
TECHNICAL UNIVERSITY OF CRETE
ELECTRONIC AND COMPUTER ENGINEERING DEPARTMENT

TELECOMMUNICATIONS DIVISION

Factor Graphs: Theory and Applications

by

Panagiotis Alevizos

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DIPLOMA DEGREE OF

ELECTRONIC AND COMPUTER ENGINEERING

September 2012

THESIS COMMITTEE

Assistant Professor Aggelos Bletsas, Thesis Supervisor
Assistant Professor George N. Karystinos

Professor Athanasios P. Liavas

Abstract

Factor graphs (FGs) represent graphically the factorization of a global function into

a product of local sub-functions. The global function is usually a multi-variable prob-

ability density function (pdf), where the calculation of a marginal pdf is usually in-

tractable. The sum-product algorithm (SPA) is applied on the FG through message-

passing, i.e. exchange of functions, between the FG nodes in a distributed way; the

output is a marginal pdf with respect to a variable of interest. Factor graph theory

has several applications in many interdisciplinary fields, such as error correction cod-

ing theory, detection and estimation, wireless networking, artificial intelligence and

many others.

This thesis provides the basic theoretical background in a tutorial way, from first

principles. Furthermore, specific FG applications found in the literature are pre-

sented. Specifically, coding problems (LDPC, convolutional and parallel concatenated

Turbo codes), Bayesian estimation (in the context of network localization) and wire-

less multi-hop networking (in the context of time scheduling) are analyzed within the

FG framework. In all cases, the respective graph, the associated SPA, the message-

passing scheduling and the final output are thoroughly presented.

The power of FGs as a distributed inference tool is vividly demonstrated.

Acknowledgements

Thanks to my parents for the psychological support and for their unconditional love.

I would like to thank a lot my thesis supervisor, Aggelos Bletsas, for his patience, guidance,

ideas, support, inducement in research and especially for his contribution in my knowledge.

Many thanks to Professor Athanasios Liavas who provided his experience and knowledge

whenever needed and to Assistant Professor George Karystinos who provided me the mo-

tivation to study about communication theory.

Special thanks to my girlfriend for her patience, her support, her love and especially for

the most beautiful moments in my life. I apologize whenever I was steep and nervous.

Finally, I would like to thank a lot my friends for the adorable moments I had with them

and for their support.

4

Table of Contents

Table of Contents . 4

List of Figures . 6

List of Abbreviations . 11

Preface . 12

1 Introduction . 13

1.1 Motivation . 13

1.2 Related Work . 13

1.3 Thesis Outline . 14

2 Factor Graph Theory: Basics . 15

2.1 Graphs and factors . 15

2.1.1 Introduction to graphs . 15

2.1.2 Introduction to factors . 20

2.2 Factor graphs . 23

2.2.1 Introduction to factor graphs . 23

2.2.2 Marginals and distributive law . 25

2.2.3 Sum-product algorithm . 31

2.2.4 Normal factor graphs . 40

2.2.5 Sum-product algorithm for normal factor graphs 43

2.2.6 Variations of sum-product algorithm 45

2.2.7 Cyclic factorizations . 48

3 Factor Graph Applications: Coding Theory 49

3.1 Linear block codes . 50

3.2 Low density parity check (LDPC) codes 55

Table of Contents 5

3.2.1 Graph representation of LDPC codes 56

3.2.2 Encoding of LDPC codes . 58

3.2.3 Decoding of LDPC codes . 59

3.2.4 Remarks on LDPC codes . 71

3.2.5 Performance example of LDPC codes 72

3.3 Convolutional codes . 73

3.3.1 Encoding of convolutional codes 74

3.3.2 Decoding of convolutional codes 79

3.3.3 Performance example of convolutional codes 87

3.4 Turbo codes . 88

3.4.1 Encoding of PCCC Turbo codes 90

3.4.2 Decoding of PCCC Turbo codes 91

3.4.3 Performance example of PCCC Turbo codes 95

4 Factor Graph Applications: Cooperative Localization 99

4.1 Introduction in localization . 99

4.2 Bayesian cooperative localization . 102

4.2.1 Sequential Estimation . 102

4.2.2 System model . 105

4.2.3 Sum product algorithm over wireless networks (SPAWN) 107

4.2.4 Experimental results . 118

5 Factor Graph Applications: Time Scheduling in Multi-hop Networks 121

5.1 Introduction . 121

5.2 System model . 122

5.3 Sum-product algorithm for packet radio networks 124

5.4 Performance example of time scheduling 130

6 Conclusion . 131

Bibliography . 133

6

List of Figures

2.1 A cyclic graph with five vertices and five edges. The degree of vertex v1 is

1, the degree of vertices v3, v4, v5 is 2 and the degree of vertex v2 is 3. . . . 17

2.2 A graph that is tree with five vertices and four edges. The degree of vertices

v3 and v4 is 1, while the degree of vertices v1, v2 and v5 is 2. 17

2.3 A bipartite graph with five vertices and six edges. The reader easily can note

that this family of graphs has even-length cycle paths, since the traversal

from one side to other and then the return back, consist of even number of

edges on graph. 19

2.4 We present a cyclic graph with girth 3 and two connected components.

The edges which are bridges are (v2, v3), (v3, v4), (v4, v5) and (v6, v7). The

maximum and minimum degree of the graph is three and one respectively. 20

2.5 A disconnected, acyclic factor graph corresponding to global function of

example 2.4. Notice that this graph satisfies the preconditions of a bipartite

graph, since it has no odd-length cycles. The minimum cycle length is equal

to 2, since it does not contains cycles (a graph with maximum cycle length

equal to 2 is not cyclic, since a length 2 cycle consists of a single edge, i.e.

is a trivial cycle). 24

2.6 A cyclic factor graph corresponding to the global function of example 2.5. 25

2.7 A factor graph which corresponds to the function of the example 2.6. . . . 25

2.8 A factor graph which corresponds to the function of the example 2.7. This

factor graph does not contain cycles therefore it has tree structure. 29

2.9 The message passing schedule of the tree expression of Eq. 2.10 30

2.10 The product of the incoming incident messages from child nodes of variable

node X2 equals to the marginal function of variable X2. 31

List of Figures 7

2.11 Update rule of the sum-product algorithm for a variable node. The variable

node has J neighboring nodes. The external message for factor node fj is

equal with the product of the incoming messages incident to variable node

Xi. 33

2.12 Update rule of the sum-product algorithm for a factor node. The factor node

has I neighboring nodes. The external (outgoing) message of the factor node

fj corresponds to the variable node Xi, therefore the summation is over not

variable Xi. 34

2.13 The marginal function for a variable node Xi with N adjacent factor nodes.

The computation of the marginal with respect to variable Xi is the product

of all incoming messages from N factor nodes to variable node Xi. 34

2.14 Factor graph of the global function of example 2.8. This factor graph does

not contain cycles. The leaf nodes of the graph are the variable nodes X1, X5

and the factor node f4. This factor graph is equivalent with the factor graph

of figure 2.8. 37

2.15 Sum-product algorithm, message schedule. 39

2.16 Convert a degree 1 variable node into the corresponding normal factor graph

edge variable. 41

2.17 Convert a degree 2 variable node into the corresponding normal factor graph

edge variable. 41

2.18 Convert a degree N (> 2) variable node into the corresponding normal factor

graph equality factor node. 41

2.19 The normal factor graph of the factorization of function of the example 2.9. 42

2.20 The factor graph of example 2.10. 43

2.21 The normal factor graph of the example 2.10. 43

2.22 The message µfj−→Xi
(xi) does not change along the edge Xi. 44

3.1 Left: check node - Right: variable node. 57

3.2 The factor graph corresponding to the (8, 4) code with the parity check

matrix of example 3.3. 59

3.3 The augmented factor graph of the LDPC of the example 3.2. This graph

takes into account the effect of the channel. Notice that the variable nodes

si, i = 1, ..., n, take the values {+1,−1}. 63

List of Figures 8

3.4 The messages of this step correspond to posterior probability of symbol si

transmitted given the channel observation yi, i = 1, ..., N , and they are sent

from factor node pi to variable node si. In sequel, they are propagated to

every check node fj which neighboring to variable node si. As we can see

the messages can be represented as vectors for two values, +1 or −1. . . . 66

3.5 Messages from check nodes to variable nodes according to step 2. 66

3.6 Messages from variable nodes to check nodes according to step 3. 66

3.7 Marginal with respect to variable si. 67

3.8 Performance of (504, 252) LDPC regular code and uncoded system in terms

of bit error rate (BER) as a function of SNRdb. Notice the huge gap of BER

curve between them, showing the significance of error correcting codes. . . 72

3.9 An example of a rate 1/2 linear convolutional encoder. At each time i, the

input of the encoder is an information bit bi, whereas the output is two

coded-bits, denoted by c
(1)
i and c

(2)
i . The memory length of the shift register

is L = 2. 73

3.10 The FSM corresponding to the shift register of the example 3.5. The red

cycles stand for the 2L states (left bit - least significant bit, right bit - most

significant bit). The arrows denote the transition from one state to another,

based on the input, as well as the previous state. The numbers beside the

arrows correspond to the current input (left single binary digit) and the

corresponding outputs (right couple of binary digits). 76

3.11 The trellis diagram corresponding to the terminated code of the example 3.6.

The transitions between previous and current states following according to

FSM of figure 3.10. Every time i corresponds to an information bit bi.

The first 4 time instances associated with the information word bits, while

the two additional time instances associated with terminated information

bits (e.g. example 3.6). Notice that the utilization of the terminated code

requires the first and the final states be equal. 80

3.12 The factor graph of the terminated convolutional code of the example 3.6. 82

3.13 The factor graph of the unterminated convolutional code of the example 3.6. 83

3.14 The performance of the unterminated convolutional code of example 3.5 in

terms of BER vs SNRdb. 88

3.15 A rate r = 1/3 PCCC Turbo encoder, consisting of 2 identical parallel

concatenated rate-1/2 convolutional encoders. 91

List of Figures 9

3.16 A PCCC Turbo decoder consisting of 2 unterminated convolutional decoders

and an interleaver among them. 96

3.17 The message passing schedule during SPA algorithm, for Turbo decoding. . 97

3.18 The performance of a rate 1/3 PCCC Turbo code in terms of BER vs SNRdb. 98

4.1 Agent node 4 can communicate with anchors 1 and 2, while agent node 5 can

communicate with anchors 2 and 3. If we apply trilateration technique, the

agents 4 and 5 have uncertainty regarding their location. Therefore agents

4 and 5 need to cooperate, in order to determine their position. 101

4.2 In this figure is illustrated the factorization of example 4.2. P.O.(t) stands for

the prediction operation at time t, similarly C.O.(t) denotes the correction

operation at time t. L(t) denotes the leaf node messages at time t. 105

4.3 This figure illustrates the FG corresponding to the expression 4.22, that is a

network with N nodes from time 0 until time T . The message flow is from

past to present, hence the direction of arrows is downward. 111

4.4 The factor graph of the factorization of factor p(z
(t)
rel | x(t)) for the network

of example 4.1. The I-red arrows correspond to internode messages, while

the E-green arrows correspond to intranode messages at equality vertices.

Finally the O-black arrows correspond to incoming and outgoing messages

of factor p(z
(t)
rel | x(t)). 112

4.5 An example of a five-node network where the true locations of the 3 anchor

nodes are x1 = [30 40]>, x2 = [25 26]>, x3 = [25 10]>, respectively, while

the true locations of the 2 agent nodes are x4 = [30 31]>, x5 = [30 17]>,

respectively. We apply two iterations of correction operation of SPAWN

algorithm until the convergence of the agent’s beliefs. 117

4.6 Test 2D topology and the corresponding node connectivity: three anchors

are placed at [0 0]> ; [20 35]> ; [50 50]> and two agents at [15 20]> ;

[45 20]> , respectively. Notice that each agent can communicate with only

two anchors and another agent. 119

4.7 Mean squared error (MSE) as a function of ranging noise variance σ2
r for 2D

localization. 119

4.8 Total size of exchanged messages for small and large ranging error noise

variance for SPAWN algorithm. 120

4.9 Cramer-Rao lower bound (CRB) for the given topology with the given con-

nectivity. The computation of CRB follows according to [13]. 120

List of Figures 10

5.1 A simple PRN with 5 stations. Station 1 is one-hop-apart from station 2,

while station 3 is two-hop-apart from station 1. Hence station 1, 2 and 3

cannot transmit simultaneously. With similar way we can examine which

stations of the PRN cannot transmit simultaneously. 125

5.2 The FG corresponding to the PRN of the figure 5.1. The FG taking into

account all the constraints of the PRN. 129

5.3 A near-optimal schedule after some iterations of SPA for PRNs. 130

11

List of Abbreviations

GLD generalized distributed law

LDPC low density parity check

FG factor graph

MAP maximum a-posteriori

pdf probability density function

pmf probability mass function

SPA sum-product algorithm

12

Preface

The introduction of new terminology will be emphasized when it appears for first time.

Definitions, theorems, lemmas corollaries and examples share the same index within each

chapter. The symbol � stands for the end of proof of theorem, or lemma, or corollary.

The symbol� denotes the end of an example. The symbol H denotes the end of a definition.

x a variable

x a vector

A a matrix

A> transpose of A

In n× n identity matrix

|C| the cardinality of a set C
||x||p the p norm of a vector x

f(x) ∝ g(x) the function g(x) = kf(x) for some some scalar k

R the set of real numbers

N the set of natural numbers

B the set of binary numbers

Fq the q−ary field

δ(·) delta Dirac function or delta Kronecker function. Every time

it is used, it will be clarified which of two function is

arg max
x
{f(x)} the argument that maximizes f(x)

The vector xk:l follows a MATLAB-like notation that denotes the sub-vector of x that

consist of the k-th up to l-th elements of it.

Chapter 1

Introduction

1.1 Motivation

The sum-product algorithm (also known as belief propagation algorithm) is a powerful tool

of graphical models with several extensions in many communication fields such as signal

processing, coding theory, artificial intelligence and many others. Factor graphs model

several problems in communication field and provide a unified manner to resolve them.

1.2 Related Work

The emanation of factor graphs originates from coding theory and more specifically from

Robert Gallagher in 1960 [1] who introduced low density parity check (LDPC) codes and

expressed them via factor graphs in his PhD thesis. Tanner in [2] explicitly introduced

graphs to describe LDPC codes, presented the fundamentals of iterative decoding on graphs

and also defined block and convolutional error-correcting codes in terms of bipartite graphs,

which consist of codeword bit nodes and parity check constraints. Finally factor graphs pro-

vide the way of representing graphically the factorization of a function; such factorization

will help us explore powerful algorithms for digital communications and signal processing

in the sequel of this thesis.

The literature on graphical models and their applications is vast. Kschischang et al.

in [3] formalized factor graph, showing that belief propagation and many algorithms used

in digital communications and signal processing are all representations of a more gen-

eral message passing algorithm, the sum-product algorithm. These graphs were used for

code description, construction and decoding. Wiberg et al. in [4], introduced “hidden”

state variables and also proposed applications on coding. Markov random fields [5] and

Bayesian networks have closed connections with factor graphs and graphical representation

[6]. These graphical models, like factor graphs, are usually factorization of pmf (probability

mass functions) of several random variables. Pearl’s “belief propagation” (BP) algorithm

[7], operates in a factor graph expressing the same factorization as the above, which can

1.3. Thesis Outline 14

be viewed as an instance of sum product algorithm. Forney in [8] shows how to create a

“normal” realization of a factor graph, demonstrating how some classes of codes can be

represented as realizations on such graphs. A set of applications for the FG framework

is discussed in [9]. Finally Yedidia et al. in [10] expresses sum-product algorithm (SPA)

in terms of free-energy functions of statistical physics, showing that inference problems in

FGs can be represented as a constraint optimization problems of such functions.

1.3 Thesis Outline

The thesis is organized as follows :

• Chapter 2 introduces the notion of factor graphs, describing how variables of a global

function are grouped together locally, constructing a graph. Such graphs have some

useful properties, which will be examined therein.

• Chapter 3 introduces linear block, LDPC, convolutional and Turbo codes from a

factor graph perspective, demonstrating how decoding algorithms can be performed

via sum-product algorithm on factor graphs.

• Chapter 4 describes localization as Bayesian estimation, and how factor graphs are

connected with it. It will be shown that after expressing the topology of the network

in a graph, it can be derived a factor graph based algorithm, in order to localize all

nodes of the network efficiently.

• Chapter 5 considers the application of FGs in the problem of time scheduling in

multi-hop wireless networks. Given a packet radio network (PRN) we can express it

in terms of FGs, and applying SPA we derive a consistent as well as near-optimal (in

terms of channel utilization) time scheduling.

• The final Chapter 6 consist of the conclusions about factor graphs and their applica-

tions.

Chapter 2

Factor Graph Theory: Basics

2.1 Graphs and factors

The first subsection begins with some preliminaries about graph theory, followed by an

introduction of (global) functions of many variables which can be factorized as a product

of smaller functions with domain, a subset of the global function’s domain. The first

part consists of auxiliary material providing definitions about graph theory which is useful

in many fields, including signal processing, artificial intelligence, statistical inference etc.

The second part offers some basic definitions about functions of many variables with finite

domain, their factorization in smaller functions and basic definitions about marginalization

with respect to a single or more variables.

2.1.1 Introduction to graphs

In this section we will provide some basic definitions about graphs that will be useful in

the rest of this thesis. These definitions can be also found in [24] and [26].

Definition 2.1 (Graph [24]). A graph consists of a pair of sets G(V,E) such that E ⊆
V ×V , i.e. the elements in E are two-element subsets of V ; V represents the set of vertices

of the graph, while E denotes the set of edges. H

Definition 2.2 (Adjacency [24]). Given an edge e ∈ E, there are two vertices in V ,

namely v1, v2, such that e = (v1, v2). We say that v1 and v2 are adjacent and the set of

vertices adjacent to vertex v is denoted NG(v). Given a vertex v ∈ V , there are two edges

e1, e2 such that e1 = (v, v1) and e2 = (v, v2) for some v1, v2 ∈ V . We say that e1 and e2

are adjacent. The set of edges adjacent to edge e is denoted NG(e). H

Definition 2.3 (Subgraphs [26]). A graphH(VH , EH) is a subgraph of a graphG(VG, EG),

denoted by H ⊆ G, if VH ⊆ VG and EH ⊆ EG. A subgraph H ⊆ G spans G (and H is a

spanning subgraph of G), if every vertex of G is in H, i.e., VH = VG. H

2.1. Graphs and factors 16

Definition 2.4 (Degree [24]). The degree of a vertex v is the number of its adjacent

vertices and denoted dG(v), i.e. dG(v) = |NG(v)|. H

Definition 2.5 (Minimum degree, Maximum degree [26]). The minimum and the

maximum degree of a graph G(E, V) are defined as:

δ(G) = min
v∈G
{dG(v)}, ∆(G) = max

v∈G
{dG(v)}.

H

Definition 2.6 (Isomorphism [26]). Two graphs G and H are isomorphic, denoted by

G ∼= H, if there exists a mapping α : VG 7→ VH such that

(v1, v2) ∈ EG ⇐⇒ (α(v1), α(v2)) ∈ EH

for all v1, v2 ∈ VG. H

Definition 2.7 (Incidence [24]). Given an edge e ∈ E, there are two vertices v1, v2 such

that e = (v1, v2). We say that v1 and v2 are incident with e and at the same time e is

said to be incident with v1 and v2. The set of vertices incident with an edge e is denoted

IG(e). Similarly, the set of edges incident with a vertex v is denoted IG(v). Obviously,

v ∈ IG(e)⇔ e ∈ IG(v) H

Definition 2.8 (Walk [26]). Let ei = (vi, vi+1) ∈ G(V,E) be edges of a graph G for

i = 1, ..., N . The sequence {e1, e2, ..., eN} is a walk of length N from v1 to vN+1 if ei is

adjacent to ei+1 for all i = 1, ..., N . H

We write more informally,

W : v1 → v2 → ...→ vN+1, or W : v1
N−→ vN+1.

We write v
?−→ u to say that there is a walk of some length from v to u. We use this

notation because sometimes we don’t care about the edges ei of the walk W . The length

of the walk is denoted by |W |.

Definition 2.9 (Closed, Path, Cycle [26]). Let W = {e1, e2, ..., eN} with ei = (vi, vi+1)

be a walk.

We say W is closed if v1 = vN+1.

We say W is a path, if vi 6= vj for all i 6= j.

2.1. Graphs and factors 17

We say W is cycle, if it is closed, and vi 6= vj for all i 6= j except v1 = vN+1. The length

of the cycle is N + 1. H

An example of cyclic graph is depicted in figure 2.1. The degree of vertex v1 is 1, the

degree of vertices v3, v4, v5 is 2 and the degree of vertex v2 is 3. The cycle (v2 → v3 →
v4→ v5→ v2) has length 4, since the number of edges of the cycle is equal to 4.

v3

v2

v1

v4

v
5

Figure 2.1: A cyclic graph with five vertices and five edges. The degree of vertex v1 is 1,
the degree of vertices v3, v4, v5 is 2 and the degree of vertex v2 is 3.

v3

v2

v1

v4

v
5

Figure 2.2: A graph that is tree with five vertices and four edges. The degree of vertices
v3 and v4 is 1, while the degree of vertices v1, v2 and v5 is 2.

Definition 2.10 (Connected graph [26]). Suppose there exists a walk from v to w in

2.1. Graphs and factors 18

G, then the following quantity

dG(v, w) = min {k | v k−→ w}

is called the distance between v and w. If there are no walks v
?−→ w, we write dG(v, w) =∞.

A graph G is connected, if dG(v, w) <∞ for all v, w ∈ G; otherwise, it is disconnected. H

Figure 2.2 illustrates an acyclic graph. The distance between vertices v3 and v1 is 2,

while the distance from vertex v3 to v4 is equal to 4.

Definition 2.11 (Connected components [26]). The maximal connected subgraphs of

G are its connected components, denoted as

c(G) = the number of connected components of G.

If c(G) = 1, then G is connected. H

In figures 2.1, 2.2, 2.3 there is only one connected component, the whole graph, therefore

c(G) = 1. In figure 2.4 there are 2 connected components, hence c(G) = 2.

Definition 2.12 (Girth). The minimum cycle length of a graph is called the girth of the

graph, provided that there is a non-trivial cycle (cycle-length ≥ 3). If the graph has no

cycles its girth is equal to 2. H

For example in figure 2.1 the girth of this graph is 4 since the smallest cycle (and the

only one) has length 4.

Definition 2.13 (Bipartite graph). A bipartite graph is a graph whose vertices can be

divided into two disjoint sets U and V such that every edge connects a vertex in U to a

vertex in V ; that is, U and V are independent sets. Equivalently, a bipartite graph is a

graph that does not contain any odd-length cycles. H

Corollary 2.14. The minimum girth of a cyclic bipartite graph is 4.

Proof. Since bipartite graphs have even-length cycles and the cycles of length 2 are trivial,

i.e. they are not considered as cycles since they traverse the same edge, the minimum

even number after the number 2 is the number 4. Therefore, cyclic bipartite graphs have

minimum girth equal to 4.

2.1. Graphs and factors 19

v3

v2

v1

v4

v5

U

V

Figure 2.3: A bipartite graph with five vertices and six edges. The reader easily can note
that this family of graphs has even-length cycle paths, since the traversal from one side to
other and then the return back, consist of even number of edges on graph.

An example of a bipartite graph is given in figure 2.3. It can be seen that a bipartite

graph contains only even number of cycles since one node must pass across the other side

and then an edge must return back.

Definition 2.15 (Bridge [26]). An edge e ∈ G is a bridge of the graph G, if G − e has

more connected components than G, i.e. if c(G− e) > c(G). In particular, an edge e in a

connected graph G is called bridge if and only if G− e is disconnected. We note that, for

each edge e ∈ G, e = (v, u) is a bridge ⇐⇒ u, v belong at different connected components

of G− e. H

In figure 2.4 we show a cyclic graph with girth 3 and two connected components (at-

tention this graph is not a bipartite graph, since it does not satisfies the preconditions of a

bipartite graph). The edges which are bridges are the edges (v2, v3), (v3, v4), (v4, v5) and

(v6, v7), since if we delete anyone of them, then the number of connected components of

the resulting graph will be increased. The maximum and minimum degree of the graph is

three and one, respectively.

Definition 2.16 (Tree [26]). A graph is called acyclic, if it has no cycles. An acyclic

graph is also called a forest. A tree is a connected acyclic graph. H

Corollary 2.17 ([26]). A connected graph is a tree if and only if all its edges are bridges.

2.1. Graphs and factors 20

v
3

v2

v1 v4
v
7
v

v
5

v
6
v

v
8
v

Figure 2.4: We present a cyclic graph with girth 3 and two connected components. The
edges which are bridges are (v2, v3), (v3, v4), (v4, v5) and (v6, v7). The maximum and min-
imum degree of the graph is three and one respectively.

2.1.2 Introduction to factors

Through this thesis we deal with functions of several variables. Let X1, X2, ..., Xn be

a set of variables, in which for each i, Xi takes values in some finite domain Xi. Let

f(X1, X2, ..., Xn) be a real valued function of these variables, i.e. a function with domain

X = X1 ×X2 × · · · × Xn, (2.1)

and range the set of real numbers R. The domain X of f is called configuration space for

the given set of variables {X1, ..., Xn}, and each element of X is a particular configuration

of the variables, i.e. an assignment of a value for each input of f . Knowing that the set of

real numbers is closed over summation, we will associate n marginal functions1 associated

with function f(X1, ..., Xn), denoted as gXi
(xi) for every i. For each xi ∈ Xi, the value

gXi
(xi) is obtained by summing the value of f(X1, ..., Xn) over all configurations of the

input variables that have Xi = xi.

Definition 2.18 (Marginal [24]). The marginal of f(X1, ..., Xn) with respect to variable

Xi is a function from Xi to R which is denoted gXi
(xi), and it is obtained by summing over

all other variables. More specifically, the marginal with respect to variable xi ∈ Xi is given

by

gXi
(xi) =

∑
x1∈X1

· · ·
∑

xi−1∈Xi−1

∑
xi+1∈Xi+1

· · ·
∑
xn∈Xn

f(X1 = x1, ..., Xi = xi, ..., Xn = xn). (2.2)

1Through this thesis we will consider the terms marginal and marginal function as equivalent terms

2.1. Graphs and factors 21

For notational convenience, instead of indicating the variables being summed over, we

indicate those variable not being summed over and we will use the following shorthand

gXi
(xi) =

∑
∼{xi}

f(x1, ..., xi, ..., xn) (2.3)

=
∑

x1,...,xi−1,xi+1,...,xn

f(x1, ..., xi, ..., xn). (2.4)

H

Following the approach of [24], let f(X1, ..., Xn) factors into a product of several local

functions, each having some subset of {X1, ..., Xn} as arguments, specifically, it is assumed

that (X1, ..., Xn) can be factorized into K factors, namely,

f(X1, ..., Xn) =
K∏
k=1

fk(Sk), (2.5)

where Sk ⊆ {X1, ..., Xn} is the subset of variables associated with the real-valued local

factor fk, i.e. its configuration space. Such factorization is not unique. Function f(·) itself

is a trivial factorization, since it consist of 1 factor. Consider the following example.

