
Technical University of Crete, Greece

Department of Electronic and Computer Engineering

KMonitor

Global and Local State Visualization and Monitoring

for the Robocup SPL League

Maria Karamitrou

Thesis Committee

Assistant Professor Michail G. Lagoudakis (ECE)

Assistant Professor Georgios Chalkiadakis (ECE)

Assistant Professor Antonios Deligiannakis (ECE)

Chania, July 2012

http://www.tuc.gr
http://www.ece.tuc.gr

Maria Karamitrou ii July 2012

Πολυτεχνειο Κρητης

Τμημα Ηλεκτρονικων Μηχανικων και Μηχανικων Υπολογιστων

KMonitor

Ολική και Τοπική Οπτικοποίηση

και Παρακολούθηση Κατάστασης

για το Πρωτάθλημα SPL του Robocup

Μαρία Καραμήτρου

Εξεταστική Επιτροπή

Επίκουρος Καθηγητής Μιχαήλ Γ. Λαγουδάκης (ΗΜΜΥ)

Επίκουρος Καθηγητής Γεώργιος Χαλκιαδάκης (ΗΜΜΥ)

Επίκουρος Καθηγητής Αντώνιος Δεληγιαννάκης (ΗΜΜΥ)

Χανιά, Ιούλιος 2012

http://www.tuc.gr
http://www.ece.tuc.gr

Maria Karamitrou iv July 2012

Abstract

Software debugging is an essential process in any software development project. However,

debugging robotic software can be challenging because of the continuous real-time inter-

action between the robot and the environment. This is particularly true in the RoboCup

competition, where teams of autonomous robots compete against each other in various

leagues of soccer games. The Standard Platform League (SPL) focuses mostly on robot

software development, since all teams use identical robots, namely the Aldebaran Nao

humanoid robots. Software development for autonomous robots requires both individual

inspection of each module of the code, so as to test the performance of isolated function-

ality, and joint inspection of the interaction between modules, so as to test the overall

performance of the integrated system. In the RoboCup domain, debugging can take the

form of monitoring the internal state of each robot (perception of objects, self-location,

obstacles, etc.) as well as the global state of the entire team (shared perception, for-

mations, roles, etc.). This thesis presents KMonitor, an integrated monitoring software

application for Nao robots, which allows the developer to inspect effectively each one of

the basic modules of the code of our RoboCup SPL team Kouretes. KMonitor offers

real-time visualization of data on a remote desktop computer using a User Datagram

Protocol (UDP) multicast network. The graphical user interface is composed by vari-

ous tabs offering different monitoring views for individual inspection of the outcomes of

vision, localization, obstacle avoidance, and decision making and joint inspection of the

interaction between software modules. The user can select one or more of the detected

active robots to monitor and check one or more desired graphical features to visualize.

KMonitor has been implemented using the Qt application framework over the underly-

ing Monas software architecture and Narukom communication framework of the Kouretes

code. KMonitor integrates the required functionality and views under a single intuitive

graphical user interface, facilitating the user in switching quickly between different views

in order to monitor different aspects of the robot software. Finally, KMonitor is easily

extensible and fully parameterizable to accommodate future needs and RoboCup SPL

rules modifications.

Maria Karamitrou vi July 2012

Περίληψη

Η αποσφαλμάτωση λογισμικού αποτελεί μια ουσιαστική διαδικασία σε κάθε έργο ανάπτυξης

λογισμικού. Ωστόσο, η αποσφαλμάτωση λογισμικού για ρομπότ εμπεριέχει μεγαλύτερη δυ-

σκολία λόγω της συνεχούς και πραγματικού χρόνου αλληλεπίδρασης μεταξύ ρομπότ και πε-

ριβάλλοντος. Αυτό είναι ιδιαίτερα αληθές στο διαγωνισμό RoboCup, όπου ομάδες αυτόνομων

ρομπότ ανταγωνίζονται μεταξύ τους σε διάφορα πρωταθλήματα αγώνων ποδοσφαίρου. Το

πρωτάθλημα Standard Platform League (SPL) εστιάζει κυρίως στην ανάπτυξη ρομποτικού

λογισμικού, δεδομένου ότι όλες οι ομάδες χρησιμοποιούν πανομοιότυπα ρομπότ, συγκε-

κριμένα τα ανθρωποειδή ρομπότ Aldebaran Nao. Η ανάπτυξη λογισμικού για αυτόνομα

ρομπότ απαιτεί τόσο ατομικό έλεγχο κάθε οντότητας του κώδικα, ώστε να δοκιμαστεί

η απόδοση κάθε μεμονωμένης λειτουργικότητας, όσο και από κοινού έλεγχο της αλλη-

λεπίδρασης μεταξύ των οντοτήτων, προκειμένου να δοκιμαστεί η συνολική απόδοση του

ολοκληρωμένου συστήματος. Στο πεδίο του RoboCup, η αποσφαλμάτωση μπορεί να λάβει

τη μορφή παρακολούθησης της εσωτερικής κατάστασης του κάθε ρομπότ (αντίληψη αντι-

κειμένων, εκτίμηση θέσης, αναγνώριση εμποδίων, κτλ.) καθώς και της καθολικής κατάστασης

ολόκληρης της ομάδας (κοινή αντίληψη, σχηματισμοί, ρόλοι, κτλ.). Η παρούσα διπλωματική

εργασία παρουσιάζει το KMonitor, μια ολοκληρωμένη εφαρμογή λογισμικού για την παρα-

κολούθηση ρομπότ Nao, η οποία επιτρέπει στον προγραμματιστή να ελέγχει αποτελεσματικά

κάθε μία από τις βασικές οντότητες του κώδικα των Κουρητών, της ομάδα μας στο RoboCup

SPL. Το KMonitor προσφέρει πραγματικού χρόνου οπτικοποίηση των δεδομένων σε απο-

μακρυσμένο υπολογιστή χρησιμοποιώντας ένα User Datagram Protocol (UDP) multicast

δίκτυο. Η γραφική διεπαφή του χρήστη αποτελείται από διάφορες καρτέλες που προσφέρουν

διαφορετικές γραφικές όψεις παρακολούθησης για μεμονωμένο έλεγχο των εξαγομένων της

μηχανικής όρασης, του εντοπισμού θέσης, της αποφυγής εμποδίων και της λήψης αποφάσεων

και από κοινού έλεγχο της αλληλεπίδρασης μεταξύ των οντοτήτων του λογισμικού. Ο

χρήστης μπορεί να επιλέξει να παρακολουθήσει ένα ή περισσότερα ενεργά ρομπότ και να

οπτικοποιήσει ένα ή περισσότερα επιθυμητά γραφικά χαρακτηριστικά. Το KMonitor έχει

υλοποιηθεί με χρήση του πλαισίου εφαρμογών Qt και υποστηρίζεται από την αρχιτεκτο-

νική λογισμικού Monas και το πλαίσιο επικοινωνίας Narukom του κώδικα των Κουρητών.

Το KMonitor ενσωματώνει την απαιτούμενη λειτουργικότητα και τις όψεις υπό μία ενιαία

διαισθητική γραφική διεπαφή χρήστη, διευκολύνοντας τη γρήγορη μετάβαση μεταξύ διαφορε-

τικών γραφικών όψεων προκειμένου να επιτευχθεί η παρακολούθηση διαφορετικών πτυχών

του ρομποτικού λογισμικού. Τέλος, το KMonitor είναι εύκολα επεκτάσιμο και πλήρως

παραμετροποιήσιμο, ώστε να ικανοποιήσει μελλοντικές ανάγκες και τροποποιήσεις στους

κανόνες του RoboCup SPL.

Acknowledgements

Τυπικά θα έπρεπε να γράφω το συγκεκριμένο τμήμα του κειμένου της διπλωματικής μου

εργασίας στα αγγλικά, για λόγους ομοιμορφίας. Επιλέγω όμως την ελληνική, αφού θεωρώ

πως δεν μπορώ να εκφράσω ακριβώς τις σκέψεις μου σε καμία άλλη γλώσσα.

Καταρχήν θα ήθελα να ευχαριστήσω τον επιβλέποντα καθηγητή μου κ. Λαγουδάκη για

τη δημιουργία της ομάδας Κουρήτες. Στους Κουρήτες, η εκπόνηση της διπλωματικής ερ-

γασίας μετατρέπεται από ατομική άσκηση σε ομαδική, συνεργατική άσκηση επαγγελματικής

εκπαίδευσης. Τον ευχαριστώ για την καθοδήγηση και την βοήθειά του καθ΄ όλη την διάρκεια

της συγκεκριμένης εργασίας.

Δήμητρα, Αγγελική, Νίκο (Παυλάκη), ΄Ιριδα, Βαγγέλη και Λευτέρη σας ευχαριστώ για

την αγάπη και το ενδιαφέρον σας για τους Κουρήτες. Μανώλη, αν δεν ήσουν εσύ στους

Κουρήτες, πιθανότατα εγώ δεν θα είχα ξεκινήσει την συγκεκριμένη διπλωματική εργασία.

Νίκο (Κοφινά), αν δεν ήσουν εσύ στους Κουρήτες, πιθανότατα εγώ δεν θα είχα ξεκινήσει

ψυχοθεραπεία. «Κ-ουρητ-οπέλια», σας ευχαριστώ όλους για την συνεργασία, τις συμβου-

λές, τις ιδέες και τις μοναδικές στιγμές που περάσαμε στην ομάδα.

Γεωργία, Θεοδώρα και Σοφία σας ευχαριστώ για τις υπέροχες φοιτητικές στιγμές που

ζήσαμε και που μου αποδεικνύετε καθημερινά πόσο σημαντική είναι η έννοια της λέξης φι-

λία. Χρήστο μου, όσα και να είναι τα εμπόδια υπάρχει τουλάχιστον ένα ελεύθερο μονοπάτι,

σωστά; Τίποτα δεν είναι αδύνατο, είχες δίκιο τελικά.

Τέλος, ένα μεγάλο ευχαριστώ στην οικογένειά μου, που παρόλα τα λάθη χρονισμού μου,

ήταν πάντα δίπλα μου, με στήριξε και με στηρίζει με κάθε δυνατό τρόπο.

Maria Karamitrou x July 2012

Contents

1 Introduction 1

1.1 Thesis Contribution . 2

1.2 Thesis Overview . 3

2 Background 5

2.1 RoboCup . 5

2.1.1 Standard Platform League . 6

2.1.2 Aldebaran Nao Humanoid Robot 6

2.2 RoboCup SPL Team Kouretes . 9

2.2.1 Monas Software Architecture . 11

2.2.2 Narukom Communication Framework 13

2.3 Qt – A Cross-Platform Application Framework 14

2.3.1 The Qt Signal/Slot Mechanism 14

2.3.2 The Qt Designer . 15

3 Problem Statement 19

3.1 General Purpose Software Debugging . 19

3.2 Autonomous Robot Software Debugging 20

3.3 Kouretes Software Debugging Requirements 21

4 Related Work 25

4.1 B-Human . 25

4.2 Nao Devils Dortmund . 27

4.3 TT-UT Austin Villa . 27

4.4 Nao-Team HTWK . 28

4.5 Dutch Nao Team . 29

Maria Karamitrou xi July 2012

CONTENTS

4.6 UPennalizers . 30

4.7 NAO-Team Humboldt . 31

5 Our Approach 33

5.1 KMonitor Architecture . 34

5.1.1 The Message Allocator Module 34

5.1.2 The Graphical User Interface . 36

5.1.3 The View-Controller Module . 42

5.2 The Global World State . 43

5.2.1 Visualization of the estimated robot pose 43

5.2.2 Visualization of the estimated ball position 44

5.3 The Local World State . 44

5.3.1 Visualization of the ball observation 45

5.3.2 Visualization of the landmark observations 46

5.3.3 Visualization of the localization particles 47

5.3.4 Visualization of the robot view field projection 48

5.3.5 Visualization of the robot trace 49

5.3.6 Visualization of the walk commands 50

5.4 The Local Polar Map . 51

5.4.1 Visualization of the occupancy map 52

5.4.2 Visualization of the target coordinates 52

5.4.3 Visualization of the obstacle-free path 53

5.5 The Local Robot View . 54

5.5.1 Visualization of the raw camera image 55

5.5.2 Visualization of the color-segmented camera image 55

5.6 The Local Sensors Data . 56

6 Implementation 59

6.1 MessageAllocator Class Reference . 59

6.2 Global World State Tab’s User Interface 62

6.2.1 GlobalRemoteHosts Class Reference 63

6.2.2 KFieldScene Class Reference . 65

6.2.3 GraphicalRobot Class Reference 66

6.3 Global World State Tab’s View-Controller 69

6.4 Local World State Tab’s User Interface 70

Maria Karamitrou xii July 2012

CONTENTS

6.4.1 LocalRemoteHosts Class Reference 71

6.4.2 LWElementTreeWidget Class Reference 72

6.4.3 LocalRobot Class Reference . 73

6.5 Local World State Tab’s View-Controller 75

6.6 Local Polar Map Tab’s User Interface . 76

6.6.1 LMElementTreeWidget Class Reference 76

6.7 Local Polar Map Tab’s View-Controller 77

6.8 Local Robot View Tab’s User Interface 78

6.8.1 LVElementList Class Reference 78

6.8.2 RobotView Class Reference . 80

6.9 Local Robot View Tab’s View-Controller 81

6.10 Local Sensors Data Tab’s User Interface 82

6.11 Local Sensors Data Tab’s View-Controller 82

7 Results 85

7.1 Monitoring the Global World State . 85

7.2 Monitoring the Local World State . 88

7.3 Monitoring the Local Polar Map . 90

7.4 Monitoring the Local Robot View . 92

7.5 Monitoring the Local Sensors Data . 92

7.6 Usability . 92

8 Conclusion and Future Work 97

8.1 Future Work . 97

References 101

Maria Karamitrou xiii July 2012

CONTENTS

Maria Karamitrou xiv July 2012

List of Figures

2.1 Standard Platform League at RoboCup 2012 7

2.2 Aldebaran Nao robot (v3.3, academic edition) and its components 8

2.3 Embedded and desktop software for the Nao robot 9

2.4 The NAOqi process . 10

2.5 Team Kouretes at RoboCup 2012 in Mexico City 11

4.1 SimRobot simulator . 26

4.2 Nao Devils debugging tool . 28

4.3 Austin Villa vision (left) and localization (right) debugging tools 29

4.4 Austin Villa behavior (left) and kick region (right) debugging tool 29

4.5 HTWK NaoControl . 30

4.6 Dutch Nao Team monitoring scripts . 31

4.7 Dutch Nao Team USARsim simulation environment 31

4.8 UPennalizers monitoring vision tool . 32

4.9 NAO-Team Humboldt RobotControl monitoring tool 32

5.1 KMonitor’s architecture . 35

5.2 Visualization of the known hosts as tree (left) and as combo box (right) . 37

5.3 The field dimensions (in mm) according to the RoboCup SPL Rules 2012 38

5.4 The Global World State tab (initialized view) 39

5.5 The Local World State tab (initialized view) 39

5.6 The Local Polar Map tab (initialized view) 40

5.7 The Local Robot View tab (initialized view) 41

5.8 The Local Sensors Data tab (initialized view) 41

5.9 The KCC Beta tab (initialized view) . 42

5.10 Global coordinate systems of the real (left) and the virtual (right) field . 44

Maria Karamitrou xv July 2012

LIST OF FIGURES

5.11 Visualization of the estimated robot poses and ball positions 45

5.12 Visualization of the instantaneous ball observation 46

5.13 Visualization of the instantaneous landmark observations 47

5.14 Visualization of the localization particles 48

5.15 Visualization of the robot view field projection 49

5.16 Visualization of the robot trace . 50

5.17 Visualization of walk command . 51

5.18 Visualization of the obstacle occupancy map 53

5.19 Visualization of the target coordinates and the obstacle-free path 54

5.20 Visualization of the raw camera image 56

5.21 Visualization of the color-segmented camera image 57

5.22 Visualization of the data from the sensors 58

6.1 The UML Class Diagram of our KMonitor Implementation 60

6.2 Global World State’s User Interface . 63

6.3 Local World State’s User Interface . 71

6.4 Local Polar Map’s User Interface . 77

6.5 Local Robot View’s User Interface . 79

6.6 Local Sensors Data’s User Interface . 82

7.1 Monitoring the Global World State during a real SPL game 86

7.2 Monitoring the Global World State during a real SPL game (cont’d) . . . 87

7.3 Monitoring the Local World State . 89

7.4 Monitoring the Local Polar Map . 91

7.5 Monitoring the Local Robot View . 93

7.6 Monitoring the Local Sensors Data . 94

Maria Karamitrou xvi July 2012

Chapter 1

Introduction

The RoboCup Competition is an international annual aggregation of robotic competitions

which intends to promote Robotics and Artificial Intelligence (AI) research. RoboCup

Soccer constitutes one of the four RoboCup competitions and focuses mainly on the game

of soccer. The research goals concern cooperative multi-robot and multi-agent systems

in dynamic adversarial environments and all the participating teams have to find real-

time solutions to some of the most difficult problems in robotics, such as perception,

cognition, action, and coordination. In the Standard Platform League (SPL) all teams

use identical (standard) robots. Currently, the chosen hardware platform is the Aldebaran

NAO humanoid robot, therefore the teams concentrate on software development only.

Software development for robots competing in the RoboCup SPL essentially aims at

developing autonomous agents. An autonomous robotic agent is a system that continu-

ously perceives its environment through the robotic sensors, analyzes the percept sequence

using various AI techniques, and takes actions through the robotic actuators with the

goal of maximizing a utility function. The central problems of an autonomous robotic

agent include environment perception, robot localization, robotic mapping, path plan-

ning, decision making under uncertainty, multi-agent planning and learning, and robot

coordination. Therefore, the creation of the desired functionality for an autonomous robot

is a complicated procedure, which lies on addressing each one of the basic AI problems

and integrating these approaches into a single entity.

The process of debugging is an essential step in any software development project.

It contributes to the detection and elimination of flaws from the written code in order

to deliver the desired functionality reliably. However, debugging robotic software can

Maria Karamitrou 1 July 2012

1. INTRODUCTION

be challenging because of the continuous interaction between the agent and the envi-

ronment and the real-time aspect of this interaction. When developing robotic agents,

several debugging methodologies may have to be followed so as to achieve the expected

behavior. In particular, the implementation of an autonomous agent requires both indi-

vidual inspection of each module of the code, so as to test the performance of isolated

functionality, and joint inspection of the interaction between modules, so as to test the

overall performance of the integrated system. In the RoboCup domain, debugging can

take the form of monitoring the internal state of each robot (perception of objects, self-

location, obstacles, etc.) as well as the global state of the entire team (shared perception,

formations, roles, etc.).

1.1 Thesis Contribution

This thesis contributes KMonitor, an integrated monitoring software application for

RoboCup SPL robotic agents, which allows the developer to inspect effectively each

one of the basic modules of the existing code. The proposed technique to accomplish

this goal is real-time visualization of the data each module operates on and the data it

exports on a remote desktop computer using a User Datagram Protocol (UDP) multicast

network. Thus, the values of sensors and actuators, as well as the outcomes of the vision,

localization, and obstacle avoidance activities are designed graphically in a user-friendly

intuitive way under different monitoring views. Furthermore, the application provides

joint inspection of the interaction between basic modules. The user interface of KMon-

itor is composed by various tabs each one of them offering a different monitoring view.

The user can select one or more of the detected active robots to monitor and check one

or more desired graphical features to visualize, according to the functionality of the cur-

rent tab. KMonitor has been implemented using the Qt application framework over the

underlying Monas software architecture and Narukom communication framework, also

used by the robots. Finally, KMonitor eases any future extension, so as to adopt pos-

sible module enhancements and new graphical elements. Additionally, it provides easy

XML-based configuration to be consistent at all times with the current parameterization

of the code and to catch up with the Robocup SPL rules which are frequently modified.

Maria Karamitrou 2 July 2012

1.2 Thesis Overview

1.2 Thesis Overview

Chapter 2 describes the RoboCup competition, the Standard Platform League (SPL),

the Aldebaran NAO humanoid robot, our SPL team Kouretes, our software architecture

Monas, and our communication framework Narukom. Furthermore, it provides basic

background information about Qt, the cross-platform application framework on which

KMonitor is based, the signal and slot mechanism of Qt, and the Qt Designer GUI lay-

out and forms builder, features of Qt we extensively utilized. In Chapter 3 we discuss

the significance of the debugging process for robotic software development and we state

the requirements for our monitoring application, while in Chapter 4 we briefly refer to

the related work of other SPL teams. In Chapter 5 we describe the design of KMoni-

tor’s architecture and describe extensively all the available features and functionalities

it provides. In Chapter 6 we present KMonitor’s implementation from a technical point

of view. In Chapter 7 we present a number of scenarios demonstrating the effectiveness

and real-time performance of KMonitor. Finally, in Chapter 8 we discuss the results of

this thesis and we suggest some possible future research enhancements and directions.

