
Soft co-clustering in Map-Reduce
using distributed Sparse Matrix Regression

Ioakim Perros

Submitted to the Department of Electronic and Computer Engineering
in partial fulfillment of the requirements for the

ECE Diploma Degree
Technical University of Crete, Greece

Thesis committee:
Advisor: Professor Minos Garofalakis

Assistant Professor Antonios Deligiannakis
Assistant Professor Michail G. Lagoudakis

October 2012

ABSTRACT

Modern technological and scientific advancements coupled with the
massive increase in computing power and data storage capacity have
given rise to a different paradigm of computer science. Often hailed as
the Fourth Paradigm, it encompasses systems and techniques geared
towards the analysis of and extraction of actionable knowledge from
the abundance of generated data. Co-cluster analysis is an example of
such useful knowledge extraction that describes the process of discov-
ering concepts of a data matrix emerging from the correlations of row
and column subsets.
This thesis studies the design and development of a co-clustering al-

gorithm targeted for big data analysis. Our implementation is based on
the Map-Reduce model and its open-source implementation, Hadoop.
In contrast to earlier work, we approach Map-Reduce co-clustering
through distributed optimization techniques exploiting the idea of Sparse
Matrix Regression (SMR) which can define "soft" co-clusters capturing
important correlations and masking noise in the input data. We give
novel formulations of the different SMR subproblems in a paralleliz-
able way over the Map-Reduce model of computation, and present an
experimental study on real-life data that establishes the accuracy and
scalability of our approach, as well as its ability to consistently discover
new, robust concepts in large data collections.

ii

ACKNOWLEDGMENTS

First, there are a lot of things for which I would like to thank my
parents, Anastassia and Manoussos and my brother Iosif, but I have to
thank them for the most important: for loving me the way they do.
Next, I would like to thank my advisor, professor Minos Garofalakis,

for the trust he showed in me, his ideas and our discussions about my
future steps.
I would also like to thank Evangelos Papalexakis, for greatly explain-

ing many details of the method he developed and his aid as a whole.
Furthermore, I would like to thank professor Athanasios Liavas for his
willingness to explain optimization related material I had never encoun-
tered before.
Xenia Arapi is a person I would like to express my gratitude to, as

well, for setting up HBase to our cluster, just for my work and for her
availability to help if technical issues occured.
My dear Athena is the next person I would like to thank, for her

continuous encouragement through this tough period. Without her sup-
port, the fulfillment of this thesis would literally not be possible.
Finally, I would like to thank my great friends, Lefteris, Nick P.,

Nikos K., Manolis, for all the fun, surprises, support and experiences
we shared, through all these years.

iii

CONTENTS

1 introduction 1
1.1 Thesis Contribution 1
1.2 Thesis Organization 1

2 background 3
2.1 Big Data Initiative 3
2.2 Computing in the clouds 4
2.3 Data Mining 5

2.3.1 Statistical Modeling 5
2.3.2 Machine Learning 6
2.3.3 Computational Approaches to Data Modeling 6

2.4 Clustering 8
2.5 Map-Reduce Framework 10

2.5.1 Map-Reduce model key ideas 12
2.5.2 Map-Reduce or libraries (MPI/OpenMP)

for parallel execution? 14
2.5.3 Hadoop & HDFS 14
2.5.4 HBase 15

3 problem statement-related work 21
3.1 Key Intuition 21
3.2 Applications 22
3.3 Influential works 24
3.4 Large-Scale Co-clustering 30

4 smr co-clustering and admm 33
4.1 Introduction to Sparse Matrix Regression 33

4.1.1 Lasso Regression 33
4.1.2 Non-Negative Matrix Factorization 34
4.1.3 Co-clustering using Sparse Matrix Regression 35

4.2 Alternating Direction of Multipliers Method 37
4.2.1 Optimization preliminaries 38
4.2.2 ADMM precursors and main concept 39

5 implementation analysis 47
5.1 Expression of SMR co-clustering through ADMM 47

5.1.1 General Form 47
5.1.2 First consensus approach 49
5.1.3 Improved consensus approach 51

5.2 Map-Reduce implementation 53
5.2.1 Structure 53
5.2.2 Map-Reduce job analysis 55

5.3 ADMM related choices 65
5.3.1 ADMM convergence criteria 65
5.3.2 Automatic adjustment of parameter ρ 66

6 experimental results 69
6.1 Dataset description and motivation 69
6.2 Accuracy and interpretation 72
6.3 Scaling 75

v

vi contents

7 conclusion 79
7.1 Future work 79

bibliography 80

L I ST OF F IGURES

Figure 1 Data being generated from various web sources
within 1 minute [5] 4

Figure 2 Plotting cholera cases on a map of London 8
Figure 3 Clustering example [14] 9
Figure 4 K-means goal: partition points into k clusters,

by minimizing squared Euclidean distance from
points to their cluster centroids 9

Figure 5 Partitional clustering for k=2,3. Hierarchical clus-
tering dendrogram 10

Figure 6 Google’s and the respective open-source termi-
nology 15

Figure 7 HBase Datamodel view 17
Figure 8 HBase’s physical storage general view 18
Figure 9 HBase’s object hierarchy 18
Figure 10 A co-clustering example: Given A, find group as-

signments r and c such that the resulting sub-
matrices in matrix B are highly correlated. B
is permuted according to co-clustering assign-
ments. 22

Figure 11 ITCC: On the left, we see the joint probability
distribution of X & Y and on the right, the same
amount concerning the "clustered" random vari-
ables. 26

Figure 12 Example matrix A, from [31] 29
Figure 13 Example of Map and Reduce function of [40]

Best choice for 2nd row is the 2nd row group 30
Figure 14 Difference between attempting to build sepa-

rately a linear model for each co-cluster and the
matrix a as whole [41] 31

Figure 15 Application of SMR co-clustering in the Chemo-
metrics context 37

Figure 16 Solving x-minimization step of standard Lasso
problem via ADMM 44

Figure 17 Solving xi-minimization step of consensus Lasso
problem via ADMM. Partitions sharing the same
color participate in the solution of the respective
xi vector. We consider 4 partitions as an exam-
ple. 45

Figure 18 Example of first approach of extending the Lasso
consensus ADMM to our matrix representation 50

Figure 19 Example of improved approach of Lasso consen-
sus ADMM through our matrix representation,
with r = 4, c = 2 52

Figure 20 Structure of contracting matrices of our prob-
lem 53

vii

viii List of Figures

Figure 21 A simple example illustrating the multiplication
of our first process: the partial products corre-
sponding to each column are being accumulated
to calculate each column of the result 56

Figure 22 Data flow for our first caching process. Example
with r = 4, c = 2 58

Figure 23 Data flow for our second caching process. Ex-
ample with r = 4, c = 2 60

Figure 24 Data flow for our main iteration process. Exam-
ple with r = 4, c = 2 63

Figure 25 List of connection measurements in the data
set 70

Figure 26 Distribution of types of connections belonging
to the data set 71

Figure 27 Associated attributes with each group of con-
nections for k = 3 73

Figure 28 Associated attributes with each group of con-
nections for k = 4 74

Figure 29 Associated attributes with each group of con-
nections for k = 5 76

Figure 30 Scaling of first caching process (concerning all 3
jobs) 76

Figure 31 Scaling of second caching process 77
Figure 32 Scaling of main iteration process 77
Figure 33 Scaling of checking for outer convergence pro-

cess (worst-case scenario) 77

1
INTRODUCTION

1.1 thesis contribution

This thesis studies the design and development of a co-clustering al-
gorithm, a process of discovering concepts of a data matrix emerging
from the correlations of row and column subsets, targeted for big data
analysis. Our implementation is based on the Map-Reduce model and
its open-source implementation, Hadoop.
Earlier work view co-clustering as a "hard" partitioning process, where

all input rows and columns belong to only one co-cluster. In contrast
to this, we approach Map-Reduce co-clustering through distributed op-
timization techniques exploiting the idea of Sparse Matrix Regression
(SMR) which can define "soft" co-clusters capturing important correla-
tions and masking noise in the input data.
This is extremely valuable in the case of big data analysis, because

usually as data availability grows, so does level of possible noise in the
data.
We give novel formulations of the different SMR subproblems in a

parallelizable way over the Map-Reduce model of computation, and
present an experimental study on real-life data that establishes the
accuracy and scalability of our approach, as well as its ability to con-
sistently discover new, robust concepts in large data collections.

1.2 thesis organization

Chapter 2 initiates the discussion upon the big data initiative, which
provides the necessary motivation to focus on a different paradigm of
algorithm design, oriented towards data-intensive applications. Further-
more, a brief view of the scientific field we are examining is provided,
as well as a description of programming models and frameworks uti-
lized in this thesis. In Chapter 3, we describe the main idea behind
co-clustering, by pointing out its importance to many applications and
its difference from its one-sided counterpart. We also refer to the pre-
vious work published as of this method, regarding both sequential and
parallel (large-scale) co-clustering approaches. We describe, in Chap-
ter 4, the main concept of Sparse Matrix Regression and provide the
background of the Alternating Direction of Multipliers Method, which
enables us to tackle co-clustering through Map-Reduce model. In Chap-
ter 5, we present the way of expressing the problem in Map-Reduce by
pointing out the reasons why this approach is scalable to large-scale
datasets and explaining various implementation details and choices. We
provide, in Chapter 6, our experimental results on real-life data and dis-
cuss them thoroughly, in terms of accuracy on both matrix dimensions
(pointing out the significance of co-clustering) and scaling. Finally, we

1

2 introduction

conclude this thesis, by mentioning some general inferences about this
work, while pointing out at the same time future research directions.

2
BACKGROUND

In this section, we adduce the challenges posed by our era’s technologi-
cal advancements, which reflect the significance of a different paradigm
of algorithm design. Furthermore, a brief view of the scientific field
we are examining is provided, as well as a description of programming
models and frameworks utilized in this thesis.

2.1 big data initiative

Imagine every thousandth blood cell in human body has a tiny radio
transmitter in it. Imagine that 10 times a second that transmitter sends
each cell’s location to a computer storing the data. Along with position,
it also sends the concentration of a list of 10 chemicals encountered
at receptors distributed at 10 sites over the surface of each cell. Now
imagine following all those blood cells for an hour. That makes a billion
blood cells being sampled 10 times a second for 3,600 seconds. Now
imagine a task of sorting through all those numbers and extracting
something meaningful about the human body. That problem,(which is
not far from our era [1]), would be an example of "Big Data".
In information technology (branch of engineering dealing with the

use of computers and telecommunications equipment to store, retrieve,
transmit and manipulate data), Big Data is a term applied to volu-
minous unstructured and structured data sets, which, because of their
size, cannot be reasonably stored in typical databases for easy process-
ing and managing. Data sources are everywhere, from Web 2.0 and
user-generated content to large scientific experiments, from social net-
works to wireless sensor networks - Figure 1 contains an interesting
infographic on how much data are being generated within 60 seconds
by many famous web services. Typical examples of massive data sources
are the following:

• The Large Hadron Collider (LHC) near Geneva is the world’s
largest particle accelerator, designed to probe the mysteries of the
universe, including the fundamental nature of matter, by recre-
ating conditions shortly following the Big Bang. Experiments at
the LHC produce 30 Petabytes - 30 million Gigabytes - of data
every year, which has to be stored, backed up, and made available
to more than 8,500 scientists around the globe.[2]

• Astronomers have long recognized the importance of a "digital ob-
servatory" that would support the data needs of researchers across
the globe - the Sloan Digital Sky Survey is perhaps the most well
known of these projects. Looking into the future, the Large Syn-
optic Survey Telescope (LSST) is a wide-field instrument that is
capable of observing the entire sky every few days. When the

3

4 background

Figure 1: Data being generated from various web sources within 1 minute [5]

telescope comes online around 2015 in Chile, its 3.2 Gigapixel
primary camera will produce approximately half a Petabyte of
archive images every month. [3]

• The advent of next-generation DNA sequencing technology has
created a deluge of sequence data that needs to be stored, orga-
nized, and delivered to scientists for further study. The European
Bioinformatics Institute (EBI), which hosts a central repository
of sequence data called EMBL-bank, has increased storage capac-
ity from 2.5 Petabytes in 2008 to 5 Petabytes in 2009. Scientists
are predicting that, in the not-so-distant future, sequencing an in-
dividual’s genome will be no more complex than getting a blood
test today - ushering a new era of personalized medicine, where
interventions can be specifically targeted for an individual.

One of the greatest challenges for 21st-century science is how we
respond to this new era of data-intensive science. This is recognized
as a new paradigm beyond experimental and theoretical research and
computer simulations of natural phenomena - one that requires new
tools, techniques, and ways of working, which has been hailed as the
emerging "fourth paradigm" of science [6]. To this direction, institutions
and organizations of all size are turning to people who are capable of
translating this trove of data, into valuable knowledge, establishing the
data scientist profession as one of the most sought-after professions of
our times.

2.2 computing in the clouds

Lately cloud computing has received a substantial amount of atten-
tion from industry, academia and press. As a result, the term "Cloud
Computing" has become a buzzword, overloaded with meanings. There

2.3 data mining 5

is lack of consensus on what is and what is not cloud. Even simple
client-server applications are sometimes included in the category [7].
The boundaries between similar technologies are fuzzy, so there is no
clear distinction among grid, utility, cloud, and other kinds of com-
puting technologies. In spite of the many attempts to describe cloud
computing [8], there is no widely accepted definition.
However, within cloud computing, there is a more cohesive subset

of technologies which is geared towards data analysis. We refer to this
subset as Data Intensive Scalable Computing (DISC) systems. These
systems are aimed mainly at I/O intensive tasks, are optimized for deal-
ing with large amounts of data and use a data-parallel approach. An
interesting feature is that they are "dispersed": computing and storage
facilities are distributed, abstracted and intermixed - while implement-
ing a term known as "utility computing", which, as the name implies,
supposes treatment of computing resources as a metered service, like
electricity or natural gas. This idea harkens back to the days of time-
sharing machines, and in truth is not very different from this antiquated
form of computing. Under this model, a "cloud user" can dynamically
provision any amount of computing resources from a "cloud provider"
on demand and only pay for what is consumed. In practical terms, the
user is paying for access to virtual machine instances that run a stan-
dard operating system such as Linux. These systems attempt to move
computation as close to data as possible because moving large quanti-
ties of data is expensive. Finally, the burden of dealing with the issues
caused by parallelism is removed from the programmer. This provides
the programmer with a scale-agnostic programming model. More de-
tails on the programming model used in this thesis (implemented above
a cloud computing system with the aforementioned characteristics) are
given in Section 2.5.

2.3 data mining

The aforementioned data revolution provides, through its manifesta-
tions, the data from which a data scientist initiates his path, possibly
using a cloud computing framework as described above. The destina-
tion of this path consists of extracting knowledge about the initial data,
through a procedure called Data Mining. The most commonly accepted
definition of data mining is the discovery of "models" for data [9]. A
"model," however, can be one of several things and below we refer to
the most important directions.

2.3.1 Statistical Modeling

Statisticians were the first to use the term "data mining". Originally,
"data mining" or "data dredging" was a derogatory term referring to
attempts to extract information that was not supported by the data.
Today, "data mining" has taken on a positive meaning. Now, statisti-
cians view data mining as the construction of a statistical model, that
is, an underlying distribution from which the visible data is drawn.

6 background

2.3.2 Machine Learning

There are some who regard data mining as synonymous with machine
learning. There is no question that some data mining appropriately
uses algorithms from machine learning. Machine-learning practitioners
use the data as a training set, to train an algorithm of one of the
many types used by machine-learning practitioners (such as Bayes nets,
support-vector machines, decision trees, hidden Markov models, and
many others).
There are situations where using data in this way makes sense. The

typical case where machine learning is a good approach is when we
have little idea of what we are looking for in the data. For example,
it is rather unclear what it is about movies that makes certain movie-
goers like or dislike it. Thus, in answering the "Netflix challenge" [10]
to devise an algorithm that predicts the ratings of movies by users,
based on a sample of their responses, machine-learning algorithms have
proved quite successful.

2.3.3 Computational Approaches to Data Modeling

More recently, computer scientists have looked at data mining as an
algorithmic problem and there are many different approaches to this
direction. Having already mentioned the possibility of constructing a
statistical process whereby the data could have been generated, most
other approaches to data modeling can be described as either:

1. Extracting the most prominent features of the data and ignoring
the rest, or

2. Summarizing the data succinctly and approximately.

2.3.3.1 Feature Extraction

The typical feature-based model looks for the most extreme examples
of a phenomenon and represents the data by these examples. Some of
the important kinds of feature extraction, of particular interest because
of the abundance of data they are usually accompanied by, are:

1. Frequent Itemsets. This model makes sense for data that consists
of "baskets" of small sets of items, as in the market-basket prob-
lem. We look for small sets of items that appear together in many
baskets, and these frequent itemsets are the characterization of
the data that we seek. The original application of this sort of
mining was true market baskets: the sets of items, that people
tend to buy together when checking out at the cash register of a
store or super market.

2. Similar Items. Often, data looks like a collection of sets, and the
objective is to find pairs of sets that have a relatively large fraction
of their elements in common. An example is treating customers at
an on-line store like Amazon as the set of items they have bought.

2.3 data mining 7

In order for Amazon to recommend something else they might
like, Amazon can look for "similar" customers and recommend
something many of these customers have bought. This process is
called "collaborative filtering."

