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Abstract

RoboCup is an international robotic soccer competition aiming at advancing re-
search in autonomous robotics and artificial intelligence. Path planning decisions of a
robot are important in avoiding collisions in the dynamic environment of a populated
soccer field, since such collisions cause hardware damages, loss of valuable time, and
penalties according to the game rules. This thesis describes a path planning method
for autonomous robots in dynamic environments based on the construction of a local
egocentric occupancy polar map for representing obstacles and the A* heuristic search
algorithm for deriving collision-free paths to desired goals. The proposed approach
creates and maintains a probabilistic occupancy grid map which discretizes the phys-
ical area close and around the robot using variable resolution and holds the robot’s
belief about the existence or not of obstacles. The occupancy values in the map are
updated using real-time sensory information from ultrasonic or any other range sen-
sors. Translation and rotation transformations of the map are implemented, in order
to maintain the correct placement of obstacles relative to the robot consistently with
its movements. Given a desired target position and orientation, an A* heuristic search
algorithm in the three-dimensional space (coordinates on the field and orientation) de-
rives an optimal path taking into account the omni-directional locomotion abilities of
the robot (forward, side, rotating steps and combinations). The derived path provides
the motion controller with the waypoints needed to set appropriately the velocities of
the robot to move along the path. The proposed method has been implemented on
Aldebaran Nao humanoid robots and can be used for planning and replanning paths
in real-time. The method is deployed by the Technical University of Crete RoboCup
team “Kouretes” in the Standard Platform League of the RoboCup competition to move
the robots safely around the field without collisions towards any desired position and
orientation.
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Περίληψη

Το RoboCup είναι ένας διεθνής ρο�ποτικός διαγωνισ�ός, που στοχεύει στην προώθηση
της έρευνας σε θέ�ατα τεχνητής νοη�οσύνης και ρο�ποτικής. Οι αποφάσεις ενός

ρο�πότ που σχετίζονται �ε το σχεδιασ�ό διαδρο�ών είναι ση�αντικές για την απο-

φυγή συγκρούσεων στο δυνα�ικό περιβάλλον ενός πολυπληθούς γηπέδου, καθώς

τέτοιες συγκρούσεις προκαλούν βλάβες του υλικού, απώλεια πολύτι�ου χρόνου,

και ποινές σύ�φωνα �ε τους κανόνες του παιχνιδιού. Στην παρούσα εργασία, περι-

γράφεται �ια �έθοδος σχεδιασ�ού διαδρο�ής σε δυνα�ικά περιβάλλοντα για αυτόνο�α

ρο�πότ, η οποία βασίζεται σε έναν τοπικό εγωκεντρικό πολικό χάρτη πληρότητας

για την αναπαράσταση ε�ποδίων και στον αλγόριθ�ο ευριστικής αναζήτησης Α* για

την εύρεση διαδρο�ών χωρίς ε�πόδια προς επιθυ�ητούς στόχους. Η προτεινό�ενη

προσέγγιση δη�ιουργεί και συντηρεί ένα πιθανοτικό πλέγ�α χάρτη πληρότητας που

διακριτοποιεί τον φυσικό χώρο κοντά και γύρω από το ρο�πότ �ε �εταβλητή ανάλυση

και αναπαριστά την πεποίθηση του ρο�πότ για την ύπαρξη ή όχι ε�ποδίων. Οι

τι�ές πληρότητας στο χάρτη ενη�ερώνονται χρησι�οποιώντας πληροφορίες πραγ�α-

τικού χρόνου από αισθητήρες υπερήχων ή άλλους αισθητήρες απόστασης. Προ-

κει�ένου να διατηρηθεί η σωστή τοποθέτηση των ε�ποδίων σε σχέση �ε το ρο�πότ

και σύ�φωνα �ε τις κινήσεις του, υποστηρίζονται �ετασχη�ατισ�οί �ετατόπισης

και περιστροφής του χάρτη. �οθέντων των συντεταγ�ένων και του προσανατολι-

σ�ού κάποιου στόχου, �ια ευριστική αναζήτηση τύπου Α* στον τρισδιάστατο χώρο

(συντεταγ�ένες στο γήπεδο και προσανατολισ�ός) εξάγει �ια βέλτιστη διαδρο�ή,

λα�βάνοντας υπόψη τις ικανότητες �ετακίνησης του ρο�πότ προς κάθε κατεύθυνση

(ε�πρός, πλαϊνά, περιστροφικά βή�ατα και συνδυασ�οί). Το �ονοπάτι που εξάγεται

παρέχει στον ελεγκτή κίνησης τα απαραίτητα ση�εία για να ρυθ�ιστούν κατάλληλα οι

ταχύτητες του ρο�πότ ώστε να κινηθεί κατά �ήκος της διαδρο�ής. Η προτεινό�ενη

�έθοδος έχει υλοποιηθεί σε ανθρωποειδή ρο�πότ Aldebaran Nao και �πορεί να χρη-
σι�οποιηθεί για το σχεδιασ�ό και ανασχεδιασ�ό διαδρο�ών σε πραγ�ατικό χρόνο. Η

�έθοδος χρησι�οποιείται από την ο�άδα ρο�ποτικού ποδοσφαίρου «Κουρήτες» του

Πολυτεχνείου Κρήτης στο πρωτάθλη�α Standard Platform League του RoboCup
για την ασφαλή �ετακίνηση των ρο�πότ στο γήπεδο χωρίς συγκρούσεις προς ο-

ποιοδήποτε επιθυ�ητό στόχο και προσανατολισ�ό.
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Chapter 1

Introduction

Path planning decisions of a robot are important in avoiding collisions in the dynamic

environment of a populated soccer field, since such collisions cause hardware damages,

loss of valuable time, and penalties according to the game rules. This thesis describes

a path planning method for autonomous robots in dynamic environments, such as a

soccer field, based on the construction of a local egocentric occupancy polar map for

representing obstacles and the A* heuristic search algorithm for deriving collision-free

paths to desired goals.

The proposed approach creates and maintains a probabilistic occupancy grid map

which discretizes the physical area close and around the robot using variable resolution

and holds the robot’s belief about the existence or not of obstacles. The occupancy

values in the map are updated using real-time sensory information from ultrasonic

or any other range sensors. Translation and rotation transformations of the map are

implemented, in order to maintain the correct placement of obstacles relative to the

robot consistently with its movements.

Given a desired target position and orientation, an A* heuristic search algorithm

in the three-dimensional space (coordinates on the field and orientation) derives an

optimal path taking into account the omni-directional locomotion abilities of the robot

(forward, side, rotating steps and combinations). The derived path provides the motion

controller with the waypoints needed to set appropriately the velocities of the robot to

move along the path.
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1. INTRODUCTION

1.1 Thesis Contribution

This thesis presents a method to create a fully parametrizable probabilistic occupancy
grid map, that holds information about the existence or not of obstacles around the
robot. The methodology used to update and transform the map consistently to the
robot’s movement, is also explained in details, and is platform independent.

