
Technical University of Crete, Greece

Department of Electronic and Computer Engineering

Lineage Processing in Uncertain Operator

Pipelines

Lampros C. Papageorgiou

Thesis Advisor

Professor Minos Garofalakis

Thesis Committee

Professor Minos Garofalakis

Assistant Professor Michail Lagoudakis

Assistant Professor Antonios Deligiannakis

Chania, July 2011

http://www.tuc.gr
http://www.ece.tuc.gr

Lampros C. Papageorgiou 2 July 2011

POLUTEQNEIO KRHTHS

Tmhma Hlektronikwn Mhqanikwn kai Mhqanikwn Upologistwn

EpexergasÐa Proèleushc Dedomènwn se

DÐktua Abèbaiwn Telest¸n

L�mproc K. PapagewrgÐou

Epiblèpwn Kajhght c:

Kajhght c MÐnwc Garofal�khc

Exetastik Epitrop :

Kajhght c MÐnwc Garofal�khc

EpÐk. Kajhght c Miqa l Lagoud�khc

EpÐk. Kajhght c Ant¸nioc Delhgiann�khc

Qani�, IoÔlioc 2011

http://www.tuc.gr
http://www.ece.tuc.gr

Lampros C. Papageorgiou 4 July 2011

Acknowledgement

Several people played an important role in the accomplishing of this diploma

thesis.

First and foremost, I am heartily thankful to my supervisor, Professor Minos

Garofalakis, whose encouragement, guidance and support from the initial to the

final level enabled me to develop a deep understanding of the subject. I feel much

indebted to him for both inspiring me and for giving me the opportunity to work

on this very interesting field of research.

Also, I would like to thank Assistant Professors Michail Lagoudakis and Anto-

nios Deligiannakis for agreeing to evaluate my diploma thesis. Moreover, I would

like to thank them for all the precious knowledge I have gained by them.

I offer my regards and blessings to all of my friends, and especially Evaggelos

Vazaios, who supported me in any respect during the completion of this thesis.

Most of all, I would like to thank my family for their enormous help, under-

standing and support throughout all these years as a student. Following their

paradigms of excellence has inspired me to achieve my own goals.

Lampros C. Papageorgiou i July 2011

Lampros C. Papageorgiou ii July 2011

Abstract

The use of pipelined operators to manage data coming from web extraction tasks

is a typical strategy in most Community Information Management (CIM) plat-

forms. Commonly, web extraction results are inherently uncertain. Incorporating

operators coming from the Machine Learning community in such pipelines would

help the platform adapt to various domains and improve over time; however, it

also adds another source of uncertainty: the intermediate uncertain operators

themselves. In this work, we propose a method which uses the lineage of the

returned results in order to quantify the influence of not only the input data,

but also the influence of the uncertain intermediate operators to the returned

results. Moreover, we have developed exact as well as approximate techniques

to efficiently repair pipelines populated with uncertain operators by returning a

small fraction of the operators which, when refined, would improve the pipeline

results. Our definitions and methodology generalize the influence definition of Re

and Suciu, extending it to apply to pipelines populated with uncertain operators.

Furthermore, we have implemented our approach as an extension to PostgreSQL

and tested it on various pipelines. Our experimental results have shown that our

approach successfully identifies the top-k influential operators of an extraction

pipeline, and provides high quality results compared to other approaches, while

maintaining low cost.