2.3.3.2 Summarization

One of the most important types of data mining for massive datasets
is summarization and one of the most interesting forms of it, is the
PageRank idea, which made Google successful. In this form of Web
mining, the entire complex structure of the Web is summarized by a
single number for each page and as an oversimplification, this number,
the "PageRank" of the page, is the probability that a random walker
on the graph of all worldwide websites, would be at that page at any
given time. The remarkable property this ranking has is that it reflects
very well the "importance" of the page - the degree to which typical
searchers would like that page returned as an answer to their search
query.
Another important form of summarizing data constitutes clustering

(or cluster analysis), which will introduce us to the topic of this thesis.
Cluster analysis (clustering) is the organization of a collection of pat-
terns (usually represented as vectors of measurements, or as points in
a multidimensional space) into clusters based on similarity. Intuitively,
patterns within a valid cluster are more similar to each other than they
are to a pattern belonging to a different cluster. An example of cluster-
ing is depicted in Figure 3, where the input patterns are shown in (a)
and the desired clusters are shown in (b). Here, points belonging to the
same cluster are given the same label. Data modeling puts clustering in
a historical perspective rooted in mathematics, statistics, and numeri-
cal analysis. From a machine learning perspective clusters correspond
to hidden patterns, the search for clusters is unsupervised learning,
and the resulting system represents a data concept. From a practical
perspective clustering plays an outstanding role in data mining applica-
tions such as scientific data exploration, information retrieval and text
mining, spatial database applications, Web analysis, CRM, marketing,
medical diagnostics, computational biology, and many others [11].
Before approaching clustering through a more algorithmic point of

view, it would be interesting to refer to a famous instance of it, with
historical significance. Long ago in London, the physician John Snow,
dealing with a Cholera outbreak plotted the cases on a map of the city.
A small illustration suggesting the process is shown in Figure 2.

The cases clustered around some of the intersections of roads. These
intersections were the locations of wells that had become contaminated
and as a result people who lived nearest these wells got sick, while
people who lived nearer to wells that had not been contaminated did not
get sick. Without the ability to cluster the data, the cause of Cholera
would not have been discovered. This discovery came to influence public
health and the construction of improved sanitation facilities beginning
in the 19th century [12].

8 background

Figure 2: Plotting cholera cases on a map of London

2.4 clustering

The variety of techniques for representing data, measuring proximity
between data elements, and grouping data elements has produced a
rich and often confusing assortment of clustering methods, which may
be distinguished in two categories:

1. Partitional methods Given a database of n objects, a partitional
clustering algorithm constructs k partitions of the data, so that
an objective function is optimized. One of the issues with such
algorithms is their high complexity, as some of them exhaustively
enumerate all possible groupings and try to find the global opti-
mum. Even for a small number of objects, the number of parti-
tions is huge. That is why common solutions start with an initial,
usually random, partition and proceed with its refinement. A bet-
ter practice is to run the partitional algorithm for several different
sets of k initial points (considered as representatives), and keep
the result with the best quality.
Partitional clustering algorithms try to locally improve a certain
criterion. The majority of them could be considered as greedy
algorithms, i.e., algorithms that at each step choose the best so-
lution and may not lead to optimal results in the end. The best
solution at each step is the placement of a certain object in the
cluster for which the representative point is nearest to the object.
The most famous algorithm of this family is k-means [15] and an
instance of its application is depicted below.

2. Hierarchical methods They create a hierarchical decomposition of
the objects, being either agglomerative (bottom-up) or divisive
(top-down):

a) Agglomerative algorithms start with each object being a sep-
arate cluster itself, and successively merge groups according
to a distance measure. The clustering may stop when all

2.4 clustering 9

Figure 3: Clustering example [14]

Figure 4: K-means goal: partition points into k clusters, by minimizing
squared Euclidean distance from points to their cluster centroids

objects are in a single group or at any other point the user
chooses. These methods generally follow a greedy bottom-up
merging.

b) Divisive algorithms follow the opposite strategy. They start
with one group of all objects and successively split groups
into smaller ones, until each object falls in one cluster, or
until a desired number of clusters is reached. This is similar
to the approach followed by divide-and-conquer algorithms,
i.e., algorithms that, given an instance of the problem to be
solved, split this instance into several, smaller, sub-instances
(of the same problem), independently solve each of the sub-
instances and then combine the sub-instance solutions so as
to yield a solution for the original instance.

Partitional and hierarchical methods can be integrated. For ex-
ample, a result given by a hierarchical method can be improved
via a partitional step, which refines the result via iterative reloca-
tion of points. A representation of the above description is given
in Figure 5.

Returning to the classical K-means clustering, it is shown [17] to be
computationally difficult, despite that its objective seems straightfor-

10 background

Figure 5: Partitional clustering for k=2,3. Hierarchical clustering dendrogram

ward. In particular, its hardness is described by the class of NP-Hard
problems, which means that an optimal solution is unattainable within
a reasonable amount of time 1. However, it is wise to sacrifice optimality
and settle for a good feasible solution that can be computed efficiently.

2.5 map-reduce framework

An introduction to Map-Reduce programming model is provided below,
along with descriptions of open-source implementations utilized in this
thesis that are inextricably related to this model.
Map-Reduce is a programming model introduced by Google [33]

in 2004, to support distributed computing on large datasets. Today
Google’s Map-Reduce framework is used inside Google to process data
on the order of petabytes on a network of few thousand computers. The
framework is inspired by map and reduce functions, commonly used in
functional programming.
The basic characteristic of this model is that the whole processing is

divided in two steps: map and reduce, while all input/output/interme-
diate data are being encoded as pairs of a key and a value attached to
this key.
Input data have to be organized in such pairs and the framework is

responsible for the map function’s execution and the output of inter-
mediate < key, value > pairs. Map-Reduce framework processes this
output before transferring it to the reduce phase. This processing sorts
and groups the < key, value > pairs by key. Finally, the reduce function

1 A more strict definition of NP-hard class problems is as follows: a problem is NP-hard
if an algorithm for solving it can be translated into one for solving any NP-problem
(nondeterministic polynomial time) problem. NP-hard therefore means "at least as
hard as any NP-problem," although it might, in fact, be harder.

2.5 map-reduce framework 11

processes the aforementioned tuples and usually emits a "reduced" set
of them.
To better understand the Map/Reduce, lets consider an example.

Given below are the map and reduce function for categorizing a set of
numbers as even or odd.

Algorithm 1 Even or Odd MR example
1: procedure Map(String key, Integer values)
2: //key: File Name
3: //values: list of numbers
4: for each v in values do
5: if v%2 == 0 then
6: emit < ”even”, v >
7: else
8: emit < ”odd”, v >
9: end if

10: end for
11: end procedure
12: procedure Reduce(String key, Iterator values)
13: //key: Even or Odd
14: //values: Iterator over list of numbers
15: //(categorized as odd or even)
16: String val = values.next()
17: while values.hasNext() do
18: val = val +”, ”+ values.next()
19: end while
20: emit < key, val >
21: end procedure

This is a very simple example where both the map and reduce func-
tion do not extract anything much interesting. But a programmer has
the freedom to write something a lot more complex through these func-
tions, as will be seen in the coming chapters.
Map-Reduce is Turing Complete. This definition describes a system

in which a program can be written that will find an answer - although
with no guarantees regarding runtime or memory ([13]), so all problems
can be expressed in this model. However, it does not provide advantages
for all problems. The ones that match its philosophy are those that:

• process parts of data independently from each other,

• require only batch computations (on static data sets),

• work with input data easily expressed as < key, value > pairs,

• handle huge load, even TB’s of data,

• can be expressed as a sequence of Map and Reduce functions.

For problem cases handling moderate size of input data, usage of this
model is unworthy, since it leads to delays concering data partitioning
and task sharing, that are comparable with execution’s runtime.

12 background

2.5.1 Map-Reduce model key ideas

In this subsection, we discuss a number of "big ideas" within Map-
Reduce that established it as the most popular parallel programming
model handling massive data, over the last few years. [3]

• Scale out, not up: For data-intensive workloads, a large number
of commodity low-end servers (i.e., the scaling out approach) is
preferred over a small number of high-end servers (i.e., the scal-
ing up approach). The latter approach of purchasing symmetric
multi-processing (SMP) machines with a large number of proces-
sor sockets (dozens, even hundreds) and a large amount of shared
memory (hundreds or even thousands of gigabytes) is not cost ef-
fective, since the costs of such machines do not scale linearly (i.e.,
a machine with twice as many processors is often significantly
more than twice as expensive). On the other hand, the low-end
server market overlaps with the high-volume desktop computing
market, which has the effect of keeping prices low due to compe-
tition, interchangeable components, and economies of scale.

• Assume failures are common - providing fault tolerance:
At warehouse scale, failures are not only inevitable, but common-
place. A simple calculation suffices to demonstrate: let us sup-
pose that a cluster is built from reliable machines with a mean-
time between failures (MTBF) of 1000 days (about three years).
Even with these reliable servers, a 10,000-server cluster would still
experience roughly 10 failures a day. For the sake of argument,
let us suppose that a MTBF of 10,000 days (about thirty years)
were achievable at realistic costs (which is unlikely). Even then,
a 10,000-server cluster would still experience one failure daily.
This means that any large-scale service that is distributed across
a large cluster (either a user-facing application or a computing
platform like MapReduce) must cope with hardware failures as
an intrinsic aspect of its operation. That is, a server may fail
at any time, without notice. For example, in large clusters disk
failures are common and RAM experiences more errors than one
might expect. Datacenters suffer from both planned outages (e.g.,
system maintenance and hardware upgrades) and unexpected out-
ages (e.g., power failure, connectivity loss, etc.).
Mature implementations of the Map-Reduce programming model
are able to robustly cope with failures through a number of mech-
anisms such as automatic task restarts on different cluster nodes.

• Move processing to the data: In traditional high-performance
computing (HPC) applications (e.g., for climate or nuclear simula-
tions), it is commonplace for a supercomputer to have processing
nodes and storage nodes linked together by a high-capacity inter-
connect. Many data-intensive workloads are not very processor-
demanding, which means that the separation of compute and
storage creates a bottleneck in the network. As an alternative to
moving data around, it is more efficient to move the processing

2.5 map-reduce framework 13

around. That is, MapReduce assumes an architecture where pro-
cessors and storage (disk) are co-located. In such a setup, we can
take advantage of data locality by running code on the processor
directly attached to the block of data we need. The distributed
file system is responsible for managing the data over which Map-
Reduce operates.

• Process data sequentially and avoid random access: Data -
intensive processing by definition means that the relevant datasets
are too large to fit in memory and must be held on disk. Seek
times for random disk access are fundamentally limited by the
mechanical nature of the devices: read heads can only move so
fast and platters can only spin so rapidly. As a result, it is desir-
able to avoid random data access, and instead organize compu-
tations so that data is processed sequentially. A simple scenario
poignantly illustrates the large performance gap between sequen-
tial operations and random seeks: assume a 1 terabyte database
containing 1010 100-byte records. Given reasonable assumptions
about disk latency and throughput, a back-of-the-envelop calcu-
lation will show that updating 1% of the records (by accessing
and then mutating each record) will take about a month on a
single machine. On the other hand, if one simply reads the en-
tire database and rewrites all the records (mutating those that
need updating), the process would finish in under a work day
on a single machine. Sequential data access is, literally, orders of
magnitude faster than random data access.
The development of solid-state drives is unlikely to change this
balance for at least two reasons. First, the cost differential be-
tween traditional magnetic disks and solid-state ones remains sub-
stantial: large-data will for the most part remain on mechanical
drives, at least in the near future. Second, although solid- state
disks have substantially faster seek times, order-of-magnitude dif-
ferences in performance between sequential and random access
still remain. Map-Reduce is primarily designed for batch process-
ing over large datasets. To the extent possible, all computations
are organized into long streaming operations that take advantage
of the aggregate bandwidth of many disks in a cluster. Many as-
pects of Map-Reduce’s design explicitly trade latency for through-
put.

• Hide system-level details from the application developer:
The challenges in writing distributed software are greatly com-
pounded - the programmer must manage details across several
threads, processes, or machines. Of course, the biggest headache
in distributed programming is that code runs concurrently in un-
predictable orders, accessing data in unpredictable patterns. This
gives rise to race conditions, deadlocks, and other well-known
problems. Programmers are taught to use low-level devices such
as mutexes and to apply high-level "design patterns" such as
producer-consumer queues to tackle these challenges, but the

14 background

truth remains: concurrent programs are notoriously difficult to
reason about and even harder to debug.
Map-Reduce addresses the challenges of distributed programming
by providing an abstraction that isolates the developer from system-
level details (e.g., locking of data structures, data starvation is-
sues in the processing pipeline, etc.). The programming model
specifies simple and well-defined interfaces between a small num-
ber of components, and therefore is easy for the programmer to
reason about. Map-Reduce maintains a separation of what com-
putations are to be performed and how those computations are
actually carried out on a cluster of machines. The first is under
the control of the programmer, while the second is exclusively the
responsibility of the execution framework or runtime.

2.5.2 Map-Reduce or libraries (MPI/OpenMP)
for parallel execution?

Before the development of Map-Reduce programming model, program
parallelization could be achieved through appropriate modification so
that they make use of certain libraries, such as MPI, or OpenMP. How-
ever, these methods have certain drawbacks:

1. These libraries do not facilitate users who are not experts at par-
allel/distributed programming. Even though, people who posess
these skills face difficulties, as they are responsible both for the
resource allocation at cluster’s machines, as well as for the pro-
cessing part. As mentioned above, for the Map-Reduce case, the
whole resource allocation process remains transparent to the user.

2. Map-Reduce communicates between nodes by disk I/O (on HDF-
S/GFS, which will be mentioned below, which is faster than NTF-
S/EXT3), while MPI performs communication by message pass-
ing.

3. Map-Reduce provides a fault-tolerant mechanism, that is, when
one node fails, map-reduce restarts the same task on another node.
All MPI processes will exit if one of them fails.

Generally, libraries, such as MPI, give more freedom to the pro-
grammer, which leads to more difficulties during program development.
These MPI drawbacks are effectively eliminated through the simple
Map-Reduce model.

2.5.3 Hadoop & HDFS

Today, Hadoop [34] is the most well-known open-source implementation
of the Map-Reduce programming model. It has a worldwide impact
and some of the companies using it (apart from Yahoo!), are Last.fm,
Facebook, New York Times etc. It is being implemented in Java and
supports multiple classes facilitating code development. Map-Reduce

2.5 map-reduce framework 15

Figure 6: Google’s and the respective open-source terminology

programs executed in Hadoop may be developed in other languages as
well (apart from Java), such as Python, Ruby, C++.

HDFS is the distributed file system used by Hadoop, sharing many
common characteristics with Google’s File System(GFS) [38]. Because
those characteristics were analyzed in Map-Reduce section, we refer to
them, from a viewpoint focused at HDFS:

• High fault tolerance: In large-scale distribyted systems, hardware
failures are a commonplace and HDFS cares to locate those nodes
and protects the user from losing data and unpredictable crashes.

• Streaming data access: HDFS was created to process large scale
data in batches (batch processing) and for high throughput achieve-
ment.

• Large input data: HDFS supports very large file storage by split-
ting them into blocks.

• Calculation transfer is cheaper than data transfer: it is obvious
that calculations are more efficient when they are executed close
to the data in use. Performance difference is perceptible for large
scale input data. HDFS prefers to transfer calculations to other
nodes, than transferring respective data, so it posesses mecha-
nisms permitting applications to be moved closer to data - achiev-
ing better data locality.

2.5.4 HBase

HBase ([35]) is an Apache open-source project, the goal of which is
to provide BigTable-like [36] storage(designed to scale to very large
databases) for the Hadoop DFS. As Hadoop and HDFS constitute
open-source implementations of Map-Reduce and GFS, HBase is an
open-source platform emulating Google’s BigTable (this nomenclature
is shown below in Figure 6).
HBase is a type of "NoSQL" database. "NoSQL" is a general term

meaning that the database is not an RDBMS (Relational DataBase
Management System) which supports SQL as its primary access lan-
guage. Technically speaking, HBase is really more a "Data Store" than
"Data Base" because it lacks many of the features we find in an RDBMS,
such as typed columns, secondary indexes, triggers, and advanced query
languages.

16 background

In general words, it constitutes a sparse, consistent, distributed, mul-
tidimensional, sorted map [37, 39]. Below we refer to each of these terms
separately to focus on HBase’s capabilities:

• Map: HBase maintaints maps of keys to values (key→value).
Each of these mappings is called a KeyValue or a Cell, and each
value can be retrieved by each respective key.

• Sorted: These cells are sorted by the key. This is a very important
property as it allows efficiency in searching (ability to retrieve
for example all values between keys X and Y), rather than just
retrieving a value for a known key.

• Multidimensional: The key itself has structure. Each key con-
sists of the following parts: row-key, column family, column, and
timestamp. So the mapping is actually: (rowkey, column family,
column, timestamp) → value. Rowkey and value are bytes, so
anything that can be serialized into a byte array can be stored
into a cell.

• Sparse: This follows from the fact that HBase stores key →
value mappings and that a "row" is nothing more than a grouping
of these mappings (identified by the rowkey mentioned above).
Unlike NULL in most relational databases, no storage is needed
for absent information. In this case, there will be just no cell for
a column that does not have any value. It also means that every
value carries all its coordinates with it.

• Distributed: One key feature of HBase is that the data can
be spread over 100s or 1000s of machines and reach billions of
cells. HBase manages the load balancing automatically and if the
application-specific context requires it, user is able to take control
of distribution management in certain ways.

