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abstract

Hyper Spectral Imaging is a powerful analytical tool, which has been used
in a wide area of applications, from Satellite Imaging to Biomedical Diagnosis.
Spectral imagery of either macroscopic or microscopic origin is usually depicted
in a spectral cube, a registered set of images, featuring one spectral and two
spatial dimensions as pixel coordinates. From each pixel, associated with a
spectrum -instead of an RGB value-, one is able to extract information about
the nature of the material, by studying its spectral signature on the Spectral
Cube.

This technique offers a non-destructive and non-invasive way (one does not
have to extract part of the material and bring it to the lab) of examining ma-
terials, suitable for medical purposes.

In the hereby thesis the computational capabilities of spectral imaging meth-
ods are examined and attempted to be improved, in order to provide real time
pixel classification. Specifically, a successful attempt is made to create a hyper
spectral classifier with real-time performance for cubes acquired from a cervix
biopsy.

Various techniques are tested for efficient segmentation of the Cube, in order
to generate a golden standard for the training process. The classification is per-
formed using Neural Networks while the final result is a GPU implementation,
the main reason behind the speed up of the application.

Although this study was based on specific medical data, it is possible to be
generalized on any aspect of Hyper Spectral Imaging, and shows that real-time
Hyper Spectral Processing for classification purposes is feasible.
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Chapter Information

Chapter 1 presents all the general and necessary concepts about (Hyper)
Spectral Imaging, its applications and some foundation on mathematical tools
used when adressing Hyper Spectral Imaging problems.

Chapter 2 provides an overview of the problem addressed by the thesis
hereby, and presents a simplified view of the solution that will be elaborated
further ahead at the following chapters.

Chapter 3 provides an introduction to Artificial Neural Networks and presents
the reasons on why Neural Networks can be of use for this particular problem.

Chapter 4 describes the methodologies used in order to conclude to an ap-
propriate Golden Standard and then train the classification system.

Chapter 5 describes the training process of the classifier.

Chapter 6 introduces the concept of GPUs and the reason they can be a
great asset to dealing with the illustrated problem.

Chapter 7 summarizes the major findings of this thesis and provides sug-
gested points for future work.
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Chapter 1

Introduction

Before venturing into the research areas this thesis is occupied with, some
basic introduction is necessary on the aspects of spectrometry and the basic
linear algebra tools used. This Chapter, includes all these useful information
and prepares the reader for the rest of this thesis. Readers already familiar with
similar research, may skip the introduction and continue with the following
chapters.

1 Spectroscopy/Spectrometry

Spectroscopy was originally the study of the interaction between radiation
and matter as function of wavelength (λ). Historically, spectroscopy refered to
the use of visible light dispersed according to its wavelength, e.g. a prism. Later
the concept was expanded greatly to comprise any measurement of a quantity as
function of either wavelength or frequency. Thus it also can refer to interactions
with particle radiation or to a response to an alternating field or varying fre-
quency (v). A further extension of the scope of the definition added energy (E)
as a variable, once the very close relationship E=hv for photons was realized.
Spectrometry is the spectroscopic technique used to assess the concentration or
amount of a given species. In those cases, the instrument that performs such
measurements is a spectrometer or spectrograph. Spectroscopy/spectrometry
is often used in physical and analytical chemistry for the identification of sub-
stances through the spectrum emitted from or absorbed by them. Spectroscopy-
/spectrometry is also heavily used in astronomy and remote sensing. Most large
telescopes have spectrometers, which are used either to measure the chemical
composition and physical properties of astronomical objects or to measure their
velocities from the Dopple shift of their spectral lines.

2 Imaging Spectrometry

Imaging spectroscopy (also spectral imaging or chemical imaging) is the ap-
plication of reflectance spectroscopy to every pixel in a spatial image. It can
be considered as the equivalent of color photography, but each pixel needs to
acquire many bands of light intensity data from the spectrum, instead of just

13



14 CHAPTER 1. INTRODUCTION

the three bands of RGB color model. More precisely, it is the simultaneous ac-
quisition of spatially co-registered images in many spectrally contiguous bands.

Spectroscopy can be used to detect individual absorption features due to
specific bonds in a solid, liquid, or gas. Solids can be either crystalline (i.e min-
erals) or amorphous (like glass). Every material is formed by chemical bonds,
and has the potential for detection with spectroscopy. Actual detection is de-
pendent on the spectral coverage, spectral resolution, and signal-to-noise ratio
of the spectrometer, the abundance of the material and the strength of the
absorption features for that material in the wavelength region measured.

Some spectral images contain only a few image planes of spectral data, while
others are better thought of as full spectra at every location in the image.
For example, solar physicists use spectroheliograms, images of the Sun built
up by scanning the slit of a spectrograph, to study the behavior of surface
features on the Sun; such spectroheliogram may have a spectral resolution of
over 100,000(λ/∆λ) and be used to measure local motion (via the Doppler
shift) and even the magnetic field at each location in the image plane. The
multispectral images collected by the Opportunity rover (NASA robotic rover
on mars ongoing exploration missions), in contrast, have only four wavelength
bands and hence are only a little more than 3-color images. To be scientifically
useful, such measurement should be done using an internationally recognized
system of units.

Figure 1.1: Mantis shrimp
possess hyperspectral color
vision, allowing up to 12 color
channels extending in the ul-
traviolet. Their eyes are con-
sidered to be the most com-
plex eyes in the animal king-
dom.

Spectroscopy can be used in laboratories on
hand samples, in the field with portable field
spectrometers (Spatial resolution in the millime-
ter to several meter range) from aircraft, or
satellites. The aircraft systems now operational
can image large areas in short time (2̃ sq. km
per second!), producing spectra for each pixel
that can be analyzed from specific absorption
bands and thus specific materials. These mea-
surements can then be used for the unambigu-
ous direct and indirect identification of surface
materials and atmospheric trace gases, the mea-
surement of their relative concentrations, subse-
quently the assignment of the proportional con-
tribution of mixed pixel signals (e.g., the spec-
tral unmixing problem), the derivation of their
spatial distribution (mapping problem), and
finally their study over time (multi-temporal
analysis).

3 Hyper Spectral Imaging

For the last one hundred years detectors have been developed for radiation of
almost any region of the electromagnetic spectrum. Recent developments in
detector technology incorporate point sensors into integrated detector arrays,
which allows setting up imaging radiometers instead of point measuring devices.
Quantitive measurements of the spatial distribution of radiometric properties
are now available for (remote) sensing at almost any wavelength. Unlike the
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human eye, which just sees the visible light, Hyper Spectral imaging is more
like the eyes of the mantis shrimp, which not only is able to detect and observe
object in the visible light but also bands ranging from ultraviolet to infrared.
These hyper spectral capabilities enable the mantis shrimp to recognize different
types of coral, prey or predators, all which would appear as the same color to
the human eye.

Humans build sensors and processing systems to provide the same type of
capabilities. A wide range of tools have been developed so far with some of the
most popular applications to be in agriculture, mineralogy, physics, surveillance
and other fields of science.

Certain objects leave unique "fingerprints" across the electromagnetic spec-
trum. These fingerprints are known as spectral signatures and enable identifi-
cation of the materials that make up a scanned object. For example, having the
spectral signature for oil helps mineralogists find new oil fields.

Hyper spectral sensors look at objects using a vast portion of the electro-
magnetic spectrum and collect information as a set of ’images’.

Figure 1.2: The projec-
tion of a hyperspectral
cube in two dimensions.

Each image represents a range of the electromag-
netic spectrum and is also known as a spectral band.
These ’images’ are then combined and form a three-
dimensional hyper spectral data cube for processing
and analysis.

The precision of these sensors is typically mea-
sured in spectral resolution, which is the width of
each band of the spectrum that is captured. If the
scanner picks up on a large number of fairly small
wavelengths, it is possible to identify objects even if
said objects are only captured in a handful of pixels.
However, spatial resolution is a factor in addition to
spectral resolution. If the pixels are too large then

multiple objects are captured in the same pixel and become difficult to iden-
tify. If the pixels are too small, then the energy captured by each sensor-cell is
low, and the decreased signal-to-noise ratio reduces the reliability of measured
features.

4 Measures of Spectral Similarity

Taking into account the features of a HSI, and excluding the spatial informa-
tion, one can perceive the rest of the information as a group of n-dimensional
vectors. As such, the similarity techniques that can be applied among the pixels
are the same as those applied to multidimensional vectors. For the following
examples some linear algebra rules will be defined.

Given a Matrix A:

• Transpose of A : [AT ]i,j = [A]j,i

• The product of an MxP matrix A with a PxN matrix B is an MxN matrix
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denoted AB whose entries are :

(AB)i,j =

p∑
k=1

Ai,kBk,j

Where 1 ≤ i ≤ m is the row index and 1 ≤ j ≤ n is the column index.

• Inversion of A : A−1, where A−1 ∗A = I
For example a 2x2 matrix inversion is

A−1 =

(
a b
c d

)
=

1

ad− bc

(
d −b
−c a

)

• Pseudo-inverse matrix D : D+ = (DTD)−1DT

For the purpose of this study the dimensionality of the vectors (n) equals
the number of spectra.

4.1 Euclidean (L2 Norm) Distance
In mathematics the Euclidean Distance is the distance that can be measured

with the use of a ruler between two points. The associated norm is the second
order or Euclidean norm.