Maria Karamitrou 3 July 2012

1. INTRODUCTION

Maria Karamitrou 4 July 2012

Chapter 2

Background

2.1 RoboCup

RoboCup, an abbreviation of “Robot Soccer World Cup”, is an international annual

competition which intends to promote robotics and artificial intelligence research. The

founding father of RoboCup, Professor Alan Mackworth, inspired the idea of building a

robot to play a soccer game autonomously in 1992. One year later, Hiroaki Kitano [1]

and his research group decided to launch a novel robotic competition. Finally, in 1997 the

actual establishment of the International RoboCup Federation occurred. The ambitious

goal of the RoboCup Initiative is stated as follows:

“By mid-21st century, a team of fully autonomous humanoid robot soccer

players shall win the soccer game, comply with the official rule of the FIFA,

against the winner of the most recent World Cup.”

All the teams participating in RoboCup have to find real-time solutions to some of

the most difficult problems in robotics (perception, cognition, action, coordination) and

apply their approaches on the various leagues of the four RoboCup divisions (RoboCup

Soccer, RoboCup Rescue, RoboCup@Home, Robocup Junior). Until today, noteworthy

progress has been made in advancing the state-of-the-art technology, while the number of

the participating researchers who aim to fulfill the initial challenge is constantly growing.

Maria Karamitrou 5 July 2012

2. BACKGROUND

2.1.1 Standard Platform League

RoboCup Soccer constitutes one of the four RoboCup divisions and focuses mainly on

the game of soccer, where the research goals concern cooperative multi-robot and multi-

agent systems in dynamic adversarial environments. All robots in this division are fully

autonomous. RoboCup Soccer consists of five different leagues (Humanoid, Middle Size,

Simulation, Small Size, and Standard Platform). In the Standard Platform League (SPL)

all teams use identical (standard) robots. Currently, the chosen hardware platform is the

Aldebaran Nao humanoid robot, therefore the teams concentrate only on software devel-

opment. The participating teams are prohibited to make any changes to the hardware of

the robot, meaning that off-board sensing or processing systems are not allowed. The use

of directional, as opposed to omnidirectional, vision forces a trade off of vision resources

between self-localization, ball localization, player identification, and obstacle detection.

The robots are completely autonomous and no human intervention from team members

is allowed during the games. The only interaction of the robots with the “outer human

world” is the reception of data from the Game Controller, a computer that broadcasts

information about the state of the game (score, time, penalties, etc.).

The SPL games are conducted on a 4m × 6m soccer field which consists of a green

carpet marked with white lines and two yellow goals (Figure 2.1). The ball is an orange

street hockey ball. Each team consists of four robots, one goal keeper, and three field

players. The robot players are distinguished by colored belts (the so-called waist bands),

blue for one team and red for the other. The total game time is 20 minutes and is broken

in two halves; each half lasts 10 minutes. During the 10-minutes half-time break, teams

have to switch field sides and waist bands and only during this time it is permitted to

change robots, change programs, etc. The detailed rules of the SPL games are stated in

detail in the RoboCup Standard Platform League (Nao) Rule Book [2], which is annually

updated with enhancements and additional challenging requirements that propel the

general progress of the league.

2.1.2 Aldebaran Nao Humanoid Robot

The current hardware platform which all SPL teams are obliged to work with is Nao,

an integrated, programmable, medium-sized humanoid robot developed by Aldebaran

Robotics in Paris, France. Project Nao [3] started in 2004. In August 2007 Nao officially

Maria Karamitrou 6 July 2012

2.1 RoboCup

Figure 2.1: Standard Platform League at RoboCup 2012

replaced Sony’s AIBO quadruped robot in the RoboCup SPL. In the past few years Nao

has evolved over several designs and several versions.

Nao (version V3.3) [4] is a 58cm, 5kg humanoid robot (Figure 2.2). The Nao robot

carries a fully capable computer on-board with an x86 AMD Geode processor at 500 MHz,

256 MB SDRAM, and 2 GB flash memory running an Embedded Linux distribution. It is

powered by a 6-cell Lithium-Ion battery which provides about 30 minutes of continuous

operation and communicates with remote computers via an IEEE 802.11g wireless or a

wired ethernet link.

Nao RoboCup edition has 21 degrees of freedom; 2 in the head, 4 in each arm, 5 in

each leg, and 1 in the pelvis (there are two pelvis joints which are coupled together on

one servo and cannot move independently). Nao, also, features a variety of sensors and

transmitters. Two cameras are mounted on the head in vertical alignment providing non-

overlapping views of the lower and distant frontal areas, but only one is active each time

and the view can be switched from one to the other almost instantaneously. Each camera

is a 640 x 480 VGA device operating at 30fps. The native colorspace provided by the

cameras is the YUV422. Four sonars (two emitters and two receivers) on the chest allow

Nao to sense obstacles in front of it. In addition, the Nao has a rich inertial unit, with

one 2-axis gyroscope and one 3-axis accelerometer, in the torso that provides real-time

information about its instantaneous body movements. Two bumpers located at the tip

Maria Karamitrou 7 July 2012

2. BACKGROUND

Figure 2.2: Aldebaran Nao robot (v3.3, academic edition) and its components

of each foot are simple ON/OFF switches and can provide information on collisions of

the feet with obstacles. Finally, an array of force sensitive resistors on each foot delivers

feedback of the forces applied to the feet, while encoders on all servos record the actual

values of all joints at each time.

Aldebaran Robotics has equipped Nao with both embedded and desktop software to

be used as a base for further development (Figure 2.3). The embedded software, running

on the motherboard located in the head of the robot, that the company provides includes

an embedded GNU/Linux distribution and NAOqi, the main proprietary software that

runs on the robot and controls it. Nao’s desktop software includes Choregraphe, a visual

programming application which allows the creation and the simulation of animations and

behaviors for the robot before the final upload to the real Nao, and Telepathe which pro-

vides elementary feedback about the robot’s hardware and a simple interface to accessing

Maria Karamitrou 8 July 2012

2.2 RoboCup SPL Team Kouretes

Figure 2.3: Embedded and desktop software for the Nao robot

its camera settings. As far as the NAOqi framework is concerned, it is cross-platform,

cross-language, and provides introspection which means that the framework knows which

functions are available in the different modules and where. It provides parallelism, re-

sources, synchronization, and events. NAOqi, also, allows homogeneous communication

between different modules (motion, audio, video), homogeneous programming, and ho-

mogeneous information sharing. Software can be developed in C++, Python, and Urbi.

The programmer can state which libraries have to be loaded when NAOqi starts via a

preference file called autoload.ini. The available libraries contain one or more mod-

ules, which are typically classes within the library and each module consists of multiple

methods (Figure 2.4).

2.2 RoboCup SPL Team Kouretes

Team Kouretes is the first RoboCup SPL team founded in Greece, hosted in the Intelligent

Systems Laboratory at the Department of Electronic and Computer Engineering of the

Technical University of Crete. Kouretes started developing their own robotic software

framework in 2008 and the code is constantly developed and maintained ever since.

The team’s publicly-available code repository includes a custom software architecture,

a custom communication framework, a graphical application for behavior specification,

Maria Karamitrou 9 July 2012

2. BACKGROUND

Figure 2.4: The NAOqi process

and modules for object recognition, state estimation, localization, obstacle avoidance,

behavior execution, and team coordination, which are briefly described below.

The team participates in the main RoboCup competition since 2006 in various soccer

leagues (Four-Legged, Standard Platform, MSRS, Webots), as well as in various local

RoboCup events (German Open, Mediterranean Open, Iran Open, RC4EW, RomeCup)

and RoboCup exhibitions (Athens Digital Week, Micropolis, Schoolfest). Distinctions of

the team include: 2nd place in MSRS at RoboCup 2007; 3rd place in SPL-Nao, 1st place

in SPL-MSRS, among the top 8 teams in SPL-Webots at RoboCup 2008; 1st place in

RomeCup 2009; 6th place in SPL-Webots at RoboCup 2009; 2nd place in SPL at RC4EW

2010; and 2nd place in SPL Open Challenge Competition at RoboCup 2011 (joint team

Noxious-Kouretes). Recently, the team participated in the RoboCup German Open 2012

competition in Magdeburg, in RoboCup Iran Open 2012 in Tehran, and in RoboCup

2012 in Mexico City (Figure 2.5). In the most recent RoboCup 2012 competition, the

team succeeded to proceed to the second round-robin round and rank among the top-16

SPL teams in the world.

Maria Karamitrou 10 July 2012

2.2 RoboCup SPL Team Kouretes

Figure 2.5: Team Kouretes at RoboCup 2012 in Mexico City

2.2.1 Monas Software Architecture

Monas [5] is a flexible software architecture which provides an abstraction layer from

the hardware platform and allows the synthesis of complex robot software as XML-

specified Monas modules, Provider modules, and/or Statechart modules. Monas modules,

the so-called agents, focus on specific functionalities and each one of them is executed

independently at any desired frequency completing a series of activities at each execution.

The base activities, that an agent may consist of, are described briefly below:

• Vision [6] is a light-weight image processing method for humanoid robots, via which

Kouretes team has accomplished visual object recognition. The vision module

determines the exact camera position in the 3-dimensional space and subsequently

the view horizon and the sampling grid, so that scanning is approximately uniformly

projected over the ground (field). The identification of regions of interest on the

pixels of the sampling grid follows next utilizing an auto-calibrated color recognition

scheme. Finally, detailed analysis of the identified regions of interest seeks potential

matches for corresponding target objects. These matches are evaluated and filtered

by several heuristics, so that the best match (if any) in terms of color, shape, and

Maria Karamitrou 11 July 2012

2. BACKGROUND

size for a target object is finally extracted. Then, the corresponding objects are

returned as perceived, along with an estimate of their current distance and bearing.

• LocalWorldState [7] is the activity which realizes Monte Carlo localization. The

belief of the robot is a probability distribution over the 3-dimensional space of

coordinates and orientation (x, y, θ) represented approximately using a population

of particles. Belief update is performed using an auxiliary particle filter with an

odometry motion model for omnidirectional locomotion and a landmark sensor

model for the goalposts (landmarks). The robot’s pose is estimated as the pose of

the particle with the highest weight.

• ObstacleAvoidance [8] is the activity which accomplishes obstacle avoidance by

first building a local obstacle occupancy map, which is updated constantly with

real-time sonar information, taking into consideration the robot’s locomotion. Af-

terwards, an A* search algorithm is used for path planning, the outcome of which

suggests an obstacle-free path for guiding the robot to a desired destination.

• Behavior is the activity which implements the desired robotic behavior. It operates

on the outcomes of the Vision, LocalWorldState, and ObstacleAvoidance acti-

vities and decides which one is the most appropriate action to be executed next.

• HeadBehavior manages the movements of the robot head (camera).

• MotionController [9] is used for managing and executing robot locomotion com-

mands and special actions.

• RobotController handles external signals on the game state.

• LedHandler controls the robot LEDs (eyes, ears, chest button, feet).

Provider modules accomplish the complete decoupling of the robotic hardware by col-

lecting and filtering measurements from the robot sensors and cameras and forming them

as messages in order to be utilized as input data by any interested Monas agents. Each

provider module can be executed independently and at any desired frequency. Statechart

modules [10] are executed using a generic multi-threaded statechart engine, which pro-

vides the required concurrency and meets the real-time requirements of the activities on

each robot.

Maria Karamitrou 12 July 2012

2.2 RoboCup SPL Team Kouretes

2.2.2 Narukom Communication Framework

Narukom [11] is the communication framework developed for the needs of the team’s code

and it is based on the publish/subscribe messaging pattern. Narukom supports multiple

ways of communication, including local communication among the Monas modules, the

Providers modules, and the Statechart modules that constitute the robot software, and

remote communication via multicast connection among multiple robot nodes and among

robot and external computer nodes. The information that needs to be communicated

between nodes is formed as messages which are tagged with appropriate topics and host

IDs. Three types of messages are supported:

• state, which remain in the blackboard until replaced by a newer message,

• signal, which are consumed at the first read, and

• data, which are time-stamped to indicate the time their values were acquired.

To facilitate the serialization of data and the structural definition of the messages, Google

Protocol Buffers were utilized. The user defines the data structure once and then uses

the generated source code to write and read the defined structures to and from a variety

of data streams using a variety of programming languages. Another great advantage of

protocol buffers is that data structures can be enhanced without breaking the already

deployed programs, which are capable of handling the old format of the structures. To use

protocol buffers one must describe the information for serialization by defining protocol

buffer messages in .proto files. A protocol buffer message is a small record of information,

containing name-value pairs. The protocol buffer message format is simple and flexible.

Each message type has at least one numbered field. Each field has a name and a value

type. The supported types are integer, floating-point, boolean, string, raw bytes, or other

complex protocol buffer message types, thus hierarchical structure of data is possible.

Additionally, the user can specify rules, if a field is mandatory, optional, or repeated.

These rules enforce both the existence and multiplicity of each field inside the message.

As a next step, the user generates code for the desired language by running the protocol

buffer compiler. The compiler produces data access classes and provides accessors and

mutators for each field, as well as serialization/unserialization methods to/from raw bytes.

Officially, Google supports C++, Java, and Python for code generation, but there are

several other unofficially supported languages.

Maria Karamitrou 13 July 2012

2. BACKGROUND

Additionally, the blackboard paradigm is utilized to provide efficient access to shared

information stored locally at each node and is extended to support history queries and a

mechanism that controls the information updates. Finally, to meet the delivery require-

ments among the remote and/or the local nodes, messages are relayed though a message

queue. The message queue is responsible for collecting the published messages and allo-

cating them to the interested subscribers through multiple buffers. Messages that have to

be delivered to remote nodes are committed to the KNetwork module, which implements

the multicast connection.

2.3 Qt – A Cross-Platform Application Framework

Qt (http://qt.nokia.com/products) is a cross-platform application and UI framework

with APIs for C++ programming and rapid UI creation. It is widely used for developing

application software with a graphical user interface (GUI) and non-GUI programs, such as

command-line tools and consoles for servers. Qt uses standard C++, but makes extensive

use of a special code generator (the Meta Object Compiler) together with several macros

to enrich the language. It runs on the major desktop platforms and some of the mobile

platforms and has extensive documentation support. Non-GUI features include SQL

database access, XML parsing, thread management, network support, and a unified cross-

platform application programming interface (API) for file handling. Distributed under

the terms of the GNU Lesser General Public License (among others), Qt is free and open

source software. All editions support many compilers, including the gcc C++ compiler,

the Visual Studio, and the Eclipse suite.

2.3.1 The Qt Signal/Slot Mechanism

The signals and slots mechanism is a central feature of Qt and is used for communication

between objects. In GUI programming, it is preferable objects of any kind to be able to

communicate with one another. Older toolkits achieve this kind of communication using

callbacks. A callback is a pointer to a function, so, if we want a processing function to

deliver a notification about some event, we must pass a pointer to another function (the

callback) to the processing function. The processing function then calls the callback,

Maria Karamitrou 14 July 2012

http://qt.nokia.com/products

2.3 Qt – A Cross-Platform Application Framework

when appropriate. Callbacks have two fundamental flaws. Firstly, they are not type-

safe. It is never certain that the processing function will call the callback with the

correct arguments. Secondly, the callback is strongly coupled to the processing function,

since the processing function must know which callback to call.

In Qt, there is an alternative to the callback technique, the signals and slots mech-

anism. A signal is emitted when a particular event occurs. Qt’s widgets have many

predefined signals, but the developer can always subclass widgets to add his/her own

signals to them. A slot is a function that is called in response to a particular signal. Qt’s

widgets have many pre-defined slots, but it is common practice to subclass widgets and

add new slots, so that the developer can handle the signals that he/she is interested in.

The signals and slots mechanism is type-safe. The signature of a signal must match the

signature of the receiving slot. Signals and slots are loosely coupled. A class which emits

a signal neither knows nor cares which slots receive the signal. Qt’s signals and slots

mechanism ensures that if the developer connects a signal to a slot, the slot will be called

with the signal’s parameters at the right time. Signals and slots can take any number

of arguments of any type; they are completely type-safe. All classes that inherit from

QObject or one of its subclasses (QWidget, etc.) can contain signals and slots. Signals

are emitted by objects, when they change their state in a way that may be interesting

to other objects. This is all the object does to communicate. It does not know or care

whether anything is receiving the signals it emits. This is true information encapsulation

and ensures that the object can be used as a software component. Slots can be used for

receiving signals, but they are also normal member functions. Just as an object does not

know if anything receives its signals, a slot does not know if it has any signals connected

to it. This ensures that truly independent components can be created with Qt.

2.3.2 The Qt Designer

The Qt Designer is a standalone application provided by the Qt4 UI framework, which

includes a number of components that work together to provide a flexible GUI design

tool. This design tool can be considered as a collection of interchangeable components

that include the form editor, widget box, and other useful tools for creating graphical user

interfaces with Qt. Widgets and dialog windows can be composed using a form-based

interface that fully supports drag and drop, clipboard operations, and an undo/redo

Maria Karamitrou 15 July 2012

2. BACKGROUND

stack. The version of Qt Designer, which we chose to develop our KMonitor graphical

user interface, introduces a number of editing modes to make different types of editing

natural and intuitive. Each editing mode displays the form in an appropriate way for that

mode, and provides a specialized user interface for manipulating its contents. Examples

of editing modes include Form Editing mode, Signals and Slots Editing mode, Buddy

Editing mode, and Tab Order Editing mode. For the requirements of our application

design, we utilized the Widget Box and the Property Editor features of the Qt Designer’s

UI, the Form Templates, the Form Editing Mode and the Resource Editor from the

available editing features of the tool, and the Custom Widgets to integrate our customized

widgets via the tool’As plugin support. A brief description of the used Qt Designer’As

features follows.

The Widget Box displays a categorized list of widgets and other objects that can

be placed on a form using drag and drop. When Qt Designer is in Top Level mode,

the window containing the widget box also holds the main menu and tool bar. When

in Workspace mode, the Widget Box becomes an independent window within the Qt

Designer workspace. The contents of the Widget Box are defined in an XML file that

holds a collection of .ui documents for standard Qt widgets. This file can be extended,

making it possible to add custom widgets to the Widget Box.

The Property Editor allows designers to edit most properties of widgets and layout

objects. The property names and values are presented in an editable tree view that shows

the properties of the currently selected object. Certain resources, such as icons, can be

configured in the Property Editor. Resources can be taken from any currently installed

resource files, making it easier to design self-contained components.

Form Templates provide ready-to-use forms for various types of widgets, such as

QWidget, QDialog, and QMainWindow. Custom templates based on these widgets can

also be created. Templates can contain child widgets and layouts. Designers can save

time by creating templates for the most common user interface features for repeated use.

The Form Editor allows widgets to be dropped into existing layouts on the form. Qt

Designer supports direct manipulation of widgets, such as cloning a widget by dragging

it with the CTRL key held down, and it is even possible to drag widgets between forms.

In-place widget editors provide specialized editing facilities for the most-used widget

properties. Resources can be associated with a given form and these can be modified

and extended using a file browser style interface. The Resource Editor uses files that are

Maria Karamitrou 16 July 2012

2.3 Qt – A Cross-Platform Application Framework

processed by various components of the Qt Resource System to ensure that all required

resources are embedded in the application.

Plugins can be used to add new custom widgets, special editors, and support for

widgets from the Qt3 support library. Support for custom widget plugins allows user

interface designers to use application-specific widgets in their designs as early as possible

in the development process. Qt Designer handles custom widgets in the same way as

standard Qt widgets and allows custom signals and slots to be connected to other objects

from within the Signals and Slots Editing mode.

Maria Karamitrou 17 July 2012

2. BACKGROUND

Maria Karamitrou 18 July 2012

Chapter 3

Problem Statement

3.1 General Purpose Software Debugging

The process of debugging is an essential step in any software development project. It

contributes to the detection and elimination of flaws from the written code in order to

deliver the desired functionality reliably. Several debugging methods can be followed, so

as to achieve the expected behavior, based on numerous aspects. The most significant

criterion is the coupling of the software modules of the application, since the greater

the interaction the more complicated the debugging process tends to be. The most

common technique is the so called tracing debugging. Tracing debugging is the technique

of watching live or recorded trace statements, or print statements, that indicate the

flow of execution of a process. This is sometimes called printf debugging, due to the

use of the printf statement of C. Another technique of general purpose debugging is

based on efficient manipulation of breakpoints. A breakpoint is an intentional stopping

or pausing place in a program and consists of a specific code line and optionally one

or more conditions that must be met for execution to pause at that place. While at

a breakpoint, the software developer can inspect the values of selected variables and

expressions, exploiting the ability to interrupt the code execution whenever needed.

