

Language Models using Continuous Distributions

Tsiakas Konstantinos

Diploma Thesis, Supervisor Professor: Prof.Vassilis Digalakis

Technical University of Crete

Chania, October 2012

Acknowledgments

First and foremost I offer my sincerest gratitude to my supervisor, Dr Vassilis Digalakis, who has supported me throughout my thesis with his

patience and knowledge whilst allowing me the room to work in my own way. He introduced me to this specific area of study, which I am sure

that I will follow. I would also like to thank Vassilis Diakoloukas, whose support and knowledge was very helpful and essential for this project. I

would also like to thank my friends and family for their valuable emotional support. Without them I would not have been able to cope with all

this.

 Tsiakas Konstantinos

3

4

Contents

1. Introduction 8

1.1. Natural Language Processing 9

1.1.1. Statistical Modeling and Statistical Language Modeling 10

1.1.2. Language Model 11

1.2. Purpose of the Thesis 13

1.3. Outline of the Thesis 14

2. Language Modeling Technology 16

2.1. Discrete Statistical Language Models 16

2.2. N-gram description and drawbacks 16

2.3. Information Theory and Language Modeling 18

2.3.1. Entropy 19

2.3.2. Perplexity 19

3. Continuous space Language Models 22

3.1. Introduction 22

3.2 Word mapping 23

3.2.1. Word feature vectors 24

3.2.2. Word co- occurrences 25

3.2.3. Singular Value Decomposition 26

5

3.3. History mapping 30

3.3.1. Curse of Dimensionality 31

3.3.2. Linear Discriminant Analysis 32

3.4. Continuous Language Modeling Statistical Methods 37

3.4.1. Multivariate Gaussian distribution 37

 3.4.1.1. Multivariate Gaussian Language Model 39

3.4.2. Gaussian Mixture Models 40

 3.4.2.1. Gaussian Mixture Language Model 42

3.4.3. Tied Gaussian Mixture Models 43

 3.4.3.1. Tied Mixture Language Models (TMLM) 44

4. Experimental Evaluation 45

4.1. Data description 45

4.2. Baseline experiments - SRILM toolkit 47

4.3. Model training 51

4.4. Experimental Results 52

5. Conclusion 64

5.1. Summary of Results 64

5.2. Future work 65

6. Bibliography

6

Table of Figures and Tables

1.1. Language Processing

1.2. Various N- grams

3.1. Word mapping

3.2. Indicator vectors

3.3. Co-occurrence matrix

3.4. SVD technique

3.5. Singular value matrix

3.6. SVDPACK output

3.7. History mapping

3.8. Multivariate Gaussian distribution

3.9. Bayes rule

3.10. Gaussian Mixture Model

3.11. Gaussian pool

3.10. Parameter tying

4.1. Data description

4.2. SRILM toolkit

4.3. Model algorithm

4.4. small test set perplexity with direct number of components

4.5. small test set perplexity with HHEd splitting

4.6. small test set perplexity using different vfloor values

4.7. small test set perplexity for different mixture components

4.8. test set perplexity for different mixture components

4.9. small test set perplexity with tied variances

4.10. small test set perplexity with variance increase

4.11. co- occurrence matrix H with fewer history words

7

4.12. small test set perplexity with co- occurrence matrix H

4.13. probability co- occurrence matrix

4.14. small test set perplexity with co- occurrence matrix P

4.15. co- occurrence matrix T

4.16. small test set perplexity with co- occurrence matrix T for N top bigram histories

4.17. test and train perplexity

8

Chapter 1

Introduction

The research on language modeling is referred to computational techniques and structures that describe word sequences

as they are produced by humans. Such models can assign probabilities to words of a data and have become necessary tools

for many researches.

Two basic approaches of natural language modeling can be defined. The first one refers to syntax and semantic analysis

of text to determine the hierarchical structure of sentences. This approach uses a series of rules to parse a sentence is

acceptable. Despite that this analysis can describe the structure of natural language at a significant degree, there are

continuous changes on the language that occur and make this approach difficult. Moreover, some verbal formalities in a

language are not grammatically proper; consequently they cannot be described by this analysis.

On the other hand, another approach, based on statistical techniques, is more robust to grammar abnormalities. Such

statistical language models assign to each word in a sequence a probability according to the estimated likelihood given the

word's context. These probabilities are estimated from a large text set, which we refer to as train data set. In this way, such

models can model natural language as it is used in practice and not as it is defined by its theoretical grammar. The basic

drawback of this approach is that the size of the available train sets, nowadays, fluctuates to hundreds of millions of words.

9

1.1. Natural Language Processing

Natural language processing (NLP) is a field of computer science, machine learning and linguistics concerned with the

interactions between computers and human (natural) languages. Specifically, it is the process of a computer extracting

meaningful information from natural language input and/or producing natural language output. In theory, natural language

processing is a very attractive method of human–computer interaction.

Modern NLP algorithms are based on machine learning, especially statistical machine learning. Research into modern

statistical NLP algorithms requires an understanding of a number of disparate fields, including linguistics, computer

science, and statistics. For a discussion of the types of algorithms currently used in NLP, we should refer to pattern

recognition.

 figure 1.1. Language Processing

The paradigm of machine learning is different from that of most prior attempts at language processing. Prior

implementations of language-processing tasks typically involved the direct hand coding of large sets of rules. The machine-

learning paradigm calls instead for using general learning algorithms — often, although not always, based on statistical

inference — to automatically learn such rules through the analysis of large corpora of typical real-world examples. A corpus

10

(plural, "corpora") is a set of documents (or sometimes, individual sentences) that have been hand-annotated with the

correct values to be learned.

Statistical natural-language processing uses stochastic, probabilistic and statistical methods to resolve some of the

difficulties discussed above, especially those which arise because longer sentences are highly ambiguous when processed

with realistic grammars, yielding thousands or millions of possible analyses. Methods for disambiguation often involve the

use of corpora and Markov models. Statistical NLP comprises all quantitative approaches to automated language

processing, including probabilistic modeling, information theory, and linear algebra. The technology for statistical NLP

comes mainly from machine learning and data mining, both of which are fields of artificial intelligence that involve learning

from data.

1.1.1. Statistical Modeling and Statistical Language Modeling

Statistical modeling or model building is an activity aimed at learning rules and restrictions in a set of observed data,

proverbially called `laws'. The traditional approach is to imagine or assume that the data have been generated as a sample

from a population, originally of a parametrically defined probability distribution and later, more generally, a so-called

nonparametric distribution.

Statistical modeling is about finding general laws from observed data, which amounts to extracting information from the

data. Despite the creation of information theory half a century ago with its formal measures of information, the entropy and

the Kullback-Leibler distance or the relative entropy, there have been serious difficulties in applying them to make exact the

idea of information extraction for model building. The main problem is that these measures refer to information in

probability distributions rather than in data.