EuclideanDistance(p, q) = ‖p− q‖ =

√√√√ n∑
i=1

(pi − qi)2

4.2 Root Mean Square Error (RMSE)
In statistics the Root Mean Square Error (RMSE) is one of many ways to

quantify the difference between an estimator and the true value of the quantity
being estimated. RMSE is a risk function, corresponding to the expected value
of the squared error loss or quadratic loss, measuring the average of the square
of the error. The error is the amount by which, the estimator differs from the
quantity to be estimated.

RMSE(p, q) =

√∑n
i=1(pi − qi)2

n

4.3 Spectral Angle Mapper (SAM)
The spectral angle mapper (SAM) [8] is a physically based spectral classifier

that determines the spectral similarity between the measured and the reference
spectra. The spectra are treated as vectors in a space with dimensionality equal
to the number of bands and the angle that is formed between these vectors is
used as a metric of the spectral similarity (Figure 2.2).

Smaller angles represent closer matches to the reference spectrum. SAM has
also been used as a feature selection method for selecting an optimal subset of
spectral bands. [9]

The angle between pixel vectors as a discrimination measure
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Figure 1.3: Vector representa-
tion of x,y pixels in a 3D or-
thonormal space corresponding
to three different wavelengths.
SAM essentially calculates the
angle between them.

is given by the following formula:

θ = SAM(p, q) = arccos(
p ∗ q
‖p‖‖q‖

)

Measuring the direction and not the
length of the vector, SAM becomes insen-
sitive to illumination and the possible noise it
might add.

4.4 Spectral Correlation Map-
per (SCM)

Another minimum distance classifier is
spectral correlation mapper (SCM) or an-
gle (SCA) [10] .SAM cannot distinguish be-
tween negative and positive correlations be-
cause only the absolute value is considered. SCM has been generated as an
improvement on the SAM. The main difference is that SCM standardizes the
data, centralizing itself in the mean of x and y.

SCM calculates a statistical measure of independence known as Pearson cor-
relation coefficient. In probability theory and statistics, correlation indicates the
strength and direction of a linear relationship between two random variables.
SCM similarity metric is calculated using the following formula:

SCM(p, q) =

∑
i(xi − x̄)(yi − ȳ)√∑

i(xi − x̄)2
√∑

i(yi − ȳ)2

5 Hyper Spectral Imaging Applications

As mentioned already, there are numerous of applications that Hyper Spectral
imaging can be used due to the importance of Spectral Information. Apart from
the applications mentioned at the previous section, Hyper Spectral Imaging is
nowadays commonly used in biomedicine.

A study made by Georgios N. Stamatas [2] in analysis of skin, uses Hyper
Spectral Imaging devices in order to produce a reliable quantitative distribution
map of chromophores contributing to the color appearance of the skin. A similar
work has been made from Daisuke Nakao [3], in order to perform a Real-Time
mapping pigmentation in human skin. This is expected to give very useful
information about the reproduction of various skin colors as long as various
human conditions.

An extremely powerful feature of Hyper Spectral imaging is that it can pro-
vide non-destructive analysis. This is really important considering that there
are objects which need to be tested without extracting a physical sample as
the extraction may damage or destroy the sample or even the object. Kon-
stantinos Rapatzikos have created a non-destructive analysis method [4] in or-
der to acquire images from manuscripts and detect Palimpsests (twice written
manuscripts) which can reveal hidden text under the visible one.
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Furthermore, recent work has proved that Hyper Spectral Imaging can be
used to perform material or color-pigments classification. In the work of Ad-
belhameed Ibrahim [5], Spectral Information is used in order to classify the
materials of printed circuit boards effectively. Another distinguished work is
that of Giorgios Epitropou [6] where Hyper Spectral Imaging is used along with
classification algorithms in order to perform a non-destructive analysis of El
Greco’s paintings.

Finally, this thesis is also occupied with the field of classification, trying to
provide real time classification on Hyper Spectral Cubes acquired from pho-
tographing the cervix.

(a) (b)

Figure 1.4: (a) A set of stones is scanned with a Specim LWIR-C imager in the
thermal infrared range from 7.7 um to 12.4 um. The quartz and feldspar spectra
are clearly recognizable. (b) Hyperspectral thermal infrared emission measure-
ment, an outdoor scan in winter conditions, ambient temperature -15ÂřC -
relative radiance spectra from various targets in the image are shown with ar-
rows. The infrared spectra of the different objects such as the watch glass have
clearly distinctive characteristics. The contrast level indicates the temperature
of the object. [1]

Concluding. It must be obvious by now, that the importance of Hyper
Spectral Imaging is great. Unfortunately, Hyper Spectral Imaging devices are
still very heavy and expensive machines and are mostly restricted to static
applications. In addition, these devices cannot be used in real time because of
their big acquisition and post-acquisition processing time in order to provide the
spectral data of an object and then the huge computational cost of processing
the data produced.
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Chapter 2

The problem at hand.

For the past few years Hyper Spectral Imaging has offered a non-destructive
way of analyzing and diagnosing diseases and pathogenecies. A number of meth-
ods have been introduced that can take advantage of the electromagnetic "finger-
print" of infected cells in order to provide classification or segmentation services.
For example [1], shows succesfully classification of tongue diseases with the use
of hypespectral medical tongue images.

Creating such a classifier introduces two great advantages:

• Biopsy free diagnosis.

Solely component of such dignostic methods remains the electromagnetic
spectrum that is emmited after the interaction of photons with the tis-
sues. Because of that, a sample can be taken without the need of tissue
extraction or any further processing.

• Removing the ad-hoc human error.
Using humans (doctors) as classifiers unfortunatelly and inevitably intro-
duces an ad hoc error based on the doctor’s experience, possible fatigue,
loss of concentration etc. Computer based classifiers, provide a constant
efficiency that is not affected by all those ad-hoc parameters.

Despite the great advantage that might seem motivating for our research,
creating such a classifier should be made carefully. A lot of testing is needed
in order to guarantee, the performance of the classifier in real and unknown
conditions.

1 Overview of the problem.
In the case of this thesis a classifier has to be made in order to provide

classification on images taken from cervix tissue. The main idea behind the
classifier is to provide effective diagnosis by classifying the pixels into four classes
depending on the condition of the cells contained into that pixel. After the
classification, a color map shows specifically the location of those four classes
on the acquired picture while a "diagnosis" has to be made, by calculating the
percentage and intensity of the class over the whole body of pixels.

21



22 CHAPTER 2. THE PROBLEM AT HAND.

A series of problems have to be taken into account such as, the preprocessing
of images in order to remove noise, the creation of a proper dataset, the training
of the classifier and proper testing which will guarantee its performance.

Real-Time Performance. The fact that most of the multi spectral process-
ing methods require off line processing provides a limited approach to a large
number of applications with real time needs. For example in the case of col-
poscopy saving a several-minute-video and a few hundreds or thousands of hyper
spectral images for off line processing might not be the most efficient way. In
off line processing, the doctor cannot have immediate feedback on the under-
examination area which means that he/she is not able to pause to a specific
point in order to examine better or even zoom for a better perspective.

A succesful attempt is made in this thesis to provide Real Time classification
for the first time on such applications.

2 Acquiring Hyper Spectral Cubes

Figure 2.1: Two dimensional spatial
projections across the electromagnetic
spectrum.

As mentioned already, Hyper Spec-
tral Imaging (SI) produces Data
Cubes - Hyper Spectral Cubes by
photographing the object of interest
on a wide range of the electromag-
netic spectrum. The outcome of this
procedure is the production of a 3-D
matrix (thus cube) where the first two
dimensions hold the spatial details of
each pixel and the third dimension
holds the electromagnetic fingerprint
of the pixel in the form of a vector.
The vector is as long as many bands
we have scanned during the acquisi-
tion of the cube. The number of bands of interest (as mentioned at the intro-
duction) is based on the nature of the problem.

Hyper Spectral Cubes can be acquired from stationary or portable spectrom-
eters and then stored for offline processing. Although theoretically Hyper Spec-
tral Cubes (HSCs) can have information spanning in a wide area of the electro-
magnetic field and having hundreds of bands scanned, for practical applications
smaller cubes are used.

For the purposes of this thesis, HSCs were acquired by biopsies taken from
the cervix. After the biopsy, special inks are used that will color cells under
not-normal conditions in different colors. The doctors then observe the coloring
of the sample and based on their experience and training, produce a diagnosis.

In order to create the needed HSCs, those samples were photographed in
16 bands ranging from 440nms to 720nms. The reason that those bands were
selected, is because, wavelengths longer than 800nm, seem to give no significant
or useful information. This is due to the nature of the cells and the dominant
presence of water.
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The samples were given by many Greek hospitals and the acquisition was
made using a custom modified Mu SIS HS camera. A total of 24 photos were
used, which can be grouped in four categories, depending on the clinical condi-
tion of the patient and the amount of cancer cells in the picture. The following
pictures give an example of each one of the conditions.

(a) (b)

(c) (d)

Figure 2.2: Examples of the samples for the purposes of this thesis. The samples
are divided into four categories depending on the severity of the condition of
each tissue. At the first picture (a), a 10% of cancerous cells can be found, while
pictures (b), (c) and (d) have 60%, 80% and 98% respectivelly .

3 Classes

In the figure 2.2, 3 colors are mostly notable : Blue, Red and White. The colors
occur based on the interaction of special inks with the substances present on
the specific part of the tissue.

• Class A : DAB
DAB substance corresponds to the red color and is the main class that
needs to be tracked.

• Class B : Hematoxylin
Hematoxylin substance corresponds to the blue color.
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• Class C : Background
The final strictly defined class refers the background and corresponds to
the white color.

