NE,E N, NE,
E, SE

N, NE,
E, SE,
S, SW,
W,
NW, O

W,
NW,
SW, N

NW,
W, N

NW,W N

NE NE, E NE NE, E E, NE,
SE

E, NE,
SE, S

N, NE,
E, SE,
S, SW,
W,
NW, O

N, NE,
NW,
W

N, NE,
NW

NE

E NE, E,
N

NE, E E SE, E SE, E,
S

S, SW,
SE, E

N, NE,
E, SE,
S, SW,
W,
NW, O

N,
NW,
NE, E

E

SE E, SE,
NE, N

E, SE,
NE

SE, E SE SE, S S, SE,
SW

S, SE,
SW

N, NE,
E, SE,
S, SW,
W,
NW, O

SE

S N, NE,
E, SE,
S, SW,
W,
NW, O

E, S,
NE,
SE

SE, E,
S

SE, S S S, SW S, W,
SW

W, S,
NW,
SW

S

SW W,
SW,
N, NW

N, NE,
E, SE,
S, SW,
W,
NW, O

S, SW,
SE, E

S, SW,
SE

SW,S SW SW, W W,
NW,
SW

SW

W N, W,
NW

N,
NW,
NE, W

N, NE,
E, SE,
S, SW,
W,
NW, O

S, SE,
SW, W

W, S,
SW

W, SW W W,
NW

W

NW N, NW N,
NW,
NE

N,
NW,
NE, E

N, NE,
E, SE,
S, SW,
W

W,
NW,
SW, S

W,
NW,
SW

NW,
W

NW NW

O N NE E SE S SW W NW O

Table 3.2: CSD Composition Table
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In our implementation, consistency checking for each constraint network is
performed by means of a path-consistency algorithm (see 3.2.2). This algorithm
is based on the corresponding composition table for RCC-8 (see Table 3.1) and
CSD (see Table 3.2) relations respectively. Currently, CHOROS supports path-
consistency based reasoning only for the basic relations of each calculus as they
are defined in SOWL [7]. For a closer look consider the following examples:

Consistent Example

We have four houses. The first house is north of the second and
northeast of the fourth; the second house is northwest of the third;
the fourth house is north of the third. What can we infer about the
relation between the first and the third house?

The spatial configuration can be formalized in CSD as the following
constraint network:

∙ house1 N house2

∙ house2 NW house3

∙ house1 NE house4

∙ house4 N house3

Using the CSD composition table 3.2 and the path-consistency algo-
rithm described in 3.2.2, we can refine the network in the following
way:

∙ house1 N, NW house3

∙ house1 N, NE house3

That is, the first house is north of the third which is the intersection
of the above two relations.

Inconsistent Example

Now let the fourth house be east of the third. The spatial configura-
tion can be formalized in CSD as the following constraint network:

∙ house1 N house2

∙ house2 NW house3

∙ house1 NE house4

∙ house4 E house3

Using the CSD composition table and the path-consistency algo-
rithm, we can refine the network in the following way:

∙ house1 N, NW house3

∙ house1 E, NE house3

That is, network is inconsistent because the intersection of the above
two relations is the empty relation.
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Path-Consistency Algorithm

In this section, we describe the algorithm (Figure 3.4) used for checking the
consistency of a constraint network . It is the same implementation used in
PelletSpatial [4] in the hybrid architecture.

Given a constraint network N, i.e., a set of defined RCC-8 relations, N is
consistent if it is either empty, or if every relation in the network is consistent.
Notice that, the requirement for the relations in N to be defined, i.e., of the set
of eight base relations, is relevant to the tractability of a sound and complete
path-consistency procedure. As it is noticed in [9, 7], for relations defined over
RCC-8 or CSD, path consistency is tractable.

The complete step (Line 5) processes N to infer all the inverse and equals
relations. For every (defined) relation Rij ∈ N, we ensure that Rj̆i ∈ N
(inverse complete), e.g., for TPP(a, b) we ensure that TPPi(b, a) ∈ N, a,b
regions ∈ N. For every region a ∈ N, we ensure that EQ(a, a) ∈ N (equals
complete). A queue Q is used as a structure to keep track of relations that have
to be processed. Hence, the algorithm runs until Q = ∅ or an inconsistency is
detected. Q is initialized with all the defined relations Rij ∈ N.

