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Chapter 1 

 

 

Introduction 
 

 
The research on language modeling is referred to computational techniques and structures that describe word sequences 

as they are produced by humans. Such models can assign probabilities to words of a data and have become necessary tools 

for many researches. 

 

Two basic approaches of natural language modeling can be defined. The first one refers to syntax and semantic analysis 

of text to determine the hierarchical structure of sentences. This approach uses a series of rules to parse a sentence is 

acceptable. Despite that this analysis can describe the structure of natural language at a significant degree, there are 

continuous changes on the language that occur and make this approach difficult. Moreover, some verbal formalities in a 

language are not grammatically proper; consequently they cannot be described by this analysis. 

 

On the other hand, another approach, based on statistical techniques, is more robust to grammar abnormalities. Such 

statistical language models assign to each word in a sequence a probability according to the estimated likelihood given the 

word's context. These probabilities are estimated from a large text set, which we refer to as train data set. In this way, such 

models can model natural language as it is used in practice and not as it is defined by its theoretical grammar. The basic 

drawback of this approach is that the size of the available train sets, nowadays, fluctuates to hundreds of millions of words.  
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1.1. Natural Language Processing 

 

 

Natural language processing (NLP) is a field of computer science, machine learning and linguistics concerned with the 

interactions between computers and human (natural) languages. Specifically, it is the process of a computer extracting 

meaningful information from natural language input and/or producing natural language output. In theory, natural language 

processing is a very attractive method of human–computer interaction.  
 

Modern NLP algorithms are based on machine learning, especially statistical machine learning. Research into modern 

statistical NLP algorithms requires an understanding of a number of disparate fields, including linguistics, computer 

science, and statistics. For a discussion of the types of algorithms currently used in NLP, we should refer to pattern 

recognition. 

 
 

 

 

 

 

 

 

 

                                                figure 1.1. Language Processing 

 

The paradigm of machine learning is different from that of most prior attempts at language processing. Prior 

implementations of language-processing tasks typically involved the direct hand coding of large sets of rules. The machine-

learning paradigm calls instead for using general learning algorithms — often, although not always, based on statistical 

inference — to automatically learn such rules through the analysis of large corpora of typical real-world examples. A corpus 
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(plural, "corpora") is a set of documents (or sometimes, individual sentences) that have been hand-annotated with the 

correct values to be learned. 

 

Statistical natural-language processing uses stochastic, probabilistic and statistical methods to resolve some of the 

difficulties discussed above, especially those which arise because longer sentences are highly ambiguous when processed 

with realistic grammars, yielding thousands or millions of possible analyses. Methods for disambiguation often involve the 

use of corpora and Markov models. Statistical NLP comprises all quantitative approaches to automated language 

processing, including probabilistic modeling, information theory, and linear algebra. The technology for statistical NLP 

comes mainly from machine learning and data mining, both of which are fields of artificial intelligence that involve learning 

from data. 

 

 

1.1.1. Statistical Modeling and Statistical Language Modeling 

 

 

Statistical modeling or model building is an activity aimed at learning rules and restrictions in a set of observed data, 

proverbially called `laws'. The traditional approach is to imagine or assume that the data have been generated as a sample 

from a population, originally of a parametrically defined probability distribution and later, more generally, a so-called 

nonparametric distribution. 

 

Statistical modeling is about finding general laws from observed data, which amounts to extracting information from the 

data. Despite the creation of information theory half a century ago with its formal measures of information, the entropy and 

the Kullback-Leibler distance or the relative entropy, there have been serious difficulties in applying them to make exact the 

idea of information extraction for model building. The main problem is that these measures refer to information in 

probability distributions rather than in data. 
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Statistical modeling can be applied in many applications such as natural language processing and language modeling 

using language models. As mentioned earlier, language models assign probabilities to words of a word sequence using 

stochastic models. 

 

1.1.2. Language Model 

 

Stochastic language models (SLM) take a probabilistic viewpoint of language modeling. We need to accurately estimate 

the probability P (W) for a given word sequence W= w1 w2 ... wn. The key goal of SLM is to provide adequate probabilistic 

information so that the likely word sequences should have a higher probability. The most widely used SLM is the n-gram 

model. A language model can be formulated as a probability distribution P (W) over word strings W that reflects how 

frequently a string W occurs as a sentence. 

 

Using the chain rule of probability P (W) can be decomposed as: 

 

 
 

, where P (wi|w1,w2, ... ,wi-1)  is the probability that wi will follow, given that the word sequence was presented previously. 

The choice of wi thus depends on the entire past history of the input. For a vocabulary of size V there are V
i-1

 different 

histories and so, to specify P(wi|w1,w2, ... ,wi-1) completely, V
i
 values would have to be estimated. In reality, the probabilities 
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P(wi|w1,w2, ... ,wi-1) are impossible to estimate for even moderate values of i , since most histories  are unique or have 

occurred only a few times. A practical solution to the above problems is to make the Markovian assumption that  

P (wi|w1, w2, ...,  wi-1)  depends only on some equivalence classes. The equivalence class can be simply based on the several 

previous words. This leads to an N-gram language model.  

 

 If the word depends on the previous two words, we have a trigram:  P (wi|wi-1,wi-2). Similarly, we can have  

unigram: P(wi), or bigram: P(wi|wi-1)  language models.  

  

The trigram is particularly powerful, as most words have a strong dependence on the previous two words, and it can be 

estimated reasonably well with an attainable corpus. 

 

 

 

 
figure 1.2. Various N-grams 
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1.2. Purpose of the Thesis 

 

In this work, we propose a continuous- space language model using continuous distributions, such as multivariate 

Gaussian distributions, Gaussian Mixture Models and their implementations, which are tied Gaussian Mixture Models and 

clustered mixture language models. We compare these continuous models with the discrete models. Two potential benefits 

of using this model are smoothing unseen events, and ease of adaptation. It is shown how this model can be used alone or 

interpolated with a conventional N-gram model to calculate word probabilities. An interesting feature of the proposed 

technique is that many methods developed for acoustic models can be easily ported to continuous- space models. 

 

Firstly, we use the multivariate normal distribution to build our continuous model. We use Gaussian Mixture Models to 

improve our results. In order to overcome GMM training problems which are the large set of parameters and the potential 

data over- fitting, we build a language model based on Tied Gaussian Mixture Models, which are models with common set 

of parameters. Starting with a small vocabulary, we train these model parameters with statistical techniques and algorithms, 

such as the Expectation Maximization algorithm (EM). 