Maria Karamitrou 19 July 2012

3. PROBLEM STATEMENT

3.2 Autonomous Robot Software Debugging

Autonomous robot software aims at developing intelligent mechanical devices (autonomous

agents). An autonomous agent is a system that continuously perceives its environment

through the robotic sensors, analyzes the percept sequence using various AI techniques

and takes actions through the robotic actuators with the goal of maximizing a utility

function. The central problems of an autonomous robotic agent include environment

perception, robot localization, robotic mapping, path planning, decision making under

uncertainty, multi-agent planning and learning, and robot coordination. Therefore, the

creation of the desired functionality for an autonomous robot is a complicated procedure,

which lies on addressing each one of the basic AI problems and integrating these ap-

proaches into a single entity. Consequently, debugging of the code of a robotic software

framework that implements autonomous rational agents has two key requirements :

• individual inspection of each module of the code, so as to test the performance of

isolated functionality, and

• joint inspection of the interaction between modules, so as to test the overall perfor-

mance of the integrated system.

Obviously, the general purpose debugging techniques are inadequate in autonomous robot

software application development. The tracing debugging is prohibitively time consuming

and the breakpoint technique is most likely to lead to robotic hardware damages, due

to the real-time aspect of code execution on the embedded system. Several techniques

have been developed to facilitate the debugging in autonomous robot software. The three

most preferred are the simulation, the online, and the offline monitoring and are briefly

presented below.

The method of simulation lies on imitating the execution of the code of the robotic

software framework over time without depending physically on the actual hardware plat-

form. The robots and their environment are modeled in 2D and/or 3D graphical views

and scenes are rendered in the simulator application. Virtual robots are theoretically

capable of emulating the behavior of their real counterparts, since the simulator is de-

veloped based on a model which represents the behavior of the selected physical system

as accurately as possible. The major advantage of simulated execution is the disengage-

ment from the robot hardware. Since the developer is able to write, test, and debug

Maria Karamitrou 20 July 2012

3.3 Kouretes Software Debugging Requirements

code within a simulated environment, a significant part of time is gained and hardware

damages are avoided. The considerable disadvantage is that simulation uses simplifying

approximations and assumptions about the real world model, which may not hold in the

real environment. It is very difficult to model all the physical features and constraints

of the real world, since robotic environments are typically partially observable, stochas-

tic, and dynamic. Furthermore, simulation is insufficient in fully modeling the real-time

constraints imposed by the hardware platform.

The technique of online monitoring is based on the continuous, real-time inspection of

the robotic behavior via a communication network connection, while the code is executed

on the actual hardware platform. The data from the most significant sensors, the outputs

of the intermediate modules, and the final outcomes of decision making are visualized

properly on a graphical user interface to facilitate the developer in debugging the code

of the robotic software framework. The basic advantage of online monitoring is the real-

time execution of the code on the robot and consequently the reliability of the monitored

data, which would be impossible to reproduce accurately on a simulator. Its drawback is

that this kind of debugging burdens the normal execution time with additional execution

time.

The offline monitoring is a combination of the simulation and the online monitoring.

The most-important information is stored in log files during the code execution on the

robot and afterwards the behavior of the agent is replayed on the virtual environment

using the data logged from the actual robotic system. The advantage of the offline

monitoring is the disengagement from the hardware platform and the reliability of the

logged data. However, the synchronization of the logged data is a complicated task and

the storage of lengthy executions can introduce important space constraints.

3.3 Kouretes Software Debugging Requirements

As mentioned in Section 2.2.1, the robotic software framework of the Kouretes team

consists of a collection of XML-specified Monas modules, Provider modules, and/or Stat-

echart modules that synthesize the complex robot software. Even though the software

architecture allows for a nice decomposition of the autonomous robot software develop-

ment problem into separate perception, cognition, localization, action, and coordination

software modules, still the interaction of all the individual modules is crucial for the

Maria Karamitrou 21 July 2012

3. PROBLEM STATEMENT

overall robotic behavior. Thus, the need for individual inspection of each one of them

arises, so as to test their functionality in isolation, but also the need for joint inspection,

so as to test the functionality of the integrated system.

An autonomous robot soccer player maintains a set of internal beliefs which are con-

tinuously updated by applying various AI algorithms on the percept sequence of the

robot. The aforementioned set concerns the robot’s belief about the presence or absence

of objects of interest in the camera view, the belief about the position of the ball in the

field, the belief about the type and position of the field landmarks, its current location

in the field, as well as the ones of its teammates and its opponents, the belief about the

kinematic and dynamic state of its body, and the belief about the presence or absence of

any static or dynamic field obstacles. These beliefs are of great importance, since they

contribute to the overall behavior of the robot player. However, during deployment the

developer can only partially infer something about these beliefs simply by knowing how

the robot makes decisions and observing the robot’s actions at real-time. Apparently,

such an approach is limited, especially when the update of beliefs has not been tested

thoroughly and the developer is trying to debug it. An alternative, which facilitates this

testing and debugging process without sacrificing the real-time aspect of deployment in

the real world, is to extract the internal beliefs of the robot and visualize them in some

intuitive way in real-time on an external computer, so that the developer can monitor

closely the belief update process as well as the related decisions.

The belief about visible objects is of crucial importance, because the camera is the

main source of information about the environment. Object recognition relies on correct

identification based on color, shape, and size and, apart from the type of the recognized

object, it returns estimates of distance and bearing. Given the diversity of data involved

in this process, different visualization views may be required to assist the developer in

testing and debugging the vision module. For example, sometimes it may be useful to

monitor the raw camera image or the color-segmented image in order to calibrate the

camera and tune the color recognition process, whereas other times it may be useful to

monitor the span of the camera view and the observations extracted from the camera

image (object type, distance, and bearing) and relate them directly to the current location

of the robot in the field.

The filtering process for maintaining a reliable belief about the state of the world

is also of crucial importance for any autonomous robot. The robot’s belief about its

Maria Karamitrou 22 July 2012

3.3 Kouretes Software Debugging Requirements

current location (position and orientation) in the field is a key input to other robot

software modules related to behavior and coordination. This is also true for the belief

about the position of the ball in the field, which is based on sporadic visual observations.

Consequently, observation filtering errors may result also in further errors with potentially

fatal consequences. Therefore, the need for visualizing and monitoring ball and landmark

observations, the filter elements (e.g. particles, Gaussian distributions, etc.), the beliefs

themselves, the estimated locations, and the trace of estimated locations for each robot

separately is obvious.

The belief about the presence or absence of obstacles is important in avoiding collisions

and planning appropriate paths to any desired destination. The monitoring of the range

data, the probabilistic map, and the path planning outcome impose new visualization

constraints which can hardly be integrated with the ones of the filtering process in a

clear and intuitive way. Therefore, a separate view that highlights all the aspects of

obstacle avoidance in detail may be much more informative for the developer.

The measurements of the robot sensors, such as the joint encoders, the accelerometer,

the gyroscope, and the force sensitive resistors, carry significant information about the

kinematic and dynamic state of body of the robot. The monitoring of these measure-

ments conveys useful information to the developer for a number of useful tasks, such as

inspecting the performance of a predefined special action, verifying the robot kinematics,

testing a dynamic robotic walk, testing the detection of a fall, etc.

Last, but not least, the robot maintains identification information (host name, player

number, team number), as well as information about the game state broadcast by the

game controller or delivered by the button interface (team color, game and player state).

In the process of debugging, the developer needs a way to identify robots uniquely and

a way to monitor their belief about the game state. The overall behavior of a robot is

significantly affected by this belief, which may be different than expected due to frequent

broken connections to the game controller or mistaken pushes on the robot buttons.

Monitoring closely this information is required to interpret correctly and understand the

behavior of the robot.

The discussion above focused mainly on visualizing and monitoring the beliefs of a

single robot. However, in a RoboCup game there are several robots in each team and

a key problem studied in such a multi-agent settings is that of coordination. Therefore,

it is important to be able to assist the developer in testing and debugging the software

Maria Karamitrou 23 July 2012

3. PROBLEM STATEMENT

modules related to coordination by providing a different view with the most relevant

pieces of information. This view may include the beliefs about self-location and ball

location of any subset of robots, the shared belief about the location of the ball, the

layout of an agreed formation in the field, etc. This way the developer will be able to

study, test, and debug the global team behavior at a high-level.

A last requirement towards a functional visualization and monitoring application

would be the integration of the functionality and views mentioned above under a sin-

gle intuitive graphical user interface. Under this design principle the user will be able to

switch quickly between different views to monitor different aspects of the robot software.

A fully integrated visualization and monitoring application will facilitate the debugging

of the entire robot code and will allow the developer to not only assess each module

individually, but also jointly as components of a larger integrated software system.

Maria Karamitrou 24 July 2012

Chapter 4

Related Work

4.1 B-Human

The B-Human team [12], the joint RoboCup team of the University of Bremen and the

German Research Center for Artificial Intelligence (DFKI), has developed the SimRobot

simulator to deal with the needs of monitoring and debugging. SimRobot is a physical

robotics simulator which visualizes 3D simulated SPL games in which both the environ-

ment view and the robot views are modeled in the 3D space. It also accomplishes offline

monitoring based on log files which can be replayed on the corresponding scene view

of the tool and also provides online monitoring, since the developer can be connected

directly on the actual robot via LAN or WLAN to inspect the interesting features.

As shown in Figure 4.1, the main application window consists of the scene graph on

the left pane, the central 3D scene view, the information views on the right pane, and

the command window at the bottom pane. There are two types of scene description

files which can be used to define the central scene view: the ones required to simu-

late one or more robots, such as BH2011, BikeScene, Game2011, MultiplePlayers2011,

OpenChallenge2011 and the ones that are sufficient to connect to a real robot or to

replay a log file, such as BikeSceneRemoteWithPuppet, RemoteRobot, ReplayRobot,

ReplayVideo, ScriptRemoteRobot, TeamComm3D, and TeamComm. There are 10 kinds

of information views: image views, which display the raw camera image and additional

information in the coordinate system of the camera; field views, which display informa-

tion in the global coordinate system of the soccer field; plot views, which display debug

drawings or plots received from the robot; color space views, which visualize certain color

Maria Karamitrou 25 July 2012

4. RELATED WORK

Figure 4.1: SimRobot simulator

channels or the current color table; the Xabsl view, which visualizes specific information

about the current state of the robot’s behavior; the sensor data view, which represents

the robot’s sensor readings; the joint data view, which presents the values of the joints;

the timing view, which visualizes the timing of the modules it executes; the module view,

which presents the module configuration; the kick view, which is actually a kick editor.

The user is able to select his/her preferred information view from the scene graph and

define which debug drawings to plot on the selected view via various console commands.

Finally, SimRobot also provides logging functionality, which is accomplished in two

ways. On one hand, the user can record a log connecting SimRobot to a Nao, define

the requested representations via console commands, and then the simulator stores the

received data to a specific file and utilizes it for the monitoring process. On the other

hand, the user can save log data without the need of a connection to the robot. The

Maria Karamitrou 26 July 2012

4.2 Nao Devils Dortmund

requested debug messages are stored in a special MessageQueue called LogQueue, which

saves its data to a file, when a given threshold is exceeded, in order to prevent the loss

of data, because of a full queue.

4.2 Nao Devils Dortmund

The Nao Devils Dortmund [13] is a RoboCup team hosted at the Robotics Research

Institute of TU Dortmund University (part of the ex joint team BreDoBrothers, the

cooperation of the University of Bremen and the TU Dortmund University). Nao Devils

utilize SimRobot in order to simulate their developed robotic software.

Furthermore, they have developed a tool which accomplishes offline monitoring by

logging each behavior decision, the resulting information about the world model, and the

corresponding sensor information which led to the specific decision during the execution.

In order to compare the logged data with reality, a video camera is used to record the real

game in a movie file. Thus, the debugging process of Nao Devils proceeds as follows: the

robot logs its internal state machine, the required symbols, and hardware commands once

per frame; a graphical user interface allows for an easy reading of the logfile and shows

the input/ output symbols and the current XABSL state tree; a 2D field view shows

the modeled robot position, direction, and velocity, the ball position, and the team mate

positions; a video can be loaded and displayed and the time is synchronized manually

by matching known state information to the video file. Finally, the behavior log can

be played back, stopped, stepped through frame by frame, and rewound to interesting

positions. A snapshot of the debugging tool is shown in Figure 4.2.

4.3 TT-UT Austin Villa

TT-UT Austin Villa [14] is a joint RoboCup team from the Department of Computer

Science at The University of Texas at Austin and the Department of Computer Science

at Texas Tech University. They utilize Webots [15] as the basic simulator for the visual-

ization of their code system and additionally they have developed their own debug tools .

Even though the documentation of their debug tools is somewhat unclear, they claim that

their debugging process proceeds as follows: at each time step only the contents of the

current memory are required to make the logical decisions, so a “snapshot” of the current

Maria Karamitrou 27 July 2012

4. RELATED WORK

Figure 4.2: Nao Devils debugging tool

memory is saved to a log file (or is sent over the network); the recorded log is examined

within their debug tools to discover any problems. Each tool is able to read and display

logs, but can also take logs and process them through the logic modules. Their suite of

debug tools includes the vision tool (Figure 4.3, left), the localization tool (Figure 4.3,

right), the behavior tool (Figure 4.4, left), and the kick region tool (Figure 4.4, right).

4.4 Nao-Team HTWK

Nao-Team HTWK [16] is another German RoboCup team from Leipzig University of

Applied Sciences. As far as their code debugging requirements are concerned, they have

Maria Karamitrou 28 July 2012

4.5 Dutch Nao Team

Figure 4.3: Austin Villa vision (left) and localization (right) debugging tools

Figure 4.4: Austin Villa behavior (left) and kick region (right) debugging tool

developed NaoControl, a monitoring application which provides a virtual parameterized

soccer field, a visualization of the robot’s and the estimated ball’s position, and the

robot’s field of view (Figure 4.5). In addition to these features, the raw images from the

two cameras of the robot, as well as the segmented ones, can be visualized. Finally, Nao-

Control supports sending commands to the real robots for testing purposes. According

to the team, NaoControl is ongoing work still in progress and in the near future it will

be enhanced with simulation tasks.

4.5 Dutch Nao Team

The Dutch Nao Team [17] consists of undergraduate students focusing on Artificial Intel-

ligence from the University of Amsterdam in the Netherlands. The team has developed a

localization and a landmark detection monitoring script using Pygame, a cross-platform

Maria Karamitrou 29 July 2012

4. RELATED WORK

Figure 4.5: HTWK NaoControl

set of Python modules for writing video games. This script offers a visual overview of

the belief created by their Dynamic Tree Localization method (Figure 4.6, left) and the

goalpost and beacon observations of the robot (Figure 4.6, right). In addition, they uti-

lize USARsim, a simulation environment that uses the local installation of NaoQiSDK

to process commands to the Nao robot, which means that the same Python code can be

used for the real robot and the simulated robot. The simulation environment consist of

two parts: USARsim, which represents the SoccerField where one or more robots can be

spawned, and USARNaoQi, which represents the robot (and translates NaoQi commands

into USARsim commands). The graphical interface is depicted in Figure 4.7.

4.6 UPennalizers

UPennalizers [18] is the SPL team of the University of Pennsylvania in the USA. Their

actual debugging software focuses on monitoring their vision code. In particular, they

receive image packets from an active robot and display them on an external computer.

Maria Karamitrou 30 July 2012

4.7 NAO-Team Humboldt

Figure 4.6: Dutch Nao Team monitoring scripts

Figure 4.7: Dutch Nao Team USARsim simulation environment

The broadcast images may be either raw or color-segmented images from each camera.

They display the received data via a Matlab interface and overlay visual indicators of

state, such as ball and goal locations. A snapshot of the UPennalizers debugging tool is

shown in Figure 4.8.

4.7 NAO-Team Humboldt

The NAO-Team Humboldt [19] is the SPL team that consists of students and researchers

working at the Humboldt University of Berlin. In order to simulate their robot software

Maria Karamitrou 31 July 2012

4. RELATED WORK

Figure 4.8: UPennalizers monitoring vision tool

framework, they use Webots and SimSpark (the official simulator of the RoboCup 3D

Simulation league). They furthermore have developed RobotControl, a robot data mon-

itoring and debugging tool implemented in Java, which visualizes the debugging results

that are transferred over the network (Figure 4.9).

Figure 4.9: NAO-Team Humboldt RobotControl monitoring tool

Maria Karamitrou 32 July 2012

Chapter 5

Our Approach

The development of an integrated and adequately functional online monitoring tool,

which meets the requirements stated in Section 3.3, was always high in the task list of the

Kouretes team. To address these visualization and monitoring needs, we have developed a

graphical software application, named KMonitor (Kouretes Monitor), which is the subject

of this thesis. KMonitor allows the developer to inspect effectively each one of the basic

modules of the existing code. The proposed technique to accomplish this goal is real-time

visualization of the data each module operates on and the data it exports on a remote

desktop computer using a User Datagram Protocol (UDP) multicast network in which

robots and computers participate as nodes. Each node in the network is identified as a

host with an automatically-generated unique ID and a user-specified host name. Based

on this protocol, the significant debugging information, which is structurally defined and

serialized using Google Protocol Buffers, is exchanged via messages (datagrams) without

creating data paths or other special transmission channels. Originating nodes do not have

prior information about the existence or the identity of the receiving nodes. Multicast

utilizes the network infrastructure by requiring the source to send a packet only once,

even if there are multiple recipients, and then the network nodes are responsible for

relaying the messages, if necessary, to all recipients. Thus, and according to the user’s

requests, the values of sensors and actuators, as well as the outcomes of the vision,

localization, and obstacle avoidance activities are designed graphically in a user-friendly

intuitive way under different monitoring views. Furthermore, the application provides

joint inspection of the interaction between basic software modules on the same or on

different robots. Additionally, KMonitor eases any future extension, so as to adopt

Maria Karamitrou 33 July 2012

5. OUR APPROACH

possible module enhancements and new graphical elements. Finally, it provides easy

XML-based configuration to be consistent at all times with the current parameterization

of the code and to catch up with the Robocup SPL rules which are frequently modified.

5.1 KMonitor Architecture

The architecture of KMonitor is represented graphically in Figure 5.1. The debugging

utilities of the robotic software framework have been split into six categories, according to

the debugging relevance of the existing activities and the interaction among them. Thus,

KMonitor is composed of six distinct tabs, each one of them providing the required

debugging functionality for the corresponding category, as described in detail in the

Sections below. Each one of the six tabs consists of the modules which implement the

actual Graphical User Interface and the View-Controller module which manages the

flow of incoming data. The Remote Hosts and the Available Elements modules of

each tab provide interactivity between the user and KMonitor, since the user is able

to select one or more available hosts (robots) to monitor and several of the available

elements to visualize, according to the functionality of the current tab. On the other

hand, the 2D Scenes are passive modules, meaning that they exist as base modules that

visualize the dynamically-requested Graphical Robot Elements and the user cannot

interact with them, but can only monitor the elements that he/she has requested. The

View-Controller module is responsible for controlling the user requests and making the

corresponding graphical elements on the 2D Scene of the tab visible, using the latest

data received from the Message Allocator module. The Message Allocator module is

responsible for starting the multicast thread, checking periodically its buffer for incoming

messages, and allocating them to the corresponding View-Controller modules. The

filtering of the received messages is based on both the user’s element choices and the

current active tab.

5.1.1 The Message Allocator Module

The debugging data are transmitted over the UDP network using protocol buffer mes-

sages (Section 2.2.2). The main functionality of the Message Allocator module is to

manipulate the flow of the data received by the multicast network, by subscribing to

Maria Karamitrou 34 July 2012

5.1 KMonitor Architecture

Message AllocatorMessage Allocator 66thth Tab Tab

MulticastPoint

View -
Controller

55thth Tab Tab

View -
Controller

44thth Tab Tab

View -
Controller

3rd Tab3rd Tab

View -
Controller

22ndnd Tab Tab

View -
Controller

11stst Tab Tab
Remote Hosts

Available
Elements

View -
Controller

2D Scene

Graphical
Robot

Element

Graphical
Robot

Element

Graphical
Robot

Element

Figure 5.1: KMonitor’s architecture

and unsubscribing from certain topics and allocating the received data streams to the

corresponding graphical interfaces using the Qt’s Signal/Slot mechanism.

The selection of topics to subscribe to or unsubscribe from is based on both the user

requests and the current active tab of the Graphical User Interface. Each tab is asso-

ciated with specific topics based on their relevance to the tab’s functionality; whenever

a tab becomes active, KMonitor subscribes to those relevant topics and unsubscribes

from all other topics. Therefore, the monitoring process becomes faster, since the data

flow is limited to the minimum required. The actual (un)subscription and reception is

accomplished via the message buffers of the multicast thread of the Message Allocator

module. The module realizes the required (un)subscriptions through the read buffer of

the multicast thread and checks periodically its write buffer for incoming messages. For

each received message (if any), it checks the name type and the publisher host and emits

the corresponding signal.