• Class D : Unspecified
Some parts of the image may contain a combination of those two sub-
stances (DAB + Hematoxylin). For that reason the final color produced
seems to be a combination of blue and red. These parts fall into the
Unspecified category.

The final percentage of each class, (technically) is calculated not over the
whole body of pixels, but over the pixels that fall under the Class A, Class B
and Class D categories. Class C (Background) is excluded from this calculation.

4 Proposed solution
Computational Cost. After examining the features of a hyper spectral cube,
it is obvious that even simple correlation acts, have high computational costs,
while by the nature of the cube we are affected by the "curse of dimensionality".
Having in mind the real time perspective, grouping techniques (like clustering)
or other techniques that use comparisons exhaustively are not an option. Despite
the fact that a smart solution has to be found, some strong computational
machine has to be introduced, in order to deal with the heavy load brought by
the said "curse of dimensionality".

Proposed Way of Action. In order to deal with those problems above, this
thesis proposes the use of neural networks with the use of GP-GPUs (General
Purpose Graphical Processing Units) as means to heavy computational prob-
lems. The specific reasons, why those tools were chosen, will be made clear at
the following chapters. For now the reader can be sure that neural networks are
extensively used for pattern recognition problems while for the last few years
GP-GPUs are a powerful asset in solving scientific and medical problems.

For more information on neural networks or GPUs, please refer to Chapter3
or Chapter 5 respectively.
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Chapter 3

Artificial Neural Networks as
a classification tool.

An Artificial Neural Network, usually called Neural Network, is a mathemati-
cal model or computational model that is inspired by the structure and/or func-
tional aspects of biological neural networks. An ANN consists of interconnected
group of artificial neurons, and it processes information using a connectionist
approach to computation.

In more practical terms neural networks are non-linear, statistical data mod-
eling and decision making tools. They can be used to model complex relation-
ships between inputs and outputs or to find patters in data.

However, the paradigm of neural networks - i.e., implicit, not explicit , learn-
ing is stressed - seems more to correspond to some kind of natural intelligence
than to the traditional symbol-based Artificial Intelligence, which would stress,
instead, rule-based learning.

1 Introduction

Artificial neurons were first proposed in 1943 by Warren McCulloch, a neu-
rophysiologist, and Walter Pitts, a logician, who first collaborated at the Uni-
versity of Chicago [1].

In modern software implementations of artificial neural networks the ap-
proach inspired by biology has more or less been abandoned for a more practical
approach based on statistics and signal processing. In some of these systems,
neural networks, or parts of neural networks are used as components in larger
systems that combine both adaptive and non-adaptive elements.

The concept of a neural network appears to have first been proposed by Alan
Turing in his 1948 paper "Intelligent Machinery".

Applications of natural and artificial neural networks. The utility of
artificial neural network models lies in the fact that they can be used to infer
a function from observations. This is particularly useful in applications where
the complexity of the data or task makes the design of such a function by hand
impractical.
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The tasks artificial neural networks are applied to tend to fall within the
following broad categories:

• Function approximation, or regression analysis, including time series pre-
diction, fitness approximation and modeling.

• Classification, including pattern and sequence recognition, novelty detec-
tion and sequential decision making.

• Data processing, including filtering, clustering, blind source separation
and compression.

• Robotics, including directing manipulators, Computer numerical control.

Application areas include system identification and control (vehicle con-
trol, process control, natural resources management), quantum chemistry,[2]
game-playing and decision making (backgammon, chess, poker), pattern recog-
nition (radar systems, face identification, object recognition and more), sequence
recognition (gesture, speech, handwritten text recognition), medical diagnosis,
financial applications (automated trading systems), data mining (or knowledge
discovery in databases, "KDD"), visualization and mail spam filtering.

Artificial neural networks have also been used to diagnose several cancers.
An ANN based hybrid lung cancer detection system named HLND improves
the accuracy of diagnosis and the speed of lung cancer radiology [3]. These
networks have also been used to diagnose prostate cancer. The diagnoses can
be used to make specific models taken from a large group of patients compared
to information of one given patient. The models do not depend on assumptions
about correlations of different variables. Colorectal cancer has also been pre-
dicted using the neural networks. Neural networks could predict the outcome
for a patient with colorectal cancer with a lot more accuracy than the current
clinical methods. After training, the networks could predict multiple patient
outcomes from unrelated institutions [4].

Disadvantages. A common criticism of neural networks, particularly in
robotics, is that they require a large diversity of training for real-world operation.
This is not surprising, since any learning machine needs sufficient representative
examples in order to capture the underlying structure that allows it to generalize
to new cases.

Dean Pomerleau, in his research presented in the paper "Knowledge-based
Training of Artificial Neural Networks for Autonomous Robot Driving," uses
a neural network to train a robotic vehicle to drive on multiple types of roads
(single lane, multi-lane, dirt, etc.). A large amount of his research is devoted to
(1) extrapolating multiple training scenarios from a single training experience,
and (2) preserving past training diversity so that the system does not become
over trained (if, for example, it is presented with a series of right turns - it
should not learn to always turn right).

These issues are common in neural networks that must decide from amongst
a wide variety of responses, but can be dealt with in several ways, for example
by randomly shuffling the training examples, by using a numerical optimization
algorithm that does not take too large steps when changing the network connec-
tions following an example, or by grouping examples in so-called mini-batches.
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2 Architecture and functionality of Neural Net-
works

2.1 A Simple Neuron

(a) (b)

Figure 3.1: Figure (a) shows the anatomy of a brain neuron. Input signals
come from Dendrites while the output signal comes out of the Axon. Figure
(b) represents the complex networks, created by the connections of millions of
neurons.

The human brain consists of 1010 neurons and 1016 synapses (connections)
among those cells. Each neuron can have 1 or more input connections, coming
from other neurons. Signals coming from its input dendrites force the neuron
to be activated (by producing an electrical pulse from its Axon) or not.

Neuron Model: Logistic Unit. In order to represent a single neuron with
a model, we have to simplify its functionalities. In that perspective, it is obvious
that the neuron does the following processes:

1. Sums up its inputs.

2. Possible some inputs have different weighted value than others.

3. It activates its axon or not, depending on the previous values.

Figure 3.2: A crude equivalent
to a natural neuron

Modern day Neural Networka. In
modern day ANNs each artificial neuron is
nothing more than a unit that produces an
exit according to its input and its activation
function.

Exit = ActivationFunction(Input).

Input of the neuron is the summation of the
exit of the neurons connected to that one, multiplied by weight of their connec-
tion.
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Figure 3.3: Output of a neuron, considering the input streams that end to that
neuron.

Figure 3.4: Sigmoid/Logistic Function
It is represented by the following curve:

f(x) = 1
1+e−s∗x

The variable s represents the "steep-
ness" of the curve. The larger the s the
steeper it is.

Activation Functions. The most commonly used activation function is the
Logistic (Sigmoid) Function since it’s the closest approximation to a real neuron.
Other popular functions that are widely used are the linear function, Symmetric
Sigmoid Function, Step Function and Gaussian. Figure 3.5 represents their plot
at [-10, 10].

2.2 Feed-Forward networks

Figure 3.6: A typical ANN with
one Input Layer, one Output
Layer and one Hidden between
them.

In order to have efficiency, neurons alone are
not enough. They have to be tailored into
networks, connected together. Those can be
made by placing neurons into layers and then
those layers one after the other. It consists of
at least an input and an output layer and in
between them one or more Hidden Layers.

The most common layout of neural net-
works is the feed-forward network. In this lay-
out, neurons of each layer are only connected
with neurons from the previous layer and no
recursively feedback connection is applied.

The signal starts from the input layer, interacts with the neural network
and gives a final output at the exit of the last layer. For classification purposes,
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(a) Linear Function - f(x) = x (b) Step Function - f(x) = x < 0?0 : 1

(c) Symmetric Sigmoid - f(x) = tanx (d) Gaussian Function - f(x) = e−ax2

Figure 3.5: The most common neuron activation functions.

the final (exit) layer has as many neurons as classes it has to classify. In order
to perform the classification, it is trained in a way that only the neuron that
corresponds to the class it predicts has output = ’1’ while the rest of the neurons
give output = ’0’.

As mentioned before the input signal of a neuron is the summation of the
output from the neurons of the previous layer multiplied by the weights of each
connection. Assuming a neuron with N inputs from the previous layer and two
matrices; a 1xN matrix, K that contains the N neuron outputs of the previous
layer and Θ an Nx1 matrix that contains the weights of each connection. The
total input to the neuron is the product of those two matrices:

Output = ActivationFunction(K ∗Θ)

Interestingly enough, the Θ matrix can be changed, from Nx1 to NxM, where
M equals the number of neurons at the current layer. The new product of K ∗Θ
is an 1xM vector that will contain the output for the whole layer.

3 Over-fitting / Under-fitting
For every network the number of neurons represents it’s capability to recognize

and comprehend complex patterns. The more the neurons the more patterns
can be recognized but also the more training it requires.
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(a) (b)

Figure 3.7: In both cases Output = ActivationFunction(K ∗ Θ) . The only
thing that changes is the size of Θ.

By using too few neurons, the neural network might not be able to recognize
the patterns present at the dataset while by using too many neurons, the neural
network might simply memorize the input output cases.

In the case of too many neurons being present, while not enough training
examples are available, the ANN is said to over-fitting the data, while in the
case of not enough neurons being present to generate a good approximation of
the output, the ANN is said to under-fitting the data.

In both cases, the capability of the ANN to generalize well to new data is
crippled.