Example 2.1. Consider the function of n = 6 variables:

f(X1, X2, X3, X4, X5, X6) = f1(X2, X5)f2(X1, X3, X6)f3(X1, X4),

with S1 = {X2, X5}, S2 = {X1, X3, X6} and S3 = {X1, X4}. The marginal with respect to

variable X4 is described as follows:

gX4(x4) =
∑
x1

∑
x2

∑
x3

∑
x5

∑
x6

f(x1, x2, x3, x4, x5, x6)

=
∑

x1,x2,x3,x5,x6

f(x1, x2, x3, x4, x5, x6)

=
∑

x1,x2,x3,x5,x6

f1(x2, x5)f2(x1, x3, x6)f3(x1, x4),

2.1. Graphs and factors 22

or equivalently can be written as:

gX4(x4) =
∑
∼{x4}

f(x1, x2, x3, x4, x5, x6)

=
∑
∼{x4}

f1(x2, x5)f2(x1, x3, x6)f3(x1, x4),

As we said the factorizations are not unique, since by joining together the first two

factors (i.e. f̃1(X1, X2, X3, X5, X6) = f1(X2, X5)f2(X1, X3, X6)) we take another factoriza-

tion, that is

f(X1, X2, X3, X4, X5, X6) = f̃1(X1, X2, X3, X5, X6)f3(X1, X4),

with S̃1 = {X1, X2, X3, X5, X6} and S̃2 = S3 = {X1, X4}. �

Definition 2.19 (Acyclic factorization [24]). A factorization
∏K

k=1 fk(Sk) of a function

f(X1, ..., Xn) contains a cycle of length L ≥ 2, if there exists a list of L distinct couples

{Xi1 , Xi2}, {Xi2 , Xi3}, ..., {XiL , Xi1}, and L distinct variable subsets Sk1 , ..., SkL , such that

{Xil , Xil+1
} ⊆ Skl , for all l ∈ {1, ..., L}. We say that a factorization of a function is acyclic

if it contains no cycles of any length L ≥ 2. H

As we will see in latter sections, if a factorization has not cycles the algorithms that we

will apply will converge to the exact marginal for every variable, in contrast with the case

were a factorization has cycles, where the solution is not always exact. It is noted that in

the case of a cyclic FG, the solutions of the FG algorithms are sometimes very close to the

exact marginal. In example 2.1, both factorizations had no cycles. Below we present an

example with a cyclic factorization of a function f .

Example 2.2. Consider the function of n = 4 variables:

f(X1, X2, X3, X4) = f1(X1, X3)f2(X1, X2, X4)f3(X2, X3),

with S1 = {X1, X3}, S2 = {X1, X2, X4} and S3 = {X2, X3}. This factorization contains a

cycle of length L = 3 since {X1, X3} ⊆ S1, {X1, X2} ⊆ S2 and {X2, X3} ⊆ S3. �

Definition 2.20 (Connected factorization [24]). A factorization
∏K

k=1 fk(Sk) of a func-

tion f(X1, ..., Xn) is said to be disconnected when we can group factors
∏K

k=1 fk(Sk) =

fA(SA)fB(SB) such that SA∪SB = {X1, ..., Xn} and SA∩SB = ∅. When no such grouping

is possible, the factorization is said to be connected. H

2.2. Factor graphs 23

Example 2.3. Consider the function of n = 4 variables:

f(X1, X2, X3, X4) = f1(X1, X3)f2(X2, X4),

with S1 = {X1, X3} and S2 = {X2, X4}. This factorization is disconnected since the

intersection of the domains of local functions f1 and f2 is the empty set, i.e. S1 ∩S2 = ∅. �

2.2 Factor graphs

In this section the provided definitions refer to global factorisable functions of input vari-

ables with finite domain. When we deal with continuous variables we utilize integrals

instead of sums. Factor graphs (FGs) provide an efficient way (in terms of concurrency) to

compute the marginals of a factorisable function using the sum-product algorithm (SPA).

We will see that FGs can be simply constructed, while the SPA is more conceivable than

other mathematical algorithms.

2.2.1 Introduction to factor graphs

Factor graphs are bipartite graphs that represent the factorization of a global function to

smaller local functions, e.g. as in expression 2.5. More formally, we provide the definition

below:

Definition 2.21 (Factor graph). Let f(X1, ..., Xn) be a decomposable function with K

factors, namely

f(X1, ..., Xn) =
K∏
k=1

fk(Sk).

The factor graph G(V,E) corresponding to global function f is a bipartite graph, where

for every variable Xi, there is a variable node denoted with a solid circle, and for every

factor fj, there is a factor node denoted with a non-solid square. Furthermore, if variable

Xi is in the domain of factor fj an edge is created among them, namely eij = (Xi, fj). It is

more convenient to write Xi ∈ NG(fj) or equivalently fj ∈ NG(Xi) to denote that variable

Xi is argument of factor fj or in “graph” words, variable node Xi is adjacent with factor

node fj. Sk stands for the subset of the variables of global function f associated with local

function fk. H

2.2. Factor graphs 24

For every factorization of function f(X1, ..., Xn) there is a unique factor graph G(V,E)

and vice versa, since the mapping between factorizations and factor graphs is one-to-

one [24]. Since factor graphs are graphs, they may have cycles or they may have tree

structure. This plays significant role for the convergence of the sum-product algorithm,

the algorithm which we will encounter at the next section. Consider the following examples

for clarification.

Example 2.4. Consider the function f of the example 2.1, recall f is given by

f(X1, X2, X3, X4, X5, X6) = f1(X2, X5)f2(X1, X3, X6)f3(X1, X4).

The corresponding factor graph is illustrated in figure 2.5. �

Example 2.5. Let f be a function of 3 variables,

f(X1, X2, X3) = f1(X1, X2)f2(X1, X3)f3(X2, X3).

The corresponding (cyclic) factor graph is depicted in figure 2.6. �

f1

f2

f3

X6

X2X4

X1

X3

X5

Figure 2.5: A disconnected, acyclic factor graph corresponding to global function of exam-
ple 2.4. Notice that this graph satisfies the preconditions of a bipartite graph, since it has
no odd-length cycles. The minimum cycle length is equal to 2, since it does not contains
cycles (a graph with maximum cycle length equal to 2 is not cyclic, since a length 2 cycle
consists of a single edge, i.e. is a trivial cycle).

2.2. Factor graphs 25

f1

f3

f2
X1

X2X3

Figure 2.6: A cyclic factor graph corresponding to the global function of example 2.5.

f1

f2

f3

f4

X1

X2

X3

X4

X5

X6

Figure 2.7: A factor graph which corresponds to the function of the example 2.6.

2.2.2 Marginals and distributive law

The computation of marginals of a function f , which is factorisable into smaller factors is

fundamental. In high dimensional spaces the computation of a marginal function becomes

intractable, especially when a few variables are continuous. Generalized distributive law

(GLD) is a key tool which exploits the tree structure of the functions and computes the

marginals efficiently. One simple example is the following:

(a+ b)c = ac+ bc , (2.6)

where a, b, and c are elements of an arbitrary field F. The right-hand side of equation 2.6

involves three arithmetic operations (one addition and two multiplications), whereas the

left-hand side needs only two.

Distributive law is examined from McEllie et al. in [11], which provides a general

2.2. Factor graphs 26

framework for the marginalization of global function via graphical models. The following

example illustrates the importance of GLD.

Example 2.6. Consider the acyclic and connected factorization of a function f of 6 vari-

ables with identical (finite) domain, i.e. Xi = X , i = 1, ..., 6:

f(X1, X2, X3, X4, X5, X6) = f1(X1, X4)f2(X1, X3, X6)f3(X2, X4, X5)f4(X1).

The corresponding factor graph is given in figure 2.7. If we want to compute the marginal

with respect to variable X3, gX3(x3), following the definition 2.18, we have

gX3(x3) =
∑
∼{x3}

f1(x1, x4)f2(x1, x3, x6)f3(x2, x4, x5)f4(x1). (2.7)

The computation of the marginal above requires O(|X |6) operations since we sum over

all possible values of the variables X1, X2, X4, X5, X6, that is O(|X |5) operations for

summations and O(|X |) operations for the evaluation of the function gX3(x3) for every

possible value of variable X3, where |X | denotes the cardinality of set X . If we apply the

distributive law to the above expression, the resulting expression is

gX3(x3) =
∑
x1

(
f4(x1)

(∑
x6

f2(x1, x3, x6)

)(∑
x4

(
f1(x1, x4)

∑
x2,x5

f3(x2, x4, x5)

)))
,

which is equivalent with

gX3(x3) =
∑
∼{x3}

f4(x1)

∑
∼{x1}

f2(x1, x3, x6)

∑
∼{x1}

f1(x1, x4)f3(x2, x4, x5)

 .

The last term in parenthesis requires O(|X |3) operations since it is a sum over variables

X2, X5 and X4. Therefore, accounting the first sum (over X1), we totally take O(|X |4)

arithmetic operations. Finally we want to evaluate marginal gX3(x3) for all possible values

of X3, which are |X | values. All these require O(|X |5) operations. Similarly the computa-

tion of the marginal with respect to variable X1, gX1(x1), following the definition 2.18, is

given by

gX1(x1) =
∑
∼{x1}

f1(x1, x4)f2(x1, x3, x6)f3(x2, x4, x5)f4(x1),

2.2. Factor graphs 27

if we apply the distributive law we take

gX1(x1) = f4(x1)

(∑
x4

f1(x1, x4)

(∑
x2,x5

f3(x2, x4, x5)

))(∑
x3,x6

f2(x1, x3, x6)

)

the equivalent expression is

gX1(x1) =

∑
∼{x1}

f4(x1)f1(x1, x4)

∑
∼{x4}

f3(x2, x4, x5)

∑
∼{x1}

f2(x1, x3, x6)

which reduces the operations from O(|X |6) to O(|X |4). The conclusion is that the ad-

justment of the distributive law reduces significantly the computational complexity of

marginals. �

As an another example consider an arbitrary probability density function (pdf) in high-

dimensional space, where we wish to efficiently calculate its marginals.

When a function via its factorization has a tree structure we are able to compute exactly

a marginal with respect to any variable. Firstly, we construct a tree of the expression of the

desired marginal, e.g. expression such as Eq. 2.7. That tree has as root the variable node

corresponding to the desired marginal. An example of such a tree is depicted in figure 2.8.

Notice that every internal node (either variable or factor) of such trees has ≥ 1 child nodes

or zero child nodes if it is leaf node. Moreover, notice that every node (either variable or

factor) has only one parent node. Then a bottom-up procedure starts from the leaf nodes

(variable nodes or factor nodes) by sending their messages to their parent nodes. In sequel,

the latter send their messages to their parent nodes and so forth. When the root variable

node is reached, the procedure terminates.

When the term “message” is referred, denotes the information passing along the edge

corresponding to two neighboring nodes. Consider a node i with N − 1 child nodes and

1 parent node. The calculation of the outgoing message from node i to its parent node j

requires the incoming messages from all child nodes arrived to node i.

The calculation of the outgoing messages of variable nodes differs from the calculation

of the outgoing messages of factor nodes. Consider a variable node Xi with N adjacent

(factor) nodes and the factor node fj which is the only parent node of variable node Xi

and obviously adjacent to it (i.e. fj ∈ N (Xi)). Then the outgoing message from variable

2.2. Factor graphs 28

node Xi to its parent factor node fj, denoted by µXi−→fj(xi), and is given by

µXi−→fj(xi) =
∏

fk∈N (Xi)\{fj}

µfk−→Xi
(xi), (2.8)

i.e. it is the product of all incoming messages from all child factor nodes. Consider a

factor node fj which has M adjacent variable nodes X1, ..., XM , and a variable node Xi

which is the only parent variable node of factor node fj and obviously adjacent to it (i.e.

Xi ∈ N (fj) = {X1, ..., XM}). Then the outgoing message from factor node fj to its parent

variable node Xi, denoted by µfj−→Xi
(xi), and is given by

µfj−→Xi
(xi) =

∑
∼{xi}

fj(x1, ..., xi, ..., xM)
∏

Xl∈N (fj)\{Xi}

µXl−→fj(xl), (2.9)

i.e. it is the sum over all the configurations of the arguments of factor node fj for Xi = xi,

multiplied by the product of incoming messages from all variable child nodes.

Regarding leaf nodes, the message from a leaf variable node to its parent factor node

is the constant 1, while the message from a leaf factor node to its parent variable node is

equal to the value of its local function. This process is called single sum-product algorithm,

since it computes the marginal of a single variable. An outgoing message from any node

to its parent node can be computed only if all incoming messages from its child nodes are

available.

To avoid the confusion of this procedure we provide the following example to make it

clear.

Example 2.7. Consider the function f(X1, X2, X3, X4, X5) which is factorisable, and let

variables X1, X2, X3, X4, X5 having finite domain Xi, ∀i = 1, ..., 5. More specifically,

f(X1, X2, X3, X4, X5) = f1(X1, X3)f2(X3, X4, X5)f3(X2, X4)f4(X2),

the tree corresponding to the expression above is illustrated in figure 2.8. The marginal

with respect to variable X2 after the operation of distributive law follows:

gX2(x2) =
∑

x1,x3,x4

(
f4(x2)f1(x1, x3)f3(x2, x4)

(∑
x5

f2(x3, x4, x5)

))
. (2.10)

Edges whose messages have been sent are depicted with purple color. Every message

corresponding to a distinct step is illustrated with an arrow and an index inside a circle

2.2. Factor graphs 29

associated with that step. In figure 2.9(a), the process starts from leaf nodes f4, X1 and

X5 which send their messages to their parent nodes X2, f1 and f2, respectively. The leaf

variable nodes X1 and X4 send to their parent factor nodes (f1, f2) the constant message

1, whereas the leaf factor node f4 sends to its parent variable node X2 the message of its

factor f4(x2). Variable node X2 stays idle since the message from its child factor node

f3 is not available yet. Furthermore, the factor node f1 is ready to send its message to

its parent node X3. Following the Eqs. 2.8 and 2.9 for variable nodes and factor nodes

respectively, the upward messages calculated for all nodes of the tree. Figure 2.9 illustrates

the message-passing for every distinct step. The process terminates when the root variable

node X2 has available all messages from its child factor nodes f4 and f3. The marginal

with respect to (root) variable X2 is depicted in figure 2.10. �

Figure 2.8: A factor graph which corresponds to the function of the example 2.7. This
factor graph does not contain cycles therefore it has tree structure.

From the above example, it must be noted that when a factor node has degree 1, i.e. it

is leaf factor node, the expression “sum over not a variable Xi the factor fj” (factor fj has

only as argument the variable Xi, i.e. fj(Xi)) is equivalent with the expression “fj(Xi)”.

For the above example we have

f4(x2) =
∑
∼{x2}

f4(x2).

2.2. Factor graphs 30

Therefore we conclude that the leaf factor nodes send their functions to their parent variable

nodes.

1

1

1

(a)

1

1

1

2

(b)

1

1

1

2

3

(c)

1

1

2

3

1

4

(d)

1

1

2

3

4

1

5

(e)

1

1

2

3

4

5

1 6

(f)

Figure 2.9: The message passing schedule of the tree expression of Eq. 2.10 .

This detailed example showed that the schedule for the calculation of the messages

via message-passing process begins from the leaf nodes and continuous gradually until we

reach the target variable node. When the messages from all child nodes arrive to a node,

it is able to compute the external message to its parent node. When we reach the target

root variable node we perform a simple multiplication of its incoming messages, in order

2.2. Factor graphs 31

to calculate the desired marginal.

The process which described in the above example is utilized for the calculation of the

marginal function with respect to a single variable. Usually we are interested to find all the

marginal functions for all variables of the global function; this fact lead us to the following

subsection which describes the sum-product algorithm, i.e. the concurrent calculation of

all marginals of the global function’s variables.

Figure 2.10: The product of the incoming incident messages from child nodes of variable
node X2 equals to the marginal function of variable X2.

2.2.3 Sum-product algorithm

Discrete variables

This subsection provides a powerful algorithm for the efficient computation of the marginals

of a global factorisable function, which consist of variables with finite domain. This algo-

rithm is known as the sum-product algorithm (SPA).

In many circumstances we are interested in calculating the marginal of more than one

variables. One possible solution for such calculation would be the creation of different

trees for each variable and application of single sum-product algorithm. However, that

approach would be very computation-expensive and thus, slow, especially for large number

of variables.

2.2. Factor graphs 32

The simultaneous computation of all marginal functions could be completed if we had

computed all the messages passing across the edges of FG. The computation of the outgoing

messages for SPA follows the same idea of the single sum-product algorithm. However,

none of the nodes is considered as a root node, so there is not parent/child relationship

among neighboring nodes. The sum-product algorithm terminates when all messages have

been passed along the edges of the FG.

As we mentioned above, there are two kind of nodes, the factor nodes and the variable

nodes. Suppose we have a variable Xi with finite domain and a local function fj.
2 Let

µXi−→fj(xi) denotes the message from a variable node Xi to a neighboring factor node fj,

and µfj−→Xi
(xi) denotes the message from factor node fj to variable node Xi. According

to the sum-product algorithm the messages update rules have the following form:

• variable node to local function node update rule :

µXi−→fj(xi) =
∏

fk∈N (Xi)\{fj}

µfk−→Xi
(xi), (2.11)

• local function node to variable node update rule :

µfj−→Xi
(xi) =

∑
∼{xi}

fj(Sj = sj)
∏

Xl∈N (fj)\{Xi}

µXl−→fj(xl)

 , (2.12)

where Sj denotes the set of variables which are arguments in the local function fj, i.e.

Sj = {Xl : Xl ∈ N (fj)}. The backslash operator denotes the expression “except”, namely

the expression Xl ∈ N (fj)\{Xi} means “all variable nodes Xl which are adjacent with

factor node fj except variable node Xi”. Similarly, fk ∈ N (Xi)\{fj} are all neighboring

to Xi factors nodes, except {fj}.
The initializing phase is the same with the single-SPA, that is, for every factor node fj

which is leaf node, the message to its neighboring variable node (Xm ∈ N (fj)) is µfj−→Xm =

fj(xm), similarly, the message from every leaf variable node Xi to its neighboring factor

node (fl ∈ N (Xi)) is µXi−→fl(xi) = 1.

Every marginal gXi
(xi) of a variable Xi is the product of all incoming messages incident

2The term local function is equivalent with the term factor and the term local factor.

2.2. Factor graphs 33

to variable node Xi (if all the latter are available), i.e.

gXi
(xi) =

∏
fk∈N (Xi)

µfk−→Xi
(xi). (2.13)

Similarly, if we want to find the marginal with respect to a cluster of variables Sj (Sj is

a subset of variables which are arguments of the global function) corresponding to a factor

fj (i.e. Sj = {Xl : Xl ∈ N (fj)}), we must multiply the incoming messages incident to the

factor node fj with the factor itself (fj), i.e.

gSj
(sj) = fj(sj)

∏
Xl∈N (fj)

µXl−→fj(xl). (2.14)

Figure 2.12 depicts the sum-product algorithm update rule for factor nodes, while the

figure 2.11 illustrates the sum-product algorithm update rule for variable nodes. Finally,

2.13 shows the calculation of the marginal for a single variable. The calculation of marginal

applied at every FG node at the last step of SPA (after the calculation of all messages on

the edges of FG). The calculation of the messages at every step of the SPA operates concur-

rently [3]. The concurrent operation of SPA will be shown with an example, subsequently.

fj+1f1 fj-1 fJ

fj

... ...

Xi

Figure 2.11: Update rule of the sum-product algorithm for a variable node. The variable
node has J neighboring nodes. The external message for factor node fj is equal with the
product of the incoming messages incident to variable node Xi.

2.2. Factor graphs 34

X1 Xi-1 Xi+1 XI

Xi

... ...

fj

Figure 2.12: Update rule of the sum-product algorithm for a factor node. The factor
node has I neighboring nodes. The external (outgoing) message of the factor node fj
corresponds to the variable node Xi, therefore the summation is over not variable Xi.

f1

fN

fl fn

... ...

...Xi

Figure 2.13: The marginal function for a variable node Xi with N adjacent factor nodes.
The computation of the marginal with respect to variable Xi is the product of all incoming
messages from N factor nodes to variable node Xi.

Two important observations are, firstly, that every variable node of degree D must

perform D−1 multiplications and secondly, that the degree of leaf nodes is 1. Furthermore,

2.2. Factor graphs 35

note that a variable node of degree 2 simply propagates its incoming message to the factor

node corresponding to the outgoing edge.

Below, we present a detailed example in order to clarify the SPA rules and the message-

passing schedule.

Example 2.8. Consider the factorization of function f of example 2.7, i.e.

f(X1, X2, X3, X4, X5) = f1(X1, X3)f2(X3, X4, X5)f3(X2, X4)f4(X2),

the corresponding factor graph for the above factorization is given in figure 2.8 and it has

tree structure. If we perceive this factor graph as a graph without cycles and not as a tree

with root, then the factor graph has the structure depicted in figure 2.14. For convenience,

we will apply sum-product algorithm in distinct steps. At every step we will derive the

corresponding messages.

• Step 1:

µf4−→X2(x2) =
∑
∼{x2}

f4(x2) = f4(x2),

µX1−→f1(x1) = 1,

µX5−→f2(x5) = 1.

The messages of this step are depicted in figure 2.15(a).

• Step 2:

µf1−→X3(x3) =
∑
∼{x3}

f1(x1, x3)µX1−→f1(x1),

µX2−→f3(x2) = µf4−→X2(x2).

Note that factor node f2 has not received the incoming message from variable node

X3, in order to compute the outgoing message for variable nodes X5 and X4. Sim-

ilarly, the incoming message from variable node X4 is not available yet, therefore,

f2 can not send an outgoing message to variable nodes X5 and X3. Consequently,

factor node f2 at this step remains idle. The messages of this step are showed in

figure 2.15(b).

2.2. Factor graphs 36

• Step 3:

µX3−→f2(x3) = µf1−→X3(x3),

µf3−→X4(x4) =
∑
∼{x4}

f3(x2, x4)µX2−→f3(x2).

Factor node f2 remains silent since its incoming messages have not arrived yet. Figure

2.15(c) illustrates the messages of this step.

Step 4:

µX4−→f2(x4) = µf3−→X4(x4),

µf2−→X4(x4) =
∑
∼{x4}

f2(x3, x4, x5)
(
µX5−→f2(x5)µX3−→f2(x3)

)
.

At this step factor node f2 can calculate the outgoing message to variable node X4, since

the corresponding incoming messages from variables nodes X5, X3 have arrived (at step 1

and at step 3, respectively). The outgoing messages for variable nodes X3 and X5 are not

ready to be computed yet. Consequently these 2 variable nodes must wait one step more.

The messages of this step are depicted in figure 2.15(d).

Step 5:

µX4−→f3(x4) = µf2−→X4(x4),

µf2−→X3(x3) =
∑
∼{x3}

f2(x3, x4, x5)
(
µX5−→f2(x5)µX4−→f2(x2)

)
,

µf2−→X5(x5) =
∑
∼{x5}

f2(x3, x4, x5)
(
µX4−→f2(x4)µX3−→f2(x3)

)
.

All the outgoing messages from factor node f2 are calculated, due to all its incoming

messages are available. The messages corresponding to this step are illustrated in figure

2.15(e).

Step 6:

µX3−→f1(x3) = µf2−→X3(x3),

µf3−→X2(x2) =
∑
∼{x2}

f3(x2, x4)µX4−→f3(x4).

2.2. Factor graphs 37

The messages of this step are depicted in figure 2.15(f).

Step 7:

µX2−→f4(x2) = µf3−→X2(x2),

µf1−→X1(x1) =
∑
∼{x1}

f1(x1, x3)µX3−→f1(x3).

The messages of the final step are illustrated in figure 2.15(g).

Termination:

gX1(x1) = µf1−→X1(x1),

gX2(x2) = µf4−→X2(x2)µf3−→X2(x2),

gX3(x3) = µf1−→X3(x3)µf2−→X3(x3),

gX4(x4) = µf2−→X4(x4)µf3−→X4(x4),

gX5(x5) = µf2−→X5(x5).

In the last step we calculate concurrently the marginals with respect to all variables of

function f . The calculation of the marginal is just the product of all the incoming messages

for every variable node. �

f1
f2f3f4 X1

X2

X5

X3

X4

Figure 2.14: Factor graph of the global function of example 2.8. This factor graph does not
contain cycles. The leaf nodes of the graph are the variable nodes X1, X5 and the factor
node f4. This factor graph is equivalent with the factor graph of figure 2.8.

2.2. Factor graphs 38

f1
f2f3f4 X1

X2

X5

X3

X4

1

1

1

(a)

f1
f2f3f4 X1

X2

X5

X3

X4

1

1

12

2

(b)

f1
f2f3f4 X1

X2

X5

X3

X4

1

1

12

2

3

3

(c)

f1
f2f3f4 X1

X2

X5

X3

X4

1

1

12

2

3

3

4

4

(d)

f1
f2f3f4 X1

X2

X5

X3

X4

1

1

12

2

3

3

4

4

5

5

5

(e)

2.2. Factor graphs 39

f1
f2f3f4 X1

X2

X5

X3

X4

1

1

12

2

3

3

4

4

5

5

56 6

(f)

f1
f2f3f4 X1

X2

X5

X3

X4

1

1

12

2

3

3

4

4

5

5

56 67

7

(g)

Figure 2.15: Sum-product algorithm, message schedule.

The above example clarifies the message-passing scheduling of the sum-product al-

gorithm and gives intuition of how messages are exchanged as the algorithm execution

progresses.

Continuous variables

When we are dealing with functions whose variables are defined over continuous domain,

the only change the sum-product algorithm must perform is the utilization of integrals

instead of sums. More precisely, if we consider that we have a factorisable function f

which has arguments continuous variables, the update rules of the sum-product algorithm

are the following:

• variable node to local function node update rule :

µXi−→fj(xi) =
∏

fk∈N (Xi)\{fj}

µfk−→Xi
(xi), (2.15)

2.2. Factor graphs 40

• local function node to variable node update rule :

µfj−→Xi
(xi) =

∫ fj(Sj = sj)
∏

Xl∈N (fj)\{Xi}

µXl−→fj(xl)

 {∼ dxi}, (2.16)

where the symbol {∼ dxi} denotes that we integrate over all variables which are

arguments in factor fj except variable Xi.

The calculation of the marginal with respect to a variable is the same with the case of

discrete variables, namely

gXi
(xi) =

∏
fk∈N (Xi)

µfk−→Xi
(xi), (2.17)

where gXi
(xi) stands for the marginal function associated with the variable Xi. Finally the

calculation of the marginal with respect to a subset of variables which are arguments of a

local factor fj is given:

gSj
(sj) = fj(sj)

∏
Xl∈N (fj)

µXl−→fj(xl), (2.18)

where Sj denotes the variables associated with the variable nodes which are adjacent with

factor node fj, namely Sj = {Xl : Xl ∈ N (fj)}.