Furthermore, this thesis deals with the implementation of an A* heuristic search
algorithm in the three-dimensional space. The classic A* algorithm as applied on a
graph to extract an optimal path, is converted, in order to take into account, besides
the coordinates, the orientation of every node it traverses. The paths generated by
this algorithm, are provided to a motion controller to produce velocity commands that
move the robot to along the path to a desired target.

1.2 Thesis Outline

The main contribution of this thesis is the presentation of the obstacle avoidance and
path planning module, its implementation and the benefit of the methodology for robot
navigation.

In chapter 2 some necessary background information on the RoboCup competition
are discussed, focusing on the Standard Platform League. The RoboCup team Kouretes
is presented. Additionally, it briefly describes the robot platform Kouretes them uses
in SPL, Aldebaran Nao humanoid robot. Furthermore, the occupancy grid and A*
algorithm theory used, are presented.

In chapter 3, the issue is the need of an occupancy grid, to hold information about
obstacles existence and a path planning algorithm, to provide path steps that guide the
robot to the desired destination.

In chapter 4, the core ideas of the approach are represented. Details are provided
about the building of the occupancy map and its transformations according to robots
moves, in order to always keep the newest and correct information. In addition, the A*
algorithm implemented in this thesis is presented.

Chapter 5, provides implementation details pertaining to the Monas architecture
and the Nao robot. Moreover, here are presented problems and assumptions made
during the implementation.
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1.2 Thesis Outline

In Chapter 6, a discussion on the results is taking place by providing several exper-
iments in order to evaluate our work.

In Chapter 7, the different approaches to the subject of obstacle avoidance and path
planning implemented by other RoboCup teams are presented and they are compared
to this thesis approach.

Future work and proposals on extending and improving our framework are the
subject of the chapter 8.
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Chapter 2

Background

2.1 RoboCup Competition

RoboCup is an international competition where robotics researchers from around the
world come together in a face-to-face game of football. Each game poses a challenge
not only in the football skills of the team but mainly in broad artificial intelligence and
robotics research areas including real-time sensor fusion, reactive behavior, strategy
acquisition, learning, real-time planning, multi-agent collaboration, context recogni-
tion, vision, strategic decision-making, motor control, intelligent robot control, design
principles of autonomous agents and the ultimate goal to advance the state-of-the-art
in the area.

RoboCup’s history is not that long; the idea of robots playing soccer game was first
mentioned by Professor Alan Mackworth in 1992 but it was not until 1993 that Hiroaki
Kitano [5] proposed the formation of the RoboCup Federation.

The proposed goal stated the following

“By mid-21st century, a team of fully autonomous humanoid robot soccer players
shall win the soccer game, comply with the official rule of the FIFA, against the

winner of the most recent World Cup.”
(http://www.robocup.org/about-robocup/objective/)

This quote has inspired a great number of researchers resulting in more than 70
teams competing and collaborating to reach this goal in many different leagues.
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2. BACKGROUND

2.1.1 RoboCup Leagues

The contest currently has four major competition domains, each with a number of
leagues and subleagues. Besides RoboCup Soccer, which we will subsequently ana-
lyze more, RoboCup also includes competitions in search-and-rescue missions (RoboCup
Rescue), everyday life assisting applications (RoboCup@Home), and age-restricted
leagues in soccer, dance, rescue and CoSpace (RoboCup Junior).

RoboCup Soccer League
RoboCup chose to use soccer as a central topic of research, aiming at innovations to
be applied for socially significant problems and industries. This choice also serves
the goal of developing a team of fully autonomous humanoid robots that can compete
against the human world champion team in soccer by 2050 and win. The main focus
of the RoboCup competitions is the game of football/soccer, where the research goals
concern cooperative multi-robot and multi-agent systems in dynamic adversarial envi-
ronments. All robots in this league are fully autonomous. The games also serve as a
great opportunity to entertain and educate the public in science- and techology-related
issues. RoboCup Soccer League separates in five subleagues.

Simulation League
The Simulation League (Figure 2.1) focus on artificial intelligence and team strategy
without the necessity to maintain any robot hardware. There are 2 competitions: 2D
and 3D, where autonomous agents play soccer in a virtual soccer stadium inside a
computer.

Small Size League
The Small Size league or F180 league as it is otherwise known (Figure 2.2), takes place
between two teams of five robots each. The robots must fit within an 180mm diameter
circle and must be no higher than 15cm unless they use on-board vision. This league
focuses on the problem of intelligent multi-robot/agent cooperation and control in a
highly dynamic environment with a hybrid centralized/distributed system.
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2.1 RoboCup Competition

Figure 2.1: Simulation league, 3D field

Figure 2.2: Small size league
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2. BACKGROUND

Middle Size League
Middle-sized robots of no more than 50 cm in diameter play soccer in teams of up to
6 robots with regular size FIFA soccer ball on a field similar to a scaled human soccer
field (Figure 2.3). All sensors are on-board. Robots can use wireless networking to
communicate. The research focus is on full autonomy and cooperation at plan and
perception levels.

Figure 2.3: middle size league

Humanoid League
In the Humanoid League (Figure 2.4), autonomous robots with a human-like body plan
and human-like senses play soccer against each other. Dynamic walking, running,
and kicking the ball while maintaining balance, visual perception of the ball, other
players, and the field, self-localization and team play are among the many research
issues investigated in the league. The league is divided in 3 subleagues, according
to robot sizes: Teen Size, Kid Size and Adult Size.(http://www.robocup.org/robocup-
soccer/humanoid/)
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2.1 RoboCup Competition

Figure 2.4: humanoid league

The Standard Platform League
In this league all teams use identical robots, the Aldebaran Nao humanoid robots, and
no modifications or additions to the robot hardware are allowed, including off-board
sensing systems. Therefore the teams concentrate only on software development, fo-
cusing on more efficient algorithms and techniques for visual perception, active lo-
calization, omni-directional motion, skill learning and coordination strategies, while
still using state-of-the-art robots. The robots operate fully autonomously; there is no
external control neither by humans nor by computers.

The SPL robot soccer games, until March 2012, were played between teams of four
robots on a 4m x 6m green field, marked with white lines.The official ball is a 65mm
in diameter orange street hockey ball, and the two goals have different colors, the one
is yellow and the other sky-blue. Robots’ teams are specified by waistbands, colored
blue and pink. The red team defends the yellow goal, while the blue team defends the
sky-blue goal.

A game consists of three parts, two 10-minute halves and a half-time break between
halves, during which teams change the colors and the defended goal. The game starts
with robots at predefined positions, as shown at Figure 2.4 and progresses much like a
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2. BACKGROUND

soccer game but with modified rules.

Figure 2.5: Manual settup for kick-off. Blue kick-off

2.2 Kouretes Team

Kouretes is a robotic team based at the Intelligent Systems Laboratory of the Depart-
ment of Electronic and Computer Engineering at the Technical University of Crete and
it was the first Greek team participating in Robocup competitions, specializing in the
Standard Platform League and the MSRS Simulation League.