Lampros C. Papageorgiou iii July 2011

Lampros C. Papageorgiou iv July 2011

Contents

1 Introduction 1

1.1 Overview and Problem Statement 1

1.2 Motivating example . 2

1.3 Contributions and Prior Work . 4

2 Background and Related Work 7

2.1 Probabilistic Databases . 7

2.2 Possible Worlds Semantics . 10

2.3 Data Lineage . 11

2.4 Causality . 12

2.5 Influence . 13

3 Pipeline Model 17

3.1 Model Description . 17

3.2 Preliminaries . 18

3.2.1 Definitions . 18

3.2.2 Notation . 20

3.3 Uncertainty representation . 21

3.3.1 Probabilistic base input 22

3.3.2 Uncertain Operators . 22

3.4 Bayesian Network . 29

3.5 Possible Worlds . 30

3.6 Lineage . 31

4 Our approach 33

4.1 Influence . 33

Lampros C. Papageorgiou v July 2011

CONTENTS

4.1.1 Case I: Observed values 35

4.1.2 Case II: Non-observed values (General case) 36

4.1.3 Influence quantification . 36

4.1.4 Summary of our approach, in steps 40

4.1.5 Generalization of Re and Suciu [1] definition of influence . 41

4.1.6 Influence desiderata . 42

4.1.7 Incorporating and managing certain operators 46

4.1.8 Measuring the influence of multiple nodes simultaneously . 47

4.1.9 Root node influence . 48

4.1.10 Calculating local influence 48

4.1.11 Example . 49

4.2 Beneficial plan for node refinement 51

4.2.1 Budget . 51

4.2.2 One-at-a-time . 52

4.3 User Feedback - Debugging . 53

4.4 Guarantees . 53

4.5 Alternative approach for measuring influence 54

4.5.1 Toggle . 54

5 Experimental Evaluation 57

5.1 MayBMS probabilistic database platform 57

5.2 Experimental setting . 59

5.2.1 Implementation choices on our approach 59

5.2.2 Data model . 60

5.2.3 Implementation details . 61

5.2.4 Graph and dataset characteristics of other approaches . . . 64

5.3 Baseline metrics and heuristics used for evaluation 65

5.3.1 Related work-based metrics 65

5.3.2 Structure-based heuristics 65

5.3.3 Summary . 66

5.4 Experimental results . 67

5.4.1 Pipeline no.1 . 68

5.4.2 Pipeline no.2 . 78

5.4.3 Pipeline no.3 . 90

Lampros C. Papageorgiou vi July 2011

CONTENTS

5.4.4 Comparison with the influence definition provided by [1] . 101

5.5 Analysis of the results, general remarks and discussion 102

5.5.1 Execution time . 102

5.5.2 Heuristics . 103

5.5.3 Observation based approach 103

5.5.4 General approach . 103

5.5.5 Approximation . 104

5.5.6 Conclusions . 105

6 Future Work 107

6.1 Reduce computational complexity 107

6.1.1 Parallelization . 107

6.2 Find multiple causes simultaneously - cliques of influential nodes . 107

6.3 Non boolean setting . 108

6.4 Operator refinement . 108

6.5 User feedback . 108

7 Conclusions 109

8 References 111

Lampros C. Papageorgiou vii July 2011

CONTENTS

Lampros C. Papageorgiou viii July 2011

List of Figures

1.1 Provenance and chained inference pipeline example of PSOX . . . 3

2.1 Attribute-value and tuple-existence uncertainty 9

3.1 Ci and Di sets for node vi of a sample pipeline 19

3.2 An uncertain operator given training data 24

3.3 Example of training data used to estimate false positive/negative

probabilities . 24

3.4 Sample operator’s IO specification and output correctness 25

3.5 Restaurant menu classifier pipeline example 27

3.6 Restaurant menu classifier pipeline extended 28

4.1 Pipeline example . 35

4.2 Reducing Di set . 39

4.3 Node out-degree . 43

4.4 Node distance . 45

4.5 Multiple nodes’ influence . 47

4.6 Joint influence . 47

4.7 Example . 49

5.1 SQL schema . 60

5.2 Pipeline no.1 . 68

5.3 Ci and Di sets of pipeline no.1 . 68

5.4 CPTs of pipeline no.1 . 69

5.5 Possible worlds over all Ci sets for pipeline no.1 69

5.6 Execution time for pipeline no.1 70

5.7 Ground truth for pipeline no.1 . 70

Lampros C. Papageorgiou ix July 2011

LIST OF FIGURES

5.8 Results of heuristics for pipeline no.1 71

5.9 Influence values of all nodes, sorted by influence, for pipeline no.1 71

5.10 Node ranking by influence for exact and approximate cases, for

both general and given observation cases, for pipeline no.1 72

5.11 Figure of the quality of results for all cases, for pipeline no.1 . . . 73

5.12 Hit rate for pipeline no.1 . 74

5.13 Top-25%, top-40% and top-1 results for pipeline no.1 74

5.14 Square distance from ground truth per ranking position 74

5.15 Total square distance from ground truth per approach 75

5.16 Influence value convergence to ground truth value for each approx-

imation approach, observation-based approach 75

5.17 Influence value convergence to ground truth value for each approx-

imation approach, general case . 76

5.18 Influence value correlation to size of sets Ci and Di, observation-

based approach . 76

5.19 Influence value correlation to size of sets Ci and Di, general case . 77

5.20 Pipeline no.2 . 78

5.21 Ci and Di sets of pipeline no.2 . 79

5.22 CPTs of pipeline no.2 . 79

5.23 Possible worlds for pipeline no.2 80

5.24 Execution time for pipeline no.2 80

5.25 Ground truth for pipeline no.2 . 81

5.26 Results of heuristics for pipeline no.2 81

5.27 Influence values of all nodes, sorted by influence, for pipeline no.2 82

5.28 Node ranking by influence for exact and approximate cases, for

both general and given observation cases, for pipeline no.2 83

5.29 Figure of the quality of results for all cases, for pipeline no.2 . . . 83

5.30 Hit rate for pipeline no.2 . 84

5.31 Top-1 influential node results for pipeline no.2 85

5.32 Top-25% influential node results for pipeline no.2 85

5.33 Top-40% influential node results for pipeline no.2 85

5.34 Square distance from ground truth per ranking position 86

5.35 Total square distance from ground truth per approach 86

Lampros C. Papageorgiou x July 2011

LIST OF FIGURES

5.36 Influence value convergence to ground truth value for each approx-

imation approach, observation-based approach 87

5.37 Influence value convergence to ground truth value for each approx-

imation approach, general case . 88

5.38 Influence value correlation to size of sets Ci and Di, observation-

based approach . 88

5.39 Influence value correlation to size of sets Ci and Di, general case . 89

5.40 Pipeline no.3 . 90

5.41 Ci and Di sets of pipeline no.3 . 90

5.42 CPTs of pipeline no.3 . 91

5.43 Possible worlds for pipeline no.3 92

5.44 Execution time for pipeline no.3 92

5.45 Ground truth for pipeline no.3 . 93

5.46 Results of heuristics for pipeline no.3 94

5.47 Influence values of all nodes, sorted by influence, for pipeline no.3 94

5.48 Node ranking by influence for exact and approximate cases, for

both general and given observation cases, for pipeline no.3 95

5.49 Figure of the quality of results for all cases, for pipeline no.3 . . . 95

5.50 Hit rate for pipeline no.3 . 96

5.51 Top-25%, top-40% and top-1 results for pipeline no.3 96

5.52 Square distance from ground truth per ranking position 97

5.53 Total square distance from ground truth per approach 98

5.54 Influence value convergence to ground truth value for each approx-

imation approach, observation-based approach 99

5.55 Influence value convergence to ground truth value for each approx-

imation approach, general case . 99

5.56 Influence value correlation to size of sets Ci and Di, observation-

based approach . 100

5.57 Influence value correlation to size of sets Ci and Di, general case . 100

Lampros C. Papageorgiou xi July 2011

LIST OF FIGURES

Lampros C. Papageorgiou xii July 2011

Chapter 1

Introduction

1.1 Overview and Problem Statement

The role of modern web communities to inform their members about everything

new that is written or said that may be of their interest imposes the need to

build efficient and scalable community information management (CIM) platforms.