 

Moreover, we give a suitable mapping method from the discrete word space to a continuous space and show how to 

model the resulting continuous vectors. Techniques and methods for mapping and dimensionality reduction from the field of 

linear algebra and Pattern Recognition have been used, such as Singular Value Decomposition and Linear Discriminant 

Analysis. We show the use of existing tools used for lower- dimensional space and GMM parameters estimation, such as 

SVDPACKC and HTK toolkit. 
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1.3. Outline of the Thesis 

 

In the second Chapter, we present the dominant technology of language modeling, N-grams. We refer to their theory and 

their basic drawbacks and the smoothing methods that are used. We introduce the definition of the model quality presenting 

measures such as entropy and perplexity, based on the Information Theory. In the third Chapter we analyze the continuous 

space language models and their theory. We continue with the techniques that have been used for the word mapping and the 

projection to a lower space and the tools that have been used. In the fourth Chapter, we describe the data corpus and the 

SRILM toolkit, used for N-gram implementation. Then, there is a full description of the model parameters estimation and 

the model adaptation along with the continuous space models algorithm. The summary of results and the conclusion are on 

the fifth chapter with some directions for future work. 
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Chapter 2 

Language Modeling  

Technology 
 

2.1. Discrete Statistical Language Models 

 

As mentioned before, statistical language models use statistical techniques to estimate models from text data sets by 

assigning probabilities in each word of the data. One of the most dominant technologies is N-gram models. N-gram models 

regard each word as a discrete variable. They are significant for many applications such as speech recognition, optical 

character recognition, machine translation, even dictation correction. Generally, the N-gram model has good results, when 

there is a satisfying set of data for a specific task.   

 

 

2.2. N-grams description and drawbacks 

 

Even simple models can affect the performance of application that they are used from (i.e. a speech recognizer). 

However, language models are very sensitive to train data topic alternation. For example, building a model of daily 

telephone conversations can be more precise if 2 millions of such recordings have been used than 140 millions of television 

and radio recordings. This affection is so strong even for changes that are essential for human perspective. A well- built 

language model that has been trained with the Wall Street Journal corpus will not be precise if it is applied to a scientific or 

sports corpus. 
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When train data differs from test data, the quality of the model will not be as satisfying. Even on large data sets, there will 

be many N-grams with no appearance. It is expected that many accepted N-grams may never appear on a train data set. 

Also, if relative frequencies are used for probability estimation, insufficient estimations can be obtained for small N-gram 

appearances. It is necessary to smooth N-gram probabilities in order to have normalized distributions. Many smoothing 

techniques have been developed to overcome this drawback. These techniques are applied to smooth N-gram probabilities, 

so as any N-gram that has not appeared does not have a zero probability. 

 

To estimate the above probabilities we use large amounts of text, called training data, and we count the occurrences of 

words, bigrams and trigrams. That training data must be derived from the domain we want to estimate the model accuracy 

or to apply speech recognition, in order to reflex the particular style. A standard task for the English language is the Wall 

Street Journal corpus. 

 

Assuming a bigram model, we estimate p (wi|wi−1), by counting the number of occurrences of the bigram wi−1, wi and 

normalize 

 

 

This is called the maximum likelihood (ML) estimate, because it maximizes the probability of occurrence of the training 

data. It is understandable that if a bigram does not appear in our train data the probability will be zero. This is a very 

undesirable situation, because that means that an acceptable string may never be assigned a non zero probability. To 

overcome this problem, we have to smooth the distributions taken from the maximum likelihood estimate. Smoothing 
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means to adjust the probabilities, to make them non zero. Smoothing does not affect only zero probabilities. It affects small 

probabilities as well, for example probabilities of bigrams occurring only once, the so-called singletons in the training data. 

 

There are many smoothing techniques that are used to treat zero probabilities. N-gram models can be adjusted by these 

techniques. Some of the most know techniques are Good- Turing, add-one smoothing, Kneser - Ney technique and Katz's 

backing -off.  Their description and their use in smoothing are well- known, so we will not expand to this topic.  

 

 

2.3. Information Theory and Language Models quality 

 

Language models are used to estimate word- sequence probabilities. For a word sequence of N words, P (W) has 

information about the sequence's probability and accuracy. We can decide on the quality of a model according to P (W) of 

each data sequence. Entropy and perplexity are two basic measures from the field of Information Theory that are use for 

evaluating the quality of a language model. 

 

Language can be thought of as an information source whose outputs are words wi belonging to the vocabulary of the 

language. The most common metric for evaluating a language model is the word recognition error rate, which requires the 

participation of a speech recognition system. Alternatively, we can measure the probability that the language model assigns 

to test word strings without involving speech recognition systems. This is the derivative measure of cross-entropy known as 

test-set perplexity. 
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2.3.1. Entropy 
 

Given a language model that assigns probability P(W) to a word sequence W, we can derive a compression algorithm that 

encodes the text W using  −log 2P(W) bits. The cross-entropy H(W) of a model P(wi|wi-n+1 ...wi-1) on data W, with a 

sufficiently long word sequence, can be simply approximated as 

 

 
 

where NW is the length of the text W measured in words. 

 

 

2.3.2. Perplexity 

 

The perplexity PP(W) of a language model P(W) is defined as the reciprocal of the (geometric) average probability 

assigned by the model to each word in the test set W. This is a measure, related to cross-entropy, known as test-set 

perplexity 
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The perplexity can be roughly interpreted as the geometric mean of the branching factor of the text when presented to the 

language model. The perplexity defined has two key parameters: a language model and a word sequence. The test- set 

perplexity evaluates the generalization capability of the language model. The training- set perplexity measures how the 

language model fits the training data, like the likelihood. It is generally true that lower perplexity correlates with better 

language modeling. This is because the perplexity is essentially a statistically weighted word branching measure on the test 

set. 

For each language model, it is possible to calculate the perplexity for test data. Perplexity minimum value is 1 that would 

mean that all words of a sequence have probability equal to 1. On the other hand, if a word has zero probability, then the 

probability of the whole sentence will be zero and perplexity will be infinite. So, we can assume that the challenge of a 

language model is to avoid zero probabilities. A well- built model should assign small perplexity for large test data sets. 

Perplexity value is a quality measure of different models for common test data. 
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Chapter 3 

  

 

Continuous Space Language  

Models 

 
3.1. Introduction 

 

 

As covered before, N-gram models are the dominant technology in Language Modeling. In spite of their success, discrete 

N-gram models suffer from two basic drawbacks. We can refer to them as generalization and adaptability. These two 

problems refer to the N-grams with zero probability and to the parameters of N-gram model. Usually, an N-gram model has 

a huge number of parameters. Thus, it is very difficult to adapt it using a relatively small amount of data. We propose 

continuous space language models, in order to overcome these problems and have benefits such as smoothing unseen 

events, and ease of model adaptation. The basic idea of such models is the similarity of words, as they are projected in a 

continuous parameter space. That is, some words or N-grams are ”closer” to each other than other words or N-grams. 