• Consistent: HBase guarantees that all changes referring to the
same rowkey are atomic. A reader will always read the last written
(and committed) values.

As concerns inner structure, HBase partitions the key space in
Tables and each one of them declares one or more column families,
which define the storage properties for an arbitrary set of columns.

As depicted in Figure 7, the structure of records in HBase’s tables
consist of mappings from (rowkey, column family, column, timestamp)
to a value.

• Rowkey is application-specific and allows the user to define the
desired sort order. Defining the right sort order is extremely im-
portant as scanning is the only way of retrieving any value for
which the key is not known a-priori.
The rowkey also provides a logical grouping of cells and HBase
ensures that all cells with the same rowkey are co-located on the
same server (called a RegionServer in HBase), which allows for

2.5 map-reduce framework 17

Figure 7: HBase Datamodel view

ACID (atomicity, consistency, isolation, durability) guarantees for
updates with the same rowkey without complicated and slow two-
phase-commits.

• Column families are declared when a table is created. They
define storage attributes such as compression, number of versions
to maintain etc.

• Columns are arbitrary names (or labels) assigned by the appli-
cation.

• Timestamp is a Long identifying (by default) the creation time
of the cell. Each cell is versioned, and every "update" creates a
new version of the affected set of cells.

Furthermore, referring to consistency, HBase ensures that all new
versions created by single put operations for a particular rowkey are
either all seen by other clients or seen by none, as well as that a Get or
Scan will only return a combination of versions of cells for a row that
existed together at some point. This ensures that no client will ever see
a partially completed update or delete.
This is being achieved by a variation of Multi Version Concurrency

Control (MVCC) - which is defined as the implementation of updates
not by deleting an old piece of data and overwriting it with a new one,
but instead by marking the old data as obsolete and adding the newer
version. This variation used by HBase, is called Multi Version Con-
sistency Control, and the main idea revolves around the existence of
internal timestamps (apart from the ones discussed above), called mem-
storeTS’s, which handle the whole update process and ensure atomicity.
However, further discussion upon this fact is beyond the scope of this
introduction.
Finally, as for the physical storage, puts and deletes are collected

into an in-memory structure called the MemStore. When it reaches a
certain size, MemStore is flushed to disk into StoreFiles.
Periodically StoreFiles are compacted into fewer StoreFiles. For read-

ing and writing HBase employs Log Structured Mergetrees, which in

18 background

Figure 8: HBase’s physical storage general view

Figure 9: HBase’s object hierarchy

other words means that, reading and compacting in HBase is perform-
ing a merge sort (a scan looks at the heads of all StoreFiles and the
Memstore picks the smallest element first, which in case of a Scan is
returned to the client and in case of a compaction is written to the new
StoreFile).
The aforementioned compactions constitute the minor ones, while

major compactions eventually compact the entire set of files into a
single one, after which the flushes start adding smaller files again.
Since all store files are immutable, there is no way to delete a partic-

ular value out of them, nor does it make sense to keep rewriting large
store files to remove the deleted cells one by one. Instead, a tombstone
marker is written, which masks out the "deleted" information-which
can be a single cell, a range of cells, or entire rows.
The older (referring to timestamp) versions of each column are kept

into HBase’s files, but deletion, in fact, is only possible when a major
compaction has been performed, after which the older versions are re-
moved forever, using the predicate delete based on the configured max-
imum versions to retain. This is the reason why we have mentioned
above that the "delete" term is not accurate enough - true removals
happen only after a major compaction.
A bird’s eye view of the physical storage is provided in Figure 8.

The Figure shows that HBase handles basically two kinds of file types:
one is used for the write-ahead log (used to secure data from crashes)
and the other for actual data storage. The files are primarily handled
by the HRegionServers. HRegionServer opens a region and creates a
corresponding HRegion object. When an HRegion is opened, it sets up
a Store instance for each HColumnFamily for every table as defined
by the user beforehand. Each Store instance can, in turn, have one or
more StoreFile instances, which are lightweight wrappers around the

2.5 map-reduce framework 19

actual storage file called HFile. A Store also has a MemStore, and the
HRegionServer a shared HLog instance. A complete object hierarchy is
shown in 9.

3
PROBLEM STATEMENT-RELATED WORK

In this section, we attempt to provide the concept of co-clustering, by
pointing out its importance to many applications and its difference from
one-sided clustering. Furthermore, we discuss related work on both se-
quential and large-scale co-clustering approaches.

3.1 key intuition

In several applications, the data itself has a lot of structure, which may
be hard to capture using a traditional clustering objective. Consider
the example of a boolean/binary matrix, whose rows correspond to
objects and columns correspond to their features, and an entry is one
if and only if an object is related to a feature. The goal is to cluster
both objects and features of the matrix. One way to accomplish this
would be to independently cluster rows and columns using the standard
notion of clustering (i.e. cluster similar advertisers and cluster similar
keywords).
To be more explanatory, given a data matrix, if we would like to learn

more about its structure and possible partitions, as a first approach we
could consider each row as a vector in multi-dimensional space (where
the number of dimensions would be equal to the number of columns),
and perform clustering (e.g., by k-means) of these vectors. The same
process could then be followed for column vectors.
Even though for some criteria this might be a reasonable solution,

such an endeavor might fail to elicit subtle structures that might exist
in the data. The key intuition and main power of co-clustering against
one-sided clustering can be seen through the following examples:

• Consider that rows correspond to keywords and columns corre-
spond to advertisers, and an entry is one if and only if the ad-
vertiser has placed a bid on the keyword. The goal, again, is to
cluster both the advertisers and the keywords. Perhaps, there are
two disjoint sets of advertisers A1,A2 and keywords K1,K2 such
that each advertiser in Ai bids on each keyword in Kj if and only
if i = j.

• Another example would be a marketing application, where each
customer is represented by a vector, across a list of products and
vice-versa, where we would not be interested in grouping cus-
tomers (or products), but rather in spotting subsets of customers
that tend to buy the same subset of products - even though their
overall buying patterns could otherwise be very different. These
subsets of interest are not known a-priori but had we known them,
the problem would be "reduced" to clustering across a subset of
dimensions.

21

22 problem statement-related work

Figure 10: A co-clustering example: Given A, find group assignments r and c
such that the resulting sub-matrices in matrix B are highly corre-
lated. B is permuted according to co-clustering assignments.

To be able to discover the aforementioned structures, the cluster-
ing objective has to simultaneously intertwine information about both
the advertisers and keywords that are present in the matrix. So, if
we would prefer extracting "blocks" (or "co-clusters") of inter-related
rows and columns rather than similar rows or columns as a whole,
co-clustering (also mentioned as biclustering, block/direct/multi-way/
simultaneous/two-mode/two-sided/two-way/subspace clustering) is pre-
cisely the technique we should aim at, for solving our problem. A typical
example of co-clustering is depicted in Figure 10.

3.2 applications

A number of empirical studies have demonstrated the usefulness of co-
clustering algorithms. A brief summary of them follows:

• Simultaneous clustering of documents and words in text mining
([29]): The key task is to identify document and word clusters
from a bag-of-words model represented in a vector space in the
form of word-by-document matrix.

• Microarray (i.e., genes and experimental conditions) in bioinfor-
matics ([19]): The main idea of discovering latent local patterns is
compatible with the current understanding of cellular processes
that a subset of genes are coregulated under certain experimen-
tal conditions, but to behave almost independently under other
conditions. The main task is to identify groups of similar genes
and similar conditions based on their expression levels. For an ex-
tended survey referring to co-clustering approaches of this type
of data, see [20].

• Metabolic Screening: Many governments have employed screen-
ing of newborns in order to detect metabolic diseases in the ear-
liest possible moment. For this purpose, a blood sample is taken
from each newborn and the concentrations of specific metabo-
lites (i.e., metabolic products) in these blood samples are mea-
sured. In the resulting data matrix, rows represent the newborns
and columns represent the metabolites. Biologists usually want to
identify homogeneous groups of newborns suffering from a com-
mon metabolic disease. Usually, each metabolic disease causes a
correlation between the concentration of a specific set of metabo-
lites. Thus, any clustering algorithm should take into account
that newborns should be grouped together only if they exhibit a

3.2 applications 23

common correlation among a set of metabolites. In addition, the
set of participating metabolites and the type of correlation can
be different for different diseases (i.e., clusters).

• Customer Recommendation Systems: Generalizing the aforemen-
tioned example about marketing applications, in customer rec-
ommendation systems, customers of a company can vote for the
company’s products. Depending on the portfolio of the company,
there may be a very large set of products. It is now interesting,
for example, for target marketing purposes, to cluster the cus-
tomers into groups of homogeneous voting schemata. Customers
that have similar preferences should be grouped together. For
each group, special marketing strategies can be applied taking
each group’s preferences into account. The problem for a clus-
ter analysis process is that different customers may be grouped
together according to different sets of products. In other words,
customer A may share a preference for a given set S of products
with customer B but not with C, whereas A may share another
preference for a different set T of products with C but not with
B. To make the problem even more challenging, the relationships
between the preferences of the customers of one cluster may be
arbitrary complex, like "The lower the products p1 and p2 are
rated, the higher the products p3 and p4 are rated." Symmetri-
cally, clustering products based on similar customer preferences
(where only a small subset of customers may be sufficient to es-
tablish similarity among products) is also a common problem.

• Tokens and contexts in natural language processing: For most
natural language processing applications, the number of tokens
and contexts is extremely large, making it infeasible to directly
employ computationally intensive learning algorithms. Co - clus-
tering alleviates this problem by constructing new features in
a more compact but highly informative representation from co-
cluster centroids.

• Quantized image patches are represented as image features in co-
occurrence matrices of images and low level features [22]. Then,
using the spectral bipartite graph partitioning algorithm [21], the
authors demonstrate that the co-clustering has better retrieval
performance as well as a computational advantage over the tra-
ditional k-means clustering algorithm, especially for high dimen-
sional feature vectors.

• Users and movies in recommender systems [23]: An efficient real-
time collaborative filtering (CF) framework for the movie rating
matrix consisting of users and items (i.e., movies) is proposed.
The key idea is to simultaneously obtain user and item neigh-
borhoods via the co-clustering and generate predictions based on
the average ratings of the co-clusters, a hybrid of incremental and
batch versions of the algorithm is proposed to reflect new users’
ratings. Furthermore, parallel CF based on parallel co-clustering
is discussed.

24 problem statement-related work

• Missing value prediction in recommender systems & co - clus-
tering categorical data matrices: Banerjee et al. ([24]) propose
co - clustering based missing value estimation for collaborative
filtering-based recommender systems. The authors assume a low
parameter structure by using the Bregman co-clustering algo-
rithm with a suitably weighted loss function, where weight is one
for known ratings and zero otherwise (i.e., missing ratings). On
the other hand, the authors consider data matrices consisting of
categorical values from a finite set such as market-basket data
matrices with users by products with the entries corresponding
to preferred brands.

3.3 influential works

In this subsection, we give a short overview of a few influential works
in the field of co-clustering. For a deeper review of co-clustering ap-
proaches, we refer to the excellent surveys of the field, including [26],
[20], [27].
As a preamble, we would like to point that, as proved in [25], partition-

based (hard) 1 co-clustering belongs to the class of NP-Hard problems,
by reduction from the one-sided clustering problem. This finding ex-
plains mathematically the reason why all co-clustering works seek ap-
proximations of the optimal solution (similar to one-sided clustering
solutions in the literature).

• Apparently the earliest (1972) biclustering algorithm that may
be found in the literature is so-called direct clustering by Harti-
gan [28], also known as block clustering. This approach relies on
statistical analysis of submatrices to form the biclusters. Namely,
the quality of a bicluster (k,l) is assessed by the variance

V ar(k, l) =
∑
i∈k

∑
j∈l

(aij − µk)2

where µk is the average value in the bicluster, i.e.:

µk =

∑
i∈k

∑
j∈l aij

|k||l|

A bicluster is considered perfect if it has zero variance, so biclus-
ters with lower variance are considered to be better than biclus-
ters with higher variance. This, however, leads to an undesirable
effect: single-row, single-column submatrices become ideal biclus-
ters as their variance is zero. The issue is resolved by fixing the
number of biclusters and minimizing the objective:

1 meaning that all rows/columns must be present in one and only row/column cluster
forming a checkerboard partitioning of input matrix

3.3 influential works 25

V ar(k, l) =
r∑

k=1

∑
i∈k

∑
j∈l

(aij − µk)2

Hartigan mentioned that other objective functions may be used
to find biclusters with other desirable properties, e.g., minimiz-
ing variance in rows, variance in columns, or biclusters following
certain patterns.

• A more sophisticated criterion for constructing patterned biclus-
ters was introduced by Cheng and Church [19]. It is based on
minimization of the so-called mean squared residue. To formu-
late it, let us introduce the following notation. Let

µik =
1
|k|

∑
j∈k

aij

be the mean of the ith row in the row cluster k,

µjk =
1
|l|

∑
i∈l

aij

be the mean of the jth column in the column cluster l and µk
the same as in the above case (expressing the mean value of the
bicluster (k,l)). The residue of an element aij is defined as

rij = aij − µik − µjk + µk

and the mean squared residue (Hk) of the bicluster (k,l) is defined
as the sum of squares of all rij of the resulting matrix. This value
is equal to zero if all columns of the bicluster are equal to each
other - that would imply that all rows are equal too. A bicluster
(k,l) is called a δ-bicluster if Hk ≤ δ. Cheng and Church proved
that finding the largest square δ-bicluster is NP-hard([19]). So,
the general idea was that using a greedy procedure starting from
the entire data matrix and successively removing columns or rows
contributing most to the mean squared residue score, one could
end up having a well-defined partitioning of the initial matrix.

• Dhillon ([21]) approaches co-clustering as a problem of partition-
ing a bipartite graph via the algorithm Singular Value Decompo-
sition (known as SVD), and Dhillon et al. ([29]) provide a fun-
damental analysis for co-clustering via information theory. The
main intuition of the latter is as follows:
Consider a joint probability distribution p(X,Y). The relative en-
tropy, or the Kullback-Leibler (KL) divergence between two prob-
ability distributions p1(x) and p2(x) is defined as

26 problem statement-related work

Figure 11: ITCC: On the left, we see the joint probability distribution of X
& Y and on the right, the same amount concerning the "clustered"
random variables.

D(p1||p2) =
∑
x

p1(x)log
p1(x)

p2(x)

Kullback-Leibler divergence can be considered as a distance of a
true distribution p1 to an approximation p2.
The mutual information I(X;Y) of two random variables X and Y
is the amount of information shared between these two variables.
In other words, I(X;Y) = I(Y;X) measures how much X tells about
Y and, vice versa. It is defined as:

I(X;Y) =
∑
y

∑
x

p(x, y)log p(x, y)
p(x)p(y)

= D(p(x, y)||p(x)p(y))

The authors define the quality of a co-clustering by the resulting
loss in Mutual Information:

min
X̂,Ŷ

I(X;Y)− I(X̂; Ŷ)

where X̂, Ŷ represent the "clustered" random variables, which are
extracted through the following formula:

p(x̂, ŷ) =
∑
x∈x̂

∑
y∈ŷ

p(x, y)

An example of this calculation is depicted in Figure 11, where
rows of the joint probability distribution p(x, y) are grouped into
three clusters: x̂1 = {x1,x2}, x̂2 = {x3,x4} and x̂3 = {x5,x6}.
Similarly, the natural column clustering is : ŷ1 = {y1, y2, y3} and
ŷ2 = {y4, y5, y6}.
A main observation is that if

q(x, y) = p(x̂, ŷ)p(x|x̂)p(y|ŷ)

where

p(x|x̂) = p(x)/p(x̂)

if row x is assigned to cluster x̂ and zero otherwise, then the above
loss in mutual information can be expressed as:

3.3 influential works 27

I(X;Y)− I(X̂; Ŷ) = D(p(X,Y)||q(X,Y))

In other words, finding an optimal co-clustering is equivalent to
finding a distribution q as defined above, which is close to p in
KL divergence.
Dhillon et al. [29] succeed in expressing the loss in MI, with re-
spect to only row or column distributions. This leads to an iter-
ative algorithm that alternatively updates the row and column
clustering, This enables them to alternatively updates the row
and column clustering, by successively minimizing the respective
costs.