2.2.4 Normal factor graphs

Normal factor graphs were introduced by Forney in [8] and they are an equivalent graph

expression of a factorisable function, like the FGs use have studied so far. The only

difference between normal factor graphs and (simple) factor graphs, is that in normal factor

graphs there are no specific nodes for variables, whereas the edges of the graph correspond

to the variables of the global function; in normal factor graphs all nodes correspond to

factors. There are 2 kinds of factors, the factors of the factorization of the global function

and the equality factors which equate the edges of the variables with cardinality more than

2. When a given factor graph is asked to be transformed to the equivalent normal factor

graph, we follow the rules below:

• for every variable node of degree 1, we create an edge and we remove that node. See

figure 2.16;

2.2. Factor graphs 41

• for every variable node of degree 2, we create an edge among the 2 factor nodes, and

we remove that node. See figure 2.17;

• for every variable node Xi of degree 3 or more we create an equality factor node which

is denoted f= (same notation as in [9]) and signifies that any incident (variable) edge

is equal to the variable Xi. Therefore if we have a variable Xi with degree N > 2

we replace the variable node with the factor node f=(X
(1)
i , ..., X

(N)
i). The variables

X
(1)
i , ..., X

(N)
i are said dummy variables. See figure 2.17.

XiXi
fj fj

Figure 2.16: Convert a degree 1 variable node into the corresponding normal factor graph
edge variable.

Xi

Xi fj fjfk fk

Figure 2.17: Convert a degree 2 variable node into the corresponding normal factor graph
edge variable.

Xi
(1)

Xi
(l) Xi

(N)

......

Xi

..
.
..
.

=fl

fN

f1

fl fNf1

Figure 2.18: Convert a degree N (> 2) variable node into the corresponding normal factor
graph equality factor node.

2.2. Factor graphs 42

More specifically, the equality factor of N variables is defined as:

f=(X1, ..., XN) =
N−1∏
k=1

δ(Xk+1 −Xk) (2.19)

where δ(·) stands for the Dirac delta function when the variables Xi are continuous, while

in the case where variables Xi are discrete, denotes the Kronecker delta function.

Two examples below follow:

Example 2.9. Consider the factorization of function of the example 2.8, namely

f(X1, X2, X3, X4, X5) = f1(X1, X3)f2(X3, X4, X5)f3(X2, X4)f4(X2),

the factor graph of the above expression is showed in figure 2.14. Following the rules above,

the resulting normal factor graph illustrated in figure 2.19. �

f4 f3 f2 f1

X4 X1

X5
X3X2

Figure 2.19: The normal factor graph of the factorization of function of the example 2.9.

Example 2.10. Consider the following factorization of a function f :

f(X1, X2, X3, X4, X5) = f1(X1, X3, X5)f2(X1, X2)f3(X1, X3, X4)f4(X3),

suppose variables Xi, i = 1, ..., 5, have finite domain. The factor graph of the above

expression is illustrated in figure 2.20, while the corresponding normal factor graph is

illustrated in figure 2.21. Function f can be factorized in terms of normal factor graphs

as:

f(X1, X2, X3, X4, X5) =f1(X1, X
(1)
3 , X5)f2(X

(2)
1 , X2)f3(X

(1)
1 , X3, X4)f4(X

(2)
3)×

× δ(X1 −X(1)
1)δ(X

(1)
1 −X

(2)
1)︸ ︷︷ ︸

f5=(X1,X
(1)
1 ,X

(2)
1)

δ(X3 −X(1)
3)δ(X

(1)
3 , X

(2)
3)︸ ︷︷ ︸

f6=(X3,X
(1)
3 ,X

(2)
3)

,

where δ(·) denotes the delta Kronecker function. �

2.2. Factor graphs 43

f4f3f2 f1

X4

X1

X5

X3

X2

Figure 2.20: The factor graph of example 2.10.

f4f3f2 f1

X4

X1

X5

X3

X2

==

X1
(1)

X1
(2)

X3
(1) X3

(2)

f=
5

f=
6

Figure 2.21: The normal factor graph of the example 2.10.

2.2.5 Sum-product algorithm for normal factor graphs

Starting from equality nodes, suppose an equality node fk=(X1, ..., Xi, ..., XN) with degree

N , then the outgoing message along the edge corresponding to the variable Xi is given by

µfk=−→Xi
(xi) =

∑
∼{xi}

fk= (X1, ..., Xi, ..., XN)
∏

Xn∈N (fk=)\Xi

µXn−→fk=(xn)

=
∏

Xn∈N (fk=)\Xi

µXn−→fk=(xi), (2.20)

Note that a message along an edge does not change. To see that, consider 2 factor nodes

fk and fj which both of them have as argument the variable Xi, then µfk−→Xi
(xi) =

µXi−→fj(xi) and µfj−→Xi
(xi) = µXi−→fk(xi). See figure 2.22.

The initialization of the algorithm is the same as in the case of factor graphs. Namely,

2.2. Factor graphs 44

fj fk
Xi

Figure 2.22: The message µfj−→Xi
(xi) does not change along the edge Xi.

• every variable Xi of degree 1 (i.e. a half edge) which is adjacent with a factor node

fj transmits along the edge Xi the message 1 (µXi−→fj(xi) = 1),

• every leaf node fj with argument the variable Xi transmits along the edge Xi the

message fj(xi) (µfj−→Xi
(xi) = fj(xi)).

Since we have only factor nodes, the update rule for a factor node fj of degree N is given

by

µfj−→Xi
(xi) =

∑
∼{xi}

fj (Sj = sj)
∏

Xl∈N (fj)\{Xi}

µXl−→fj(xl)

 , (2.21)

where Sj stands for the set of variables which are arguments in the local function fj, namely

Sj = {Xl : Xl ∈ N (fj)} and |Sj| = N . The messages µXl−→fj(xl) are from factor nodes

which have in common with factor fj the variable Xl.

Finally, if we want to compute the marginal with respect to a variable Xi, we must

perform a simple multiplication of the two opposite directional messages passing through

edge Xi from any neighboring factor node fj which contains as argument the variable Xi,

consequently, the marginal of variable Xi is given by

gXi
(xi) = µfj−→Xi

(xi)µXi−→fj(xi) (2.22)

where fj is any factor which has argument the variable Xi. Consider the example 2.10,

then the marginal of variable X1 can be calculated (with several ways) as follows:

gX1(x1) = µ
f2−→X(2)

1
(x

(2)
1)× µ

X
(2)
1 −→f2

(x
(2)
1)

= µ
f3−→X(1)

1
(x

(1)
1)× µ

X
(1)
1 −→f3

(x
(1)
1)

= µf1−→X1(x1)× µX1−→f1(x1)

= µ
f5=−→X

(1)
1

(x
(1)
1)× µ

X
(1)
1 −→f5=

(x
(1)
1).

The careful reader can note that the message update rules of the normal factor graphs

2.2. Factor graphs 45

are very similar with the case of the (simple) factor graphs.

2.2.6 Variations of sum-product algorithm

In this subsection, we will give a brief description of the notion of groups, fields and

semi-rings. We will provide some basic definitions for the above topics, in order to better

understand some variations of the sum-product algorithm.

Definition 2.22 (Group [25]). A set of elements A = {a, b, c, ...} and an operator ⊕ form

a group and the following axioms hold:

• Closure: for any a ∈ A, b ∈ A, the element a⊕ b is in A,

• Associativity: for any a, b, c ∈ A, (a⊕ b)⊕ c = a⊕ (b⊕ c),

• Identity: there is an identity element 0 in A for which a⊕0 = 0⊕a = a for all a ∈ A

• Inverse: for each a ∈ A there is an inverse (−a) ∈ A such that a⊕ (−a) = 0.

H

Furthermore, we will assume that for every group A and 2 elements of A, a, b, the

commutative property: a ⊕ b = b ⊕ a. If this axiom holds, we say that group A is an

abelian group.

Definition 2.23 (Field [25]). A field is a set F of at least two elements, with two operations

⊕ and ∗ (×), for which the following axioms are satisfied:

• The set F forms an abelian group (whose identity is called 0) under the operation ⊕,

• The set F∗ = F − {0} = {a ∈ F, a 6= 0} forms an abelian group (whose identity is

called 1) under the operation ∗.

• Distributive law: For all a, b, c ∈ F, (a⊕ b) ∗ c = (a ∗ c)⊕ (b ∗ c).

H

The operation ⊕ is called addition and often denoted as +, while the operation ∗ is

called multiplication. The multiplication has greater priority than addition. Ring has the

same axioms as the field; the only difference is that rings have no multiplication inverse.

We define a triplet (F,⊕,⊗) and we say that this triplet forms a semi-ring if the

following properties hold [24]:

2.2. Factor graphs 46

• ⊕ is associative and commutative, i.e. there exist an identity element for ⊕, denoted

as 0⊕,

• ⊗ is associative and commutative, i.e. there exist an identity element for ⊗, denoted

as 1⊗,

• ⊗ is distributive over ⊕.

F can be any abstract field. In comparison to a field F we do not require the existence

of an inverse with respect to either operation (+, ∗). This small example below illustrates

the max-product semi-ring.

Example 2.11 ([24]). Consider the triplet (R, max, ∗). This triplet forms a semi-ring

since

• max is associative,

max{a,max{b, c}} = max{max{a, b}, c},

• max is commutative,

max{a, b} = max{b, a},

• There exist an identity element for max, 0⊕, such that max{x, 0⊕} = x, ∀x ∈ R.

The element that satisfies this condition is the −∞ = 0⊕,

• ∗ is associative,

• ∗ is commutative,

• There exist an identity element for ∗, 1⊗, such that 1⊗ ∗x = x, ∀x ∈ R. The element

that satisfies this condition is the number 1.

�

Notice that the sum-product algorithm is associated with the semi-ring (R,+, ∗). One

variation of sum-product algorithm is the max-product algorithm which is associated with

the semi-ring (R,max, ∗). Another one variation of sum-product algorithm is the min-sum

algorithm which is associated with the semi-ring (R,min,+). Consequently, we can derive

the update rules of the max-product algorithm.

2.2. Factor graphs 47

Consider a factorisable function f , where its arguments are variables with finite domain.

Let Xi be an arbitrary variable node of the factor graph corresponding to global function

f , and let fj be an arbitrary factor node neighboring to variable node Xi. Then the update

rules for max-product algorithm are the following:

• variable node to local function node update rule:

µXi−→fj(xi) =
∏

fk∈N (Xi)\{fj}

µfk−→Xi
(xi), (2.23)

• local function node to variable node update rule:

µfj−→Xi
(xi) = max

∼{xi}

fj (Sj = sj)
∏

Xl∈N (fj)\{Xi}

µXl−→fj(xl)

 , (2.24)

where Sj stands for the set of variables which are arguments of the local function fj,

i.e. Sj = {Xl : Xl ∈ N (fj)}, and the symbol ∼ {xi} under maximum denotes that we

maximize over all variables Xl ∈ Sj except variable Xi.

The initialization phase is a little different of that in sum-product algorithm, since

variable leaf nodes send to their (unique) neighboring factor nodes the constant message

−∞. More specifically, the initialization rules for max-product algorithm are the following:

• for every factor node fj which is leaf node, the message to its neighboring variable

node (Xm ∈ N (fj)) is equal to µfj−→Xm = fj(xm),

• the messages from every leaf variable node Xi to its neighboring factor node (fl ∈
N (Xi)) is equal to µXi−→fl(xi) = −∞.

Every marginal gXi
(xi) with respect to variable Xi is the product of all incoming mes-

sages, if all the latter are available, i.e.

gXi
(xi) =

∏
fk∈N (Xi)

µfk−→Xi
(xi), (2.25)

Similarly if we want to find the marginal with respect to a cluster of variables Sj (Sj is

a subset of variables which are arguments of the global function) corresponding to a factor

fj, we are multiplying the incoming messages incident to that local factor node with the

2.2. Factor graphs 48

local factor itself, i.e.

gSj
(sj) = fj(sj)

∏
Xl∈N (fj)

µXl−→fj(xl), (2.26)

2.2.7 Cyclic factorizations

Finally, we must consider the case when a factor graph of a factorisable function has cycles,

where the sum-product algorithm may fail to terminate, and when it terminates, usually,

the final solution is not the exact one, i.e. the solution diverges from true marginal function.

That happens because the scheduling of messages for the sum-product algorithm for

these graphs is difficult. Sometimes the dependencies on a cycle may lead the sum-product

algorithm to avoid the initialization phase. Another issue which sum-product algorithm

sometimes encounters, is that it may run infinitely. One solution for this problem is to

terminate the algorithm after a predetermined number of iterations. However, the number

of required iterations until the algorithm converges to a satisfiable solution, is usually

unknown.

When it is given a factor graph with cycles and we desire to compute the marginals,

we apply the sum-product algorithm, as described in above subsection, but we follow a

schedule which usually depends on the problem and the structure of the graph. Even

though the sum-product algorithm and its variations encounter difficulties in graphs with

cycles, the most famous algorithms in signal processing and coding theory use iterative

versions of sum-product algorithm on factor graphs with cycles [1], [12], [18].

Chapter 3

Factor Graph Applications: Coding

Theory

The main purpose of coding theory field is to achieve the maximum rate R, at which

information can be transmitted with arbitrarily small probability of error, at a given SNR

([16]). Factor graphs theory originated from low density parity check (LDPC) codes, which

were invented by Gallagher [1]. This chapter provides a brief introduction in the coding

theory field with a factor graph approach. First, we consider binary block linear codes,

which simplify the analysis of LDPC codes, and then we study convolutional codes and

Turbo codes. The goal of this chapter is to express the aforementioned codes in a factor

graph representation, and apply decoding utilizing the sum-product algorithm (SPA).

We consider a stream of bits transmitted to a destination through an additive white

Gaussian noisy AWGN channel. Our goal is to apply SPA on the graph corresponding

to a code, in order to restore at the receiver the received (and possibly) corrupted bit-

stream. An efficient way to achieve this, is by inserting redundant parity bits in the

transmitted sequence before the latter pass through the channel; such procedure is called

encoding. Decoding is the process in the receiver, during which the latter recovers the

encoded originally transmitted sequence. During this chapter we will consider binary block

codes, i.e. the transmitted coded symbols are binary symbols. Finally, the goals of this

chapter are:

1. to understand how several classes of binary block codes are closely related to factor

graphs,

2. given a binary block code, how to construct the equivalent factor graph taking into

account the code’s constraints,

3. how to apply the SPA, in order to perform decoding.

Through this chapter, we consider modulo 2 arithmetic since we are in binary field

B ≡ F2 ≡ {x | x ∈ {0, 1}}. A simple example of modulo 2 arithmetic is the addition and

3.1. Linear block codes 50

the inner product of 2 arbitrary binary vectors b1 = 010 and b2 = 110. Their sum gives

b1 + b2 = 100 and their inner product gives b1b
>
2 = 0 + 1 + 0 = 1. Finally, every vector x

which contains binary elements in this chapter is considered as a row vector. The interested

reader on coding theory can see also [28], [29] and [31].

3.1 Linear block codes

We start the analysis from binary block linear codes because they constitute the simplest

case of error-correcting codes.

Consider a binary information block sequence b with block length k. A block code is

a linear mapping from every binary vector b ∈ Bk to a binary vector c ∈ Bn, with n > k,

and n standing for the block length of the codeword. The set of all codewords c form a

block code C and all possible codewords are at most 2k. The above process is associated

with the encoding. Obviously, the set C must consist of distinct codewords c, in order to

identify uniquely each one. Every set C corresponds to a code (n, k), if each codeword has

length equal to n and there are 2k distinct codewords.

Definition 3.1 (Linear block code). A block code (n, k) is said to be linear, if and

only if, it forms a k-dimensional subspace of binary n-tuples (Bn), namely C ⊂ Bn with

dim{C} = k. Since it forms a subspace, it contains the all zero n-tuple, i.e. 01×n ∈ C. H

A subspace is a vector space which is closed over addition and multiplication with a

scalar. A k-dimensional subspace S of binary n-tuples consist of binary vectors xi ∈ Bn.

Any linear combination of xi’s yield a vector space of dimension k < n, namely the subspace

S ⊂ Bn. Consider any subspace S (of binary n-tuples), then the following statement is in

force:

• if x1 ∈ S and x2 ∈ S then

ax1 + bx2 ∈ S, a, b ∈ B. (3.1)

The vector y = ax1 + bx2 is a linear combination of vectors x1 and x2. If the reader is not

familiar with the definitions of linear algebra can see also [32].

Definition 3.2 (Rate). The following ratio:

r
M
=
k

n
, (3.2)

3.1. Linear block codes 51

is called the rate of a (n, k) code and denotes how many information bits correspond to

the total transmitted bits per codeword. H

Definition 3.3 (Weight). The weight of a codeword c is the number of its non zero

elements. H

Definition 3.4 (Minimum distance). The minimum distance of a code C is denoted

with dmin(C), and is defined as the minimum weight of any codeword (except the zero

codeword). Specifically,

dmin(C) = min
ci∈C\ci=0

||ci||2 , (3.3)

H

Definition 3.5 (Orthogonality). Two non zero vectors ci and cj are said to be orthog-

onal, if and only if cic
>
j = 0. H

Definition 3.6 (Dual code). Consider a linear block code C. The orthogonal or dual

code C⊥ is defined as the code, which consist of n-tuples which are perpendicular to every

codeword c of code C, namely

C⊥ = {y ∈ Bn | yc> = 0, ∀c ∈ C}. (3.4)

H

The following example explains the definitions above.

Example 3.1. Consider the binary code C = {0000, 0110, 1001, 1111}. The code C forms

a 2-dimensional subspace in B4 since it is closed over summation and multiplication with

a binary number, namely:

ci ∈ C, cj ∈ C ⇐⇒ aci + bcj ∈ C

with a, b ∈ B. The rate of the code C is r = k/n = 1/2 and its minimum distance

dmin(C) = 2. Notice that any codeword of C is orthogonal to all other codewords in C.
Therefore C = C⊥. The code C is called self-dual. �

Since a linear code C forms a subspace of dimension k, there exist k linearly independent

binary vectors in Bn, which yield a basis of dimension k. Specifically if we denote these k

3.1. Linear block codes 52

linearly independent vectors as g1,g2, ...,gk, then any linear combination of them generates

a codeword in C. Let us arrange these vectors in an k × n matrix:

G
M
=

g1

...

gk

 , (3.5)

this matrix is called generator matrix and all codewords in C can be generated from the

rows of G; consider an arbitrary information word b, then any codeword c, such that

c = bG, b ∈ Bk, (3.6)

belongs in C. Notice that generator matrix G is full row rank.

The utilization of generator matrix G is preferable, since it costs less storage complexity.

To see this, consider the case when we store 2k n−tuples for a code C. Then, the encoder

would demand storage O(2kn). On the other hand, if we store every element of the

generator matrix G, then the encoder will require spatial complexity O(kn).

Definition 3.7 (Systematic code). Any linear block code which has generator matrix

according to the following form:

Gs =
[

Ik P
]
, (3.7)

is called systematic linear block code. Ik denotes the k×k identity matrix, while the matrix

P is a parity k× (n−k) binary matrix. A systematic block code has the property that the

first k bits of the coded word are equal with the k transmitted information bits, and thus,

information bits can be easily restored from the first k bits of the codeword. To obtain a

systematic generator matrix Gs, we apply column permutations or row operations to the

matrix G. The matrices G and Gs are called equivalent, since their corresponding codes

are equivalent. H

Every linear block code has an equivalent systematic code representation, since if we

choose k linear independent columns of generator matrix G we can yield the space Bk.
Nevertheless, the space Bk can be yield also, by the columns of k × k identity matrix.

Therefore, if we transfer the k linear independent columns of generator matrix G at the

first k columns of G, after row operations we can create the k × k identity matrix.

Definition 3.8 (Parity check matrix). The parity check matrix is denoted by H and is

3.1. Linear block codes 53

defined as the (n−k)×n matrix, whose all rows are orthogonal to the row space of matrix

G. That is, all rows of parity matrix H belong to the nullspace of generator matrix G.

Any code C can be defined in terms of its parity check matrix H; it can be shown that

any codeword c belongs to C, if and only if, it is perpendicular in any row of parity check

matrix:

c ∈ C ⇐⇒ cH> = 0. (3.8)

H

Corollary 3.9. Consider any (n, k) linear block code C with generator matrix G, then the

(n, n − k) code, C ′, which has as generator matrix the (n − k) × n parity check matrix H

of code C, is the dual code of C, i.e. C ′ = C⊥.

Proof. The proof arises from the fact that any row of parity check matrix H is orthogonal

to any codeword in C, therefore the codewords generated from matrix H belong to the dual

code of C. Consequently, we conclude C ′ = C⊥.

Any systematic generator matrix Gs has a corresponding systematic parity check matrix

Hs, that is,

Hs =
[

P> In−k

]
. (3.9)

Obviously GH> = GsH
> = GH>s = GsH

>
s = 0k×(n−k).

From now on we will consider G ≡ Gs and H ≡ Hs, i.e. any generator matrix and

its corresponding systematic one will have the same symbolism, similarly, for parity check

matrix H. We do this for simplicity in notation. The following example clarifies the above

definitions.

Example 3.2. Consider a (8, 4) code C, with the following generator matrix :

G =

0 0 0 0 1 1 1 1

1 0 1 0 1 0 1 0

0 0 1 1 0 0 1 1

1 1 1 1 1 1 1 1

 .

The rate r of the code C is equal to 1/2, while the minimum distance is dmin(C) = 4 since

the minimum non zero elements of any codeword of C is 4. Then if we permute the 5th

3.1. Linear block codes 54

column with the 1st one, we take:

G =

1 0 0 0 0 1 1 1

1 0 1 0 1 0 1 0

0 0 1 1 0 0 1 1

1 1 1 1 1 1 1 1

 ,

if we add the 2nd row at the 4th row and then the 1st row at the 2nd one, we take

G =

1 0 0 0 0 1 1 1

0 0 1 0 1 1 0 1

0 0 1 1 0 0 1 1

0 1 0 1 0 1 0 1

 .

Then we add the 3rd and 4th row and the result is added at the 2nd row, furthermore, we

add the resulting 2nd row to the 4th row and we take:

G =

1 0 0 0 0 1 1 1

0 1 0 0 1 0 1 1

0 0 1 1 0 0 1 1

0 0 0 1 1 1 1 0

 .

Finally we add the 4th row at the 3rd row and we take the systematic form of the generator

matrix, namely,

G =

1 0 0 0 0 1 1 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 1

0 0 0 1 1 1 1 0

 =
[

I4 P
]
.

Since the generator matrix G has systematic form, we can extract easily the parity check

matrix H as

H =
[

P> I4

]
=

0 1 1 1 1 0 0 0

1 0 1 1 0 1 0 0

1 1 0 1 0 0 1 0

1 1 1 0 0 0 0 1

 .

3.2. Low density parity check (LDPC) codes 55

Consider an arbitrary information bit sequence, e.g. b = [0 1 0 1], then the encoded

codeword according to definitions above is

c = bG = [0 1 0 1 0 1 0 1] = [cs cp],

where the first sub-codeword (cs) corresponds to the systematic part of the codeword,

while the last sub-codeword (cp) corresponds to the parity part of the codeword. Obviously,

cs = b. Finally, if we want to check if c belongs to C, it suffices to check if it is perpendicular

to every row of parity check matrix H, i.e. whether

cH> = [0 0 0 0].

Notice that every row of the parity check matrix corresponds to an equation that must be

satisfied, e.g. the first row of matrix H imposes the modulo-2 sum of coded-bits c2, c3, c4

and c5 to be equal to zero and so forth. Every equation can be seen as indicator function

of the sum of the variables (bits) involved in the corresponding function and they are also

called checks. �

Relying on the above example, we observe that the first process (multiplication of

information word with generator matrix) corresponds to the encoding phase, while the

second process (multiplication of the received coded word with the parity check matrix)

verifies that the received codeword belongs in code C. After a brief review on linear block

codes, we examine the first class of capacity-approaching codes, the LDPC codes, under

the scope of factor graphs.

3.2 Low density parity check (LDPC) codes

Low density parity check (LDPC) codes are linear block codes which are defined via their

parity check matrix H. As their name indicates, the basic property of their parity check

matrix H is that it has sparse structure, i.e. it has low density of non-zero (ones) elements.

As we explicitly stated above, all codewords c of a linear block code C with parity check

matrix H must satisfy cH> = 0. The latter equation corresponds to a linear system

of equations which must be satisfied. The basic idea of LDPC codes is to express these

equations in terms of factor graphs. We define as m the number of equations (checks),

namely m
M
= n− k.

3.2. Low density parity check (LDPC) codes 56

Definition 3.10 (Regular-Irregular code). Consider a LDPC code with a (n− k)× n
parity check matrix H. The code is said to be regular if and only if a constant number

of non zero coded bits are involved in each equation and a constant number of equations

contain each symbol. Namely if the variables wr, wc, indicate the number of non-zero

elements in each row and in each column of the parity check matrix, respectively, then if

mwr = nwc, (3.10)

the code is regular. In any other case, the code is irregular. H

For example the code with the following parity check matrix

H =

1 1 1 1 0 0 0 0

0 0 1 0 1 1 0 1

0 1 0 1 0 0 1 1

1 0 0 0 1 1 1 0

 ,

is a regular code since it contains constant number of column and row weights (wc = 2 and

wr = 4).

3.2.1 Graph representation of LDPC codes

In this subsection, we will examine how we can construct a graph representation of a LDPC

code. For every LDPC code there is an equivalent Tanner graph. Since Tanner graphs

come under the family of factor graphs, from now on we will refer to factor graphs. Given

a m× n parity check matrix H, we create the equivalent factor graph as follows:

• For every variable corresponding to bit, we create a variable node, i.e. in terms of

matrix H, we create n variable nodes (equal the number of columns of the parity

check matrix).

• For every equation (check), we create a factor (check) node, namely we create m

check nodes.

• If the j, ith element of parity check matrix is equal to 1 (Hj,i = 1), then we create

an edge between variable node i and check node j.

3.2. Low density parity check (LDPC) codes 57

Following the standard notation, the symbol for check nodes will be the non-solid square

with the symbol ’+’ inside it. More specifically, in figure 3.1 below, are presented the

symbols representing check nodes and variable nodes.

+

Figure 3.1: Left: check node - Right: variable node.

The factor corresponding to every check node is equal to the indicator function of the

constraints imposed from the corresponding row of parity check matrix H. Namely check

node j is denoted with fj(·) and is defined as

fj(·) = I

 ∑
i|Hj,i=1

ci

 = 0

 , (3.11)

where I{· } denotes the indicator function of the expression inside the hooks. The indicator

function is defined as

I{x} =

{
1, if x is true,

0, otherwise,
(3.12)

The arguments of every factor fj(·) are the variables whose nodes are adjacent with

check node fj. If we denote the set of arguments of check node fj, xj, then

xj = {ci | Hj,i = 1}, (3.13)

with c = [c1 · · · cn].

Therefore a code word belong to a LDPC code C if all the m constraints from parity

check matrix H are satisfied, therefore we have

c ∈ C ⇐⇒
m∏
i=1

fj(xj) = 1. (3.14)

The last equation shows that the FG of LDPC codes expresses a factorisable function

(rigth-hand side of Eq. 3.14).