11

Statistical modeling can be applied in many applications such as natural language processing and language modeling

using language models. As mentioned earlier, language models assign probabilities to words of a word sequence using

stochastic models.

1.1.2. Language Model

Stochastic language models (SLM) take a probabilistic viewpoint of language modeling. We need to accurately estimate

the probability P (W) for a given word sequence W= w1 w2 ... wn. The key goal of SLM is to provide adequate probabilistic

information so that the likely word sequences should have a higher probability. The most widely used SLM is the n-gram

model. A language model can be formulated as a probability distribution P (W) over word strings W that reflects how

frequently a string W occurs as a sentence.

Using the chain rule of probability P (W) can be decomposed as:

, where P (wi|w1,w2, ... ,wi-1) is the probability that wi will follow, given that the word sequence was presented previously.

The choice of wi thus depends on the entire past history of the input. For a vocabulary of size V there are V
i-1

 different

histories and so, to specify P(wi|w1,w2, ... ,wi-1) completely, V
i
 values would have to be estimated. In reality, the probabilities

12

P(wi|w1,w2, ... ,wi-1) are impossible to estimate for even moderate values of i , since most histories are unique or have

occurred only a few times. A practical solution to the above problems is to make the Markovian assumption that

P (wi|w1, w2, ..., wi-1) depends only on some equivalence classes. The equivalence class can be simply based on the several

previous words. This leads to an N-gram language model.

 If the word depends on the previous two words, we have a trigram: P (wi|wi-1,wi-2). Similarly, we can have

unigram: P(wi), or bigram: P(wi|wi-1) language models.

The trigram is particularly powerful, as most words have a strong dependence on the previous two words, and it can be

estimated reasonably well with an attainable corpus.

figure 1.2. Various N-grams

13

1.2. Purpose of the Thesis

In this work, we propose a continuous- space language model using continuous distributions, such as multivariate

Gaussian distributions, Gaussian Mixture Models and their implementations, which are tied Gaussian Mixture Models and

clustered mixture language models. We compare these continuous models with the discrete models. Two potential benefits

of using this model are smoothing unseen events, and ease of adaptation. It is shown how this model can be used alone or

interpolated with a conventional N-gram model to calculate word probabilities. An interesting feature of the proposed

technique is that many methods developed for acoustic models can be easily ported to continuous- space models.

Firstly, we use the multivariate normal distribution to build our continuous model. We use Gaussian Mixture Models to

improve our results. In order to overcome GMM training problems which are the large set of parameters and the potential

data over- fitting, we build a language model based on Tied Gaussian Mixture Models, which are models with common set

of parameters. Starting with a small vocabulary, we train these model parameters with statistical techniques and algorithms,

such as the Expectation Maximization algorithm (EM).

Moreover, we give a suitable mapping method from the discrete word space to a continuous space and show how to

model the resulting continuous vectors. Techniques and methods for mapping and dimensionality reduction from the field of

linear algebra and Pattern Recognition have been used, such as Singular Value Decomposition and Linear Discriminant

Analysis. We show the use of existing tools used for lower- dimensional space and GMM parameters estimation, such as

SVDPACKC and HTK toolkit.

14

1.3. Outline of the Thesis

In the second Chapter, we present the dominant technology of language modeling, N-grams. We refer to their theory and

their basic drawbacks and the smoothing methods that are used. We introduce the definition of the model quality presenting

measures such as entropy and perplexity, based on the Information Theory. In the third Chapter we analyze the continuous

space language models and their theory. We continue with the techniques that have been used for the word mapping and the

projection to a lower space and the tools that have been used. In the fourth Chapter, we describe the data corpus and the

SRILM toolkit, used for N-gram implementation. Then, there is a full description of the model parameters estimation and

the model adaptation along with the continuous space models algorithm. The summary of results and the conclusion are on

the fifth chapter with some directions for future work.

15

16

Chapter 2

Language Modeling

Technology

2.1. Discrete Statistical Language Models

As mentioned before, statistical language models use statistical techniques to estimate models from text data sets by

assigning probabilities in each word of the data. One of the most dominant technologies is N-gram models. N-gram models

regard each word as a discrete variable. They are significant for many applications such as speech recognition, optical

character recognition, machine translation, even dictation correction. Generally, the N-gram model has good results, when

there is a satisfying set of data for a specific task.

2.2. N-grams description and drawbacks

Even simple models can affect the performance of application that they are used from (i.e. a speech recognizer).

However, language models are very sensitive to train data topic alternation. For example, building a model of daily

telephone conversations can be more precise if 2 millions of such recordings have been used than 140 millions of television

and radio recordings. This affection is so strong even for changes that are essential for human perspective. A well- built

language model that has been trained with the Wall Street Journal corpus will not be precise if it is applied to a scientific or

sports corpus.

17

When train data differs from test data, the quality of the model will not be as satisfying. Even on large data sets, there will

be many N-grams with no appearance. It is expected that many accepted N-grams may never appear on a train data set.

Also, if relative frequencies are used for probability estimation, insufficient estimations can be obtained for small N-gram

appearances. It is necessary to smooth N-gram probabilities in order to have normalized distributions. Many smoothing

techniques have been developed to overcome this drawback. These techniques are applied to smooth N-gram probabilities,

so as any N-gram that has not appeared does not have a zero probability.

To estimate the above probabilities we use large amounts of text, called training data, and we count the occurrences of

words, bigrams and trigrams. That training data must be derived from the domain we want to estimate the model accuracy

or to apply speech recognition, in order to reflex the particular style. A standard task for the English language is the Wall

Street Journal corpus.

Assuming a bigram model, we estimate p (wi|wi−1), by counting the number of occurrences of the bigram wi−1, wi and

normalize

This is called the maximum likelihood (ML) estimate, because it maximizes the probability of occurrence of the training

data. It is understandable that if a bigram does not appear in our train data the probability will be zero. This is a very

undesirable situation, because that means that an acceptable string may never be assigned a non zero probability. To

overcome this problem, we have to smooth the distributions taken from the maximum likelihood estimate. Smoothing

18

means to adjust the probabilities, to make them non zero. Smoothing does not affect only zero probabilities. It affects small

probabilities as well, for example probabilities of bigrams occurring only once, the so-called singletons in the training data.

There are many smoothing techniques that are used to treat zero probabilities. N-gram models can be adjusted by these

techniques. Some of the most know techniques are Good- Turing, add-one smoothing, Kneser - Ney technique and Katz's

backing -off. Their description and their use in smoothing are well- known, so we will not expand to this topic.

2.3. Information Theory and Language Models quality

Language models are used to estimate word- sequence probabilities. For a word sequence of N words, P (W) has

information about the sequence's probability and accuracy. We can decide on the quality of a model according to P (W) of

each data sequence. Entropy and perplexity are two basic measures from the field of Information Theory that are use for

evaluating the quality of a language model.