Figure 3.4: Path Consistency Algorithm

A relation Rab (Line 15) is path-consistent if the rule for combining a com-
positional inference with existing information [10],

Vac ← Uac ∩Rab ∘ Sbc
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results in a non-empty set V ∕= ∅ for regions a, c; Sbc ∈ N relations with a
transitive path with Rab from a through b to c and Uac a relation (possibly
∈ N as existing information).

The compositional inference Tac ← Rab ∘ Sbc (Line 17) is computed for
regions a, c as the union set T for the composition of each pair (r, s) in the set
R × S, r ∈ R, s ∈ S. The composition of a pair (r, s) consists in a lookup for
the RCC-8 (or CSD) composition table given that r and s are elements of the
set of eight defined relations.

If Uac ∈ N , i.e., there is existing information for the pair (a, c), we complete
the rule by computing the intersection Vac ← Tac ∩ Uac (Line 33), where V is
the intersection set of relations v ∈ T ∩ U . This step does refine the already
existing relation Uac ∈ N and is essential for the path-consistency algorithm as
it defines the inconsistent state: if V = ∅. we have found an inconsistency.

The step of Line 38 states that, if U = V the step at Line 33 could not refine
relation Uac. Hence, combining compositional inference Tac with existing
information Uac does not add new information. In this case, we can return.
Else, Uac is removed from N, the refined Vac is added to N and Q and the
inverse V c̆a is processed.

Standard path-consistency algorithms, like the implementation described in
[9], usually use a n × n dense matrix M for n different regions, where Mij

represents the relation between the regions i, j. Instead, the implementation in
CHOROS processes a sparse matrix with empty cells for Mij = ⊤. Thus, Q
corresponds to the array of elements Mij ∕= ⊤. Furthermore, a triple structure
allows to be more compact in the rule for combining compositional inference and
existing information, as the triple already contains all the required information
to compute the rule. Finally, we split the compositional inference from its com-
bination with existing information. This allows us to discard the compositional
inference whenever it returns the universal relation T from further processing
as it cannot add any new information to the network.
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3.2.3 Query Engine

As CHOROS processes both spatial and standard semantic OWL relations in
RDF/OWL documents, it is natural to support spatial querying. Query Engine
component answers conjunctive queries that include spatial and non-spatial pat-
terns, i.e., triple patterns for spatial relations (joined) with triple patterns for
semantic RDF relations. More specifically, this module supports a subset of
queries written in SPARQL, that satisfies the following conditions:

∙ No variable is used in the predicate position.

∙ Each property used in the predicate position is either a property (object
or datatype) defined in the ontology or one of the following built-in prop-
erties: rdf:type, owl:sameIndividualAs, owl:differentFrom.

∙ At least one of the triples must contain a ”spatial” object property in the
predicate position.

Figure 3.5: Query Engine Component

The CHOROS Query Engine uses a dual stage query answering technique by
extending each constraint network with a dedicated query handler that, given
a spatial query atom and (for conjunctive queries) a set of prepared bindings,
returns a set of spatial query solutions. The set of query solutions returned by
the first stage is given as input to the second stage which consists of further con-
straining the set of bindings such that the non-spatial query subset is satisfied.
If the first stage does not return any solution, second stage is ignored.

It is possible to query for regions that are involved in a specific spatial
relation with another region and have certain characteristics that are described
by semantic RDF relations. It is also possible to query exclusively for spatial
patterns, but it is not possible to query for non-spatial patterns alone. For
example, we can query a hypothetical ontology for all region names that are
”externally connected to” and ”north of” a given region (the spatial subset
query) that have an area and population greater than a given lower bound (the
non-spatial subset query).
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3.3 Optimazations

In this section we present and discuss different versions of CHOROS along with
possible optimizations.

CSD Calculus Approaches

The first version of CHOROS (Choros 0.1) applies to consistency checking
over a CSD calculus of 9 basic relations. This implementation has poor perfor-
mance for small datasets as it is very wasteful to pre-compute the compositions
of 9 relations (512x512) and store them in the full composition table. CHOROS
version 0.2 applies to consistency checking over a CSD calculus of 8 basic re-
lations. Spatial relation ”identical to” is replaced by the owl axiom ”sameAs”.
Thus, we have to pre-compute and store less data (256x256), by computing the
compositions of 8 relations instead of 9, which is much faster.