Example 3.3. Consider the (8, 4) code with the parity check matrix corresponding to the

3.2. Low density parity check (LDPC) codes 58

code of example 3.2, recall

H =
[

P> I4

]
=

0 1 1 1 1 0 0 0

1 0 1 1 0 1 0 0

1 1 0 1 0 0 1 0

1 1 1 0 0 0 0 1

 .

Note that the above matrix is not very sparse, since it contains 32 elements, where the 16

of them are non-zero elements. The factor graph corresponding to that code is illustrated

in figure 3.3 below, since

c ∈ C ⇐⇒
4∏
i=1

fj(xj) = 1.

As we can see, the variable nodes correspond to the code-bits, here c1 to c8, while the check

nodes correspond to indicator functions according to equation 3.11:

f1(x1) = I(c2 + c3 + c4 + c5 = 0),

f2(x2) = I(c1 + c3 + c4 + c6 = 0),

f3(x3) = I(c1 + c2 + c4 + c7 = 0),

f4(x4) = I(c1 + c2 + c3 + c8 = 0),

with x1 = [c2 c3 c4 c5], all the other xi, i = 2, 3, 4, computed similarly. �

3.2.2 Encoding of LDPC codes

As we stated in the above subsection, LDPC codes are usually defined across their parity

check matrix, instead of their generator matrix. Given a parity check matrix H of a LDPC

code, the simplest way to construct a generator matrix corresponding to the parity check

matrix is to construct an equivalent systematic parity check matrix which has the following

form

H =
[

P> Im

]
, (3.15)

3.2. Low density parity check (LDPC) codes 59

+

+

+

+

c1

c2

c3

c4

c5

c6

c7

c8

f1

f2

f3

f4

Figure 3.2: The factor graph corresponding to the (8, 4) code with the parity check matrix
of example 3.3.

where P is the parity matrix. Finally, we can get easily the equivalent systematic generator

matrix, as

G =
[

Ik P
]
. (3.16)

Since we have created the generator matrix, we are able to encode the transmitted bit

sequence b. The encoded sequence c is given by

c = bG, b ∈ Bk. (3.17)

3.2.3 Decoding of LDPC codes

The decoding algorithm of LDPC codes generated the idea of factor graphs (FGs) and

the sum-product algorithm (SPA) [1]. Since the factor graph of LDPC codes contains

cycles, the decoding algorithm must be performed under the presence of cycles, therefore

it is applied on iterative fashion, while its convergence is not always sure. It has been

noted that the performance of the decoding algorithms is improved when the FG girth is

growing [31]. If we want to enlarge the girth of a FG, we must increase the size of block

length n, and thus, the complexity of the decoding algorithm increases too. The good error

performance of LDPC codes relies on the soft decision rules of SPA.

3.2. Low density parity check (LDPC) codes 60

The following lemma simplifies the update rules for SPA decoding algorithm.

Lemma 3.11 ([1]). For a sequence of M independent binary digits xi with probability pi

for xi = 1 (probability for xi = 0 equal to 1 − pi), the probability that the whole sequence

contains an even number of 1’s (hence even parity) is

P ({x1, ..., xM} has even parity) =
1

2
+

1

2

M∏
i=1

(1− 2pi). (3.18)

Proof. Consider the function

f(t) =
M∏
i=1

(1− pi + pit).

This function is a polynomial in t, and note that the coefficients of tn is the probability of

n 1’s. Similarly, the function

g(t) =
M∏
i=1

(1− pi − pit).

is identical except that all the odd powers of t are negative. If we add these 2 functions all

the even terms will be doubled, whereas the odd terms will cancel out. Finally, if we let

t = 1 and if we divide by 2, we take the probability of even parity. Therefore

P ({x1, ..., xM} has even parity) =
f(t) + g(t)

2

∣∣
t=1

=

∏M
i=1(1− pi + pit) +

∏M
i=1(1− pi − pit)

2

∣∣
t=1

=
1

2
+

1

2

M∏
i=1

(1− 2pi).

This completes the proof of lemma

The above lemma associated with the update rule for check nodes of SPA. To clarify

the aforementioned claim consider a check node fj with M neighboring variable nodes

c1, ..., ci, ..., cM , corresponding to independent coded bits with probabilities of each one

taking the value 1, p1, ..., pi, ..., pM , respectively. Then according to SPA, the update rule

3.2. Low density parity check (LDPC) codes 61

for the outgoing message from factor node fj to a neighboring variable node ci is given by

µfj−→ci(ci) =
∑
∼{ci}

fj(c1, ..., ci, ..., cM)
∏

cl∈N (fj)\{ci}

µcl−→fj(cl). (3.19)

As we mentioned above the factor fj(c1, ..., ci, ..., cM) = I {c1 + ...+ ci + ...+ cM = 0}. The

right-hand side of the latter equation can be written as

I {c1 + ...+ ci + ...+ cM = 0} = I {c1 + ...+ ci−1 + ci+1 + ...+ cM = −ci} , (3.20)

but the coded bits are binary variables, therefore −ci = ci and hence

I {c1 + ...+ ci + ...+ cM = 0} = I {c1 + ...+ ci−1 + ci+1 + ...+ cM = ci} . (3.21)

Note that the indicator function of Eq. 3.21 becomes 1 if and only if c1 + ...+ ci−1 + ci+1 +

... + cM = ci. If we fix the variable ci to be equal to zero (0), then the indicator factor of

Eq. 3.21 takes the value 1 if and only if the coded bits c1, ..., ci−1, ci+1, ..., cM , have even

parity.

If we further consider that messages µcl−→fj(1) = pl, l = 1, ...,M\{i}, then the factor

µfj−→ci(0) is the sum over all possible configurations of factor fj and the joint pmf of M−1

independent coded bits (the joint pmf is the product of individual pmfs since the coded

bits are independent). However,

I {c1 + ...+ ci−1 + ci+1 + ...+ cM = 0} =

1, if the coded bits c1, ..., ci−1, ci+1, ...cM

have even parity,

0, otherwise,

(3.22)

therefore the message µfj−→ci(0) is the sum of the joint pmf of all possible even par-

ity configurations of coded bits c1, ..., ci−1, ci+1, ..., cM , i.e. the probability of coded bits

c1, ..., ci−1, ci+1, ..., cM , have even parity. Therefore we conclude that

µfj−→ci(0) =
1

2
+

1

2

∏
cl∈N (fj)\{ci}

(1− 2pl)

=
1

2
+

1

2

∏
cl∈N (fj)\{ci}

(1− 2µcl−→fj(1)), (3.23)

3.2. Low density parity check (LDPC) codes 62

and

µfj−→ci(1) =
1

2
− 1

2

∏
cl∈N (fj)\{ci}

(1− 2µcl−→fj(1)) (3.24)

= 1− µfj−→ci(0). (3.25)

The update rule for variable nodes are the same with the classic SPA, i.e. any outgoing

message from a variable node ci to a neighboring factor node fj is given by

µci−→fj(ci) =
1

N

∏
fl∈N (ci)\{fj}

µfl−→ci(ci), (3.26)

where N is a normalization constant.

Before we derive the SPA decoding algorithm we first create a more convenient FG ac-

counting the effects of the communication channel. We assume that the coded bit sequence

c is mapped according to a binary phase shift keying (BPSK) modulation mapping, fBPSK:

fBPSK(c) = −2c + 11×n = s, s ∈ {+1,−1}n, (3.27)

and s = [s1 · · · sn]. If we further assume memoryless channel, then the likelihood of the

observation vector y given the transmitted signal s will take the following form:

fY|S(y | s) =
n∏
i=1

fYi|Si
(yi | si). (3.28)

Assuming that all codewords are equiprobable, then the a posteriori probability of signal

vector s given the observation vector y according to Bayes rule is given by

p(s | y) =
1

|C|

n∏
i=1

fYi|Si
(yi | si)

fYi(yi)
, (3.29)

where |C| denotes the cardinality of code C.
Without lose of correctness, we utilize the symbols si, i = 1, ..., n, instead of the coded

bits ci, i = 1, ..., n, as variable nodes of FG. Without changing the structure of FG we insert

also the factor p(si | yi) of the posterior of symbol si transmitted given the observation yi,

in order to take into account the channel effects. Consequently, the arguments of check

nodes fj, ∀j = 1, ...,m, as well as of factors p(si | yi), ∀i = 1, ..., n, are the symbols

3.2. Low density parity check (LDPC) codes 63

si and not the coded bits ci. Since the mapping from every ci to the corresponding si,

∀i = 1, ..., n, is one-to-one, the update rule for factor nodes result according to Eqs. 3.23

and 3.25, except the fact that variables si, ∀i, take the values +1 or −1. Hence (∀j)

µfj−→si(+1) =
1

2
+

1

2

∏
sl∈N (fj)\{si}

(1− 2µsl−→fj(−1)), (3.30)

and

µfj−→si(−1) = 1− µfj−→si(+1). (3.31)

We utilize the abbreviation pi(si) standing for the function p(si | yi). The update rule for

variable nodes are the following (∀i):

µci−→fj(ci) =
1

N
pi(si)

∏
fm∈N (si)\{fj}

µfm−→si(si), (3.32)

The augmented FG of the LDPC code of the example 3.2 is illustrated in figure 3.3.

+

+

+

+

s2

s3

s4

s5

s6

s7

s8

f1

f2

f3

f4

s1
p1

p2

p3

p4

p5

p6

p7

p8

Figure 3.3: The augmented factor graph of the LDPC of the example 3.2. This graph takes
into account the effect of the channel. Notice that the variable nodes si, i = 1, ..., n, take
the values {+1,−1}.

The SPA is applied in order to perform decoding. Briefly, the algorithm follows the

3.2. Low density parity check (LDPC) codes 64

below scheduling:

• Each variable node sends a message (vector) to every neighboring check node.

• Each check node sends a message to every neighboring variable node.

• Each variable node calculates the a posteriori probability that symbol si takes the

value +1 or −1, based on the incoming messages from check nodes and on the ob-

servation yi.

The following are utilized:

• Given a code C and its corresponding parity check matrix H, there exists an edge

between check node fj and variable node si if and only if Hj,i = 1;

• for every variable node si, the message to a neighboring check node fj is denoted by

µsi→fj(si) and is a function of variable si;

• for every check node fj the message to a neighboring variable node si is denoted by

µfj→si(si) and is a function of the variable si;

• the marginal corresponding to a variable node si, gsi(si), is equal to

gsi(si) = µsi→fj(si)µfj→si(si), (3.33)

this marginal corresponds to the a posteriori probability distribution of symbol si

transmitted given the channel effects, given the code’s constraints;

• let Rj denote the set of indexes corresponding to the positions of 1’s in row j of

parity check matrix H. Similarly let Ci denote the set of indexes corresponding to

the positions of 1’s in column i of matrix H. Finally the symbol ′\′ denotes the

expression except, namely Rj\i denotes all the positions of 1’s of the j’th column

except the position i.

Finally the following 6 steps constitute the decoding algorithm for LDPC codes, based

on iterative SPA.

1. • Inputs: messages pi(si) corresponding to the observations yi, i = 1, ..., n (as-

suming all codewords are equiprobable).

• Set a counter count = 1.

3.2. Low density parity check (LDPC) codes 65

2. • Set qi := pi(si = +1) = p(si = +1 | yi), i.e. initialize the a posteriori probabili-

ties of symbols based on the channel observations;

• set µsi→fj(+1) := qi;

• set µsi→fj(−1) := 1− qi.

∀i = 1, ..., n, ∀j = 1, ...,m. The messages of this step are depicted in figure 3.4.

3. Information from check nodes to variable nodes, i.e. (∀j, i : Hj,i = 1):

• µfj→si(+1) = 1
2

+ 1
2

∏
i′∈Rj\i

(1− 2µsi′→fj(−1));

• µfj→si(−1) = 1− µfj→si(+1).

The messages according to this step are illustrated in 3.5.

4. Information from variable nodes to check nodes, i.e. (∀j, i : Hj,i = 1):

• µsi→fj(+1) = 1
N
qi
∏

j′∈Ci\j
µfj′→si(+1);

• µsi→fj(−1) = 1
N

(1− qi)
∏

j′∈Ci\j
µfj′→si(−1),

where N denotes a normalization constant, namely N = µsi→fj(−1) + µsi→fj(+1).

The messages of this step are illustrated in figure 3.6.

5. Calculate the marginals with respect to variables si corresponding to a posteriori

probabilities, i.e (∀i = 1, ..., n):

• gsi(+1) = µsi→fj(+1)× µfj→si(+1),

• gsi(−1) = µsi→fj(−1)× µfj→si(−1),

for any j, such that Hj,i = 1. The messages corresponding to step 4 are shown in

figure 3.7.

6. Apply the hard decisions, in order to restore the transmitted codeword, that is, for

every i = 1, ..., n:

ĉi =

{
0, if gsi(+1) > gsi(−1),

1, otherwise,
(3.34)

the whole estimated codeword is ĉ = [ĉ1 · · · ĉn].

3.2. Low density parity check (LDPC) codes 66

7. If ĉH> = 0 OR count = Niter, then terminate, else count = count+ 1 and goto step

2.

si
pi ..

.

+ fj

+ fj'
I

O

O

Figure 3.4: The messages of this step correspond to posterior probability of symbol si
transmitted given the channel observation yi, i = 1, ..., N , and they are sent from factor
node pi to variable node si. In sequel, they are propagated to every check node fj which
neighboring to variable node si. As we can see the messages can be represented as vectors
for two values, +1 or −1.

+ fj

...

si

si'

si''

I

I

O

Figure 3.5: Messages from check nodes to variable nodes according to step 2.

si
pi ..
.

+ fj

+ fj'

+ fj''

I

I

I

O

Figure 3.6: Messages from variable nodes to check nodes according to step 3.

3.2. Low density parity check (LDPC) codes 67

si
pi ..

.

+ fj

+ fj'

+ fj''

I

I

I

I

Figure 3.7: Marginal with respect to variable si.

In the figures 3.4-3.7, internal messages of the nodes are depicted with I-red arrows,

while the O-blue arrows correspond to the outgoing messages.

The decoding algorithm can also be performed via likelihood ratios of the messages

from variable nodes to check nodes and vice versa. We won’t detail that method, since it

follows the same idea with the SPA decoding algorithm, above. The interested reader can

find details about this variant of SPA decoding algorithm in [31] and in [27].

The following example concludes the encoding-decoding procedure.

Example 3.4. Consider the (8, 4) code C of the example 3.2. We assume that it is given

the systematic parity check matrix, namely,

H =
[

P> I4

]
=

0 1 1 1 1 0 0 0

1 0 1 1 0 1 0 0

1 1 0 1 0 0 1 0

1 1 1 0 0 0 0 1

 .

As we stated above, the corresponding factor graph of the above parity check matrix H

takes into account the channel observations and is given in figure 3.2.

Firstly, we need the generator matrix G, in order to start the encoding phase. The

generator matrix can be easily extracted from the systematic parity check matrix, namely,

G =
[

I4 P
]

=

1 0 0 0 0 1 1 1

0 1 0 0 1 0 1 1

0 0 1 0 1 1 0 1

0 0 0 1 1 1 1 0

 .

3.2. Low density parity check (LDPC) codes 68

Consider that we want to transmit the information bit sequence b = [1 1 0 0], then

according to encoding phase, the codeword c, to be transmitted, is given by

c = bG = [1 1 0 0 1 1 0 0].

Moreover we assume that all codewords of C are equiprobable. We apply BPSK modulation

on the coded sequence c, and the transmitted signal becomes

s = [−1 − 1 + 1 + 1 − 1 − 1 + 1 + 1].

The symbol sequence is transmitted over a channel with additive white Gaussian noise

(AWGN) with variance σ2 = 0.31. The corrupted received signal at the receiver is

y = [−0.1316 − 0.9517 0.1612 0.5826 − 1.5970 0.3218 0.6538 1.4207],

if we perform directly hard decisions in the received sequence y the estimated symbol

sequence ŝ will be

ŝ = [−1 − 1 + 1 + 1 − 1 + 1 + 1 + 1].

Notice that the estimated sequence has an error at its 6th position. At this step, we

initialize the SPA decoding algorithm.

Assuming that the a-priori probability of si = +1 is p(si = +1) = p(si = −1) = 1/2,

we take

qi = pi(si = +1) = p(si = +1 | yi) =
fYi|Si

(yi | si = 1)p(si = +1)

fYi(yi)
,

where fYi|Si
(yi | si = 1) ∼ N (1, σ2) and fYi(yi) =

∑
si
fYi|Si

(yi|si)p(si). If we substitute

these expressions, we take

pi(si = +1) =

1√
2πσ2

(
exp{−(yi − 1)2/2σ2}

)
× 1

2

1√
2πσ2

(
exp{−(yi − 1)2/2σ2}+ exp{−(yi + 1)2/2σ2}

)
× 1

2

=
1

1 + exp{−[(yi + 1)2 − (yi − 1)2]/2σ2}

=
1

1 + exp{−2yi/σ2}
.

3.2. Low density parity check (LDPC) codes 69

With similar way is can be shown that

p(si = −1 | yi) =
1

1 + exp{+2yi/σ2}
= 1− qi .

Generally, it can be shown that for any symbol si with probability of taking values +1 or

−1 equal to 1/2, and furthermore normal likelihood distribution fYi|Si
(yi|si) ∼ N (si, σ

2),

the resulting a posteriori probability of symbol si having a specific value (+1 or −1)

conditioned on the observation yi, is given (∀ i = 1, ..., n) by

p(si | yi) =
1

1 + exp{−2siyi/σ2}
, si = {+1,−1} . (3.35)

Having calculated the a posteriori probability p(si | yi), we can initialize the SPA decoding

algorithm. Therefore according to step 2, we compute all the external messages from

variable nodes to check nodes, i.e. ∀j, i : Hj,i = 1, we set

µsi→fj(+1) = qi ,

therefore for degree 3 variable nodes we take

µs1→f2(+1) = 0.3031, µs1→f3(+1) = 0.3031, µs1→f4(+1) = 0.3031,

µs2→f1(+1) = 0.0024, µs2→f3(+1) = 0.0024, µs2→f4(+1) = 0.0024,

µs3→f1(+1) = 0.7349, µs3→f2(+1) = 0.7349, µs3→f4(+1) = 0.7349,

µs4→f1(+1) = 0.9755, µs4→f2(+1) = 0.9755, µs4→f3(+1) = 0.9755,

while for degree 1 variable nodes we have

µs5→f1(+1) = 0.0000,

µs6→f2(+1) = 0.8844,

µs7→f3(+1) = 0.9843,

µs8→f4(+1) = 0.9999.

Following the rule of step 2, we compute the message µsi→fj(−1) = 1−qi, ∀j, i : Hj,i = 1.

Now we are able to calculate the external messages from check nodes back to variable

3.2. Low density parity check (LDPC) codes 70

nodes, e.g.

µf2→s1(+1) =
1

2
+

1

2

∏
i′∈R2\1

(
1− 2µsi′→f2(−1)

)
=

1

2
+

1

2

(
1− 2µs3→f2(−1)

)(
1− 2µs4→f2(−1)

)(
1− 2µs6→f2(−1)

)
= 0.6718.

The rest of the messages for si = +1, ∀i, are computed accordingly, i.e.

µf1→s2(+1) = 0.2766, µf1→s3(+1) = 0.9732, µf1→s4(+1) = 0.7337, µf1→s5(+1) = 0.2777,

µf2→s1(+1) = 0.6718, µf2→s3(+1) = 0.3560, µf2→s4(+1) = 0.4289, µf2→s6(+1) = 0.4120,

µf3→s1(+1) = 0.0417, µf3→s2(+1) = 0.3187, µf3→s4(+1) = 0.6898, µf3→s7(+1) = 0.6863,

µf4→s1(+1) = 0.2663, µf4→s2(+1) = 0.4075, µf4→s3(+1) = 0.6959, µf4→s8(+1) = 0.5920,

This step finishes with the calculation of µfj→si(−1), ∀j, i : Hj,i = 1, according to the

3rd step, i.e. µfj→si(−1) = 1− µfj→si(+1), ∀j, i : Hj,i = 1. The external messages from

variable nodes to check nodes are computed thereafter, e.g.

µs1→f2(+1) =
1

N
× q1

∏
j′∈C1\2

µfj′→s1(+1)

=
1

N
× q1

(
µf3→s1(+1)

)(
µf4→s1(+1)

)
= 0.0068,

and

µs1→f2(−1) =
1

N
× (1− q1)

∏
j′∈C1\2

µfj′→s1(−1)

=
1

N
× (1− q1)

(
µf3→s1(−1)

)(
µf4→s1(−1)

)
= 0.9932,

the rest of the external variable node messages for si = {1,−1}, ∀i, after normalization

are calculated similarly (according to step 4). The posterior probabilities (marginals) for

every variable si, ∀i, are given by

gs1(+1) = µf2→s1(+1)× µf3→s1(+1)× µf4→s1(+1)× q1

= µs1→f2(+1)× µf2→s1(+1) = 0.0068× 0.6718 = 0.0046,

3.2. Low density parity check (LDPC) codes 71

gs1(−1) = µs1→f2(−1)× µf2→s1(−1) = 0.9932× 0.4382 = 0.4352.

The rest of the marginals are calculated similarly. Notice that the calculation of marginals

has a lot of different (equivalent) ways. If we apply hard decisions to the marginals ac-

cording to step 5 (Eq. 3.34), we take that the estimated codeword after one iteration is

given by

ĉ = [1 1 0 0 1 1 0 0],

which is equal to the transmitted codeword. The algorithm terminates, since

ĉH> = 0.

After 1 iteration the SPA decoding algorithm restores the erroneous received codeword.

Notice that SPA decoding algorithm exploits the soft information from the received pos-

terior pmfs of the channel, pi(si), ∀i, in order to provide reliability. �

3.2.4 Remarks on LDPC codes

SPA decoding algorithm sometimes cannot restore the transmitted erroneous codeword.

When SPA converges, it is executed for a finite number of iterations.

The FG corresponding to a LDPC code has cycles. In practice, we ignore the fact that

cycles exist and perform SPA as analyzed in the previous susections. In this case, SPA

is strictly suboptimal since it no longer performs maximum aposteriori (MAP) decoding.

However, excellent performance in terms of bit error rate can be achieved even with the

presence of cycles.

The very good performance of LDPC codes in terms of bit error rate relies firstly on

that they have very sparse parity check matrix H, and thus, the cycle lengths are very

large, consequently the SPA decoding algorithm operates in almost cycle free FG. Secondly,

LDPC decoding update rules account the soft information passing through the edges of

FG, increasing the reliability of information.

Regular LDPC codes are “asymptotically” good [1]. However it has been shown that the

irregular LDPC codes can reach very closely to Shannon limit [31] for large block lengths.

If we increase the block length and simultaneously sustain the sparse structure of parity

check matrix H the decoding algorithm can perform better. Equivalent representations of

3.2. Low density parity check (LDPC) codes 72

the same code can differ significantly in terms of girth, so a particularly interesting and

important problem is finding the best possible representation ([31],[27]).

3.2.5 Performance example of LDPC codes

We consider a regular (504, 252) LDPC code over AWGN channel, using BPSK modulation.

The performance is considered in terms of bit error rate (BER) as a function of SNRdb =

10log10(1
σ2). If we increase the length of the transmitted sequence (and thus, the block

length), then the bit error rate (BER) decreases, since the girth of the corresponding

factor graph increases, with the cost of larger temporal and storage complexity. Therefore

we note a performance-complexity trade-off regarding to SPA decoding algorithm. Notice

in figure 3.8 the huge gap of the BER curve between LDPC coded system and the uncoded

system.

−0.5 0 0.5 1 1.5 2 2.5 3 3.5
10

−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR
dB

 B
it

 E
rr

o
r

R
a
te

 (
B

E
R

)

LDPC code, n=504, k=252

LDPC coded

uncoded

Figure 3.8: Performance of (504, 252) LDPC regular code and uncoded system in terms of
bit error rate (BER) as a function of SNRdb. Notice the huge gap of BER curve between
them, showing the significance of error correcting codes.

3.3. Convolutional codes 73

3.3 Convolutional codes

Convolutional codes are linear block codes which consist of a finite-length shift register,

which determines the current state and the output of the encoder.1 They are linear, because

any linear combination of the codewords generated from the encoder, belongs to the code.

We assume that the shift register of the encoder has L memory blocks. An example of a

convolutional encoder with feedback is given in figure 3.9.

+ D D

+

+

bi

ci
(1)

ci
(2)

ai

bi-2

si-1
(2)si-1

(1)
si-1

(1)

si-1
(2)

Figure 3.9: An example of a rate 1/2 linear convolutional encoder. At each time i, the
input of the encoder is an information bit bi, whereas the output is two coded-bits, denoted
by c

(1)
i and c

(2)
i . The memory length of the shift register is L = 2.

The code is linear since the output bits are linear combination of the input as well as

the stored bits of the shift register (since we only use adders). We denote as si−1 the state

of the shift register at time i − 1. For the example encoder of Fig. 3.9 the state at time

i− 1 consist of L = 2 memory state bits, namely si−1
M
= (s

(1)
i−1, s

(2)
i−1). The symbol D inside

the box stands for delay operator, i.e. b̂i = D × bi ⇐⇒ b̂i = bi−1. The systematic form

results from the fact that the first coded bit c
(1)
i is equal to the information bit bi at any

time i.

The theory of convolutional codes requires knowledge of fields/sequence theory, which

is beyond the scope of this thesis. We will introduce convolutional codes in a simpler way,

in order to construct the corresponding factor graph of the convolutional decoder. The

SPA will be applied onto this decoder.

In this chapter will be considered systematic convolutional codes where every informa-

tion bit corresponds to 2 coded bits. Convolutional codes usually are described via their

feedback and feedforward polynomials. The feedback polynomial determines the current

1We will examine only recursive convolutional encoders, i.e. only those which have feedback.

3.3. Convolutional codes 74

state of the encoder, while the feedforward polynomial determines the non-systematic out-

put of the encoder. The feedback and feedforward polynomials are denoted by gfb(D) and

gff(D), respectively. Note that they are polynomials in D (delay operators). At any time

i the coefficient of Dl is l-th state bit at time i (s
(l)
i). The powers of the operators D

which appear at feedback and feedforward polynomials at time i indicate which state bits

of state si−1 contribute in the computation of feedback output and feedforward output,

respectively. Finally we must say that the coefficient D0 = 1 of the feedback polynomial

corresponding to the input output bit (bit bi in Fig. 3.9) and not to the current feedback

output bit ai.

When no feedback is used, the code is called non-recursive. To understand all these

definitions above, we provide the following example.