Language can be thought of as an information source whose outputs are words wi belonging to the vocabulary of the

language. The most common metric for evaluating a language model is the word recognition error rate, which requires the

participation of a speech recognition system. Alternatively, we can measure the probability that the language model assigns

to test word strings without involving speech recognition systems. This is the derivative measure of cross-entropy known as

test-set perplexity.

19

2.3.1. Entropy

Given a language model that assigns probability P(W) to a word sequence W, we can derive a compression algorithm that

encodes the text W using −log 2P(W) bits. The cross-entropy H(W) of a model P(wi|wi-n+1 ...wi-1) on data W, with a

sufficiently long word sequence, can be simply approximated as

where NW is the length of the text W measured in words.

2.3.2. Perplexity

The perplexity PP(W) of a language model P(W) is defined as the reciprocal of the (geometric) average probability

assigned by the model to each word in the test set W. This is a measure, related to cross-entropy, known as test-set

perplexity

20

The perplexity can be roughly interpreted as the geometric mean of the branching factor of the text when presented to the

language model. The perplexity defined has two key parameters: a language model and a word sequence. The test- set

perplexity evaluates the generalization capability of the language model. The training- set perplexity measures how the

language model fits the training data, like the likelihood. It is generally true that lower perplexity correlates with better

language modeling. This is because the perplexity is essentially a statistically weighted word branching measure on the test

set.

For each language model, it is possible to calculate the perplexity for test data. Perplexity minimum value is 1 that would

mean that all words of a sequence have probability equal to 1. On the other hand, if a word has zero probability, then the

probability of the whole sentence will be zero and perplexity will be infinite. So, we can assume that the challenge of a

language model is to avoid zero probabilities. A well- built model should assign small perplexity for large test data sets.

Perplexity value is a quality measure of different models for common test data.

21

22

Chapter 3

Continuous Space Language

Models

3.1. Introduction

As covered before, N-gram models are the dominant technology in Language Modeling. In spite of their success, discrete

N-gram models suffer from two basic drawbacks. We can refer to them as generalization and adaptability. These two

problems refer to the N-grams with zero probability and to the parameters of N-gram model. Usually, an N-gram model has

a huge number of parameters. Thus, it is very difficult to adapt it using a relatively small amount of data. We propose

continuous space language models, in order to overcome these problems and have benefits such as smoothing unseen

events, and ease of model adaptation. The basic idea of such models is the similarity of words, as they are projected in a

continuous parameter space. That is, some words or N-grams are ”closer” to each other than other words or N-grams.

There are some important issues about these models. At first, we have to make an appropriate projection of each

"discrete" word to the new continuous space. Then, we have to deal with the high- dimensional spaces. Modeling in large

dimensions, mentioned as curse of dimensionality, is difficult. So, what we need to construct a continuous space LM is: a

mapping from the discrete word space to a continuous representation, and a classifier which decides the next word given the

mapped history in the resulting space, or equivalently assigns a probability on each word given its history.

23

3.2. Word mapping

Word mapping is the projection of each word of our data in the new continuous space. Concerning the large amount of

words and the difficulty to process parameters in a high- dimensional space, we try to represent the most frequent words

from our train data. Firstly, we find the V most frequent words, and we include them in our model vocabulary included a

class to represent the other words as unk words. To determine the mapping, we should take into account the word's

frequency and importance, but also its relation with the other words.

 figure 3.1 word mapping

24

3.2.1. Word feature vectors

Each word can initially be represented by an indicator vector wi, having one at the i
th

 position and zeros on the rest of the

V-1 positions. So , we have a VxV matrix, consisted of all the word vectors. This feature vector matrix is sparse and it has

the following form:

 figure 3.2 Indicator vectors

This matrix consists of V
2
 elements. This means that as the size of the vocabulary rises, the size of the matrix rises

exponentially. The next step is to map each vector to a lower dimension, concerning the word's frequency and how each

word behaves with the others.

w1 1 0 0 0 0 … 0

w2 0 1 0 0 0 … 0

w3 0 0 1 0 0 … 0

w4 0 0 0 1 0 ... 0

w5 0 0 0 0 1 … 0

...

wv 0 0 0 0 0 ... 1

25

3.2.2. Word co-occurrences

As mentioned before, to make a suitable mapping of each word, we see how each word correlates with the rest. So we

form a word co-occurrence matrix E that depicts this relation of the words. Each element eij is the number of times that

word i follows word j, in the training data

 figure 3.3 Co-occurrence matrix

The co-occurrence matrix is a VxV matrix that has many zeros, because there are many words that do not appear together

on the train data. Especially, in our data, the matrix E consists of 2700x27000 = 729 x 10
4
 elements (with a vocabulary of V

= 2700) and the 6971326 elements are zero, that is the 95.63% of the matrix. The count is then smoothed as eij = log (1+eij).

Practically, this matrix consists of each word's bigram history. Each row is the word's vector and the columns represent the

histories. Concerning the large amount of the elements we perform a method for dimensionality reduction, which is called

Singular Value Decomposition (SVD).

Εij V1 V2 V3 V4 V5 …. Vv

V1 0 0 0 92 34 …. 57

V2 10 0 0 0 12 …. 0

V3 0 0 0 37 53 …. 156

V4 12 78 0 0 64 …. 0

V5 0 35 118 0 0 …. 745

…. …. …. …. …. …. …. ….

Vv 45 65 0 64 0 …. 0

26

3.2.3. Singular Value Decomposition

The singular value decomposition of a matrix is one of the most elegant and powerful algorithms in linear algebra, and it

has been extensively used for dimensionality reduction in pattern recognition and information retrieval applications.

Singular value decomposition transforms an m x n matrix A into a A = Q1ΣQ2

 Q1 is an m×m matrix with the eigenvalues of AA
Τ

as its columns

 Q2 is an n×n matrix with the eigenvectors of A
Τ
A as its columns

 Σ is an m×n diagonal matrix consisting of the square roots of the eigenvalues of AA
Τ
 and A

Τ
A (both matrices have

the same eigenvalues but different eigenvectors)

Graphically:

 figure 3.4. SVD technique

27

Something we have to notice is matrix Σ, which is a diagonal matrix, consists of the singular values

 figure 3.5. singular value matrix

Being part of the matrix, singular values multiply only certain columns of Q1 and Q2. The singular values determine how

these columns of Q1 and Q2 influence the matrix. If a value is small enough then its column or row is not added to the new

matrix. Many of the values are zero. That means that the corresponding columns and rows have not useful information. So

we can transform the matrix to another one that has the valuable information.

Often, singular values are sorted by the significance of their rows and columns. That is the reason that SVD is used for

matrix decomposition and data reduction. If we want to maintain the basic information of a matrix by reducing its

dimensionality, we can keep the M greatest singular values and build another matrix Σ', containing only these M singular

values. So we can obtain a transformation matrix M x N.