 

There are some important issues about these models. At first, we have to make an appropriate projection of each 

"discrete" word to the new continuous space. Then, we have to deal with the high- dimensional spaces. Modeling in large 

dimensions, mentioned as curse of dimensionality, is difficult. So, what we need to construct a continuous space LM is: a 

mapping from the discrete word space to a continuous representation, and a classifier which decides the next word given the 

mapped history in the resulting space, or equivalently assigns a probability on each word given its history. 
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3.2. Word mapping 

 

 

Word mapping is the projection of each word of our data in the new continuous space. Concerning the large amount of 

words and the difficulty to process parameters in a high- dimensional space, we try to represent the most frequent words 

from our train data.  Firstly, we find the V most frequent words, and we include them in our model vocabulary included a 

class to represent the other words as unk words. To determine the mapping, we should take into account the word's 

frequency and importance, but also its relation with the other words.  

 

 

 

 

 

 

 

 

 

 

 

         

         

 

         
                 figure 3.1 word mapping 
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3.2.1. Word feature vectors 

 

 

Each word can initially be represented by an indicator vector wi, having one at the i
th

 position and zeros on the rest of the 

V-1 positions. So , we have a VxV matrix, consisted of all the word vectors. This feature vector matrix is sparse and it has 

the following form: 

 

 

 

 
 

 

 

 

 

 

                                                                                    figure 3.2 Indicator vectors 

 

This matrix consists of V
2
 elements. This means that as the size of the vocabulary rises, the size of the matrix rises 

exponentially. The next step is to map each vector to a lower dimension, concerning the word's frequency and how each 

word behaves with the others.  

 

 

w1 1 0 0 0 0 … 0 

w2 0 1 0 0 0 … 0 

w3 0 0 1 0 0 … 0 

w4 0 0 0 1 0 ... 0 

w5 0 0 0 0 1 … 0 

... ... ... ... ... ... ... ... 

wv 0 0 0 0 0 ... 1 
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3.2.2. Word co-occurrences 

 

As mentioned before, to make a suitable mapping of each word, we see how each word correlates with the rest. So we 

form a word co-occurrence matrix E that depicts this relation of the words. Each element eij is the number of times that 

word i follows word j, in the training data 

  

 

 

 

 

 

 

 

 

 

 

 

         
        figure 3.3 Co-occurrence matrix 

 

The co-occurrence matrix is a VxV matrix that has many zeros, because there are many words that do not appear together 

on the train data. Especially, in our data, the matrix E consists of 2700x27000 = 729 x 10
4
 elements (with a vocabulary of V 

= 2700) and the 6971326 elements are zero, that is the 95.63% of the matrix. The count is then smoothed as eij = log (1+eij). 

Practically, this matrix consists of each word's bigram history. Each row is the word's vector and the columns represent the 

histories. Concerning the large amount of the elements we perform a method for dimensionality reduction, which is called 

Singular Value Decomposition (SVD).  

Εij V1 V2 V3 V4 V5 …. Vv 

V1 0 0 0 92 34 …. 57 

V2 10 0 0 0 12 …. 0 

V3 0 0 0 37 53 …. 156 

V4 12 78 0 0 64 …. 0 

V5 0 35 118 0 0 …. 745 

…. …. …. …. …. …. …. …. 

Vv 45 65 0 64 0 …. 0 
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3.2.3. Singular Value Decomposition 

 

 

The singular value decomposition of a matrix is one of the most elegant and powerful algorithms in linear algebra, and it 

has been extensively used for dimensionality reduction in pattern recognition and information retrieval applications. 

 

Singular value decomposition transforms an m x n matrix A into a A = Q1ΣQ2 
 

 Q1 is an m×m matrix with the eigenvalues of AA
Τ 

as its columns 

 Q2 is an n×n matrix with the eigenvectors of A
Τ
A as its columns 

 Σ is an m×n diagonal matrix consisting of the square roots of the eigenvalues of AA
Τ
 and A

Τ
A (both matrices have 

the same eigenvalues but different eigenvectors) 

 

Graphically: 

 

            
                      figure 3.4. SVD technique 
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Something we have to notice is matrix Σ, which is a diagonal matrix, consists of the singular values 

 

 
                  figure 3.5. singular value matrix 
 

 

Being part of the matrix, singular values multiply only certain columns of Q1 and Q2. The singular values determine how 

these columns of Q1 and Q2 influence the matrix. If a value is small enough then its column or row is not added to the new 

matrix. Many of the values are zero. That means that the corresponding columns and rows have not useful information. So 

we can transform the matrix to another one that has the valuable information. 

 

Often, singular values are sorted by the significance of their rows and columns. That is the reason that SVD is used for 

matrix decomposition and data reduction. If we want to maintain the basic information of a matrix by reducing its 

dimensionality, we can keep the M greatest singular values and build another matrix Σ', containing only these M singular 

values. So we can obtain a transformation matrix M x N.  

 

As mentioned before, the word co- occurrence matrix is sparse, so we need to perform a suitable method of SVD to 

obtain the largest singular values and the corresponding vectors. We use the C version of SVDPACK. SVDPACK is a 

collection of C libraries, scripts and executables that comprises four numerical and iterative methods for computing the 

SVD of large sparse matrices using ANSI C. SVDPACK implements Lanczos and subspace iteration based methods for 
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determining several of the largest singular triplets, i.e. the singular values and the corresponding left and right singular 

vectors. 

 

In this work, we represent this kind of sparse matrix in Harwell- Boeing format. In short, the Harwell- Boeing format is a 

file format designed to represent sparse matrices.  Due to the fact that a sparse matrix has many zero entries, it is more 

efficient not to allocate memory for the whole matrix, but rather to keep track of the location and value of the nonzero 

entries.  Our input for the SVD procedure is the sparse co- occurrence matrix stored in HB format. We compute a 100- 

factor singular value decomposition using the Block Lanczos Method. We smooth the co- occurrence counts by      

            and leave the zero entries unchanged. The output of the SVD method for the experiment is: 

 

 
... HYBRID BLOCK LANCZOS (CYCLIC) 

... NO. OF EQUATIONS          =      5400 

... MAX. NO. OF ITERATIONS    =       100 

... NO. OF ITERATIONS TAKEN   =        52 

... NO. OF TRIPLETS SOUGHT    =       100 

... NO. OF TRIPLETS FOUND     =       100 

... INITIAL BLOCKSIZE         =        10 

... FINAL   BLOCKSIZE         =         0 

... MAXIMUM SUBSPACE BOUND    =       120 

... FINAL   SUBSPACE BOUND    =        20 

... NO. MULTIPLICATIONS BY A  =      2737 

... NO. MULT. BY TRANSPOSE(A) =      2250 

... TOTAL SPARSE MAT-VEC MULT.=      4987 

... MEMORY NEEDED IN BYTES    =  23455760 

... WANT S-VECTORS ON OUTPUT?           T 

... TOLERANCE                 =  1.00E-03 

 

      co- occurrence matrix in hb format                                          ˆ 

'matrix' 

... NO. OF TERMS (ROWS OF A)   =     2700 

... NO. OF DOCS  (COLS OF A)   =     2700 

... 
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           ...... BLSVD EXECUTION TIME=  1.04E+01 

...... 