Multithreading

Multithreading allows two parts of the same program to run concurrently. Code
parallelization is the process of modifying a simulation code to make it run faster
by splitting the workload among multiple computers (well, in the very general
sense). Parallelization of a serial code is a nontrivial task. It requires significant
code changes and debugging. If the number of required cases is larger than the
number of CPUs, such an approach will result in non-optimal performance. We
utilize multithreading by launching each case as a separate thread. A simple
scheduler ensures that the number of threads running at any instance of time
equals the number of CPU cores (2 in our case). And while OpenMP [28]
is employed to add multithreading into C codes, Java supports multithreading
natively. In CHOROS, which is implemented in Java, multithreading enables
”parallel” execution of CSD and RCC consistency checking, as we launch each
task as a separate thread.
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Experiments

4.1 Complexity

The complexity of a decision problem is usually measured in term of the worst-
case running time or memory consumption. Running time as well as memory
consumption of an algorithm depends on the size n of its input, i.e., the size of
the problem instance, and can be expressed as a function f(n). The asymptotic
behavior of f is specified in terms of the O-notation which gives an upper bound
on the running time. In areas like database systems where instances are very
large size, a running time of O(n3) corresponds to a solution which is very slow
in practice. In these cases efficient algorithms have linear running time.

For most of the tractable subsets of qualitative spatial calculi, path-consistency
or even simpler methods are sufficient for deciding consistency. So except for
very large instances or for calculi over a large set of relations, there are usually
no efficiency problems.As shown in [11], by restricting the supported relations
set to a tractable subset of RCC-8 (or corresponding directional) spatial rela-
tions, path consistency has O(n5) time complexity (with n being the number of
individuals) and is sound and complete. Note that, extending the model for the
full set of relations would result into an intractable reasoning procedure.

In our implementation, as well as in [4], path consistency has O(n3) worst
time complexity. In the following we will show results from an empirical inves-
tigation of the practical efficiency of CHOROS. To assess the performances of
CHOROS in practice, we created an example ontology which was subsequently
populated with random instances. This ontology is described in detail in the
next section.

22
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4.2 Case Study - TUC Spatial Ontology

The ”TUC spatial ontology” is a mechanism to describe data related to spatial
entities of the University campus of Technical University of Crete (TUC).

Figure 4.1: Campus Map - Technical University of Crete

Figure 4.1 illustrates the campus map of TUC. Information in this map is
used to acquire the necessary concepts for defining a basic hierarchical structure.
However, it was not sufficient for discriminating the relative position of regions.
A Google’s satellite image, Figure 4.2, gave us a panoramic view of the area
and made it possible to define qualitative spatial relations between regions.

The ”TUC spatial ontology” is implemented in OWL. It consists of classes,
properties and individuals. Table 4.1 shows all classes, gives a brief description
and lists some individuals that belong to each class. Table 4.2 and Table 4.3
illustrate object properties and datatype properties.

We used the Google’s satellite image to define qualitative spatial relations
between regions, especially cone-shaped directional relations between their cen-
troids. We located the individuals representing regions of the campus, according
to the class they belong. We created one picture for almost every class of our
ontology. Sub-figures of 4.2 depict the classified regions. The colored square
symbols represent the centroids of these regions. Adobe Photoshop C5 [29]
proved very helpful for this. So for example, the ”Ruler Tool” was used to
position elements precisely and measure the angles between them.
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Class Description Individual

Region Superclass of the on-
tology. Every indi-
vidual of this ontol-
ogy represents a re-
gion. Individuals not
belonging in any of the
other subclasses are
defined here directly.

Campus,the road in-
side the campus and
the gate.

Bus Stop Bus stops serving a
number of destina-
tions throughout the
campus.

Bus stop serving ECE
department and 5
more bs.

Classrooms Groups of class-
rooms or classrooms-
buildings. Parts of
a classroom group
should not be defined
as an individual of
this class.

Amphitheatre, group
E and 4 more groups.

Department Departments of the
Technical University
of Crete.

ECE, DPEM and 4
more departments.

Facilities Facilities of the cam-
pus.

Sports Facilities of the cam-
pus for sports activi-
ties.

Basketball courts and
4 more courts.

Residence Facilities of the cam-
pus for student’s ac-
commodation.