Example 3.5. Consider the convolutional encoder of figure 3.9. Its length is L = 2. The

rate of the code is equal to 1/2. The feedback output at time i (most left adder) depends

on the input bit (bi), the output of the first register (s
(1)
i−1) and the output of the second

register (s
(2)
i−1), hence the feedback polynomial is described by

gfb(D) = 1 +D +D2 . (3.36)

On the other hand, the non-systematic output c
(2)
i , which is the feedforward output (most

right adder) depends on the feedback output ai as well as the output of the second register

(s
(2)
i−1), therefore the feedforward polynomial is described by

gff(D) = 1 +D2 . (3.37)

Since there exists feedback, the encoder is recursive. �

3.3.1 Encoding of convolutional codes

The following subsection is based on the corresponding chapter of [24]. Encoding of the

convolutional codes is determined from the length and the form of the shift register. Es-

sentially it is a state space system. We denote as S, the set of all possible state values of

the shift register. Consider that the length of shift register is L, then the set S is defined

as:

S = {si = [s
(1)
i · · · s

(L)
i]} , ∀i, (3.38)

3.3. Convolutional codes 75

the cardinality of S, |S|, is equal to 2L. We make the convention that the state at time 0 is

equal to all zero state, i.e. s0 = 01×L. Notice the set S does not have a subscript, because

it is the same for every state si at any time i.

The current state si and the current output ci of the encoder at time i are uniquely

determined from information bit bi as well as from the previous state si−1 of the encoder,

according to feedback and the feedforward polynomials, respectively. Specifically, for the

encoder of example 3.5, the update rules for output and next state at time i, are described

as follows:

si =
[
ai s

(1)
i−1

]
, (3.39)

c
(1)
i = bi, (3.40)

c
(2)
i = ai + s

(2)
i−1, (3.41)

where ai = bi + s
(1)
i−1 + s

(2)
i−1 denotes the feedback output which is computed according to

feedback polynomial of Eq. 3.36. Eq. 3.39 describes the calculation of the next state of

encoder’s shift register, which is the shifting of all bits of the shift register to the direction

of the most significant bit (MSB) (most right in shift register), then puncturing the MSB,

and finally insertion of the feedback output (ai) at the least significant position of the

shift register (most left in shift register). Eq. 3.40 describes the systematic output of the

encoder, while Eq. 3.41 describes the computation of the non-systematic output of the

encoder taking into account the feedback output (ai) as well as the output of the second

register s
(2)
i−1, i.e. exactly as indicates the feedforward polynomial of Eq. 3.37.

From here and now on, we will consider that the input sequence has finite number

of bits and its length is equal to the number of total transmitted bits (k), therefore the

coded output sequence will have n = 2k coded bits. The shift register of every convolutional

encoder can be considered as a finite state machine (FSM) with 2L distinct states, providing

a direct way of computing the output and the current state according to feedforward and

feedback polynomials, respectively. The FSM of the encoder of the example 3.5 is depicted

in figure 3.10 below.

Finally, another crucial issue in convolutional codes is the termination. Termination

is the process, during which, we add L specific bits in the information sequence, in order

to predetermine the final state and to equalize it with the initial state. E.g. consider

an information sequence of length k, b1:k. Before the transmission we add L specific

bits b(k+1):(k+L) at the end of the sequence b1:k equalizing the final and the initial states

3.3. Convolutional codes 76

00 01

10 11

0 \ 00

1 \ 11

1 \ 10

0 \ 01

0 \ 00

1 \ 11

0 \ 01

1 \ 10

in \ out1,out2

Figure 3.10: The FSM corresponding to the shift register of the example 3.5. The red
cycles stand for the 2L states (left bit - least significant bit, right bit - most significant bit).
The arrows denote the transition from one state to another, based on the input, as well as
the previous state. The numbers beside the arrows correspond to the current input (left
single binary digit) and the corresponding outputs (right couple of binary digits).

(sk+L = s0) in order to make the code terminated. The final information sequence for

transmission is equal to b1:(k+L).

We define as % the ratio of information bit per coded bits. Notice that this ratio is

constant, since the number of coded bits corresponding to an information bit is fixed.

A code which is not terminated is called unterminated. The codewords of an untermi-

nated code can be constructed by puncturing the last L
%

bits of a codeword of a terminated

code. In unterminated codes the rate r is equal to %, due to the absence of extra bits. For

terminated codes, % is unequal to the rate of the code r (i.e. r 6= %), since the rate is the

number of information bits divided with the total transmitted bits, i.e.

r =
k

n+ L
%

, (3.42)

which is unequal to %. Notice that when we use terminated codes we have a rate loss.

The following example illustrates the encoding phase of convolutional codes.

Example 3.6. Consider the linear convolutional code of example 3.5. The number % is

equal to 1/2, since for 1 information bit we utilize 2 coded bits. The set S consist of all

3.3. Convolutional codes 77

possible binary 2-tuples, since L = 2. Specifically,

S = {si = [s
(1)
i s

(2)
i], s

(1)
i , s

(2)
i ∈ B}, ∀i,

i.e

S = {[0 0], [0 1], [1 0], [1 1]}, ∀i,

Suppose that we want to send the information sequence b = [1 0 1 0]. As we stated

above, we initialize the shift register to the all zero state, namely

s0 = [s
(1)
0 s

(2)
0] = [0 0].

At the first time instance corresponding to the first bit of the information sequence b,

b1 = 1, we calculate the coded output as well as the current state. Namely,

a1 = b1 + s
(1)
0 + s

(2)
0 = 1 + 0 + 0 = 1,

s1 = [s
(1)
1 s

(2)
1] = [a1 s

(1)
0] = [1 0],

c
(1)
1 = b1 = 1,

c
(2)
1 = a1 + s

(2)
0 = 1 + 0 = 1.

At time i = 2, the 2nd bit is b2 = 0 and the previous state is s1 = [1 0], and thus,

a2 = b2 + s
(1)
1 + s

(2)
1 = 0 + 1 + 0 = 1,

s2 = [a2 s
(1)
1] = [1 1],

c
(1)
2 = b2 = 0,

c
(2)
2 = a2 + s

(2)
1 = 1 + 0 = 1.

At time i = 3, the 3rd bit is b3 = 1 and the previous state is s2 = [1 1], we take

a3 = b3 + s
(1)
2 + s

(2)
2 = 1 + 1 + 1 = 1,

s3 = [a3 s
(1)
2] = [1 1],

c
(1)
3 = b3 = 1,

c
(2)
3 = a3 + s

(2)
2 = 1 + 1 = 0.

3.3. Convolutional codes 78

At time i = 4, the 4th bit is b4 = 0 and the previous state is s3 = [1 1], therefore

a4 = b4 + s
(1)
3 + s

(2)
3 = 0 + 1 + 1 = 0,

s4 = [a4 s
(1)
3] = [0 1],

c
(1)
4 = b4 = 0,

c
(2)
4 = a4 + s

(2)
3 = 0 + 1 = 1.

If we arrange the coded-bits as

c = [c
(1)
1 c

(2)
1 c

(1)
2 c

(2)
2 c

(1)
3 c

(2)
3 c

(1)
4 c

(2)
4] = [1 1 0 1 1 0 0 1],

we take the codeword corresponding to an unterminated convolutional code. If we want to

obtain a terminated code, we add L = 2 termination bits. The rate of the unterminated

code is r = % = 1
2
. The last state of the unterminated code is the s4 = [0 1] state. According

to FSM of figure 3.10, if we add the suitable terminated bits, that is b(k+1):(k+L) = [1 0],

we equalize the final state s6 with the initial state s0 (i.e. s6 = s0 = [0 0]). Therefore at

time i = 5 the 5th bit is b5 = 1 and the previous state is s4 = [0 1] and hence

a5 = b5 + s
(1)
4 + s

(2)
4 = 1 + 0 + 1 = 0,

s5 = [a5 s
(1)
4] = [0 0],

c
(1)
5 = b5 = 1,

c
(2)
5 = a5 + s

(2)
4 = 0 + 1 = 1.

Finally at time i = 6 the 6th bit is b6 = 0 and the previous state is s5 = [0 0], consequently

a6 = b6 + s
(1)
5 + s

(2)
5 = 0 + 0 + 0 = 0,

s6 = [a6 s
(1)
5] = [0 0] = s0,

c
(1)
6 = b6 = 0,

c
(2)
6 = a6 + s

(2)
5 = 0 + 0 = 0.

The transmitted codeword corresponding to the terminated code is the following

c = [c
(1)
1 c

(2)
1 c

(1)
2 c

(2)
2 c

(1)
3 c

(2)
3 c

(1)
4 c

(2)
4 c

(1)
5 c

(2)
5 c

(1)
6 c

(2)
6],

= [1 1 0 1 1 0 0 1 1 1 0 0].

3.3. Convolutional codes 79

The rate of the terminated code is

r =
4

8 + 4
=

1

3
.

�

3.3.2 Decoding of convolutional codes

Consider a rate r convolutional code C, with parameter % = 1
2

and with a shift register of

length L. For design purposes, we define the following functions:

si
M
= fs(si−1, bi) = [ai s

(1:L−1)
i−1], (3.43)

ci
M
= fc(si−1, bi) = [c

(1)
i c

(2)
i] = [bi h(bi, si−1)], (3.44)

where ai, si, c
(1)
i and c

(2)
i are defined according to previous subsection (see Eqs. 3.39, 3.40,

3.41). The abbreviation s
(1:L−1)
i−1 stands for the truncated state si−1 at the most significant

bit s
(L)
i , namely s

(1:L−1)
i−1 = [s

(1)
i−1 · · · s

(L−1)
i−1]. We define

ai = [bi si−1]u>fb
M
= v(bi, si−1), (3.45)

and

c
(2)
i = [ai si−1]u>ff = [v(bi, si−1) si−1]u>ff

M
= h(bi, si−1), (3.46)

where the ufb and uff are binary row vectors, whose elements depend on the coefficients

of delay operators D of feedback and feedforward polynomials, respectively. E.g. for the

code of example 3.5 we have

ufb = [1 1 1],

since the feedback polynomial of example 3.5 has the numbers 1, 1 and 1, as coefficients

of delay operators D0(= 1), D1 and D2, respectively. Similarly

uff = [1 0 1].

The fact that ai and c
(2)
i depend linearly from input bi and previous state si−1 indicates

that the functions v(·) and h(·) are linear.

3.3. Convolutional codes 80

The decoding algorithm relies on state space models. Specifically, we construct a trellis

block diagram corresponding to a code C and then we apply the decoding algorithm for

convolutional codes which will be discussed subsequently. The following example illustrates

how a trellis block diagram is created.

Example 3.7. Consider the convolutional code of example 3.6. As we stated in previous

example, the initial state is the zero state, i.e. s0 = [0 0], hence is the unique state of time

0. At time 1 the possible states are the ones which can result by state s0 = [0 0] as next

states, namely the state s1 = [0 0] if the input bit at time 1 is b1 = 0, while s1 = [1 0]

if the input bit at time 1 is b1 = 1. The calculation of all possible states at every time i

is computed similarly. If we consider that the code is terminated the corresponding trellis

diagram for 4 information bits (k = 4) plus 2 terminated bits is depicted in figure 3.11.

Notice that the transitions among states resulting according to FSM figure (3.10). For

spatial limitations, we omit the input and the output for every transition. �

00 00

10

00

10

01

11

00

10

01

11

00

10

01

11

0000

01

time 0 time 1 time 2 time 3 time 4 time 5 time 6

Figure 3.11: The trellis diagram corresponding to the terminated code of the example 3.6.
The transitions between previous and current states following according to FSM of figure
3.10. Every time i corresponds to an information bit bi. The first 4 time instances asso-
ciated with the information word bits, while the two additional time instances associated
with terminated information bits (e.g. example 3.6). Notice that the utilization of the
terminated code requires the first and the final states be equal.

Having the trellis diagram we are able to construct the factor graph corresponding to C.
We further assume a memoryless channel as defined in the subsection 3.2.3. The process

of constructing the FG for convolutional decoding consist of the following steps:

3.3. Convolutional codes 81

• For every information bit bi of the sequence, we create a variable node with the same

label;

• for every output ci = [c
(1)
i c

(2)
i] we create 2 variable nodes c2i−1 and c2i, respectively;

• for every state si we create a variable node with the same label;

• in case of terminated code we create two extra factors g0(s0) and gk+L(sk+L) to impose

the first and the final states be equal. If we set as initial state the all zero state, then

the factors g0 and gk+L are

g0(s0) =

{
1, if s0 = [0 0],

0, otherwise,
(3.47)

and

gk+L(sk+L) =

{
1, if sk+L = [0 0],

0, otherwise,
(3.48)

In case of unterminated code there are not L extra bits, hence the function gk is given

by

gk(sk) =
1

|S|
, ∀sk ∈ S, (3.49)

i.e. the final state has equiprobable its values.

• create external factor nodes (pi) representing the effects of the communication chan-

nel. These factors denote the a posteriori distribution of coded bit ci transmitted

given the observation yi. For example, for a terminated code, if we use BPSK mod-

ulation (0 7→ +1 and 1 7→ −1), assuming AWGN channel, then we have:

pi(ci) = p(ci|yi) =
1

1 + exp{−2fbpsk(ci)yi/σ2}
, i = 1, ..., 2(k + L), (3.50)

where fbpsk(ci) = −2ci + 1, ci ∈ {0, 1} i = 1, ..., 2(k + L) (for unterminated code

i = 1, ..., 2k);

• finally we create a factor node fi, which represents the transition from the previous

state to the current one as well as the calculation of the current output according to

3.3. Convolutional codes 82

the feedback and feedforward polynomials respectively, i.e.

fi(si−1, si, bi, c2i−1, c2i) = I { fs(si−1, bi) = si } × I { fc(si−1, bi) = [c2i−1 c2i] } ,
(3.51)

where i = 1, ..., k + L, for terminated code and i = 1, ..., k, for unterminated code.

I{·} denotes the indicator function of the expression inside the hooks.

In figure 3.12 is depicted the factor graph (FG) of the terminated convolutional code of

the example 3.6, while in figure 3.13 is illustrated the FG for the unterminated code of the

example 3.6. The one-to-one mapping from trellis diagram to FG results from the fact that

the mathematical expression of trellis diagram for terminated convolutional codes (taking

account the code’s constraints via feedback and feedforward polynomials) is given by

g0(s0) gk+L(sk+L)
k+L∏
i=1

fi(si−1, si, bi, c2i−1, c2i), (3.52)

while in the case of unterminated convolutional codes is given by

g0(s0) gk(sk)
k∏
i=1

fi(si−1, si, bi, c2i−1, c2i), (3.53)

Notice that Eqs. 3.52 and 3.53 have one-to-one correspondence to FGs of figures 3.12 and

3.13, respectively (assuming that channel effects are not accounted).

g0 g6f6f5f4f3f2f1

b6b5b4b3b2
b1

s6s5s4s3s2s1s0

c1 c2 c3 c4 c5 c6 c7 c8 c9 c10 c11 c12

p1 p2 p3 p4
p5 p6 p7 p8 p9 p10 p11 p12

termination part

channel

Figure 3.12: The factor graph of the terminated convolutional code of the example 3.6.

3.3. Convolutional codes 83

g0 f4f3f2f1

b4b3b2b1

s4s3s2s1s0

c1 c2 c3 c4 c5 c6 c7 c8

p1 p2 p3 p4 p5 p6 p7 p8
channel

g4

Figure 3.13: The factor graph of the unterminated convolutional code of the example 3.6.

Having the factor graph of the convolutional code C, we are able to perform decoding

via SPA. The notation of the SPA messages (vectors) is given below

• k denotes the length of information sequence, L denotes the length of the shift reg-

ister, S denotes the set of all values of every state si;

• the message from information bit variable node bi to factor node fi is denoted by

µbi−→fi(bi), while the message µfi−→bi(bi) represents the opposite direction message;

• similarly, variable nodes of coded bits c2i−1 and c2i correspond to information bit bi

and are neighboring to factor node fi. The messages from c2i−1 and c2i to fi are

denoted by µc2i−1−→fi(c2i−1) and µc2i−→fi(c2i), respectively. The opposite direction

messages are denoted by µfi−→c2i−1
(c2i−1) and µfi−→c2i(c2i), respectively;

• the forward message from the variable node si−1 to factor node fi is denoted by

µsi−1−→fi(si−1). With similar way, the forward message from the factor node fi to

variable node si is denoted by µfi−→si(si). The backward messages, which have the

opposite direction of the aforementioned messages are denoted µfi−→si−1
(si−1) and

µsi−→fi(si), respectively;

• the messages from factors g0, gk+L for the terminated code and g0, gk for the un-

terminated code to their corresponding neighboring variable nodes are denoted by

µg0−→s0(s0), µgk+L−→sk+L
(sk+L), µg0−→s0(s0) and µgk−→sk(sk), respectively;

3.3. Convolutional codes 84

• finally, the message from factor node pi to variable node ci is denoted µpi−→ci(ci)

and stands for the aposteriori distribution of code bit ci transmitted given the cor-

responding observation yi.

The sum-product decoding algorithm for convolutional codes has the following steps:

1. For a terminated convolutional code the first and the last state must be equal, there-

fore we initialize the messages from factor node g0 and gk+L according to equations

3.47 and 3.48, respectively. For an unterminated code the messages from factors g0

and gk are initialized according to equations 3.47 and 3.49, respectively.

2. Initialization of external messages, i.e.

µbi−→fi(bi) := [
1

2

1

2
]>, (3.54)

µc2i−1−→fi(c2i−1) := µp2i−1−→c2i−1
(c2i−1), (3.55)

µc2i−→fi(c2i) := µp2i−→c2i(c2i), (3.56)

for i = 1, ..., (k + L), for terminated code, and i = 1, ..., k, for unterminated code;

3. for i = 1, ..., k + L (i = 1, ..., k, for unterminated code), we calculate the forward

messages, i.e.

µfi−→si(si) =
1

N1

∑
si−1∈S

∑
bi∈B

∑
ci

fi
(
si−1, si, bi, c2i−1, c2i

)
×

×
(
µsi−1−→fi(si−1) µc2i−1−→fi(c2i−1) µc2i−→fi(c2i) µbi−→fi(bi)

)
=

1

N1

∑
si−1∈S

∑
bi∈B

∑
ci

(
I { fs(si−1, bi) = si } × I { fc(si−1, bi) = [c2i−1 c2i] }

)
×

×
(
µsi−1−→fi(si−1) µc2i−1−→fi(c2i−1) µc2i−→fi(c2i) µbi−→fi(bi)

)

=
1

N1

∑
si−1∈S

∑
bi∈B

(
I { fs(si−1, bi) = si }

)
×
(
µsi−1−→fi(si−1)×

× µc2i−1−→fi(bi)× µc2i−→fi
(
h(bi, si−1)

)
× µbi−→fi(bi)

)
, (3.57)

where in the first equality we substitute the function fi(si−1, si, bi, c2i−1, c2i) with its

equal expression (see equation 3.51), and the last equality results from the fact that

3.3. Convolutional codes 85

indicator function I { fc(si−1, bi) = [c2i−1 c2i] } is 1, only when c2i−1 = bi and c2i =

h(bi, si−1) according to equations 3.46 and 3.44. The number N1 is a normalization

constant, in order to have ∑
si∈S

µfi−→si(si) = 1.

The expression
∑

ci
(·) stands for abbreviation of

∑
c2i−1

∑
c2i

(·).

In parallel we calculate the backward messages, setting l = k + L − i + 1, we take

(for unterminated code is l = k − i+ 1)

µfl−→sl−1
(sl−1) =

1

N2

∑
sl∈S

∑
bl∈B

∑
cl

fi
(
sl−1, sl, bl, c2l−1, c2l

)
×

×
(
µsl−→fl(sl) µc2l−1−→fl(c2l−1) µc2l−→fl(c2l) µbl−→fl(bl)

)
=

1

N2

∑
sl∈S

∑
bl∈B

∑
cl

(
I { fs(sl−1, bl) = sl } × I { fc(sl−1, bl) = [c2l−1 c2l] }

)
×

×
(
µsl−→fl(sl) µc2l−1−→fl(c2l−1) µc2l−→fl(c2l) µbl−→fl(bl)

)
=

1

N2

∑
sl∈S

∑
bl∈B

(
I { fs(sl−1, bl) = sl }

)
×
(
µsl−→fl(sl)×

× µc2l−1−→fl(bl)× µc2l−→fl
(
h(bi, si−1)

)
× µbl−→fl(bl)

)
, (3.58)

for i = 1, ..., k + L, for terminated code and i = 1, ..., k, for unterminated code. N2

is a normalization constant. The Eqs. 3.57 and 3.58 constitute the final forward-

backward update rules for convolutional SPA decoding.

4. For i = 1, ..., k + L (i = 1, ..., k, for unterminated code), we calculate the outward

messages:

• for the information bits bi we take

µfi−→bi(bi) =
1

N3

∑
si−1∈S

∑
si∈S

∑
ci

fi
(
si−1, si, bi, c2i−1, c2i

)
×

×
(
µsi−1−→fi(si−1) µc2i−1−→fi(c2i−1) µc2i−→fi(c2i) µsi−→fi(si)

)

3.3. Convolutional codes 86

=
1

N3

∑
si−1∈S

∑
si∈S

∑
ci

(
I { fs(si−1, bi) = si } × I { fc(si−1, bi) = [c2i−1 c2i] }

)
×

×
(
µsi−1−→fi(si−1) µc2i−1−→fi(c2i−1) µc2i−→fi(c2i) µsi−→fi(si)

)
,

if we substitute the indicator functions, we take

=
1

N3

∑
si−1∈S

(
µsi−1−→fi(si−1)×

× µc2i−1−→fi(bi)× µc2i−→fi
(
h(bi, si−1)

)
× µsi−→fi

(
fs(si−1, bi)

))
, (3.59)

where N3 is a normalization constant, such that∑
bi∈B

µfi−→bi(bi) = 1;

• for the systematic coded bit c2i−1, following similar procedure as above, we take

µfi−→c2i−1
(c2i−1) =

1

N4

∑
si−1∈S

∑
bi∈B

(
I{ bi = c2i−1 }

)
×
(
µsi−1−→fi(si−1)×

× µbi−→fi(bi)× µc2i−→fi
(
h(bi, si−1)

)
× µsi−→fi

(
fs(si−1, bi)

))
,

(3.60)

the number N4 normalize the messages in order to sum in one;

• for parity coded bit c2i, following similar procedure as above, we take

µfi−→c2i(c2i) =
1

N5

∑
si−1∈S

∑
bi∈B

(
I{ h(bi, si−1) = c2i }

)
×
(
µsi−1−→fi(si−1)×

× µbi−→fi(bi)× µc2i−1−→fi(bi)× µsi−→fi
(
fs(si−1, bi)

))
, (3.61)

and N5 is a normalization constant. The Eqs. 3.59, 3.60 and 3.61 constitute

the final outward update rules for convolutional SPA decoding.

5. Apply hard decisions in messages µfi−→bi(bi). Namely for every i = 1, ..., k:

b̂i =

{
0, if µfi−→bi(0) > µfi−→bi(1),

1, otherwise,
(3.62)

3.3. Convolutional codes 87

If we note the update rules of SPA decoding algorithm for convolutional codes we state

the following comments:

• The first remark on convolutional codes is that their factor graph is cycle-free. This

fact allows the application of MAP detection, in order to find the sequence with the

largest likelihood [24].

• at every step of SPA decoding we have only factor node update rules, since the degree

of every variable node of FG is at most 2, therefore the degree one variable nodes

send their messages, whereas the degree 2 variable nodes propagate their incoming

messages;

• the factor node update rules of SPA decoding are very similar with Chapter’s 2 SPA

update rules;

• as in case of LDPC codes, update rules for convolutional codes account the soft

information passing through the edges of FG increasing the reliability of information;

• besides the application of SPA in the FG of convolutional decoder, it can also be

applied the max-sum algorithm which is equivalent with Viterbi decoding algorithm.

• convolutional codes do not perform near to Shannon limit [28]. However, they consist

a building block of Turbo codes which perform near to capacity. Turbo codes will be

studied, subsequently.

3.3.3 Performance example of convolutional codes

In this subsection we examine the performance of the unterminated convolutional code of

example 3.5 (r = 1/2, L = 2, gfb(D) = 1 +D+D2, gff(D) = 1 +D2). Let an information

bit sequence b of length equal to 1200 (k = 1200) transmitted over AWGN channel using

BPSK modulation. The performance is considered in terms of bit error rate (BER) as a

function of SNRdb = 10log10(1
σ2). The increment of information bit sequence length k, leads

to decrease in bit error rate (BER), and simultaneously to larger complexity. Notice in

figure 3.14 the gap of the BER curve between convolutional coded system and the uncoded

system. Observing figures 3.14 and 3.8 we can claim that the LDPC codes outperform the

convolutional codes, since the BER curve in the first case has steep decrease in values of

SNRdb, about 1 to 2 dB, while in the second case the steep decrease occurs at values of 2

to 5 dB.

3.4. Turbo codes 88

−1 0 1 2 3 4 5 6 7 8
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR
dB

B
it
 E

rr
o

r
R

a
te

 (
B

E
R

)
BER vs SNR

dB
 − Convolutional code (k=1200)

Convolutional

uncoded

Figure 3.14: The performance of the unterminated convolutional code of example 3.5 in
terms of BER vs SNRdb.

3.4 Turbo codes

Turbo codes are the second class of capacity-approaching codes and introduced from Berou

et al. in [17]. The most important classes of Turbo codes are parallel concatenation of

convolutional codes (PCCC) and serial concatenation of convolutional codes (SCCC). We

study the first one in this thesis. In PCCC, as the name denotes, we deploy 2 convolutional

encoders/decoders in parallel in order to encode/decode the information/received sequence.

At this phase we will consider the convolutional encoder and decoder as building blocks

in order to describe Turbo encoding and decoding. Before we start the analysis of Turbo

codes, we provide the following definitions.

Definition 3.12 (Interleaver). Interleaver is an one-to-one function, denoted by π, which,

if applied in a finite set D, then its elements will appear in a different order, i.e. interleaver

is a permutation of its indices. Consider a vector d of n elements, i.e. d = [d1 · · · dn],

3.4. Turbo codes 89

then if we apply an interleaving function π to an element di, we take

d̃i = π(di) = dπ(i), (3.63)

where d̃i is an arbitrary element of vector d. The element d̃i results uniquely from element

di via interleaving function π, i.e.

d̃i = π(dj)⇐⇒ i = j. (3.64)

The inverse function of interleaver is the de-interleaver and is denoted π−1. Applying

de-interleaving function to d̃i, we take

di = π−1(d̃i) = d̃π−1(i), (3.65)

with di being an arbitrary element of d. The element di results uniquely from element d̃i

via de-interleaving function π−1, i.e.

di = π−1(d̃j)⇐⇒ i = j. (3.66)

H

The following example clarifies the notion of interleaver and de-interleaver.

Example 3.8. Consider a row vector x = [x1 x2 x3 x4]. If we permute randomly the

columns of the identity matrix I4, a possible random permutation matrix P is

P =

0 0 0 1

0 1 0 0

1 0 0 0

0 0 1 0

 .