......         COMPUTED S-VALUES     (RES. NORMS) 

...... 

......   1     5.47259348241408E+02  (   3.43E-13) 

......   2     3.22206791583908E+02  (   3.04E-13) 

......   3     1.73932018874499E+02  (   1.73E-13) 

......   4     1.65112830750816E+02  (   1.86E-13) 

......   5     1.19968244436092E+02  (   2.83E-13) 

......   6     1.17511147677450E+02  (   1.58E-13) 

......   7     1.08888762495068E+02  (   4.10E-13) 

......   8     1.06357847839991E+02  (   2.62E-13) 

......   9     8.83332281664914E+01  (   1.82E-13) 

......  10     8.60567530808088E+01  (   2.21E-13) 

 

… … … … … … … … … … … … … … … … … … … … … … … … … 

 

......  96     2.81183952850477E+01  (   4.61E-05) 

......  97     2.79150775531576E+01  (   6.54E-05) 

......  98     2.77850731839839E+01  (   1.05E-04) 

......  99     2.75700175733032E+01  (   1.06E-04) 

...... 100     2.74371789426662E+01  (   1.58E-04) 

                
              table 3.6. SVDPACK output       

 

Using the 100 largest singular triplets, we can project each word vector to the M- dimensional space, for M = 100. We 

project each word vector wi   to ui using the projection        , where A is the output of the SVD of the co-occurrence 

matrix for the M largest singular values.  In particular, matrix A is formed by the left singular vectors of the SVD. Let 

[U,S,V]  be the output of the decomposition, our word projection is           . 
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3.3. History mapping 

 

                        

Based on N-gram models, each word's history consists of the previous 

N-1 words. Choosing the value of N depends on the implementation. If 

N=1, each word is independent. For N=2, each word depends on the 

previous one and if N=3, each word depends on the previous 2 words. In 

natural language, it seems that each word has strong dependence on its 

previous two, so we train trigram models, for N = 3.  

 

‘Whether the fashion designers who license their names will agree to 

stay on in the new company comma remains a key to the viability of the 

specific group period’.  

 

 
                                   figure 3.7. History mapping 

 

We may observe that 'designers' is closely related to its previous two words, ‘the fashion designers’. In addition, ‘the new 

company’ and ‘the specific group’ are two more examples showing the dependence of the words as triplets. The next step is 

to collect all histories for each word. This can be done if we find for each word, the N-1 previous. Using the above mapping 

of each word, each word's history consists of the concatenation of the appropriate mapped words. Each history is a vector 

with M(N-1) elements. 

 

Having the history vectors, we could model our parameters, with Gaussian distributions. We must collect each word’s 

history from our training data and then train one model for each word As mentioned before, modeling is difficult in large 
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dimensions. Assume that we have a trigram model (N=3), a vocabulary of size V = 3K and we perform SVD for M = 100 

singular values. That means that each history consists of a 100*(N-1) = 200 elements. This is still a high- dimensional space 

and we may suffer from the curse of dimensionality.  A suitable mapping for history vectors is            where    is the 

projection of the history vector    in the new- dimensional space. The estimation of the transformation matrix B is described 

below.  

 

 

3.3.1. Curse of Dimensionality 

 
 

It is intuitive to think that increasing the dimension of the features should never reduce the model's performance, since we 

are providing a larger, or at least the same, amount of information. Therefore the worst that could happen should be the 

performance staying the same. As practice shows, this is unfortunately not the case; the performance can decrease although 

we feed more data to the system. This behavior is due to the finite amount of training data that can be presented to the 

model. In theory we normally assume the training data to be infinite and so the model ends up being perfectly trained under 

all circumstances. In practice this is not possible and if we chose a too complex model then it is unlikely that all of our 

parameters will be well estimated. On the other hand the model should not be too simplifying either, since this would 

prevent the system from living up to the complexity of human speech. 

 

Feature reduction uses statistical methods to reduce the dimension of the features, while maximizing the information that 

is preserved in the reduced feature space. Mathematically we can express this by applying a linear transformation 

 

         

 

, where y denotes a feature vector in the reduced feature space y  ϵ ℛ L and h  ϵ ℛ 2M
 stands for the original feature vector.  
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The transformation matrix B is a 2M × L matrix. The goal of all feature reduction techniques is to find the optimal B with 

respect to some optimization criterion. Linear Discriminant Analysis (LDA) an effective method. 

 

3.3.2. Linear Discriminant Analysis 

 

LDA finds the optimal transformation matrix in terms of preserving most of the information that can be used to 

discriminate between the different classes. Therefore the analysis requires the data to have appropriate class labels. We 

associate words with class labels and assign each observed history vector to the corresponding. LDA estimates the between 

and within class scatters in order to find the optimal transformation matrix. 

 

In order to formulate the optimization procedure mathematically, we have to compute the mean vector and the covariance 

matrix for each class 

 

     
 

  
   

  

   
 

 

    
 

  
    

  

   
               

  

 

 

and for the complete data set (with all classes pooled together) 
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In the above formulas N denotes the total number of training tokens and Nv stands for the number of training tokens in 

class v. Naturally (there are V classes), 

 

     
 

   
 

                                                                                       

 

With these definitions, we can easily formulate the optimization criterion, namely 

 

 

            

   
        

   
       

 

 

 

, where 
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Although this criterion might look complicated at first glance, it can easily be understood. The numerator represents the 

covariance of the pooled training data in the transformed feature space. The denominator represents the average covariance 

within each class in the transformed feature space. Hence, the criterion really tries to maximize the ‘distance’ between 

classes while minimizing the ‘size’ of each of the classes at the same time. This is exactly what we want to achieve because 

this criterion guarantees that we preserve most of the discriminant information in the transformed feature space.  

 

In our case, we have to encounter the problem of the large size of the history vectors. In order to estimate the projection 

matrix B, we estimate the statistics that LDA uses to compute the scatter matrices. We need to estimate between- class 

scatter SB and within- class scatter SW. At first, we estimate two sufficient statistics for the matrices computation which are: 

 

         
   

 

 

           
 

   
 

 

, where i is the word – class i.e. i = 1,…, c and    is the history vector. 

After estimating these statistics for all history vectors, we compute the mean vector for each word – class. 