• In [24], Banerjee et al. also view co-clustering as a partitional
problem that is driven by the search for a good approximation
of the original matrix, where the quality of each co-clustering
solution is determined by the approximation error. In this con-
text, they formulate a unified view of co-clustering algorithms,
termed as Bregman co-clustering (BCC), which allows the afore-
mentioned error to be measured using a large class of loss func-
tions called Bregman divergences. These divergences constitute
(by an oversimplistic view) a large class of well-behaved loss func-
tions with a number of desirable properties [24].
Two sub-cases of this class are:

– I-Divergence: Given z ∈ R+, let φ(z) = zlog(z)

For z1, z2 ∈ R+ : dφ(z1, z2) = z1log(z1/z2)− (z1 − z2)

– Squared Euclidean Distance: Given z ∈ R, let φ(z) = z2

For z1, z2 ∈ R : dφ(z1, z2) = (z1 − z2)2

These are used by [29] and [30], respectively, as the aforemen-
tioned Information - Theoretic approach, and Minimum Sum-
Square Residue Co-clustering, are special cases of this generalized
framework.
Another significant quantity for this framework is Bregman infor-
mation which is defined as the expected Bregman divergence to
the expectation, i.e.:

Iφ(Z) = E[dφ(Z,E[Z])]

Extending the same sub-cases as above, we have:

– I-Divergence: Given a real non-negative random variable Z,
the Bregman information is Iφ(Z) = E[Zlog(Z/E[Z])]

– Squared Euclidean Distance: Given any real random variable
Z, the Bregman information is Iφ(Z) = E[(Z −E[Z])2]

28 problem statement-related work

In addition, Banerjee et al. [24], permit multiple structurally dif-
ferent co-clustering schemes that preserve various linear statistics
of the original data matrix. They focus on summary statistics that
correspond to conditional expectations over partitions that result
from the rows, columns and co-clusterings, while establishing that
there are exactly six non-trivial co-clustering schemes. Each of
these schemes corresponds to a unique co-clustering basis, that
is, a combination of conditional expectations over various parti-
tions. Existing partitional co-clustering algorithms presented in
[29] and [30], employ one of the six co-clustering bases.
To sum up, this co-clustering process is guided by the search
for the matrix approximation that has the minimum Bregman
information while preserving the specified co-clustering statistics,
and a pseudocode of its general view is provided below:

Algorithm 2 Bregman CC algorithm
Inputs: Matrix Z, Bregman divergence dφ, #row clusters l,
#column clusters k,representation scheme C
Outputs: Locally optimal co-clustering (ρ?, γ?)
1: Randomly initialize ρ0 and γ0

2: repeat
3: t← t+ 1
4: Obtain minimum Bregman information solution for Ẑ(ρt, γt,C)

(matrix approx.)
5: ρt+1 ← arg minρE[dφ(Z, Ẑ(ρ, γt,C))] (row clustering)
6: γt+1 ← arg minγ E[dφ(Z, Ẑ(ρt+1, γ,C))](column clustering)
7: until convergence

• In [31], a method for extracting co-clusters (referred to as cross
- associations) for binary data is proposed. The main idea is to
divide each iteration into two alternating steps: the search for
a good co-clustering solution for a given number of row/column
clusters and the search for this number of row/column groups.
The former step is achieved through the "classic" way (as in [29]
and the more general [24]) of placing each row in the best (in
terms of cost minimization) row group, given a column clustering
- the symmetric step for columns w.r.t. to row clusters follows. The
latter step is tackled through splitting the group (row/column
respectively) posessing the maximum entropy per row/column.
The cost function used, is based on the Minimum Description
Language principle [32] and the general idea is to minimize the
bits required, in order for a transmitter to broadcast accurately
(i.e., by lossless compression), each given co-clustering solution to
a hypothetical receiver.
More specifically, let A denote an a x b binary matrix. Define:

n1(A) := number of nonzero entries in A
n0(A) := number of zero entries in A

3.3 influential works 29

Figure 12: Example matrix A, from [31]

n(A) := n1(A) + n0(A) = a x b
PA(i) := ni(A)/n(A), i = 0, 1.

Given the knowledge of the matrix dimensions (a,b) and the dis-
tribution PA, matrix A can be encoded as follows:
If we attempt to find the number of necessary bits to encode a
uniform distribution of e.g. 8 possible outcomes, we would need
at least 3 bits to encode each event, and this number results by
taking log(8) = 3 2, because each event can occur with probability
1/8. If this distribution is not uniform though, the probability of
each event would not be equal among the possible events, so the
number of bits necessary to encode each one of them, would be
equal to log(8/Ni), where Ni is the number of occurences of each
event i. So, by generalizing, we have that whenever an event i(i =
0/1) is encountered, it can be encoded using log(n(A)/ni(A))
bits, on average.
As a result, if we multiply each event’s occurences by the above
amount of bits it needs to be encoded, and sum for all possible
events, we end up to the total number of necessary bits to describe
the matrix as a whole. Mathematically:

C(A) =
1∑
0
ni(A)log(

n(A)

ni(A)
) = n(A)H(PA(0)) (1)

where H is the binary Shannon entropy function.
For instance, using the example matrix of Figure 12, we can com-
pute the following: n1(A) = 4,n0(A) = 12,n(A) = 16,PA(1) =
1/4,PA(0) = 3/4. So, according to 1, the total code length for
matrix A is: 4log(4) + 12log(4/3) = 16H(1/4).
By summing the above code length objective, used to quantify
the number of bits required to describe the contents of each co-
cluster, with the number of necessary bits to describe each co-
clustering assignement (i.e.: the bits required to send the number
of row/column groups, the number of rows/columns in each of
the groups as well as the number of ones for all the co-clusters),
we have the MDL objective function being minimized in [31].

2 all logarithms in this section are base 2

30 problem statement-related work

Figure 13: Example of Map and Reduce function of [40]
Best choice for 2nd row is the 2nd row group

3.4 large-scale co-clustering

Below we provide a brief description of works which specifically tackled
the co-clustering problem through the Map-Reduce model [33], target-
ing big data analysis.

• Papadimitriou and Sun [40] propose a hard co-clustering solu-
tion for binary data expressed in Map-Reduce. Their approach
is based on the same principle followed by [24], where summary
statistics of a (permuted according to a co-clustering assignement)
matrix are maintained (as depicted in Figure 11 for the informa-
tion theoretic sub-case), and row with column cluster assigne-
ments are alternatively updated separately until the algorithm
converges. The cost function for those summary statistics is the
MDL-based cost proposed in [31] (Equation 1).
Initially, the transpose of original matrix is pre-computed, to be
used uring the column cluster assignement process; furthermore,
(row/column) labeling vectors (r, c) that depict the cluster to
which each row/column has been assigned so far are initialized (as
is G, representing summary statistics and maintaining the num-
ber of non-zeros for each row-column group intersection). Then,
in the Map phase, each row is placed in every row cluster sequen-
tially, and the assignement that results in the lowest MDL-cost is
chosen. The row group in which each row ended up in, constitutes
the key, while the partial statistics of this row with respect to the
fixed column groups, as well as the row’s id, form together the
value of each < key, value > pair being emitted from Map phase.
As a fundamental property of the Map-Reduce framework, at the
Reduce phase, < key, value > pairs sharing the same key, are
being processed by the same Reducer’s instance. Consequently,
partial statistics for each row cluster are summed and a set union
adds each row to the respective row group. An example of this
Map-Reduce phase is being shown in Figure 13.
An additional global sync step follows each iteration in order
to collect new results for global statistics’ matrix G and row
group assignements. The same process as a whole is followed for
columns, and row/column cluster improvement steps are executed
until convergence.

3.4 large-scale co-clustering 31

Figure 14: Difference between attempting to build separately a linear model
for each co-cluster and the matrix a as whole [41]

• Deodhar and Ghosh [41], employ an approach of simultaneous
co-clustering and classification, in order to exploit the neighbor-
hood information provided by each co-clustering assignment for
a better classification accuracy, assuming we want to classify the
contents of a real-valued data matrix. They attempt to model
each matrix value by an approximate linear combination of both
objects and features, in order to finally, end up to a separate lin-
ear model for each co-cluster (rather than having a single model
for the whole matrix). In Figure 14, the difference between clas-
sification error of both cases is obvious. Referring solely to the
co-clustering method, this approach uses a sub-case of the afore-
mentioned generalized Bregman co-clustering [24], by minimiz-
ing the total squared error between the original matrix and its
approximation (but this approximation here is built upon each
co-cluster’s linear model). In [42], this method has been expressed
in Map-Reduce. The co-clustering approach does not essentially
differ from the aforementioned DisCo work [40] and a third step is
added to the row and column cluster assignments to express the
model building step - these three steps represent each algorithm’s
iteration.

4
SMR CO-CLUSTERING AND ADMM

In this section, we introduce both the problem of Sparse Matrix Regres-
sion (SMR) and the Alternating Direction of Multipliers optimization
method (ADMM). The solution we give in Chapter 5 of SMR using
ADMM, is what allows us to tackle the Sparse Matrix Regression prob-
lem through the Map-Reduce model.

4.1 introduction to sparse matrix regression

A brief review of fundamental definitions and background of Sparse
Matrix Regression are provided below, to facilitate understanding of
the approach.

4.1.1 Lasso Regression

Linear Regression aims to model variables using linear combinations
of certain observations or measurements. The observations are usually
called predictors and are symbolized by x and the outputs are called
responses and are symbolized by y. Linear Regression provides an esti-
mate ŷ of the actual output. Consider the input vector:

x =

x1
...
xp

The linear regression model has the form:

ŷ = f(x) = β0 +
∑p
j=1 xjβj

We assume that the relationships between x and y are linear or ap-
proximately linear. The parameters βi are initially unknown and are
computed via a training process. Let us denote as X the N × p input
matrix, with each row containing an input vector. Let us denote as y
the vector with the corresponding outputs to each row of X. The most
popular estimator for βi is the least squares estimator which minimizes
the residual sum of squares (RSS):

RSS(β) =
∑N
i=1(yi − f(xi))2 =

∑N
i=1(yi −

∑p
j=1 Xijβj)2

Instead of just minimizing the Residual Sum of Squares function,
the group of shrinkage least squares methods also introduces an ad-
ditional penalty to the cost function which eventually leads to more
interpretable models by shrinking or discarding some of the predictor
values.

The Lasso is such a method for linear regression and was first intro-
duced in [47]. The lasso minimizes the RSS, penalizing the optimization

33

34 smr co-clustering and admm

process with the absolute value of the coefficients. By posing this con-
straint, some coefficients tend to become zero, thus providing a more
conceptually interpretable model.
The setting for lasso is the same as the one described in the linear

regression model. We assume N × p matrix X containing the predictor
values and a vector y keeping the responses. We also denote:

β̂ =

β̂1
...
β̂p

Then, the lasso estimate (â, b̂) is obtained through the following op-

timization formula:

min
β

N∑
i=1

(yi − β0 −
p∑
j=1

βjxi,j)
2

subject to
p∑
j=1
|βj | ≤ t

The upper bound t is a tuning parameter. For relatively small values
of t, the solutions are shrunken versions of the least squares estimates,
justifying the term "shrinkage method". Often, some of the coefficients
βj are zero, a property that is quite often desirable. An alternative way
of expressing the lasso equation is the following, with λ ≥ 0 playing an
equivalent role to t:

min
β

N∑
i=1

(yi − β0 −
p∑
j=1

βjxi,j)
2 + λ

p∑
j=1
|βj |

4.1.2 Non-Negative Matrix Factorization

Non-Negative Matrix Factorization (NNMF) can be expressed as a non-
linear, constrained optimization problem, as follows:
Consider a (generally) non-negative matrix M ∈ RI×J . We want

to decompose M into two factors A ∈ RI×k̂, B ∈ RJ×k̂, where k̂ ≤
rank(M) 1 minimizing the following objective function:

min
A,B

||M−ABT ||2F

subject to ai,j ≥ 0 and bi,j ≥ 0

In the factorization principle, each row of the initial data matrix M
is expressed as a linear combination of the columns of B, weighted by
the elements of the corresponding row of A. The fact that this linear

1 The rank of a matrix is the maximum number of linearly independent rows (or
columns).

4.1 introduction to sparse matrix regression 35

combination contains strictly additive relations (imposed by the non-
negativity constraints) between its elements, provides an interpretable
model.
In regards to the computation of NNMF, besides the most popular

multiplicative method, a more simplistic approach for solving it is Al-
ternating Least Squares (ALS). It works by decomposing the non-linear
optimization problem into two linear ones. In general, the method works
as follows:

1. Fix matrix A to initially random values

2. Solve the Non-negative Least Squares problem (NNLS):

min
B

||M−ABT ||2F

subject to bi,j ≥ 0

3. Fix B to the value obtained at the previous step.

4. Solve the Non-negative Least Squares problem (NNLS):

min
A

||M−ABT ||2F

subject to ai,j ≥ 0

5. Repeat from step 2 until convergence.

4.1.3 Co-clustering using Sparse Matrix Regression

Papalexakis et al. [43, 44], introduced a novel approach to co-clustering,
which benefits from modeling the problem of matrix decomposition into
a combination of the aforementioned lasso regression and NNMF.
Mathematically, the simplest form of SMR stated as Lasso regression

problem, is as follows:

min
B

||M−ABT ||2F + λ||B||1

The above equation is similar to the one introduced by Lasso regres-
sion, if we consider each column of M as an output vector, matrix A as
the input matrix and each column of B as the βj coefficients we need
to estimate.
By reforming this regression formula and using matrix transposition,

in order to express it with respect to matrix A, we have:

min
A

||MT −BAT ||2F + λ||A||1

Both of the above equations assume a fixed value for A and B respec-
tively. By combining them into one formula, and concurrently imposing
sparsity, as well as non-negativity for both factors, we have:

min
A,B

||M−ABT ||2F + λ||A||1 + λ||B||1

subject to ai,j ≥ 0 βi,j ≥ 0

36 smr co-clustering and admm

Due to the non-linearity of the above problem, it cannot be solved
in this direct form. One way to solve this is by solving two linear Lasso
problems in an alternating fashion(in a similar way to the aforemen-
tioned ALS). The complexity per iteration is O(IJk̂2) for the Alternat-
ing Sparse Regression algorithm, the pseudocode of which follows:

Algorithm 3 Alternating SMR with NN constraints
Inputs: M(of size I,J), k, λ Outputs: A, B
1: A = rand(I, k)
2: B = rand(J , k)
3: repeat
4: B = min

B≥0
||M−ABT ||2F + λ||B||1

5: A = min
A≥0
||MT −BAT ||2F + λ||A||1

6: until convergence

4.1.3.1 Method properties - interpretation

Having established the above optimization target, besides the attrac-
tive characteristics of NNMF concerning model interpretability of the
factors to which the initial matrix is decomposed, sparsity2 of these
resulting factors is being exploited, as it further improves interpretabil-
ity, by "pushing" small values to exactly zero. Thus, the most powerful
correlations between objects and features are unveiled - as sparsity "se-
lects" these correlations, uniqueness of solution is improved and noise
reduction is performed.
The above concept is examined in [45, 44, 46] and proven experimen-

tally to co-cluster the input matrix in a "soft" and "lossy" way. This
means that we do not seek for a "checkerboard" partitioning of input,
where all objects and features will belong to a co-cluster at the result.
We prefer rather a model which ignores indifferent, noisy data and may
create overlapping co-clusters - where some objects/features may be-
long to more than one output concepts, which is desirable for several
applications.
The main intuition behind the resulting factors A and B is that each

of them corresponds to each of the contracting dimensions forming the
input matrix and the non-zero values existing in the kth column of the
resulting matrices, indicate which rows/columns of A/B respectively,
belong to each of the k co-clusters. Apart from that, each of these non-
zero values, indicate a measure of "belongingness" to the co-cluster they
are members of. Thus, for each of the resulting factors, a division by
the maximum value of each column is a useful post-processing step,
as to further highlight the most important elements belonging to each
co-cluster.
This method’s properties are depicted in an example from the Chemo-

metrics domain 3 in Figure 15, where species sharing the same char-

2 A matrix is called sparse if the zero elements largely outnumber the non-zero ones.
3 Chemometrics is the science of extracting information from chemical systems by
data-driven means.

4.2 alternating direction of multipliers method 37

Figure 15: Application of SMR co-clustering in the Chemometrics context

acteristics are being grouped together and the font-size indicates the
aforementioned "belongingness" to each co-cluster [45].

4.1.3.2 Applicability of this method for large-scale data

In this point, it would be useful to enumerate the reasons why this
method is particularly desirable for large-scale data analysis, by sum-
ming up its advantages from the perspective of "big data", in order to
justify the selection of this approach against others for parallelization:

1. The "soft" co-clustering this method forces to input data is a
fundamental reason for its choice. A reasonable argument to this
direction would be that as data availability grows, so does level
of possible noise in the data. As a result, not all parts of input
data will be important for concept discovery - these are the parts
that we expect this method to extract.

2. The imposition of latent sparsity followed by this approach aids
in the incremental extraction of co-clusters, as the number of
requested co-clusters is increased - establishing this method as
appropriate for large datasets.

3. The extension of this model to multiple dimensions (tensor co-
clustering [44]) does not make any assumptions about the struc-
ture of contracting spaces (e.g.: star structure of domains). Thus,
the tensor extension of this approach through Map-Reduce would
be a promising research direction.

4.2 alternating direction of multipliers method

In this section, we briefly analyze the background behind general opti-
mization methods, as well as ADMM.

38 smr co-clustering and admm

4.2.1 Optimization preliminaries

Many methods for global optimization require a cheaply computable
lower bound on the optimal value of the nonconvex problem, instead
of directly solving the original one. This is often possible by converting
the original form of the optimization problem (i.e. the primal problem)
to a dual form.
To illustrate this procedure, consider an optimization problem in the

standard form [50]:

min f0(x)

subject to fi(x) ≤ 0 i = 1, . . . ,m.
hi(x) = 0 i = 1, . . . , p.

(2)

with variable x ∈ Rn and where the functions from Rn → R,
f0, f1, · · · , fm and h1, · · · ,hm are the objective, inequality constraints
and equality constraints respectively. For now, we do not assume the
problem 2 is convex 4.
The basic idea in Lagrangian duality is to augment the objective

function of 2, with a weighted sum of the constraint functions. Thus,
the Lagrangian L, associated with the problem 2, is defined as:

L(x,λ, v) = f0(x) +
m∑
i=1

λifi(x) +
p∑
i=1

vihi(x) (3)

We refer to λi as the Lagrange multiplier associated with the ith in-
equality constraint; similarly we refer to vi as the Lagrange multiplier
associated with the ith equality constraint hi(x) = 0. The vectors λ
and v are called dual variables or Lagrange multiplier vectors associ-
ated with problem 2. They can be thought of "costs" associated with
violating different constraints.