Maria Karamitrou 35 July 2012

5. OUR APPROACH

5.1.2 The Graphical User Interface

KMonitor is composed of six tabs, each one of which provides the user with various

graphical elements to monitor and visualize. These tabs are the following: Global World

State, Local World State, Local Polar Map, Local Robot View, Local Sensors Data, KCC

Beta. The lay out and the ordering of the tabs was dictated by the frequency of use by

the team members aiming to make the interface convenient for the users. The basic

element which all tabs contain is the detected hosts from the multicast network. The

user can select one or more desired available robots to monitor and check one or more

desired graphical elements to visualize, according to the functionality of the current tab.

The multicast module of KNetwork (Section 2.2.2) provides KMonitor periodically

with a list of known hosts, that is other robots or computers which listen to this network.

The visualization of detected hosts cannot be confined to simple presentation of the hosts

as graphical elements, since the user may have already made selections on the GUI which

should not be overwritten. In addition, the list may have been updated due to new

connections and disconnections. To address this issue, the list of known hosts is updated

as follows:

1. Removal of old disconnected hosts. The corresponding function iterates through the

list which stores the known hosts and for each host encountered it checks if it still

exists in the received updated list of hosts. If it exists, it does nothing (to preserve

the user selections), whereas if it does not exist, it removes it from the list (along

with any associated user selections and graphical elements).

2. Addition of new connected hosts. Creation of new graphical element for newly

connected hosts. The corresponding function iterates through the received updated

list of hosts and for each host encountered it checks if it already exists in the stored

list of hosts. If it exists, it does nothing (to preserve the user selections), whereas

if it does not exist, it adds it to the list.

For visualization purposes, each host in the list of known hosts is presented in two dif-

ferent ways in KMonitor according to the functionality each tab provides. In tabs where

elements from multiple robots can be visualized, the known hosts are presented as a

graphical tree widget (Figure 5.2, left), whereas in tabs where elements of a single robot

can be visualized, the known hosts are presented as a combo box item (Figure 5.2, right).

Maria Karamitrou 36 July 2012

5.1 KMonitor Architecture

Figure 5.2: Visualization of the known hosts as tree (left) and as combo box (right)

Furthermore, the graphical representation of each host provides information about the

identity of the host and the current game state, so as to facilitate the user in distinguish-

ing the different hosts. This information includes the team’s color (currently red or blue),

the host’s name (nao10, nao14, etc.), the team’s number, the player’s number, and the

player’s state (INITIAL, SET, READY, PLAYING, PENALISED, FINISHED, etc.).

A basic requirement for KMonitor is the precise visualization of the soccer field,

where most of the provided dynamic graphical elements are depicted. According to the

Robocup SPL Rule Book 2012, the soccer field and its static elements must meet certain

specifications, as shown in Figure 5.3. As mentioned, configurability is a desired feature

for KMonitor in order to conform to future changes in the specification of the field. In

order to achieve configurability, all the dimensions and sizes of the field elements, that

is side lines, end lines, halfway line, center circle, and the lines surrounding the penalty

areas, are parameterized through an XML file. Thus, the corresponding constructor

of the graphical 2D field scene loads the parameters from the field configuration XML

file, scales their values to fit within the window where the 2D field is visualized taking

into consideration the real field dimensions ratio, and positions the required graphical

elements to the resulting coordinates. Another functionality which KMonitor provides is

Maria Karamitrou 37 July 2012

5. OUR APPROACH

Figure 5.3: The field dimensions (in mm) according to the RoboCup SPL Rules 2012

the adjustment of the graphical field scene to any window resize request posted by the

user. Every time a resize to the width or height of the application window takes place,

the corresponding slot which is responsible for the recomputation of the coordinates of

all the field elements is executed.

The first tab (Global World State) visualizes the global world state in the field and

is described in detail in Section 5.2. A snapshot of the first tab in its initialized view is

shown in Figure 5.4. It is composed of two graphical sections, the 2D field scene and the

dynamic tree widget of detected hosts (robots). KMonitor detects the existence of active

robots and, if any, it creates dynamically a tree widget item for each one of them, which

contains information about identity and game state. The user can choose any number

of robots to monitor and more specifically can choose to visualize two elements for each

robot: the estimated robot pose and the estimated ball position. The selected elements

are depicted graphically on the field scene.

The second tab (Local World State) visualizes the local world state of a robot and

is described in detail in Section 5.3. A snapshot of the second tab in its initialized view

Maria Karamitrou 38 July 2012

5.1 KMonitor Architecture

Figure 5.4: The Global World State tab (initialized view)

is shown in Figure 5.5. It is composed of three graphical sections, the 2D field scene,

the dynamic combo box of detected hosts (robots), and the widget of available graphical

elements. The user is able to select only one robot from the corresponding combo box

Figure 5.5: The Local World State tab (initialized view)

Maria Karamitrou 39 July 2012

5. OUR APPROACH

Figure 5.6: The Local Polar Map tab (initialized view)

and any number of elements to monitor, such as the estimated robot pose, the estimated

ball position, the ball observation, the landmark observations, the localization particles,

the robot view field projection, the robot trace, and the walk commands.

The third tab (Local Polar Map) visualizes the local polar map of a robot and is

described in detail in Section 5.4. A snapshot of the third tab in its initialized view

containing only the static graphical elements is shown in Figure 5.6. This tab is designed

with the same graphical sections as the second tab, except for the content of the widget

of available graphical elements. The user can select only one robot to monitor and any

of the available elements: the obstacles, the path, the target coordinates.

The fourth tab (Local Robot View) provides the local view from the camera of a

robot. A detailed description about this tab is given in Section 5.5. A snapshot of the

KMonitor’s fourth tab in its initialized view is shown in Figure 5.7. The tab consists of

three graphical sections, the graphical label, the dynamic combo box of detected robots

and the widget of available graphical elements. The user is able to visualize in real time

either the raw or the color-segmented image received by the camera of the chosen robot.

The fifth tab (Local Sensor Data) represents the sensor data measurements of a robot.

This tab is described in detail in Section 5.6. A snapshot of the fifth tab in its initialized

view is shown in Figure 5.8. This tab is composed of 75 graphical sections: the dynamic

Maria Karamitrou 40 July 2012

5.1 KMonitor Architecture

Figure 5.7: The Local Robot View tab (initialized view)

combo box of detected robots, 37 combo boxes, and 37 labels, one for each of the 37

sensors. The user is able to select only one robot from the corresponding combo box

and automatically the combo boxes which hold the most recent joint encoder readings,

Figure 5.8: The Local Sensors Data tab (initialized view)

Maria Karamitrou 41 July 2012

5. OUR APPROACH

Figure 5.9: The KCC Beta tab (initialized view)

inertial measurements, and values of the FSRs are updated. In addition, the user is able to

monitor the 10 latest measurements for each of the sensors by opening the corresponding

combo box.

The sixth tab (KCC Beta) provides access to the beta version of the Kouretes Color

Classification (KCC) tool [20], which is used for creating color tables. The KCC tool was

initially designed as an independent tool, but was recently integrated into KMonitor to

offer uniform user access to all debugging facilities. Since it was not developed as part

of this thesis, it is not described further. A snapshot of this tab in its initialized view is

shown in Figure 5.9.

5.1.3 The View-Controller Module

The View-Controller module is responsible for transforming the current user requests

from the graphical user interface into actual visualizations of the received debugging

data. Whenever a choice is made to the current tab, the corresponding signal is emitted,

then the View-Controller of that tab is responsible for creating a new object for the

requested host, if it does not already exist, call the corresponding functions which com-

pute the position of the element based on the latest data, and visualize the requested

graphical element of the robot to the graphical scenes, labels, or views. The graphical

Maria Karamitrou 42 July 2012

5.2 The Global World State

depiction of a robot is a collection of graphical items. Various ellipse, line, and polygon

items are utilized to visualize the body of robot, its orientation, the shape of the observed

and estimated ball, and many other elements which are examined and described thor-

oughly in the Sections below. The View-Controller module is responsible for updating

the corresponding structures with the latest data received from the Message Allocator

module for each of the Graphical Robot Elements. Furthermore, it is responsible for

managing the visibility of all the depicted elements.

5.2 The Global World State

The first tab, called the Global World State, provides global monitoring of all active

robots on the soccer field. It visualizes the estimated robot pose and the estimated ball

position for each robot. It can be used mainly for debugging software modules related to

behavior and coordination. These modules combine the individual robots’ beliefs about

their pose and the position of the ball in the field to infer a shared world model, which

is subsequently used to make decisions at the team level. Therefore, it is important for

the developer to be able to monitor multiple robots concurrently and their individual

beliefs to understand and debug the shared world model and the related decisions (roles,

formations, etc.). In order to avoid confusing the user with multiple robots and balls

simultaneously in the field, a connecting line is set visible automatically between the two

elements (pose and ball) of a single robot, if the user has requested the visualization

of both elements. Furthermore, if the user points the mouse pointer to the graphical

depiction of a robot or ball in the virtual field, a tooltip pops out containing the player

number of the corresponding robot.

5.2.1 Visualization of the estimated robot pose

The debugging message about the world state sent periodically by the robot via the UDP

channel contains the belief of the robot about its pose as a probability distribution over

the 3-dimensional space of (x, y, θ), where x, y, and θ refer to the global coordinate system

of the real field shown in Figure 5.10 (left). In order to monitor the current estimated

robot’s position (x, y), the corresponding slot scales the (x, y) coordinates from the real

field coordinate system to the virtual field coordinate system shown in Figure 5.10 (right)

Maria Karamitrou 43 July 2012

5. OUR APPROACH

Figure 5.10: Global coordinate systems of the real (left) and the virtual (right) field

and draws the graphical robot element in the same color as the current team color of

the robot. In addition, the slot draws a small line segment at angle θ to indicate the

current robot orientation. A snapshot of the visualization of the robots’ poses is shown

in Figure 5.11.

5.2.2 Visualization of the estimated ball position

The debugging message about the world state also contains information about the esti-

mated ball position; this message may be empty, if the ball model has been reset due to

lack of recent ball observations. If the estimated ball position is not empty, the message

provides data for the relative ball position (rbx, rby) with respect to the robot’s pose.

Thus, the handling function computes the actual ball position in the real field coordinate

system by combining the estimated robot pose (x, y, θ) with the received (rbx, rby) coor-

dinates, scales the output to the virtual field coordinate system, and draws graphically

the ball element in the same color as the current team color of the corresponding robot.

In case the user has requested the visualization of both the robot’s pose and the ball

position, a connecting line that joins the two graphical elements is drawn too, as shown

in Figure 5.11.

5.3 The Local World State

The second tab, called the Local World State, provides monitoring of a single active robot

in the soccer field. It visualizes the estimated robot pose, the estimated ball position,

Maria Karamitrou 44 July 2012

5.3 The Local World State

Figure 5.11: Visualization of the estimated robot poses and ball positions

the ball observation, the landmark observations, the localization particles, the robot view

field projection, the robot trace, and the walk commands. It can be used for debugging

software modules related to a single robot. The estimated robot pose and the estimated

ball position have been implemented in the same way as described in Section 5.2.1 and

Section 5.2.2 respectively.

5.3.1 Visualization of the ball observation

The instantaneous observations of the ball through the camera are significant data for

maintaining a reliable belief about the position of the ball. The debugging message

about recognized objects delivers the current ball observation, if any, in the egocentric

polar coordinate system of the robot in terms of distance d and bearing φ. Thus, the

handling function computes the actual position of the observed ball in the real field

coordinate system by combining the estimated robot pose (x, y, θ) with the received

(d, φ) coordinates, scales the output to the virtual field coordinate system, and draws

Maria Karamitrou 45 July 2012

5. OUR APPROACH

Figure 5.12: Visualization of the instantaneous ball observation

graphically the ball element in white color to differentiate it from the graphical element

of the estimated ball position as shown in Figure 5.12.

5.3.2 Visualization of the landmark observations

The instantaneous observations of field landmarks through the camera are significant data

for maintaining a reliable belief about self-location. The current layout of the SPL field

offers several landmarks (goals, goalposts, lines, center circle, penalty marks) which can

be used for self-localization in the field. Our current vision module detects only goalposts.

In certain situations, a goalpost can be identified as a left or as a right goalpost, but in

many cases it is only identified as an ambiguous goalpost without any indication of left

or right. In addition, since in the current SPL field both goals are yellow, there is no

way to break the symmetry and distinguish between the own and opponent goal. The

debugging message about recognized objects delivers the current landmark (goalpost)

observations, if any, in the egocentric polar coordinate system of the robot in terms of

Maria Karamitrou 46 July 2012

5.3 The Local World State

Figure 5.13: Visualization of the instantaneous landmark observations

landmark type (YellowLeft, YellowRight, Yellow), distance d, and bearing φ. Thus,

the handling function computes the actual position of the observed landmark in the real

field coordinate system by combining the estimated robot pose (x, y, θ) with the received

(d, φ) coordinates, scales the output to the virtual field coordinate system, and draws

graphically the appropriate goalpost element according to its type:

• YellowLeft, a circular item tagged with an L indicating a left goalpost

• YellowRight, a circular item tagged with an R indicating a right goalpost

• Yellow, a circular item with an A indicating an ambiguous goalpost

A visualization of the landmark (goalpost) observations is shown in Figure 5.13.

5.3.3 Visualization of the localization particles

In order to monitor the auxiliary particle filtering which implements the update of the

belief about self-location, visualization of the population of particles has been realized.

Maria Karamitrou 47 July 2012

5. OUR APPROACH

Figure 5.14: Visualization of the localization particles

The number of particles used and the pose (x, y, θ) for each particle are provided by

the debugging message about localization which is received periodically. Since the data

received for each particle are the same as those for the estimated robot pose, the handling

function treats each one of them exactly in the same way drawing one graphical element

for each of them with the difference that the circular element is much smaller and has

a distinct color (cyan). Furthermore, the handling function can handle any number of

particles, since the size of the population is provided dynamically through the debugging

message. A visualization of the population of particles is shown in Figure 5.14.

5.3.4 Visualization of the robot view field projection

The robot’s current visual field is crucial for the detection and identification of known ob-

jects, such as the ball and the goalposts. Its visualization aims in monitoring the robot’s

view as a 2D field projection, which is approximated by a graphical polygon (trape-

zoid) item. The received debugging message provides information about the distance

Maria Karamitrou 48 July 2012

5.3 The Local World State

Figure 5.15: Visualization of the robot view field projection

and the bearing of the four vertices of the polygon in the egocentric coordinate system

of the robot. The handling function computes the position of all vertices in the real field

coordinate system by combining the estimated robot pose (x, y, θ) with the received co-

ordinates, scales the output to the virtual field coordinate system, and draws graphically

the appropriate polygon element by providing the four vertices. A visualization of the

robot view field projection is depicted in Figure 5.15.

5.3.5 Visualization of the robot trace

The sequence of the most recent estimated robot positions is referred to in this thesis as

the robot trace. Monitoring the robot trace is essential in assessing the consistency of the

estimated robot poses and interpreting the spontaneous outlier observations. In order

to monitor the robot trace, the handling function stores the most recent (by default,

100) estimated robot poses to represent them graphically whenever the user makes the

corresponding request. For simplicity, only the estimated robot positions are visualized

Maria Karamitrou 49 July 2012

5. OUR APPROACH

Figure 5.16: Visualization of the robot trace

(not the orientation), connecting successive positions with line elements, so that the user

forms a view of how the robot’s belief evolves over time. The handling function iterates

through the trace list, computes the virtual field global coordinates from the stored real

field global ones, draws the positions, computes the connecting line coordinates between

successive positions, and visualizes them, as shown in Figure 5.16.

5.3.6 Visualization of the walk commands

The behavior module collects data from almost all the other modules and makes decisions

concerning the actions of the robot. The majority of these decisions are walk commands

for locomotion. An omni-directional walk command is specified as a vector (vx, vy, vθ),

which indicates the desired velocity in each of the three dimensions; vx for longitudinal

translation, vy for lateral translation, and vθ for rotation. The debugging message about

walk contains these three values normalized to [−1,+1]. In order to visualize a walk

command, we depict the translational velocities (vx, vy) as a 2D vector, whose length and

Maria Karamitrou 50 July 2012

5.4 The Local Polar Map

Figure 5.17: Visualization of walk command

direction is proportional to (vx, vy), and the rotational velocity vθ as an arc, whose length

is proportional to vθ, both in the egocentric coordinate system of the robot. To facilitate

the user intuition about the value of vθ, its visualization is implemented using a circle

segment. Its position implies the sign of vθ; if the segment is positioned on the left side

of the robot’s orientation, it means that the sign is positive (counter-clockwise rotation),

otherwise, if the segment is positioned on the right side of the robot’s orientation, the

sign is negative (clockwise rotation). A visualization of a walk command is shown in

Figure 5.17.

5.4 The Local Polar Map

The third tab, called the Local Polar Map, provides monitoring of information related

to obstacle avoidance for a single active robot in the soccer field. The robot builds a

local polar obstacle occupancy map, which holds the robot’s belief about the existence

of obstacles. The map is updated constantly using real-time measurements from the

Maria Karamitrou 51 July 2012

5. OUR APPROACH

ultrasonic range sensors and is transformed taking into account the robot’s locomotion.

Given a target pose, an A* search algorithm is used for path planning and the outcome is

an obstacle-free path for guiding the robot to the target. This information that needs to

be visualized to facilitate software development and debugging includes the probabilistic

polar occupancy map, the coordinates of the target pose, and the obstacle-free path to

the target.

5.4.1 Visualization of the occupancy map

The area around the robot is represented by a discrete n× k polar grid with n rings and

k sectors (currently, 12× 18). The robot is always located at the center of this grid. The

areas defined by the concentric circles of the polar grid are referred to as rings, the slices

in which the diameters cut the circle are referred to as sectors, and the polygons that are

formed by the conjunction of rings and sectors of the grid are referred to as cells. The

debugging message which is being sent periodically via the UDP channel contains one

value for each cell of the grid indicating the probability that the cell is occupied by some

obstacle. The maximum value for each cell is 1.0, meaning that the cell is occupied with

high confidence, and the minimum value is 0.08, meaning that the cell is empty with high

confidence. In order to visualize the obstacle occupancy map, each cell is colored with

a level of gray proportional to its probability value. The higher the value, the closer its

color to black, whereas the lower the value, the closer its color to white. The handling

function iterates over the polar coordinates the cells and for each cell it selects its pre-

calculated scaled cartesian coordinates in the graphical representation of the polar map,

computes the appropriate color value, and updates the corresponding graphical element.

The robot is constantly located at the center of the graphical representation of the polar

map facing upwards, as indicated by the green arrow. An example of the visualization

of the occupancy map is shown in Figure 5.18.

5.4.2 Visualization of the target coordinates

The most common action taken by each active robot is to move to a target pose. Note that

the target includes a desired position in the field and a desired orientation. The debugging

message about a target (if any) contains the target coordinates (tx, ty, tθ), where (tx, ty)

is the desired position and tθ is the desired orientation. The handling function simply

Maria Karamitrou 52 July 2012

5.4 The Local Polar Map

Figure 5.18: Visualization of the obstacle occupancy map

scales the received target position coordinates to the graphical representation of the polar

map and draws a circular element for the position of the target and a small line segment

indicating the received target orientation (discretized to the closest multiple of π/4). If

the target falls outside the area covered by the polar map, then the target is drawn

on the outer ring in the closest sector. An example of target visualization is shown in

Figure 5.19.

5.4.3 Visualization of the obstacle-free path

Given a target pose and a map, the A* heuristic search path-planning algorithm delivers

an obstacle-free path from the robot to the target. The search algorithm takes into

account not only the adjacency of cells in the map, but also the orientation of the robot

in each cell, as well as the rotational adjacency constraints, by considering only eight

discrete directions (multiples of π/4). The debugging message about paths contains the

entire path delivered by the A* algorithm. The path is described as a sequence of selected

Maria Karamitrou 53 July 2012

5. OUR APPROACH

Figure 5.19: Visualization of the target coordinates and the obstacle-free path

cells starting from the center of the polar map, each one of which is specified as (r, s, o),

where r is the ring, s is the sector, and o is the orientation. The handling function

iterates over the cells of the path and for each cell it selects its pre-calculated scaled

cartesian coordinates in the graphical representation of the polar map and draws a small

line segment indicating the orientation in that cell. Therefore, the final path consists of

a collection of line segments. An example of the visualization of an obstacle-free path is

shown in Figure 5.19.

5.5 The Local Robot View

The fourth tab, called the Local Robot View, provides monitoring of the robot camera

for a single active robot in the soccer field. The robot camera is the main source of

information about the environment. Visual object recognition based on color, shape, and

size is accomplished by KVision, a light-weight image processing method for humanoid

robots. KVision relies on identifying regions of interest on sampled pixels of the image

Maria Karamitrou 54 July 2012

5.5 The Local Robot View

utilizing an auto-calibrated color recognition scheme. Therefore, the developer needs

to monitor the raw camera image to verify proper operation of the image provider and

calibrate the camera and the color-segmented image to verify that color recognition works

properly under the current lighting conditions.