The team was founded in February 2006 by Michail G. Lagoudakis, assistant pro-
fessor at Department of Electronic and Computer Engineering.The name Kouretes
refers to the five brothers, Epimedes, Paionaios, Iasios, Idas, and Hercules, that ac-
cording to Ancient Greek mythology were guarding newborn god Zeus.

Since its foundation the team has participated in every RoboCup competition, at
first with the Sony Aibo robots in the Four-Legged league. In 2007, the team began
also working with the newly-released Microsoft Robotics Studio (MSRS). By 2008
the team has started developing code for the Aldebaran’s Nao humanoid robot, the
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2.2 Kouretes Team

new robotic platform on the Standard Platform League and continued competing in
the simulations leagues using a combination of C++ and Ruby for the real robot, C#
for the simulated robot in MSRS, and Java for the simulated robot in Webots. Since
2009 the team works exclusively on the Nao robots, implementing their own code, a
fact that was aided by the completion of the work on the team’s software architecture
(Monas), by Alexandros Paraschos.

Kouretes have participated in many competitions, exhibitions, and affairs, the most
significant being the MSRS Simulation Challenge at RoboCup 2007 in Atlanta in
which the team was placed 2nd place worldwide, Robocup 2008, Suzhou, China where
the team’s efforts were rewarded in the best possible way: 3rd place in Nao league and
1st place in the MSRS simulation, and the most recent in Robocup 2011, Istanbul,
Turkey, where the team placed second in Standard Platform League’As Open Chal-
lenge Competition

Figure 2.6: Kouretes team 2011 formation. From left to right in the front row are Astero-
Dimitra Tzanetatou, Iris Kyranou, Angeliki Topalidou- Kyniazopoulou, and in the back
row standing up Emmanouel Orfanoudakis, Eleutherios Chatzilaris, Nikolaos Spanoudakis,
Michael Lagoudakis and Evangelos Vazaios .

More information and news of the team but also of its members can be found at
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2. BACKGROUND

http://www.kouretes.gr.

2.3 Aldebaran’s Nao Humanoid Robot

Nao (Figure 2.7) is an autonomous, programmable, medium-sized humanoid robot de-
veloped by French company Aldebaran. It was first presented in 2008, and Aldebaran
Robotics has announced its commercial release of Nao robot v4 in 2012 promoting it
as an educational robotic platform and a family entertainment robot affordable to most
budgets.

It was first introduced to the RoboCup world in 2008, in its initial limited edi-
tion (RoboCup edition v2) and it dramatically changed the Standard platform league
scenery by completely replacing the Sony’s four-legged robot Aibo.

2.3.1 Nao Hardware

Nao , in its current version, is a 57-cm tall, biped robot, that weights 5,2 kg and its
RoboCup edition has 21 degrees of freedom, two on its head, four on each arm, one
on the pelvis and five on each leg. The Nao robot v3 that was used in this thesis
carries a full computer on board with an AMD GEODE processor at 500 MHz, 256
MB SDRAM, and 2 GB flash memory running an Embedded Linux distribution. It
is powered by a Lithium-Ion battery which provides about 60 to 90 minutes. NAO
robot communicates with remote computers via an IEEE 802.11g wireless or a wired
ethernet link.

The Nao robot is equipped with a variety of sensors and actuators.Two 920p cam-
eras are located on its head which provide video capture at maximum 640x480 pixels
resolution at 30 frames per second. The two cameras, the first located on Nao’s fore-
head, and the second one at mouth level, cannot operate simultaneously, so each time
the robot choses which one provides better cover for the specified task. Two micro-
phones are also mounted on the robot’s ears, allowing stereo audio perception, and can
be used for sound communication.

On the main body of the robot are located two pairs of ultrasound emitters and re-
ceivers, used to provide information about obstacles close to the robot (see section 5.1).
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Figure 2.7: Nao robot, joints and sensors

The inertial unit is also located in the robot’s torso with its own processor. The cen-

tral unit is made by two 1-axis gyrometers and one 3-axis accelerometer, that provide

real-time information about the torso speed and attitude (Yaw, Pitch, Roll).

Regarding contact sensors, there is a chest button, which is used to open and control

the robot, head and hand tactile sensors. A pair of bumpers is located at the tip of

each foot, providing information on collisions of the feet with obstacles, and an array

of force sensitive resistors is placed on each foot, providing feedback on the forces

applied to the feet. Finally the robot has a number of LEDs on its body, usually used as

indications for their current state and two speakers, that can be used for robot-human

or robot-robot communication.

For its movement, the robot has a variety of motor types with different speed re-

duction ratios, that each time are used to manipulate the head, arm and leg joints, to

provide the appropriate posture and movement to the body.
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2.3.2 NaoQi

Nao can be programmed and controlled in many high-level languages, such as C, C++,
and Python, using Linux, Mac or Windows. Aldebaran provides a programming frame-
work, NaoQi, that serves as a software middleware. It is based on a client-server ar-
chitecture, where NaoQi itself acts as a server. This framework allows homogeneous
communication between different modules (motion, audio, video), homogeneous pro-
gramming and homogeneous information sharing.

The NaoQi executable which runs on the robot is a broker. The autoload.ini pref-
erence file contains the libraries that are going to be loaded in startup, and each library
instantiates one or more module classes that use the broker to advertise their methods.
Loading modules forms a tree of methods attached to modules, and modules attached
to a broker, with the latter providing lookup services so that any module in the tree or
across the network can find any method that has been advertised.

This way NaoQi allows developers use the predefined Aldebaran modules, but also
create new modules with specific functionalities. These modules can run either re-
motely, as executables outside the robot or locally, as libraries uploaded on the robot.

2.3.3 General Overview

In overall, Aldebaran Robotics designed and assembled a low-cost robot, which can
be a great, not only scientific, but also entertainment platform, easily programmable,
focusing on the wide audience of robotics’ researchers and fans. The development of
humanoid robots is a tough procedure that only few universities and companies have
undergone, and even fewer are located in Europe.

To be fair, one has to admit that the first version of Nao was not functional to
the level Robocup teams would like it to be. Nevertheless, most teams were able to
present some basic soccer behaviors, confirming that even under these limitations and
the minimum available time for development, people involved in Robocup gave their
best shot.

Nowadays, in February 2012, code development in Nao V3+, has become a less
tedious work, and we are all looking forward to take the best out of this platform, in
order to make our contribution in the RoboCup community.
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2.4 Occupancy Grid Mapping

The need of a map originates in the robot navigation problem. For any mobile device,
the ability to navigate in its environment is the primary goal in order to achieve any
task. A successful navigation consists on avoiding collisions, staying within safe and
predefined margins and reaching the goal in a reasonable amount of time. In order
to succeed in the navigation task, the agent must deal with problems like mapping,
localization, path planning and motion control.

Occupancy grid maps (Moravec kai Elfes) address the problem of generating con-
sistent maps from noisy and uncertain measurement data, under the assumption that
the robot pose is known [6].

The basic idea of the occupancy grids is the partition of the world space into a
finite number of random variables. Each variable corresponds in a specific area, which
is called ‘cell’. Each cell holds a probabilistic value that corresponds to the occupancy
of the location it covers. The value each cell holds, varies from 0 for obstacle-free
cells, to 1.0 for fully occupied cells. The unobserved cells hold the value of 0.5.