We define the Lagrange dual function (or just dual function) as the
minimum value of the Lagrangian over x:

g(λ, v) = inf
x∈D

(f0(x) +
m∑
i=1

λifi(x) +
p∑
i=1

vihi(x)) (4)

It is shown (proof omitted for brevity - can be found in Boyd et al.
optimization book [51]) that for any λ ≥ 0 and any v, the dual function
yields lower bounds on the optimal value p? of problem 2:

g(λ, v) ≤ p?

Thus, we have a lower bound that depends on some parameters λ, v -
a natural question is: What is the best lower bound that can be obtained

4 A function is convex iff the region above its graph is a convex set,i.e.: if for every
pair of points within the set, every point on the straight line segment that joins
them is also within the set.

4.2 alternating direction of multipliers method 39

from the Lagrange dual function? This leads to the following optimiza-
tion problem, which is called the respective Lagrange dual problem:

max g(λ, v) (5)
subject to λ ≥ 0

In this context, the original problem 2, is sometimes called the primal
problem. Besides, each pair (λ, v) with λ ≥ 0 and g(λ, v) ≥ −∞, is dual
feasible (i.e.: to imply feasibility of this solution for the dual problem).
Finally, (λ?, v?) is dual optimal or optimal Lagrange multipliers if they
are optimal for problem 5.
The Lagrange dual problem 5 is a convex optimization problem,

since the objective to be maximized is concave and the constraint is
convex. This is the case whether or not the primal problem 2 is convex.
The above is a useful property, as generally non-convex optimization
problems are harder to solve than convex ones.

4.2.2 ADMM precursors and main concept

The Alternating direction method of multipliers, is a simple but pow-
erful algorithm that is well suited to distributed convex optimization
and in particular to problems arising in applied statistics and machine
learning. It takes the form of a decomposition-coordination procedure,
in which the solutions to small local subproblems are coordinated to
find a solution to a large global problem. ADMM can be viewed as
an attempt to blend the benefits of dual decomposition and augmented
Lagrangian methods for constrained optimization, two approaches that
we briefly review below.

As Boyd et al. [49] remark:

It is worth emphasizing that the algorithm itself is not
new. It was first introduced in the mid-1970s by Gabay,
Mercier, Glowinski, and Marrocco, though similar ideas
emerged as early as the mid-1950s. The fact that ADMM
was developed so far in advance of the ready availability
of large-scale distributed computing systems and massive
optimization problems may account for why it is not as
widely known today as we believe it should be.

4.2.2.1 Dual Decomposition

Consider the following equality-constrained convex optimization prob-
lem [52]:

minimize f(x) (6)
subject to Ax = b

with variable x ∈ Rn, where A ∈ Rm×n and f : Rn → R is convex.
The Lagrangian for problem 6 is

40 smr co-clustering and admm

L(x, y) = f(x) + yT (Ax− b)

where y ∈ Rm is the dual variable. The dual function is

g(y) = inf
x
L(x, y)

The dual problem is expressed as the maximization of g(y), as men-
tioned above. Furthermore, assuming strong duality holds, 5 the opti-
mal values for the primal and dual problems are the same, so we can
recover a primal optimal point x? from a dual optimal point y? as

x? := argmin
x

L(x, y?)

The following dual ascent algorithm solves the dual problem using
gradient ascent. Assuming that g is differentiable, the gradient ∇g(y)
can be evaluated as follows. We first find x+ = argmin

x
L(x, y); then we

have ∇g(y) = Ax+− b, which is the residual for the equality constraint.
The dual ascent method consists of iterating the updates:

xk+1 := argmin
x

L(x, yk) (7)

yk+1 := yk + ak(Axk+1 − b) (8)

where ak ≥ 0 is a step size, and the superscript is the iteration
counter. This iteration continues until we reach a local optimum - i.e.
when the residual Ax − b equals zero. This algorithm is called dual
ascent, since, with appropriate choice of ak, the dual function increases
in each step, i.e.: g(yk+1) > g(yk).
If ak is chosen appropriately and several other assumptions hold, then

xk converges to an optimal point and yk converges to an optimal dual
point. However, these assumptions do not hold in many applications,
so dual ascent often cannot be used.
Nevertheless, it has a major benefit that we could take advantage

of. It can lead to a decentralized algorithm in some cases. Suppose, the
objective f is separable, meaning that:

f(x) =
∑N
i=1 fi(xi)

Partitioning the matrix A conformably as A = [A1 · · ·AN], so Ax =∑N
i=1Aixi, the Lagrangian can be written as

L(x, y) = ∑N
i=1 Li(xi, y) =

∑N
i=1(fi(xi) + yTAixi − (1

N y
T b),

which is also separable in x. This means that the minimization step
in 7, splits into N separate problems that can be solved in parallel. In
other words:

5 the best bound that can be obtained by the Lagrange dual function is tight, so that
the optimal value obtained by the dual problem is the optimal value for the initial
one

4.2 alternating direction of multipliers method 41

xk+1
i := argmin

xi
Li(xi, yk)

yk+1 := yk + ak(
N∑
i=1

Aix
k+1
i − b)

IfN processors were to iterate through the above formulas, a "scatter-
gather" process would take place. We gather the xi solutions to sum and
evaluate the residual, while scattering the vector y to all i processors
in order to update each xi in parallel.
The aforementioned algorithm is an alternative of dual ascent, called

dual decomposition.

4.2.2.2 Augmented Lagrangian methods

In the previous section, we accentuated the fact that dual ascent (as
well as its decomposition), needs several assumptions (e.g., strict con-
vexity or finiteness of f) to reach convergence, but these assumptions
do not hold in many applications. This is the reason why Augmented
Lagrangian (AL) methods were developed: in order to robustify dual
ascent.
This process of augmenting the Lagrangian typically consists of adding

a quadratic term to the Lagrangian multiplied by a positive parameter.
Mathematically,

Lρ(x, y) = f(x) + yT (Ax− b) + (ρ/2)||Ax− b||22

is the AL for Problem 6, where ρ > 0 is called the penalty parameter.
Lρ is the Lagrangian of the problem:

minimize f(x) + (ρ/2)||Ax− b||22
subject to Ax = b

which is clearly equivalent to the original problem 6, since for any
feasible x the term added to the objective zero. By applying the dual-
ascent method to the above problem we end up with the following
algorithm:

xk+1 := argmin
x

Lρ(x, yk)

yk+1 := yk + ρ(Axk+1 − b)

which is called the method of multipliers. The only difference from
the above dual ascent process, is (besides the use of Augmented La-
grangian), the selection of step size ρ for the gradient ascent step. This
is justified as follows:
The optimality conditions for primal and dual feasibility, are:

Ax? − b = 0 and ∇f(x?) +AT y = 0

42 smr co-clustering and admm

i.e.: the achievement of the initial constraint, as well as the minimiza-
tion of x over Lρ which happens when the derivative of Lρ with respect
to x is zero.
What it means for xk+1 to minimize Lρ(x, y) is that the gradient of

Lρ with respect to x should be zero, so:

0 = ∇xLρ(xk+1, yk)
= ∇xf(xk+1) +AT (yk + ρ(Axk+1 − b))
= ∇xf(xk+1) +AT yk+1

What we see is that by using ρ as the step size in the dual update,
we get dual feasibility. This is the reason why ρ is chosen as step size
in this algorithm.
This greatly improves convergence properties of the method of multi-

pliers over dual ascent - it converges under far more relaxed conditions
(almost always) - comes at a cost. When f is separable, the Augmented
Lagrangian Lρ is not separable, so the x-minimization step cannot be
carried out separately in parallel for each xi. This means that the basic
method of multipliers cannot be used for decomposition.

4.2.2.3 Alternating Direction Method of Multipliers

ADMM is a powerful algorithm for solving structured convex optimiza-
tion problems and is intented to blend the decomposability of dual ascent
with the superior convergence properties of the method of multipliers.
This is a very general justification of why it is particularly applicable
to large-scale decision problems. It solves problems of the form:

minimize f(x) + g(z) (9)
subject to Ax+Bz = c

with variables x ∈ Rm and z ∈ Rm, where A ∈ Rp×n,B ∈ Rp×m and
c ∈ Rp.
We will assume that f and g are convex. The only difference from

the general problem 6 is that the variable, called x there, has been
split into two parts, called x and z here, with the objective function
separable across this splitting. The optimal value of problem 9 will be
denoted by p? = inf{f(x) + g(z)|Ax+Bz = c}.
As in the method of multipliers, we form the augmented Lagrangian

Lρ(x, z, y) = f(x) + g(z) + yT (Ax+Bz + c) + ρ/2||Ax+Bz − c||22

and solve by minimizing separately over x and z and perform the
dual update step for our dual variable y:

xk+1 = argmin
x

Lρ(x, zk, yk)

zk+1 = argmin
z

Lρ(xk+1, z, yk)

yk+1 = yk + ρ(Axk+1 +Bzk+1 − c)

4.2 alternating direction of multipliers method 43

where ρ > 0.
The separate minimizations with respect to x and z, is exactly the

feature permitting the exploitation of parallelism, when any of f,g is
separable (thus combining the method of multipliers with dual ascent).
The optimality conditions (for differentiable case) are again, primal

(which is expressed as Ax + Bz − c = 0), as well as dual feasibility
(expressed as ∇f(x) +AT y = 0 and ∇g(z) +BT y = 0).

Since zk+1 minimizes Lρ(xk+1, z, yk) we have:

0 = ∇g(zk+1) +BT yk + ρBT (Axk+1 +Bzk+1 − c)
= ∇g(zk+1) +BT yk+1

As a result, with ADMM’s dual variable update, (xk+1, zk+1, yk+1)
satisfies second dual feasibility condition. Primal and first dual feasi-
bility are achieved as k →∞ and the algorithm’s stopping criteria are
applied upon them.
In general, the conditions which are always true about this method

are:

• iterates approach feasibility: Axk +Bzk − c→ 0

• objective approaches optimal value: f(xk) + g(zk)→ p?

An important fact about the statements above, is that all other condi-
tions not asserted by this method (e.g. that xk converges), are irrelevant
for the method’s success and our stopping criteria will be based on the
above two statements.
For more on convergence/optimality theory behind ADMM, we refer

to [49].
As a final point on non-distributed ADMM form, it is useful to pro-

vide the standard lasso regression formulation in ADMM. As we dis-
cussed in the respective section, lasso regression’s objective is typically:

min1
2 ||Ax− b||

2
2 + λ||x||1

which is expressed in ADMM ([49]) as follows:

xk+1 = (ATA+ ρI)−1(AT b+ ρ(zk − uk)) (10)
zk+1 = Sλ/ρ(x

k+1 + uk)

yk+1 = yk + xk+1 − zk+1

where S denotes the Soft-Thresholding operator:

Sk(a) =

a− k a > k

0 |a| ≤ k
a+ k a < −k

(11)

and uk = (1/ρ)yk.
This problem is depicted in Figure 16.

44 smr co-clustering and admm

Figure 16: Solving x-minimization step of standard Lasso problem via ADMM

4.2.2.4 Consensus

Consider a problem of the form:

minimize ∑N
i=1 fi(x) (12)

where fi could be the loss function for the ith block of training data.
The great advantage of ADMM we are exploiting, is its expression for

solving distributed optimization problems. The respective formulation
is called as "consensus" [49] and the reasons for that are described below.
In ADMM through consensus, Problem 12 takes the following form:

minimize ∑N
i=1 fi(xi)

subject to xi − z = 0

Instead of a global variable x, here we allow each block of data to
have its "local opinion" xi, but all of these have to agree finally to a
global variable z.
This holds when the cost function f is decomposable. It is called

global consensus, because all the "local" xi for i=1,. . . , N, have to be
equal to each other - i.e.: to "consent" to the slack variable z.
The resulting general ADMM iterations are the following [49]:

xk+1
i = min

xi
(fi(xi) + ykTi (xi − zk) + (ρ/2)||xi − zk||22)
zk+1 = 1

N

∑N
i=1(x

k+1
i + (1/ρ)yki)

yk+1
i = yki + ρ(xk+1

i − zk+1)

The first and last steps are carried independently for each i=1,. . . ,N.
In the literature, the processing element that handles the global vari-
able z is sometimes called the central collector or the fusion center.
This global variable, is obviously just the average of the xi and yi/ρ
variables.

Getting closer to our problem, the global variable consensus with
regularization is being expressed as:

4.2 alternating direction of multipliers method 45

Figure 17: Solving xi-minimization step of consensus Lasso problem via
ADMM. Partitions sharing the same color participate in the so-
lution of the respective xi vector. We consider 4 partitions as an
example.

min
x1,...,xn,z

∑N
i=1 fi(xi) + g(z)

subject to: xi − z = 0, i = 1, . . . ,N

Standard lasso regression represents a sub-case of this expression and
the resulting consensus ADMM algorithm for the lasso, extending the
aforementioned case of non-distributed lasso in 10, is ([49], at section
8.2.1):

xk+1
i = (AT

i Ai + ρI)−1(AT
i bi + ρ(zk − uki)) (13)

zk+1 = Sλ/ρN (x̄
k+1 + ūk)

yk+1
i = yki + xk+1

i − zk+1

This formulation is depicted in Figure 17, where we attempt to em-
phasize the basic intuition of the consensus method. This is that each
subsystem calculates a solution of the whole problem, based on the
knowledge of a portion of the whole data. Consequently, these local
solutions xi participate in the extraction of global solution z. In this
figure, Ai, bi have (mi × n) and mi as respective sizes.

5
IMPLEMENTATION ANALYS I S

Our initial goal is to tackle each of the Lasso regression problems of
Sparse Matrix Regression through the Alternating Direction of Mul-
tipliers Method (ADMM), in order to be able to handle large-scale
datasets through Map-Reduce, by exploiting all the aforementioned
useful properties of the SMR algorithm.
The reason for this choice lies in the fact that ADMM is distributed in

its nature and can intuitively be expressed as a Map-Reduce procedure.
The problem form we end up with, can be characterized as a "scatter-
gather" process, as we discuss below. Note that our choice of ADMM
is in contrast to the already proposed Coordinate Descent method in
[43], which is neither intuitively expressed in Map-Reduce, nor targeted
specifically for distributed optimization.

5.1 expression of smr co-clustering through admm

At this point we provide the equations which form the basis of our
Map-Reduce implementation.

5.1.1 General Form

As mentioned above, our target is to tackle each of the Lasso regression
problems of SMR co-clustering via ADMM. We chose to approach the
problem’s formulation from first principles. Another choice would be to
vectorize it and employ the standard lasso solution provided above, but
the following formulation through matrices, ensures both the avoidance
of the respective transformations, involving computation of Kronecker
products, and a more intuitive representation at storage. In general,
the problem has the following form:

min
B≥0
||X−ABT ||2F + λ||B||1

We will analyze this case which applies also for the symmetric case
of transposing X and minimizing over A.
At first, we transform the problem to:

minB||X−AB||2F + λ||B||∞

Importing C as slack variable:

minimize ||X−AB||2F + λ||C||∞
subject to B = C

Forming the Lagrangian of the above problem:

47

48 implementation analysis

L(B, C, Λ) = ||X−AB||2F + λ||C||∞ + vec(ΛT) ∗ vec(B−C)

Forming the respective Augmented Lagrangian Lρ(B, C, Λ):

||X−AB||2F + λ||C||∞ + vec(ΛT)vec(B−C) + ρ
2 ||B−C||2F

1. Zeroing the derivative of Lρ(B, C, Λ) with respect to B:

−2AT (X−AB) +Λ+ ρ(B−C) = 0⇒
B = (2ATA+ ρI)−1(2ATX+ ρC−Λ)

2. Zeroing the derivative of Lρ(B, C, Λ) with respect to C , through
element-wise cases (following the paradigm of [57]):

• If C > 0:

λI−Λ+ ρ(C−B) = 0⇒

C = B+
1
ρ
(Λ− λI)

This happens when: B+
Λ
ρ
>
λI
ρ

(14)

• If C < 0:

−λI−Λ+ ρ(C−B) = 0⇒

C = B+
1
ρ
(Λ+ λI)⇒

This happens when: B+
Λ
ρ
< −λI

ρ
(15)

• If C = 0, from 14, 15 covering the other 2 cases, we get
that:

−λI
ρ
≤ B+

Λ
ρ
≤ λI

ρ
⇒

|B+
Λ
ρ
| ≤ λI

ρ
(16)

From 14, 15 and 16, we get that:

C = Sλ
ρ
(B+ Λ

ρ), element-wise

3. For primal feasibility to hold we have: B − C = 0, whereas for
dual feasibility to hold we have(as in [49], at section 2.3):

d||X−AB||2F
dB +Λn + ρ(B−C) = 0 (17)

d||C||∞
dC −Λn − ρ(B−C) = 0 (18)

5.1 expression of smr co-clustering through admm 49

By definition (which was used before to find solutions of B & C
in closed form), we have:

0 = ∇BL(B, C, Λ)

= ρ(B−C) +Λn +
d||X−AB||2F

dB (19)

Furthermore:

0 = ∇CL(B, C, Λ)

= −ρ(B−C)−Λn +
d||C||∞
dC (20)

Thus, we notice that in order for the dual feasibility expressed in
(17), (18) to hold, it is valid to choose ρ as our step size at (19),
(20) - to perform our dual update. As a result, it holds that:

Λn+1 = Λn + ρ(B−C)

It is tested against CVX optimization tool that in order to impose
non-negative constraints on the above problem, our slack variable needs
to be transformed to: C = max(0, Sλ

ρ
(B+ Λ

ρ)).
To sum up, our ADMM iterations consist of the following:

B = (2ATA+ ρI)−1(2ATX+ ρC−Λ) (21)

C = max(0, Sλ
ρ
(B+

Λ
ρ
))

Λ = Λ+ ρ(B−C)

5.1.2 First consensus approach

We have discussed above the way the standard lasso ADMM form in 10,
turns into its consensus counterpart in 13. If we follow this paradigm
to transform our lasso ADMM form (consisting of matrices) in 21, to
a consensus form, we would have:

Bk+1
i = (2AT

i Ai + ρI)−1(2AT
i Xi + ρCk −Λk

i) (22)

Ck+1 = max(0, S λ
ρN

(B̄+
Λ̄
ρ
))

Λk+1
i = Λk

i + ρ(Bk+1
i −Ck+1)

In Figure 18, this process is depicted with 4 partitions.
As it happens with the simplest form of consensus we discussed about,

each subsystem calculates a local opinion of the whole problem, based
on the knowledge of the portion of data it processes and these partial
solutions "agree" to a global solution through successive iterations.