(a) (b)

Figure 3.8: Examples of two extreme cases of fitting. The first case (a) provides
a really poor approach to the required approximation function (displayed with
blue). It is an extreme example of under-fitting. The second case (b) provides
an over-fitted network to the given dataset. Both those cases, provide poor
generalization rules.

Over-fitting or Under-fitting can be prevented by monitoring the perfor-
mance of the ANN during its training process. More presicelly by splitting the
training set into two part. The training set and the cross-validation set. The
new training set will be used to train the ANN while the cross-validation set
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will be used as an "unknown" set to test the performance of the network on
generalizing the data.

Figure 3.9: Error behavior
on cross-validation and training
sets.

The goal is to prevent over-fitting by de-
tecting when the error at the cross validation
set starts to rise, while the error at the train-
ing set, keeps diminishing. At that point the
ANN starts overfitting the data.

Akaike information criterion. A good
measure of the relative goodness of fit is
Akaike’s Criterion. It was developed by Hi-
rotsugu Akaike, under the name of "an infor-
mation criterion" (AIC), and was first pub-
lished by Akaike in 1974.[9] It is grounded in
the concept of information entropy, in effect offering a relative measure of the
information lost when a given model is used to describe reality. It can be said
to describe the tradeoff between bias and variance in model construction, or
loosely speaking between accuracy and complexity of the model.

AIC values provide a means for model selection. AIC does not provide a test
of a model in the sense of testing a null hypothesis; i.e. AIC can tell nothing
about how well a model fits the data in an absolute sense. If all the candidate
models fit poorly, AIC will not give any warning of that.

4 Why using Neural Networks.
The bibliography gives a lot of classification options each one better tailored for
different situations. The scientist or engineer has to brainstorm and experiment
in order to get the best results.

For the problem at hand, hyper spectral images/cubes have to be classified
based on a 16 spectra input for each pixel. The classification has to be accurate
and in real-time, something that requires not only a smart and elegant solu-
tion but also an implementation that will exploit the way the modern hardware
works. For that reason neural networks were chosen.

Accuracy. The reader has to realize that Neural Networks have already been
tested, used and been proven to work for this particular problem for decades.
Every doctor that is diagnosing, at this moment incidents by examining and
"classifying" pictures at the microscope, is using a form of Neural Networks in
his mind. With the use of computers an attempt is made to use this human
intuition, simulate the procedure, train it with millions of examples and remove
the "human error".

Although this gives an intuition on why to choose neural networks, a question
arises on whether the performance of neural networks can be improved. After all,
the human approach of neural networks has a lot of errors and misclassifications.
Can neural networks develop a classification model that will be able to perform
accurately for this particular problem?

According to the cybenko theorem [5] the standard multilayer feed-forward
network with a single hidden layer, which contains finite number of hidden
neurons, is a universal approximator among continuous functions on compact
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subsets of Rn, under mild assumptions on the activation function. The only
serious constrains would be the size of the dataset size.

Need for Speed. As showed at paragraph 3.2 the output of a layerLican be
found by the product K ∗Θ, where K is a vector containing the outputs of the
layerL(i−1)and Θ is an N x M matrix containing the weights of the connections
among the N neurons of L(i− 1) layer and M neurons of L layer.

It is possible to increase the dimensionality of K from 1 x N to X x N where
X is the number of pixels that need to be classified. The productK∗Θ now gives
an X x M matrix, which contains the output of a layer for the whole amount
of pixels to be classified. Each row i will contain the output for the i-th pixel
and each column j will contain the information of the j-th neuron output of the
layer.

Thus we can get a classification result simple by doing as many products as
the number of layers in the network.

Figure 3.10: Passing the whole dataset through the network, by doing products.

In the problem at hand, we need to classify a 2MPixel Hyper Spectral picture.
The picture is represented by a 1200x1600x16, 3-D matrix, which can easily be
transformed into a (1200 ∗ 1600)x16, 2-D matrix, which can then be treated as
the matrix K at our examples.

Figure 3.11: Transforming the cube into a two dimensional table.

This feature of the neural network output computation with vectorisation,
allows the exploitation of powerful hardware tools and architectures, libraries
and techniques which were developed and continue to develop for years.
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5 Training Algorithms

A lot of training algorithms have been developed for training with the most
popular being the back propagation algorithm.

5.1 Backpropagation

Backpropagation [6] is an abbreviation for "backward propagation of errors"
and is a generalization of the delta rule. Backpropagation requires that the
activation function used by the artificial neurons be differentiable.

The algorithm is as follows and requires two phases :

Phase 1: Propagation Each propagation involves the following steps:

1. Forward propagation of a training pattern’s input through the neural net-
work in order to generate the propagation’s output activations.

2. Backward propagation of the propagation’s output activations through
the neural network using the training pattern’s target in order to generate
the deltas of all output and hidden neurons.

Phase 2: Weight update For each weight-synapse follow the following steps:

1. Multiply its output delta and input activation to get the gradient of the
weight.

2. . Bring the weight in the opposite direction of the gradient by subtracting
a ratio of it from the weight.

Repeat phase 1 and 2 until the performance of the network is satisfactory.

There are two modes of learning to choose from: One is on-line(incremental)
learning and the other is batch learning. In on-line(incremental) learning, each
propagation is followed immediately by a weight update. In batch learning,
many propagations occur before weight updating occurs. Batch learning re-
quires more memory capacity, but on-line learning requires more updates.

Although backpropagation seems easy to implement and gives good training
results to a lot of problems, it provides a slow and not-guaranteed convergence
of the network. Furthermore, with the batch learning technique the result may
generally converge to any local minimum on the error surface, since stochastic
gradient descent exists on a surface which is not flat.

5.2 Other Training Algorithms

Despite the fact that backpropagation provided a renaissance for the neural
networks community and was reigning as a dominant training algorithm for a
long time the need for better algorithms and faster convergence leaded to the
creation of new algorithms.
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One of the best training algorithms is the Resilient Backpropagation (or
Rprop) [7], a first-order optimization algorithm. Rprop is considered to be the
best choice in a lot of problems and was created by Martin Riedmiller and
Heinrich Braun in 1992.

Another one of the better training algorithms is the Quick Propagation (or
QuickProp) [8], which is loosely based on Newton’s method for finding the root
of a quadratic function.
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Chapter 4

Obtaining the proper Dataset

One of the most challenging problems addressed during this thesis, was to
highlight the right dataset that will act as a solid base for the class creation.Despite
of the algorithm used, the backbone of a proper classifier remains the extraction
of the features on which the classifier will rely in order to identify the patterns
and the classes on which the classifier will learn to operate with.

As analyzed in section 2.2, the selected features to participate are 16 bands of
the electromagnetic spectrum, ranging from 440 nms to 720 nms. The problem
though, of creating a solid and clear dataset that will serve as a training/testing
set remains.For that reason a Golden Standard had to be created, which would
dictate the proper shape of the classes and train the classifier. Part of this
Golden Standard will be used as a training set and part of it as a testing set.

1 Creating a Golden Standard

Golden Standard in Medical Data. As mentioned already, during the
prediction and diagnosis of the doctor, a series of errors are included based on a
series of reasons. Statistical tests showed that two diagnoses on a sample by the
same doctor can have up to 60% deviation. This makes obvious the fact that
an objective solution cannot be found, which makes the creation of a Golden
Standard extremelly difficult.

Despite that dificulty, an attempt was made to explore some ways of cre-
ating a usable and satisfactory Golden Standard by using the Hyper Spectral
Cubes (HSC) mentioned at Chapter 2. Before the use of those HSCs, some
preprocessing is required in order to clear the "noisy" camera output.

1.1 Preprocessing the data

Before continuing, the reader has to understand that it is not possible for the
humans to observe the whole HSC in order to recognise possible "noise" or other
misunfortunate conditions. Considering though that the noise is mostly from
technical reasons, such as the error introduced by the camera (which affects the
whole range of the spectrum) and the misuse of the paint used for the creation
of the samples (which is something really obvious at the visible spectrum), RGB
pictures (cubes with only 3 out of the total 16 bands) can be used in order to
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give a "visible" insight on the conditions of cube and thus, an insight on what
kind of preprocessing is necessary.

Noise. The HSCs generated have a light "Salt and Pepper" noise, something
inevitable due to the process of generating those samples from the biopsy. The
ink used to paint the samples, might accidentally paint some cells in the wrong
way based on its concentration, the texture of the glass etc. Median filter was
used in order to remove this noise without altering the nature of the signal on
the picture, and different window sizes were tested, in order to conclude to the
best one. It appears that the intensity of noise varies among different Hyper
Spectral Cubes, but a window size of 3 up to 5 pixel was always enough to
remove it.

Damaged Borders. Apart from the above, it seems that the outer pixels
which reside at the borders of the picture suffer from noise of great intensity.
Because of that, 25 pixels were cropped out from the borders of all the HSCs.

Figure 4.1 shows the original picture and the outcome of the preprocessing
stage.

(a) (b)

Figure 4.1: Figure (a) displays a representation of the original picture (and
HSC) while (b) displays the result of the filters and the cropping required in
order to remove the noise. It is obvious that (b) provides a clearer and smoother
environment to extract the training dataset.

1.2 Extracting the Classes
In order to obtain the classes, 3 methods were used :

• Hand - Picking Areas.

The first attempt was a try to imitate the doctors’ behavior, by selecting
areas that would be more than obvious to contain pixels of a single par-
ticular class. The RGB pictures can be used, the same way doctors use
it, in order to pinpoint and pick areas of the image - and data cube - with
the same color and thus same class.Figure BLABLA shows a manually
selected area.
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• Clustering - Segmenting the image and manually associating
classes.