CIM platforms (e.g. Purple Sox [4], Cimple [14]) commonly use extraction and

integration pipelines to gather data from web sources, semantically categorize

this data, and return suggestions to their users. A variety of systems is used in

order to extract data from the web and provide possibly interesting suggestions

of web pages for the community members. Among these suggestions, the quality

and accuracy of the returned results can range from totally irrelevant web pages

to others of utmost interest.

Given that the data feeding such pipelines comes from a web extraction pro-

cess, this data is inherently uncertain. A common approach is to use a probabilis-

tic database to store the extracted data that feeds the pipeline. In addition, the

need to integrate this data efficiently would be satisfied by incorporating opera-

tors from the Machine Learning community in a pipeline. Such operators learn

from and adapt to a wide variety of domains and data sources. Our work intro-

duces a novel model that incorporates uncertain operators in extraction pipelines.

Although such operators are appropriate for the needs of CIM platforms, their

output is also uncertain. As a result, in addition to the uncertainty introduced

by the extracted input data itself, we identify another source of uncertainty in

Lampros C. Papageorgiou 1 July 2011

1. INTRODUCTION

such pipelines, i.e., the uncertainty introduced by the operators used to integrate

this data. Considering uncertain operators, results in a significant increase in the

complexity of the lineage processing and the debugging of such a system.

One of the main goals of this work is to develop a method that would make

such data explainable, in the sense that the history of extraction is tracked by

the system. Returning information about the origin of data (lineage) is a critical

task, as it will help users understand which stage of integration caused ambiguous

or faulty results. It is then clear that lineage processing and efficient debugging

and improvement of such pipelines is a great challenge.

Empowering engaged users such as community moderators or even common

users to participate in and repair the information integration process, will improve

future suggestions. Over time, feedback from users can be used to improve the

extraction and integration process, requiring less expert activity and knowledge

and allowing the quality of the extracted information to be improved until only

the latest and greatest information about the topic of their interest is returned.

For example, if the information extracted about a particular topic is incorrect,

the community members could simply click and flag that data -ultimately allowing

the system to assign greater confidence to higher quality extraction results and

improve the method used, which resulted in faulty suggestions.

Suppose that we are provided with a probabilistic database with uncertain

data and an extraction pipeline populated with uncertain operators. Our work

focuses on locating those operators which have the greatest impact to the result.

Finding a small set of influential nodes is imperative to perform a low-cost repair

of the pipeline.

1.2 Motivating example

Our motivating example is the scenario of a CIM platform which manages a

large number of sophisticated extraction and integration hierarchical pipelines

across different application domains, at web scale and with minimum human in-

volvement. Such a system should offer full functionality on three key aspects:

Lampros C. Papageorgiou 2 July 2011

1.2 Motivating example

extensibility, explainability and social feedback support. Especially for the ex-

plainability and social feedback support -the focus of our work- the system should

offer the ability to track the lineage of extraction results.

Moreover, such a system system should provide both the users and developers

with possible sources of error, facilitating the process of efficiently repairing the

pipeline. It should also be able to accept and effectively manage intermittent

and noisy social feedback on the quality of the extracted data. As a result, such

a framework will transform users from sheer observers to critical components of

the system and active critics of the data that will be suggested to all community

members in the future.

The most interesting examples of CIM platforms are the following:

- PurpleSOX: Purple SOX (Socially Oriented eXtraction) [4] is a prototype

extraction management system (EMS) by Yahoo! Research. Purple SOX focuses

on technologies to extract and manage structured information from the Web

related to a specific community.

Figure 1.1: Provenance and chained inference pipeline example of PSOX

Figure 1.1 shows an example of a Purple SOX pipeline. The blue nodes (1,3,4)

denote extracted entities and the green (5,6,7) and crimson nodes (0,8,9) denote

the uncertain operators. The red edges denote the operators inputs, which may

be some aforementioned entities or the output of other operators in order to, e.g.,

classify entities into categories. In Section 3.3.2 we provide further details about

the uncertain operators and the pipelines which are described by our model.

Lampros C. Papageorgiou 3 July 2011

1. INTRODUCTION

- Cimple: Cimple is a joint project between the University of Illinois, Univer-

sity of Wisconsin-Madison and Yahoo! Research. It develops a software platform

that can be rapidly deployed and customized to manage data-rich online commu-

nities [14]. To drive and validate Cimple, DBLife was built, a prototype system

that manages information for the database research community [15]. DBLife ag-

gregates structured information about the database community from data on the

Web.

1.3 Contributions and Prior Work

Our goal is to efficiently capture the lineage of the output results of an extrac-

tion pipeline populated with uncertain operators, quantify the influence of each

uncertain operator, and provide a mechanism to repair the pipeline and improve

the quality of the returned results, while maintaining the lowest possible cost.

An active area of research which addresses the problem of quantifying the

influence among uncertain data is the work on lineage processing in probabilistic

databases. However, most of the prior art in this area, i.e. [1],[21],[23],[24], only

deals with data uncertainty. The term data uncertainty refers to the fact that

the whole system’s uncertainty derives from the uncertainty of the input data.

For example, Re and Suciu [1] define the influence of independent uncertain input

data to a query result in a probabilistic database setting. Although this approach

seems to be very useful for the problem we have addressed, their definitions are

not applicable to our setting since their approach considers arbitrary deterministic

operators to manage this uncertain data. Due to the fact that the uncertainty of

the whole system in [1] derives from the input data only, adopting their approach

to our problem would ignore the uncertainty introduced by the operators, leading

to erroneous conclusions. In fact, our definitions and methodology generalize

the definition of influence in [1], making it possible to identify the influence in

pipelines with uncertain operators.