50 implementation analysis

Figure
18:Exam

ple
offirst

approach
ofextending

the
Lasso

consensus
A
D
M
M

to
our

m
atrix

representation

5.1 expression of smr co-clustering through admm 51

In this case, each processor is responsible to work with its own inputs
Xi and Ai, while keeping its own solutions (Bi and Λi), and sharing
the global solution for C. Assuming sizes of X, A, are (m×n), (m× k)
respectively (where k is the number of desired co-clusters), Bi, Λi, C
are all of size (k× n). As a result, with this decomposition, we require
that each node calculates a local solution Bi with the upper bound on
total size being (k× n).

5.1.3 Improved consensus approach

We observe that the computation of the amount of 2AT
i Xi permits

further decomposability, as we can perform this matrix multiplication
in blocks. This enables us to split our input dataset with respect to
columns as well.
With this change, the algorithm in 22 for the case of minimizing

over B, transforms to:

Bk+1
i = (2AT

j Aj + ρI)−1(2AT
j Xi + ρCk

q −Λk
i) (23)

Ck+1
q = max(0, S λ

ρr
(B̄+

Λ̄
ρ
))

Λk+1
i = Λk

i + ρ(Bk+1
i −Ck+1

q)

In the above solution, matrices X and A, are partitioned as follows:
X0 · · ·Xc−1
...
Xrc−c · · ·Xrc−1

,

A0
...

Ar−1

where r is the number of row groups and c the number of column

groups to which our input matrix is partitioned, i = 0 . . . rc−1, j =
⌊
i
c

⌋
and q = i mod c. This is depicted by an example with r = 4, c = 2 in
Figure 19.
By employing this approach, we require that each node calculates a

local solution Bi with an upper bound on total size of (k× ni), where
ni is the number of elements each column split of our input matrix X
contains.
As a final step to the above form, we transpose the equations in

order to be feasible for the problem to be expressed in Map-Reduce
environment with minimal assumptions - i.e. just by assuming that
vectors of size k (the desired number of co-clusters) fit in main memory.
This is the "basic unit" of our iterations, which is fundamental for this
method to scale to large datasets, without having enormous memory
requirements, as we demonstrate in the next section.
Please note the notation for Bi, Cq, Li (they are considered to have

size equal to ni× k). For aesthetic reasons, from now on, though trans-
posing them, notation stays the same.

52 implementation analysis

Figure
19:Exam

ple
ofim

proved
approach

ofLasso
consensus

A
D
M
M

through
our

m
atrix

representation,w
ith

r
=

4,c
=

2

5.2 map-reduce implementation 53

X0 · · ·Xc−1
...
Xrc−c · · ·Xrc−1

Figure 20: Structure of contracting matrices of our problem

Bk+1
i = ((2AT

j Xi)
T + ρCk

q −Λk
i)(2AT

j Aj + ρI)−1 (24)

Ck+1
q = max(0, S λ

ρr
(B̄+

Λ̄
ρ
))

Λk+1
i = Λk

i + ρ(Bk+1
i −Ck+1

q)

where again, r is the number of row groups and c the number of
column groups to which our input matrix is partitioned, i = 0 . . . rc− 1,
j =

⌊
i
c

⌋
and q = i mod c. It is obvious that both the amounts of

(2AT
j Xi)T , as well as (2AT

j Aj + ρI)−1 (if parameter ρ remains stable
through iterations) could be precomputed and cached, in order to be
used at subsequent iterations.

5.2 map-reduce implementation

In this section, we analyze the way of expressing in Map-Reduce (with
HBase’s support), the form we derive in Equation 24, by pointing out
the reasons why this approach is scalable to large-scale datasets and
explaining various implementation details and choices.

5.2.1 Structure

Let r be the number of groups into which we initially partition the rows
of our input matrix X and our target matrix A and c the number of
groups into which the columns of X as well as matrix B are partitioned.
Using these, in Figure 20, we depict the final subsystems’ structure of
our matrices. Each of A and B subsystems contain their local solution
as well their local Lagrange multiplier Λi and share the same global
solution with all subsystems of the same level. In other words, B0, B0 +

c, . . . , Brc−c share the same global solution, as happens with subsystems
A0, A0 + r, . . . , Arc−r. Besides, each "slice" of A and B matrices, as
shown in Figure 20, contains a view of the whole matrix if assembled
(e.g.: subsystems from A0 to Ar−1).

The above discussion about partitioning and sharding the partial
solutions of our problem does not intentionally contain Map-Reduce as

54 implementation analysis

a part of it, in order to designate a problem at this point. The way
Hadoop handles I/O, is opposed to what is needed in this case. This
happens because its manner of reading and splitting data to subsets, in
order to fuel map tasks, is being optimized to achieve high data locality
and is usually "transparent" to the user and it is not created for cases
in which we need to preserve state in the mappers across iterations.
What is necessary for us to tackle the problem, is a mechanism which

accomplishes the following (the discussion addresses the minimization
of B but the minimization of A is symmetric):

• Stores data referring to the same row in different times, that need
to be processed together (e.g. store the calculation of (2AT

j Xi)T

and retrieve the pth row of this result together with the pth row
of Bi, Li and Cq in order to calculate the new pth row of Bi): in
other words, we need structure to our tasks input and output

• Is timestamp-oriented in order to have the same row stored for
the last two subsequent iterations and utilize this to check for
convergence

Pleasingly enough, both the above properties are of the fundamental
ones of HBase’s storage system (details at the respective section of 2).

5.2.1.1 Design choices

More specifically, each of our matrices can be represented as an HBase’s
table. By pre-splitting it, we explicitly define region boundaries of our
table. An important property of the frameworks in use is that if a
Map-Reduce job reads data from an HBase’s table, it reads data from
exactly one region. As a result, the region is perfectly equivalent to the
meaning we would like a subsystem to have - accessing always the same
portion of data which is updated through successive iterations.1
The rowkey of choice for all tables, is a combination of subsystem’s ID

(depicted as subscripts in Figure 20) and the row ID - more accurately,
a concatenation of them. This enables us to store information for the
same subsystem together and efficiently access it, as HBase maintains
data in lexicographic order by row key.
We chose to take advantage of Apache Mahout libraries ([53]) in order

to represent, process and store data in a vectorized form. As mentioned
above, the fundamental unit of our calculations is a vector of size equal
to the number of desired co-clusters, so we store vectors of this size
into our table’s columns - each vector is serialized into one HBase’s cell.
All the data in HBase are stored in byte arrays, so we implemented the
respective byte serializers for the purposes of our vectors’ storage.
Besides, a functionality of HBase worth mentioning, that plays a

crucial role in the scalability potential of the whole process, is bulk im-
porting. Typically, bulk importing bypasses the HBase API and writes
contents, which are properly formatted HBase data files - HFiles, di-
rectly to the file system. The main advantage of this method is that

1 From now on, we consider these meanings equivalent and use them in alternating
fashion.

5.2 map-reduce implementation 55

by directly mapping the output of M/R jobs to HFiles, we minimize
the potential overhead of multiple Remote Procedure Calls from sev-
eral tasks, as we scale to bigger datasets and utilize many nodes. In
that way, we both gain the structural advantages HBase has to offer,
without the overhead that concurrent RPC’s from many nodes could
provoke to the running time. The only limitation about this method,
is that each HFile contents have to span across one and only region.

5.2.2 Map-Reduce job analysis

At this point, we provide an overview of each of the procedures needed
to tackle each lasso regression problem:

min
B≥0
||X−ABT ||2F + λ||B||1

For the sake of brevity, we will focus on the case of minimizing the
above expression over B. Despite this, the extention to the case of
minimizing over A is not that straightforward, as we pursued a solution
which only stores X and not its transpose and the retrieval of the right
subsystem ID for each of the contracting matrices in some jobs required
further configurations.

Algorithm 4 Lasso Regression process via ADMM
r: #row partitions c:#column partitions of input matrix
i = 0, . . . , rc− 1 and j =

⌊
i
c

⌋
.

1: Compute (2AT
j Xi)T and store to the ith subsystem

2: Compute (2AT
j Aj + ρI)−1 and store to the respective subsystems

3: repeat
4: Iterate through the equations in 24
5: until convergence

The above process is followed for the minimization w.r.t. B and a
symmetric one is followed for the minimization w.r.t. A until conver-
gence, as Sparse Matrix Regression algorithm (Algorithm 3) dictates.
We describe in detail each of the above procedures, as follows:

5.2.2.1 First caching process

This first inner procedure requires computing a large matrix-matrix
multiplication in blocks. More specifically, we are dealing with parts of
a narrow matrix A, which have to be multiplied with parts of matrix
X. We employ a standard technique of matrix-matrix multiplication,
illustrated in [9, 48]. A difference from these approaches is that we have
to break multiplication with respect to each subsystem’s ID, in order
to store the correct results at respective positions, which is achieved
by including the subsystem’s ID into the key being sent from the first
map task. As noticed above, the ith part of X, will participate in the
multiplication corresponding to the ith subsystem of our target matrix
B.

56 implementation analysis

1 0 0 2
2 1 0 0

 ×

1 1 1
1 1

1
1

 →

Figure 21: A simple example illustrating the multiplication of our first pro-
cess: the partial products corresponding to each column are being
accumulated to calculate each column of the result

In detail, at our first task of this process, we set the input of mappers
to consist of the regions of matrix X. As mentioned above, each map
task will receive exactly one region’s data, by sequentially reading vec-
tors of size ni, which depends on the partition of our input data w.t.r.
to columns.
Let wj denote the jth column (which is considered as row at the end

of the calculation, in order to achieve the transposition imposed) of the
result of each part of ATX. A basic formula of the whole calculation
is the following [48]:

wp =
∑m
i=1 Xi,ja

T
i =

∑
i∈Oj Xi,ja

T
i

This indicates that wp is a linear combination of {aTi } over the
nonzero cells on the jth column of X. Thus, the first step we have
to accomplish is to multiply each ai vector with all the non-zero cells
of ith row of X and as a second step, we have to sum the partial vec-
tors corresponding to the same column of matrix X. An example of
this method’s processing is given in 21. We have to accentuate that
because of the fact the third column (i.e. the third row we would read
in such an example at the first M/R job) of the first matrix being mul-
tiplicated is a zero vector, it is not transported to reducers at all, with
the goal of minimizing the network load.
As we are handling a soft co-clustering algorithm and as a result not

all rows of a matrix have to participate in a co-cluster, we expect that
a significant amount of these rows are being successively minimized
to zero. Thus, this choice reduces significantly the network load, as
algorithm iterations proceed.
The Map-Reduce jobs participating in this process are the following:

• Map-I: Map < SubId,i : j,Xi,j > from X. At the job’s cleanup,
open table containing matrix A and map < SubIdA,i : ai >

5.2 map-reduce implementation 57

for respective subsystems as dictated above by process 4. Figure
21 indicates that the ith column vector of first matrix is being
multiplicated with the elements of the ith row of the second one.
However, we are reading the first matrix transposed (i.e. we are
reading row vectors of A) at map phase. As a result, < key :
value > pairs sharing the same subsystem id and the same row
will end up to the same reducer.

• Reduce-I: Emit < SubId,j : Xi,ja
T
i > for each value list sharing

the same subsystem id and the same row.

• Map-II: Map < SubId,j : Xi,ja
T
i > such that vectors correspond-

ing to the same column of the result end up to the same reducer.

• Reduce-II: Emit < SubId,j :
∑
i∈Oj Xi,ja

T
i > as the result of

each result’s column for each subsystem separately.

• Finally, a last M/R job is being utilized in order to bulk import
data to the table’s respective regions.

An example of data flow for this process is depicted in 22.

5.2.2.2 Second caching process

In the next job, we have to cache the amount of (2AT
j Aj + ρI)−1 where

i = 0, . . . , rc− 1 and j =
⌊
i
c

⌋
and r, c represent row/column partitions

respectively. As mentioned above concerning region structure of our
matrices, as shown in Figure 20, beyond the local solutions for each
part of data, the global solution of matrix A is being (redundantly)
stored as well in each respective part of data, for efficient access from
mappers(from each "slice" we could retrieve the whole matrix), as a re-
sult, we have to scan subsystems zero up to r− 1 to retain the complete
A matrix in mappers and calculate the desired multiplication.

The setting of how many regions/subsystems of a table our map-
pers will read, is being facilitated by our rowkey design and our tables’
structure. As mentioned above, the rowkey consists of a concatenation
of subsystem’s id and the respective row id (keys are stored by default
in lexicographic order in HBase’s table). Thus, we simply set in the
wrapper program the configuration of stopRow of our scan, to be equal
to the number of row partitions to which our A table has been divided
minus one (r− 1) : the first "slice" of regions as concerns Figure 20.
What we intend to highlight at this point, is that this task, though

it seems simple enough, would not be straightforward at all, without
the aid of this particular structure we followed considering contracting
matrices/tables of our problem.
As for the main task, we exploit the fact of multiplying a matrix by

itself, by completing this step in one M/R job. In particular:

• Map-I: We place each row we read into two iterators. For each
non-zero value of the first one, we iterate over all non-zero values
of the second one. This represents typically a double for-loop. Its
outer iteration sets x equal to each index of non-zero value (let

58 implementation analysis

Figure
22:D

ata
flow

for
our

first
caching

process.Exam
ple

w
ith

r
=

4,c
=

2

5.2 map-reduce implementation 59

the value be val1) and the inner iteration sets y as well to each
non-zero value’s (let it be val2) index. The < key : value > pairs
we emit are < SubId, x ,y : val1× val2 > so that values sharing
the same subsystem, as well as matrix position (x, y) end up to
the same reducer.
This process is depicted below by a simple example:
Consider the following matrix:1 0 2

4 3 1

The < key : value > pairs emitted from the first row are:
< 0,0 : 1 >,< 0,2 : 2 >,< 2,0 : 2 >,< 2,2 : 4 >
From the second row, we emit:
< 0,0 : 16 >,< 0,1 : 12 >,< 0,2 : 4 >,< 1,0 : 12 >,< 1,1 :
9 >,< 1,2 : 3 >,< 2,0 : 4 >,< 2,1 : 3 >,< 2,2 : 1 >
By accumulating the values corresponding to the same matrix
positions, we lead to the result of calculating the transpose of a
matrix with itself:

17 12 6
12 9 3
6 3 5

• Reduce-I: For each value list, we accumulate over it, to retrieve

the value for each x, y position of AT
j Aj matrix and after that, we

multiply by 2 each extracted value, as our formula dictates. The
number of reducers is being defined as r (the number of row par-
titions), and each of them keeps in memory a matrix of size k× k,
which is updated as results referring to different matrix positions
are being calculated. At the job’s cleanup, we add ρ parameter to
the values lying in the matrix’s diagonal and compute its inverse.
Then, we write this matrix to sequence file, in order to provide
access from respective map tasks of ADMM’s main iteration.

The data flow of this job is graphically presented in 23. Notice the
number of reduce tasks, they are equal to the number of row partitions.

5.2.2.3 Main Iteration

This job represents the core functionality of an ADMM’s iteration.
Each map task initially retrieves the inversed matrix of size k × k

from the second step and stores it. It reads sequentially vectors of size
k from local "opinion" Bi, Lagrange multiplier Li, global solution Cq

and (2AT
j Xi)T .

It computes each vector of Li, which is trivial as is depicted by the
respective equation. For each vector from Bi, we multiply finally with

60 implementation analysis

Figure
23:D

ata
flow

for
our

second
caching

process.Exam
ple

w
ith

r
=

4,c
=

2

5.2 map-reduce implementation 61

the stored inverse matrix of size k × k from step 2, which is also a
simple operation.
It is worth noticing that in order to compute the amounts necessary

for convergence in a distributed form, we read the last two versions of
each row and accumulate partial results to variables. More details are
provided in the respective section.

• Map-I: Each map task computes

Bk+1
i = ((2AT

j Xi)T + ρCk
q −Λk

i)(2AT
j Aj + ρI)−1, and

Λk+1
i = Λk

i + ρ(Bk+1
i −Ck+1

q)

where, r is the number of row groups and c the number of column
groups to which our input matrix is partitioned, i = 0 . . . rc− 1,
j =

⌊
i
c

⌋
and q = i mod c.