Hestia.

Food Facilities of the cam-
pus for food serving.

Restaurant, 3 Cafete-
rias.

Parking Areas that serve park-
ing throughout the
campus.

Parking area 1-14.

Services Central offices, li-
braries and other
buildings providing
services.

NOC, ISC 1-2, Career
Services and 5 more.

Table 4.1: Classes and instances in the TUC spatial ontology.
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Object Property Description Subject class to
be applied (do-
main)

Object class
to be applied
(range)

CSDDefined Cone shaped direc-
tional relations be-
tween centroids of
regions.

Region, Bus Stop,
Classrooms, De-
partment, Fa-
cilities, Parking
Services.

Region, Bus Stop,
Classrooms, De-
partment, Fa-
cilities, Parking
Services.

northOf
northEastOf
eastOf
southEastOf
southOf
southWestOf
westOf
northWestOf
identicalTo

RCCDefined RCC-8 topological
relations between
regions.

Region, Bus Stop,
Classrooms, De-
partment, Fa-
cilities, Parking
Services.

Region, Bus Stop,
Classrooms, De-
partment, Fa-
cilities, Parking
Services.

disconnected-
From
equalsTo
externally-
ConnectedTo
hasNon-
Tangential-
ProperPart
has-
Tangential-
ProperPart
non-
Tangential-
ProperPartOf
partially-
Overlaps
tangential-
ProperPartOf

hasParking Non-spatial rela-
tion representing
that a region is
served by a parking
area.

Classrooms, De-
partment, Facilities
and Services.

Parking.

Table 4.2: Object Properties in the TUC spatial ontology.

Datatype Property Description Subject class to be
applied (domain)

Object class to be
applied(range)

hasName Relation defining the
full name of a region

Region, Bus Stop,
Classrooms, De-
partment, Facilities,
Parking Services.

Type “String”

hasCodeName Relation defining a
code name of a region
according to campus
Map

Region, Bus Stop,
Classrooms, De-
partment, Facilities,
Parking Services.

Type “String”

Table 4.3: Data Properties in the TUC spatial ontology
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Figure 4.2: Google Satellite - Technical University of Crete

Departments of TUC Groups of classrooms of TUC
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Services of TUC Facilities(Sports-Food-Hestia) of TUC

Parkings of TUC BusStops of TUC
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4.3 Response Time

In order to test the practical efficiency of reasoning algorithms, it is necessary to
generate a large number of test instances. Ideally, these must be real instances
of existing applications. The ”TUC spatial ontology” described in 4.2 it’s such
an application. However, the relatively small number of instances (regions) of
the TUC ontology (in the order of 50) was a limitation for the thorough anal-
ysis of the performance of CHOROS. To objectively assess the performances of
CHOROS, additional instances are generated using a random generator (100
instances into the TUC ontology). In the following, to demonstrate the perfor-
mance of our reasoner, we discuss measurements of response time for reasoning
as a function of the number of instances (individuals) in the TUC ontology. We
separate these diagrams in two categories:

∙ Average case diagrams. Average measure of time the algorithm takes on a
random input of n individuals (range 10-100). In real applications, much
less than O(n2) relations (between n individuals) are asserted.

∙ Worst case diagrams. Longest running time performed by the algorithm
given a hard input of n individuals (range 10-100). For n individuals,
O(n2) relations are asserted into the knowledge base.

For each category we measured the performance of of the following imple-
mentations:

∙ Choros version 0.1 applies to consistency checking over a CSD calculus of
9 basic relations.

∙ Choros version 0.2 applies to consistency checking over a CSD calculus
of 8 basic relations. Spatial relation ”identical to” is replaced by the owl
axiom ”sameAs”.

∙ Multithreading technique enables ”parallel” execution of CSD and RCC
consistency checking.

Figure 4.3 (a) shows average case complexity of Choros 0.1, contrasted with
the multithreading technique implemented on the same version. Figure 4.3 (b)
shows the same contrast for Choros 0.2, while in figure 4.3 (c) we compare
the multithreaded approach of the two versions. Figure 4.4 illustrates results of
worst case complexity, likewise.

Computational complexity usually focuses on worst case complexity, but
average case complexity is also important. In the following, the results confirmed
our theoretical expectations.