As mentioned before, the word co- occurrence matrix is sparse, so we need to perform a suitable method of SVD to

obtain the largest singular values and the corresponding vectors. We use the C version of SVDPACK. SVDPACK is a

collection of C libraries, scripts and executables that comprises four numerical and iterative methods for computing the

SVD of large sparse matrices using ANSI C. SVDPACK implements Lanczos and subspace iteration based methods for

28

determining several of the largest singular triplets, i.e. the singular values and the corresponding left and right singular

vectors.

In this work, we represent this kind of sparse matrix in Harwell- Boeing format. In short, the Harwell- Boeing format is a

file format designed to represent sparse matrices. Due to the fact that a sparse matrix has many zero entries, it is more

efficient not to allocate memory for the whole matrix, but rather to keep track of the location and value of the nonzero

entries. Our input for the SVD procedure is the sparse co- occurrence matrix stored in HB format. We compute a 100-

factor singular value decomposition using the Block Lanczos Method. We smooth the co- occurrence counts by

 and leave the zero entries unchanged. The output of the SVD method for the experiment is:

... HYBRID BLOCK LANCZOS (CYCLIC)

... NO. OF EQUATIONS = 5400

... MAX. NO. OF ITERATIONS = 100

... NO. OF ITERATIONS TAKEN = 52

... NO. OF TRIPLETS SOUGHT = 100

... NO. OF TRIPLETS FOUND = 100

... INITIAL BLOCKSIZE = 10

... FINAL BLOCKSIZE = 0

... MAXIMUM SUBSPACE BOUND = 120

... FINAL SUBSPACE BOUND = 20

... NO. MULTIPLICATIONS BY A = 2737

... NO. MULT. BY TRANSPOSE(A) = 2250

... TOTAL SPARSE MAT-VEC MULT.= 4987

... MEMORY NEEDED IN BYTES = 23455760

... WANT S-VECTORS ON OUTPUT? T

... TOLERANCE = 1.00E-03

 co- occurrence matrix in hb format ˆ

'matrix'

... NO. OF TERMS (ROWS OF A) = 2700

... NO. OF DOCS (COLS OF A) = 2700

...

29

 BLSVD EXECUTION TIME= 1.04E+01

......

...... COMPUTED S-VALUES (RES. NORMS)

......

...... 1 5.47259348241408E+02 (3.43E-13)

...... 2 3.22206791583908E+02 (3.04E-13)

...... 3 1.73932018874499E+02 (1.73E-13)

...... 4 1.65112830750816E+02 (1.86E-13)

...... 5 1.19968244436092E+02 (2.83E-13)

...... 6 1.17511147677450E+02 (1.58E-13)

...... 7 1.08888762495068E+02 (4.10E-13)

...... 8 1.06357847839991E+02 (2.62E-13)

...... 9 8.83332281664914E+01 (1.82E-13)

...... 10 8.60567530808088E+01 (2.21E-13)

…

...... 96 2.81183952850477E+01 (4.61E-05)

...... 97 2.79150775531576E+01 (6.54E-05)

...... 98 2.77850731839839E+01 (1.05E-04)

...... 99 2.75700175733032E+01 (1.06E-04)

...... 100 2.74371789426662E+01 (1.58E-04)

 table 3.6. SVDPACK output

Using the 100 largest singular triplets, we can project each word vector to the M- dimensional space, for M = 100. We

project each word vector wi to ui using the projection , where A is the output of the SVD of the co-occurrence

matrix for the M largest singular values. In particular, matrix A is formed by the left singular vectors of the SVD. Let

[U,S,V] be the output of the decomposition, our word projection is .

30

3.3. History mapping

Based on N-gram models, each word's history consists of the previous

N-1 words. Choosing the value of N depends on the implementation. If

N=1, each word is independent. For N=2, each word depends on the

previous one and if N=3, each word depends on the previous 2 words. In

natural language, it seems that each word has strong dependence on its

previous two, so we train trigram models, for N = 3.

‘Whether the fashion designers who license their names will agree to

stay on in the new company comma remains a key to the viability of the

specific group period’.

 figure 3.7. History mapping

We may observe that 'designers' is closely related to its previous two words, ‘the fashion designers’. In addition, ‘the new

company’ and ‘the specific group’ are two more examples showing the dependence of the words as triplets. The next step is

to collect all histories for each word. This can be done if we find for each word, the N-1 previous. Using the above mapping

of each word, each word's history consists of the concatenation of the appropriate mapped words. Each history is a vector

with M(N-1) elements.

Having the history vectors, we could model our parameters, with Gaussian distributions. We must collect each word’s

history from our training data and then train one model for each word As mentioned before, modeling is difficult in large

31

dimensions. Assume that we have a trigram model (N=3), a vocabulary of size V = 3K and we perform SVD for M = 100

singular values. That means that each history consists of a 100*(N-1) = 200 elements. This is still a high- dimensional space

and we may suffer from the curse of dimensionality. A suitable mapping for history vectors is where is the

projection of the history vector in the new- dimensional space. The estimation of the transformation matrix B is described

below.

3.3.1. Curse of Dimensionality

It is intuitive to think that increasing the dimension of the features should never reduce the model's performance, since we

are providing a larger, or at least the same, amount of information. Therefore the worst that could happen should be the

performance staying the same. As practice shows, this is unfortunately not the case; the performance can decrease although

we feed more data to the system. This behavior is due to the finite amount of training data that can be presented to the

model. In theory we normally assume the training data to be infinite and so the model ends up being perfectly trained under

all circumstances. In practice this is not possible and if we chose a too complex model then it is unlikely that all of our

parameters will be well estimated. On the other hand the model should not be too simplifying either, since this would

prevent the system from living up to the complexity of human speech.

Feature reduction uses statistical methods to reduce the dimension of the features, while maximizing the information that

is preserved in the reduced feature space. Mathematically we can express this by applying a linear transformation

, where y denotes a feature vector in the reduced feature space y ϵ ℛ L and h ϵ ℛ 2M
 stands for the original feature vector.

32

The transformation matrix B is a 2M × L matrix. The goal of all feature reduction techniques is to find the optimal B with

respect to some optimization criterion. Linear Discriminant Analysis (LDA) an effective method.

3.3.2. Linear Discriminant Analysis

LDA finds the optimal transformation matrix in terms of preserving most of the information that can be used to

discriminate between the different classes. Therefore the analysis requires the data to have appropriate class labels. We

associate words with class labels and assign each observed history vector to the corresponding. LDA estimates the between

and within class scatters in order to find the optimal transformation matrix.

In order to formulate the optimization procedure mathematically, we have to compute the mean vector and the covariance

matrix for each class

and for the complete data set (with all classes pooled together)

33

In the above formulas N denotes the total number of training tokens and Nv stands for the number of training tokens in

class v. Naturally (there are V classes),

With these definitions, we can easily formulate the optimization criterion, namely

, where

34

Although this criterion might look complicated at first glance, it can easily be understood. The numerator represents the

covariance of the pooled training data in the transformed feature space. The denominator represents the average covariance

within each class in the transformed feature space. Hence, the criterion really tries to maximize the ‘distance’ between

classes while minimizing the ‘size’ of each of the classes at the same time. This is exactly what we want to achieve because

this criterion guarantees that we preserve most of the discriminant information in the transformed feature space.