The computation of Cq, which takes place in the reduce step,
does not need to access the local solutions of Bi, Li, but their sum
(with L divided by ρ). In addition, an important remark here is
that we are not obligated to transfer these partial solutions to
reducers in order to store them, because we could append them
directly to HFiles and bulk load them at each map task’s cleanup
operation.
This is the approach we follow for this operation and the tuples
being emitted to reducers are of the following form:
< SubId % c, rowId : vectorSum, partialNorms >, where vectorSum
is the sum of each row’s Bi+Li/ρ and partialNorms correspond
to the partial results that need to be accumulated at each reduce
task, in order to distributedly compute the amounts necessary
to check if stopping criteria have been reached. Besides, we are
emitting the region’s identifier remainder of its division by the
number of row partitions r, so that regions computing local "opin-
ions" about the same portion of data, are reduced by the same
task. These regions were mentioned above as being at the same
"level", as concerns Figure 20.
A combine step is also provided in order to accumulate values
sharing the same key.

• Reduce-I: As a result, partial sums referring to the same row of
the global solution Cq are being received from the same reducer
which accumulates them and performs the Soft-Thresholding op-
erator as below:

Ck+1
q = max(0, S λ

ρr
(B̄+ Λ̄

ρ))

It is useful at this point to accentuate the division of the subscript
of Soft-Thresholding operator (formula in 11) by r. This operator
typically constitutes a comparator, and since the sum calculated
into the parenthesis is averaged by the number of subsystems that

62 implementation analysis

"consent" to each value (i.e. r in this case) 2, we also have to divide
the subscript of this operator with r in order to maintain the
values depicted in the parenthesis and the subscript comparable.
Because of the aforementioned issue of classic HBase API, con-
cerning the delays associated with a possible plethora of RPC’s
received from many sources, we first write the global solution for
each row of Cq to context, and then with a second M/R job, we
shard these solutions to respective subsystems using bulk loading,
in order to make it efficient to access them. It is not possible to
bulk load data at our first job of this process, because (as men-
tioned above), each HFile to which we append to, has to span
across one and only region. However, in this case, we desire to
store each vector of global solution Cq to many regions, in order
to make it efficient for them to access it in the subsequent map
tasks.
A graphical representation of this process is provided in Figure 24.

5.2.2.4 SMR algorithm convergence check

Beyond the convergence criteria of each ADMM round (alternating
between minimizing the cost for each one of the contracting matrices),
we have to control if the outer criterion we are aiming to minimize has
reached an optimum. This criterion has the following form:

min
A≥0,B≥0

||X−ABT ||2F + λ||A||1 + λ||B||1

Thus, we have to compute the above amount after each pair of
ADMM rounds (one for each of A, B). We have to focus on two main
points:

• how the multiplication between global solutions of matrices A, BT

will be achieved in an efficient way and

• in what manner should we retrieve the initial matrix X from its
respective HBase’s table by ensuring that we are performing the
minimun possible number of RPC’s (remote proceduce calls to
HBase). It is worth mentioning that we are not able to base upon
assumptions that an entire region (Xi as of Figure 20) of contents
of matrix X, (or respectively of ABT), could fit into memory, as
we are aiming the whole procedure to be applied to large-scale
data.

The matrix multiplication is being based upon the standard (sparse
matrix-oriented) method of multiplying two matrices in Map-Reduce.
The difference (as in the aforementioned first caching process) is again
the multiplication in blocks, so that each reduce task of the multiplica-
tion’s second job, has to process around the same amount of data and
has to retrieve a specific subsystem’s (region) contents of X in order to
make the respective norm calculation.

2 This is the general aforementioned meaning of the "consensus" approach, i.e.: com-
pute a mean value over the sum of local "opinions".

5.2 map-reduce implementation 63

Fi
gu

re
24
:D

at
a
flo

w
fo
r
ou

r
m
ai
n
ite

ra
tio

n
pr
oc
es
s.

Ex
am

pl
e
w
ith

r
=

4,
c
=

2

64 implementation analysis

The aim is that elements of the resulting ABT multiplication, will
arrive in each reduce task, and (limited by the memory requirements)
will be row-by-row subtracted by each respective row we retrieve from
matrix X. With this solution though, we fetch each and every row of X,
even when rows of the matrix multiplication are zero vectors - and we
expect many of them to be completely zero as the algorithm progresses,
because of its sparse nature. In this case though (of a resulting zero
vector), we just have compute the sum of squares of the matching row
from X.
Motivated by this, we expand the minimization formula, as follows:

||X−ABT ||2F + λ||A||1 + λ||B||1 =

||X||2F − 2 ∑
(X ◦ (ABT)) + ||ABT ||2F + λ||A||1 + λ||B||1

where ◦ denotes the Hadamard (element-wise) product between the
contracting matrices.
Employing the above formulation, we remark that if rows of the

resulting matrix multiplication of ABT are zero vectors, then the term
(X ◦ (ABT)) for the respective row would be zeroed out, as well. In
that case, we would have to simply (even separately from this matrix
multiplication) compute the sum of squares of the matching row from
X matrix and accumulate it to the result.

As a result, at the algorithm’s beginning, we compute the term ||X||2F
and store it to sequence files. Thus, each time we have to compute the
total cost of our solution, we trace back to those files to retrieve the
unchanged X norms and accumulate them to the total cost.
The Map-Reduce jobs participating in this process are the following:

• Map-I: We read matrix B at map tasks. As mentioned above,
the ith region of B will be processed by the ith mapper, for
i = 0, . . . , rc− 1. At each map job’s cleanup function, we retrieve
the jth region of A, where j =

⌊
i
c

⌋
and c is the number of column

partitions of input matrix.
At this stage, we accumulate the respective amounts for the cal-
culation of l1 norms of A and B and store them to sequence files,
in order to be included to the final result.
From map tasks, we map each < SubId,j : i, value > for each
non-zero value of each of matrix. We ensure by a partitioning
function that tuples sharing the same region Id, will be processed
by the same reducer.

• Reduce-I: For each key j, examine its list of associated values
and for each value that comes from A (say A, i, aij) and each one
that comes from B (say B, k, bjk), produce the tuple < SubId,j :
i, k, aijbjk >

• Map-II: A grouping and aggregation follows, by mapping tuples
at a form in which subsystem and matrix coordinates constitute
the key (i.e. < SubId,i,j : value >). We again reassure by the
partitioner that tuples sharing the same subsystem Id, will lead
to the same reduce task.

5.3 admm related choices 65

• Reduce-II: In this reduce task, we take advantage of the sorting
by key performed by the Map-Reduce framework to all tuples
leading to the same reducer. We set the number of reduce tasks
to be equal to the number of regions (r ∗ c), to which we have
partitioned our input matrix and as a result we receive results in
need to be matched with the ith region of X to the ith reducer.
Matrix positions though, come sorted (as we have configured their
object’s "compare" function), by row number. In this way, we do
not receive results for row p+ 1 until the reception of all elements
of row p completes.
Thus, we store a vector of size equal to the number of columns of
each X region and while accumulating the value lists of respec-
tive matrix positions, we wait until the row key changes. If this
happens, we fetch the respective row key from X and compute
the term −2 ∑

(X ◦ (ABT)) + ||ABT ||2F for this vector.
In this way, we ensure that rows of X will be retrieved from
HBase, if it is necessary to compute their element-wise product
with the respective row from the result of matrix multiplication.
Finally, partial results from reducers are written to files, and the
wrapper program calculates the total cost of SMR algorithm.

5.3 admm related choices

5.3.1 ADMM convergence criteria

The convergence criteria for the consensus form of Alternating Direc-
tion Method of Multipliers, are essentially primal and dual residuals.
The former of these amounts typically constitute the measure of accu-
mulated deviations of each local "opinion" from the global problem’s
solution, while the latter represents the amount of difference of global
solution from each previous value (i.e.: the typical convergence criteria
of most known algorithms). As proved in [49] for the non-distributed
form and extended for the consensus one, these residuals are formulated
respectively as:

||rk||22 =
∑N
i=1 ||Bk

i −Ck||2F and ||sk||22 = Nρ2||Ck −Ck−1||2F

with ||Z||F =
√∑m

i=1
∑n
j=1 |zij |2 being the Frobenius norm of matrix

Z.
The convergence criteria as a whole consist of checking the following

conditions:

||rk||22 ≤ epsfeas and ||sk||22 ≤ epsconv

By applying the formulas for epsfeas and epsconv as defined in [49],
we end up to :

epsfeas = eabs
√
k ∗ r+ erel ∗max(

√∑N
i=1 ||Bi||2F ,

√
r||C||2F) and

epsconv = eabs
√
k ∗ r+ erel

√∑N
i=1 ||Li||2F

66 implementation analysis

where k is the number of desired co-clusters, r is the number of row
partitions, and eabs and erel are an absolute and a relative tolerance
respectively, and are adjusted according to the approximation of con-
vergence criteria the user desires to reach.

As mentioned above, the calculation of all necessary amounts for con-
vergence checking is being performed distributedly as to avoid delays -
while the above amounts that need accumulation over subsystems are
passed from map to reduce tasks at ADMM’s main iteration.
It is useful to remark at this point, that after each iteration’s com-

pletion, we employ the so-called warm-start technique, by initializing
our local Bi, Li with the previous iteration’s values for these matrices.
This choice accelerates algorithm’s convergence.

5.3.2 Automatic adjustment of parameter ρ

The speed of this method’s convergence depends on the selection of
parameter ρ. In [56], analytical solutions for finding the appropriate ρ
are given for some sub-cases of the general form of ADMM. Our case
of interest (l1 - reguralized loss minimizations), is left by authors as a
future research problem. Their empirical results as concerns this case,
show a connection between the first and last (if sorted) eigenvalues of
ATA and the value of lambda we choose for the lasso regression (e.g.
if λ ≤ e1(ATA), ρ = e1(ATA), where e1 is the smallest eigenvalue in
magnitude etc.)
These choices did not seem always stable in our case, thus we em-

ployed a simpler and more practical solution.
Initially, a crucial point to understand is that large values of ρ place a

large penalty on violations of primal feasibility and so tend to produce
small primal residuals. Conversely, the definition of ||sk||22 suggests that
small values of ρ tend to reduce the dual residual, but at the expense of
reducing the penalty on primal feasibility, which may result in a larger
primal residual. This penalty on primal feasibility refers to the equation
of updating the Lagrange multiplier:Λk+1

i = Λk
i + ρ(Bk+1

i −Ck+1
q)

What we pursue as an optimal scheme of minimizing these residuals,
is their reduction happening with the same pace. However, empirically
we noticed that these residuals may be orders of magnitude away from
each other, so we employed the following solution after each complete
iteration (in order to use the updated ρ at next ADMM round) for
each side separately (i.e.: the cases of minimizing A, B have its own ρ
parameter): Let div1 =

||rk||22
epsfeas

, div2 =
||sk||22
epsconv

and diff = |div1− div2|.

ρ =

ρ ∗ tincr div1 > div2

ρ
tdecr

else
if both/none crit. converged and diff>Tρ ∗ tincr if||sk||22 ≤ epsconv

ρ
tdecr

if||rk||22 ≤ epsfeas
if reached max. iterations

Common values for parameters are: T = 0.75, tincr = 1.25, tdecr = 2
The above conditions depict the following: If the ADMM round did not

5.3 admm related choices 67

lead to convergence and only one of the two criteria did not reached
a desirable value, increase/decrease ρ accordingly. On the other hand,
if both or none criteria converged, we check the "distance" from their
goals, by dividing with epsfeas and epsconv respectively. If the relative
difference between these two distances is bigger than a threshold, adjust
ρ as necessary.
A similar, but simpler technique of adjusting ρ is provided in [49],

that is employed into the same round of ADMM iterations. This would
imply for our case that we should compute the amount of (2AT

j Aj +

ρI)−1 after each change in ρ, and would also contrast to the algorithm’s
theory of convergence.
This is the reason why we choose to adjust ρ at the end of each

ADMM round of iterations, as to be updated in the subsequent one.

6
EXPERIMENTAL RESULTS

In this section, we adduce experimental results of our work on real
data and discuss upon the purity and the associated attributes with
each co-cluster in a number of cases. Results on horizontal scaling of
our Map-Reduce jobs are provided as well.

6.1 dataset description and motivation

Our inspiration for the current experimentation has been the work in
[46], where co-clustering is being applied to the problem of network
intrusion detection.
In general, the problem in context comes from the fact that security

constitutes an increasingly large problem in today’s Internet. However,
its initial architecture did not consider security to be a high priority,
leaving the problem of managing security concerns to end hosts. This
is therefore a growing problem for system administrators having to
continually avoid a variety of attacks and intrusion attempts by both
individuals and large botnets.
This security issue creates a challenge for system administrators of

how to distinguish normal from malicious connections. A key challenge
for an administrator is how to block the latter, by leaving the former
connections, coming from legitimate users, unaffected. We can never
know for sure to which of these categories any given connection falls
into, but we can attempt to isolate a set of connections that stand out
from normal user behavior, so as to help system administrators detect
attacks. This problem is being called as network intrusion detection.
In [59, 60], the authors show that certain types of attacks are strongly

correlated with only subsets of a connection’s parameters. In other
words, it is possible to determine the type of an attack just by looking
at the certain subset of parameters that best characterizes this attack.
This is the reason why co-clustering is a useful method at this context,
as it employs an unsupervised technique aiding to find these particular
parameters that best identify the type of an abnormal connection.
Our experiments are based on KDD 1999 Cup data set [58], which

constitutes a standard set of data that can be used to evaluate proposed
approaches in the field on intrusion detection. It contains 4, 898, 431
connections each of which is characterized by 41 attributes, and a la-
bel defining the identity of each connection and used for evaluation
purposes. The attributes, as well as the distribution of types of connec-
tions belonging to this dataset are in Figures 25 and 26 respectively.
The reasons for choosing this dataset to run our experiments on are

bilateral: First, the labels it contains are a useful tool of quantitatively
evaluating our method’s efficiency. On the other hand, it originates from
real measurements and its size (close to 1GB after the normalization we
imposed to it) is a challenge for the standard Sparse Matrix Regression

69

70 experimental results

Figure 25: List of connection measurements in the data set

6.1 dataset description and motivation 71

Figure 26: Distribution of types of connections belonging to the data set

72 experimental results

algorithm, as reported in [46], where the authors employ this algorithm
to samples of 1

50 of the whole dataset.

6.2 accuracy and interpretation

We run experiments for cases when the number of desired co-clusters
was k = 2, 3, 4, 5. For the case when 2 co-clusters were set, the algorithm
created consistently co-clusters dominated by attacks. In particular, one
of them contained mainly "neptune" while the other contained mainly
"smurf" attacks. The fact that as it is shown in 26, these two types of
connections consist of the 80% of the whole dataset, could explain this
behavior. As our context is anomaly detection, we prefer to focus on
cases when (pure) clusters with normal connections participate in the
analysis. For three co-clusters, the number of connections and purity
results (normal/abnormal) of each co-cluster are depicted in table 1.
Besides, the individual participation of neptune and smurf attacks as
of the whole cluster contents, are being pointed out.
Pleasingly enough, the algorithm extracts the 3 main data "concepts"

- (neptune,smurf attacks and normal connections) with high purity at
each co-cluster. These three groups of connections constitute the 99%
of input data, as shown in Figure 26.
In order to visualize and facilitate interpretation of the associated

measurements, we graphically present them, by setting the font size
of each attribute to be equivalent with its belongingness to the co-
cluster. The pleasing property of SMR algorithm not only to define the
participations to each cluster, but also to posess a numerical value at
the respective matrix entry for each row/column, aids to this direction.
The indicated font size is typically the magnitude of each numerical
value divided by the maximum value of the respective co-cluster for
this matrix. The associated parameters for each group of connections,
for k = 3, are shown in Figure 27.
In [46], it is being reported that a certain subset of parameters was

consistently associated with attacks, in general. A finding at this point,
concerning our work, is that this exact set of parameters are associ-
ated with our "smurf" dominated co-cluster (and not with both clusters
dominated by attacks) and only two of these parameters are present in
both the "neptune" and the "smurf" co-clusters. These two parameters
shared by both co-clusters are: dst_host_count and count, as shown
in Figure 27.
For k = 4, co-cluster purity is again very high as of normal/abnormal

distinction, as shown in table 2. As mentioned above, the basic data
"concepts" are three, so the fact that overlapping co-clusters start to
form and smurf connections are being mixtured with neptune ones, is
considered normal. Besides, both types of connections are distinguished
more generally as Denial of Service (DoS) attacks, so this algorithm’s
"choice" seems rational.

As for the associated parameters for k = 4 shown in Figure 28, the
first co-cluster posesses exactly the same attributes as the smurf co-
cluster for k = 3. This comes from the fact that the percentage of

6.2 accuracy and interpretation 73

Neptune | Smurfs
Co-Cluster Number of Connections Percent Normal Percent Attacks

98.637% | 0%
1 879,404 0.147% 99.853%

0.005% | 0.018%
2 837,457 98.698% 1.301%

0.416% | 93.4%
3 3,006,618 5.91% 94.1%

Table 1: Results for k = 3

Figure 27: Associated attributes with each group of connections for k = 3

smurfs is very high, as related to the respective percentage of neptune
connections. In the case when neptune participation increases in the
second co-cluster full of attacks, we remark that dst_host_count is the
most correlated attribute with this co-cluster. It is worth mentioning
that this is the one of two features, which are shared by both totally
homogeneous co-clusters of smurf and neptune attacks, in the case of
k = 3.
As concerns the two pure normal co-clusters formed in this case, we

notice that attributes dst_host_same_srv_rate, same_srv_rate and
dst_host_srv_count represent the most important correlations with
normal connections, which agrees with the respective results for the
normal co-cluster, for k = 3. In addition to these, land feature is also
considered a strong one at the fourth co-cluster.
For the case of k = 5, the results are equally satisfactory with both

previous cases, as we notice again a very high level of homogeneity
of the resulting co-clusters, in distinguishing normal from anomalous
connections. As concerns the first co-cluster, which is full of normal con-
nections, we notice that all the features that appeared in both previous
cases (k = 3, 4) for the normal co-clusters,i.e.: dst_host_same_srv_rate,
same_srv_rate and dst_host_srv_count along with land attribute
which appeared in the case of k = 4, have the strongest correlation
with this normal cluster.