Other approaches that deal with the improvement of information extraction

pipelines do not consider uncertainty at either the data or the operators at all.

Such a piece of work is PROBER (Provenance-Based Debugger) [3]. PROBER

is a generic framework for debugging information extraction pipelines composed

Lampros C. Papageorgiou 4 July 2011

1.3 Contributions and Prior Work

of arbitrary (”black-box”) operators. Although the problem we handle has sim-

ilarities to PROBER (the common goal is to find sources of errors in pipelines

of operators that manage extracted data), the qualitative characteristics of the

two settings are very different. PROBER refers to a deterministic setting, so

there is no uncertainty at either the input data or the intermediate operators of

the pipeline. As a result, PROBER examines the lineage of (incorrect) output

records only referring to input tuples that impacted this output record. We ex-

tend their approach by not only considering uncertain inputs and intermediate

operators, but we also quantify each operator’s influence to the root’s output. A

more thorough description of PROBER is given in the next chapter.

To the best of our knowledge, there is no work addressing the case in which

uncertain operators are incorporated into information extraction and integration

pipelines. For this reason, we introduce the term operator uncertainty in such

pipelines. As expected, there is no prior work on quantifying the influence of each

uncertain operator in such a setting.

An additional contribution of this thesis is that our definitions and methodol-

ogy generalize the influence definition provided by Re and Suciu [1]. We extend

their definition to pipelines with uncertain intermediate operators, consider their

impact to the lineage, and quantify their influence to the returned results.

Moreover, our approach provides an operator refinement plan in order to gain

maximum benefit in terms of the quality of the returned results, while refining

only a small fraction of all pipeline operators. We argue that we can achieve

comparably high improvement of the quality of results as if we refined all pipeline’s

operators.

Ikeda and Widom [7] provide a thorough description of open problems in the

area of data lineage. Our work efficiently handles and solves a number of such

problems: We handle the problem of ”how-lineage”, that is, given some output,

how were the inputs manipulated to produce the output? Moreover, we efficiently

trace possible sources of error. We take into account and examine both incorrect

input data and incorrect transformations, i.e. erroneous intermediate values that

come from uncertain operators. Furthermore, we apply corrections that will

efficiently propagate forward and bring the whole system in a more correct and

certain state.

Lampros C. Papageorgiou 5 July 2011

1. INTRODUCTION

To sum up, the main contributions of this work are as follows:

• We investigate a novel lineage problem setting that incorporates operators

from the machine learning field into a pipeline that performs information

extraction tasks, and feeds these uncertain operators with input coming

from probabilistic databases.

• We represent the lineage function of a returned result by also taking into

account the effects of the uncertain operators and not only the input data.

• We present a method for quantifying the influence of each operator to the

returned results and a metric for the blame we put on each influential op-

erator for an erroneous result. Our definitions and methodology generalize

the definition of influence provided by Ré and Suciu [1], extending them to

handle uncertain operators.

• We present an efficient method for low-cost improvement of such pipelines,

using the definitions of influence and blame. This provides a benefit which

outperforms the naive approach of refining all pipeline operators. We

shrewdly choose to refine only a small fraction of critical operators.

• We provide high quality experimental results which show the efficiency of

our approach while maintaining low execution time.

The remainder of this thesis is organized as follows. In Chapter 2, we give

a short description of the work in various related fields. Chapter 3 provides

the setting of our problem and some basic notions. In Chapter 4 we describe

and explain our approach. Finally, in Chapter 5 we provide and discuss our

implementation and the experimental results.

Lampros C. Papageorgiou 6 July 2011

Chapter 2

Background and Related Work

Our work relates to and borrows from the state-of-the-art in numerous fields,

such as: probabilistic data management, lineage processing, causality. Here we

provide some short description of each field, some basic definitions, and how each

field relates to our work.

2.1 Probabilistic Databases

A wide range of applications have recently emerged the need to manage large,

imprecise data sets. The reasons for imprecision in data are as diverse as the

applications themselves: in sensor and RFID data, imprecision is due to mea-

surement errors; in information extraction, imprecision comes from the inherent

ambiguity in natural-language text; and in business intelligence, imprecision is

used to reduce the cost of data cleaning. Imprecise data has no place in tra-

ditional, precise database applications, and so, current database management

systems are not prepared to deal with it. In contrast, these newly emerging ap-

plications offer value precisely because they query, search, and aggregate large

volumes of imprecise data.

In information extraction, we usually face the problem of outdated/erroneous

information which is often present on the Web. Even if an extractor is operating

on an up-to-date web page, the difficulty of the extraction problem forces the

extractors to produce many alternative extractions or risk missing valuable data.

Lampros C. Papageorgiou 7 July 2011

2. BACKGROUND AND RELATED WORK

Thus, each attribute may contain several possible values; or equivalently, one can

think of each row of a table as being a separate uncertain tuple.

Sen et al. [25] consider the problem of uncertain data representation, and

Dalvi et al. [17] survey the state of the art techniques to handle imprecise data

which models imprecision as probabilistic data and provide a concise description

of the use of probabilistic databases in uncertain data management. As they

point out, there are two constraints on this data: tuples with different values

of a key attribute are independent; and tuples with the same key attribute but

difference in another attribute are mutually exclusive. Should we assign proba-

bilities to such data, the former refers to tuple-existence uncertainty, where we

are not able to ascertain if a tuple should be included in the database or not,

and the latter refers to attribute-value uncertainty, where we are unable to as-

certain if an attribute value -or which attribute value- is correct and thus we

assign a probability of it being correct. In both cases, the uncertainty in the

data is represented as a probabilistic confidence score. The following definition

of a probabilistic database refers to tuple-existence uncertainty. Attribute-value

uncertainty is handled similarly.