This structure is useful for combining different sensor scans, and even different
sensor modalities (sonar, laser, IR, bumper). The basic model of a single sonar beam
has a field of view specified by β, the half angle representing the width of the cone, and
R, the maximum range it can detect. This field of view is projected on an occupancy
map grid. As shown in figure 2.8, the field of view can be divided into four regions [7]:

Region I , where the affected cells are probably occupied

Region II , where the affected cells are probably empty

Region III , where the condition of the affected cells is unknown

Region IV , where the cells are outside the sonar field of view

The sensor returns a measurement distance r of the object detected. All cells falling
within this distance and inside the sonar beam area, are considered belonging at Region
I. The area with distance d < r is an empty area (Region II), or else there would be
a sonar measurement with r < d. So for a measurement r, the cells starting from the
one closer to the robot, to the furthest before the sonar measurement, are considered
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Figure 2.8: Sonar beam regions

empty in the whole sonar beam area. For the cells falling in Region III, no information
is obtained by this measurement.

2.5 Path Planning

Besides localization, a map is used to plan obstacle-free paths. Path planning deals
with the computation of collision-free paths in a robot’s environment. Given an initial
coordinate location and a target coordinate location, path planning algorithms compute
a set of waypoints that represent the best path from where the robot is currently located
to where it needs to be. These waypoints are translated to motion commands that move
the robot accordingly. In this thesis an A* algorithm 2.5.1 is implemented for this
purpose.

2.5.1 A* algorithm

A* Algorithm 2.9 is a computer search algorithm, usually used in pathfinding for holo-
nomic robots (robots that can instantaneously move in any direction), due to its flexi-
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bility (it can be used in a wide range of contexts and handle well varying terrain costs)
and its performance, that appears to be better than most graph searching algorithms.

The A* search algorithm assumes a metric map and handles the occupancy map
as a graph, where the location of each node is known in absolute coordinates, and
the graph edges represent whether it is possible to traverse between those nodes. The
algorithm produces an optimal path by starting from the initial node and then working
through the graph to the goal node adding up the cost of traversing each cell. When
looking at each node in the graph, A* uses a heuristic, which is the estimated cost of
getting from node n to a goal with the least cost h(n), and it stores the actual cost of
reaching node n from the initial state g(n). A* algorithm then combines these two
values to estimate f(n):

f(n) = g(n) + h(n)

As the algorithm runs, the f(n) value of a node tells us how expensive we think it will
be to reach our goal passing from that node. Thus, since the goal is to minimize cost,
the A* search strategy suggests firstly to try the node with the lowest value of f(n).
Provided that the heuristic function h(n) is admissible, A* search is both complete and
optimal [8].
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A*. Informed search using a heuristic function and memory to avoid re-
expansion.

Input: node node, list of nodes fringe
Output: success or failure

if node.isGoal = true then
return success(node)

end if
fringe ← insertAll(expand(node), fringe)

if fringe.empty = true then
return failure

end if
best ← the node in fringe with the lowest f -value
fringe ← delete(best, fringe)

return A*(best, fringe)

Figure 2.9: The A* algorithm (initial call with A*(root, [ ])).
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Chapter 3

Problem Statement

3.1 Obstacle Avoidance

For an autonomous agent in a real field, the need to avoid collision with other objects
is constant. An obstacle is everything that can be found in the close environment of the
robot, and prevents the robot from achieving its goal. These objects can be anything,
from known and expected objects, like other robots or goal posts in a soccer field, to
unknown such as humans or walls. Moreover, these obstacles will not always be static,
but they will also be moving in the same field, and sometimes even coming towards
the robot. An impact with an obstacle can have unwanted results, as is the fall of the
agent, which makes it more vulnerable to hardware damage and loss of its localization.
Eventually, it ends in loss of time, which is crucial when competing in a soccer field,
while the robot tries to find again its position and goal.

3.1.1 Obstacle Avoidance in Standard Platform League

In the SPL, eight robots are competing in a 4 x 6 m field. With the exception of
the goalies, the aim for the rest of the robots is the fast approach of the ball and the
attempt to score a goal. Even if each team is playing with a defender, who is not
aggressively approaching the ball, there are still four robots remaining to fight for the
ball. Eventually, two or more robots will be found in a very close distance from each
other, which ends in collisions. The SPL pushing rules [9] are similar to a real soccer
game foul rules and every time a robot pushes another one hardly enough to knock it
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off-balance the offending robot gets penalized by staying out of game for 30 seconds.
Pushing rules also apply on robots of the same team, and after the count of four pushes,
the last robot is removed from the field for the rest of the half. After that, a robot is
removed in every two pushes. These rules make it clear that an obstacle avoidance
algorithm is essential for a team, in order to succeed in RoboCup games.

3.2 Path Planning

A simple obstacle avoidance algorithm would only take in account the direct front
obstacles each time, and simply move right or left in order to avoid whatever is in front
of the robot. This reactive approach is fast, but does not take under consideration the
rest of the map or even the goal. Thus, the robot tries to walk past the obstacle, usually
walking sideways. The problem is that the opponent robot, most commonly executes
a similar walk in order to avoid the first robot, ending in both robots walking sideways
face to face, and losing the ball.

The desired approach would be the one that not only avoids the direct obstacles
but also calculates a path that will guide the robot to the ball fast and without colli-
sions. That is succeeded with a path planning algorithm, that uses a map of the robots’
surrounding objects and decides an optimal collision-free path. Moreover, although
the robot’s walk is omnidirectional (meaning it can walk in every possible way) the
front walk is the fastest one. Therefore a path that takes advantage of the free spaces
in a way that the robot walks straight front is preferable. If the robot knows from the
beginning that an obstacle is in a specific position, it can decide a path, that exploits
the faster straight walk earlier in the path, therefore approaching the ball faster that the
opponent.

Additionally, approaching the ball any possible way is not always the best choice.
If the robot knows that it is facing its own goal and the ball is in a distance front of
the robot, then just going straight front finally brings the robot in a position that is not
useful to kick front, since that would mean a point in favor of the opponent. In this
situation, the preferable walk is to approach the ball with a longer path, but guide the
robot to face the opponent goal. This way, the robot has a better position for a front
kick, and simultaneously is defending its goal, by standing between the ball and the
opponent’s winning kick.
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This is succeeded by implementing a path planning algorithm that also takes under
consideration the desired robot’s orientation in reference to the opponent’s goal, apart
from the goal’s coordinates.
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Chapter 4

Obstacle Avoidance Module

The methodology suggested first builds a local obstacle occupancy map, that is updated
constantly with real-time sonar information. The robot is considered to be constantly
in the center of the occupancy map, and facing front. Therefore, in order to always
keep updated and correct information about the position of the obstacles, translation
and rotation methods are implemented to change the map accordingly to the robot’s
movement. Finally, after obtaining the current, updated and transformed map, an A*
algorithm decides the best path towards the ball. Information about this methodology
is presented subsequently.