Using clustering techniques, the picture can be segmented in areas with
similar vector values. For the clustering part, Spectral Clustering and
K-Means with four different kernels were used, in order to find the best
possible result. In every case, the clustering algorithm was asked to par-
tition/cluster the data, in eight classes (not four). After the clustering
process, those eight classes were grouped together to form the four main
ones, or ignored as too noisy or redundant. The grouping/ignoring process
was done manually, and using the RGB pictures for reference.

• Clustering - Segmenting the image and associate classes com-
paring with reference vectors. Similar to the above notion, with the
only difference being the way of grouping/ignoring the classes. A small
database of 120 "reference" vectors was created, by manually extracting
vectors that resided at places of the image where the classes could be dis-
tinguished clearly. The centroids of each of the ten classes created during
the clustering, were compared to those 100 reference vectors. Each of the
ten classes would then be assigned to the class of the reference vector that
its centroid is closest to.

The Reference Vectors Database is composed by 120 vectors - hand picked
from all the picture categories- and refer to the most representative cases
of each class.

In order to create Class D ("unspecified") and ignore possible noisy or re-
dundant classes two similarity thresholds were set. If a centroid’s similar-
ity comparing to every reference vector was lower than the first threshold
(but not the second one), its class would be set as Class D. If a centroid’s
similarity comparing to every reference vector was lower than the second
threshold, then its class would be ignored and not counted as an addition
to the primary classes.

2 Segmentation Algorithms and their Efficiency

In order to provide efficient segmentation the following clustering techniques
were tested:

K-Means with L1 and L2 norms. Typical K-Means [1] implementation
using a norm as a metric. In this case, both the Manhattan (L1) and Euclidean
(L2) distances provided the same segmentation, partitioning the images the
same way. Unfortunately, looking at figure 4.2.a the performance of L1/2 norms
as a metric, is not as satisfying as it should be.

K-Means with SAM. For a second approach, SAM (Spectral Angle Mapper)
was used as a metric. The motivation was that, considering SAM’s ability to
ignore possible illumination or other tensity-related noise, it would be really
fitted for such applications. Looking at figure 4.2.b, it is obvious that SAM
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outperforms Euclidean and Manhattan distance and provides clear segmentation
and partitioning of the image at parts with single classes.

K-Means with SCM. SCM (Spectral Correlation Mapper) was introduced
by bibliography as an improvement of SAM, so another approach using it was
made. Its performance is illustrated at figure 4.2.c

Spectral Clustering. Finally, Spectral Clustering [2] was tried and its out-
come can be seen at figure 4.2.d . A k-nearest graph was used, with Gaussian
function. Different numbers of k (15 to 150) were tried, but no big difference
was noted. Although, Spectral Clustering, gives a very distinguished shape for
regions affected by both types of pathogenesis (Class A, B), it fails to distinguish
those two.

It is possible that with heavy tuning and testing Spectral Clustering can be
guided to provide the performance of the previously illustrated segmentations,
but its heavy computational and memory cost in doing so, are really unnec-
essary. For that reason, further tuning and testing of Spectral Clustering was
abandoned.

For the choice of the best - most efficient segmentation technique-, no absolute
metrics can be invoked but rather a choice based on what -literally- looks best
has to be made. Out of the comparing four cases (some examples are displayed
at Figure 4.2), SAM is the best, providing really accurate partitioning for the
most cases. Following SAM, the Euclidean distance, also shows some potential
when used along with the grouping technique described at 1.2. For that reason,
K-Means with SAM and L2 were selected for further testing.

3 Creating the Dataset

Out of the 3 partitioning techniques described at 1.2 of this chapter, the first
technique (manually selecting areas of the cubes) was abandoned for being too
biased and for introducing no proper way of automatically producing datasets
from a big number of pictures/HSCs. The other two were tested seperatelly.
(Segmentation and then manually selecting an grouping the classes)

3.1 Tests

K-Means with SAM and Euclidean Distance was used to produce extra parti-
tioned HSCs. The partitioning was extended to 8 classes instead of 4 to provide
further accuracy, while for the second category of pictures (60% of the cells with
pathologic condition), the partitioning was extended to twelve classes.

During the manual grouping, it was noticed that even on partitioning with
a lot more classes that originally needed, SAM greatly outperforms Euclidean
Distance as a metric something that came in conflict with the original idea the
author had, that Euclidean Distance as a metric could be better with higher
level clustering. Because of that Euclidean Distance was abandoned.
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(a)

(b) (c)

(d) (e)

Figure 4.2: (a) Original picture, as observed from the microscope, (b) Product
of K-Means with L1 or L2 as a metric,(c) Product of K-Means with SAM as a
metric, (d) Product of K-Means with SCM as a metric ,(e)Product of Spectral
Clustering

Segmentation and manually grouping. The first approach was to man-
ually select which classes to group together by examining the RGB picture.
Partitions extended on Red, Blue or White areas of the pictures were grouped
together while partitions that seemed too damaged or noisy were ignored. Fi-
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nally, partitions that had too few ink to be of importance or had mixed colors
were added to the "Unspecified" category.

Excluding the category of photos with 60% pathogenesis for the rest of the
pictures, the procedure of grouping their classes together was quit straightfor-
ward. At the 60%pathogenesis category, a large number of partitions and colors
produced were a result of a lot of mixing between the two dominant substances
(DAB and Hematoxylin). Because of that a second round of partitioning was
initiated that segmented the pictures in twelve clusters (rather than eight) mak-
ing things easier.

The manual procedure took place only at one out of all the pictures/HSC for
each category. For the rest of them, a script was coded that assigned each cluster
to one of the clusters of the first picture/HSC by comparing their centroids.

Segmentation and automatically grouping. Despite the great hopes for
this technique, it didn’t turn out to be as effective as originally thought. By
introducing two thresholds to provide extra precision and create the Unspecified
class, more variables are added up to the problem, making the solution even
more biased and complex. After a lot of tests pursuing the best combination
of thresholds, it appeared that thresholds may vary greatly depending on the
category of the picture and the condition of the cells.

Because of that the thresholds have to be manually adjusted for every case,
thus, simulating the manual selection of grouping used at the previous tech-
nique. Not only that, but finding the perfect combination that will produce the
"unspecified" class and remove the noisy classes seems close to impossible.

(a) Original (b) Over-Partitioned (c) Four Classes

(d) Original (e) Over-Partitioned (f) Four Classes

Figure 4.3: Some examples on the partitioning finally chosen. Red represents
DAB, blue represents Hematoxylin, golden/brown represnts "unspecified" and
white represents the background. The black areas were abandoned as too noisy
or reduntant.
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3.2 Results and Conclusion

After extensive testing, the second technique proved to be the most accurate
one. Some examples on this particular partitioning are displayed at Figure 4.3.
The first column of figures display the original picture, while the second and
third display the partitioned and manually grouped conditions respectively.

The final dataset was produced, by sampling the pictures/HSCs which were
reserved for training. Each one provided an equal amount of samples, based on
the size of the required dataset.

Class shapes. The resulted "class shapes" were produced by calculating
the average value for each one of the band values in every class. Their patterns
can be displayed at Figure 4.4. DAB is represented by the red line, Hema-
toxylin by the blue and Unspecified and Background by the golden and grey
lines respectively.

It is obvious (and expected) that DAB which is colored red, shows high
values at longer wavelengths, close to 700nms, (were the RED color resides)
while Hematoxylin which is colored dark blue/purple shows high values also at
shorter wavelengths and close to 400nms. Finally, the background classtends to
have a uniform intensity on all the visible bands, something that produces its
white color.

Figure 4.4: Class shapes over the electromagnetic spectrum.
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Chapter 5

Training the Neural Network

After acquiring a proper Dataset and defining a Golden standard, it is time
for the training. The total Dataset of 25 pictures were split in two halves, one of
which would be used for training and the other one for testing. The reason for
this split was that the classifier had to be tested on unknown data to guarantee
its accuracy.

1 Training Process

1.1 Tools
For the training process many tools were tested, including Matlab’s framework,
the open source Library FANN, Alyuda NeuroIntelligence software and Peltarion
Synapse.

Matlab’s framework, provides a decent environment for training, but it’s lack
of sophisticated algorithms and automatic over-fitting/under-fitting prevention
mechanisms, doesn’t make it ideal for serial work.

Alyuda NeuroIntelligence, is one of the top ANN software of the market
providing a really good interface and a wide area of tools for training neural
networks. Alyuda NeuroIntelligence was used to give a quick overview of the
best fitting form of the ANN for the data provided.

FANN library, provides a really fast and powerful tool for training neural
networks with many different algorithms and automatic mechanisms for iden-
tifying the best activation function and training algorithm. FANN library was
used exactly for these two purposes (finding the best activation function and
training algorithm) and train the Network.

Finally, Peltarion Synapse was used to train the neural network as well, in
addition to FANN.

1.2 Training
The training took place using 120000 samples across 12 images that were used
for the training process and it was split into actual training (80% of the whole
set) and 20% cross validation set. Out of all the different dataset sizes (from
1000 to 600000) which were tried out, 120000 seemed ideal since it provides not
only enough samples for the training but also a small enough dataset for an
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easy and quick training, thus making the testing of a lot of different networks,
more comfortable.

The main idea was to try to fit the data in as few neurons and as few layers as
possible, to provide faster passing through the network, during the classification
process.