In our case, we have to encounter the problem of the large size of the history vectors. In order to estimate the projection

matrix B, we estimate the statistics that LDA uses to compute the scatter matrices. We need to estimate between- class

scatter SB and within- class scatter SW. At first, we estimate two sufficient statistics for the matrices computation which are:

, where i is the word – class i.e. i = 1,…, c and is the history vector.

After estimating these statistics for all history vectors, we compute the mean vector for each word – class.

, where is the amount of class i history vectors.

35

Then, we have to estimate the between – scatter matrix, which is computed as follows:

, where

In order to estimate the within – class scatter, we have to estimate for each word – class.

36

And finally,

The rest of the transformation matrix B is the same as previous. By estimating the projection matrix B we are able to project

each history vector to the new- dimensional space. In our model we project each history vector in the reduced feature space

y ϵ R
L
 for L = 50.

37

3.4. Continuous Language Model Statistical methods

In order to build a continuous- space language model we have to use some distributions in the continuous space. The

most known and used distribution is the Gaussian distribution. Firstly, we used the multivariate Gaussian distribution for

initial parameter estimation and then we used Gaussian Mixture Models and the Expectation- Maximization algorithm.

Finally we used parameter tying techniques to build Tied Gaussian Mixture Model.

3.4.1. Multivariate Gaussian distribution
 figure 3.8. Multivariate Gaussian distribution

In probability theory and statistics, the multivariate normal

distribution or multivariate Gaussian distribution, is a

generalization of the one-dimensional (univariate) normal

distribution to higher dimensions. One possible definition is that a

random vector is said to be p-variate normally distributed if every

linear combination of its p components has a univariate normal

distribution.

However, its importance derives mainly from the Multivariate

central limit theorem. The multivariate normal distribution is

often used to describe, at least approximately, any set of (possibly) correlated real-valued random variables each of which

clusters around a mean value.

38

The multivariate normal distribution of a k-dimensional random vector X = [X1, X2, …, Xk] can be written in the

following notation:

 X ~ (μ , Σ)

with k-dimensional mean vector

 μ = [Ε[X1],Ε[X2],..., Ε[Xk]]

and k x k covariance matrix

 Σ = [Cov[Xi, Xj]], i = 1,2,...,k ; j=1,2,...,k

Multivariate normal distribution describes variables that tend to cluster around their mean value. Based on the

Multivariate central limit theorem, any random variable can be described by the normal distribution if it has a large set of

observations. That is why Gaussian distributions are often used for statistical modeling and language modeling.

39

3.4.1.1. Multivariate Gaussian Language Model

After collecting the mapped history data, we use one multivariate Gaussian distribution for each word. Then, we

calculate each word’s mean vector and covariance matrix. So, we model each word based on its history y:

 where μw and Σw are mean vector and covariance matrix.

With this distribution we evaluate the probability of each history given the word. With our model we want to evaluate the

probability of the word given its history. Using Bays rule we have:

 figure 3.9. Bayes rule

, where P (w) is the unigram probability of the word.

We must consider that must sum up to 1 for each . An appropriate check is performed after the training, for

a history set , checking if for each .

The model parameters for this approach are the SVD output of the co-occurrence matrix, the LDA projection matrix B

and the mean vectors and covariances matrices for each word. After the model estimation, we evaluate the test data

logarithmic probability and perplexity.

40

3.4.2. Gaussian Mixture Models (GMM)

A Gaussian Mixture Model (GMM) is a parametric probability density function represented as a weighted sum of

Gaussian component densities. GMMs are commonly used as a parametric model of the probability distribution of

continuous measurements or features in acoustic and language models. GMM parameters are estimated from training data

using the iterative Expectation-Maximization (EM) algorithm.

A Gaussian mixture model is a weighted sum of M component Gaussian densities as given by the equation,

where x is a D-dimensional continuous-valued data vector (i.e. measurement or features), ck , k = 1, . . . , K, are the mixture

weights, and g(x | μk , Σk), k = 1, . . . , K, are the component Gaussian densities. Each component density is a D-variate

Gaussian function of the form,

, with mean vector μi and covariance matrix Σi . The mixture weights satisfy the constraint that their sum is 1.The complete

Gaussian mixture model is parameterized by the mean vectors, covariance matrices and mixture weights from all

component densities.

41

These parameters are collectively represented by the notation,

The covariance matrices, Σi, can be full rank or constrained to be diagonal. Additionally, parameters can be shared, or

tied, among the Gaussian components, such as having a common covariance matrix for all components. The choice of

model configuration (number of components, full or diagonal covariance matrices, and parameter tying) is often determined

by the amount of data available for estimating the GMM parameters and how the GMM is used in a language model

application. It is also important to note that because the Gaussian components are acting together to model the overall

feature density, full covariance matrices are not necessary even if the features are not statistically independent. The linear

combination of diagonal covariance basis Gaussians is capable of modeling the correlations between feature vector

elements. The effect of using a set of M full covariance matrix Gaussians can be equally obtained by using a larger set of

diagonal covariance Gaussians. GMMs are often used in biometric systems, most notably in continuous- speech recognition

systems, due to their capability of representing a large class of sample distributions.

42

3.4.2.1. Gaussian Mixture Language Model (GMLM)

As mentioned before, each GMM consists of Kw weighted distributions. To build

our model, we train one GMM for each word using the Expectation Maximization

algorithm. After the word and history mapping, we collect each word’s history and

we build the mixtures:

, where Kw is the number of the components.

 figure 3.10. Gaussian Mixture Model

We use different values of K mixtures for each implementation and we train the model parameters. The model parameters

for GMLM are the SVD output matrix A of the co-occurrence matrix, the LDA projection matrix B and the mixture

parameters, mean vectors and covariances matrices for each word and the priors for each mixture. After the model

estimation we can evaluate the test data logarithmic probability and perplexity using the Bays rule as previous.

43

3.4.3. Tied Gaussian Mixture Models (T-GMM)

GMMs use different set of distributions for each variable and

each of one is parameterized by the mean vectors, covariance

matrices and mixture weights from all component densities. It is

inevitable that as the dimension and the variables are being

increased, the GMM parameters are being increased consequently.

There is a specialization of GMMs that instead of having separate

sets of Gaussian distributions for each word, a common set of

distributions can be used for all words with different weights.

 figure 3.11. Gaussian pool

Let's assume that we have a set of distributions, we may refer to it as a Gaussian pool, which is common for all words.

Tied Gaussian mixture model is a weighted sum of J component Gaussian densities as given by the equation,

T -GMM is been used in pattern recognition and statistical modeling applications, such as acoustic modeling. Their

advantage is that they use a small set of parameters for large amount of data, and, consequently, the model training is more

efficient.