4.1 Occupancy grid

For collision avoidance, the first step is to detect the obstacles and keep information
about their position. In order to accomplish this, each robot builds and maintains a
local obstacle map of its surrounding.

The robot’s world is discretized and stored in a n x k polar grid covering the 360◦

area around the robot. The robot is always located in the center of the grid. The areas
that are defined by the concentric circles are referred in the thesis as rings and the slices
in which the diameters cut the circle are referred as sectors

This polar grid is updated using distance readings from the ultrasonic sensors,
which are not a reliable source of information about obstacles. The possibility of false
positives is high, the sensor’s coverage increases, especially closer to the beam range,
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and the low update rate can end up in a very inaccurate and uncertain model about the
robot’s world. Thus, the map update cannot depend only on instant readings, forgetting
everything that was previously sensed. On the other hand, holding every information
that was read is not a good idea, considering that sensor readings can be so noisy, and
the environment is dynamic.

The solution chosen was to fuse new readings with the old ones, and apply an aging
algorithm to bring the unobserved cells’ occupancy values closer to the one suggesting
little knowledge about the obstacles or free spaces existing in the cells’ cover area
(value of no knowledge 0.5, see 2.4). The way this is implemented is explained in the
following section.

4.2 Map Update

Every cell in the occupancy grid, is initialized in the unknown state and holds the value
0.5. The first step in updating the map is to determine the area the sonar reading covers.
The sonars on the robot’s torso are placed on a specific and known angle θ.

Given a reading r from a sonar, and knowing the sonar’s position, the four regions
shown in figure 2.8 can be determined. Any reading r > R, where R is the sonar beam
distance range, is not taken under consideration.

The polar values of the reading (r, θ) are mapped in a specific cell on the polar
grid. This cell falls in Region I. All the neighbor cells with same distance (r) from the
robot, and in an angular distance that falls into the effective cone of the sonar beam,
are also considered to be in Region I.

Now, given the reading r we know that the area with distance d < r is an empty
area (Region II), or else there would be a sonar measurement with r < d. Therefore
for a measurement r, the cells starting from the one closer to the robot, until the last
before the sonar measurement, are considered empty in the whole sonar beam area.

The map is actually updated by increasing (by a factor IncrFactor, currently 1.6)
the present occupancy value each cell holds every time the cell falls in Region I and de-
creasing (by a factor DecrFactor, currently 0.8) the occupancy value when in Region
II, as shown in the following equations

Grid[ring][sector] = Grid[ring][sector] ∗ IncrFactor
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Grid[ring][sector] = Grid[ring][sector] ∗DecrFactor

The maximum value a cell can hold is 1.0 and it means the cell is considered
occupied by an object at the corresponding position in the field, and the minimum
value is 0.08, which responds to the confidence that the cell is empty.

For the cells after the last reading, no knowledge is obtained and they fall in Region
III.

One problem arising is that the robot is not a one-dimensional object, but has some
volume that should be taken under consideration. If not, the calculated paths will pass
through areas that a robot does not actually fit, ending to collisions. The problem
becomes more obvious considering the total area covered by three cells close to the
robot, as opposed to three cell in distance R.

In order to solve this problem, each obstacle measurement is expanded, so as the
final obstacle area will have a radius equal to the robot’s body radius. Thus ensuring,
that the areas marked as empty, and so free to walk, are safe for the robot to pass
through.

Over time, obstacle cells might leave the sensors’ scope and fall in Region IV.
Moreover, odometry accumulates a significant error, ending in inconsistent informa-
tion. To avoid keeping any old and inconsistent information, all cells are updated
accordingly to an aging model, that in regular time intervals (currently 2 s), brings a
cell’s value closer to the unknown state (value 0.5), by a factor AgeFactor (currently,
0.8).

Grid[ring][sector] = (Grid[ring][sector]− 0.5) ∗ AgeFactor + 0.5

4.3 Map Transformations

The grid is local and moves accordingly with the robot. Locomotion of the robot
triggers appropriate transformations on the polar grid. In order to always maintain
the correct position of the mapped obstacles, according to the robot’s position and
orientation each time, the map supports translation and rotation algorithms.
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4.3.1 Move Robot

The robot’s coordinates and orientation are given by a global system and are updated
by the robot’s odometry measurements. Robot’s x, y and angle positions are initial-
ized with the first odometry values read, where x is the distance covered on x-axis,
y is the distance covered on y-axis, and angle is the angular distance in robot’s ori-
entation. After initialization, every time the ObstacleAvoidance module is called, the
new odometry measures are read, and the difference between them, and the old ones
is calculated. These measurements are then translated into a local coordinates system,
used to decide the actual front and side distance, and angle covered by the robot.

Figure 4.1 shows two different positions for the robot. The distance covered on
x-axis is diffX = x1 − x0, on y-axis is diffY = y1 − y0 and the angular distance
is diffA = θ1 − θ0. These differences correspond in distance covered in the global
coordinates system. Thus, a transformation to the robot’s local coordinates system is
needed. First the distance covered by the robot and its rotation are calculated:

diffD = sqrt(diffX2 + diffY 2)

diffT = atan(diffY, diffY )

And then the distance actually covered by the robot is:

diffX = diffD ∗ cos(diffT − θ0)

diffY = diffD ∗ sin(diffT − θ0)

Now these values (diffX , diffY ) with the angle difference (diffA) are used to
transform the grid and move the obstacles in the correct cells.

4.3.2 Grid Translation

The translation method uses the polar coordinates of each cell to calculate the cartesian
coordinates. The cartesian coordinates of each cell are pre-calculated in order to min-
imize the computational complexity. Then it simply adds to this cell’s coordinates the
distance covered on x, and y-axis, and transforms the new cartesian coordinates back
to polar. These are now the coordinates of the new cell that is going to be replaced
by the old one. If more than one translated cells fall into the new cell’s area, then the
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Figure 4.1: Two positions of the robot [2]

average occupancy value is stored in the new cell. An example of a grid moving 0.1m
in x-axis and 0.1m in y-axis, is shown in figure 4.2

(a) Grid with four obstacles before move (b) Grid after move

Figure 4.2: Grid translation: Grid before (a) and after (b) move. Robot moves 0.1m in
x and 0.1m in y
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4.3.3 Grid Rotation

The rotation is less computationally complex than the translation of the grid. The polar
map offers a straight forward approach to the rotation calculations. Each cell s rotated
for n sectors, is simply replaced by the s+ n cell, wrapped around N , where N is the
total number of grid cells. An example is shown in figure 4.3

(a) Grid with four obstacles (b) Grid after rotate

Figure 4.3: Grid rotation: Grid before (a) and after (b) rotate. Robot rotates for 40◦

4.4 Path Planning

The map holds each moment the current perception of the robot’s world. For the
calculation of the obstacle-free path that will guide the robot to a desired destination,
an A* algorithm is used (more information about A*algorithm at 2.5.1).