If we define x̃ = π(x) = xP, with x̃ = [x̃1 x̃2 x̃3 x̃4] and xP = [x4 x2 x1 x3], we take

x̃1 = π(x1) = xπ(1) = x4,

x̃2 = π(x2) = xπ(2) = x2,

x̃3 = π(x3) = xπ(3) = x1,

x̃4 = π(x4) = xπ(4) = x3,

3.4. Turbo codes 90

where the permutations of indices of the elements of vector x resulting according to the

permutations of matrix P. Notice that every element x̃i, i = 1, ..., 4, results uniquely from

the corresponding xi via the interleaving function π. Therefore the multiplication of a

vector with a permutation matrix P expresses an interleaver applied on that vector.

Similarly, a de-interleaver associated with the transpose of permutation matrix P, since

P> = P−1. If we multiply the matrix P> with the interleaved vector x̃ we take back the

vector x, namely

x1 = π−1(x̃3) = x̃π−1(3),

x2 = π−1(x̃2) = x̃π−1(2),

x3 = π−1(x̃4) = x̃π−1(4),

x4 = π−1(x̃1) = x̃π−1(1),

since π−1
(
π(x))

)
= x. Observe that the index permutations of the elements of vector x̃

resulting according to the permutations of matrix P>. �

3.4.1 Encoding of PCCC Turbo codes

We define an unterminated convolutional recursive encoder i based on its parameters, i.e.

CE(r, g
(i)
fb (D), g

(i)
ff (D)) ≡ CE(i), (3.67)

where r is the rate of the encoder, g
(i)
fb (D) denotes its feedback polynomial and g

(i)
ff (D)

denotes its feedforward polynomial. For example the encoder of figure 3.9 is a

CE(
1

2
, 1 +D +D2, 1 +D2)

encoder.

A classical PCCC Turbo encoder consists of the parallel concatenation of two or more

convolutional encoders. We will focus on the case of 2 encoders, which are identical and

defined as above (expression 3.67). They are called parallel because they operate simulta-

neously. A typical turbo encoder is depicted in figure 3.15. Its rate r is equal to 1/3, since

for k information bits we send n = 3k coded bits. The non-solid square with the symbol

π inside in figure 3.15 denotes an interleaver used by Turbo codes, in order to interleave

the information sequence b. The utilization of interleaver is a key parameter for the high

3.4. Turbo codes 91

performance of Turbo codes [17].

Observing figure 3.15, we can see that at any time i, the information bit bi is divided

in 3 parts. The first part consists of the systematic interleaved part of the second encoder

CE(2) and corresponds to the coded bit c3i−2 = bπ(i). The second part consist of the parity

interleaved part of the second encoder CE(2) and corresponds to the coded bit c3i−1 which

is a linear function of the current interleaved bit bπ(i) as well as the previous state s
(2)
i−1 of

the second encoder. The third part consist of the parity bit of the first encoder CE(1) and

corresponds to the coded bit c3i−2 which is a linear function of the current bit bi as well as

the previous state s
(1)
i−1 of the first encoder. Finally the systematic part of the first encoder

is not utilized, i.e. we can puncture the systematic output of the first encoder CE(1).

bi

c3i-1

c3i

c3i-2

Figure 3.15: A rate r = 1/3 PCCC Turbo encoder, consisting of 2 identical parallel
concatenated rate-1/2 convolutional encoders.

Another variant of the Turbo encoder is to use the systematic output of CE(1), c
(1)
i ,

as input to the interleaver instead of information bit bi, which is equivalent to the initial

schema (Fig. 3.15), since c
(1)
i = bi, ∀i.

3.4.2 Decoding of PCCC Turbo codes

A PCCC Turbo decoder, following the same idea with the Turbo encoder, consisting of 2

parallel concatenated unterminated convolutional decoders and a single interleaver. Having

the convolutional decoders we are able to express them as factor graphs, in order to perform

Turbo decoding by applying sum-product algorithm (SPA). We will use a convolutional

decoder (factor graph) as building block, in order to construct the turbo decoder. The

(FG) decoder for PCCC Turbo codes is depicted in figure 3.16

3.4. Turbo codes 92

Before introducing the Turbo decoding algorithm via SPA, we will clarify the structure

of factor graph of Turbo decoder. Firstly, observe that there are two 1/2 unterminated

convolutional decoders, separated by an interleaver, labeled π. Let us denote them CD(1)

and CD(2), respectively. We suppose that the interleaver is pseudo-random and it can

perform interleaving as well as de-interleaving. Moreover, for every systematic bit output

of the first decoder (after renaming c
(1)
2i−1

M
= di) and information bit of the second one, we

have the following mapping:

c
(1)
2i−1 = di = π−1(b

(2)
i) = b

(2)

π−1(i), i = 1, ...k, (3.68)

and simultaneously

b
(2)
i = π(di) = dπ(i), i = 1, ...k. (3.69)

The renaming is performed, because we want the indexes of the interleaver take the values

from 1 to k (while c
(1)
2i−1 has index values bigger than k), hence variable di is uniquely

mapped to variable b
(2)

π−1(i) via de-interleaving and simultaneously variable b
(2)
i is uniquely

mapped to variable dπ(i) via interleaving. The binary variables b
(1)
1 , ..., b

(1)
k , correspond to

the information bits and ideally, it is desirable, the output of the designed decoding algo-

rithm (the output is the estimated bit sequence corresponding to information bit sequence)

be equal with them. Finally the messages from factor nodes pi (i = 1, ..., 3k) to their neigh-

boring variable nodes denote the a posteriori distributions of the variables having a specific

value (binary values) given the channel observations.

Observe that the factor graph contains cycles, therefore the decoding must be per-

formed iteratively via SPA until a predetermined number of iterations is reached. Below is

presented the SPA for Turbo decoding, and in parallel we show the messages on figure 3.17

of every distinct step, with different colored arrows and the index of the corresponding step

next to them. The steps of the SPA PCCC-Turbo decoding algorithm are the following:

1. Set a counter count = 0. Initialize the messages, for i = 1, ..., k:

µ
b
(1)
i −→f

(1)
i

(b
(1)
i) = [

1

2

1

2
]>,

and

µ
b
(2)
i −→f

(2)
i

(b
(2)
i) = [

1

2

1

2
]>,

3.4. Turbo codes 93

and for i = 1, ..., k:

µ
c
(1)
2i −→f

(1)
i

(c
(1)
2i) := µ

p3i−→c
(1)
2i

(c
(1)
2i) = p(c

(1)
2i | y3i),

µ
c
(2)
2i−1−→f

(2)
i

(c
(2)
2i−1) := µ

p3i−2−→c
(2)
2i−1

(c
(2)
2i−1) = p(c

(2)
2i−1 | y3i−2),

µ
c
(2)
2i −→f

(2)
i

(c
(2)
2i) := µ

p3i−1−→c
(2)
2i

(c
(2)
2i) = p(c

(2)
2i | y3i−1);

2. perform decoding on second convolutional decoder CD(2) according to algorithm in

subsection 3.3.2. The output of the SPA convolutional decoding algorithm corre-

sponding to information bits of the CD(2) are the following messages:

µ
f
(2)
i −→b

(2)
i

(b
(2)
i), i = 1, ..., k;

3. propagate the messages µ
f
(2)
i −→b

(2)
i

(b
(2)
i) for i = 1, ..., k, to interleaver, namely,

µ
b
(2)
i −→π

(b
(2)
i) = µ

f
(2)
i −→b

(2)
i

(b
(2)
i), i = 1, ..., k.

Then we de-interleave the messages above, taking

µπ−→di(di) = π−1
(
µ
b
(2)
i −→π

(b
(2)
i)
)
, i = 1, ..., k.

The de-interleaving can be performed since the function µ
b
(2)
i −→π

(b
(2)
i) can be seen as

a vector with size 2, because of b
(2)
i ∈ B and |B| = 2. Set c

(1)
2i−1 = di, i = 1, ..., k.

4. Propagation of messages µ
π−→c(1)2i−1

(c
(1)
2i−1), i.e.

µ
π−→c(1)2i−1

(c
(1)
2i−1) = µ

c
(1)
2i−1−→f

(1)
i

(c
(1)
2i−1), i = 1, ..., k.

5. Having the messages µ
c
(1)
2i−1−→f

(1)
i

(c
(1)
2i−1), µ

c
(1)
2i −→f

(1)
i

(c
(1)
2i) and the message µ

b
(1)
i −→f

(1)
i

(c
(1)
i),

we apply the SPA decoding algorithm on convolutional decoder CD(1). The outputs

of the algorithm (according to Eqs. 3.59, 3.60, 3.61 of chapter 3.3.2) are the messages

µ
f
(1)
i −→b

(1)
i

(b
(1)
i), i = 1, ..., k,

µ
f
(1)
i −→c

(1)
2i−1

(c
(1)
2i−1), i = 1, ..., k,

3.4. Turbo codes 94

µ
f
(1)
i −→c

(1)
2i

(c
(1)
2i), i = 1, ..., k.

Increase counter variable count, i.e. count = count+ 1

• if count = Niter perform hard decisions on messages µ
f
(1)
i −→b

(1)
i

(b
(1)
i) for i =

1, ..., k, and terminate;

• else continue.

6. Propagation of messages µ
f
(1)
i −→c

(1)
2i−1

(c
(1)
2i−1), i.e.

µ
c
(1)
2i−1−→π

(c
(1)
2i−1) = µ

f
(1)
i −→c

(1)
2i−1

(c
(1)
2i−1), i = 1, ..., k.

Set di = c
(1)
2i−1 and interleave the messages above, i.e.

µ
π−→b(2)i

(b
(2)
i) = π

(
µdi−→π(di)

)
, i = 1, ..., k.

7. Propagation of messages µ
π−→b(2)i

(b
(2)
i), i.e.

µ
b
(2)
i −→f

(2)
i

(b
(2)
i) = µ

π−→b(2)i
(b

(2)
i), i = 1, ..., k.

Go to step 2.

The following remarks are noted:

• All variable nodes of the FG of Turbo decoder are either degree one or degree two

variable nodes.

• The soft information passing across the edges of Turbo FG increases the reliability

of information.

• The use of interleaver increase dramatically the BER performance.

• The presence of cycles in Turbo decoder FG leads to an iterative algorithm, which

starts the decoding on the second decoder and finishes when a predetermined number

of iterations is reached. The information part of first decoder corresponds to the

information bit sequence.

3.4. Turbo codes 95

3.4.3 Performance example of PCCC Turbo codes

In this subsection we set in parallel two unterminated convolutional encoders of example

3.5 (CE(1
2
, 1 + D + D2, 1 + D2) ≡ CE(1) ≡ CE(2)), in order to create a rate 1/3 PCCC

Turbo encoder. We send an information sequence b of k = 1000 bits over AWGN channel

using BPSK modulation. The performance is considered in terms of bit error rate (BER)

as a function of SNRdb = 10log10(1
σ2). The length of information sequence plays crucial

role, since its increase implies reduction in BER, but also an increase in computational

complexity. Therefore we note a performance-complexity trade-off. Figure 3.18 depicts why

Turbo codes belong to capacity-approaching codes, since as we can see at 4th iteration SPA

decoding algorithm at 0 dB reaches probability on the order of 2 × 10−5. Significant role

in BER performance of Turbo codes plays the choice of interleaver, since some interleaver

schemes achieve performance close to Shannon limit [28], [29] (the analysis of the interleaver

is beyond the scope of this thesis). Notice the huge gap of BER curve between Turbo coded

system and uncoded system, even in low SNR regime.

3.4. Turbo codes 96

b1
(1)

s0
(1)

c1
(1)

...

...

...

...

b2
(1)

bk
(1)

s1
(1)

s2
(1)

sk-1
(1)

sk
(1)

c2
(1) c3

(1)
c4
(1)

c2k-1
(1) c2k

(1)

b1
(2)

b2
(2)

bk
(2)

sk
(2)

sk-1
(2)s2

(2)
s1
(2)s0

(2)

c1
(2)

c2
(2) c3

(2)
c4
(2) c2k-1

(2)
c2k

(2)

p3 p6 p3k

p1

p2

p4

p5

p3k-2

p3k-1

Figure 3.16: A PCCC Turbo decoder consisting of 2 unterminated convolutional decoders
and an interleaver among them.

3.4. Turbo codes 97

b1
(1)

s0
(1)

c1
(1)

...

...

...

...

b2
(1)

bk
(1)

s1
(1)

s2
(1)

sk-1
(1)

sk
(1)

c2
(1) c3

(1)
c4
(1)

c2k-1
(1) c2k

(1)

b1
(2)

b2
(2)

bk
(2)

sk
(2)

sk-1
(2)s2

(2)
s1
(2)s0

(2)

c1
(2)

c2
(2) c3

(2)
c4
(2) c2k-1

(2)
c2k

(2)

p3 p6 p3k

p1

p2

p4

p5

p3k-2

p3k-1

CD(1)

CD(2)

11111 1

111

111

111

222

333

3
33

4
44

5

555

55

666

666

7 77

Figure 3.17: The message passing schedule during SPA algorithm, for Turbo decoding.

3.4. Turbo codes 98

−1.5 −1 −0.5 0 0.5 1 1.5 2
10

−7

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

SNR
dB

B
it
 E

rr
o

r
R

a
te

 (
B

E
R

)

BER vs SNR
dB

 − Turbo codes (k=1000)

iter
1

iter
2

iter
3

iter
4

uncoded

Figure 3.18: The performance of a rate 1/3 PCCC Turbo code in terms of BER vs SNRdb.

Chapter 4

Factor Graph Applications:

Cooperative Localization

This chapter provides some basic concepts about cooperative localization in wireless net-

works based on a factor graph approach. The material of this chapter relies on the work

of Wymeersch et al. in [12]. At the first section we make a brief introduction about what

localization is. At the next section we state some applications of the sum-product algo-

rithm (SPA) in Bayesian estimation. In sequel, we derive the sum-product algorithm over

wireless networks (aka SPAWN) providing a concluding example for clarification at the

end of the section. At the final subsection we provide some experimental results as well as

Cramer-Rao bound calculation according to [13], corroborating the efficiency of SPAWN

algorithm. The interested reader in cooperative localization can see also [14], [15], [21],

[22] and [23].

4.1 Introduction in localization

A major matter in wireless sensor networks is the awareness of the location of the sensor

nodes composing it. Additionally, sometimes we are not only interested in the information

passing along the network nodes, but also in the awareness of the location of the network

nodes. Therefore new algorithms are generated trying to make the localization as possible

practical, accurate, fast and costless. The localization algorithms are either centralized or

distributed.

In centralized localization algorithms, all the information is collected in a base station.

Base stations can determine the location of each node in the network based on the collected

data, and then a estimation of node’s locations is send back to them. The gathering of

information is performed via wireless transmission. When the size of network increases the

computational overhead as well as the delays and the energy consumption are increasing

too.

On the other hand, in distributed localization algorithms the nodes can be localized

4.1. Introduction in localization 100

independently with a limited number of messages from other neighboring nodes, while the

existence of a central station is no more needed. Therefore, in distributed localization algo-

rithms the congestion in network nodes decreases. Another important issue of distributed

algorithms is the decrease in computational overhead and in energy consumption. However

the localization accuracy is sensitive when the number of network nodes increases, due to

the absence of global information.

Additionally, localization can be segregated in absolute and in relative. In the first, a

small subset of nodes of the network can be equipped with a small global positioning system

(GPS), in order to be the reference nodes of the coordinate system. In such systems (GPS-

based) the overhead is increased due to the operation of the GPS. In relative localization the

coordinate system differs from neighborhood environment to neighborhood environment

and every node is locally interested in distance or angle measurements between neighboring

nodes.

In this thesis we will consider wireless networks which consist of nodes which know

their exact location (anchors) and nodes which have not knowledge about their location

(known as agents). A lot of localization techniques have proposed in literature, such as

trilateration1, triangulation2, multilateration3 and many others.

Localization algorithms suffer when the transmission among network nodes is affected

by uncertainness. Some sources of uncertainness are the noise, the multipath effects, the

fading effects and the internal errors in self measurements due to deficient mechanical parts

of nodes and others.

The main purpose in wireless networks is the prediction of the exact location of agents,

based on the knowledge of anchor’s locations. Sometimes, in scenarios where the network

nodes cannot be localized by a central system, the localization process is desirable to be

executed in a distributed fashion.

Usually the network nodes exchange information via ranging measurements. When an

anchor has neighboring agents send ranging measurements to them. In case where agents

can cooperate they are able to exchange ranging measurements with other agent neighboring

nodes. Cooperative localization is the process we described above and is necessary when

1Is the process of determining locations of points by measurement of distances, using the geometry of
circles and spheres.

2Is the process of determining the location of a point by measuring angles to it from known points at
either end of a fixed baseline, rather than measuring distances to the point directly (trilateration). The
point can then be fixed as the third point of a triangle with one known side and two known angles.

3Multilateration is a navigation technique based on the measurement of the difference in distance to
two or more stations at known locations that broadcasting signals at known times.

4.1. Introduction in localization 101

the anchors on the network are not many. More informations in cooperative localization

can be found in [12].

The simple example below illustrates the significance of cooperation among agents.

Example 4.1 ([12]). Consider a simple network with 5 sensor nodes. Three of them

are anchors (e.g. base stations) and the two of them are agents (e.g. mobile units).

We enumerate the three anchor nodes as nodes 1 to 3 and the rest of them (agents) are

enumerated as nodes 4 and 5. We consider that agent 4 can exchange information with

anchors 1 and 2, while agent 5 can exchange information with anchors 2 and 3. If we further

assume that agents 4 and 5 are within communication range then they can cooperate, in

order to acquire more information about their positions. Figure 4.1 depicts the network

and the connectivity of the network. �

uncertainty

Node 1

Node 2

Node 3

Node 5

Node 4

uncertainty

Figure 4.1: Agent node 4 can communicate with anchors 1 and 2, while agent node 5 can
communicate with anchors 2 and 3. If we apply trilateration technique, the agents 4 and
5 have uncertainty regarding their location. Therefore agents 4 and 5 need to cooperate,
in order to determine their position.

The proposed localization algorithm will be applied in ultra wide bandwidth (UWB)

regime, since it provides resistance in multipath effects, robustness during communication

and has small communication delays for distance resolution on the order of centimeters.

4.2. Bayesian cooperative localization 102

4.2 Bayesian cooperative localization

4.2.1 Sequential Estimation

All the content of this subsection is based on [12]. In many circumstances variables may

change over the time and usually we are interested on the estimation of these variables.

Such situations define the sequential estimation, in which we are interested on estimating

variables at a certain time t, let, variable x(t), based on independent observations until

time t, let them be denoted as z(1:t) = [z(1), ..., z(t)]>. If we assume the following Markovian

assumptions, i.e.:

p(x(t) | x(1:(t−1))) = p(x(t) | x(t−1))

and

p(z(t) | x(0:t)) = p(z(t) | x(t))

Then using these expressions, it can be shown that

p(x(t) | z(1:t)) =

∫
x(t−1)

p
(
x(t), x(t−1) | z(1:t)

)
dx(t−1) (4.1)

or equivalently

p
(
x(t) | z(1:t)

)
∝ p

(
x(t), z(t) | z(1:t−1)

)
= p

(
z(t) | x(t), z(1:t−1)

)
p
(
x(t) | z(1:t−1)

)
= p

(
z(t) | x(t)

)
p
(
x(t) | z(1:t−1)

)
. (4.2)

Last equality results from the fact that given x(t), the observations z(1:t−1) do not provide

useful information. Note that the last term in 4.2 can be further factorized, namely,

p
(
x(t) | z(1:t−1)

)
=

∫
x(t−1)

p
(
x(t), x(t−1) | z(1:t−1)

)
dx(t−1)

=

∫
x(t−1)

p
(
x(t) | x(t−1), z(1:t−1)

)
p
(
x(t−1) | z(1:t−1)

)
dx(t−1)

=

∫
x(t−1)

p
(
x(t) | x(t−1)

)
p
(
x(t−1) | z(1:t−1)

)
dx(t−1), (4.3)

4.2. Bayesian cooperative localization 103

where in the last equality we used the fact that given the variable x(t−1) at time t− 1, the

information from observations until time t−1 (z(1:t−1)) does not provide useful information

for the calculation of the conditional probability, hence it can be omitted. Therefore

p
(
x(t) | x(t−1), z(1:t−1)

)
= p

(
x(t) | x(t−1)

)
.

The expressions above indicate that the function p(x(t) | z(1:t)) depends solely on the

distribution p(x(t−1) | z(1:t−1)) and on the distribution p
(
z(t) | x(t)

)
.

Consider a two step approach from which we can derive the posterior distribution

p(x(t) | z(1:t)) at any time t. Firstly, the prediction operation, in which we compute the

distribution p
(
x(t) | z(1:t−1)

)
of variable x(t) at time t given the observations until time t−1

using Eq. 4.3. Secondly the correction operation, during which we utilize the observation

at time t, z(t), in order to evaluate the posterior distribution of the variable x(t) at time

t given all observations z(1:t) until time t using Eq. 4.2.

The posterior distribution p(x(0:T) | z(1:T)) using the Markovian assumptions above

and accounting the independence in measurements for any time t can be factorized as

p(x(0:T) | z(1:T)) ∝ p
(
x(0)
) T∏
t=1

p
(
x(t) | x(t−1)

)
p
(
z(t) | x(t)

)
. (4.4)

The Eq. 4.4 can be expressed in terms of factor graphs and by applying SPA we can

compute the posterior distribution. Consequently, we note that FGs can be also used in

sequential estimation. The following example from [12] clarifies how it is applied the SPA

on the FGs corresponding to sequential estimation problems.

Example 4.2 ([12]). Consider the factorization of the posterior distribution of Eq. 4.4

for T = 2, namely

p(x(0:2) | z(1:2)) ∝ p
(
x(0)
)
p
(
x(1) | x(0)

)
p
(
z(1) | x(1)

)
p
(
x(2) | x(1)

)
p
(
z(2) | x(2)

)
,

the corresponding normal FG is illustrated in figure 4.2. The message flow is depicted

with arrows with the direction therein. The red arrows with the symbol ’P.O.’ next to

them denote the messages corresponding to the prediction operation, while the purple

arrows with the symbol ’C.O.’ next to them represent the messages corresponding to the

correction operation. Messages from leaf nodes are illustrated with black-colored arrows

and the character ’L’ next to them. We make the following abbreviations: p
(
x(t) | x(t−1)

)
=

f
(t)
A

(
x(t), x(t−1)

)
and p

(
z(t) | x(t)

)
= f

(t)
B

(
x(t)
)
, for t = 1, ..., T , with p

(
x(0)
)

= f
(0)
A

(
x(0)
)
.

We will consider for convenience that the incident edges at equality nodes have the same

4.2. Bayesian cooperative localization 104

label since they correspond to the same variable. The steps of SPA are the following:

• step 0:

µ
f
(0)
A −→X(0)

(
x(0)
)

= f
(0)
A

(
x(0)
)

= p
(
x(0)
)
,

• step 1:

µ
f
(1)
A −→X(1)

(
x(1)
)
∝
∫
µ
X(0)−→f (1)A

(
x(0)
)
× f (1)

A

(
x(1), x(0)

)
{∼ dx(1)}

=

∫
µ
X(0)−→f (1)A

(
x(0)
)
× f (1)

A

(
x(1), x(0)

)
dx(0)

=

∫
p
(
x(1) | x(0)

)
p
(
x(0)
)

dx(0) = p
(
x(1)
)
, (4.5)

and

µ
f
(1)
B −→X(1)

(
x(1)
)

= f
(1)
B

(
x(1)
)

= p
(
z(1) | x(1)

)
.

Finally, the message from the 1st equality node to factor f
(2)
A (·) across the edge X(1)

is given by

µ
X(1)−→f (2)A

(
x(1)
)
∝ µ

f
(1)
A −→X(1) × µf (1)B −→X(1)

(
X(1)

)
= p

(
z(1) | x(1)

)
p
(
x(1)
)
, (4.6)

where the expressions 4.5 and 4.6 correspond to the prediction and the correction

operations at time t = 1, respectively.

• step 2:

Similarly,

µ
f
(2)
A −→X(2)

(
x(2)
)
∝
∫
µ
X(1)−→f (2)A

(
x(1)
)
× f (2)

A

(
x(2), x(1)

)
dx(1), (4.7)

µ
f
(2)
B −→X(2)

(
x(2)
)

= f
(2)
B

(
x(1)
)

= p
(
z(2) | x(2)

)
,

µ
X(2)−→f (3)A

∝ µ
f
(2)
A −→X(2)

(
x(2)
)
× p

(
z(2) | x(2)

)
. (4.8)

Eq. 4.7 corresponds to the prediction operation, while Eq. 4.8 corresponds to cor-

4.2. Bayesian cooperative localization 105

rection operation at time t = 2.

Note that the flow of the messages is from past to future, since the temporal constraints

must be satisfied. Furthermore, it is noted that correction operation is always followed by

prediction operation. �

fA
(0)

fB
(1)

fA
(1) fA

(2)

fB
(2)

X(0) X(1) X(2)

X(1)

X(1)

X(2)

X(2)

C.O.(1)P.O.(1) P.O.(2) C.O.(2)
= =

time

L(0)

L(2)L(1)

Figure 4.2: In this figure is illustrated the factorization of example 4.2. P.O.(t) stands for
the prediction operation at time t, similarly C.O.(t) denotes the correction operation at
time t. L(t) denotes the leaf node messages at time t.

4.2.2 System model

All of the material below is exclusively based on [12]. In this subsection we describe

the problem formulation as well as some assumptions considered, in order to derive the

cooperative distributed localization algorithm.

Assume a wireless network with N nodes, where the time is slotted and the movement

is independent for all nodes from their position at a time slot t to a new position at time

slot t+ 1. The position of node i at time slot t is denoted by x
(t)
i and belongs either in R2

or R3. Consider a node i, then the set of nodes from which node i can receive information

at time slot t is denoted S(t)
→i, while the set of nodes which can receive information from

node i at time slot t is denoted S(t)
i→. Every node i can have its own measurements at

time slot t denoted by zti,self . A node i can also receive measurements at time slot t from

neighboring nodes j (j ∈ S(t)
→i). These measurements are called relative measurements of

node i and denoted z
(t)
i,rel or z

(t)
j→i, ∀j ∈ S

(t)
→i. Every agent i desires to estimate its position

x
(t)
i at time t based on relative and its self measurements. All this must be performed

under the presence of noise in ranging measurements as well as of multipath effect. Low

4.2. Bayesian cooperative localization 106

computational complexity with as small as possible overhead in the transmission and small

delays are desirable for the design of the localization algorithm.

The matrix of all network node positions at time t is denoted by x(t) and is matrix since

the positions belong either in R2 or in R3. The following assumptions are considered [12]:

• The positions of nodes are a priori independent, that is:

p(x(0)) =
N∏
i=1

p(x
(0)
i). (4.9)

• The movement of nodes follows a memoryless walk:

p(x(0:T)) = p(x(0))
T∏
t=1

p(x(t) | x(t−1)), (4.10)

where the expression x(0:T) (tensor) denotes the sequence of positions from time index

0 to time index T .

• Nodes move independently, i.e.:

p(x(t) | x(t−1)) =
N∏
i=1

p(x
(t)
i | x

(t−1)
i), (4.11)

• Relative measurements are independent of internal measurements given the node

positions:

p(z
(1:T)
rel | x(0:T), z

(1:T)
self) = p(z

(1:T)
rel | x(0:T)), (4.12)

where z
(1:T)
rel denotes the relative measurements of all network nodes from time slot 1

until time slot T . The self measurements z
(1:T)
self are defined, similarly.