According to the definition of Suciu [16], a probabilistic database is a database

in which every tuple t belongs to the database with some probability P(t); when

P(t) = 1 then the tuple is certain to belong to the database; when 0<P(t)<1 then

it belongs to the database only with some probability; when P(t) = 0 then the

tuple is certain not to belong to the database, and it is not necessary to bother

representing it. A traditional (deterministic) database corresponds to the case

when P(t) = 1 for all tuples t.

Figure 2.1 shows the difference between the two above approaches. Table

HasObject describes the attribute-value uncertainty, and table Meets describes

the tuple-existence uncertainty.

Lampros C. Papageorgiou 8 July 2011

2.1 Probabilistic Databases

Figure 2.1: Attribute-value and tuple-existence uncertainty

Probabilistic databases are designed to allow uncertain data to be managed

directly by a relational database system. Several types of applications have been

considered. Specifically in Information Extraction the goal is to extract structured

data from a collection of unstructured text documents. Examples include address

segmentation, citation extraction, extractions for comparison shopping, hotels,

restaurant guides, etc. The schema is given in advance by the user, and the

extractor is tailored to that specific schema. All approaches to extraction are

imprecise, and most often can associate a probability score to each item extracted.

A probabilistic database allows these probability scores to be stored natively.

In this thesis, we consider a probabilistic database as an input data source:

we assume that web extracted data are stored in a probabilistic database and the

pipelines we describe are fed with this input. The uncertainty in the data is rep-

resented as a probabilistic confidence score, which is computed by the extractor.

Uncertain data is annotated with a confidence score, which is interpreted as a

probability. For example, Conditional Random Fields produce extractions with

semantically meaningful confidence scores. Other sources of uncertainty can also

be converted to confidence scores, for example probabilities produced by entity

matching algorithms or Support Vector Machines.

Lampros C. Papageorgiou 9 July 2011

2. BACKGROUND AND RELATED WORK

2.2 Possible Worlds Semantics

The possible world semantics in probabilistic databases, introduced by Dalvi and

Suciu [20] and also described in [1],[17],[19],[22] provide all possible states of a

probabilistic database.

Possible worlds are a means of expressing uncertainty. Under possible worlds

semantics, a probabilistic database is viewed as encoding a probability distribu-

tion over all possible deterministic instances of the database.

A natural way to deal with uncertain data is to interpret all uncertainties in

the system as probabilistic values in the interval [0,1], and then apply a structured

query paradigm that ranks results by their relevance as in common probabilistic

databases (PDBs).

Following the definition of Dalvi et al. [17] in order to describe probabilistic

databases using possible worlds semantics, it is:

A probabilistic database is a discrete probability space PDB=(W,P), where

W={I1,I2,...,In} is a set of possible instances, called possible worlds, and P:W→[0,1]

is such that
∑
j=1,n

P(Ij)=1.

The probability that some tuple t belongs to a randomly chosen world is

P(t)=
∑
j:t∈Ij

P(Ij), and is also called the marginal probability of the tuple t.

Conceptually, one of the possible worlds is ”true”, but we do not know which

one (subjectivist Bayesian interpretation).

- Each possible world is identified by a valuation that assigns one of the

possible values to each variable.

- The probability of the possible world is the product of weights of the values

of the variables, assuming independence.

We have chosen to ground our framework to possible worlds semantics, as it

is a widely accepted, simple and concise method, used in probabilistic databases

and query evaluation.

Lampros C. Papageorgiou 10 July 2011

2.3 Data Lineage

2.3 Data Lineage

According to the definition of Gupta [26], the term ”data lineage” refers to a

record trail that accounts for the origin of a piece of data (in a database, document

or repository) together with an explanation of how and why it got to the present

place.

In computer science, lineage -also called provenance- describes the source and

derivation of data. Lineage, or provenance, in its most general form describes

where data came from, how it was derived, and how it was updated over time.

A knowledge of where a data element has come from is essential in assessing the

quality of the database and thus, a record of provenance is essential to the trust

one places in data.

The lineage of data has recently been recognized as central to the trust one

places in data. It is also important to annotation, to data integration and to

probabilistic databases.

In addition, lineage has recently been shown to be important to understanding

the transport of annotation in database views, to data integration, to view up-

date and maintenance, and to probabilistic databases. Information management

systems today exploit lineage in tasks ranging from data verification in curated

databases to confidence computation in probabilistic databases.

Although lineage can be very valuable for applications, storing and querying

lineage can be expensive.

Following Dalvi et al. [17], lineage also provides a powerful mechanism for

understanding and resolving uncertainty. With lineage, user feedback on cor-

rectness of results can be traced back to the sources of relevant data, allowing

unreliable sources to be identified. Users can provide much detailed feedback

if data lineage is made visible to them. For example, in information extraction

applications where data items are generated by pipelines of AI operators, users

can not only indicate if a data item is correct, but can look at the lineage of data

items to locate the exact operator making the error. The above need in lineage

processing, as described in [17] is exactly what our work intends to accomplish.

Lampros C. Papageorgiou 11 July 2011

2. BACKGROUND AND RELATED WORK

2.4 Causality

Lineage of query results is closely related to causality, in cases of why-lineage and

where-lineage([8],[9]). As discussed by Meliou et al. [8], causality in databases

aims to answer the following question: given a query over a database instance

and a particular output of the query, which tuple(s) in the instance caused that

output to the query?