The average case diagrams of Fig 4.3 reveal that , path-consistency algo-
rithm in CHOROS exhibits nearly linear running time. On the other hand,
worst case diagrams show that the algorithm is upper bounded by a polynomial
expression in the size of its input. Specifically, in our implementation, path
consistency has O(n3) worst time complexity.

In the next section we compare our implementation of qualitative spatial
reasoning of CHOROS with the SOWL reasoner implemented in SWRL [7].
The order of growth of the average-case and worst-case complexity is used to
compare the efficiency of these two mechanisms.
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(a) Choros 0.1

(b) Choros 0.2

(c) Choros 0.1 vs Choros 0.2

Figure 4.3: Average case diagrams of (a), (b) and (c)
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(a) Choros 0.1

(b) Choros 0.2

(c) Choros 0.1 vs Choros 0.2

Figure 4.4: Worst case diagrams of (a), (b) and (c)
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4.4 Implementing path consistency using Java
compared to SWRL rules

Choros as well as SOWL support reasoning over qualitative spatial data. In
this section we focus on the differences of these implementations, in order to
distinguish the advantages and disadvantages of each.

SOWL CHOROS

Spatial Rep-
resentation

RCC-8 relations and cone-
shaped direction relations
are defined as object prop-
erties with extra character-
istics, i.e. disconnected-
From, externallyConnected
and partiallyOverlaps are
declared as symmetric.

RCC-8 relations and cone-
shaped direction relations
are defined as simple ob-
ject properties with no ex-
tra characteristics, i.e you
don’t have to declare in
the ontology that, “tangen-
tialProperPartOf” is the
inverse property of “has-
TangentialProperPart” or
that “disconnectedFrom” is
symmetric.

Reasoning
Architecture

Path consistency is im-
plemented by introducing
SWRL rules defining com-
positions and intersections
of supported relations un-
til a fixed point is reached
or until an inconsistency is
detected. Pellet that sup-
ports DL-safe rules is used
for inference and consis-
tency checking over spatial
and non spatial relations.

Consistency checking im-
plementation strictly sepa-
rates spatial reasoning from
semantic OWL-DL reason-
ing by using one exclusive
reasoner for each calculus.
Pellet is used only for infer-
ence and consistency check-
ing over non spatial rela-
tions.

Response
Time

According to average case
diagram (see Figure 4.5),
consistency checking ex-
hibits nearly linear running
time. Path consistency has
O(n3) worst time complex-
ity (see Figure 4.6). Con-
sistency checking over our
case study (TUC spatial
ontology) takes 2,3 seconds.

According to average case
diagrams (see Figure 4.5),
consistency checking ex-
hibits nearly linear run-
ning time or even better.
Path consistency has O(n3)
worst time complexity (see
Figure 4.6). Consistency
checking of ”TUC spatial
ontology” takes 1,5 sec-
onds.

Table 4.4: SOWL vs CHOROS
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Figure 4.5: Average case - Choros vs SOWL

Figure 4.6: Worst case - Choros vs SOWL
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Conclusion and Future
Work

CHOROS, is a qualitative spatial reasoning engine implemented in Java. CHOROS
provides consistency checking and query answering over spatial data represented
with the Region Connection Calculus (RCC) and the Cone-Shaped directional
logic formalism (CSD). It supports all RCC-8 and CSD-9 relations as well as
standard RDF/OWL semantic relations, both represented in RDF/OWL. As
such, it can answer mixed SPARQL queries over spatial and non-spatial rela-
tion types. CHOROS extends PelletSpatial’s hybrid architecture, which is based
on a composition table that implements a path-consistency algorithm. We also,
introduced a multithreading technique that enables to execute CSD and RCC
consistency checking concurrently. As a case study we presented ”TUC spa-
tial ontology”. Empirical investigation of the practical efficiency of our engine
showed that consistency checking exhibits nearly linear running time averagely,
and has O(n3) worst time complexity.

There are a number of directions for future work. We are planning to extend
CHOROS support qualitative temporal reasoning on basic Allen relations. We
can also support reasoning beyond the base relations of each calculi. Most tools
support disjunctive relations between two regions to be asserted and a maximal
tractable set of disjunctive relations has been shown to ensure the soundness
and the completeness of the path-consistency algorithm. Scalability issues for
large scale applications are also important issues for future research.
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