• Self measurements are mutually independent and depend only on the current and

previous node positions, namely:

p(z
(1:T)
self | x

(0:T)) =
T∏
t=1

p(z
(t)
self | x

(t),x(t−1)). (4.13)

4.2. Bayesian cooperative localization 107

• Self measurements of node i depend only on the position of node i:

p(z
(t)
self | x

(t),x(t−1)) =
N∏
i=1

p(z
(t)
i,self | x

(t)
i ,x

(t−1)
i). (4.14)

• Relative measurements are independent from time slot to time slot given the node

positions. They depend only on the current position:

p(z
(1:T)
rel | x(0:T)) =

T∏
t=1

p(z
(t)
rel | x

(t)). (4.15)

• The relative measurements at any time slot t are conditionally independent, depend-

ing solely on the 2 nodes involved:

p(z
(t)
rel | x

(t)) =
N∏
i=1

∏
j∈St→i

p(z
(t)
j→i | x

(t)
j ,x

(t)
i), (4.16)

where z
(t)
j→i denotes the relative measurement from node j to node i at time slot t.

The final assumption in [12] is that every node i knows the following:

1. the initial position distribution p(x
(0)
i);

2. the probability p(x
(t)
i | x

(t−1)
i), which describes the mobility model at any time t;

3. the self measurements z
(t)
i,self at any time t and the corresponding likelihood function

p(z
(t)
i,self | x

(t)
j ,x

(t)
i);

4. the ranging measurements from any neighboring node j, z
(t)
j→i, and the corresponding

likelihood function p(z
(t)
j→i | x

(t)
j ,x

(t)
i) at any time t;

The above assumption constitutes the local information of any node i in the network at

any time t.

4.2.3 Sum product algorithm over wireless networks (SPAWN)

The content of this subsection relies on [12]. In this subsection, we use the term ’node’ to

state a node of the network, while we use the term ’vertex’ to state a node of the factor

graph (FG). Our goal is to find the positions of all nodes in the network for every time t,

4.2. Bayesian cooperative localization 108

x(0:T), based on the measurements as well as on the prior distribution of the locations of

nodes, i.e. based on the vector z(1:T) = [z
(1:T)
self

>
z

(1:T)
rel

>
]> and the pdf p(x(0)), respectively.

The idea of the algorithm is to factorize the posterior distribution p(x(0:T) | z(1:T)), in order

to construct the corresponding FG of that factorization. The next step is to map that FG

onto the time-varying network topology. Finally, sum-product algorithm (SPA) is applied

on the FG in order to perform localization.

We will see that the aforementioned FG consists of some subgraphs which contain

cycles. Therefore a scheduling must be performed, in order the spatial and temporal

constraints in message passing are satisfied. Finally, the application of the sum-product

algorithm on that FG provides a distributed cooperative localization algorithm also known

as (a.k.a.) sum-product algorithm over wireless networks (SPAWN). Regarding SPAWN,

it is considered a three-step approach [12].

In the first step, we simplify the factorization of global function p(x(0:T) | z(1:T)). More

specifically, according to Bayes rule we take

p(x(0:T) | z(1:T)) ∝ p(x(0:T), z(1:T))

= p(x(0:T), z
(1:T)
rel , z

(1:T)
self)

= p(z
(1:T)
rel | x(0:T), z

(1:T)
self)p(x(0:T), z

(1:T)
self)

4.12
= p(z

(1:T)
rel | x(0:T))p(x(0:T), z

(1:T)
self). (4.17)

If we substitute Eqs. 4.10, 4.13 and 4.15 in Eq. 4.17 we take

p(z
(1:T)
rel | x(0:T))p(x(0:T), z

(1:T)
self) = p(z

(1:T)
rel | x(0:T))p(z

(1:T)
self | x

(0:T))p(x(0:T))

4.13,4.15
= p(x(0:T))

T∏
t=1

p(z
(t)
rel | x

(t))p(z
(t)
self | x

(t),x(t−1))

4.10
= p(x(0))

T∏
t=1

p(x(t) | x(t−1))p(z
(t)
rel | x

(t))p(z
(t)
self | x

(t),x(t−1)). (4.18)

Furthermore, due to the assumption of independence in movement and in internal mea-

surements, utilizing Eqs. 4.9, 4.11 and 4.14 in 4.18 we take

(4.18) = p(x(0))
T∏
t=1

p(x(t) | x(t−1))p(z
(t)
rel | x

(t))p(z
(t)
self | x

(t),x(t−1))
4.9,4.11,4.14,4.16

=

4.2. Bayesian cooperative localization 109

=
N∏
i=1

p(x
(0)
i)

T∏
t=1

p(x
(t)
i | x

(t−1)
i)p(z

(t)
i,self | x

(t)
i ,x

(t−1)
i)p(z

(t)
rel | x

(t)). (4.19)

The expression above could be abbreviated, namely if we create 2 new factors defined as:

h
(t−1)
i (X

(t)
i ,X

(t−1)
i) = p(X

(t)
i | X

(t−1)
i)p(z

(t)
i,self | X

(t)
i ,X

(t−1)
i), (4.20)

fi(X
(0)
i) = p(X

(0)
i), (4.21)

then the resulting expression becomes

(4.19)
4.20,4.21

=
N∏
i=1

fi(x
(0)
i)

T∏
t=1

ht−1
i (x

(t)
i ,x

(t−1)
i)p(z

(t)
rel | x

(t)). (4.22)

The factorization above can be expressed in terms of FGs. The FG corresponding to

equation 4.22 is depicted in figure 4.3. Observe that the temporal flow of messages is from

past to present. The vertices of the FG of figure 4.3 corresponding to the factors of Eq.

4.22 have the label of the respective factors inside them. The last term in 4.22, namely the

likelihood pdf p(z
(t)
rel | x(t)) can be further simplified since it is factorisable (see expression

4.16). The latter indicates which nodes of the network can communicate and represents

the likelihood probability of the ranging measurements among neighboring nodes at every

time t. The FG of the pdf p(z
(t)
rel | x(t)) of the network corresponding to example 4.1 is

illustrated in figure 4.4.

In the second step, we utilize the FGs of figures 4.3 and 4.4 mapping them onto the

time-varying network topology. The local information for every network node consists of

the mobility model and the self measurements, consequently, the factor h
(t−1)
i (X

(t)
i ,X

(t−1)
i)

holds all the local information for every node i of the network. Furthermore, every equality

vertex of figure 4.4 corresponds to every variable X
(t)
i which states the location of node

i at time t. For every node j which can send information to node i (j ∈ S(t)
→i) we create

a vertex gj→i(X
(t)
j ,X

(t)
i) = p(z

(t)
j→i | X

(t)
j ,X

(t)
i) which denotes the likelihood distribution of

the ranging measurements z
(t)
j→i given the locations of nodes i and j. If we join all the

vertices corresponding to every node i at time t according to connectivity of the network,

we create the FG of the factorization p(z
(t)
rel | X(t)).

In the final step, the algorithm must take into account the temporal and the spatial

constraints of network topology in order to derive a correct message scheduling. There

are 2 type of messages, firstly, the intranode messages, which involve messages within a

4.2. Bayesian cooperative localization 110

node, secondly, the internode messages corresponding to the ranging measurements be-

tween neighboring nodes. In figure 4.4 the internode messages are depicted with I-red

arrows, while the intranode messages are depicted with E-green arrows.

More specifically, the temporal constraints determine the message flow, which is obvi-

ously from past to present. For example in the factorization of Eq. 4.19 the calculation of

term p(x
(1)
i | x

(0)
i) must follows the calculation of term p(x

(0)
i) for every node i, and so forth.

The messages from past to present are not calculated, since the location of nodes changes

through the passing of time. In figure 4.3 is illustrated the message flow which is illustrated

by arrows from past to present (downward) direction. On the other hand, regarding spatial

constraints, the message transmission among neighboring nodes does not depend on the

receiver, due to the single directional message flow (see figure 4.4). Therefore, every node

which has available information to neighboring nodes broadcasts its information.
The broadcasted messages for every node i to its neighboring nodes j (j ∈ Si→) are

denoted b
(l)

X
(t)
i

(·) ∀i, and express the probability density function (pdf) of node’s i location

all over the network, where l is iteration index and t is time index.

Algorithm 1 [12]

1: given the prior distributions of every node i, p(x
(0)
i), ∀i

2: (loop1)for t = 1 to T

3: (loop2)∀ node i = 1 to N in parallel

4: prediction operation (local information)

µ
h
(t−1)
i →X

(t)
i

(
x
(t)
i

)
∝
∫
x
(t−1)
i

h
(t−1)
i

(
x
(t−1)
i ,x

(t)
i

)
µ
X

(t−1)
i →h

(t−1)
i

(
x
(t−1)
i

)
dx

(t−1)
i

=

∫
x
(t−1)
i

p
(
x
(t)
i |x

(t)
i

)
p
(
z
(t)
i,self |x

(t−1)
i ,x

(t)
i

)
µ
X

(t−1)
i →h

(t−1)
i

(
x
(t−1)
i

)
dx

(t−1)
i

5: end(loop2)

6: Correction Operation Algorithm (Algorithm 2)

7: end(loop1)

4.2. Bayesian cooperative localization 111

... ...f1 fn fN

... ...

......

... ...

...

...

...

...

X1
(0) Xn

(0) XN
(0)

XN
(1)Xn

(1)X1
(1)

X1
(1)

X1
(2)

X1
(2)

X1
(t)

X1
(t+1)

X1
(T)

X1
(T)

Xn
(1)

Xn
(2)

Xn
(2)

Xn
(t)

Xn
(t+1)

Xn
(T)

Xn
(T)

XN
(1)

XN
(2)

XN
(2)

XN
(t)

XN
(t+1)

XN
(T)

XN
(T)... ...

... ...

h1
(0) hn

(0) hN
(0)

h1
(1) hn

(1) hN
(1)

h1
(t) hn

(t) hN
(t)

Figure 4.3: This figure illustrates the FG corresponding to the expression 4.22, that is a
network with N nodes from time 0 until time T . The message flow is from past to present,
hence the direction of arrows is downward.

4.2. Bayesian cooperative localization 112

= = = = =

O

OO O

OOO

O O

O

E E

E

E

E

E

I

I I

II

I

Figure 4.4: The factor graph of the factorization of factor p(z
(t)
rel | x(t)) for the network

of example 4.1. The I-red arrows correspond to internode messages, while the E-green
arrows correspond to intranode messages at equality vertices. Finally the O-black arrows
correspond to incoming and outgoing messages of factor p(z

(t)
rel | x(t)).

Algorithm 2 [12]

1: for every node i = 1 to N in parallel

2: initialize belief b
(0)

X
(t)
i

(·) = µ
h
(t−1)
i →X

(t)
i

(·)
3: end

4: (loop1)for l = 1 to Niter in parallel

5: (loop2)∀ node i = 1 to N in parallel

6: broadcast b
(l−1)
X

(t)
i

(·)

7: receive b
(l−1)
X

(t)
i

(·) from neighbors ∈ S(t)j→i

8: convert b
(l−1)
X

(t)
i

(·) to a distribution with respect to variable X
(t)
i , using integration over X

(t)
j (sum -

4.2. Bayesian cooperative localization 113

product algorithm update schedule), i.e.

µ
(l)

gj→i→X
(t)
i

(
x
(t)
i

)
∝
∫
x
(t)
j

p
(
z
(t)
j→i|x

(t)
i ,x

(t)
j

)
b
(l−1)
X

(t)
j

(
x
(t)
j

)
dx

(t)
j

where b
(l−1)
X

(t)
j

(
x
(t)
j

)
is the belief of node j at the just previous iteration and p

(
z
(t)
j→i|x

(t)
i ,x

(t)
j

)
is the

likelihood of the relative measurements of node j to node i.

9: Update the beliefs based on the measurements and the incoming messages

b
(l)

X
(t)
i

(
x
(t)
i

)
∝ µ

h
(t−1)
i →X

(t)
i

(
x
(t)
i

) ∏
j∈S(t)

j→i

µ
(l)

gj→i→X
(t)
i

(
x
(t)
i

)

10: end (loop2)

11: end (loop1)

12: (loop3)∀ node i = 1 to N in parallel

13: update the outgoing messages based on new beliefs, namely µ
X

(t)
i →h

(t)
i

(·) = b
(Niter)

X
(t)
i

(·)

14: end (loop3)

The idea of SPAWN algorithm is illustrated in Algorithm 1, while the correction op-

eration during the last step of SPAWN algorithm is given in Algorithm 2. The broadcast

message of every node i, b
(l)

X
(t)
i

(·), is also known as belief of node i. The estimated location

of every node i at time t results by computing the mean squared error estimate [30] of its

belief b
(Niter)

X
(t)
i

(·) after the termination of correction operation (Algorithm 2). Namely, the

estimated location of node i at time t is given by

x̂
(t)
i =

∫
x
(t)
i

x
(t)
i b

(Niter)

X
(t)
i

(
x

(t)
i

)
dx

(t)
i (4.23)

Example 4.3. Consider a 50× 50 network with the 5 nodes of figure 4.5(a). Nodes 1 to

3 are anchors, while nodes 4 and 5 are agents. Distance measurements have the following

form:

z
(t)
j→i =

∣∣∣∣∣∣x(t)
j − x

(t)
i

∣∣∣∣∣∣
2

+ wji, ∀j ∈ S(t)
→i ,

where wji is zero mean, Gaussian random variable with variance 0.42.

Agent node 4 can receive distance measurements from anchor nodes 1 and 2, while agent

node 5 can receive distance measurements from anchor nodes 2 and 3. Agents 4 and 5 can

4.2. Bayesian cooperative localization 114

communicate among them, and hence, it can occur cooperation among them. Let t denote

any arbitrary time of SPAWN algorithm.

Initially, before the first iteration (l = 0) of correction phase the beliefs of anchors 1,2

and 3 are Dirac delta functions since they know exactly their locations. Specifically,

b
(0)

X
(t)
1

(x
(t)
1) = δ(x

(t)
1 − x1),

b
(0)

X
(t)
2

(x
(t)
2) = δ(x

(t)
2 − x2),

b
(0)

X
(t)
3

(x
(t)
3) = δ(x

(t)
3 − x3),

where x1, x2 and x3 are the known constant locations of anchors 1,2 and 3, respectively,

e.g. x1 = [30 40]>. Suppose that agent nodes 4 and 5 have no prior information about

their positions, consequently their beliefs are uniform distributions all over the network

map, namely,

b
(0)

X
(t)
4

(x
(t)
4) =

1

502
, 0 ≤ x

(t)
4,1, x

(t)
4,2 ≤ 50,

b
(0)

X
(t)
5

(x
(t)
5) =

1

502
, 0 ≤ x

(t)
5,1, x

(t)
5,2 ≤ 50,

with x
(t)
i = [x

(t)
i,1 x

(t)
i,2]>, ∀i = 1, ..., 5.

• 1st iteration(l=1):

At the first iteration, the network nodes which have knowledge about their position

broadcast information to their neighboring nodes. Anchors 1,2 and 3 broadcast their

beliefs as well as the distance measurements to their corresponding neighboring agent

nodes. Agents 4 and 5 remain idle during iteration 1 since the have no information

about their location. Agent 4 receives the beliefs of anchors 1 and 2 as well as their

distance measurements, since S(1)
→4 = {1, 2}. Therefore, agent 4 is able to compute

the messages µ
(1)

g1→4→X(t)
4

(·) and µ
(1)

g2→4→X(t)
4

(·) according to line 8 in Algorithm 2, i.e.

µ
(1)

g1→4→X(t)
4

(x
(t)
4) =

1

D

∫
x
(t)
1

p
(
z

(t)
1→4|x

(t)
1 ,x

(t)
4

)
b

(0)

X
(t)
1

(
x

(t)
1

)
dx

(t)
1 ,

µ
(1)

g2→4→X(t)
4

(x
(t)
4) =

1

D

∫
x
(t)
2

p
(
z

(t)
2→4|x

(t)
2 ,x

(t)
4

)
b

(0)

X
(t)
2

(
x

(t)
2

)
dx

(t)
2

where D is a normalization constant. Similarly, agent node 5 calculates the mes-

4.2. Bayesian cooperative localization 115

sages µ
(1)

g2→5→X(t)
5

(·) and µ
(1)

g3→5→X(t)
5

(·) utilizing line 8 in Algorithm 2, having received

information from its neighboring nodes 2 and 3 (S(1)
→5 = {2, 3}). The messages

µ
(1)

g1→4→X(t)
4

(·) and µ
(1)

g2→4→X(t)
4

(·) are depicted in figure 4.5(b), whereas the messages

µ
(1)

g2→5→X(t)
5

(·) and µ
(1)

g3→5→X(t)
5

(·) are depicted in figure 4.5(c). Note that these mes-

sages have grommet-shaped distributions, with center the location of anchor and

radius the distance measurements. For example in figure 4.5(b) the distribution of

the message µ
(1)

g1→4→X(t)
4

(·) (upper cycle) has circular shape with center the location

of anchor 1 and radius the distance measurement z
(t)
4→1. Finally the belief of every

agent is updated according to line 9 in Algorithm 2, namely,

b
(1)

X
(t)
4

(
x

(t)
4

)
=

1

D
× µ(1)

g1→4→X(t)
4

(
x

(t)
4

)
× µ(1)

g2→4→X(t)
4

(
x

(t)
4

)
× b(0)

X
(t)
4

(x
(t)
4),

b
(1)

X
(t)
5

(
x

(t)
5

)
=

1

D
× µ(1)

g2→5→X(t)
5

(
x

(t)
5

)
× µ(1)

g3→5→X(t)
5

(
x

(t)
5

)
× b(0)

X
(t)
5

(x
(t)
5),

where we used the fact that µ
h
(t−1)
i →X(t)

i
(·) = b

(0)

X
(t)
i

(·), ∀i = 1, ..., 5, from line 2 in

Algorithm 2. The updated beliefs of agents 4 and 5 are illustrated in figure 4.5(d).

Note that the updated beliefs of agents 4 and 5 are bimodal distributions. Observe

that the estimation of the agent locations has ambiguity, therefore 1 more iteration

of the correction operation needed.

• 2nd iteration(l=2):

At the second iteration of the correction operation agents 4 and 5 broadcast their

beliefs to their neighboring nodes since they have some information about their

positions. Agent node 4 can receive messages from anchors 1 and 2 as well as

from agent 5 (since S(2)
→4 = {1, 2, 5}). Namely, agent 4 computes the messages

µ
(2)

g1→4→X(t)
4

(·), µ(2)

g2→4→X(t)
4

(·) and µ
(2)

g5→4→X(t)
4

(·). The messages from anchors do not

change through the passing of iterations since the distance measurements do not

change, due to their belief (Dirac delta function). Therefore µ
(2)

g1→4→X(t)
4

(·) = µ
(1)

g1→4→X(t)
4

(·)

and µ
(2)

g2→4→X(t)
4

(·) = µ
(1)

g2→4→X(t)
4

(·). The message from agent 5 to agent 4, µ
(2)

g5→4→X(t)
4

(·),
is depicted in figure 4.5(e). The calculation of the latter message follows according to

line 8 in Algorithm 2. Observe that due to the uncertainty of location of agent 5 the

message to agent 4 has double grommet shaped distribution. With similar way, agent

5 receives messages from its neighbors 2, 3 and 4 (since S(2)
→5 = {2, 3, 4}) and calcu-

lates the messages µ
(2)

g2→5→X(t)
5

(·), µ(2)

g3→5→X(t)
5

(·) and µ
(2)

g4→5→X(t)
5

(·) with similar way as

4.2. Bayesian cooperative localization 116

described above. The updated beliefs of agents 4 and 5 are calculated according to

line 9 in Algorithm 2 as follows:

b
(2)

X
(t)
4

(
x

(t)
4

)
=

1

D
× µ(2)

g1→4→X(t)
4

(
x

(t)
4

)
× µ(2)

g2→4→X(t)
4

(
x

(t)
4

)
× µ(2)

g5→4→X(t)
4

(
x

(t)
4

)
× b(0)

X
(t)
4

(x
(t)
4),

b
(2)

X
(t)
5

(
x

(t)
5

)
=

1

D
× µ(2)

g2→5→X(t)
5

(
x

(t)
5

)
× µ(2)

g3→5→X(t)
5

(
x

(t)
5

)
× µ(2)

g4→5→X(t)
5

(
x

(t)
5

)
× b(0)

X
(t)
5

(x
(t)
5).

The beliefs of network nodes after the 2nd iteration are illustrated in figure 4.5(f).

If we apply mean squared error estimation [30] we take:

x̂
(t)
4 =

∫
x
(t)
4

x
(t)
4 b

(2)

X
(t)
4

(
x

(t)
4

)
dx

(t)
4 ,

x̂
(t)
5 =

∫
x
(t)
5

x
(t)
5 b

(2)

X
(t)
5

(
x

(t)
5

)
dx

(t)
5 .

Notice that the structure of correction operation of SPAWN algorithm operates in a tree

fashion. At the first iteration, the nodes connected with anchors have partial or full

information about their location, while at the second iteration agents which neighboring

with anchor’s neighbors will have useful information about their location, and so forth. �

Finally, we state some remarks about SPAWN algorithm.

• The distributed operation of SPAWN relies on the fact that during correction opera-

tion every node uses only the local available information from its neighboring nodes

in order to estimate its position (lines 8 and 9 in Algorithm 2). Regarding prediction

operation, factor h
(·)
i (·) contains only local information of every node i (line 4 in

Algorithm 1).

• SPAWN is sequential estimation problem within the FG framework, since its idea is

to factorize the posterior distribution p(x(0:T) | z(1:T)) in order to create the corre-

sponding FG of that factorization and finally to apply SPA. Furthermore, SPAWN

consists of prediction operation and correction operation, showing that it is a sequen-

tial estimation problem.

Finally we will not proceed to the analysis about mobility model and UWB ranging

models since they are beyond the scope of this thesis. All issues regarding SPAWN algo-

rithm, which omitted can be found in more detail in [12].

4.2. Bayesian cooperative localization 117

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

x [m]

y [m]

node 3

node 2

node 4

node 5

node 1

(a)

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

x [m]

y [m]

node 1

node 2

node 3

node 4

node 5

(b)

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

x [m]

y [m]

node 1

node 2

node 3

node 5

node 4

(c)

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

uncertainty

for node 5

x [m]

y [m]

node 3

node 5

node 4

node 2

node 1uncertainty

for node 4

(d)

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

x [m]

y [m]

node 1

node 2

node 3

node 5

node 4

(e)

0 5 10 15 20 25 30 35 40 45 50
0

5

10

15

20

25

30

35

40

45

50

x [m]

y [m]

node 3

node 2

node 1

node 4

node 5

(f)

Figure 4.5: An example of a five-node network where the true locations of the 3 anchor
nodes are x1 = [30 40]>, x2 = [25 26]>, x3 = [25 10]>, respectively, while the true
locations of the 2 agent nodes are x4 = [30 31]>, x5 = [30 17]>, respectively. We apply
two iterations of correction operation of SPAWN algorithm until the convergence of the
agent’s beliefs.

4.2. Bayesian cooperative localization 118

4.2.4 Experimental results

In this subsection we provide and discuss some numerical results. We consider a 2D 50×50

m2 network where the coordinates of nodes x = [x y]> and the connectivity are given in

figure 4.6. As we can see the network consist of 3 anchors and 2 agents. Although, there is

uncertainty in localization since agents can exchange information only with 2 anchor nodes,

therefore there exist ambiguity between two possible locations, thus, additional information

is required. However, each agent is also connected to another agent, therefore cooperation

among the two provides that necessary additional information. Cramer-Rao bound(CRB)

was calculated for the 2D topology according to [13], showing the efficiency of SPAWN

algorithm.4 Moreover SPAWN algorithm utilized for a grid resolution of δ = 0.5m. Figure

4.7 illustrates the performance in terms of MSE calculation across all agents as a function

of noise variance for 2D localization.

The bandwidth metric as a function of MSE is depicted in figure 4.8. Specifically, figure

4.8 shows the size of the messages exchanged among all nodes (anchors and agents) and

the MSE corresponding to the given size. The size of the messages is expressed as the total

real numbers exchanged in the network, namely, if the broadcasted message at iteration l

from agent i requires m real numbers, then the total number will be increased cumulatively

by m. Figure 4.8 depicts the total real numbers exchanged during SPAWN algorithm until

its termination, for the topology of figure 4.6. As we can see SPAWN algorithm requires

in the order of 80K real numbers. For larger ranging errors in noise variance, SPAWN has

poor performance in terms of MSE. Finally, the Cramer-Rao bound (CRB) is depicted in

figure 4.9, i.e. the MSE lower bound achieved by an unbiased estimator of the unknown

coordinates across all agents. Notice that CRB curve follows the same tendency with

SPAWN curve.

4In order to compare SPAWN algorithm with CRB calculation, we consider symmetric ranging mea-
surements, i.e. zi→j = zj→i (as in [13]).

4.2. Bayesian cooperative localization 119

0 10 20 30 40 50
0

10

20

30

40

50
2D topology

anchor

agent

Figure 4.6: Test 2D topology and the corresponding node connectivity: three anchors are
placed at [0 0]> ; [20 35]> ; [50 50]> and two agents at [15 20]> ; [45 20]> , respectively.
Notice that each agent can communicate with only two anchors and another agent.

0.5 1 1.5 2 2.5 3 3.5 4
10

−3

10
−2

10
−1

10
0

10
1

10
2

σ
r

2

M
e

a
n

 S
q

u
a

re
d

 E
rr

o
r

(M
S

E
)

p
e

r
a

ll
a

g
e

n
ts

Performance of SPAWN − MSE vs σ
r

2

SPAWN

Figure 4.7: Mean squared error (MSE) as a function of ranging noise variance σ2
r for 2D

localization.

4.2. Bayesian cooperative localization 120

10
−3

10
−2

10
−1

10
0

10
1

10
2

10
3

1

2

3

4

5

6

7

8

9

10
x 10

4

Mean Square Error

T
o

ta
l
M

e
s
s
a
g

e
s
 (

re
a
l
n
u

m
b

e
rs

)

SPAWN − σ
r

2
 = 0.01

SPAWN − σ
r

2
 = 4

Figure 4.8: Total size of exchanged messages for small and large ranging error noise variance
for SPAWN algorithm.

0.5 1 1.5 2 2.5 3 3.5 4
10

−2

10
−1

10
0

10
1

10
2

�
r

2

C
ra

m
e

r−
R

a
o

B
o

u
n

d

Cramer−Rao Bound for 2D topology

Cramer−Rao Bound

Figure 4.9: Cramer-Rao lower bound (CRB) for the given topology with the given connec-
tivity. The computation of CRB follows according to [13].