Thirteen networks with a single hidden layer were tested, with neuron num-
ber ranging from 2 to 34. For the initial phase of the training, those networks
were trained for 1000 iterations, just to give an insight on the capabilities of each
architecture. The results displayed at Figure 5.1 show that after 24 neurons the
performance of the networks is stabilized at around 72%. Architectures with
16, 20 and 26 neurons were trained again, for 150.000 iterations this time.

It seems that the accuracy with 26 neurons can only go so far. After a long
training session of 150.000 iteration, the 16-neuron-architecture, outperformed
the 26-neuron one showing that 26 neurons might underfit the given data.

Chosen Neural Network Architecture : 16 - 16 - 4

By exhaustively searching through the activation functions and training algo-
rithms with FANN, it appears that Symmetric Sigmoid Fuction (tah(h))
and RProp algorithm provide the best solutions for this particular case.

Figure 5.1: Fitness of the ANN over different architectures.

2 Results and Conclusion

After retraining the chosen architecture for 200.000 iterations, it was obvious
that the performance couldn’t go above 7̃6%. This is mainly due to the fact that
a golden standard doesn’t exist and because of the way class discrimination was
performed (it doesn’t give an absolute way of partitioning). Experienced doctors
have to be used and a lot of opinions need to be advised for the grouping of the
classes produced during the segmentation phase, in order to create an optimal
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solution.
Furthermore, looking at the shape of the classes (Figure 4.4), it is obvious

that a better feature selection is needed. Some of the 16 features-spectra do not
have much information (like the last band - 720 nms) while others prove to be
vital for the discrimination among the classes.

Future Work : Better feature selection and class discrimination during the
Database creation phase, will help the classifier provide a lot better results.

Target Class
Predicted A B C D

A 81.34 10.16 2.13 2.61
B 10.37 70.46 6.28 17.14
C 3.47 6.97 79.9 10.07
D 4.84 12.41 11.68 70.31

Table 5.1: Confusion matrix for the Global Created Set - Training + Unknown.

Observing the confusion table (Table 5.1), it is obvious that the main con-
fusion exists between Class B (Hematoxylin) and the background, while only
10% is classified wrong between classes A and B. The confusion between Class
B and D is probably caused, because some similar intensity blue regions were
chosen to be grouped with the Class B while others with the Unspecified class,
thus producing this confusion to the neural network. Again more experienced
doctors could provide better grouping for those regions.

Despite the accuracy level, the visual result is satisfactory - Figure 5.2. Most
of the confusion exists at the category of pictures with 60% of the cells under
some condition, where the substances start to mix and their regions border blur.

(a) Original (80%) (b) Partitioned (c) Predicted

(d) Original (60%) (e) Partitioned (f) Predicted

Figure 5.2: Visual Accuracy on Images that weren’t used during the training.

At other conditions the visual representation look most accurate and really
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close to the way the images are partitioned. Another reason the classifier oper-
ates poorly at the 60% category is the fact that, at this category, large regions
weren’t included during the grouping phase. Those region inevitably have to be
classified by the classifier, and the classifier gives its best guess.



Chapter 6

Exploiting the muscle of
GP-GPUs

The last decade it is becoming increasing common to use a general purpose
graphics processing (GP-GPU) unit or plain GPU as a modified form of stream
processor. This concept turns the massive computational power of a modern
graphics accelerator’s shader pipeline into general-purpose computing power, as
opposed to being hard wired solely to do graphical operations.

In certain applications requiring massive vector operations, this can
yield several orders of magnitude higher performance than a conven-
tional CPU.

Figure 6.1: Increase in GPU performance
(green) in addition to CPU performance
(blue).

The two largest discrete (see
"Dedicated graphics cards" above)
GPU designers, ATI and Nvidia,
are beginning to pursue this ap-
proach with an array of applica-
tions. Both Nvidia and ATI have
teamed with Stanford University
to create a GPU-based client
for he Folding@home distributed
computing project, for protein
folding calculations. In certain
circumstances the GPU calcu-
lates forty times faster than the
conventional CPUs traditionally
used by such applications.[1][2]

GPGPU can be used for many
types of parallel task including
image processing, ray tracing, computational fluid dynamics and weather mod-
elling. They are generally suited to high-throughput type computations that
exhibit data-parallelism to exploit the wide vector width SIMD architecture of
the GPU.

Furthermore, GPU-based high performance computers are starting to play
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a significant role in large-scale modelling. Three of the 5 most powerful su-
percomputers in the world take advantage of GPU acceleration. This includes
the current leader as of October 2010, Tianhe-1A, which uses the Nvidia Tesla
platform.

1 Introduction to GPUs

GPUs are usually perceived as multi-processor units with great computational
strength. Although, this might be true, it is not entirely accurate. GPUs are
mostly specialized units with massive numbers of integer and floating point
ALUs and a very wide DRAM.

They are mostly designed to support brute computational needs and does not
support more sophisticated services such as, shared cache, data pre-fetching etc
similar to a CPUs (even multi-core ones).

(a) (b)

Figure 6.2: (a) Abstract view of a typical CPU architecture, (b) Abstract view
of a typical GPU architecture, with 8 multiprocessors, each one having a lot of
ALUs

CUDA Programming Model. For the purposes of programming GP-GPUs,
the CUDA (Compute Unified Device Architecture) programming model and
environment was developed by nVidia.

This model is based on the Single Instruction Multiple Data (SIMD) notion
something that can be translated in single instruction multiple threads since
CUDA provides a thread abstraction to assign work to SIMD units. CUDA
code is written in C/C++ plus some necessary extensions.

Main purpose of the developer is the creation of kernels. A kernel is nothing
more than a typical function which is executed on the GPU rather than on the
CPU. Furthermore, following the SIMD model, this kernel is executed indepen-
dently by every thread assigned on that task with the only difference being the
data on which this kernel is applied to.

Other than CUDA, OpenCL a new programming model for GP-GPU has
emerged, promising an even more Unified Device Architecture abstraction. OpenCL
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code can be translated on any multi-processing unit code, with the use of smart
compilers and a -slightly different- programming model.

Threads. GPUs can support tens of thousands of parallel threads,by provid-
ing hardware light-weight thread management (creating, deleting and managing
threads on CPU is an extremely costly procedure).

The thread handling is also quite different than that of a CPU. Threads are
grouped in blocks. Each thread has its own private local memory, organized in
32-bit registers, while each block has a shared memory that can be accessed by
all the threads residing in that block, but not the ones outside of it. Blocks are
then organized on a grid and have access to a global shared memory.

The developer has to define the Grid and Block parameters as well as the
number of threads that will be active at the under-development application.

Architecture. The GPU architecture is composed by a set of processing units
called streaming multi-processors (SM). Each SM contains a number of scalar
processors (SP) or cores. The grouping of the SMs conforts the GPU and is
called a device.

Each SM contains :

• A set of 32-bit-registers per SP.

• A read/write memory area, shared for all SPs called shared memory.

In addition to that, all SMs can access a global memory area called device
memory.

Finally, the Thread Execution Manager is the unit responsible for coordi-
nating the execution and organization of the requested threads within the SPs
and SMs of the device.

Figure 6.3: A typical CUDA enabled GP-GPU, with 8 streaming multi-
processors and 16 scalar processors within each SM.



54 CHAPTER 6. EXPLOITING THE MUSCLE OF GP-GPUS

Limitations and Disadvantages. Although, GPU usage provides great ad-
vantages and computational speed ups, it also suffers from a few limitations.

• They are hard to program and debug.
Despite the fact that CUDA provides an interface and programming model
really close to C/C++, writing code in CUDA means coding on lower level
than usual.

• No shared cache, no data prefetch.
Sure GPUs can provide an impressive horsepower, but what about brains?
Unfortunately, smart solutions implemented on multi-core CPUs are not
feasible on the GPU architecture.

• No thread locking.
No thread locking is supported by GPUs. The developer has to make sure,
that no thread locking or thread blocking will be required.

• Host-Device-Host memory copy.
The fact that GPUs and CPUs don’t have a shared memory, introduces
the overhead of copying the data from one memory to the other.

• Limited support of Floating-Point operation compared to CPUs.
By definition, ALU units in CPU can provide calculations of higher pre-
cision than those in the GPU.

2 Using GPUs for our problem
As mentioned before GPUs are extremely capable with vector operations. Be-
cause of their origin and reason of creation, their architecture, API and devel-
oped libraries support extremely well Linear Algebra operations.

More Data - Better performance. Matrices Product operation is one
of the most common and typical uses for a GP-Graphical Processing Unit.
Field tests have shown that certain CUDA libraries like cuBLAS can perform
7 or more times faster while the bigger the size of the given matrices the more
GFLOPS (Giga-Floating Point Operations per Second) can be achieved.

The reader is reminded that the architecture of a neural network allows
us to do the classification of the whole set of samples by performing product
operations between the sample matrix and the weights that connect each layer
to the next one.

Output = ActivationFunction(K ∗Θ),

Output = A matrix that contains the output of all the neurons of alayerLl.
Row i contains the output of the layer for the i-th sample.

K = XxN matrix that contains X samples at its X rows, every sample is a
1xN vector.

Θ= NxM matrix that contains the weights of each connection between lay-
ers Ll andLl−1.
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Figure 6.4: Scaling of GPU and CPU speed (in Giga- Floating Operations per
Secons )for matrix products over the size of the matrices. The green curve
represents the GPU performance for product operations and using the cuBLAS
linear algebra library while the blue line represents the CPU performance for
product operations using the MKL linear algebra library.