 

     
 

  
   

   
  

 

  
       

 

, where    is the amount of class i history vectors. 
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Then, we have to estimate the between – scatter matrix, which is computed as follows: 

 

                      
 

   
 

, where  

 

    
 

 
     

 

   
 

 

In order to estimate the within – class scatter, we have to estimate   for each word – class. 
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And finally,  

 

       

 

   

 

 

 

The rest of the transformation matrix B is the same as previous. By estimating the projection matrix B we are able to project 

each history vector to the new- dimensional space. In our model we project each history vector in the reduced feature space 

y ϵ R
L
 for L = 50.  
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3.4. Continuous Language Model Statistical methods 

 

In order to build a continuous- space language model we have to use some distributions in the continuous space. The 

most known and used distribution is the Gaussian distribution. Firstly, we used the multivariate Gaussian distribution for 

initial parameter estimation and then we used Gaussian Mixture Models and the Expectation- Maximization algorithm. 

Finally we used parameter tying techniques to build Tied Gaussian Mixture Model.  

 

 

3.4.1. Multivariate Gaussian distribution 
                                                                                                                                                   figure 3.8. Multivariate Gaussian distribution 

 

In probability theory and statistics, the multivariate normal 

distribution or multivariate Gaussian distribution, is a 

generalization of the one-dimensional (univariate) normal 

distribution to higher dimensions. One possible definition is that a 

random vector is said to be p-variate normally distributed if every 

linear combination of its p components has a univariate normal 

distribution.  

 

 

However, its importance derives mainly from the Multivariate 

central limit theorem. The multivariate normal distribution is 

often used to describe, at least approximately, any set of (possibly) correlated real-valued random variables each of which 

clusters around a mean value. 
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The multivariate normal distribution of a k-dimensional random vector X = [X1, X2, …, Xk] can be written in the 

following notation:  

 

 X ~   ( μ , Σ )  
 

with k-dimensional mean vector 

 

 μ = [ Ε[X1],Ε[X2],..., Ε[Xk] ] 
 

and k x k covariance matrix 

 

 Σ = [ Cov[Xi, Xj] ], i = 1,2,...,k ; j=1,2,...,k 

 

 

Multivariate normal distribution describes variables that tend to cluster around their mean value.  Based on the 

Multivariate central limit theorem, any random variable can be described by the normal distribution if  it has a large set of 

observations. That is why Gaussian distributions are often used for statistical modeling and language modeling. 

 

 

 

 

 

 

 

 



39 

 

3.4.1.1. Multivariate Gaussian Language Model  

 
      

After collecting the mapped history data, we use one multivariate Gaussian distribution for each word.  Then, we 

calculate each word’s mean vector and covariance matrix. So, we model each word based on its history y: 

                   where μw and Σw are mean vector and covariance matrix. 

 

With this distribution we evaluate the probability of each history given the word. With our model we want to evaluate the 

probability of the word given its history. Using Bays rule we have:  

 

                      
          

                  figure 3.9. Bayes rule 

 

, where P (w) is the unigram probability of the word. 

 

We must consider that        must sum up to 1 for each    . An appropriate check is performed after the training, for 

a history set                , checking if                    for each       . 

 

The model parameters for this approach are the SVD output of the co-occurrence matrix, the LDA projection matrix B 

and the mean vectors and covariances matrices for each word. After the model estimation, we evaluate the test data 

logarithmic probability and perplexity. 
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3.4.2. Gaussian Mixture Models (GMM) 

 

A Gaussian Mixture Model (GMM) is a parametric probability density function represented as a weighted sum of 

Gaussian component densities. GMMs are commonly used as a parametric model of the probability distribution of 

continuous measurements or features in acoustic and language models. GMM parameters are estimated from training data 

using the iterative Expectation-Maximization (EM) algorithm.                                                           

            

A Gaussian mixture model is a weighted sum of M component Gaussian densities as given by the equation, 

 

                        

 

   

 

 

where x is a D-dimensional continuous-valued data vector (i.e. measurement or features), ck , k = 1, . . . , K, are the mixture 

weights, and g( x | μk , Σk ), k = 1, . . . , K, are the component Gaussian densities. Each component density is a D-variate 

Gaussian function of the form, 

 

              
 

    
 
     

 
 

     
 

 
       

   
          

 

 

, with mean vector μi  and covariance matrix Σi . The mixture weights satisfy the constraint that their sum is 1.The complete 

Gaussian mixture model is parameterized by the mean vectors, covariance matrices and mixture weights from all 

component densities.  
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These parameters are collectively represented by the notation, 

 

                          

 

 

The covariance matrices, Σi, can be full rank or constrained to be diagonal. Additionally, parameters can be shared, or 

tied, among the Gaussian components, such as having a common covariance matrix for all components. The choice of 

model configuration (number of components, full or diagonal covariance matrices, and parameter tying) is often determined 

by the amount of data available for estimating the GMM parameters and how the GMM is used in a language model 

application. It is also important to note that because the Gaussian components are acting together to model the overall 

feature density, full covariance matrices are not necessary even if the features are not statistically independent. The linear 

combination of diagonal covariance basis Gaussians is capable of modeling the correlations between feature vector 

elements. The effect of using a set of M full covariance matrix Gaussians can be equally obtained by using a larger set of 

diagonal covariance Gaussians. GMMs are often used in biometric systems, most notably in continuous- speech recognition 

systems, due to their capability of representing a large class of sample distributions.  
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3.4.2.1. Gaussian Mixture Language Model (GMLM) 

 

 

As mentioned before, each GMM consists of Kw weighted distributions. To build 

our model, we train one GMM for each word using the Expectation Maximization 

algorithm. After the word and history mapping, we collect each word’s history and 

we build the mixtures: 

 

 

 

                                          
, where Kw is the number of the components. 

 

 
    figure 3.10. Gaussian Mixture Model 

 

 

We use different values of K mixtures for each implementation and we train the model parameters. The model parameters 

for GMLM are the SVD output matrix A of the co-occurrence matrix, the LDA projection matrix B and the mixture 

parameters, mean vectors and covariances matrices for each word and the priors for each mixture. After the model 

estimation we can evaluate the test data logarithmic probability and perplexity using the Bays rule as previous. 
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3.4.3. Tied Gaussian Mixture Models (T-GMM) 

 

 

GMMs use different set of distributions for each variable and 

each of one is parameterized by the mean vectors, covariance 

matrices and mixture weights from all component densities. It is 

inevitable that as the dimension and the variables are being 

increased, the GMM parameters are being increased consequently. 

There is a specialization of GMMs that instead of having separate 

sets of Gaussian distributions for each word, a common set of 

distributions can be used for all words with different weights. 

          

    
                   figure 3.11. Gaussian pool    

             

Let's assume that we have a set of distributions, we may refer to it as a Gaussian pool, which is common for all words. 