Chapter 5

Factor Graph Applications: Time

Scheduling in Multi-hop Networks

The content of this chapter is based on the work of Jung-Chieh Chen et al. [18]. This

chapter examines time scheduling in a packet radio network (PRN), based on a factor graph

approach. The goal is to design a distributed algorithm with low complexity and as small

as possible scheduling delay, in order to reduce the end-to-end communication. The main

idea is to express the PRN in terms of factor graphs (FGs) and to apply the sum-product

algorithm (SPA), i.e. passing soft information through the nodes via messages at the FG.

We will see that the FG corresponding to a PRN exploits local information passing among

the neighboring network nodes of the PRN. The algorithm will be executed in iterative

fashion, since the FG corresponding to a PRN is not cycle-free.

5.1 Introduction

A packet radio network (PRN) is a network in which the stations that constitute it, are

scattered over the space and exchange information via packets wirelessly sharing common

frequency channel. Every station of the network can receive and transmit packets, i.e. it is

a transceiver. The problem in PRNs is to find a fair, reliable and effective time scheduling,

that offers as small as possible end-to-end delays during transmission. It has been shown

that finding such schedule is a NP-hard problem [20].

When two stations of the PRN are within communication range, we say that they

are one-hop neighbors. Stations which are not within communication range, but they

have one or more common one-hop stations, they are two-hop neighbors. Any station can

receive/transmit packets only from/to one-hop neighbors. If two one-hop stations transmit

simultaneously then they suffer from collision. Time frame is the period of time during

which transmission occurs; it is repeated continuously. Moreover, the utilization of a single

frequency channel requires mechanisms that avoid collisions. One popular time scheduling

is the time-division multiple-access (TDMA) protocol, in which all stations of the PRN are

5.2. System model 122

synchronized and the time is divided to a frame of time slots, during which one or more

stations transmit their packet. TDMA scheduling is designed, so that one-hop neighboring

stations won’t transmit simultaneously. Additionally a station won’t transmit and receive

a packet at the same time slot. It is noted that the TDMA schedule usually is not optimal

in terms of channel utilization. Finally, the synchronization process in TDMA causes

overhead.

The algorithm proposed must encounter the following problems:

• In PRNs there exist two possible cases of collisions. The first one occurs when two or

more one-hop neighboring stations transmit their packet simultaneously. The second

one occurs when two or more two-hop neighboring stations transmit their packet to

their common adjacent neighbor station simultaneously, and thus, the latter receives

2 packets from neighboring stations, hence collision.

• Every station of the PRN must transmit at least one packet during the time frame.

• Channel utilization must be maximized.

• Time frame length must be minimized, in order to reduce the end-to-end communi-

cation delays.

5.2 System model

We consider time frame of M equal-length time slots. Given a PRN consisting of N

stations, we create an undirected graph G(V,E). The set of nodes V represents the set of

N stations, while the set of edges E stands for the links among one-hop stations. Namely,

if a node i and a node j have edge among them, then the corresponding stations (i and j)

can exchange packets. We define a N ×N symmetric binary matrix, named connectivity

matrix and denoted by F, where its (i, j)-th element ([F]i,j = fi,j) is given by

[F]i,j =

{
1, if stations i, j are either one-hop-apart or two-hop-apart,

0, otherwise,
(5.1)

and [F]i,i = 0, i = 1, ..., N , by convention. Essentially equation 5.1 denotes that when

[F]i,j = 0 the stations i and j can transmit simultaneously without collision.

When we design a schedule for a PRN, we create a pattern which indicates the time slot

in the time frame every station transmits. This pattern is repeated for every time frame.

5.2. System model 123

We define a M × N binary matrix S for the scheduling pattern; its (m, j)-th element

([S]m,j = sm,j) is given by

[S]m,j =

{
1, if station j can transmit a packet in time slot m,

0, otherwise.
(5.2)

Given matrix S, we calculate the performance of scheduling pattern in terms of the

throughput of the PRN,

τ =
M∑
m=1

N∑
j=1

sm,j , (5.3)

which indicates how many time slots are utilized from PRN stations in the whole time

frame for transmission. Furthermore, the channel utilization for station j is given by

ρj =

∑M
m=1 sm,j
M

, (5.4)

while the channel utilization for the entire PRN is given by

ρ =

∑M
m=1

∑N
j=1 sm,j

M ×N
=

τ

M ×N
, (5.5)

which expresses the average slot utility per frame, with 0 < ρ < 1.

The next step is to express the constraints in terms of the notation above, namely the

optimal schedule SOPT must satisfies:

• Avoid simultaneous packet transmissions of any station and all its one-hop or two-hop

away neighbors:

M∑
m=1

N∑
j=1

N∑
i=1

fi,jsm,jsm,i = 0. (5.6)

• Every station must transmit at least one packet per frame, i.e.

M∑
m=1

sm,j > 0, for j = 1, ..., N. (5.7)

• Maximization of the channel utilization ρ.

5.3. Sum-product algorithm for packet radio networks 124

• Minimization of the frame length M .

Usually the minimum frame length depends on the topology of the PRN. Throughout, we

consider that M takes the lower bound (the bound is derived in [20] and [33] for any PRN

scenario), while we optimize the 3rd condition (maximize channel utilization).

5.3 Sum-product algorithm for packet radio

networks

The main idea of the algorithm is to construct the FG which describes a PRN topology,

taking into account the connectivity constraints. In sequel, is applied SPA on the FG trying

to maximize the channel utilization. The first remark is that the algorithm must executed

in iterative fashion, since the FG has cycles. Therefore, FGs constitute the solution to

that problem, since every station of the PRN (node of the graph) can locally exchange

information with its neighbors, in order to determine whether it could send packet in the

current slot or not.

The FG of the proposed algorithm consists of 2 types of nodes, the variable nodes and

the factor nodes. The variable nodes are labeled {sm,i} and the variables associated with

them (have the same label) are binary variables, taking value 1, if node i can transmit

at time slot m, and 0, if it cannot (1 ≤ i ≤ N, 1 ≤ m ≤ M). There exist 2 kinds of

factor nodes denoted {Im,i} and {Ti}. The first expresses the constraint of equation 5.6,

i.e. prevents the simultaneous transmission of station i and all its one-hop or two-hop

neighbors at time slot m. The second one expresses the constraint of equation 5.7, i.e.

imposes station i to transmit at least once during the whole time frame. Finally, a variable

node {sm,i} is connected across an edge with a factor node {Im,j}, if and only if, the station

i is involved in the jth constraint, i.e. if and only if stations i and j are one-hop or two-

hop neighbors. The following example clarifies how to construct a factor graph from an

arbitrary PRN.

Example 5.1. Consider a packer radio network (PRN) of 5 nodes depicted in figure 5.1.

The corresponding FG of the PRN is illustrated in figure 5.2. The minimum frame length

of that PRN is equal to the maximum degree plus 1, i.e. M = 3. Im,i factor imposes

station i not to transmit simultaneously with one- or two-hop neighbors, at any time slot

m. Ti factor imposes station i to transmit at least once during the M = 3 time slots. The

variable node sm,i corresponds to the station i at time slot m and it is associated with the

5.3. Sum-product algorithm for packet radio networks 125

binary variable sm,i which indicates whether station i transmits its packet at time slot m

(1 → yes, 0 → no). �

1 2 3 4 5

Figure 5.1: A simple PRN with 5 stations. Station 1 is one-hop-apart from station 2,
while station 3 is two-hop-apart from station 1. Hence station 1, 2 and 3 cannot transmit
simultaneously. With similar way we can examine which stations of the PRN cannot
transmit simultaneously.

I factors prevent the simultaneous transmissions of nodes with their one- or two-hop

neighbors. Therefore:

Im,i(sm,i) = I {sm,i is valid bit pattern for local factor Im,i} , (5.8)

where I {·} denotes the indicator function of the expression inside the hooks, while sm,i is a

binary vector consisting of the {sm,i}’s associated with the factor Im,i. Notice that the size

of vector sm,i changes from factor to factor. As valid local bit patterns for factor Im,i, we de-

fine the configurations of vector sm,i that satisfy the local factor Im,i, i.e. those which maxi-

mize the channel utilization for the PRNs as well as satisfy the constraints of factor Im,i. To

be specific, for the PRN of the example 5.1, regarding factor I1,2, the valid local bit patterns

are the configurations of the binary vector s1,2 = (s1,1, s1,2, s1,3, s1,4) equal to (0, 1, 0, 0),

(0, 0, 1, 0) and (1, 0, 0, 1), i.e. the configurations where factor I1,2(s1,1, s1,2, s1,3, s1,4) = 1.

Otherwise, it is equal to 0. Namely the factor I1,2 indicates that we locally examine at

the first time slot the network involving stations which are one- and two-hop away from

station 2, i.e. the stations 1, 2, 3 and 4. That factor allows only station 1 and station 4

to transmit simultaneously since they are three-hop-away stations. Moreover stations 2 or

3 can transmit individually without any other one- or two-hop away neighboring station

transmitting simultaneously, since in the subnetwork of stations 1, 2, 3 and 4, stations

2 and 3 have only one- or two-hop away neighboring stations. Notice that the patterns

(1, 0, 0, 0) and (0, 0, 0, 1) are valid and satisfy the connectivity constraints, but they don’t

satisfy the optimality constraints since if we use one of them, we are not optimal in terms

of channel utilization. For the rest of the I-factors the valid local bit patterns can be

calculated similarly.

Regarding T factor, as we stated above they impose a station to transmit at least once

5.3. Sum-product algorithm for packet radio networks 126

during the time frame. Thus,

Ti(si) = I {si is valid bit pattern for local factor Ti} , (5.9)

where si is a M × 1 binary vector consisting of the {sm,i}’s associated with the factor

Ti. It can be easily seen that the valid local bit patterns are all binary vectors of size

M × 1 except the zero vector. For the example 5.1, regarding factor T1, the valid local

bit patterns are the configurations of binary vector s1 = (s1,1, s2,1, s3,1) equal to (1, 1, 1),

(1, 0, 1), (0, 1, 1), (1, 1, 0), (0, 1, 0), (0, 0, 1), (1, 0, 0), that is, the configurations that make

the factor T1(s1,1, s2,1, s3,1) = 1. All other valid bit patterns for the rest of T -factors can

be calculated accordingly.

As explained, every variable sm,i, ∀i = 1, ..., N, m = 1, ...,M , is binary variable which

indicates if station i transmits a packet at the time slot m. In terms of factor graphs

the messages between variable nodes and factor nodes are 2 × 1 vectors which carry the

probability the variable node sm,i takes the values 1 or 0, respectively. It easily can be

shown that the factor graph of a PRN has M ×N variables nodes, M ×N I-factor nodes

and N T -factor nodes (totally M × N + N factor nodes). We define the set of factors

as F = {I1,1, I1,2, ..., I2,1, ..., I2,N , ..., IM,1, ..., IM,N , T1, T2, ..., TN} = {f1, f2,, f|F|}, with

|F| = M ×N + N and Im,i = f(m−1)N+i. Moreover, we define the set of variables as X =

{s1,1, s1,2, ..., sM,1, ..., sM,N} = {x1, x2,, x|X |}, with |X | = M × N and sm,i = x(m−1)N+i.

N (xi) denotes the set of factor nodes adjacent to the variable node xi. The set of variable

nodes which are adjacent with factor node fj is denoted N (fj). Finally, if we want to

denote a set K except an element ki of the set K, we write K\{ki}.
The message from variable node xi to a neighboring factor node fj is denoted µxi−→fj(xi),

which is a 2×1 vector indicating the probability of the variable xi taking the values 1 or 0.

The message from factor node fj to a neighboring variable node xi is defined accordingly

(µfj−→xi(xi)).

Notice that the factor graph contains cycles, therefore the SPA must be executed iter-

atively until convergence. Niter denotes the number of total iterations and it is determined

by the size of the PRN. While the number of stations that constitute PRN increases the

total number of SPA required iterations increases too. The SPA for PRNs is described as

follows:

1. Initially, we set a counter count = 1. For every variable node we associate an a priori

5.3. Sum-product algorithm for packet radio networks 127

probability following uniform distribution over the range (0, 1), namely

πb(xi) = p(xi = b) ∼ U(0, 1), i = 1, ...,M ×N, b ∈ {0, 1}, (5.10)

normalizing the probabilities in order to have π0(xi)+π1(xi) = 1, where π0(xi) denotes

the a priori probability of variable xi taking the value 0. Then for i = 1, ...,M ×N ,

and j = 1, ..., (M ×N +N), we set

µxi−→fj(0) = π0(xi), (5.11)

and

µxi−→fj(1) = π1(xi). (5.12)

2. The second step is to calculate the messages (vectors) from factor nodes to variable

nodes, following the idea of SPA, i.e. for i = 1, ...,M×N , and j = 1, ..., (M×N+N),

we take

µfj−→xi(xi) =
1

D

∑
∼{xi}

fj (xj)
∏

xl∈N (fj)\{xi}

µxl−→fj(xl), (5.13)

where xj denotes the set of variables which are arguments in factor fj, and recall

that the symbol ∼ {xi} under the sum denotes the sum over all variables which are

arguments in factor fj except variable xi. Finally, D is a normalization constant, such

that µfj−→xi(0) + µfj−→xi(1) = 1. Notice that the factors are not all the same, since

the first M×N of them correspond to I-factors, while the rest of them correspond to

T -factors. Since the aforementioned factors are indicator functions, we can rewrite

the update rule of messages from factor nodes to variable nodes as (for i = 1, ...,M×N
and j = 1, ..., (M ×N +N)):

µfj−→xi(xi) =
1

D

∑
xj∈Vj\{xi}

∏
xl∈N (fj)\{xi}

µxl−→fj(xl), (5.14)

where Vj stands for the set of valid local bit patterns associated with local factor fj.

3. In the third step we calculate the messages from variable nodes to factor nodes, which

5.3. Sum-product algorithm for packet radio networks 128

for i = 1, ...,M ×N , and j = 1, ..., (M ×N +N), are given by

µxi−→fj(xi) =
1

D
πb(xi)

∏
fk∈N (xi)\{fj}

µfk−→xi(xi), (5.15)

where D is a normalization constant.

4. At this step we calculate the marginals of all variable nodes, i.e. for i = 1, ...,M×N ,

we take

gxi(xi) = πb(xi)
∏

fk∈N (xi)

µfk−→xi(xi), (5.16)

5. Having all marginals gxi(xi), ∀xi, we apply hard decisions, in order to infer if the

station corresponding to variable xi transmits or not. That is,

x̂i =

{
1, if gxi(1) > gxi(0)

0, otherwise.
(5.17)

We define the vector of estimated variables of size M×N , denoted x̂ = [x̂1 · · · x̂MN],

as the vector includes x̂i’s of step 5, i = 1, ...,MN . Every local factor has different

variable arguments of vector x̂, therefore the vector x̂j denotes the set of variables

nodes x̂i ∈ x̂ which are adjacent to factor node fj, i.e.

x̂j = {x̂i ∈ x̂ : x̂i ∈ N (fj)} . (5.18)

If x̂ = [x̂1 · · · x̂MN] satisfies all local factor constraints or the number of iteration

is reached to Niter then the algorithm terminates, i.e.

MN+N∏
j=1

fj(x̂j) = 1 (5.19)

or count = Niter then terminate, otherwise the counter increases count = count+ 1,

goto step 2.

5.3. Sum-product algorithm for packet radio networks 129

m = 1

m = 2

m = 3

I1,1

I1,2

I1,3

I1,4

I1,5

I2,1

I2,2

I2,3

I2,4

I2,5

I3,1

I3,2

I3,3

I3,4

I3,5

s1,1

s1,2

s1,3

s1,4

s1,5

s2,1

s2,2

s2,3

s2,4

s2,5

s3,1

s3,2

s3,3

s3,4

s3,5

T1

T2

T3

T4

T5

Figure 5.2: The FG corresponding to the PRN of the figure 5.1. The FG taking into
account all the constraints of the PRN.

Noting the SPA for PRNs the following remarks are stated:

• The SPA for PRNs is distributed algorithm, since only local information passing

5.4. Performance example of time scheduling 130

through the edges of FG.

• The presence of cycle leads to iterative algorithm. The schedule ignores the cycles

and operates without accounting them (as in LDPC codes case).

• The soft information passing through the edges of the FG increases the reliability.

5.4 Performance example of time scheduling

We consider a network of the example 5.1, i.e. the network of figure 5.1. If we construct

the corresponding FG of this PRN, applying the SPA for PRNs we take the time schedule

of figure 5.3. Notice that this scheduling is consistent as well as near-optimal in the sense

of channel utilization, since all nodes transmit at least once during time frame and as much

as possible stations transmit simultaneously at any time slot without causing collision.

Nodes

time slots

m = 1

m = 2

m = 3

1 2 3 4 5

Figure 5.3: A near-optimal schedule after some iterations of SPA for PRNs.

Chapter 6

Conclusion

It was shown that factor graphs (FGs) are bipartite graphs which describe the factorization

of a global function into a product of local functions. FGs can be applied in a wide

range of fields such as signal processing, coding theory, detection and estimation, artificial

intelligence and others ([3], [9], [24]).

Special emphasis was given to the sum-product algorithm (SPA), which can be applied

in any FG stating some variations, such as max-product algorithm and the min-sum algo-

rithm. SPA can also be applied when the FG has cycles, where in such cases an iterative

algorithm is produced, with the corresponding message-passing schedule. The schedule

usually depends on the nature of the problem.

The first presented application on FGs was the decoding of LDPC codes where the FG

had cycles. The SPA-decoding algorithm was presented, ignoring the existence of cycles

and executing it, iteratively. We note that there exists a performance-complexity trade-

off, since the increased bit error rate performance implies larger computational complexity

([31], [27]).

For the case of convolutional codes the FG is cycle-free, hence the SPA-decoding algo-

rithm is not iterative. The resulting FG is created according to a trellis diagram of the

convolutional code. Convolutional decoding in terms of FGs follows the idea of forward-

backward algorithm, but with a simpler approach. The update rules of the decoding

algorithm follow the idea of update rules of SPA for cycle-free FGs ([24], [28]).

The last class of studied codes was Turbo codes. We examined the case of parallel

concatenation of convolutional codes, in which we utilize 2 convolutional encoders/decoders

in parallel and an interleaver among them. The SPA decoding algorithm is iterative since

the FG of Turbo decoder has cycles. The performance of Turbo codes in terms of bit error

rate is excellent and quite similar to the performance of LDPC codes. The performance-

complexity trade-off also exists in the case of Turbo codes ([24], [28]).

In sequel, are studied Bayesian estimation problems and analyzed within the FG frame-

work. More specifically, a cooperative localization algorithm was presented, based on

Bayesian estimation following the idea of FGs. The idea of the algorithm is to construct a

Chapter 6. Conclusion 132

network FG by mapping vertices of the FG onto the network topology. Since the FG has

cycles a scheduling must be considered in order to satisfy the temporal/spatial constraints

of the network. The resulting algorithm (SPAWN) is a distributed cooperative localization

algorithm ([12]).

Finally we considered the application of FGs in the problem of time scheduling for

multi-hop networks. The idea is to map a packet radio network (PRN) to a FG. The

designed algorithm applies SPA onto the FG of the PRN in order to find a near-optimal

time scheduling. The resulting time scheduling must take into account the consistency

constraints (collisions) as well as the optimality constraints (minimization of frame length

- maximization of channel utilization). The resulting FG has cycles, however the SPA

is applied without regard to the cycles. The algorithm estimates a near-optimal time

scheduling, given the constraints ([18]).

We conclude that FGs have great flexibility in modeling systems in a unified way. SPA

is a very elegant and powerful tool to solve several inference problems, therefore it has

application in many fields, including digital communications and networking.

Bibliography

[1] R. G. Gallager, Low-Density Parity-Check Codes. Cambridge, MA: MIT Press, 1963.

[2] R. M. Tanner, “A recursive approach to low complexity codes,” IEEE Trans. Inform.

Theory, vol. IT-27, pp. 533–547, Sept. 1981.

[3] F. R. Kschischang, B. J. Frey, and H.-A. Loelinger, “Factor graphs and the sum-

product algorithm,” IEEE Trans. Information Theory, vol. 47, pp. 498–519, Feb.

2001.

[4] N. Wiberg, H.-A. Loeliger, and R. Kotter, “Codes and iterative decoding on general

graphs,” Eur. Trans. Telecomm., vol. 6, pp. 513–525, Sept./Oct. 1995.

[5] V. Isham, “An introduction to spatial point processes and Markov random fields,”

Int. Stat. Rev., vol. 49, pp. 2143, 1981

[6] F. V. Jensen, An introduction to Bayesian networks. New York: Springer-Verlag, 1996.

[7] J. Pearl, Probabilistic Reasoning in Intelligent Systems, 2nd ed. San Francisco, CA:

Kaufmann, 1988.

[8] G. D. Forney, “Codes on graphs: normal realizations,” IEEE Trans. Information

Theory, vol. 47, no. 1, pp. 520–545, February 2001.

[9] H.-A. Loelinger, “An introduction to factor graphs,” IEEE Signal Processing Maga-

zine, vol. 21, no. 1, pp. 28–41, Jan. 2004.

[10] J. S. Yedidia,W. T. Freeman, and Y.Weiss. Constructing free energy approximations

and generalized belief propagation algorithms. IEEE Transactions on Information

Theory, 51(7):22822312, July 2005.

[11] S. Aji and R. McEliece. “The generalized distributive law.” IEEE Transactions on

Information Theory, 46:325–353, March 2000.

Bibliography 134

[12] H. Wymeersch, J. Lien, and M. Z. Win, “Cooperative localization in wireless net-

works,”Proc. IEEE, vol. 97, no. 2, pp. 427–450, Feb. 2009.

[13] N. Patwari, A. O. Hero III, M. Perkins, N. S. Correal, and R. J. ODea, ”Relative

location estimation in wireless sensor networks,“ IEEE Trans. Signal Processing, vol.

51, no. 8, pp. 2137–2148, Aug. 2003.

[14] P. Alevizos, N. Fasarakis-Hilliard and A. Bletsas, “Cooperative localization in wire-

less networks under bandwidth constraints”, in 2012 Asilomar Conference on Signals,

Systems, and Computers, Pacific Grove, CA, Nov. 2012.

[15] N. Fasarakis-Hilliard, P. Alevizos and A. Bletsas, “Cooperative localization in wireless

networks under bandwidth constraints”, submitted.

[16] C. E. Shannon, “A mathematical theory of communication,” Bell Systems Technical

Journal, vol. 27, pp. 379–423, 1948.

[17] C. Berrou, A. Glavieux, and P. Thitimajshima. “Near Shannon limit error-correcting

coding and decoding: turbo codes.” In Proc. IEEE International Conference on Com-

munications (ICC), pages 1064–1070, Geneva, Switzerland, May 1993

[18] Jung-Chieh Chen, Yeong-Cheng Wang, and Jiunn-Tsair Chen. “A novel broadcast

scheduling strategy using factor graphs and the sum-product algorithm,” IEEE Trans-

actions on Wireless Communications, vol. 5, no. 6, pp. 1241–1249, June 2006.

[19] L. R. Bahl, J. Cocke, F. Jelinek, and J. Raviv, “Optimal decoding of linear codes for

minimizing symbol error rate,” IEEE Trans. Inform. Theory, vol. IT-20, pp. 284–287,

1974.

[20] A. Ephremides and T. V. Truong, “Scheduling broadcast in multihop radio networks,”

IEEE Trans. Commun., vol. 38, pp. 456–460, Apr. 1990

[21] M. Z. Win, Y. Shen, and H. Wymeersch, “On the position error bound in cooperative

networks: A geometric approach,” in Proc. IEEE Int. Symp. Spread Spectr. Tech.

Applicat., Bologna, Italy, Aug. 2008, pp. 637–643.

[22] Y. Shen, H. Wymeersch, and M. Z. Win, “Fundamental limits of wideband cooperative

localization via Fisher information,” in Proc. IEEE Wireless Commun. Netw. Conf.,

Kowloon, Hong Kong, China, Mar. 2007, pp. 3951–3955.

Bibliography 135

[23] N. Patwari, J. N. Ash, S. Kyperountas, A. O. Hero, III, R. L. Moses, and N. S. Correal,

“BLocating the nodes: Cooperative localization in wireless sensor networks,” IEEE

Signal Process. Mag., vol. 22, pp. 54–69, Jul. 2005.

[24] H. Wymeersch, Iterative Receiver Design. Cambridge, U.K.: Cambridge Univ. Press,

2007.

[25] G. D. Forney, Introduction to finite fields. Principles in digital communication II,

course 6.451, MIT, fail 2005. http://ocw.mit.edu/courses/electrical-engineering-and-

computer-science/6-451-principles-of-digital-communication-ii-spring-2005/

[26] Tero Harju, Lecture notes in graph theory. Finland, Department of Mathematics Uni-

versity of Turku, 1994–2011.

[27] A. S. Balatsoukas, Analysis and design of LDPC codes for the relay channel. Under-

graduate thesis, 2010, Technical University of Crete.

[28] C. Schlegel, L. Perez, Trellis and Turbo Coding. Wiley-IEEE Press, March 2004.

[29] S. Lin and D. J. Costello Jr., Error Control Coding. Pearson Prentice Hall, 2nd ed.,

2004.

[30] Bernard C. Levy, Principles of Signal Detection and Parameter Estimation, New York:

Springer, 2008.

[31] T. Richardson and R. Urbanke, Modern Coding Theory. Cambridge University Press,

2008

[32] Gilbert Strang, Linear Algebra and its Applications, Wellesley-Cambridge Press and

SIAM, 4th ed. 2009

[33] D. Jungnickel, Graphs, Networks and Algorithms. Berlin, Germany: Springer-Verlag,

1999.

http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-451-principles-of-digital-communication-ii-spring-2005/
http://ocw.mit.edu/courses/electrical-engineering-and-computer-science/6-451-principles-of-digital-communication-ii-spring-2005/

	Table of Contents
	List of Figures
	List of Abbreviations
	Preface
	Introduction
	Motivation
	Related Work
	Thesis Outline

	Factor Graph Theory: Basics
	Graphs and factors
	Introduction to graphs
	Introduction to factors

	Factor graphs
	Introduction to factor graphs
	Marginals and distributive law
	Sum-product algorithm
	Normal factor graphs
	Sum-product algorithm for normal factor graphs
	Variations of sum-product algorithm
	Cyclic factorizations

	Factor Graph Applications: Coding Theory
	Linear block codes
	Low density parity check (LDPC) codes
	Graph representation of LDPC codes
	Encoding of LDPC codes
	Decoding of LDPC codes
	Remarks on LDPC codes
	Performance example of LDPC codes

	Convolutional codes
	Encoding of convolutional codes
	Decoding of convolutional codes
	Performance example of convolutional codes

	Turbo codes
	Encoding of PCCC Turbo codes
	Decoding of PCCC Turbo codes
	Performance example of PCCC Turbo codes

	Factor Graph Applications: Cooperative Localization
	Introduction in localization
	Bayesian cooperative localization
	Sequential Estimation
	System model
	Sum product algorithm over wireless networks (SPAWN)
	Experimental results

	Factor Graph Applications: Time Scheduling in Multi-hop Networks
	Introduction
	System model
	Sum-product algorithm for packet radio networks
	Performance example of time scheduling

	Conclusion
	Bibliography