5.5.1 Visualization of the raw camera image

The robot camera provides images of resolution 640× 480 pixels at 30 frames per second

and the native colorspace is YUV422. The debugging message about the camera image

contains information about the luminance (Y channel) and chrominance (U, V channels)

for each pixel of the image in a compressed form due to YUV422. In particular, there

is a Y value for each pixel, but U and V values are provided every other pixel; in

other words, every two pixels, the U and V values are the same. Due to the locality of

chrominance, this lossy compression is not visible to the eye, but reduces significantly the

size of the image (and the message). For visualization, the image must be converted to

RGB colorspace. Thus, the corresponding handling function decompresses the message,

extracts the Y, U, V components for every pixel of the image and computes the R,G,B

components using the transformation of RGB to YUV as defined in the JPEG standard:

R = Y + 1.402 × (V − 128)

G = Y − 0.34414 × (U − 128) − 0.71414 × (V − 128)

B = Y + 1.772 × (U − 128)

Finally, it creates a new graphical image item, defining the pixel coordinates and the

computed value in the RGB colorspace for every unit of the image and outputs the raw

image on the graphical label section, as depicted in Figure 5.20.

5.5.2 Visualization of the color-segmented camera image

KVision employs a color recognition process in order to categorize image pixels into

discrete colors, so as to identify regions of interest corresponding to colored objects.

Consequently, a visualization of the recognized colors should be a proper way to inspect

the recognition process. The corresponding handling function decompresses the message

containing the raw image, extracts the Y, U, V components of each pixel in the image,

Maria Karamitrou 55 July 2012

5. OUR APPROACH

Figure 5.20: Visualization of the raw camera image

recognizes the color of each pixel based on its Y, U, V values, and creates a new graphical

image item, defining the pixel coordinates and the recognized color in RGB for every

unit of the image, and outputs the color-segmented image on the graphical label section,

as depicted in Figure 5.21. It should be noted that color segmentation of the entire

image is executed only locally by KMonitor for debugging purposes; the robot applies

color recognition to selected pixels only and never transmits color-segmented images.

KMonitor and KVision share the same XML configuration files to ensure that the same

color map is used on both sides.

5.6 The Local Sensors Data

The fifth tab, called the Local Sensors Data, provides monitoring of the sensors of a

single active robot, namely the joint encoders, the accelerometer, the gyroscope, and

the force sensitive resistors. The measurements of these sensors constitute a significant

source of information for the developer for a number of useful tasks, such as inspecting

Maria Karamitrou 56 July 2012

5.6 The Local Sensors Data

Figure 5.21: Visualization of the color-segmented camera image

the performance of a predefined special action, verifying the robot kinematics, testing a

dynamic robotic walk, testing the detection of a fall, etc. As mentioned in Section 2.1.2,

Nao RoboCup edition has 21 degrees of freedom and therefore 21 joint encoders, each one

of which provides a 12-bit value indicating the current angle of the corresponding joint.

The three-axis accelerometer provides three values indicating the acceleration along each

of the x, y, and z axes. The gyroscope yields two values indicating the angular velocity

about the x and y axes. Finally, the force sensitive resistors deliver four values for each

foot indicating the pressure applied to each corner of the foot. The debugging message

about sensors contains all the values mentioned above. The handling function reads

these values and displays them in combo boxes using an intuitive layout that resembles

the robot body, as shown in Figure 5.22. Additionally, the handling function keeps a

history of the most recent debugging messages (default: 10); the developer can inspect

the most recent values of any sensor by simply opening the corresponding combo box.

Maria Karamitrou 57 July 2012

5. OUR APPROACH

Figure 5.22: Visualization of the data from the sensors

Maria Karamitrou 58 July 2012

Chapter 6

Implementation

KMonitor was developed based on the Qt4 application framework, the Qt4 Designer, the

C++ and Python plugins which we integrated in the Eclipse Indigo SDK to take the

full supervision and editor advantage of our robotic software Monas (basically C++ and

Python code) and the functionalities which the Qt4 Designer provides. In this chapter we

thoroughly document the implementation of the components of KMonitor, the complete

structure of all classes, the signals and slots, and the interaction among them from a

technical point of view. Figure 6.1 shows the UML class diagram containing all classes

we implemented for KMonitor and their structure.

6.1 MessageAllocator Class Reference

The MessageAllocator class inherits from Qt4’s QObject class in order to implement the

required signals and slots. As mentioned in Section 5.1.1, the MessageAllocator module

is responsible for manipulating the flow of the data received by the multicast network by

(un)subscribing (from)to certain topics and allocating the received data streams among

the corresponding graphical interfaces using the Qt’s Signal/Slot mechanism.

The multicast property, an EndPoint class pointer, points to the MulticastPoint

object. The timer property, a QTimer class pointer is used to define the periodic in-

terval for the inspection of the write MessageBuffer of the MulticastPoint. The

myGWRequestedHosts property, a QStringList object holds the list of the multiple

robots requested for visualization by the user in the Global World State tab. The

myLWRequestedHost, myLMRequestedHost, myLVRequestedHost properties are QString

Maria Karamitrou 59 July 2012

6. IMPLEMENTATION

GraphicalRobotElement

-Ball: QGraphicsEllipseItem*

-currentObsm: ObservationMessage

-currentWIM: WorldInfo

-GotoArrow: QGraphicsPolygonItem*

-GotoPositionLine: QGraphicsLineItem*

-GREtimer: QTimer*

-GWSBallVisible: bool

-GWSRobotVisible: bool

-GWSUnionistLineVisible: bool

-HFOVLines: QGraphicsPolygonItem*

-hostId: QString

-LeftYellowPost: QGraphicsEllipseItem*

-LWSHFOVVisible: bool

-LWSMWCmdVisible: bool

-LWSParticlesVisible: bool

-LWSTraceVisible: bool

-LWSVisionBallVisible: bool

-LWSVisionYellowLeftPostVisible: bool

-LWSVisionYellowPostVisible: bool

-LWSVisionYellowRightPostVisible: bool

-MWCmdTimer: QTimer*

-parentScene: KFieldScene*

-partclsNum: int

-ParticlesList: QList<Particle*>

-RightYellowPost: QGraphicsEllipseItem*

-Robot: QGraphicsEllipseItem*

-RobotDirection: QGraphicsLineItem*

-RobotPositions: boost::circular_buffer<QGraphicsEllipseItem*>

-teamColor: int

-UnionistLine: QGraphicsLineItem*

-UnionistLines: boost::circular_buffer<QGraphicsLineItem*>

-VisionBall: QGraphicsEllipseItem*

-YellowPost: QGraphicsEllipseItem*

-zAxisArc: QGraphicsEllipseItem*

-calculateArrowHeadPosition(aLine:QLineF): QPolygonF

-clearMotionWalkCommand()

-clearVisionObservations()

-loadXMLConfigParameters(fname:std::string)

-tagVisionObservations(post:QGraphicsEllipseItem*,rect:QRectF,text:QString)

-updateTraceRect()

+GraphicalRobotElement(parent:KFieldScene*,host:QString)

+setBallVisible(visible:bool)

+setCurrentGSM(gsm:GameStateMessage)

+setCurrentWIM(nwim:WorldInfo)

+setHFOVVisible(visible:bool)

+setMWCmdVisible(visible:bool)

+setParticlesVisible(visible:bool)

+setRobotVisible(visible:bool)

+setTraceVisible(visible:bool)

+setUnionistLineVisible(visible:bool)

+setVisionBallVisible(visible:bool)

+setYellowLeftPostVisible(visible:bool)

+setYellowPostVisible(visible:bool)

+setYellowRightPostVisible(visible:bool)

+setcurrentOBSM(obm:ObservationMessage)

+updateBallRect()

+updateGoalPostsRect()

+updateHFOVRect()

+updateMWCmdRect(wmot:MotionWalkMessage)

+updateParticlesRect(debugGUI:LocalizationDataForGUI)

+updateRobotRect()

+updateUnionistLineRect()

+updateVisionBallRect(obm:ObservationMessage)

+~GraphicalRobotElement()

GWRemoteHosts

-GWRequests: QList<requestedElements*>

-parentTreeWidget: QTreeWidget*

-GWhostFinder(hostId:QString): QTreeWidgetItem*

-GWhostNameFinder(hostId:QString): QString

-addTreeWidgetItem(position:int,hostId:QString,hostName:QString)

-mainCheckBoxHandler(state:int)

-printGWRequests()

-removeDisconnectedHosts(newHosts:KnownHosts)

-removeTreeWidgetItem(item:QTreeWidgetItem*)

-subCheckBox1Handler(state:int)

-subCheckBox2Handler(state:int)

+GWRHNewHostAdded(QString,QString)

+GWRHOldHostRemoved(QString)

+GWRHSetBallVisible(QString,bool)

+GWRHSetRobotVisible(QString,bool)

+GWRHSubscriptionRequest(QString)

+GWRHUnsubscriptionRequest(QString)

+GWRemoteHosts(*parent:QTreeWidget=0)

+LWRHGameStateMsgUpdate(QIcon,QString,QString)

+emergeAvailableHosts(newHosts:KnownHosts)

+setGWRHGameStateInfo(gsm:GameStateMessage,hostId:QString)

KccHandler

-A: double

-availableKCCHosts

-B: ,

-basicSegColors

-C: ,

-choosedColor

-curLuminance

-D: ,

-heightInPixels

-iScale

-lumaScale

-realImage

-realImL

-rScale

-scrollImage

-scrollSeg

-segImage

-segImL

-takeSnapshot

-ui

-undoVector

-widthInPixels

-widthmult2

-yuvColorTable

-yuvColorTableOld

-yuvRealImage

-zoomInScale

-zoomOutScale

+blackColor: unsigned char

+blueColor: unsigned char

+gammaExposure: static const float

+greenColor: unsigned char

+MAX_UNDO: static const unsigned int

+orangeColor: unsigned char

+redColor: unsigned char

+whiteColor: unsigned char

+yellowColor: unsigned char

-GameStateMsgUpdate(QIcon,QString,QString)

-LWRHSubscriptionRequest(QString)

-LWRHUnsubscriptionRequest(QString)

-NewHostAdded(QString,QString)

-OldHostRemoved(QString)

-adjustScrollBar(*scrollBar:QScrollBar,factor:double)

-adjustU(u:unsigned char): unsigned char

-adjustV(v:unsigned char): unsigned char

-adjustY(y:unsigned char): unsigned char

-distance(a:QYuv,b:QYuv): int

-transformYUVtoRGB(*yuvImage:const char,*rgbImage:QImage)

+KccHandler(*parent:QWidget=0): explicit

+SubscriptionHandler(QString)

+UnsubscriptionHandler(QString)

+addComboBoxItem(QString,QString)

+changeImage(rawImage:KRawImage,hostId:QString)

+clearColorTable()

+clickedImage(ev:QMouseEvent*)

+pbBlackPressed()

+pbBluePressed()

+pbGreenPressed()

+pbOrangePressed()

+pbRedPressed()

+pbSnapshotPressed()

+pbWhitePressed()

+pbYellowPressed()

+realZoomIn()

+realZoomOut()

+removeComboBoxItem(QString)

+segOpen()

+segSave()

+segZoomIn()

+segZoomOut()

+setLWRHGameStateInfo(QIcon,QString,QString)

+undoPressed()

+~KccHandler()

KFieldScene

-CCircle: QGraphicsEllipseItem*

-CCrossHPart: QGraphicsLineItem*

-config

-LBPost: QGraphicsItem*

-LBPostCircle: QGraphicsEllipseItem*

-LCrossHPart: QGraphicsLineItem*

-LCrossVPart: QGraphicsLineItem*

-LGoalArea: QGraphicsRectItem*

-LPostVPart: QGraphicsLineItem*

-LSide: QGraphicsRectItem*

-LSmallArea: QGraphicsRectItem*

-LTPost: QGraphicsItem*

-LTPostCircle: QGraphicsEllipseItem*

-parent: KGraphicsView*

-RBPost: QGraphicsItem*

-RBPostCircle: QGraphicsEllipseItem*

-RCrossHPart: QGraphicsLineItem*

-RCrossVPart: QGraphicsLineItem*

-RGoalArea: QGraphicsRectItem*

-RobotList: QList<GraphicalRobotElement*>

-RPostVPart: QGraphicsLineItem*

-RSide: QGraphicsRectItem*

-RSmallArea: QGraphicsRectItem*

-RTPost: QGraphicsItem*

-RTPostCircle: QGraphicsEllipseItem*

-xmlconfig: XMLConfig*

-loadXMLConfig(fname:std::string)

-setSvgItems()

+KFieldScene(parent:KGraphicsView*)

+ballRectFromFC(wim:WorldInfo*,width:float,height:float): QRectF

+findGraphicalRobotItem(hostId:QString): GraphicalRobotElement*

+goalPostRectFromOBM(nob:NamedObject*,wim:WorldInfo*): QRectF

+lineFromFCA(x:float,y:float,degAngle:float,size:float): QLineF

+lineRectFromFC(x1:float,y1:float,x2:float,y2:float): QLineF

+motionCmdRectFromFC(wim:WorldInfo*,cx:float,cy:float): QLineF

+newGraphicalRobotItem(hostId:QString): GraphicalRobotElement*

+printRobotList()

+rectFromFC(xMiddle:float,yMiddle:float,width:float,height:float): QRectF

+removeGraphicalRobotItem(hostId:QString)

+resizeFieldScene(width:int,height:int)

+unionistLineRectFromFC(wim:WorldInfo*): QLineF

+visionBallRect(bob:BallObject,wim:WorldInfo): QRectF

+~KFieldScene()

KGraphicsView

-paintArea: KFieldScene*

-GWSGVUnionistLineVisible(*robotElement:GraphicalRobotElement)

#resizeEvent(event:QResizeEvent*)

+GWSGVBallVisible(QString,bool)

+GWSGVRobotVisible(QString,bool)

+KGraphicsView(parent:QWidget*=0)

+LWSGVBallVisible(QString,bool)

+LWSGVHFOVVisible(QString,bool)

+LWSGVMWCmdVisible(QString,bool)

+LWSGVParticlesVisible(QString,bool)

+LWSGVRobotVisible(QString,bool)

+LWSGVTraceVisible(QString,bool)

+LWSGVVisionBallVisible(QString,bool)

+LWSGVVisionGoalPostsVisible(QString,bool)

+forceTimeOut()

+localizationDataUpdateHandler(LocalizationDataForGUI,QString)

+motionCommandUpdateHandler(MotionWalkMessage,QString)

+observationMessageUpdateHandler(ObservationMessage,QString)

+removeGraphicalElement(QString)

+setKGFCGameStateInfo(GameStateMessage,QString)

+worldInfoUpdateHandler(WorldInfo,QString)

+~KGraphicsView()

KGUIMessenger

-multicast: EndPoint*

-myGWRequestedHosts: QStringList

-myKccRequestedHost: QString

-myLMRequestedHost: QString

-myLSRequestedHost: QString

-myLVRequestedHost: QString

-myLWRequestedHost: QString

-pubsubRegistry: stringRegistry

-timer: QTimer*

-allocateReceivedMessages()

-printKnownHosts(hosts:KnownHosts)

-printMyGWRequestedHosts()

-updateSubscription(topic:std::string const&,where:msgentry::msgclass_t,host:std::size_t)

+GWRHSubscriptionHandler(QString)

+GWRHUnsubscriptionHandler(QString)

+KCCRHSubscriptionHandler(QString)

+KCCRHUnsubscriptionHandler(QString)

+KCCRawImageUpdate(KRawImage,QString)

+KGUIMessenger()

+LMRHSubscriptionHandler(QString)

+LMRHUnsubscriptionHandler(QString)

+LSRHSubscriptionHandler(QString)

+LSRHUnsubscriptionHandler(QString)

+LVRHSubscriptionHandler(QString)

+LVRHUnsubscriptionHandler(QString)

+LWRHSubscriptionHandler(QString)

+LWRHUnsubscriptionHandler(QString)

+gameStateMessageUpdate(GameStateMessage,QString)

+gridInfoUpdate(GridInfo,QString)

+knownHostsUpdate(KnownHosts)

+localizationDataUpdate(LocalizationDataForGUI,QString)

+makeReadBuffer(s:std::string const&): MessageBuffer*

+makeWriteBuffer(s:std::string const&): MessageBuffer*

+motionCommandUpdate(MotionWalkMessage,QString)

+obsmsgUpdate(ObservationMessage,QString)

+rawImageUpdate(KRawImage,QString)

+sensorsDataUpdate(AllSensorValuesMessage,QString)

+tabChangeHandler(int)

+worldInfoUpdate(WorldInfo,QString)

+~KGUIMessenger()

KLabel

-robotView: KRobotView*

#resizeEvent(event:QResizeEvent*)

+KCCRawImageUpdateHandler(KRawImage,QString)

+KLabel(parent:QWidget*=0)

+LVRawImageVisible(QString,bool)

+LVSegImageVisible(QString,bool)

+kRawImageUpdateHandler(KRawImage,QString)

+resetRobotView(QString)

+~KLabel()

KMapScene

-arrowBody

-arrowLside

-arrowRside

-cellCenterX

-cellCenterY

-cellsList

-currentHost

-euclidean

-gridImgH

-gridImgV

-ImgShift

-ImgSize

-LPMObstaclesVisible

-LPMPathVisible

-LPMTargetCoordVisible

-parent

-pathLineList

-present

-shiftGui

-staticCellsList

-targetBall

-targetLine

-x

-y

+pathO

+pathR

+pathS

+PolarGrid

+targetA: ,

+targetX: double

+targetY: ,

-DtoR()

-RtoD()

-StoT()

-TtoS()

-XYtoR()

-XYtoS()

-angleDiff()

-initCoordinates()

-initGrid()

-pathLineListRectReset()

-toCartesianX()

-toCartesianY()

-toGrid()

-toPolarD()

-toPolarT()

-wrapTo()

-wrapTo0_2Pi()

-wrapToPi()

+KMapScene(parent:KMapView*,hostId:QString)

+resetKMapScene(hostId:QString)

+resizeMapScene(size:int)

+setPMObstaclesVisible(visible:bool)

+setPMPathVisible(visible:bool)

+setPMTargetCoordVisible(visible:bool)

+updateArrow()

+updateObstacles(initialization:bool)

+updatePath()

+updateTargetCoordinates()

+~KMapScene()

KMapView

-mapArea: KMapScene*

#resizeEvent(event:QResizeEvent*)

+KMapView(parent:QWidget*=0)

+LMObstaclesVisible(QString,bool)

+LMPathVisible(QString,bool)

+LMTargetCoordVisible(QString,bool)

+gridInfoUpdateHandler(GridInfo,QString)

+resetRobotMap(QString)

+~KMapView()

KMonitor

-availableGWHosts: GWRemoteHosts*

-availableLMHosts: LWRemoteHosts*

-availableLSHosts: LWRemoteHosts*

-availableLVHosts: LWRemoteHosts*

-availableLWHosts: LWRemoteHosts*

-KCC: KccHandler*

-LPMElementTree: LMElementTree*

-LRVElementList: LVElementList*

-LSController: LSDController*

-LWSElementTree: LWElementTree*

-Messenger: KGUIMessenger*

-LSDInitialization()

-printCurrentTab(index:int)

-quitKMonitor()

+KMonitor(*parent:QWidget=0)

+~KMonitor()

KRobotView

-basicSegColors: map<unsigned char,QRgb>

-blackColor: unsigned char

-blueColor: unsigned char

-currentHost: QString

-greenColor: unsigned char

-LRVRawImageVisible: bool

-LRVSegImageVisible: bool

-orangeColor: unsigned char

-parentLabel: KLabel*

-redColor: unsigned char

-whiteColor: unsigned char

-yellowColor: unsigned char

-yuvColorTable: KSegmentator*

-YUV2RGBPlusPixSegmentation(rawImage:KRawImage): QImage*

-YUVPixelFormat2RGB32(rawImage:KRawImage): QImage*

-loadXMLConfigParameters(fname:std::string)

+KRobotView(parent:KLabel*,hostId:QString)

+resetKRobotView(hostId:QString)

+resizeRobotView(size:int)

+setRVRawImageVisible(visible:bool)

+setRVSegImageVisible(visible:bool)

+updateRawRobotView(rawImage:KRawImage)

+updateSegRobotView(rawImage:KRawImage)

+~KRobotView()

LMElementTree

-myCurrentLMRequestedHost: QString

-parentTreeWidget: QTreeWidget*

-newTreeElementRequested(item:QTreeWidgetItem*)

-un_checkAllTreeElements(state:Qt::CheckState)

+LMELSubscriptionHandler(QString)

+LMELUnsubscriptionHandler(QString)

+LMElementTree(*parent:QTreeWidget=0)

+LMRHSetObstaclesVisible(QString,bool)

+LMRHSetPathVisible(QString,bool)

+LMRHSetTargCoordVisible(QString,bool)

+~LMElementTree()