When analyzing data sets, users are often interested in the causes of their

observations: ”What caused my personalized newsfeed to contain more than 10

items related to volcanos?”. Database research that addresses these or similar

questions is mainly work on lineage of query results, such as why or where lineage,

and very recently, explanations for non-answers. While these approaches differ

over what the response to such questions should be, all of them seem to be

linked through a common underlying theme: understanding causal relationships

in databases.

Causal relationships cannot be explicitly modelled in current database sys-

tems, which offer no specific support for such queries. Mining techniques can

infer statistically significant data patterns but they are not sufficient to draw

conclusions, as correlation does not necessarily imply causation. A future goal

would be to extend the capabilities of current database systems by incorporating

causal reasoning. This will allow databases to model causal dependencies, and

users to issue queries that can interpret them to provide explanations for their

observations. Starting from the very basic functionality of justifying the presence

or absence of results for a given query, causality-enabled databases can find many

practical applications.

Our work aims at modelling the causal relationships of not only the input

data of an uncertain operator pipeline, but also the causal relationship of each

intermediate operator to the returned result. This allows us to provide all pos-

sible explanations for every observed output, extending the domain of possible

causes by also taking into account the intermediate operators. As a result, we

transform the role of the intermediate uncertain operators from sheer information

transferring components to critical components of the system, since an uncertain

operator may be the cause of an observation.

Lampros C. Papageorgiou 12 July 2011

2.5 Influence

2.5 Influence

Various definitions of influence -sometimes also called responsibility- can be found

in many publications, both in the field of probabilistic databases and in the field

of causality. Much of this literature has been studied thorough, throughout the

design and implementation of this thesis. Here, we provide a short summary for

each of the most interesting publications:

• Re and Suciu [1] provide a definition of influence in a probabilistic relational

database setting. In a probabilistic database, base tuple probabilities are

independent; these base tuples are represented by atoms. The main idea is

that some atoms are more influential than others. Informally, an atom is

influential if there are many assignments of all other atoms such that the

atom under consideration is the deciding vote, i.e., changing the assignment

of the influential atom changes whether tuple t is returned.

The influence of an atom i is defined by the following formula:

Infi(λt)
def
= P[λt(A) 6= λt(A⊕{i})]

where A the set of atoms (inputs) and λt the lineage function of the returned

tuple t. If λt evaluates to True, then t is returned by the query.

According to their definition, the probability that atom i determines whether

a tuple t is present in the output, is the probability that all other atoms

A output a value, for which the atom under consideration becomes the de-

ciding vote. In short, they define the influence of an atom i as the total

probability of all assignments of the rest atoms for which i determines t’s

presence at the output.

In comparison to this work, our approach does not consider only input data

uncertainty. Our definitions and methodology generalize their definition

of influence by also considering operator uncertainty and thus enabling to

quantify the influence introduced by the uncertain operators.

Lampros C. Papageorgiou 13 July 2011

2. BACKGROUND AND RELATED WORK

• In PROBER (Provenance-Based Debugger) [3], the definition of the prove-

nance model is based on minimal subsets of operator inputs -MISets- to

link each output record with a minimal set of contributing input records.

Intuitively, an MISet gives the fewest input records required for a particular

output record r to be present. Therefore, an MISet provides users with one

possible reason for the occurrence of r. In order to measure the influence of

each input, they define the impact of a system input i that results in system

output r, as the number of participations of i in all MISets that output r. In

simple words, they count how many MISets that result in output r include

i.

The setting of this paper shares similarities with ours. Their main goal

is to track the provenance of the output, as the user may be interested

in understanding why certain incorrect records were generated and then

identify and eliminate their sources. However, there are two big differences:

First, in PROBER there is no uncertainty, i.e., both the inputs and the

operators are deterministic; and, second, PROBER considers only the input

data as possible causes of erroneous results.

• In a recently published paper, Kanagal et al. [21] define the notions of

influence and explanations in a probabilistic database context. Their work

aims to enhance the information provided by the lineage of the returned

tuples, by justifying about how input tuples are responsible for certain

outputs. The definition of influence provided is a generalization of the

definition of influence by Re et al. [1], since it is applicable for handling

a larger variety of queries. The goal of this work is to use the lineage for

extracting two useful entities, i.e., the most influential/sensitive input tuples

and the best explanations from the lineage formula and the associated input

tuple probabilities.

Overall, this paper provides a thorough study on finding influential tuples

and explaining query results in a probabilistic database context. However,

only data uncertainty is considered whereas our work also considers operator

uncertainty.

Lampros C. Papageorgiou 14 July 2011

2.5 Influence

• Chockler et al. [2] introduce the definition of responsibility in a causal

model. This is one of the first papers in the area of causality -along with

Halpern and Pearl [11]- that defines responsibility. Responsibility measures

the minimal number of changes that have to be made in a set of causes in

order to make an effect counterfactually depend on some cause. The term

”counterfactual” can be better understood by the following statement: ”If

A had not happened, then B would not have happened”. Then, we say that

B counterfactually depends on A.

The notion of responsibility can be more easily understood via the example

of voters: let us consider an election with 11 voters and two outcomes, 11-0

and 6-5. In the first case, each voter has degree of responsibility of 1
6
, since

5 changes have to be made before a vote becomes critical. In the second

case, the degree of responsibility of each voter who voted for the winner is

1, since only one voter is needed to change her vote in order to change the

outcome; each voter is critical. The degree of responsibility of the voters

who voted for the loser is 0, since a change in their vote cannot change the

outcome.

This definition, as well as the closely related definition of Halpern and

Pearl [11], can be considered as the basis of the responsibility definition in

a database setting for the following two papers.

• Meliou et al. [5] propose causality as a unified framework to explain query

answers and non-answers. Extending the work of [11], they introduce func-

tional causes as a refined definition of causality, in order to model prove-

nance as well as define explanations in a database context and give graded

degrees of responsibility to individual causes. Responsibility is a measure

for degree of causality, first introduced by Chockler and Halpern in [2].