This is perfect for our situation since we can feed the whole Hyper Spectral
cube to the process in order to get immediate results and force the GPU to
perform at the peak of its capabilities.

Memory Copy overhead. Operations done in the GPU should be in such
a way, that the time needed for the copy (from the CPU memory to the GPU
memory) to be significantly smaller than the operation itself. In any different
case the overhead counter balances the computational gain that can be gained
by the GPU.

In our case, copying the data to the GPU has absolutely no difference, con-
sidering that, the end result is the visualization of the picture in the form of
a color map, which will have to be rendered from the GPU of the computer
anyway. Thus, copying the matrix, a few operations earlier doesnâĂŹt add any
extra overhead to the whole processing time.

Portability. Finally a great advantage of GPUs over other systems that
provide raw computational muscle is their portability. In contrast to other
multi-processor units such as clusters, grids or super computers, a GPU can be
"cheaply" placed as a component to an everyday machine or custom architec-
ture.

3 Solution Specifications

Inputs - Outputs. The program created should be treated as a black box,
which requires a 3-D matrix as input and outputs a 4 class thematic map on
the screen. The program should also compute the percentage of pixels with
infected cells over the total amount of pixel on the picture. At the current
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implementation, the program takes as input .csv files that contain 3-D matrices
stored in column-major format.

Compression. In order to reduce the memory copy time of our implemen-
tation a compression would be preferred. Taking into account the fact that the
values are within the range [0-255], storage as a byte format is doable and ideal.
This way we can reduce the memory load that has to be transfer by 75% of the
initial cost.

Classification. Before the classification process, the data are normalized at
the range of [-1, 1] and then processed through the neural network. Finally, the
output Xx4 matrix (where X=number of pixels and 4 = number of classes) is
given to a GUI which draws the color map on the screen.

Figure 6.5: Complete overview of the proposed solution. After the acquisition of
the picture/data cube, 3-D to 2-D transformation and compression is performed
on the CPU. The cube is then moved to GPU were the processing is taking place
after the decompression of the data.

4 Implementation and code analysis.

The implementation took part in two phases. The developement of the Back-
End functionalities, that will be rensponsible for the classification processing
and the Graphical User Interface development.

4.1 Back - end coding

For the Back- End implementation, 3 kernels were created, while cuBLAS library
was used for the linear algebra calculations.

Initialization Phase. Before the actual operation of the application takes
place, some initializations are necessery. The ANN weights are inputed using
.csv input files and the appropriate memory space is allocated on the CPU and
gpu. The weights are then transfered into the GPU and the application is ready
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to start. For the purposes of the development, during the initialization phase,
a HSC, is also inputed into the system, in the form of a .csv.

All the appropriate initialization actions are taking place automatically, fol-
lowing the start of the application.

Main Operation. The reader is reminded that the data are copied from the
main memory to the GPU in the form of bytes. So, the first kernel receives
a matrix of bytes and outputs a matrix of floats. The outputed floats are a
mapping of all the values to the [-1,1] interval.

__global__
void byteToFloat
(float *out, unsigned char* in, int n)
{

int i = threadIdx.x + blockIdx.x * blockDim.x;

for (; i < n; i += gridDim.x * blockDim.x)
out[i] = __fdividef(in[i],255.0)*2 - 1;

}

Following that kernel, the data are ready to be inputed to the neural network.
First step, through the ANN is the matrix multiplication of the input matrix
with the weight matrix. For the multiplication, cublasSgemm() is used, which
is available by the cuBLAS library.

Finally, the last step in order to get the the output of each layer is to pass
the matrix-multiplication outcome through the activation function. The second
kernel, takes care of this operation by accessing the whole body of the matrix
and getting the activation values.

__global__
void sigmoid
(float *out, float *in, int n)
{

int i = threadIdx.x + blockIdx.x*blockDim.x;

for (; i < n; i += gridDim.x * blockDim.x)
out[i] = __tan(in[1]) ;

}

Classification. For classification purposes, two goals have to be achieved:

• Classify each pixel with the appropriate class.

• Count the percentage of each class over the whole body of pixels.
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By using the kernels mentioned above, it is possible to guide the data through
the ANN, but those two alone, cannot produce a classification result. In order
to get a classification result, a way has to be found, that will compare all 4
outputs of the final layer, recognize which one is the biggest and reward that
node as the winner one, thus classifying the particular pixel with the class that
this node represents.

In order to do so, a new kernel similar to the sigmoid one, was created. The
difference in this one is that, apart from calculating the output of the activation
function for each node, it also multiplies it by 10 and then does an integer
division with 5. That guarantees that any node with an activation output <
0.5 will get 0 as output, while any node with activation output > 0.5 will get 1
as output.

__global__
void output_sigmoid
(float *uout, float *out, float *in, int n)
{

int i = threadIdx.x + blockIdx.x*blockDim.x;
float tmp;

for (; i < n; i += gridDim.x * blockDim.x)
{

tmp = __tan(in[i]);
uout[i] =(int) __fdividef(tmp*10,5);
out[i] = tmp;

}
}

Following this step, the output matrix becomes a series of 0/1. There are M
rows (where M = number of pixels ) and each row, contains 1 at the column of
the class that this pixel is classified to.

Final Step. The reader is reminded that the matrix is stored in column-major
format, which means that the first M elements of the matrix contain the first
column, the next M elements contain the second column etc. That means that
the first M elements represent the "projection" of the image only for the first
class (where pixels that are classified with that class have 1 and the rest have
0), the next M elements represent the "projection" of the image only for the
second class etc.

So, by taking the first M elements and summarizing their values, we can get
the number of pixels that are classified with that class. Same happens with the
following M elements etc. The summarizing is performed using the reducing
function of cuBLAS, cublasSasum().

Reduction. Reduction is a popular divide and conquer technique, exercised
on many problems in GPU application developing. For the case of summarizing
the elements of a vector, each thread is performing an operation on only 2
elements of the vector producing a single element result. Doing this with enough
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threads, it is possible to parallel "reduce" the vector to half its size. Doing that
on loop, the vector is finally reduced to a single element, which is the result of
the summarizing procedure.

Figure 6.6: Example of a reduction procedure for summarizing the elements of
a vector.

4.2 Graphical User Interface
The greatest disadvantage on video and image editing applications is the

memory copy overhead applied. The typical approach requires the data to be
send for processing to the GUI, then back to the CPU, where video and image
display libraries will display them - by sending them back to the GPU. For that
reason, GPUs are not favored for such applications.

Aiming for speed, rather than comfort, during this thesis, a GUI (Graphical
User Interface) was developed, that displays the images directly from the GPU.
It was developed with OpenGL, the open source language that was originally
used to program GPUs (back at the day when a GPU was only responsible
for Graphics rendering) and it is based on the simpleGL example that nVidia
provides at its SDK for CUDA + OpenGL applications.

Main Concept. The GUI needs to satisfy three purposes :

• Show a colormap, that will display each class with different color.

• Display the percentage of each class.

• Display a "diagnostic percentage" and an opinion.

In order to provide a more clear display of the classified classes on the pic-
ture, the application generates not one but four colormaps, each one dedicated
to one class. At each colormap the class displayed has a custom color and the
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Figure 6.7: A draft of a simple GUI used for displaying the classification out-
come.

rest of the picture is painted black. Also each pixel’s color density changes ac-
cording to the classification confidence of the neural network.

The reader is reminded that the ANN output at the final layer some values.
The neuron with the highest value wins and this class is assigned to the input
pixel. The outputted values can be perceived as a confidence factor of the ANN
for the particular class, thus the neuron that has the highest confidence factor
wins.

Figure 6.8: Easily extract-
ing the four colormaps from
the cube.

Above each one of the color maps, a percent-
age shows the ratio of this class over the to-
tal amount of pixels at the picture, while two
more units below show the percentage of Class
A (DAB) and Class B(Hematoxylin) over the to-
tal amount of pixels minus the pixels classified as
background. Tthe intensity of (+1 to +3) can be
diagnosed by the visual result on the colormaps.

The result of the classification process, de-
scribed at the previous section, is a huge column-
major matrix, that contains the classification out-
come for the whole picture. Following the same
concept used during the reduction phase, the first
M elements of the matrix (where M = the num-
ber of row = the number of pixels in the picture)
contain the first column which represents the "projection" of the image only
for the first class (where pixels that are classified with that class have 1 and
the rest have 0), the next M elements represent the "projection" of the image
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Figure 6.9: Example of the final application using a random image.

only for the second class etc. This way, it is quite straight forward to produce
a colormap for each one of the classes, by simply extracting the elements that
represent it.

Implementation. Because of the way with which GPUs and OpenGL render
and then show the graphics, the whole matrix had to be copied to a 4 byte format
that would contain the RGB values plus one extra value Alpha [3]. For this
purpose a new kernel was created, where x,y represent the rows and columns,
spanning from 0 to 1600 and 0 to 1200 respectively:

__global__
void fillbuf
(float* data, ulong3 size, uchar3 *buf, int imagenumber, uchar3 color )
{

unsigned long x = blockIdx.x * blockDim.x + threadIdx.x;
unsigned long y = blockIdx.y * blockDim.y + threadIdx.y;

unsigned char r = color.x * data[(size.x*size.y)*imagenumber+ y*size.y+x];
unsigned char g = color.y * data[(size.x*size.y)*imagenumber+ y*size.y+x];
unsigned char b = color.z * data[(size.x*size.y)*imagenumber+ y*size.y+x];
buf[ y * 1200 + x] = make_uchar3(r,g,b);

}

The matrix is copied to an openGL vertex buffer, which is mapped as a
graphic resource using cudaGraphicsMapResources() function. After the matrix
transfer openGL is rensponsible for unmapping the resources found in the vertex
buffer, and display the pictures.