Tied Gaussian mixture model is a weighted sum of J component Gaussian densities as given by the equation, 

    

                         

 

 

 

 

T -GMM is been used in pattern recognition and statistical modeling applications, such as acoustic modeling. Their 

advantage is that they use a small set of parameters for large amount of data, and, consequently, the model training is more 

efficient. 
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3.4.3.1. Tied Mixture Language Model (TMLM) 

 

 

GMLM is proposed to overcome N-gram drawbacks, such as generalizability and 

adaptability. Although, this method has a disadvantage as far as the amount of 

parameters is concerned. Tied-Mixture Language Model (TMLM) does not have the 

model parameter estimation problems that GMLM has. TMLM provides a great deal 

of parameter tying across words, hence achieves robust parameter estimation. As 

such, TMLM can estimate the probability of any word that has as few as two 

occurrences in the training data. Also, we must notice that GMM training may suffer 

from data- overfitting problems. That means that some history data have really small 

variances, which leads to computational problems. Tying parameters such as 

variance vectors or the entire mixtures is used to overcome this problem               figure 3.12 parameter tying 

 

 

Using tying techniques for our implementation, we tie the variance vector for each word, in order to train our model. So, 

all the words use the same variance vector for each distribution and different weights for each mixture.  
                   

                

The model parameters for TMLM are the SVD output of the co-occurrence matrix, the LDA projection matrix B and the 

mixture parameters, mean vectors and covariances matrices for the common set of distributions and the weights for each 

word. After the model estimation, we evaluate the test data logarithmic probability and perplexity using the Bays rule as 

previous. 
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Chapter 4 

  

Experimental  

Evaluation 
 

 

4.1. Data description 

  

In this work, we use data from the Wall Street Journal for our train and test data. In particular, we used articles from 

1994. The data files are WS94_*.VPZ and each sentence has the following form: 

 

  <p.wsj94_001.0012.3> 

  <s.wsj94_001.0012.3.2> 

  D. D. T. is a highly persistent chemical that moves up the food chain, COMMA and it         

accumulates in the fatty tissue of humans .PERIOD 

</s> 

</p> 

 

 

 

 

First line means that the sentence comes from document 001.0012, paragraph 3 and is sentence two. Text data is not 

normalized and is verbalized. That means that punctuation marks are followed by the word of the mark, i.e. “,COMMA”. 

Moreover, there are many incorrect words so we have to edit the data before splitting them into train and test data. 
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 At first, we removed all of the headers, such as <p.wsj94_001.0012.3>  and <s.wsj94_001.0012.3.2> 

 We turned the data into lowercase 

 We discarded incorrect words such as «kknow», ”tthey”, ”aare” 

 We removed digits and numbers 

 Punctuation is only the word, not the mark 

 We sorted all sentences according to their length 

 We inserted <s> and </s> symbols at the beginning and the end of each sentence, consequently. 

 For our small vocabulary, we found the 2700 most frequent words, which are the vocabulary, and replaced any other 

words with <unk> symbol. For our large vocabulary, we did not replace any of the words, and we used all of the 

words for our vocabulary. 

 According to the vocabulary, we turned our data into index sequences. Each index shows the position of each word. 

For example, <s> percentage gains for <unk> ended march thirty first comma nineteen ninety three semicolon assets 

as of december thirty first comma nineteen ninety two assets a <unk> fee on shares held for a year or less <\s>turns 

into   4 691 680 14 0 385 322 69 75 1 44 54 29 90 441 22 6 901 69 75 1 44 54 18 441 8 0 1920 19 118 458 14 8 48 

57 295 3 

 So, our train and test data are: 

 

 

 

 
 

 

 

        figure 4.1. Data description 

WS94 Train data Test data 

No of sentences 160000 6000 

No of words 4447740 164574 
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4.2. Baseline experiments – SRILM toolkit 

 

SRILM is a collection of C++ libraries, executable programs, and helper scripts designed to allow both production of and 

experimentation with statistical language models for speech recognition and other applications. The toolkit supports creation 

and evaluation of a variety of language model types based on N-gram statistics, as well as several related tasks, such as 

smoothing and class- based models. 

 

At first it generates the n-gram count file from the corpus, then it trains the language model from the n-gram count file 

and it calculates the test data perplexity using the trained language model. Also it can perform word clustering. 

 

 

 

 

figure 4.2. SRILM toolkit  
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In particular: 

 

 ngram -count -vocab Lexicon.file  

                         -text train.txt 

                -order 3 

                -write train_3gram 

                -unk  

  

  

This command generates and manipulates N-gram counts, and estimates N-gram language models from them.  

 

-vocab file: reads a vocabulary from file 

-text filename:  train data set 

-order: sets the maximal length of N-grams 

-write filename: output file that contains N-gram counts 

-unk: sets any unknown words with oov (out-of-vocabulary) 

 

-output

 

<unk>   668381 

<unk> <unk>     112108 

loan does       1 

loan negotiations will  1 

from university <unk>   1 

from ten        40 

from ten million        1 

suggested the final     1 

suggested the industry  1 

suggested the chicago   1 

majority stake of       1 

majority democrats    
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 ngram-count -vocab Lexicon.file 

              -read train_3gram 

              -order 3 

              -lm 3gram.train.lm 

 

This program reads count file and creates the language model file 

 

-vocab file: vocabulary file 

-read countfile : N-gram counts file  

-order: N-gram length 

-lm lmfile: language model file 

 

-output

 

\data\ 

ngram 1=2001 

ngram 2=260999 

ngram 3=246775 

\1-grams: 

-1.354499       </s> 

-99     <bos> 

-99     <eos> 

 

 

-99     <s>     -1.72626 

-4.109913       aircraft        -0.6429651 

-4.023325       airline         -0.5559635 

-3.777582       airlines        -0.6082685 

-1.560787       zero zero two 

-1.123479       zero zero zero 

 

\end\ 
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  ngram  -ppl test.txt 

              -order 3 

                       -lm 3gram.train.lm 

 

This program evaluates test data perplexities based on the language model we trained. 

 

-ppl pplfile: test data perplexities file 

-order: Ν-gram length 

-lm lmfile: το language model file 

 

-output

brain banks need more depositors period 

p( <unk> | <s> )        = [OOV] 0 [ -inf ] 

p( banks | <unk> ...)   = [1gram] 0.000475788 [ -3.32259 ] 

p( need | banks ...)    = [1gram] 7.3968e-05 [ -4.13096 ] 

p( more | need ...)     = [2gram] 0.0191286 [ -1.71832 ] 

p( <unk> | more ...)    = [OOV] 0 [ -inf ] 

p( period | <unk> ...)  = [1gram] 0.0436764 [ -1.35975 ] 

p( </s> | period ...)   = [2gram] 0.925196 [ -0.0337663 ] 

1 sentences, 6 words, 2 OOVs 

0 zeroprobs, logprob= -10.5654 ppl= 129.741  

ppl1= 437.869 

file test.txt: 6000 sentences, 152570 words, 24582 OOVs 

0 zeroprobs, logprob= -255134 ppl= 70.2338 ppl1= 76.339 

This file contains the logarithmic probability of each 

sentence and its perplexity. It also evaluates the perplexity 

of the whole test data, the number of words and the out- of 

–vocabulary words. 