44

3.4.3.1. Tied Mixture Language Model (TMLM)

GMLM is proposed to overcome N-gram drawbacks, such as generalizability and

adaptability. Although, this method has a disadvantage as far as the amount of

parameters is concerned. Tied-Mixture Language Model (TMLM) does not have the

model parameter estimation problems that GMLM has. TMLM provides a great deal

of parameter tying across words, hence achieves robust parameter estimation. As

such, TMLM can estimate the probability of any word that has as few as two

occurrences in the training data. Also, we must notice that GMM training may suffer

from data- overfitting problems. That means that some history data have really small

variances, which leads to computational problems. Tying parameters such as

variance vectors or the entire mixtures is used to overcome this problem figure 3.12 parameter tying

Using tying techniques for our implementation, we tie the variance vector for each word, in order to train our model. So,

all the words use the same variance vector for each distribution and different weights for each mixture.

The model parameters for TMLM are the SVD output of the co-occurrence matrix, the LDA projection matrix B and the

mixture parameters, mean vectors and covariances matrices for the common set of distributions and the weights for each

word. After the model estimation, we evaluate the test data logarithmic probability and perplexity using the Bays rule as

previous.

45

46

Chapter 4

Experimental

Evaluation

4.1. Data description

In this work, we use data from the Wall Street Journal for our train and test data. In particular, we used articles from

1994. The data files are WS94_*.VPZ and each sentence has the following form:

 <p.wsj94_001.0012.3>

 <s.wsj94_001.0012.3.2>

 D. D. T. is a highly persistent chemical that moves up the food chain, COMMA and it

accumulates in the fatty tissue of humans .PERIOD

</s>

</p>

First line means that the sentence comes from document 001.0012, paragraph 3 and is sentence two. Text data is not

normalized and is verbalized. That means that punctuation marks are followed by the word of the mark, i.e. “,COMMA”.

Moreover, there are many incorrect words so we have to edit the data before splitting them into train and test data.

47

 At first, we removed all of the headers, such as <p.wsj94_001.0012.3> and <s.wsj94_001.0012.3.2>

 We turned the data into lowercase

 We discarded incorrect words such as «kknow», ”tthey”, ”aare”

 We removed digits and numbers

 Punctuation is only the word, not the mark

 We sorted all sentences according to their length

 We inserted <s> and </s> symbols at the beginning and the end of each sentence, consequently.

 For our small vocabulary, we found the 2700 most frequent words, which are the vocabulary, and replaced any other

words with <unk> symbol. For our large vocabulary, we did not replace any of the words, and we used all of the

words for our vocabulary.

 According to the vocabulary, we turned our data into index sequences. Each index shows the position of each word.

For example, <s> percentage gains for <unk> ended march thirty first comma nineteen ninety three semicolon assets

as of december thirty first comma nineteen ninety two assets a <unk> fee on shares held for a year or less <\s>turns

into 4 691 680 14 0 385 322 69 75 1 44 54 29 90 441 22 6 901 69 75 1 44 54 18 441 8 0 1920 19 118 458 14 8 48

57 295 3

 So, our train and test data are:

 figure 4.1. Data description

WS94 Train data Test data

No of sentences 160000 6000

No of words 4447740 164574

48

4.2. Baseline experiments – SRILM toolkit

SRILM is a collection of C++ libraries, executable programs, and helper scripts designed to allow both production of and

experimentation with statistical language models for speech recognition and other applications. The toolkit supports creation

and evaluation of a variety of language model types based on N-gram statistics, as well as several related tasks, such as

smoothing and class- based models.

At first it generates the n-gram count file from the corpus, then it trains the language model from the n-gram count file

and it calculates the test data perplexity using the trained language model. Also it can perform word clustering.

figure 4.2. SRILM toolkit

49

In particular:

 ngram -count -vocab Lexicon.file

 -text train.txt

 -order 3

 -write train_3gram

 -unk

This command generates and manipulates N-gram counts, and estimates N-gram language models from them.

-vocab file: reads a vocabulary from file

-text filename: train data set

-order: sets the maximal length of N-grams

-write filename: output file that contains N-gram counts

-unk: sets any unknown words with oov (out-of-vocabulary)

-output

<unk> 668381

<unk> <unk> 112108

loan does 1

loan negotiations will 1

from university <unk> 1

from ten 40

from ten million 1

suggested the final 1

suggested the industry 1

suggested the chicago 1

majority stake of 1

majority democrats

50

 ngram-count -vocab Lexicon.file

 -read train_3gram

 -order 3

 -lm 3gram.train.lm

This program reads count file and creates the language model file

-vocab file: vocabulary file

-read countfile : N-gram counts file

-order: N-gram length

-lm lmfile: language model file

-output

\data\

ngram 1=2001

ngram 2=260999

ngram 3=246775

\1-grams:

-1.354499 </s>

-99 <bos>

-99 <eos>

-99 <s> -1.72626

-4.109913 aircraft -0.6429651

-4.023325 airline -0.5559635

-3.777582 airlines -0.6082685

-1.560787 zero zero two

-1.123479 zero zero zero

\end\

51

 ngram -ppl test.txt

 -order 3

 -lm 3gram.train.lm

This program evaluates test data perplexities based on the language model we trained.

-ppl pplfile: test data perplexities file

-order: Ν-gram length

-lm lmfile: το language model file

-output

brain banks need more depositors period

p(<unk> | <s>) = [OOV] 0 [-inf]

p(banks | <unk> ...) = [1gram] 0.000475788 [-3.32259]

p(need | banks ...) = [1gram] 7.3968e-05 [-4.13096]

p(more | need ...) = [2gram] 0.0191286 [-1.71832]

p(<unk> | more ...) = [OOV] 0 [-inf]

p(period | <unk> ...) = [1gram] 0.0436764 [-1.35975]

p(</s> | period ...) = [2gram] 0.925196 [-0.0337663]

1 sentences, 6 words, 2 OOVs

0 zeroprobs, logprob= -10.5654 ppl= 129.741

ppl1= 437.869

file test.txt: 6000 sentences, 152570 words, 24582 OOVs

0 zeroprobs, logprob= -255134 ppl= 70.2338 ppl1= 76.339

This file contains the logarithmic probability of each

sentence and its perplexity. It also evaluates the perplexity

of the whole test data, the number of words and the out- of

–vocabulary words.

Here, we have the SRILM results for the test and train

data.

SRILM results Test data Train data

ppl 70.2338 52.2659

52

4.3. Model training

 As covered before, on model training chapter, for all of the

previous models, the implementation is same. We edit and

process our data; we split them into train and test sets. Then,

we construct the co- occurrence matrix, even if it is bigram -

oriented or as it is shown later. We perform Singular Value

Decomposition for dimensionality reduction, for the M

maximum singular values. So we have our first model

parameter, the word projection matrix A. Using this word

mapping, we collect our history vectors for each word and

project them to a lower dimension using Linear Discriminant

Analysis. The projection matrix B, is used for the projection of

each history matrix to our new continuous space, with lower

dimension.