LSDController

-currentHost: QString

-FSRsBuffer: boost::circular_buffer<FSRValues>

-headJointsBuffer: boost::circular_buffer<HeadJoints>

-InertialBuffer: boost::circular_buffer<InertialValues>

-LArmJointsBuffer: boost::circular_buffer<ArmJoints>

-LLegJointsBuffer: boost::circular_buffer<LegJoints>

-parentTablesList: QList<QComboBox*>

-RArmJointsBuffer: boost::circular_buffer<ArmJoints>

-RLegJointsBuffer: boost::circular_buffer<LegJoints>

-clearComboLists(cList:QList<QComboBox*>)

-updateFSRsBuffer(asvm:AllSensorValuesMessage)

-updateFSRsTable()

-updateHeadJointsBuffer(AllSensorValuesMessage)

-updateHeadJointsTable()

-updateInertialBuffer(asvm:AllSensorValuesMessage)

-updateInertialTable()

-updateLArmJointsBuffer(asvm:AllSensorValuesMessage)

-updateLArmJointsTable()

-updateLLegJointsBuffer(asvm:AllSensorValuesMessage)

-updateLLegJointsTable()

-updateRArmJointsBuffer(asvm:AllSensorValuesMessage)

-updateRArmJointsTable()

-updateRLegJointsBuffer(asvm:AllSensorValuesMessage)

-updateRLegJointsTable()

+LSCSubscriptionHandler(QString)

+LSCUnsubscriptionHandler(QString)

+LSDController(tablesList:QList<QComboBox*>)

+sensorsDataUpdateHandler(AllSensorValuesMessage,QString)

+~LSDController()

LVElementList

-myCurrentLVRequestedHost: QString

-parentListWidget: QListWidget*

-rawImageRequested: bool

-segImageRequested: bool

-newListElementRequested(item:QListWidgetItem*)

-uncheckAllListElements()

+LVELSubscriptionHandler(QString)

+LVELUnsubscriptionHandler(QString)

+LVElementList(*parent:QListWidget=0)

+LVRHSetRawImageVisible(QString,bool)

+LVRHSetSegImageVisible(QString,bool)

+~LVElementList()

LWElementTree

-myCurrentLWRequestedHost: QString

-parentTreeWidget: QTreeWidget*

-newTreeElementRequested(item:QTreeWidgetItem*)

-un_checkAllTreeElements(state:Qt::CheckState)

+LWELSubscriptionHandler(hostId:QString)

+LWELUnsubscriptionHandler(hostId:QString)

+LWElementTree(*parent:QTreeWidget=0)

+LWRHSetBallVisible(QString,bool)

+LWRHSetHFOVVisible(QString,bool)

+LWRHSetMWCmdVisible(QString,bool)

+LWRHSetParticlesVisible(QString,bool)

+LWRHSetRobotVisible(QString,bool)

+LWRHSetTraceVisible(QString,bool)

+LWRHSetVisionBallVisible(QString,bool)

+LWRHSetVisionGoalPostsVisible(QString,bool)

+~LWElementTree()

LWRemoteHosts

-LWRequests: QList<requestedLWElements*>

-myCurrentRequestedHost: QString

-parentComboBox: QComboBox*

-LWhostFinder(hostId:QString): int

-newLWRemoteHostSelected(index:int)

-printLWRequests()

+LWRHSubscriptionRequest(QString)

+LWRHUnsubscriptionRequest(QString)

+LWRemoteHosts(*parent:QComboBox=0)

+addComboBoxItem(hostId:QString,hostName:QString)

+removeComboBoxItem(hostId:QString)

+setLWRHGameStateInfo(icon:QIcon,gsm:QString,hostId:QString)

+~LWRemoteHosts()

Figure 6.1: The UML Class Diagram of our KMonitor Implementation

Maria Karamitrou 60 July 2012

6.1 MessageAllocator Class Reference

objects that hold the current user Nao requests in the Local World State tab, the Local

Polar Map tab, the Local Robot View tab respectively.

The MessageAllocator() public function or else the constructor of the corresponding

class, loads the required parameters of the network configuration, creates the Multicast-

Point object and starts the multicast thread. Furthermore, it instantiates the QTimer

class, defines its interval and connects the timeout() signal of the timer to its private

slot allocateReceivedMessages(). The makeWriteBuffer() and makeReadBuffer()

functions create write and read MessageBuffers respectively and attach them to the

MulticastPoint object.

The public slots GWRHSubscriptionHandler() and GWRHUnsubscriptionHandler()

update the myGWRequestedHosts property, send the (un)subscription requests for the

worldstate topic of the current selected hosts and are executed whenever the user checks

or unchecks some of the available remote hosts of the dynamic hosts tree widget on the

first tab. The void LWRHSubscriptionHandler(QString) and the LWRHUnsubscription-

Handler() are executed whenever the user selects a host in the dynamic hosts combo

box on the second tab, update the myLWRequestedHost, and send the (un)subscription

requests for the worldstate, vision, debug and motion topics of the currently selected

host. Furthermore, the LMRHSubscriptionHandler(), LMRHUnsubscriptionHandler(),

LVRHSubscriptionHandler(), LVRHUnsubscriptionHandler() slots update the corre-

sponding properties that hold the currently selected hosts on the third, fourth, and fifth

tabs in an identical way. The last public slot is tabChangeHandler() and implements

the filtering of the requested data via the UDP network based on the currently active

tab. When the Global World State tab is active, unsubscription requests are sent for

the vision, debug, motion, obstacle, and image topics; when the Local World State

tab is active, unsubscription requests are sent for the obstacle and image topics and

subscription requests are made to the vision, debug, and motion topics; when the Local

Polar Map tab is active, unsubscription requests are sent for the vision, debug, motion,

and image topics and a subscription request is made to the obstacle topic; finally, when

the Local Robot View tab is active, unsubscription requests are sent for all the topics

except the image topic for which a subscription request is made.

The signal knownHostsUpdate(KnownHosts) is emitted, whenever a message of type

KnownHosts is received from the multicast network. The signal gameStateMessageUpdate

(GameStateMessage, QString) is emitted, whenever a message of type GameStateMessage

Maria Karamitrou 61 July 2012

6. IMPLEMENTATION

is received and contains the corresponding GameState data structure and the publisher

host. The signal worldInfoUpdate(WorldInfo, QString) is emitted, whenever a mes-

sage of type WorldInfo is received and contains the corresponding WorldInfo data

structure and the publisher host. The signal localizationDataUpdate(Localization-

DataForGUI, QString) is emitted, whenever a message of type LocalizationDataForGUI

is received and contains the corresponding LocalizationDataForGUI data structure

and the publisher host. The signal obsmsgUpdate(ObservationMessage, QString) is

emitted, whenever a message of type ObservationMessage is received and contains the

corresponding ObservationMessage data structure and the publisher host. The signal

motion-CommandUpdate(MotionWalkMessage, QString) is emitted whenever a message

of type MotionWalkMessage is received and contains the corresponding MotionWalkMessage

data structure and the publisher host. The signal gridInfoUpdate(GridInfo, QString)

is emitted, whenever a message of type GridInfo is received and contains the correspond-

ing GridInfo data structure and the publisher host. The signal rawImageUpdate(KRawImage,

QString) is emitted whenever a message of type KRawImage is received and contains the

corresponding KRawImage data structure and the publisher host.

The protected function updateSubscription() is called, whenever any function has

to sent (un)subscription requests. It creates a message entry and defines its topic,

host, and message class. The message entry is added to the read MessageBuffer of

the multicast in order to be sent to the UDP network. Finally, the protected slot

allocateReceivedMessages() which is connected with the timeout() signal of the

timer, removes the incoming messages from the write MessageBuffer of MulticastPoint.

For each one of the receives messages, it checks its type, if the publisher host has been

requested by the user, and, if true, it creates the corresponding data structure, loads it

to the corresponding signal, and emits the signal.

6.2 Global World State Tab’s User Interface

As shown in Figure 6.2 the predefined user interface for the Global World State tab

consists of a promoted KGraphicsView on the left pane, where the 2D field scene is

visualized, and a QTreeWidget on the right pane, where the available remote hosts and

their features are represented. When the KMonitor application is executed the pointers of

Maria Karamitrou 62 July 2012

6.2 Global World State Tab’s User Interface

Figure 6.2: Global World State’s User Interface

these items pass objects to the corresponding controller, so that the desired functionalities

are accomplished.

6.2.1 GlobalRemoteHosts Class Reference

The parentTreeWidget property, a QTreeWidget class pointer is used for holding the

predefined in the KMonitor.ui tree widget of the Global World State tab. A helper struc-

ture has been implemented, called requestedElements having the properties hostId,

hostName, requestedPosition, and requestedBall, which is used to store the current

user requests for an active robot in the field. Thus, the property GWRequests is a QList

object of pointers to requestedElements structures where all user requests from the tree

widget are stored and visualized properly.

The public function GWRemoteHosts(), the constructor of the class takes as param-

eter the QTreeWidget pointer, stores it to the parentTreeWidget property, and simply

initializes the properties of the class.

The public slot emergeAvailableHosts(KnownHosts) is connected with the signal

Maria Karamitrou 63 July 2012

6. IMPLEMENTATION

knownHostsUpdate() of the MessageAllocator class, whenever an update for all the ex-

isting online active robots is received by the multicast thread. The slot firstly removes the

disconnected hosts, those that exist in the GWRequests list, but do not exist in the received

KnownHosts message, then for every host in the KnownHosts message it searches if the host

already exists in the GWRequests list, and if it does not, it creates a new TreeWidgetItem

for the corresponding host.The public slot setGWRHGameStateInfo (GameStateMessage,

QString) is connected with the signal gameStateMessageUpdate (GameStateMessage,

QString) of the MessageAllocator class and visualizes the game state information on

the corresponding TreeWidgetItem that represents the received host. It searches for

the host from the received QString parameter by iterating over the parentTreeWidget,

and, if the item is found, it sets the current team color by altering the item’s icon,

sets the player number, the team number, and the player state as a QString text of

the TreeWidgetItem. Finally, it emits the signal LWRHGameStateMsgUpdate(QIcon,

QString, QString) which informs the LocalRemoteHosts class for a game state up-

date in the RemoteHosts list.

The signal GWRHSubscriptionRequest(QString) is emitted whenever the user checks

one or more features of an active robot to visualize from the TreeWidget and is con-

nected to the GWRHSubscriptionHandler() slot of the MessageAllocator class. The

GWRHUnsubscriptionRequest(QString) signal is emitted whenever the user unchecks

both of the two subcheckboxes of the TreeWidgetItem that represents the host and is con-

nected to the GWRHUnsubscriptionHandler() slot of the MessageAllocator class. The

signals GWRHSetRobotVisible(QString, bool) and GWRHSetBallVisible(QString, bool)

are emitted whenever the user (un)checks any of the two subcheckboxes of the TreeWidget-

Item that represent the selections of the visualization of the estimated robot pose or

estimated ball position and are connected to the ViewController object of the Global

World State tab. The signal GWRHNewHostAdded(QString, QString) contains informa-

tion about the host ID and the host name of any new host added to the TreeWidget and is

connected to the slot addComboBoxItem(QString, QString) of the LocalRemoteHosts

class, whereas the signal GWRHOldHostRemoved(QString) contains information about

the host ID of any old host that has been removed from the TreeWidget and is con-

nected to the slot removeComboBoxItem(QString) of the LocalRemoteHosts class. The

last signal LWRHGameStateMsgUpdate(QIcon, QString, QString) is emitted whenever

a game state update is accomplished in any of the TreeWidgetItems of the TreeWidget

Maria Karamitrou 64 July 2012

6.2 Global World State Tab’s User Interface

and is connected to the slot setLWRHGameStateInfo(QIcon, QString, QString) of the

LocalRemoteHosts class.

The protected function GWhostNameFinder(QString hostId) iterates through the

GWRequests list, checks if the received host ID exists and returns its host name. The

GWhostFinder(QString hostId) iterates through the parentTreeWidget, checks if the

host ID exists and returns a QTreeWidgetItem pointer to it. The protected function

removeDisconnectedHosts(KnownHosts newHosts) accepts the KnownHosts argument

and compares each of the host in the parentTreeWidget with those of the KnownHosts

message. If the host is found, it means that the host is still connected, so it remains

in the parentTreeWidget, but, if the iteration is over and the host is not found, it

means that the host is disconnected and is removed from the TreeWidget and the

GWRequests list. The protected function addTreeWidgetItem(int position, QString

hostId, QString hostName) creates and customizes a TreeWidgetItem for the newly

connected host. The default visualization of the TreeWidgetItem is a green icon for the

main checkbox; the text that follows it contains simply the host name of the newly con-

nected host. The two subcheckboxes of the main checkbox stand for the estimated robot

pose and the estimated ball position respectively. The user is able to (un)check one or

both of the subcheckboxes and if he/she (un)checks the main checkbox then automatically

the two subcheckboxes are (un)checked too.

The protected slot mainCheckBoxHandler(int) manipulates the main checkbox of the

customized TreeWidgetItem that represents an active robot. It receives as a parameter

the current state of the check box and after having found the corresponding host it sets

the same checkbox state to the subcheckboxes of the TreeWidgetItem and updates the

GWRequests list. The same logic applies also to the slots subCheckBox1Handler(int)

and subCheckBox2Handler(int), which are executed whenever the user (un)checks the

two subcheckboxes of any of the customized TreeWidgetItems of the TreeWidget.

6.2.2 KFieldScene Class Reference

The KFieldScene class is responsible for visualizing the two-dimensional field and all its

static graphical items. It inherits from the Qt4’s QGraphicsScene class. The property

parent is a KGraphicsView pointer that holds the parent view of the scene. The proper-

ties LSide, RSide, LSmallArea, RSmallArea, LGoalArea, RGoalArea are QGraphicsRect-

Maria Karamitrou 65 July 2012

6. IMPLEMENTATION

Item pointers that are used for the creation of all the field lines, the properties LCrossHPart,

LCrossVPart, RCrossHPart, RCrossVPart, CCrossHPart are QGraphicsLineItem point-

ers that are used for the creation of the field penalty marks (crosses). The QGraphicsEl-

lipseItem pointer CCircle holds the center cirle and the QGraphicsItem pointers LTPost,

LBPost, RTPost, RBPost hold the three-dimensional goalposts. A helper struct has been

implemented to hold significant field points whose coordinates are transformed from the

real SPL field to the 2D virtual field coordinate system (Figure 5.10).

The constructor of the class loads the XML file with the field parameters and updates

the helper struct. It also sets the field scene’s background color and creates all its static

graphical items, the lines, the penalty marks, the circle, and the 3D goalposts. The most

important protected function of the class is the resizeFieldScene(), which is executed

whenever a resize to the 2D scene window is requested by the user, takes as arguments

the new width and height, and rearranges the graphical items according to the new size

of the scene window and the specified by the SPL rules positions of the items on the field.

6.2.3 GraphicalRobot Class Reference

The mentioned class is the one that holds all the dynamic graphical items of the robot that

are able to be visualized in real time execution of the Monas code. The user makes his/her

requests through the Remote Hosts Widget and the Available Elements Widget, the

View-Controller interprets the user requests to actual visualizations of the robots’ or

robot’s features on the 2D Scenes of the first and second tab. The documentation of the

GraphicalRobot class follows.

The property parentScene is a KFieldScene class pointer which holds the address of

the corresponding scene that is created from the View-Controller of the Global/Local

World State tabs. The hostId is a QString that holds the unique host ID of the

GraphicalRobot object. The currentWIM is a WorldInfo reference that aims to store

the most recent message of that type, in order to be used as a data base for the majority

of the visualized elements on the 2D field. The protocol buffer message, WorldInfo,

holds the data for the robot’s and ball’s pose and the definition of its data structure is

the following:

message WorldInfo{

required RobotPose myPosition = 1;

Maria Karamitrou 66 July 2012

6.2 Global World State Tab’s User Interface

repeated Ball Balls = 2;

...

}

message RobotPose{

required float X = 1;

required float Y = 2;

required float phi = 3;

...

}

message Ball{

required float relativeX = 1 [default = -100000];

required float relativeY = 2 [default = -100000];

...

}

where:

• wim.myPosition.X, is the estimated position of the robot in the x-axis of the global

coordinate system,

• wim.myPosition.Y, is the estimated position of the robot in the y-axis of the global

coordinate system,

• wim.myPosition.phi, is the estimated orientation of the robot in the θ-axis of the

global coordinate system,

• wim.Balls.relativeX, is the estimated relative distance of the ball from the robot’s

pose in the x-axis,

• wim.Balls.relativeY, is the estimated relative distance of the ball from the robot’s

pose in the y-axis.

The RobotVisible is a boolean variable that holds if the user has requested the

robot’s pose visualization. The Robot is a QGraphicsEllipseItem class pointer that rep-

resents the estimated robot position on the 2D field as a colored circle. The RobotDirection

Maria Karamitrou 67 July 2012

6. IMPLEMENTATION

is a QGraphicsLineItem class pointer that represents the estimated robot orientation as

a straight line segment. In order to visualize the robot’s pose the received data has

to be transformed and scaled to fit in the 2D field coordinate system and the geome-

try of the utilized graphical items has to be computed. As mentioned above an ellipse

item is used for visualizing the robot’s position. To set the item’s ellipse geometry a

QRectF item has to be defined and passed as argument to the setRect() function of

QGraphicsEllipseItem class. The rectangle’s left edge defines the left edge of the el-

lipse, whereas the height and width of the rectangle describe the height and width of the

ellipse. The calculation of the QRectF item’s properties are computed by the following

code lines:

rect.x = sceneRect().width() * (config.xCentre - width/2 + xMiddle)

* (1 / config.totalCarpetAreaWidth);

rect.y = sceneRect().height() - sceneRect().height()

* (config.yCentre + height/2 + yMiddle) / config.totalCarpetAreaHeight);

rect.width = sceneRect().width() * width / config.totalCarpetAreaWidth;

rect.height = sceneRect().height() * height / config.totalCarpetAreaHeight;

A line item is used for visualizing the robot’s orientation which is calculated from the

robot’s position and orientation by the following code lines:

point.x = wim.myPosition.X + distance * cos(wim.myPosition.phi);

point.y = wim.myPosition.Y + distance} * sin(wim.myPosition.phi) + 1;

To set the item’s line geometry a QLineF item has to be defined and passed as argu-

ment to the setRect() function of QGraphicsLineItem class. The QLineF item is defined

by a start point and an end point. The calculation of the QLineF item’s properties are

computed by the following code lines:

line.x_0 = sceneRect().width() * (config.xCentre+x)/config.totalCarpetAreaWidth;

line.y_0 = sceneRect().height() - sceneRect().height() * (config.yCentre+y)

/config.totalCarpetAreaHeight;

line.x_1 = sceneRect().width() * (config.xCentre+x)/config.totalCarpetAreaWidth

Maria Karamitrou 68 July 2012

6.3 Global World State Tab’s View-Controller

+ sceneRect().width()* size*cos(degAngle)/config.totalCarpetAreaWidth;

line.y_1 = sceneRect().height() - (sceneRect().height() * (config.yCentre+y)

* (1/config.totalCarpetAreaHeight + sceneRect().height()*size*sin(degAngle)

* (1 / config.totalCarpetAreaHeight));

The BallVisible is a boolean variable that holds if the user has requested the ball’s

position visualization. The Ball is a QGraphicsEllipseItem class pointer that repre-

sents the estimated ball’s position on the 2D field with respect to the robot’s pose as a

colored circle. Before estimating the graphical item’s geometry, we compute the absolute

coordinates of the ball’s position on the real field with the following code lines:

ball.x = wim.myPosition.X + wim.Balls(0).relativeX * cos(wim.myPosition.phi)

- wim.Balls(0).relativeY*sin(wim.myPosition.phi);

ball.y = wim.myPosition.Y + wim.Balls(0).relativeX * sin(wim.myPosition.phi)

+ wim.Balls(0).relativeY*cos(wim.myPosition.phi);

The calculation of the ball item’s QRectF properties are then computed with the

same equations used for the robot’s position item geometry. The UnionistLine is a

QGraphicsLineItem class pointer which joins the graphical elements that represent the

robot’s pose and ball’s pose in order to avoid confusion in cases where there are multiple

robots on the 2D field.

6.3 Global World State Tab’s View-Controller

The View-Controller of the first tab is implemented through the KGraphicsView class

and is responsible for manipulating all the graphical robot elements on the 2D field scene

according to the user’s requests made through the GlobalRemoteHosts widget and for

updating the position of those elements based on the received protocol buffer messages

from the MessageAllocator module.

The KGraphicsView inherits from the Qt4’s QGraphicsView. The property childScene

is a KFieldScene pointer that holds the address of the 2D field scene. The construc-

tor of the referring class creates a new KFieldScene object. The protected function

resizeEvent(QResizeEvent* event) reimplements that of the QGraphicsView one and

Maria Karamitrou 69 July 2012

6. IMPLEMENTATION

handles the resize of the field scene caused by the user. Whatever the increase/decrease

of the view window might be, the ratio of the field scene is preserved.