Here, we have the SRILM results for the test and train 

data. 

 

 

 

 

SRILM results Test data Train data 

ppl 70.2338 52.2659 
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4.3. Model training 

 

 

 

     As covered before, on model training chapter, for all of the 

previous models, the implementation is same. We edit and 

process our data; we split them into train and test sets. Then, 

we construct the co- occurrence matrix, even if it is bigram - 

oriented or as it is shown later. We perform Singular Value 

Decomposition for dimensionality reduction, for the M 

maximum singular values. So we have our first model 

parameter, the word projection matrix A. Using this word 

mapping, we collect our history vectors for each word and 

project them to a lower dimension using Linear Discriminant 

Analysis. The projection matrix B, is used for the projection of 

each history matrix to our new continuous space, with lower 

dimension.   

 

     We use these vectors as training data. The HTK tool, which 

is described in this section, uses this data to train the mixture 

models. Having estimated the model we compute the set 

perplexity. We also use tying techniques and other approaches 

for the co- occurrence matrices to improve our results. 

 

                   
                 figure 4.3. Model algorithm 
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4.4. Experimental Results 

 

 

After the training of the models we referred to, we estimated the test data set perplexity for each language model.  

 

 

                                        
 

 

For each test data sentence, we estimate its log- probability.  

 

 

                                                                                      
                                                                                                      
 

 

Using the Bayes rule we estimate each trigram log- probability. 
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Then, we estimate the test data perplexity: 

 

      
   

        
           

 

 

, where T is the number of test data sentences, W the number of the words and OOVS the number of out –of –vocabulary 

words. 

 

The output of each experiment has the following format: 

 

 
Test data set perplexity estimation 
Estimating test data sentences perplexity 
logP(a|<s>,<s>) = -2.545684 
logP(leading|<s>,a) = -1.209133 
logP(member|a,leading) = -1.232993 
logP(of|leading,member) = -1.239600 
logP(the|member,of) = -1.135314 
logP(party|<unk>,<unk>) = -1.095569 
logP(said|<unk>,party) = -1.384926 
logP(that|party,said) = -1.185744 
….….….….….….….….….….….….….….….…. 
logP(a|i,r) = -1.736261 
logP(response|r,a) = -0.692497 
logP(period|a,response) = -1.699502 
logP(</s>|response,period) = -Inf 
Sentence No. 1 has 32 words with 5 oovs. 
logprob = -168.689786 ppl = 413.490780 
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The statistics printed in the last two lines describe the number of the sentence, the number of the words of the sentences. 

Also, the number of out-of vocabulary words is referred.  This is the number of unknown word tokens, i.e. tokens that 

appear in test data but not in train data from which language model was generated.  Logprob gives us the total logprob 

ignoring the 5 unknown word tokens. The logprob does include the probabilities assigned to </s> tokens which are 

introduced in the beginning of the training. Thus the total number of tokens which this logprob is based on is: 

NoOfWords – OOVs + sentences = 32 – 5 + 1 = 28, for the specific sentence. 

 

Perplexity is the geometric average of 1/probability of each token, i.e., perplexity. The exact expression is:  

 

    ppl = e ^ (-logprob / (words - OOVs + sentences)) 

 

After the estimation of the model parameters, which are the SVD and LDA output matrices, we train our model using 

HTK.  We have to decide how we will train our models. There are two ways. Firstly, we train one multivariate Gaussian 

distribution for each word. Then we can use the HHEd tool to split the Gaussian into more components. We also trained 

word GMMs with direct number of components, without using the split procedure.  

 

Concerning the data overfitting problem we set a stable variance floor with v = 0.1. We referred to this problem as the 

computational problem that occurs when data and Gaussians have incredibly small variance values. The value of the 

variance floor is large so there are many variances that are floored. We use this value to estimate the two methods of 

training to decide which we are about to use. We use Hinit tool to initialize the GMLM models and then we estimate the 

model parameters using HREst tool. We used K = {1,2,4,8,16,32} components for each implementation  
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We estimated the test data perplexity using this method on a small test data set of T = 100 sentences  

 
 K = 1 K = 2 K = 4 K= 8 K = 16 

logprob -13176 -13155 -13030 -12783 -12701 

ppl 343.18 340.003 321.589 288.286 278.021 

          
H                      HHEd splitting K = 1 K = 2 K = 4 K= 8 K = 16 

logprob -13176 -14101 -13568 -13154 -12735 

ppl 343.18 516.86 408.183 339.736 282.17 

       

tables 4.4,4.5. small test set perplexity with direct number of components and HHEd splitting 

   

We can see that training the GMMs with direct number of components gives us better results, especially for small number 

of components. So we use this method for the rest of the experiments. Our next step is to use another value of variance floor 

(vfloor), so for a certain number of components we estimate the perplexity for different values of vfloor. 

 

 
                  K = 8 0.1 0.05 0.04 0.01 

logprob -12783 -13799 -13904 -20421 

ppl 288.28 327.22 342.07 5268 

                              

table 4.6.  small test set perplexity using different vfloor values 
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It is obvious that vfloor affects the results. We have to concern that if we choose a large value of vfloor the results are 

better, but there are more variances that are floored. We choose vfloor to be 0.05 in order to compare the perplexity values 

for different number of components. We still estimate the small test set perplexity (T = 100). 

 
 K = 1 K = 2 K = 4 K= 8 K = 16 K = 32 

logprob -14189 -14174 -14033 -13799 -13603 -13546 

ppl 385.43 383.11 361.098 327.221 301.493 294.317 

        
      table 4.7. small test set perplexity for different mixture components 

 

Whereas, the test set perplexity for the whole set (T = 6000) is: 

 
 K = 1 K = 2 K = 4 K= 8 K = 16 K = 32 

logprob -788595 -787443 -775338 -763566 -761124 -770041 

ppl 301.12 298.62 273.57 251.22 246.79 263.21 

 
                  table 4.8.  test set perplexity for different mixture components 

 

Our next experiment is about setting a value of vfloor which is not pre- defined but being depended on the global 

variance of the data. We use the HCompV tool to estimate the global variance of its word training data and set a vfloor 

vector as a percent of the global variance. By default, HCompV sets the f * global_variance as variance floor, where  

f = 0.01.  
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We also use the HHEd tool to tie our mixture variances. Concerning that all mixtures will share the same variance; we used 

more components for this experiment.  