 We use these vectors as training data. The HTK tool, which

is described in this section, uses this data to train the mixture

models. Having estimated the model we compute the set

perplexity. We also use tying techniques and other approaches

for the co- occurrence matrices to improve our results.

 figure 4.3. Model algorithm

53

4.4. Experimental Results

After the training of the models we referred to, we estimated the test data set perplexity for each language model.

For each test data sentence, we estimate its log- probability.

Using the Bayes rule we estimate each trigram log- probability.

54

Then, we estimate the test data perplexity:

, where T is the number of test data sentences, W the number of the words and OOVS the number of out –of –vocabulary

words.

The output of each experiment has the following format:

Test data set perplexity estimation
Estimating test data sentences perplexity
logP(a|<s>,<s>) = -2.545684
logP(leading|<s>,a) = -1.209133
logP(member|a,leading) = -1.232993
logP(of|leading,member) = -1.239600
logP(the|member,of) = -1.135314
logP(party|<unk>,<unk>) = -1.095569
logP(said|<unk>,party) = -1.384926
logP(that|party,said) = -1.185744
….….….….….….….….….….….….….….….….
logP(a|i,r) = -1.736261
logP(response|r,a) = -0.692497
logP(period|a,response) = -1.699502
logP(</s>|response,period) = -Inf
Sentence No. 1 has 32 words with 5 oovs.
logprob = -168.689786 ppl = 413.490780

55

The statistics printed in the last two lines describe the number of the sentence, the number of the words of the sentences.

Also, the number of out-of vocabulary words is referred. This is the number of unknown word tokens, i.e. tokens that

appear in test data but not in train data from which language model was generated. Logprob gives us the total logprob

ignoring the 5 unknown word tokens. The logprob does include the probabilities assigned to </s> tokens which are

introduced in the beginning of the training. Thus the total number of tokens which this logprob is based on is:

NoOfWords – OOVs + sentences = 32 – 5 + 1 = 28, for the specific sentence.

Perplexity is the geometric average of 1/probability of each token, i.e., perplexity. The exact expression is:

 ppl = e ^ (-logprob / (words - OOVs + sentences))

After the estimation of the model parameters, which are the SVD and LDA output matrices, we train our model using

HTK. We have to decide how we will train our models. There are two ways. Firstly, we train one multivariate Gaussian

distribution for each word. Then we can use the HHEd tool to split the Gaussian into more components. We also trained

word GMMs with direct number of components, without using the split procedure.

Concerning the data overfitting problem we set a stable variance floor with v = 0.1. We referred to this problem as the

computational problem that occurs when data and Gaussians have incredibly small variance values. The value of the

variance floor is large so there are many variances that are floored. We use this value to estimate the two methods of

training to decide which we are about to use. We use Hinit tool to initialize the GMLM models and then we estimate the

model parameters using HREst tool. We used K = {1,2,4,8,16,32} components for each implementation

56

We estimated the test data perplexity using this method on a small test data set of T = 100 sentences

 K = 1 K = 2 K = 4 K= 8 K = 16

logprob -13176 -13155 -13030 -12783 -12701

ppl 343.18 340.003 321.589 288.286 278.021

H HHEd splitting K = 1 K = 2 K = 4 K= 8 K = 16

logprob -13176 -14101 -13568 -13154 -12735

ppl 343.18 516.86 408.183 339.736 282.17

tables 4.4,4.5. small test set perplexity with direct number of components and HHEd splitting

We can see that training the GMMs with direct number of components gives us better results, especially for small number

of components. So we use this method for the rest of the experiments. Our next step is to use another value of variance floor

(vfloor), so for a certain number of components we estimate the perplexity for different values of vfloor.

 K = 8 0.1 0.05 0.04 0.01

logprob -12783 -13799 -13904 -20421

ppl 288.28 327.22 342.07 5268

table 4.6. small test set perplexity using different vfloor values

57

It is obvious that vfloor affects the results. We have to concern that if we choose a large value of vfloor the results are

better, but there are more variances that are floored. We choose vfloor to be 0.05 in order to compare the perplexity values

for different number of components. We still estimate the small test set perplexity (T = 100).

 K = 1 K = 2 K = 4 K= 8 K = 16 K = 32

logprob -14189 -14174 -14033 -13799 -13603 -13546

ppl 385.43 383.11 361.098 327.221 301.493 294.317

 table 4.7. small test set perplexity for different mixture components

Whereas, the test set perplexity for the whole set (T = 6000) is:

 K = 1 K = 2 K = 4 K= 8 K = 16 K = 32

logprob -788595 -787443 -775338 -763566 -761124 -770041

ppl 301.12 298.62 273.57 251.22 246.79 263.21

 table 4.8. test set perplexity for different mixture components

Our next experiment is about setting a value of vfloor which is not pre- defined but being depended on the global

variance of the data. We use the HCompV tool to estimate the global variance of its word training data and set a vfloor

vector as a percent of the global variance. By default, HCompV sets the f * global_variance as variance floor, where

f = 0.01.

58

We also use the HHEd tool to tie our mixture variances. Concerning that all mixtures will share the same variance; we used

more components for this experiment.

 K = 32 K = 64 K = 128

logprob -13717 -13662 -13575

ppl 352.45 308.95 297.9

 table 4.9. small test set perplexity with tied variances

Something else that we tested is to increase the variance vector by 5 or 10 percent, so as the variance vector is var’ = a*

var.

K = 128 a = 1 a = 1.1 a = 1.05

logprob -13575 -13680 -13629

ppl 297.9 311.32 304.8

 Table 4.10. small test set perplexity with variance increase

59

 We can conclude that all of the above experiments have similar perplexity results. For that reason, we followed a

different approach. Something we must take into consideration is the initial word mapping. We constructed the word vectors

using the SVD output of the word co- occurrence matrix. This matrix can be regarded as a bigram counts matrix, keeping

trace of the counts of each vocabulary bigram. The first alternative of this matrix is a co- occurrence matrix which counts

the occurrences of each word with the M most frequent history words. So we construct a word co- occurrence matrix H (V x

M), using the same procedure as with the ‘original’ co- occurrence matrix. For example:

 table 4.11. co – occurrence matrix H with fewer history words

 H1 H2 H3 H4 … H500

V1 223 143 414 87 … 43

V2 0 423 95 0 … 12

V3 62 0 43 0 … 0

… … … … … … …

Vv 13 0 5 0 … 9

60

The rest of the implementation is the same. The SVD output of this matrix is used for the word vectors and LDA for the

history vectors projection to the new- dimensional space. We trained the GMLM model with K = 64 mixtures by tying the

variance vector and estimated the test set perplexity:

K = 64 bigram co- occurrence co- occurrence H

logprob -13662 -13547

ppl 308.95 294.39

 table 4.12. small test set perplexity with co- occurrence matrix H

We observe a slight improvement of the results. Our next step is to try another vector representation for the vocabulary

words. Instead of using the ‘raw’ counts of the bigrams for each matrix entry, we use the probability of each bigram. So,

matrix P consists of the bigrams probabilities:

 table 4.13. probability co-occurrence matrix P

 V1 V2 V3 V4 … VV

V1 0.004 0.013 0 0.087 … 0.043

V2 0 0.4 0.095 0 … 0.12

V3 0.054 0 0.013 0.078 … 0

… … … … … … …

Vv 0.09 0 0.0015 0 … 0.0019

61

 After the SVD and LDA projection we estimated the test data perplexity:

K = 64 bigram co- occurrence probability co- occurrence

logprob -13662 -14636

ppl 308.95 464.9

 table 4.14. small test set perplexity with co- occurrence matrix P

There is no improvement on our results with this projection. We can assume that this may happen due to the fact that

these co- occurrence matrices refer to bigram counts while we build a trigram model. For this reason, we constructed a

‘trigram’ co- occurrence matrix T, where Tij is the amount of times that word i appears after the bigram history j.

The number of the possible history bigrams is large enough, so we use the N top history bigrams that are seen in the

training set. The size of the trigram co- occurrence matrix is VxN, where N is the number of the top bigrams that we use.

We used several values of N.

62

The form of this co- occurrence matrix is:

 table 4.15. co- occurrence matrix T

We used the N = 50, 100, 200, 300, 500, 1000 and 2500 top bigrams to construct the co- occurrence matrix. Using these

matrices for the word representation we build our GMLM models with K = 64 mixtures and estimated the test data

perplexity:

table 4.16. small test set perplexity with co- occurrence matrix T for N top bigrams histories

 H1 H2 H3 H4 … HV

V1 457 332 230 87 … 143

V2 230 104 95 0 … 112

V3 54 0 113 78 … 0

… … … … … … …

Vv 9 0 15 0 … 19

K = 64 bigram co- occurrence 50 100 200 300 500 1000 2500

logprob -13662 -13328 -13490 -13570 -13651 -13538 -13693 -13681

ppl 308.95 268.58 287.4 297.25 307.63 293.36 313.06 311.46

63

We observe that using the 50 top bigrams for the co- occurrence matrix gives us the best results compared to the others.

We estimated the entire test set and training set perplexity using this implementation, as so as the implementation of the

original co- occurrence matrix representation using K = 64 mixtures.

table 4.17. test and train set perplexity

Training data Test data

Bigram co- occurrence
Trigram co-

occurrence
Bigram co- occurrence

Trigram co-

occurrence

Logprob -66230 -58069 -764152 -735380

ppl 460.54 216.33 252.25 204.83

64

Chapter 5

Conclusion

5.1. Summary of Results

In this work, we proposed language models to continuous space. Based on the main drawbacks of N-gram discrete

language models, adaptability and generalization, we used appropriate mapping methods to project words as variables in the

continuous space. In the beginning we used a vocabulary of the V = 2700 most frequent words of our train data. We used

Singular Value Decomposition and Linear Discriminant Analysis for feature dimensionality reduction and the EM

algorithm for the training of the mixture models. We used Gaussian mixture models for each vocabulary word. We applied

tying methods in these models and we proposed other word mapping approaches with different coocurence matrix

estimation.

After the training of each model, we estimate the logarithmic probability for the test data set :

 ,

where . Each one of the word probabilities is

estimated form the Bayes rule. Then, we compute the test data perplexity, based on the SRILM formula:

65

5.2. Future work

We proposed continuous- space language models to cope with the main problems of the traditional discrete N-gram

language models. We evaluated several continuous- space language models and compared them to the SRILM N-gram

models in the WS94 corpus. Comparing our best results with the SRILM results, we see that our implementation is slightly

worse. A basic problem that we encountered is data over fitting. This may explain our model accuracy.

Generally, language modeling in continuous space is more adaptable and smooth for words with few occurrences. More

experiments with different parameters can be repeated. These parameters are the M largest singular values for the SVD

technique, the initial word projection based on the coocurence matrix type, the dimensions L of the projected history vectors

which LDA deals with.

Furthermore, there can be clustering methods to split words into clusters and train cluster based mixture models. Tying

model parameters of words that belong to the same cluster can be implemented in order to improve model accuracy. A

future work could integrate these models with a continuous- space recognizer and evaluate word accuracy. Moreover, a

language model that can adapt with topic alternation can be built based on these models.

Bibliography

1. M.Afify, O. Siohan and R. Sarikaya. 2007. Gaussian Mixture Language Models for Speech Recognition, ICASSP,

Honolulu, Hawaii.

2. Xuedong Huang, Alex Acero, Hsiao- Wuen Hon, 2001. Spoken Language Processing, Prentige Hall PTR

3. Wei Chen, Sanjeev Khudanpur, 2007. Building Language models on continuous space using gaussian mixture

models.

4. Berlin Chein, Introduction to SRILM Toolkit, 2007. Department of Computer Science & Information Engineering

National Taiwan Normal University.

5. V. Digalakis, D. Oikonomidis, 2002. Language Models for Speech Recognition. Technical University of Crete.

6. R. Duda, P.Hart, and D. Stork, Pattern Classification (Second Edition). Wiley-Interscience, October 2000.

7. A. Stolcke,” SRILM – an extensible language modeling toolkit,” Proc. ICSLP’02, Denver, Colorado, Sept., 2002.

8. R. Sarikaya, M.Afify, Brian Kingsbury. 2007. Tied–Mixture Language Modeling in Continuous Space.
9. P. Brown, P. V. DeSouza, R. L. Mercer, V. J. Della Pietra, J. C. Lai. Class- Based n-gram Models of Natural

Language, IBM T. J. Watson research Center.

10. T. Matzuzaki, Y. Miyao, J. Tsujii. An Efficient Clustering Algorithm for Class- Based Language Models, Tokyo,

Japan.

11. S. Geirhofer, 2004. Feature Reduction with Linear Discriminant Analysis and its Performance on Phoneme

Recognition, University of Illinois at Urbana-Champaign Department of Electrical and Computer Engineering

12. I. T. Nabney, 2004. Netlab: Algorithms for Pattern Recognition. APR, Springer.

13. S. Young, D. Kershaw, J. Odell, D. Ollason, V. Valtchev P. Woodland, 2006, The HTK Book, Cambridge

University Engineering Department
14. S. Theodoridis, K. Koutroumbas, 2009. Pattern Recognition, 4

th
 edition. Elsevier Inc. AP.

15. L. van den Maaten, E. Postma, J. van den Herik, 2009. Dimensionality Reduction: A Comparative Review. TiCC.