Another favorable property appears in the case of the second co-
cluster, where we notice that the two parameters being shared by both
pure neptune and smurf co-cluster (as for k = 3, 4) are those appear-
ing in this case (i.e.: dst_host_count and count). This establishes our

74 experimental results

Neptune | Smurfs
Co-Cluster Number of Connections Percent Normal Percent Attacks

14.89% | 84.64%
1 3,304,994 0.28% 99.72%

23.5% | 72.86%
2 2,580,602 2.84% 97.17%

0.097% | 0.097%
3 23,670 96.34 % 3.658%

0.196% | 0.33%
4 575,804 98.185 % 1.814%

Table 2: Results for k = 4

Figure 28: Associated attributes with each group of connections for k = 4

6.3 scaling 75

Neptune | Smurfs
Co-Cluster Number of Connections Percent Normal Percent Attacks

0.195% | 0.327%
1 729,174 97.68% 2.32%

23.39% | 76.01%
2 3,683,424 0.49% 99.51%

63.25% | 0%
3 40,726 5.89 % 94.1%

99.57% | 0%
4 871,202 0.075 % 99.92%

0.02% | 96.392%
5 418,981 3.165 % 96.835%

Table 3: Results for k = 5

hypothesis that when we face an homogeneous attack co-cluster (e.g.
99.51% purity in particular), having a percentage of either smurf or
neptune connections below 80% (i.e. it is not highly pure on either one
of them), then the features associated, tend to be the intersection of
the contracting parties.
Results on features of third co-cluster indicate the mixture of nep-

tune attacks with other malicious connections (e.g.: portsweep, ipsweep
etc.), as the attributes appeared in this cluster, are not matched with
neptune’s correlated attributes. This is justified by the relatively low
percentage of neptune connections as of the whole cluster contents
(63.25%), which makes allowance for other types of connections to
define the co-cluster attributes. It is worth mentioning though, that
the percentage of attacks (94.1%) again indicates a highly homoge-
neous cluster, as of normal/abnormal distinction. As for the last two
co-clusters, the one containing mostly neptune attacks is being associ-
ated with most of the connections we considered to be correlated with
this kind of attack, in cases for k = 3, 4, while the last one is again
correlated with all seven attributes defining a highly coherent "smurf"
co-cluster.
As an inference, we notice that our approach continuously distin-

guishes normal connections from malicious ones, by building highly
homogeneous respective clusters and is in general on par with the win-
ning entries of the KDD Cup 1999 competition. Besides, we discover a
consistent correlation with attributes on most types of clusters, which
proves the method’s efficiency for the context in use - i.e.: for detecting
which subset of features is "responsible" for each type of connections.

6.3 scaling

At this point, we provide diagrams depicting the horizontal scaling
(i.e.: how run-time is affected as we increase node capacity) of our
Map-Reduce jobs - grouped as a process. It is worth mentioning that

76 experimental results

Figure 29: Associated attributes with each group of connections for k = 5

Figure 30: Scaling of first caching process (concerning all 3 jobs)

all 3 processes (except the check of convergence) share similar linear
behavior, as concerns horizontal scaling.
As for the last group of jobs (checking if whole SMR converged), we

performed these experiments just after random initialization of target
matrices and as a result we had to handle with dense matrices - which
(as mentioned above) is not the common case the algorithm has to
handle. In fact, it is an extreme worst-case scenario. This justifies both
the long running time of this job, as well as our choice to start our
experiments with 16 nodes.

6.3 scaling 77

Figure 31: Scaling of second caching process

Figure 32: Scaling of main iteration process

Figure 33: Scaling of checking for outer convergence process (worst-case sce-
nario)

7
CONCLUS ION

In this thesis, we tackled the problem of co-clustering through Sparse
Matrix Regression algorithm, by employing an approach of each SMR
subproblem, through Alternating Direction Method of Multipliers. This
formulation enables us to express the problem in Map-Reduce, and
implement on its most popular open-source platform, Hadoop, with
the aid of structural properties HBase provides.
We notice that our approach builds highly homogeneous co-clusters

between the two matrix dimensions that are meaningful. Furthermore,
we discover a consistent correlation with attributes on most types of
clusters, which proves the method’s efficiency for the context in use -
i.e. for detecting which subset of features is "responsible" for each type
of connections.

7.1 future work

• Adapt the current solution to other problems involving large-scale
Lasso computations.

• Tensor extension based on this approach could prove to be an
interesting research direction, by focusing on how to express for-
mulations such as SPARAFAC [44], through ADMM and tackle
the problem of large-scale tensor (multi-way array) co-clustering
efficiently.

• We aim to experiment with iterative platforms, such as Apache
Hama [61], with the aim of reducing Hadoop’s overhead for set-
ting up each Map-Reduce task.

79

BIBL IOGRAPHY

[1] http://bits.blogs.nytimes.com/2012/09/07/
big-data-in-your-blood

[2] http://www.uslhc.us/files/factsheets/us_computing.pdf

[3] Data-Intensive Text Processing with MapReduce Jimmy Lin and
Chris Dyer

[4] Designing a multi-petabyte database for LSST. Jacek Becla, An-
drew Hanushevsky, Sergei Nikolaev, Ghaleb Abdulla, Alex
Szalay, Maria Nieto-Santisteban, Ani Thakar, and Jim
Gray SLAC Publications SLAC-PUB-12292, Stanford Linear Ac-
celerator Center, May 2006.

[5] http://www.go-globe.com

[6] The Fourth Paradigm: Data-Intensive Scientific Discovery. Tony
Hey, Stewart Tansley, and Kristin Tolle Microsoft Research,
Redmond, Washington, 2009.

[7] Cloud Computing: An Overview. Mache Creeger ACM Queue,
7(5) 2009. 13

[8] Definition of Cloud Computing, Peter Mell and Tim Grance
October 2009. http://csrc.nist.gov/publications/nistpubs/
800-145/SP800-145.pdf

[9] Mining of Massive Datasets Anand Rajaraman, Jeff Ullman,
Jure Leskovec http://i.stanford.edu/~ullman/mmds.html

[10] http://en.wikipedia.org/wiki/Netflix_Prize

[11] Survey of Clustering Data Mining Techniques Pavel Berkhin
Accrue Software, Inc.

[12] http://en.wikipedia.org/wiki/1854_Broad_Street_
cholera_outbreak

[13] http://en.wikipedia.org/wiki/Turing_completeness

[14] Data Clustering: A Review A.K. Jain, M.N. Murty, P.J.
Flynn

[15] Algorithms for Clustering Data Anil K. Jain and Richard C.
Dubes Prentice-Hall, 1988.

[16] Scalable Clustering of Categorical Data and Applications Periklis
Andritsos Phd Thesis, University of Toronto, 2004

[17] The hardness of k-means clustering Sanjoy Dasgupta

81

http://bits.blogs.nytimes.com/2012/09/07/big-data-in-your-blood
http://bits.blogs.nytimes.com/2012/09/07/big-data-in-your-blood
http://www.uslhc.us/files/factsheets/us_computing.pdf
http://www.go-globe.com
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://csrc.nist.gov/publications/nistpubs/800-145/SP800-145.pdf
http://i.stanford.edu/~ullman/mmds.html
http://en.wikipedia.org/wiki/Netflix_Prize
http://en.wikipedia.org/wiki/1854_Broad_Street_cholera_outbreak
http://en.wikipedia.org/wiki/1854_Broad_Street_cholera_outbreak
http://en.wikipedia.org/wiki/Turing_completeness

82 bibliography

[18] Information-theoretic Co-clustering I. S. Dhillon, S. Mallela,
and D. S. Modha KDD, 2003

[19] Biclustering of expression data. ChengY, Church GM In: Pro-
ceedings of the eighth international conference on intelligent sys-
tems for molecular biology. 2000. p. 93-103.

[20] Biclustering algorithms for bilogical data analysis: a survey.
Madeira SC, Oliveira AL.IEEE Transactions on Computational
Biology and Bioinformatics 2004;1:24-45.

[21] Co-clustering documents and words using bipartite spectral graph
partitioning.Dhillon IS. In: Proceedings of the seventh ACM
SIGKDD international conference on knowledge discovery and data
mining(KDD), August 26-29, 2001, San Francisco, CA, USA

[22] Spectral images and features coclustering with application to
content-based image retrieval. J. Guan, G. Qie, and X. Y.
Xue. IEEE International Workshop on Multimedia Signal Process-
ing (MMSP’05), 2005.

[23] A scalable collaborative filtering framework based on co-clustering.
T. George and S. Merugu In Proceedings of the 5th IEEE Con-
ference on Data Mining (ICDM’05), pages 625-628, 2005.

[24] A Generalized Maximum Entropy Approach to Bregman Co-
clustering and Matrix ApproximationArindam Banerjee, Inder-
jit Dhillon, Joydeep Ghosh, Srujana Merugu, Dharmendra
S. Modha Journal of Machine Learning Research 8 (2007)

[25] Approximation Algorithms for Co-Clustering Aris Anagnos-
topoulos,Anirban Dasgupta,Ravi Kumar PODS’08, June 9-
12, 2008, Vancouver, BC, Canada.

[26] Biclustering in data mining Stanislav Busygin , Oleg
Prokopyev, , Panos M. Pardalos Computers & Operations Re-
search 35 (2008) 2964 - 2987

[27] Clustering High-Dimensional Data: A Survey on Subspace Cluster-
ing, Pattern-Based Clustering, and Correlation Clustering Hans-
Peter Kriegel, Peer Kroger and Arthur Zimek

[28] Direct clustering of a data matrix J.A. Hartigan Journal of the
American Statistical Association, Vol.67, No. 337. (Mar.,1972) pp.
123-129

[29] Information-Theoretic Co-clustering Dhillon IS, Mallela S,
Modha DS In: Proceedings of the ninth ACM SIGKDD interna-
tional conference on knowledge discovery and data mining(KDD).
August 2003. p. 89-98.

[30] Coclustering of human cancer microarrays using Minimum Sum-
Squared Residue coclustering. Cho H, Dhillon IS. IEEE/ACM
Trans Comput. Biol. Bioinform.

bibliography 83

[31] Fully-Automatic Cross-Associations Chakrabarti, Modha, Pa-
padimitriou, Faloutsos KDD’04, August 22-25, 2004, Seattle,
Washington, USA

[32] Modeling by shortest data description J. Rissanen Automatica,
vol. 14, pp. 465-471, 1978

[33] MapReduce: Simplified Data Processing on Large Clusters Jeffrey
Dean and Sanjay Ghemawat Google, Inc.

[34] http://hadoop.apache.org/

[35] http://hbase.apache.org/

[36] Bigtable: A Distributed Storage System for Structured Data Fay
Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh,
Deborah A. Wallach, Mike Burrows, Tushar Chandra, An-
drew Fikes, Robert E. Gruber Google, Inc.

[37] http://hadoop-hbase.blogspot.gr/2011/12/introduction-to-
hbase.html

[38] Hadoop: The definitive guide, Third edition Tom White

[39] HBase: The definitive guide, First edition Lars George

[40] DisCo: Distributed Co-clustering with Map-Reduce, A Case Study
Towards Petabyte-Scale End-to-End Mining Spiros Papadim-
itriou, Jimeng Sun ICDM ’08 Proceedings of the 2008 Eighth
IEEE International Conference on Data Mining

[41] A Framework for Simultaneous Co-clustering and Learning from
Complex Data Meghana Deodhar, Joydeep Ghosh KDD 07

[42] Parallel Simultaneous Co-clustering and Learning with Map-
Reduce Meghana Deodhar, Clinton Jones and Joydeep
Ghosh GrC 10

[43] Reviewer Profiling Using Sparse Matrix Regression Evangelos E.
Papalexakis, Nicholaos D. Sidiropoulos, Minos Garofalakis
IEEE OEDM 2010 Workshop, held in conjuction with ICDM 2010,
Sydney, Australia

[44] Co-clustering as multilinear decomposition with sparse latent fac-
tors Evangelos E. Papalexakis, Nicholaos D. Sidiropoulos
IEEE ICASSP 2011, Prague, Czech Republic

[45] Coclustering - a useful tool for Chemometrics Rasmus Bro,
Evangelos E. Papalexakis, Evrim Acar, Nicholaos D.
Sidiropoulos Journal of Chemometrics, January 2012

[46] Network Anomaly Detection using Co-clustering Evangelos E.
Papalexakis, Alex Beutel, Peter Steenkiste IEEE/ACM In-
ternational Conference on Advances in Social Networks Analysis
and Mining ASONAM 2012, Istanbul, Turkey

84 bibliography

[47] Regression shrinkage and selection via the lasso. Tibshirani, R.
J. Royal. Statist. Soc B., Vol. 58, No. 1, pages 267-288). (1996).

[48] Distributed Nonnegative Matrix Factorization for Web-Scale
Dyadic Data Analysis on MapReduce, Chao Liu et al. WWW
2010, ACM

[49] Distributed optimization and statistical learning via the alternat-
ing direction method of multipliers S. Boyd, N. Parikh, E. Chu,
B. Peleato, and J. Eckstein Foundations and Trends in Machine
Learning, Michael Jordan, Editor in Chief, 3(1):1-122, 2011

[50] A Tutorial on Convex Optimization II: Duality and Interior Point
Methods Haitham Hindi

[51] Convex Optimization S.P. Boyd and L. Vanden-
bergheCambridge University Press, 2004

[52] Advanced Concepts in Telecommunication Systems, Athanasios
Liavas Lecture Notes, Spring 2012, ECE, TUC

[53] http://mahout.apache.org/

[54] Local Linear Convergence of ADMM on Quadratic or Linear Pro-
grams Daniel Boley University of Minnesota

[55] Efficient Distributed Linear Classification Algorithms via the
Alternating Direction Method of Multipliers Caoxie Zhang,
Honglak Lee, Kang G. Shin

[56] On the Optimal Step-size Selection for the Alternating Direc-
tion Method of Multipliers Euhanna Ghadimi, Andre Teixeira,
Iman Shames and Mikael Johansson

[57] http://www.simonlucey.com/lasso-using-admm/

[58] http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.
html

[59] Category-based selection of effective parameters for intrusion de-
tection. P. Kabiri and G.R. Zargar. International Journal of
Computer Science and Network Security (IJCSNS), 9(9):181-188,
2009.

[60] Identifying significant Features for Network Forensic Analysis Us-
ing Artificial Intelligent Techniques S. Mukkamala, A. H. Sung
International Journal of Digital Evidence, Winter 2003, Vol. 1, Issue
4.

[61] HAMA: An Efficient Matrix Computation with the MapReduce
Framework Sangwon Seo, Yoon, E.J, Jaehong Kim, Seong-
wook Jin, Jin-Soo Kim, Seungryoul Maeng

http://mahout.apache.org/
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html
http://kdd.ics.uci.edu/databases/kddcup99/kddcup99.html

	Abstract
	Acknowledgments
	Contents
	List of Figures
	1 Introduction
	1.1 Thesis Contribution
	1.2 Thesis Organization

	2 Background
	2.1 Big Data Initiative
	2.2 Computing in the clouds
	2.3 Data Mining
	2.3.1 Statistical Modeling
	2.3.2 Machine Learning
	2.3.3 Computational Approaches to Data Modeling

	2.4 Clustering
	2.5 Map-Reduce Framework
	2.5.1 Map-Reduce model key ideas
	2.5.2 Map-Reduce or libraries (MPI/OpenMP)for parallel execution?
	2.5.3 Hadoop & HDFS
	2.5.4 HBase

	3 Problem statement-Related work
	3.1 Key Intuition
	3.2 Applications
	3.3 Influential works
	3.4 Large-Scale Co-clustering

	4 SMR co-clustering and ADMM
	4.1 Introduction to Sparse Matrix Regression
	4.1.1 Lasso Regression
	4.1.2 Non-Negative Matrix Factorization
	4.1.3 Co-clustering using Sparse Matrix Regression

	4.2 Alternating Direction of Multipliers Method
	4.2.1 Optimization preliminaries
	4.2.2 ADMM precursors and main concept

	5 Implementation analysis
	5.1 Expression of SMR co-clustering through ADMM
	5.1.1 General Form
	5.1.2 First consensus approach
	5.1.3 Improved consensus approach

	5.2 Map-Reduce implementation
	5.2.1 Structure
	5.2.2 Map-Reduce job analysis

	5.3 ADMM related choices
	5.3.1 ADMM convergence criteria
	5.3.2 Automatic adjustment of parameter

	6 Experimental results
	6.1 Dataset description and motivation
	6.2 Accuracy and interpretation
	6.3 Scaling

	7 Conclusion
	7.1 Future work

	Bibliography