Meliou et al. in this paper provide a definition of responsibility in causal

networks, redefined here for functional causes. Practically, in order to com-

pute the degree of responsibility for a tuple t, one must find the smallest set

of tuples that, when inverted (i.e., either inserted or deleted), make tuple t

counterfactual for the condition.

Lampros C. Papageorgiou 15 July 2011

2. BACKGROUND AND RELATED WORK

This paper provides the theoretical foundations of causality theory in the

database context. However, the paper focuses on deterministic cases, i.e.,

neither data nor operator uncertainty are considered.

• In a follow-up paper, Meliou et al. [8] initiate a discussion on causality in

databases and its relation to provenance.

Causality in databases aims to answer the following question: given a query

over a database instance and a particular output of the query, which tuple(s)

in the instance caused that output to the query? Similar to Halpern and

Pearl’s [11] definition of causality, the above question also expresses the

notion of intervention: what happens to the outcome if we change the state

of the input. As a starting point, this work proposes to define causality in

databases by using the lineage of the answer to a query. The responsibility

of an input tuple t is a function of the minimal number of tuples that we

need to remove from the database before t becomes counterfactual.

This work provides very good ”entry-level” information on causality, and

its relation to lineage and databases. However, there is no connection to

either probabilistic databases or data and operator uncertainty.

Having presented all related influence and responsibility definitions by the

related work, we may draw the following conclusions:

i) there is no related work that performs influence quantification under a both

data and operator uncertainty setting, and

ii) most definitions are closely related to each other, meaning that there is a

general approach for quantifying influence and responsibility of the input data to

the output results.

Regarding the second conclusion, most approaches handle the problem of

quantifying the influence and responsibility of the input data to the output results

by finding all possible valuations of the rest of the input, for which an input under

consideration directly determines the output value. Then, they calculate the total

probability for these valuations to hold, and this is the influence/responsibility of

the input under consideration.

Lampros C. Papageorgiou 16 July 2011

Chapter 3

Pipeline Model

3.1 Model Description

Our system consists of a set of uncertain operators. Composing multiple operators

together gives us a plan, i.e., a hierarchical pipeline. We assume that the input

data of the pipeline (base input) is uncertain. The results are produced through

the execution of a plan, which in turn consists of executions of each individual

operator in the pipeline.

We introduce a directed acyclic graph G=(V,E), for representing the (ex-

traction and integration) hierarchical pipeline, i.e., the topology and correlations

between operators. Following [5], this can also be seen as a causal network. V

denotes the set of vertices corresponding to the operators (from now on we will

use the terms node and operator interchangeably as each node refers to one op-

erator), and E is the set of edges, showing how operators are connected to each

other. An edge vi → vj between nodes vi and vj indicates that the output of the

operator represented by node vi is input to the operator represented by node vj.

Thus, edges E indicate each node’s parents and children. By parents of a child

node, we denote all the nodes that feed directly the child node with input, so vi

is parent of vj and vj is child of vi.

We often use the language of genealogy in order to describe the relationships

in the graph, for simplistic reasons.

We call nodes without parents leaf nodes, and the rest intermediate nodes.

Root node is the top-level node of the system, which has no children, and provides

Lampros C. Papageorgiou 17 July 2011

3. PIPELINE MODEL

the system’s output.

Also, we assume an ordering I (topological order) where node vi can only be

child of nodes vj with j>i. Note that, since a pipeline is defined by a directed

acyclic graph (DAG), there is such a topological ordering, i.e., an ordering of the

vertices such that the starting endpoint of every edge occurs later in the ordering

than the ending endpoint of the edge. Node v1 is the root node.

3.2 Preliminaries

Before proceeding to the underlying theory and the presentation of our approach,

we provide some useful definitions and summarise the notation that will be used

in the ensuing discussion.

3.2.1 Definitions

Let path(vi,vj) denote a path from node vi to node vj:

path(vi,vj)=E(vi,vk1)+E(vk1 ,vk2)+. . .+E(vkm ,vj).

We denote with Di the set of all descendant nodes of a node vi:

vm ∈ Di if ∃ path(vi,vm)

Node vi can only affect -with its output- all nodes vm ∈ Di. This corresponds

to the space of influence of vi.

We continue by defining the set Ci, which contains all non-descendant nodes

of vi that are parents of any descendant node of vi, i.e., all other direct inputs of

the descendants of vi. More formally, we have:

vj ∈ Ci iff ∃ E(vj,vk), where vk ∈ Di and vj /∈ Di

Then, all nodes in Ci are the nodes that directly connect to vi’s space of

influence.

The topology of the sets Ci and Di for an example lineage DAG is depicted

in Figure 3.1.

Lampros C. Papageorgiou 18 July 2011

3.2 Preliminaries

Figure 3.1: Ci and Di sets for node vi of a sample pipeline

Node vi is coloured red, and the nodes of the sets Ci and Di are coloured with

gray and green, respectively.

The nodes of the set Ci can be seen as a ”barrier” between the rest of the

graph and the subgraph defined by node vi and all its descendant nodes up to

the root node(v1). We use Ci to ”isolate” Di from the rest of the graph and focus

on vi’s influence on its descendants and the root node. Because of the described

characteristics of the pipelines that we handle, clearly v1 ∈ Di, for every node vi.

We should point out that the nature of our model and the graph structure

proposed prohibit us from assuming independence among nodes of the set Ci. The

only independence assumption throughout our work is the independence among

Lampros C. Papageorgiou 19 July 2011

3. PIPELINE MODEL

the leaf nodes.