The occupancy grid is easily conceived as a graph, considering each cell as a graph
node and the connectivity between neighbor cells as the graph edge. In the polar grid
described, each node has eight neighbors, except the first one, that simulates the robot
itself and has N neighbors (N , being the number of sectors of the polar grid), and those
that fall on the first and the last ring, that only have five neighbors.

The A* algorithm implemented serves as a level between behavior and motion
control. It takes as input the desired destination and orientation, and the output is the
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waypoints translated to actual walk commands. Each one of the cells, represents the
possible positions in which the robot can end up after the move and is translated in
walk commands by the motion controller. Assuming that the robot faces the way the
blue arrow points (see figure 5.2 the sector following the arrow’s direction is the front
move. The contradictory sector is the back move, and the ones lying on the x-axis are
the left and right side moves.

In the simple A* algorithm (see section 2.5.1), all the node’s neighbors are ex-
panded. That would mean that the first node would expand N neighbors, including
those being on the back of the robot. The motion controller handles these cells as
backwards movements. The problem lies on the fact that, although the robot’s walk
is omnidirectional (meaning it can walk in every possible way) the front walk is the
fastest one. Therefore, the calculated path should take advantage of that fact, choosing
paths and take advantage of the free spaces in a way that the robot walks straight front.

That is succeeded by not allowing the A* algorithm expand node’s neighbors that
end in backward movements. The algorithm expands the three front neighbors and the
two side ones, because they are translated in front and side movements, and ignores
the three neighbors that translate in back movements (back, right back, left back ), as
unwanted move situations in a soccer field.

Another problem, mentioned in section 3, is that approaching the ball any possible
way is not always the best choice for the robot. If the robot knows that it is facing
its own goal and the ball is in a distance in front of the robot, then just going straight
front finally brings the robot in a position that is not useful to kick front, since that
would mean a point in favor of the opponent. In this situation, the preferable walk
is to approach the ball with a longer path, but guide the robot to face the opponent
goal. This way, the robot has a better position for a front kick, and simultaneously is
defending its goal, by standing between the ball and the opponent’s winning kick.

This suggests that besides the coordinates, the goal should also be described us-
ing its orientation. The goal node (r, s), where r is the ring and s is the sector with
front orientation is different than the same node with back orientation. The possible
orientations of a cell are discretized into eight, differing by 45◦. These are as shown in
figure 4.4.

Arriving to a front neighbor looking backwards is not a realistic position for a
robot, because the small distance between the cells (currently 10cm) is not enough
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Figure 4.4: The eight possible node orientations

for the robot to actually carry out the move. Taking this under consideration only
the neighbors that end up in a position the robot have actual time to arrive in such a
small movement are kept. Finally, the nodes chosen were the three front neighbors
with orientations responding to direct front, right front and left front orientations in
accordance to the actual robot’s orientation, and two side neighbors (left and right)
with the same orientation as the robot (see figure 4.5).

The only exception is the first node, representing the robot. The first node’s neigh-
bors are the three front neighbors, that are actually translated by the motion controller
to front move (the middle neighbor), and rotational in place moves to the right and left,
and the two nodes that lie on the x-axis, and are translated to the side steps.

The cost moving from a node to its neighbor, g(n), is calculated differently, ac-
cording to the particularities of each move. Besides the euclidean distance between
the current node and its neighbor, other metrics to take into account are the angular
distance between the two nodes, the side step cost, and the cell’s occupancy value.

For the three front neighbors g(n) is the sum of the euclidean distance to reach the
new nodes, plus the angle difference between the current and the neighbor node. More-
over, special attention is given to the orientation of the current node and the neighbor’s
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(a) The three front neighbors. (b) The side neighbors

Figure 4.5: The neighbors expanding during an A* algorithm run for every node besides the
first one, and their orientations. The grey node is the parent node.

orientation. The figure that follows 4.6(a) shows the neighbors that the robot can reach
with a straight and rotational move only. This move takes advantage of the fast front
walk of the robot in contrast to the two positions shown in figure 4.6(b). These are
translated by the motion controller as semi side steps with simultaneous front move-
ment, and are actually slower in execution that the first steps, adding extra cost in the
g(n) function.

(a) Movement with no extra side cost. (b) Movement with side cost.

Figure 4.6: Picture 4.6(a) presents the neighbors orientation that does not add extra cost in
the g(n) function, in contrast with the orientations shown in picture 4.6(a)

Euclidean distance is also used as the A* heuristic, which is admissible (since it
does not overestimate the distance to the goal), ensuring an optimal solution.
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Some examples of the A* algorithm results, are presented in the following im-
age 4.7

(a) Goal ring:7, sector:2, orientation:6 (b) Goal ring:8, sector:2, orientation:1

(c) Goal ring:8, sector:8, orientation:2 (d) Goal ring:8, sector:12, orientation:2

Figure 4.7: A* algorithm examples
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Chapter 5

From Theory To Practice

This section describes all the optimizations , implementation decisions and details of
Obstacle Avoidance Module. The primary goal is this module to be used on a robot
for the collision avoidance and path panning, specifically for the Standard Platform
League competition.

5.1 Sonars

The word “sonar” is originally an abbreviation for “SOund, NAvigation and Ranging”,
and refers to the sound detection technology used primarily for tracking enemy sub-
marines during World War II. There are two types of technology that share the name
”sonar”: passive sonar, that is only listening for the sound made by vessels, and ac-
tive sonar, which creates a pulse of sound and listens for reflections (echos) of the
pulse. The acoustic frequencies used in sonar systems vary from very low (infrasonic)
to extremely high (ultrasonic).

In the simplest terms, an electrical impulse, converted into a sound wave is emitted
into the air by the transmitter. When this wave strikes an object, it rebounds, and this
echo returns to the receiver. Since the speed of sound in the air is known, the object’s
distance can be calculated by simply measuring the time lapse between the transmitted
signal and the received echo.

The transducer concentrates the sound into a beam. When a pulse of sound is
transmitted from the transducer, it covers a wider area the farther it travels, creating a
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cone-shaped beam. The sound is stronger along the center line or axis of the cone and
gradually diminishes as it moves away from the center.

5.1.1 Nao Sonars

The Nao robot is equipped with two ultrasonic sensors (active sonars), located on its
torso (as shown at image 5.1), which allow it to estimate the distance to obstacles in
its close environment. The sonars are actually two transmitters (emitting pulses of
sounds) and two receivers (listening for the echoes of the emitted sounds), on the front
of the torso, that generate sound waves at 40Khz frequency. The receiver’s sensitivity
is -86 dB, the resolution 1 cm, and the effective cone 60 ◦.

Figure 5.1: Sonars position on robot torso

Theoretically the sonars’ detection range goes from 0.25m to 2.55m, but in reality
no measurement less than 0.29m has been noted. The robot has no distance information
about obstacles that exist closer than 0.29m. Each time the sonars give a value less than
0.29m we know the existence of an obstacle close to the robot, but cannot be sure about
its distance from the robot.
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The actual position of the sonars relative to the torso frame appear on the following

table:

Sonar Name X(m) Y(m) Z(m) WX(rd) [deg*] WY(rd) [deg*] WZ(rd) [deg*]
US Sensor 1 0.0537 -0.0341 -0.0698 0.0 -0.1745 [-10.0] 0.3490 [-20.0]
US Sensor 1 0.0477 -0.0416 -0.0509 0.0 0.2618 [15.0] -0.4363 [-25.0]

US Sensor 3 and US Sensor 4 are symmetrical, to US Sensor 1 and US Sensor 2

accordingly, with respect to sagittal plane of the robot.