The public slot GWSGVRobotVisible(QString, bool) is connected with the Global-

RemoteHosts signal GWRHSetRobotVisible(QString, bool). Whenever it is executed,

it searches the list of GraphicalRobots for the corresponding host, if it does not exist,

it creates a new GraphicalRobot object and it adds it to the list, and stores its visibility

based on whether the user has checked or unchecked the robot’s pose checkbox for the

robot. The same procedure is followed by the public slot GWSGVBallVisible(QString,

bool) which is connected with the GlobalRemoteHosts signal GWRHSetBallVisible

(QString, bool) according to the ball’s pose checkbox. The slot worldInfoUpdate-

Handler(World- Info, QString) is connected with the signal worldInfoUpdate(World-

Info, QString) of the MessageAllocator class. Whenever it is executed, it searches

the host in the list of GraphicalRobots and, if the host exists, it updates the currentWIM

property, it checks the visibility of the robot’s and ball’s pose and if the user has

requested them to be visible, it updates their current positions as described in the

GraphicalRobot class. If the user has requested the visualization of both the robot

and the ball then automatically, the slot makes the UnionistLine visible too. The slot

setKGFCGameStateInfo(GameStateMessage, QString) is connected with the Message-

Allocator’s signal gameStateMessageUpdate(GameStateMessage, QString) and, when-

ever it is executed, it sets the corresponding team color to the ellipse item that represents

the robot’s position and sets the robot’s number as tooltip. The last slot removeGraphical-

Element(QString) is connected with the GlobalRemoteHosts signal GWRHOldHostRemoved

(QString) and removes from the list of GraphicalRobots the received one.

6.4 Local World State Tab’s User Interface

The Qt4 designer was used to predefine the second tab’s user interface as shown in

Figure 6.3. The tab consists of a promoted KGraphicsView, at the left pane, similar to

that of the first tab’s, a QComboBox at the right top pane, where the active remote hosts

are visualized, and a QTreeWidget at the right pane, where the available features are

represented.

Maria Karamitrou 70 July 2012

6.4 Local World State Tab’s User Interface

Figure 6.3: Local World State’s User Interface

6.4.1 LocalRemoteHosts Class Reference

The LocalRemoteHosts class inherits from Qt4’s QComboBox class in order to implement a

customized combobox which shall visualize all the current connected hosts of the network,

but it shall limit the user to select only one host for monitoring.

The parentComboBox property, a QComboBox class pointer is used for holding every

predefined in the KMonitor.ui combobox. Currently, the predefined comboboxes are

added on all the existing tabs of the KMonitor tool apart from the Global World State

tab. A helper structure has been implemented, called requestedLWElements having

the properties hostId, hostName, and hostSelected, which is used to store whether

or not the current user requests the corresponding active robot in the field. Thus, the

property LWRequests is a QList object of pointers to requestedLWElements structs

for the user request from the combobox to be stored and visualized properly. The

myCurrentRequestedHost property is a QString which holds the current user local host

selection.

The constructor LWRemoteHosts() defines some layout values for the visualization

of the items of the parentComboBox and connects the inherited signal activated(int),

Maria Karamitrou 71 July 2012

6. IMPLEMENTATION

which is emitted whenever an item of a QComboBox object is selected, with the protected

slot newLWRemoteHostSelected(int). Furthermore, it creates the initial prompting

comboBoxItem to urge the user to select an available host.

The public slot addComboBoxItem(QString, QString) is connected with the Global-

RemoteHosts signal GWRHNewHostAdded(QString, QString) and it creates a customized

QComboBoxItem which visualizes the received newly connected host with default pa-

rameters, updates the LWRequests list and adds the item to the parentComboBox.

The removeComboBoxItem(QString) is connected with the GlobalRemoteHosts signal

GWRHOldHostRemoved(QString). It searches for the position of the host which has to

be removed, and if the current requested host is the disconnected one, the on screen

parentComboBoxItem is set to be the initial prompting one.The slot setLWRHGameState-

Info(QIcon, QString, QString) is connected with the LWRHGameStateMsgUpdate (Q-

Icon, QString, QString) of the GlobalRemoteHosts class and updates the combobox

item with the received information for the current game state of the robot.

The signals LWRHSubscriptionRequest(QString) and LWRHUnsubscriptionRequest

(QString) are connected with the void LWRHSubscriptionHandler(QString) and the

LWRHUnsubscriptionHandler(QString) of the MessageAllocator class and are emitted

whenever the user selects a host to monitor from the parentComboBox.

6.4.2 LWElementTreeWidget Class Reference

The LWElementTreeWidget class inherits from Qt4’s QTreeWidget class in order to im-

plement a customized tree widget which shall visualize all the available graphical robot

elements for monitoring. It contains properties for storing the current user selected

host and the parent tree widget. The constructor LWElementTree() unchecks all the tree

widget’s items and connects the QTreeWidget’s signal itemChanged(QTreeWidgetItem*,

int) with the class’s slot newTreeElementRequested(QTreeWidgetItem*).

The signal LWRHSetRobotVisible(QString, bool) contains information about the

user’s request for the robot pose visibility. The LWRHSetBallVisible(QString, bool)

contains information for the ball’s pose visibility and the LWRHSetVisionBallVisible

(QString, bool) for the ball observations visibility. In the same way the LWRHSetVisi-

onGoalPostsVisible(QString, bool), LWRHSetParticlesVisible(QString, bool),

Maria Karamitrou 72 July 2012

6.4 Local World State Tab’s User Interface

LWRHSetHFOVVisible(QString, bool), LWRHSetTraceVisible (QString, bool), LWRH-

SetMWCmdVisible(QString, bool) are responsible for the landmarks observations, the

particles, the robot view, the trace, and the motion command visibilities.

The private slot newTreeElementRequested(QTreeWidgetItem* item) is executed

whenever the user makes a different selection on the customized tree widget, it checks

which item of the widget has changed and it emits the corresponding signal.

6.4.3 LocalRobot Class Reference

The LocalRobot class is the one that holds all the dynamic graphical items of the robot

that can be visualized on the 2D scene. For the visualization of the static field elements

the KFieldScene is instantiated. The mentioned class inherits from the GlobalRobot

class. The currentObsm, an ObservationMessage reference is used to hold the most

recent message of that type. The definition of the referring data structure is the following:

message ObservationMessage {

...

optional BallObject ball=2;

repeated NamedObject regular_objects=3;

...

repeated PointObject view_limit_points=11;

}

message BallObject{

required float dist =1 [default = 0.0];

required float bearing =2 [default = 0.0];

...

}

message NamedObject {

required string object_name=1 [default =""];

required float bearing=2 [default=-1];

required float distance=3 [default=-1];

...

}

Maria Karamitrou 73 July 2012

6. IMPLEMENTATION

message PointObject{

required float distance =1;

required float bearing =2;

}

The boolean LWSVisionBallVisible holds the user’s request for the ball observation’s

visibility, whereas the VisionBall, a QGraphicsEllipseItem pointer is used for the

visualization of the ball observation received from the vision module. Before estimating

the graphical item’s geometry, we transform the received polar coordinates to cartesian

ones with the following code lines:

ball.x = wim.myPosition().x() + bob.dist()

* cos((wim.myPosition().phi() + bob.bearing());

ball.y = wim.myPosition().y() + bob.dist()

* sin((wim.myPosition().phi() + bob.bearing());

The LeftYellowPost, RightYellowPost, YellowPost are QGraphicsEllipseItem point-

ers that are used to hold the corresponding addresses of the graphical elements that

visualize the goalposts observations received from the vision module. Similar to the

transformation of the coordinates of the ball observation, we compute the actual global

field coordinates for the goalposts as below:

post.x = wim->myposition().x() + nob->distance()

* cos((wim->myposition().phi() + nob->bearing());

post.y = wim->myposition().y() + nob->distance()

* sin((wim->myposition().phi() + nob->bearing());

The calculation of the observation ball, the goalpost items’ QRectF properties are then

computed with the same equations of those used for the robot’s position item geometry.

The boolean LWSHFOVVisible and the HFOVLines, a QGraphicsPolygonItem pointer are

used to visualize the robot’s view projection on the 2D field as received from the vision

module.

The definition of the LocalizationDataForGUI data structure is the following:

Maria Karamitrou 74 July 2012

6.5 Local World State Tab’s View-Controller

message LocalizationDataForGUI{

repeated RobotPose Particles = 1;

}

The boolean LWSParticlesVisible and the ParticlesList, a QList of pointers to

Particles structures are used to hold the required addresses and information for the

visualization of the particles received from the world state module. The estimation of

the position of each particle and the geometry of the graphical item which represents

it, is made following the same procedure with that for the robot’s pose. The bool

LWSTraceVisible, the RobotPositions, a circular buffer of QGraphicsEllipseItem

pointers and the UnionistLines, a circular buffer of QGraphicsLineItem pointers are

used for the visualization of the robot’s trace. The boolean LWSMWCmdVisible, the

GotoPositionLine, a QGraphicsLineItem pointer, the GotoArrow, a QGraphicsPolygon-

Item pointer, the zAxisArc, a QGraphicsEllipseItem pointer and the zAxisArcArrow,

a QGraphicsPolygonItem pointer are used to visualize the robot’s motion command on

the 2D field as received from the behavior module.

6.5 Local World State Tab’s View-Controller

Similar to the View-Controller of the first tab, the View-Controller class of the second

tab is responsible for manipulating all the graphical robot elements on the 2D field

scene according to the user’s requests made from the user interface and for updating

the position of those elements based on the received protocol buffer messages from the

MessageAllocator module.

The public slot LWSGVVisionBallVisible(QString, bool) is connected with the

LWSElementTree signal LWRHSetVisionBallVisible(QString, bool) and whenever it

is executed, it checks if the already created LocalRobot item has the same host ID with

the host ID of the requested host of the signal; if not, it removes the old one and cre-

ates a new LocalRobot item with the currently requested one and sets the observation

ball’s visibility according to the user’s request. The same procedure is followed for the

following public slots. The LWSGVVisionGoalPostsVisible(QString, bool) is con-

nected with the LSWElementTree signal LWRHSetVisionGoalPostsVisible(QString,

bool). The LWSGVParticlesVisible(QString, bool) is connected with the signal

Maria Karamitrou 75 July 2012

6. IMPLEMENTATION

LWRHSetParticlesVisible(QString, bool) and sets the visibility of the particles list.

The LWSGVHFOVVisible(QString, bool) is connected with the signal LWRHSetHFOV-

Visible(QString, bool) and sets the visibility of the polygon that visualizes the robot

view as a field projection. The LWSGVTraceVisible(QString, bool) is connected with

the signal LWRHSetTraceVisible(QString, bool) and updates the visibility of the el-

lipse and line items in the circular buffers that implement the graphical trace. The

LWSGVMWCmdVisible(QString, bool) is connected with the signal LWRHSetMWCmdVisible

(QString, bool) and sets the visibility of the items that visualize the motion command.

The public slot observationMessageUpdateHandler(ObservationMessage,QString)

is connected with the MEssageAllocator signal obsmsgUpdate(ObservationMessage,

QString). During its execution procedure, it checks the LocalRobot’s hostId and if

it matches the one in the argument, it updates the currentObsm property. Then, it

checks the visibility booleans of the ball observation, the goalposts observations, the

robot’s view projection, and, if the user has requested specific elements, it updates

their position on the 2D field scene. The localizationDataUpdateHandler(Localiza-

tionDataForGUI, QString) is connected with the MEssageAllocator signal localiza-

tionDataUpdate(LocalizationDataForGUI, QString); it follows a similar procedure

with the above, but the update stands for the position of the particles.The last slot,

motionCommandUpdateHandler(MotionWalkMessage, QString) is connected with the

MEssageAllocator signal motionCommandUpdate(MotionWalkMessage, QString) and

updates the position of the graphical items that visualize the motion command.

6.6 Local Polar Map Tab’s User Interface

The Local Polar Map tab was predefined so as to consist of a promoted KMapView, a

QComboBox at the right top pane, where the active remote hosts are visualized, similar to

that of the second tab’s item, and a QTreeWidget at the right pane, where the available

features are represented. The predefined user interface is shown at Figure 6.4.

6.6.1 LMElementTreeWidget Class Reference

The LMElementTreeWidget Class has been implemented similarly to the class in Sec-

tion 6.4.2, with the only difference in the items of the tree widget it provides. More

Maria Karamitrou 76 July 2012

6.7 Local Polar Map Tab’s View-Controller

Figure 6.4: Local Polar Map’s User Interface

specifically, the graphical robot elements the user can check or uncheck are the obsta-

cles, the target coordinates, and the obstacle-free path. Thus, corresponding signals are

emitted whenever the user selects or deselects any of the aforementioned features.

6.7 Local Polar Map Tab’s View-Controller

KMapView class, a customized Qt4’s QGraphicsView class, implements the controller of

the Local Polar Map tab. The main functionality that the controller provides is the

control of the visibility of the available graphical elements according to the user’s requests

made from the LocalRemoteHosts and the LMElementTree widgets and for updating the

MapScene with the GridInfo data received by the MessageAllocator module.

KMapView inherits from QGraphicsView class and a KMapScene pointer holds the corre-

sponding scene which the view visualizes and controls. The public slot LMObstaclesVisi-

ble(QString, bool) is connected with the signal LMRHSetObstaclesVisible(QString,

bool) and, whenever it is executed, it checks the host ID of the current MapScene object

and, if the host is not the same, it resets the MapScene and sets the boolean that holds the

Maria Karamitrou 77 July 2012

6. IMPLEMENTATION

visibility of the item that visualizes the obstacle map to the received value. Similar pro-

cedure is followed by the slot LMPathVisible(QString, bool), which is connected with

the signal LMRHSetPathVisible(QString, bool) and sets the visibility of the path’s

items and the slot LMTargetCoordVisible(QString, bool) which is connected with

the signal LMRHSetTargCoordVisible(QString, bool) and handles the visibility of the

target item.

The slot gridInfoUpdateHandler(GridInfo, QString) is connected with the Mes-

sageAllocator signal gridInfoUpdate(GridInfo, QString). Whenever it is executed

it updates the PolarGrid array of the KMapScene object with the probability values

for each grid cell, it updates the targetX, targetY, and targetA values and the arrays

pathR, pathS, and pathO. Then, it checks the visibility booleans for each of the available

elements, updates the position, and sets visible the requested elements.

6.8 Local Robot View Tab’s User Interface

The fourth tab’s user interface was designed as depicted in Figure 6.5. The tab consists

of a promoted KLabel at the left pane, that constitutes a customized QLabel for the

needs of the image visualization in Qt4, a QComboBox at the right top pane, where the

active remote hosts are visualized and its handler is a LocalRemoteHosts object, and a

QListWidget at the right pane, where the available features are represented.

6.8.1 LVElementList Class Reference

The LVElementList class visualizes the two available to the user features, the display of

the raw images of the robot and the display of the color-segmented images. The user is

able to check only one of the two available elements to monitor. The mentioned class

inherits from the Qt4’s QListWidget class. A QString reference holds the host ID of

the requested robot, which the user has selected from the customized LocalRemoteHosts

combo box. A QListWidget pointer holds the parent QListWidget from the user interface

and two booleans hold the current user request for the visualization of the raw or the

segmented image. The constructor of the mentioned class sets the parentListWidget

pointer, calls a private function which unchecks the two items of the ListWidget, and

Maria Karamitrou 78 July 2012

6.8 Local Robot View Tab’s User Interface

Figure 6.5: Local Robot View’s User Interface

connects the QListWidget signal itemChanged(QListWidgetItem*) with the private slot

newListElementRequested(QListWidgetItem*).

The last mentioned slot is executed whenever the user (un)checks any of the two list

widget items. During its execution, it checks which of the two items was triggered, and the

check state of the item. If the user has checked the raw image checkbox, then the raw im-

age visibility boolean is set to true, if the visibility boolean of the segmented image is also

true, then is set to false and finally the signal LVRHSetRawImageVisible(host, true) is

emitted. If the user has unchecked the raw image checkbox simply the visibility boolean

is updated and the signal LVRHSetRawImageVisible(host, false) is emitted. Similar

procedure is followed, if the triggered item is the segmented image checkbox. The public

slots LVELSubscriptionHandler(QString) and LVELUnsubscriptionHandler(QString)

are connected with the LocalRemoteHosts signals LWRHSubscriptionRequest(QString)

and LWRHUnsubscriptionRequest(QString). Whenever they are executed they update

the current host variable and uncheck the two list element items whenever it is needed.

The signals LVRHSetRawImageVisble(QString, bool) and LVRHSetSegImageVisible

(QString, bool) are connected with the slots LVRawImageVisible(QString, bool)

Maria Karamitrou 79 July 2012

6. IMPLEMENTATION

and LVSegImageVisible(QString, bool) of the KLabel class respectively and are emit-

ted whenever the user (un)checks any of the two list widget items.

6.8.2 RobotView Class Reference

The RobotView class implements the creation of the raw or the color segmented RGB

image that is displayed on the corresponding label of the Local Robot View tab’s user

interface. A KLabel pointer and a QString reference hold the parent label and the current

requested host respectively. The definition of the KRawImage data structure which is

received by the MessageAllocator module is the following:

message KRawImage{

...

required uint32 bytes_per_pix = 1 ;

required uint32 width = 2 [default = 0];

required uint32 height = 3 [default = 0];

required bytes image_rawdata = 5;

...

}

where:

• krim.bytesperpix, is the number of the channels utilized to store the YUV com-

ponents (currently 2),

• krim.width, is the received image width in pixels,

• krim.height, is the received image height in pixels,

• krim.imagerawdata, is the raw image data.

The function updateRawRobotView(KRawImage rawImage) calls the private YUV2RGB

(KRawImage rawImage) function which returns a QImage pointer to a QImage item with

pixel format transformed from the received YUV colorspace to the RGB one, trans-

forms the QImage to QPixMap and displays the image on the label. The private function

YUV2RGB(KRawImage rawImage) iterates over the received raw data and extracts the

values for the y, u, v components of every pixel. Then the r, g, b components are

Maria Karamitrou 80 July 2012

6.9 Local Robot View Tab’s View-Controller

computed based on the transformation equations in Section 5.5.1 and every pixel of the

newly created QImage is set by defining its position and the values of the RGB com-

ponents. The function updateSegRobotView(KRawImage rawImage) follows similar pro-

cedure with that followed by the updateRawRobotView(KRawImage rawImage) function

except for calling the private YUVSeg2RGB(KRawImage rawImage). The private func-

tion YUVSeg2RGB(KRawImage rawImage) iterates over the received raw data, extracts

the values for the y, u, v components of every pixel and provides these values to the

KSegmentator which accomplishes the color segmentation. The outcome is mapped to

the RGB values and every pixel of the newly created QImage is set by defining its position

and the values of the r, g, b components.

6.9 Local Robot View Tab’s View-Controller

The View-Controller of the fourth tab is implemented through the KLabel class, a

customized QLabel class and is responsible for controlling the visibility of the available

displayed images according to the user’s requests made from the LocalRemoteHosts

and LVElementList widgets and for updating the RobotView with the KRawImage data

received by the MessageAllocator module.

The aforementioned class inherits from the QLabel class. A KRobotView pointer

holds the handler’s address.The public slots LVRawImageVisible(QString, bool), LV-

SegImageVisible(QString, bool) are connected with the LVElementList signals LV-

RHSetRawImageVisible(QString, bool), LVRHSetSegImageVisible(QString, bool)

respectively and whenever they are executed, they handle the booleans that hold the

requested visibility of the raw and segmented image. The slot kRawImageUpdateHa-

dler(KRawImage, QString) is connected with the MessageAllocator signal kRawIma-

geUpdate(KRawImage, QString). It checks the compatibility of the received host and

the currest RobotView host and if they are the same, it calls the updateRawRobotView

(KRawImage) or the updateSegRobotView(KRawImage rawImage) function of the Robot-

View class according to the user request.

Maria Karamitrou 81 July 2012

6. IMPLEMENTATION

Figure 6.6: Local Sensors Data’s User Interface

6.10 Local Sensors Data Tab’s User Interface

Because of its provided functionality, the Local Sensors Data tab was predefined so as to

be a collection of Qt4’s QComboBox and QLabel widgets. A total of 38 QComboboxes were

utilized in order to visualize the current sensors measurements and 37 QLabels close to

each combobox item to depict the sensor name. Additionally each combobox holds the

ten latest values of the sensor which visualizes. The QComboBox on the top center pane

visualizes the active remote hosts and the rest of the utilized comboboxes were placed

in such a way so as to depict the actual position of each sensor on the robot’s body, as

shown in Figure 6.6.