After the creation of the GUI, the custom made display() function is called
iteratively. This function is responsible to call the back-end program, copy the
newly created matrix to the vertex buffer and then display it. The interval with
which the GUI calls the display() function, is called REFRESH_DELAY and
can be defined manually. By default it is set at 100 ms.
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5 Optimization and Results.

5.1 Kernel Tweaking
The final form of the kernels illustrated at the previous section, is a result of an
optimization process. The first form of the kernels was the following:

__global__
void byteToFloat
(float *out, unsigned char* in, int n)
{

int i = threadIdx.x + blockIdx.x * blockDim.x;

for (; i < n; i += gridDim.x * blockDim.x)
out[i] = (float) (((float)in[i])/255.0)*2 - 1;

}

__global__
void sigmoid
(float *out, float *in, int n)
{

int i = threadIdx.x + blockIdx.x*blockDim.x;

for (; i < n; i += gridDim.x * blockDim.x)
out[i] = tan(in[i]);

}

During the optimization process a lot of tests took place in order to find
the best Grid and Block sizes. Those sizes will help the application "hide"
the memory access delays, without forcing serialization. Furthermore, for best
results the memory batch that will be processed by the block, should fit the SM
as good as possible. In order to get those size, different sizes and Grid-Block
combinations were tried. Each combination ran for 50 times on 2MP Hyper
Spectral Images. Figure 6.10 shows the average time for each one of the tests,
while the following tables summarize the results.

Block Size
Grid Size 100 150 200 250 300 350 400 450 500 550

35000 13 11.5 11.6 10.8 11.9 11.1 12.2 12.6 12.2 13.6
40000 13.2 11.5 11.7 10.8 11.9 11.2 12.7 12.8 12.4 14.1
45000 13.1 11.3 11.8 10.9 11.9 11.2 12.8 13 12.6 14.6
50000 13.1 11 11.7 11 12 11.4 13 13.2 12.9 15
55000 13.2 11.1 11.7 11.1 12.1 11.6 13.1 13.5 13.2 15.5
60000 13.4 11.1 11.9 11.2 12.3 11.8 13.2 13.6 13.4 15.9

Table 6.1: Average execution time for the byteToFloat kernel, based on different
Grid and Block sizes.
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Block Size
Grid Size 100 150 200 250 300 350 400 450 500 550

35000 17.7 15.2 16.2 15.6 18 17 17.2 24.3 22.7 22.3
40000 17.8 15.5 16.4 15.8 18.4 17.2 17.5 24.9 23.1 22.9
45000 18 15.6 16.5 16 18.6 17.6 17.8 25.5 23.7 23.6
50000 18.3 15.6 16.6 16.1 19 17.8 18.1 26.1 24.5 24.3
55000 18 15.7 16.8 16.2 19.3 18.2 18.4 16.7 25 24.9
60000 18.1 15.9 16.9 16.4 19.8 18.5 18.7 17.3 25.6 25.5

Table 6.2: Average execution time for the Sigmoid kernel, based on different
Grid and Block sizes.

Looking at the tables, it is obvious that the best case for the byteToFloat
kernel requires 250 threads per Block and 35 000 Blocks on the Grid while the
Sigmoid kernel, requires 150 threads per Block and 35 000 Blocks on the Grid.

(a) (b)

Figure 6.10: (a) The performance of the first kernel byteToFloat (b) The per-
formance of the second kernel sigmoid

Favoring Speed over Precision. At the original kernel, the floating point
operations for division followed with the standard procedure. There is a way,
with which, one can use functions optimized for speed rather than floating point
accuracy.

In this case by using the optimized for speed function __fdividef( f1, f2) (in-
stead of the standard division), and replacing expf() with __expf(), the average
speed of the kernels dropped down to 3ms for byteToFloat and 2ms for Sig-
moid. Tests showed that the precision required for this particular application
is not affected, since the results are the same.

The final form of the kernels is illustrated below :

__global__
void byteToFloat
(float *out, unsigned char* in, int n)
{

int i = threadIdx.x + blockIdx.x * blockDim.x;
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for (; i < n; i += gridDim.x * blockDim.x)
out[i] = __fdividef(in[i],255.0)*2 - 1;

}

__global__
void sigmoid
(float *out, float *in, int n)
{

int i = threadIdx.x + blockIdx.x*blockDim.x;

for (; i < n; i += gridDim.x * blockDim.x)
out[i] = __tan(in[i]);

}

5.2 Results and Conclusion

Concluding this Chapter, the final time measurements for the whole applica-
tion along with the maximum FPS (frames per second) that can be achieved,
are summarized at Table 6.3. The tests took place on a GeForce GTX 500ti
NVidia gpu and on an Intel QuadCore @ 2.6GHz CPU.

Different picture sizes were tested - 1 MegaPixel, 2 MegaPixel and a third
option of a sub-sampled 2 MegaPixel picture (800x600). The sub sampled pic-
ture can be created, by taking one pixel for every two pixels of the original
picture.

For the Summary, the Transfer value is not taken into account, since one
can process a picture while a second one is being transfered, thus "hiding" the
cost of transferring with a pipelining scheme.

HSC Size 2 MP 1 MP 2 MP Sub-Sampled
Transfer 22 ms 10 ms 6 ms

ByteToFloat 3.5 ms 1 ms 1 ms

Layer1 16 ms 6 ms 3 ms

Layer 2 10 ms 5 ms 3 ms

Reduction 9 ms 7 ms 7 ms

Visualization 2 ms 2 ms 2 ms

Summary 40.5 ms 21 ms 16 ms

Frames Per Second 24.7 fps 47.6 fps 62.5 fps

Table 6.3: Summarizing the execution time of the application.
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Considering the high quality of display of a 2 Mega Pixel picture and the
size of the final color map displayed, a sub-sampled picture will not affect the
perception of the observer. Because of that, sub-sampled 2 Mega Pixel images
are proposed as the golden mean between high resolution pictures and high
quality fps rates.

Comparing to the CPU. A similar application was developed for the CPU
in Matlab. Matlab depends upon highly optimized c++ and fortran libraries on
linear algebra such as BLAS and Lapack and a powerfull display system, thus
providing a worthy opponent.

HSC Size 2 MP 1 MP 2 MP Sub-Sampled

CPU 3426 ms 1386 ms 964 ms

GPU 40.5 ms 21 ms 16 ms

Speedup 84.6x 66x 60.3x

Table 6.4: CPU vs GPU.

Figure 6.11: Graphical representation of the gigantic difference between the
GPU (blue) and CPU (red).

Figure 6.11 displays the gigantic difference between the CPU and GPU per-
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formance. The difference grows bigger as the amount of pixels to be classified
increases. The Speedup starts at 60.3x for a sub-sampled 2MP picture and goes
up to 84.6x for a 2MP picture.
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Chapter 7

Discussion

1 Conclusions

Throughout this thesis we have examined and developed an efficient way to
process and segment hyper spectral pictures in order to create datasets, capable
of training hyper spectral classifiers accurately. Spectral clustering and K-Means
with different kernels were used in order to test the best way of clustering the
pixels. We have concluded that clustering the picture in more classes than
needed using K-Means and SAM as a measure of spectral similarity, can be really
effective. Those extra classes were then grouped together via visual feedback to
form the four goal classes.

We have concluded that Neural Networks can not only be very effective in
classifying such images but also that combined with the computational powers
of a GPU, they can provide real time performance, something that gives an edge
to our classifier over others that have been introduced so far. We have trained
the Neural Network with different architectures and activation functions and we
have concluded that the best activation function is the Assymetric Sigmoid and
the 16-26-4 architecture.

Finally, a simple GUI was developed in order to provide feedback to our work
and a simple way of testing and using the implemented classifier.

The reader has to realize that despite our efforts to provide the best classes for
training, due to the lack of pathologoanatomy experience, the classes provided
might not be the best matches. This doesn’t affect the results of this thesis
though, which shows that the classifier considering a number of classes strictly
set, can then be trained and learn to recognize them. The better the shape and
nature of these classes the better the classification outcome.

2 Future work

The problem addressed and elaborated by this thesis is widely exploratory
and interdisciplinary. For that reason, there is a number of expansions that
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could be made upon this thesis on different parts of the implementation. Some
proposals and suggestions are:

• Better feature selection and class discrimination.
Due to the confliction of the classes with each other the performance of
the classifier is stuck at lower levels than anticipated. Some better feature
selection (by selecting the bands most vital for the classification) and
better class discrimination(by using trained and experienced doctor) can
help the classifier achieve higher levels of prediction.

• Improve the functionality and interaction capabilities of the GUI.
The GUI developed, provides simple functionalities, and was build mainly
to prove the capability of building a video streaming application by dis-
playing the processing result, straight from the GPU. With some OpenGL
experience, the GUI can be more interactive and support the functionality
needs of more complex applications.

• Directly connect the classifier with the hyper spectral camera in
order to provide on line Hyper Spectral Classification.
The final connection of the camera with the classifier, provides the last
step for the creation of a full functional on-line Hyper Spectral Classifier.

• Train and test the classifier for in-vivo applications.
Although the tests for this thesis, have been performed on biopsies, the
results can give quite an optimistic approach for in-vivo applications, thus
using Hyper Spectral Imaging most useful tool : non-destructive analysis.