5.2 The 10x18 polar grid

Although the sonar’s documentation states that it receives maximum distance measures

of 2.55m, in reality it has good performance only in measurements less then 1m. Thus,

the robot’s world is discretized and stored in a n x k polar grid covering the 360◦ area

of radius 1m around the robot. The map is fully parametrizable, and currently 10 rings

and 18 sectors in each ring are used, which corresponds in 10cm resolution in distance

from center, and 20◦ resolution in angle respectively. The robot is always located in the

center of the grid. Figure 5.2 shows the described polar grid in the different resolutions.

Since the detected objects in the field most commonly are robots, each measure-

ment from the sonars is expanded to the robot’s radius.

5.3 Map transformations

If the distance covered by the robot is less than the grid’s ring distance, the movement

cannot be shown on the map. Similarly, if the angle difference is less than the sector

angle distance, a rotation cannot be shown on the map. Therefore a translation in the

grid will happen after the robot covers 10cm distance movement, and a rotation will

occur after a 20◦ angle rotation movement of the robot. For smaller movement, no

change appears on the grid.
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(a) The polar grid used. Resolution 10x18
cells

(b) A polar grid with resolution 10x72
cells

(c) A polar grid with resolution 10x32 cells (d) A polar grid with resolution 18x32
cells

Figure 5.2: Four different resolutions of the polar grid. The four obstacles are in
distance 0.55m, on angles 45◦, 135◦, 225◦, 270◦.

5.4 A* implementation

For the A* algorithm described, a structure is needed to hold the nodes that where
generated and wait to be visited. This was implemented with a list that inserts the
nodes sorted by their f(n) values. After the first node, with the smallest f(n) value is
removed from this list it is added to another list, holding the nodes that were visited.
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Front walk (m) Side walk (m) Rotation (deg)
0.151 0.0826 53.3

Table 5.1: Average distances covered in front, side and rotation walks for one minute
run.

In order to use less memory resources, this was not implemented as a list, but an array
‘whatList’, with size equal to the total size of the cells. It was used, to hold information
about the list each cell is currently in. The cell can be in openList, closedList or in any
one of those two, because it was not yet reached. Each node generates its neighbor
nodes, the way described in section 4.4. The cost to reach each neighbor node, g(n), is
a combination of euclidean distance, with rotation distance between the current node’s
orientation and its neighbor’s orientation. The algorithm returns a path, only when
reaches in the desired cell with the desired orientation.

As mentioned before, the robot walks faster in front movement. The side steps are
limited by the connected hip, and the same distance with the front move is covered in
more time. Bellow is a table containing the average distances for the front, side and
rotational move for a minute run.

In this table it is obvious that the side steps cover a little less than the half distance
in the same time as the front move. This information is used in the g(n) cost calculation
of the A* algorithm.

The path returned is used by a simple motion controller to decide the next robot’s
move. It actually uses the first path waypoint returned, to calculate the velocity com-
mands. In order to implement a smoother move towards the goal, the motion controller
examines some steps after the first and the estimated distance to the goal, to adjust the
speed. The farther the robot is from the goal the faster the move will be. As the robot
reaches the destination, the walk commands slow down to avoid great overshoot.

5.5 Debugging

For debugging purposes, an offline code was implemented. While running on robot,
the ObstacleAvoidance module kept a log, about the information the offline code could
not have access, such as sensory information about obstacles and odometry, messages
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received from another module, stating the desired goal, and the time on regular inter-
vals. This information was then used as input in the offline code, that used the same
functions with the Obstacle Avoidance module running on the robot. The offline code,
used only the personal computer’s resources in order to draw the grid, as perceived
by the robot every time the ObstacleAvoidance module run (which is currently, every
250ms). The offline code can run step by step a whole game a robot played, and it also
prints useful information on the console, used to monitor the changes in the grid.
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Chapter 6

Results

A number of test were run in order to evaluate the methodology described in this thesis.

In this section three different experiments are described and presented.

6.1 Face Backwards

In this experiment the robot is positioned in the middle of the field and its goal is

to walk 1.2m on the side, and face the goal opposite to the one it was facing when

starting. A sequence of pictures follows 6.1 to show the robot’s actual move and the

polar grid representing the robot’s knowledge about its environment in every instance.

The calculated path is shown with red lines that also indicate the robot’s orientation.

6.2 Avoid obstacle and reach a specified goal

In this experiment the robot in positioned in the middle of the field and its goal is to

walk 0.5m on the front and 0.5m on the side. The desired orientation of the robot

when it reaches the goal is vertical to its orientation in the starting position. The path

the robot is following is represented with the red lines on the grid shown on the upper

left corner of the figures 6.2.
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6.3 Real field simulation

In this section the robot runs all the modules used in a real game. The ball is positioned
in some distance, but in a place the robot can see it. Between the robot and the ball
two robots are positioned, close, simulating objects that get into the main robot’s way
to the ball. The goal is for the robot to avoid these two obstacles while approaching the
ball. Following there is a sequence of pictures 6.3 presenting the robot’s movement to
approach the ball. Simultaneously, the current polar grid is shown where the darkest
areas represent the obstacles and the lighter colored areas represent free space. As it
was previously noted the red lines show the calculated path.
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Figure 6.1: The robot walks 1.2m on its side and turns to face the opposite goal.
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Figure 6.2: The robot walks 0.5m in front and 0.5m on its side and faces towards an
orientation vertical to the one it had in the beginning of the move.
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6.3 Real field simulation

Figure 6.3: The robot walks towards the ball avoiding the other robots that get in its
way.
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Chapter 7

Related Work and Discussion

In this section, a short overview is presented of what other RoboCup teams have pub-
lished trying to solve obstacle-avoidance and path-planning related subjects. There are
various approaches for obtaining obstacle information, representing the world map and
path planning algorithms applied.

7.1 Obstacle Detection Sensors

Besides sonars, vision can provide information about the existence and distance of an
obstacle from the robot. B-human team [3] and NTURobotPal are two of the teams
that use both techniques. Information about distance and angles to obstacles can also
be provided from other robots playing in field, that inform their teammates via com-
munication.

7.2 Grid Maps

The grid maps seen in the RoboCup fields can be regular (Figure 7.1), multiresolutional
regular ( Figure 7.2), or Log-Polar grids (Figure 7.3). Moreover, some teams choose
grids that cover the entire field environment, while others prefer local grids, in which
each robot holds and stores information about its own environment.

The advantage of the global map is that, at any possible moment, the robot knows
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the distances and angles to all current obstacles. Thus, the robot can run a well in-

formed path planning algorithm, even if the goal is in a blind spot.