6.11 Local Sensors Data Tab’s View-Controller

The View-Controller of the fifth tab called the LSDController, a customized QObject

class, is responsible for updating the comboboxes with the AllSensorValuesMessage re-

ceived by the MessageAllocator module, based on the user’s host request made from the

Maria Karamitrou 82 July 2012

6.11 Local Sensors Data Tab’s View-Controller

LocalRemoteHost widget. Seven circular buffers were used to hold the ten latest sensor

values of each kinematic chain, of the inertial unit and the FSRs. The constructor of the

class initializes the structures and sets the capacity of the buffers to ten. The public slot

sensorsDataUpdateHandler(AllSensorValuesMessage, QString) is connected with

the MessageAllocator signal sensorsDataUpdate(AllSensorValuesMessage, QString)

and whenever it is executed, it updates the buffers with the received sensor message and

calls the corresponding function which connects the buffers contents with the QComboBoxes

of the Graphical User Interface of the tab.

Maria Karamitrou 83 July 2012

6. IMPLEMENTATION

Maria Karamitrou 84 July 2012

Chapter 7

Results

In order to present the functionality of KMonitor five different scenarios were imple-

mented, executed, and recorded. In the sections below we briefly describe each scenario,

depict representative snapshots of their progress, and discuss the outcomes. In the figures

below, snapshots on the left were taken from a regular video camera and show the real

SPL soccer field, whereas snapshots on the right were taken from KMonitor; side-by-side

snapshots are synchronized.

7.1 Monitoring the Global World State

The first scenario concerns the execution of a real SPL game, with the only difference that

the two competing teams consist of two robots each (one goalkeeper and one attacker).

Thus, we present the functionality of the Global World State tab and examine the global

visualization and monitoring process offered by KMonitor. Initially, the four players are

switched off and placed at the side lines of their own half of the field, as shown in the

first row of Figure 7.1 (left), therefore the Global World State tab of KMonitor is in

its initial visualization without any available active robots to monitor, as shown in the

first row of Figure 7.1 (right). After the robots successively boot up, KMonitor detects

the four active robots and visualizes them in the tree widget, whereas their graphical

elements are placed at the predetermined positions in the virtual field (second row of

Figure 7.1). Note that only three robots are shown on the 2D virtual field scene, since we

have selected to monitor only three of the four available robots; this is the reason why in

the hosts widget the last robot contains no game state information and is shown in green.

Maria Karamitrou 85 July 2012

7. RESULTS

Figure 7.1: Monitoring the Global World State during a real SPL game

Maria Karamitrou 86 July 2012

7.1 Monitoring the Global World State

Figure 7.2: Monitoring the Global World State during a real SPL game (cont’d)

Maria Karamitrou 87 July 2012

7. RESULTS

In the third row, using the Game Controller, we set the players to the READY game state,

where autonomous placement to kick-off positions takes place. Having selected all active

hosts in KMonitor we are able to monitor their estimated robot pose, inferring that the

beliefs of three players match their real poses, whereas one red player has converged at a

wrong estimated robot pose. After the end of the autonomous placement phase (READY

state), the game moves to the SET state and the estimated robot poses match the real

ones (fourth row of Figure 7.1). After the ball is placed by the referee at the center of the

field, the game begins and we select to monitor both the estimated robot pose and the

estimated ball position of all players (Figure 7.2). We can see that both goalkeepers have

accurate estimated poses and the error in their estimated ball positions is less than 0.3m.

In contrast, the blue attacker has a wrong estimated pose which is off by 0.45m and

about 20◦. The red attacker has been penalized as indicated in the tree widget. As the

game continues, we see that the error in the estimated poses and ball positions increases,

indicating potential problems in the localization software module. On the other hand, the

vision software module seems to be working quite well, since all the robots have accurate

knowledge of the position of the ball, as shown on the virtual field scene of KMonitor;

the mismatch between the estimated ball positions is due to mistakes in the estimated

robot poses.

7.2 Monitoring the Local World State

The second scenario concerns the behavior of a single player in the soccer field, which

starts from the predefined initial position on the side line and tries to score a goal with a

ball placed at the center of the field. In this scenario, we examine the functionality

provided by the Local World State tab of KMonitor. As shown in the first row of

Figure 7.3, we have selected to visualize the estimated robot pose, the player’s view field

projection, the landmark observations, and the population of the localization particles

to inspect the single robot behavior. We can see that the initial estimated robot pose

converges to the real pose and the particles are equally distributed along the side lines

of the own half of the field. In the second row, we can see the distribution of the

population of particles in the field and the final estimated robot pose, as well as an

erroneous right goalpost observation inside its camera view. In the third row, we have

selected to visualize, apart from the aforementioned features, the estimated ball position

Maria Karamitrou 88 July 2012

7.2 Monitoring the Local World State

Figure 7.3: Monitoring the Local World State

Maria Karamitrou 89 July 2012

7. RESULTS

and the instantaneous ball observations. We can see from KMonitor that there is an

error of about 0.6m in the estimated robot pose, but the robot has a very good estimate

of the ball position, which matches both the current ball observation and the real ball

position on the real field. Finally, in the fourth row, we have added to the monitoring

process the motion commands. As we can see, despite the error in the estimated robot

pose, the decided motion command dictates the robot to move laterally to the right with

maximum speed and rotate clockwise by about 60 degrees, that is, towards the ball.

7.3 Monitoring the Local Polar Map

In the third scenario, the player is placed at the center of the field, the ball is placed in

front of the opponent goal, and another player (in PENALISED game state) is placed in

front of the player slightly to the left. After the player has detected the ball and starts

walking towards it, an additional player (in PENALISED game state) is placed in front

of him, as an unexpected obstacle, to test the performance of the obstacle avoidance

module via KMonitor. In all rows of Figure 7.4 we have selected to visualize all the

relevant elements. In the first row, we can see the correct estimation of the obstacle

position in the front left area of the player; there is no target and path, because the

player has not seen the ball and has not set a target yet. In the second row, the player

is moving towards the ball and we can see how the obstacle has been shifted to the left

side of the player due to map transformation as the robot moves. In the third row, the

unexpected obstacle appears and we observe that the probability of occupancy of the

map cells in the right front area of the player increases and the derived path suggests

a 45-degrees rotational movement to avoid the obstacle and reach the target. As the

robot gets closer to the obstacle (fourth row), the obstacle is detected by both sonars

and is placed right in front of the player, as indicated by the increased probability of

occupancy of the corresponding cells. Path planning now derives another obstacle-free

path which begins with a lateral movement to the left to avoid the obstacle and then a

curved movement to reach the target.

Maria Karamitrou 90 July 2012

7.3 Monitoring the Local Polar Map

Figure 7.4: Monitoring the Local Polar Map

Maria Karamitrou 91 July 2012

7. RESULTS

7.4 Monitoring the Local Robot View

In this scenario, we demonstrate the performance of the Local Robot View tab. A single

player starts from the predefined initial position on the side line, walks towards the ball,

which is placed at the center of the field, and kicks it. We monitor the image acquired

by the bottom robot camera, which is the one used exclusive by our vision module. Note

that in this scenario the robot is connected to KMonitor via a wired network link due

to the extreme load on the network when transferring images. In the two first rows of

Figure 7.5, we have selected to monitor the raw image from the robot camera, whereas

in the last two rows we monitor the color segmented-image. We can observe that color

recognition works quite well on the robot with the loaded color map. Almost all pixels

of the ball are correctly recognized as orange. This is also true for the penalty mark and

the robot body parts, which are recognized as white. Several pixels of the field carpet

are misidentified as irrelevant (black) due to shades, however at this proportion there is

no negative impact on ball recognition. Finally, from the last row, it is easy to see that

the pixels of the goal are correctly recognized as yellow, whereas the background yields

mostly irrelevant pixels.

7.5 Monitoring the Local Sensors Data

Finally, in order to present the functionality of the Local Sensors Data tab, we switch off

the robot’s stiffness on all joints and we visualize the sensor readings through KMonitor

as we manually move the joints. We present the readings, after having moved the head

left and right, the left hand, the right hand, the right leg, and the left leg respectively

(Figure 7.6). We can easily observe the change in the values of the encoders of the

corresponding kinematic chains according to the moved part of the robot’s body.

7.6 Usability

Kmonitor is already being tested by all members of team Kouretes in various tests in the

lab, but also in actual team deployments with the most recent one being the RoboCup

2012 competition in Mexico City. As evidenced by all team members, the team setup and

Maria Karamitrou 92 July 2012

7.6 Usability

Figure 7.5: Monitoring the Local Robot View

Maria Karamitrou 93 July 2012

7. RESULTS

Figure 7.6: Monitoring the Local Sensors Data

Maria Karamitrou 94 July 2012

7.6 Usability

fine tuning on site was highly facilitated by the use of KMonitor, in contrast to previous

years, where such a monitoring application was missing.

An advantage of KMonitor is that multiple users can run their own instance of KMoni-

tor to visualize and inspect the same or different robots in the field simultaneously without

any conflict or additional overhead. The underlying KNetwork mechanisms ensure that

topic subscriptions and unsubscriptions are done properly, so that there are no dupli-

cates, if several users choose to monitor the same data, and no useless network traffic,

when all users have unsubscribed from a certain topic. This feature allows all members

of Kouretes to use KMonitor on their laptops simultaneously to monitor the data most

related to their software modules and area of responsibility.

Maria Karamitrou 95 July 2012

7. RESULTS

Maria Karamitrou 96 July 2012

Chapter 8

Conclusion and Future Work

Conclusively, debugging robotic software can be challenging because of the continuous

interaction between the agent and the environment and the real-time aspect of this in-

teraction. KMonitor, our integrated real-time visualization and monitoring application,

facilitates the debugging of the entire robot code and allows the developer to not only

assess each module individually, so as to test the performance of isolated functionality,

but also jointly as components of a larger integrated software system, so as to test its

overall performance. Furthermore it integrates the required functionality and views un-

der a single intuitive graphical user interface, facilitating the user in switching quickly

between different views in order to monitor different aspects of the robot software.

8.1 Future Work

The current Kouretes robotic software provides each robot with XML-based configura-

tion data concerning required parameters for each module of the existing code. The

modification of the aforementioned configuration is required frequently to make the code

modules fit the different game environments and improve their performance. Currently,

the configuration loaded at boot time is preserved unchanged until the next restart of

the NAOqi middle-ware. Any change in configuration requires no compilation, however

it still requires modification and upload of XML-files and a time-consuming restart of

NAOqi. With the appropriate configuration handling process from the robot software, a

new functionality can be implemented and integrated to KMonitor to allow for remote

Maria Karamitrou 97 July 2012

8. CONCLUSION AND FUTURE WORK

real-time visualization and modification of the robot configuration without the need of

stopping the code execution or restarting NAOqi.

The sixth tab (KCC Beta) of KMonitor represents one example of how other graphical

tool can be integrated into KMonitor. In addition to KCC, there are two more useful

tools developed within our team, which can integrated into KMonitor in the future: the

Kouretes Motion Editor (KME) [21], an interactive graphical tool for designing, testing,

and executing complex motion patterns, and Kouretes Statechart Editor (KSE) [10],

a CASE (Computer-Aided Software Engineering) tool for model-based development of

robot team behaviors using statecharts.

Currently, KMonitor supports only online monitoring. However, KMonitor could be

extended to support also offline monitoring, provided that full data and video logs can be

recorded from the robots with an appropriate synchronization mechanism. Additionally,

some kind of log replay functionality must be added to KMonitor to allow for easy

browsing of recorded log at variable speeds.

Maria Karamitrou 98 July 2012

References

[1] Kitano, H., Asada, M., Kuniyoshi, Y., Noda, I., Osawa, E., Matsubara, H.:

Robocup: A challenge problem for AI. AI Magazine 18(1) (1997) 73–85 5

[2] RoboCup SPL Technical Committee: Standard Platform League rule book (2012)

Only available online: www.tzi.de/spl/pub/Website/Downloads/Rules2012.pdf.

6

[3] Gouaillier, D., Blazevic, P.: A mechatronic platform, the Aldebaran Robotics hu-

manoid robot. In: Proceedings of the 32nd IEEE Annual Conference on Industrial

Electronics (IECON). (2006) 4049–4053 6

[4] Aldebaran Robotics: Nao documentation (2011) Only available online: www.

aldebaran-robotics.com/documentation. 7

[5] Paraschos, A.: Monas: A flexible software architecture for robotic agents. Diploma

thesis, Technical University of Crete, Greece (2010) 11

[6] Orfanoudakis, E.: Reliable object recognition for the RoboCup domain. Diploma

thesis, Technical University of Crete, Greece (2011) 11

[7] Chatzilaris, E.: Visual-feature-based self-localization for robotic soccer. Diploma

thesis, Technical University of Crete, Greece (2009) 12

[8] Kyranou, I.: Path planning for nao robots using an egocentric polar occupancy map.

Diploma thesis, Technical University of Crete, Greece (2012) 12

[9] Tzanetatou, D.: Interleaving of motion skills for humanoid robots. Diploma thesis,

Technical University of Crete, Greece (2012) 12

Maria Karamitrou 99 July 2012

www.tzi.de/spl/pub/Website/Downloads/Rules2012.pdf
www.aldebaran-robotics.com/documentation
www.aldebaran-robotics.com/documentation

REFERENCES

[10] Topalidou-Kyniazopoulou, A.: A case (computer-aided software engineering) tool

for robot-team behavior-control development. Diploma thesis, Technical University

of Crete, Greece (2012) 12, 98

[11] Vazaios, E.: Narukom: A distributed, cross-platform, transparent communication

framework for robotic teams. Diploma thesis, Technical University of Crete, Greece

(2010) 13

[12] Röfer, T., Laue, T., Müller, J., Fabisch, A., Feldpausch, F., Gillmann, K., Graf,

C., de Haas, T.J., Härtl, A., Humann, A., Honsel, D., Kastner, P., Kastner, T.,

Könemann, C., Markowsky, B., Riemann, O.J.L., Wenk, F.: B-Human team report

and code release 2011 (2011) Only available online: www.b-human.de/downloads/

bhuman11_coderelease.pdf. 25

[13] Tasse, S., Kerner, S., Urbann, O., Hofmann, M., Schwarz, I.: Nao Devils Dort-

mund team report 2011 (2011) Only available online: www.irf.tu-dortmund.de/

nao-devils/download/2011/TeamReport-2011-NaoDevilsDortmund.pdf. 27

[14] Barrett, S., Genter, K., Hester, T., Khandelwal, P., Quinlan, M., Stone, P.: Austin

Villa 2011 technical report UT-AI-TR-12-01. Technical report, The University

of Texas at Austin (2011) Only available online: www.cs.utexas.edu/~pstone/

Papers/bib2html-links/UTAITR1201-sbarrett.pdf. 27

[15] Michel, O.: Webots: Professional mobile robot simulation. Journal of Advanced

Robotics Systems 1(1) (2004) 39–42 27

[16] Tilgner, R., Reinhardt, T., Borkmann, D., Kalbitz, T., Seering, S., Fritzsche, R.,

Vitz, C., Unger, S., Eckermann, S., Müller, H., Bellersen, M., Engel, M., Wünsch,

M.: Nao-Team HTWK team research report 2011 (2011) Only available online:

http://robocup.imn.htwk-leipzig.de/documents/report2011.pdf. 28

[17] Visser, A., ten Velthuis, D., Verschoor, C., Wiggers, A., Bodewes, B., Cabot, M.,

van Egmond, E., Fodor, E., Gieske, S., Iepsma, R., Jetten, S., Jozefzoon, O., Keune,

A., Koster, E., van der Molen, H., Nugteren, S., van Rossum, T., Rozenboom, R.,

van Zanten, J., van Bellen, M., Laan, S.: Dutch Nao Team technical report 2011

(2011) Only available online: www.dutchnaoteam.nl/wp-content/uploads/2011/

10/TechnicalReport.pdf. 29

Maria Karamitrou 100 July 2012

www.b-human.de/downloads/bhuman11_coderelease.pdf
www.b-human.de/downloads/bhuman11_coderelease.pdf
www.irf.tu-dortmund.de/nao-devils/download/2011/TeamReport-2011-NaoDevilsDortmund.pdf
www.irf.tu-dortmund.de/nao-devils/download/2011/TeamReport-2011-NaoDevilsDortmund.pdf
www.cs.utexas.edu/~pstone/Papers/bib2html-links/UTAITR1201-sbarrett.pdf
www.cs.utexas.edu/~pstone/Papers/bib2html-links/UTAITR1201-sbarrett.pdf
http://robocup.imn.htwk-leipzig.de/documents/report2011.pdf
www.dutchnaoteam.nl/wp-content/uploads/2011/10/TechnicalReport.pdf
www.dutchnaoteam.nl/wp-content/uploads/2011/10/TechnicalReport.pdf

REFERENCES

[18] UPennalizers: The University of Pennsylvania Robocup 2011 SPL Nao soccer team

(2011) Only available online: www.seas.upenn.edu/~robocup/files/upenn_team_

desc_spl_2011.pdf. 30

[19] Burkhard, H.D., Holzhauer, F., Krause, T., Mellmann, H., Ritter, C.N., Welter,

O., Xu, Y.: NAO-Team Humboldt 2010 the RoboCup NAO team of Humboldt-

Universität zu Berlin (2010) Only available online: www.naoteamhumboldt.de/

wp-content/uploads/2010/02/NaoTH10Description.pdf. 31

[20] Panakos, A.: Efficient color recognition under varying illumination conditions for

robotic soccer. Diploma thesis, Technical University of Crete, Greece (2009) 42

[21] Pierris, G.: Soccer skills for humanoid robots. Diploma thesis, Technical University

of Crete, Greece (2009) 98

Maria Karamitrou 101 July 2012

www.seas.upenn.edu/~robocup/files/upenn_team_desc_spl_2011.pdf
www.seas.upenn.edu/~robocup/files/upenn_team_desc_spl_2011.pdf
www.naoteamhumboldt.de/wp-content/uploads/2010/02/NaoTH10Description.pdf
www.naoteamhumboldt.de/wp-content/uploads/2010/02/NaoTH10Description.pdf

	1 Introduction
	1.1 Thesis Contribution
	1.2 Thesis Overview

	2 Background
	2.1 RoboCup
	2.1.1 Standard Platform League
	2.1.2 Aldebaran Nao Humanoid Robot

	2.2 RoboCup SPL Team Kouretes
	2.2.1 Monas Software Architecture
	2.2.2 Narukom Communication Framework

	2.3 Qt – A Cross-Platform Application Framework
	2.3.1 The Qt Signal/Slot Mechanism
	2.3.2 The Qt Designer

	3 Problem Statement
	3.1 General Purpose Software Debugging
	3.2 Autonomous Robot Software Debugging
	3.3 Kouretes Software Debugging Requirements

	4 Related Work
	4.1 B-Human
	4.2 Nao Devils Dortmund
	4.3 TT-UT Austin Villa
	4.4 Nao-Team HTWK
	4.5 Dutch Nao Team
	4.6 UPennalizers
	4.7 NAO-Team Humboldt

	5 Our Approach
	5.1 KMonitor Architecture
	5.1.1 The Message Allocator Module
	5.1.2 The Graphical User Interface
	5.1.3 The View-Controller Module

	5.2 The Global World State
	5.2.1 Visualization of the estimated robot pose
	5.2.2 Visualization of the estimated ball position

	5.3 The Local World State
	5.3.1 Visualization of the ball observation
	5.3.2 Visualization of the landmark observations
	5.3.3 Visualization of the localization particles
	5.3.4 Visualization of the robot view field projection
	5.3.5 Visualization of the robot trace
	5.3.6 Visualization of the walk commands

	5.4 The Local Polar Map
	5.4.1 Visualization of the occupancy map
	5.4.2 Visualization of the target coordinates
	5.4.3 Visualization of the obstacle-free path

	5.5 The Local Robot View
	5.5.1 Visualization of the raw camera image
	5.5.2 Visualization of the color-segmented camera image

	5.6 The Local Sensors Data

	6 Implementation
	6.1 MessageAllocator Class Reference
	6.2 Global World State Tab's User Interface
	6.2.1 GlobalRemoteHosts Class Reference
	6.2.2 KFieldScene Class Reference
	6.2.3 GraphicalRobot Class Reference

	6.3 Global World State Tab's View-Controller
	6.4 Local World State Tab's User Interface
	6.4.1 LocalRemoteHosts Class Reference
	6.4.2 LWElementTreeWidget Class Reference
	6.4.3 LocalRobot Class Reference

	6.5 Local World State Tab's View-Controller
	6.6 Local Polar Map Tab's User Interface
	6.6.1 LMElementTreeWidget Class Reference

	6.7 Local Polar Map Tab's View-Controller
	6.8 Local Robot View Tab's User Interface
	6.8.1 LVElementList Class Reference
	6.8.2 RobotView Class Reference

	6.9 Local Robot View Tab's View-Controller
	6.10 Local Sensors Data Tab's User Interface
	6.11 Local Sensors Data Tab's View-Controller

	7 Results
	7.1 Monitoring the Global World State
	7.2 Monitoring the Local World State
	7.3 Monitoring the Local Polar Map
	7.4 Monitoring the Local Robot View
	7.5 Monitoring the Local Sensors Data
	7.6 Usability

	8 Conclusion and Future Work
	8.1 Future Work

	References