 
                  K = 32 K = 64 K = 128 

logprob -13717 -13662 -13575 

ppl 352.45 308.95 297.9 

       
                  table 4.9. small test set perplexity with tied variances 
 

Something else that we tested is to increase the variance vector by 5 or 10 percent, so as the variance vector is var’ = a* 

var. 

 
K = 128 a = 1 a = 1.1 a = 1.05 

logprob -13575 -13680 -13629 

ppl 297.9 311.32 304.8 

 
                 Table 4.10. small test set perplexity with variance increase 
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 We can conclude that all of the above experiments have similar perplexity results.  For that reason, we followed a 

different approach. Something we must take into consideration is the initial word mapping. We constructed the word vectors 

using the SVD output of the word co- occurrence matrix. This matrix can be regarded as a bigram counts matrix, keeping 

trace of the counts of each vocabulary bigram. The first alternative of this matrix is a co- occurrence matrix which counts 

the occurrences of each word with the M most frequent history words. So we construct a word co- occurrence matrix H (V x 

M), using the same procedure as with the ‘original’ co- occurrence matrix. For example: 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
                                                                  table 4.11. co – occurrence matrix H with fewer history words 
 

 

 

 

 

 H1 H2 H3 H4 … H500 

V1 223 143 414 87 … 43 

V2 0 423 95 0 … 12 

V3 62 0 43 0 … 0 

… … … … … … … 

Vv 13 0 5 0 … 9 
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The rest of the implementation is the same. The SVD output of this matrix is used for the word vectors and LDA for the 

history vectors projection to the new- dimensional space. We trained the GMLM model with K = 64 mixtures by tying the 

variance vector and estimated the test set perplexity: 

 
K = 64 bigram co- occurrence co- occurrence H 

logprob -13662 -13547 

ppl 308.95 294.39 

 
               table 4.12. small test set perplexity with co- occurrence matrix H 
 

We observe a slight improvement of the results. Our next step is to try another vector representation for the vocabulary 

words. Instead of using the ‘raw’ counts of the bigrams for each matrix entry, we use the probability of each bigram. So, 

matrix P consists of the bigrams probabilities: 

 

 

 

 

 

 

 

 

 

 

 
                                table 4.13. probability co-occurrence matrix P 

 V1 V2 V3 V4 … VV 

V1 0.004 0.013 0 0.087 … 0.043 

V2 0 0.4 0.095 0 … 0.12 

V3 0.054 0 0.013 0.078 … 0 

… … … … … … … 

Vv 0.09 0 0.0015 0 … 0.0019 
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 After the SVD and LDA projection we estimated the test data perplexity: 

 

 
K = 64 bigram co- occurrence probability co- occurrence 

logprob -13662 -14636 

ppl 308.95 464.9 

        
                        table 4.14. small test set perplexity with co- occurrence matrix P 

 

 

There is no improvement on our results with this projection. We can assume that this may happen due to the fact that 

these co- occurrence matrices refer to bigram counts while we build a trigram model. For this reason, we constructed a 

‘trigram’ co- occurrence matrix T, where Tij is the amount of times that word i appears after the bigram history j.  

 

The number of the possible history bigrams is large enough, so we use the N top history bigrams that are seen in the 

training set. The size of the trigram co- occurrence matrix is VxN, where N is the number of the top bigrams that we use. 

We used several values of N.  
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The form of this co- occurrence matrix is: 

  

 

 

 

 

 

  

       

                                        table 4.15. co- occurrence matrix T 
 

We used the N = 50, 100, 200, 300, 500, 1000 and 2500 top bigrams to construct the co- occurrence matrix. Using these 

matrices for the word representation we build our GMLM models with K = 64 mixtures and estimated the test data 

perplexity: 

  

table 4.16. small test set perplexity with co- occurrence matrix T for N top bigrams histories 
 

 H1 H2 H3 H4 … HV 

V1 457 332 230 87 … 143 

V2 230 104 95 0 … 112 

V3 54 0 113 78 … 0 

… … … … … … … 

Vv 9 0 15 0 … 19 

K = 64 bigram co- occurrence 50 100 200 300 500  1000 2500 

logprob -13662 -13328 -13490 -13570 -13651 -13538 -13693 -13681 

ppl 308.95 268.58 287.4 297.25 307.63 293.36 313.06 311.46 
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We observe that using the 50 top bigrams for the co- occurrence matrix gives us the best results compared to the others. 

We estimated the entire test set and training set perplexity using this implementation, as so as the implementation of the 

original co- occurrence matrix representation using K = 64 mixtures. 

       
table 4.17. test and train set perplexity 

 

 

 

 

 

Training data Test data 

Bigram co- occurrence 
Trigram co- 

occurrence 
Bigram co- occurrence 

Trigram co- 

occurrence 

Logprob -66230 -58069 -764152 -735380 

ppl 460.54 216.33 252.25 204.83 
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Chapter 5  

 

 

Conclusion 

 
5.1. Summary of Results 

 

In this work, we proposed language models to continuous space. Based on the main drawbacks of N-gram discrete 

language models, adaptability and generalization, we used appropriate mapping methods to project words as variables in the 

continuous space. In the beginning we used a vocabulary of the V = 2700 most frequent words of our train data. We used 

Singular Value Decomposition and Linear Discriminant Analysis for feature dimensionality reduction and the EM 

algorithm for the training of the mixture models. We used Gaussian mixture models for each vocabulary word. We applied 

tying methods in these models and we proposed other word mapping approaches with different coocurence matrix 

estimation. 

After the training of each model, we estimate the logarithmic probability for the test data set                 : 

                                                                                     , 

where                                                   . Each one of the word probabilities is 

estimated form the Bayes rule. Then, we compute the test data perplexity, based on the SRILM formula: 
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5.2. Future work 

 

We proposed continuous- space language models to cope with the main problems of the traditional discrete N-gram 

language models. We evaluated several continuous- space language models and compared them to the SRILM N-gram 

models in the WS94 corpus. Comparing our best results with the SRILM results, we see that our implementation is slightly 

worse. A basic problem that we encountered is data over fitting. This may explain our model accuracy.  

 

Generally, language modeling in continuous space is more adaptable and smooth for words with few occurrences. More 

experiments with different parameters can be repeated. These parameters are the M largest singular values for the SVD 

technique, the initial word projection based on the coocurence matrix type, the dimensions L of the projected history vectors 

which LDA deals with.  

 

Furthermore, there can be clustering methods to split words into clusters and train cluster based mixture models. Tying 

model parameters of words that belong to the same cluster can be implemented in order to improve model accuracy. A 

future work could integrate these models with a continuous- space recognizer and evaluate word accuracy. Moreover, a 

language model that can adapt with topic alternation can be built based on these models. 
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