The regular grid discretizes the environment into equally-sized cells, as shown in

Figure 7.1 and is the most common teams’ choice. The Nimbro team [4], has imple-

mented a multi-resolutional regular grid, shown in Figure 7.2. This approach deals

with computational complexity issues, related to grid size. Additionally, this approach

offers higher resolution closer to the robot, which is more useful in deciding the next

step while path planning.

Finally, the most similar approach to this thesis, is the Log-Polar grid, implemented

by team Nimbro. The grid, shown in Figure 7.3, has 16 cell rings and covers the

angular area around the robot with 16 steps too. Due to the logarithmic calculation of

each cell’s distance from the robot, the grid is big enough to plan paths for any two

points within the SPL field boundaries.

Figure 7.1: The regular grid used by BHuman team [3]
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Figure 7.2: Multi-resilution grid implementes by Nimbro team []

Figure 7.3: Log-Poalr grid implementes by Nimbro team [4]
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RRT. The Rapidly-Exploring Random Tree algorithm
set.addstartingPosition

while target.notReached do
randomPos ← chose random position within search space
neighbor ← nearest neighbor in set

neighbor.explandTowards(randomPos)

if collisionBetween(creatededge, obstacle) = false then
set.add(randomPos)

end if
end while

Figure 7.4: The Rapidly-Exploring Random Tree algorithm.

7.3 Path Planning Algorithms

Some of the teams participating in SPL do not implement a path planning algorithm,
but rely on a simple avoidance of the direct front obstacles.

The most common algorithm to solve path planning problems, amongst teams that
use occupancy grids to hold information, is the A* algorithm 2.5.1. It is an optimal
and complete algorithm, with good performance.

B-human is a collegiate project at the Department of Computer Science of the Uni-
versity of Bremen and the DFKI research area Safe and Secure Cognitive Systems. Its
path planning implementation uses an extended bidirectional Rapidly- Exploring Ran-
dom Tree (RRT 7.4). This is a non-optimal algorithm based on the random exploration
of the search space and works on continuous values.

This algorithm builds up a tree that quickly expands in few directions of the search
space, because in each step of the algorithm the tree is enlarged by one edge in a
random direction . For this general algorithm, different variants exist of which the
extend and bidirectional1 ones were used here. Using the extend variant restricts the
expansion towards the random position to a given distance that is the same for each
expansion, which has a direct influence on the expansion of the tree, whereas the used
bidirectionally has no influence on the tree itself but it is used to decrease the run time.
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This is achieved by creating two separate trees, one beginning from the start point and
one from the end point. Another modification is to replace the random position by the
target position or a waypoint of the last found path with a given probability. Using this
modifications helps to avoid oscillations of the path, for instance, if there is an obstacle
on the direct way to the target (see Figure 7.5) [3] .

Figure 7.5: The Rapidly-Exploring Random Tree algorithm used to find paths on
field [3]

7.4 Why a Local Polar Grid?

The previous sector presented different approaches to the obstacle avoidance and path
planning problems. In this section the differences of the current approach are discussed
and compared

7.4.1 Polar vs Regular

A regular grid needs more cells to cover the same area as the polar grid. Assuming
two egocentric grids, one polar and one regular that have the same resolution (10 cells
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x 10 cells), as shown in figure 7.6. If the distance between two neighbor rings is the
same, it is obvious that in order to provide the same range as the polar grid (including
information about obstacles lying behind the robot), the regular grid has to hold the
double number of cells. Higher number of cells to search through a path planning
algorithm, increases not only the use of the robot’s memory but also the computational
complexity. The regular grid method also does not scale well with increasing grid size.

(a) A regular 10x10 cells grid. (b) A polar grid with 10 rings and 10 sec-
tors.

Figure 7.6: In both images the black dot represents the robot. The regular grid 7.6(a) covers
the half area in front of the robot, in contrast to the polar 7.6(b). In order to cover same distance
range, the cell number in each dimension must double.

Moreover, these is a great visual similarity between the polar grids sectors and the
sonar cone-shaped beam. With the polar grid approach, the update of the map, using
information of a certain beam, becomes very simple. Ultrasonic measurements bear
distance information, and the position of the sonar is in a known angle, so the polar
expression of the obstacle measurements is straight-forward. The polar grid is a circle,
so the distance from the center to any edge is the same everywhere and equals to the
maximum sonar distance range. In the regular grid the distance from the center to the
four corners is 1.4 times the sonar range. These areas are considered in calculating the
path, increasing the computational complexity.

The polar grid’s angle resolution decreases as the distance from the center in-
creases. This is actually a very good representation of the sonar’s loss of accuracy
the farthest the recognized object is. Moreover, this representation is a good analogue

Iris A. Kyranou 50 April 2012



7.4 Why a Local Polar Grid?

to uncertainties occurring in dynamic environments when distance from the robot in-
creases.

7.4.2 Local vs Global Grid Map

The advantage of the global map is that, at any possible moment, the robot knows the
distances and angles to all current obstacles. All robots inform a shared map of the
field about the obstacles found in their way, and consult the map in order to run a well
informed path planning algorithm. The robot can calculate a good approach even if the
goal is in a blind spot.

A local map requires less memory and computational resources than the global.
The robot holds information only for close obstacles, and calculates a path based on
this information. Calculating a path is also computationally more efficient in a local
map, due to smaller size than the global. Since the environment changes constantly, the
robot must reevaluate the paths calculated very often, taking under consideration new
obstacles, or new open spaces on the field. Robots move constantly, and consequently
holding information for far objects and planning long paths is not worthwhile.

7.4.3 Differences with Nimbro approach [1]

The approach closer to the obstacle avoidance and path planning problem is, as men-
tioned, the Nimbro team approach. Nimbro team, is the University of Bonn team,
competing in the teen-size humanoid league.Their aproach uses a polar grid and plans
the path using an A* algorithm. Nimbro team holds a global map, and rings’ distance
increases logarithmically. The path planning algorithm used, neglects the orientation
and velocities of the robot. The preferred move for the robot is the front move, and a
virtual obstacle is positioned behind the robot to force it to move forward.

The above approach is described in detailed in [1], where other grid approaches are
discussed as well. The Nimbro team tested three different grids, a regular, a multireso-
lutional regular (see figure 7.2), and a multiresolutional log-polar grid (see figure 7.3).
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Chapter 8

Future Work and Conclusion

8.1 Future Work

The sonars used to update the occupancy grid map, are poor in accuracy. Vision-
provided observation about obstacles are more accurate. As soon as the vision obser-
vations are ready the enswmatwsh is straight forward. Bumper sensors on robots’ feet
provide information about direct contact with obstacles, which can also enswmatwjei
to the current model.

The polar map information can be projected on the world model, and inform a
global map about obstacles appearing in each robots’ field of view.

8.2 Conclusion

Our approach is not a breakthrough, but it is an honest effort of solving an existing
problem.

Although working with sensors that are so inaccurate, as sonars, experiments have
shown that the robot holds a good representation about its surrounding environment.
Problems with false positive values, still occur, especially when the robots run in our
lab environment that more than 20% of the space is covered with a metallic reflecting
material.
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