3.2.2 Notation

We denote the domain of a random variable Z by DomZ . Atomic events are

propositions of the form Zi = zi where Zi is a random variable and zi ∈ DomZi

is one of its domain values. An event is the assignment of all random variables

to one of their domain values.

We define finite probability distributions via a set of random variables with

finite domains. Such a probability distribution is completely specified by a func-

tion P that assigns a number P(Zi = zi) ∈ [0,1] to each atomic event Zi = zi such

that, for each random variable Zi,
∑
zi

P(Zi = zi) = 1.

The domain of any random variable Zi that we use throughout our work is

DomZi
=[0,1]. We allow to assign zero or one probability at an output value, in

order to also represent certain operators. As a result, the pipelines we handle

may contain both certain and uncertain operators. The way we handle pipelines

with both certain and uncertain operators will be explained in the next sections.

We continue by providing a summary of the notation that is used in the rest

of this work. Detailed definitions for some symbols are provided later in this

chapter.

Lampros C. Papageorgiou 20 July 2011

3.3 Uncertainty representation

Symbol Description
G(V,E) directed acyclic graph with V vertices

(random variables/nodes/operators)
and E edges (variable dependencies)

vi node vi ∈ V
pai node set of the parent nodes of node vi

path(vi,vj) a directed path from node vi to node vj

Di the set of all descendant nodes of a node vi

Ci the set of all nodes that directly connect to a
descendant node of vi

Z random variable
DomZ domain of random variable Z
Z=z valuation of random variable Z, z ∈ DomZ

P(Z=z)∈[0,1] random variable distribution, corresponding
operator output probability

Yi random variable on node’s vi output value
yi (observed) output value of node vi,

yi ∈ DomY =[0,1]
−→y pai (observed) output values of the parent nodes of vi

Xi random variable on the truth assignment
of node vi’s output value

xi valuation of Xi, xi ∈ DomX=[True,False].
Xi=True iff Yi=yi

Pfp(vi,
−→y pai), Pfn(vi,

−→y pai) probability that yi is a false positive/negative
PW a set of possible worlds
pwk the kth possible world, pwk ∈ PW

P(pwk) the probability of pwk, i.e. the joint probability
distribution of all random variables in pwk−→

ykCi
kth valuation of the nodes ∈ Ci

VyCi
the set of all k possible valuations of nodes vj ∈ Ci

VyDV
Ci

the set of all valuations of nodes vj ∈ Ci,
for which vi is a deciding vote

VDV the set of the deciding vote nodes

3.3 Uncertainty representation

A natural way to deal with uncertain data is to interpret all uncertainties in the

system as probabilistic values in the interval [0,1].

We assume a set of random variables which model the problem we study.

Lampros C. Papageorgiou 21 July 2011

3. PIPELINE MODEL

Since the uncertainty in our setting derives both from the input values and the

intermediate operators output values, we use these random variables to describe

both the input and the intermediate output values.

3.3.1 Probabilistic base input

We call base input the input data to the pipeline. This input data comes from

an extraction task. As a result, the base input is inherently uncertain. For this

reason, we represent base input with random variables, exactly as we do with the

output of the uncertain operators, as explained in the next section.

We assume that the base input is stored in and provided by a probabilistic

database.

3.3.2 Uncertain Operators

In statistical hypothesis testing, there are two types of incorrect conclusions or

errors that can be drawn. If a hypothesis is incorrectly rejected, when it should

in fact be accepted, it is called a false negative. A false positive occurs when a

hypothesis is incorrectly accepted when it should in fact be rejected.

In our model we consider a set of uncertain binary operators. Operators

correspond to basic units of functionality (e.g., web page classification). Given

some input data, an uncertain operator may output either the correct or the

incorrect value for this input, i.e., either a true or a false positive/negative value

(from now on, by negative we will refer to value ”0” and by positive to value

”1”). Such uncertain operators form the aforementioned hierarchical pipeline,

each represented by a vertex vi ∈ V in graph G.

Let Y, DomY ={0,1} be a random variable that describes the uncertain output

value of each operator and y the observed output value. We call observed output

value the output value yi of the execution of an individual operator vi ∈ V, on

some input −→y pai , where −→y pai the observed output values of the parent nodes of

node vi (vi’s inputs). An operator input can be either some base input or the

output of some operators of a previous level. Each operator is also defined by an

operator Input-Output (IO) specification, consisting of the input it consumes and

Lampros C. Papageorgiou 22 July 2011

3.3 Uncertainty representation

the output it produces. Thus, for some base input, a plan execution provides us

with the observed output value yi of every operator vi.

During the training phase, using a training set, we run a series of executions

in order to learn what the observed output value of a node is, for every possible

input. This is feasible, as the output value of each operator is deterministic -the

same output value will occur no matter how many times we try the same input.

As a result, we consider the observed output value of an operator for a given

input, known.

However, the credibility of this output value is under question, i.e., we are

not sure if the observed output value is correct for the observed input, due to the

aforementioned operator’s inherent uncertainty. The output value uncertainty

does not indicate that we do not know what the observed output value will be for

some input, but rather a degree of uncertainty over its correctness. As a result, we

assign a probability on every output value to be a true/false positive/negative: the

probability distribution of Y reflects the confidence we put on each atomic event

Y = y, based on the false positive/negative ratios. Such false positive/negative

probabilities are often estimated during, eg., classifier learning, as shown below.

In Figure 3.2 we show an uncertain operator during the training phase. This

explains better the procedure through which we gain all the needed information in

order to describe an uncertain operator, i.e., identify the observed output value

given some input and calculate its false positive/negative ratios. This specific

operator is responsible for deciding whether some given inputs can be categorized

as food. As a training set, we use a set of words that come from an extraction

process.

Lampros C. Papageorgiou 23 July 2011

3. PIPELINE MODEL

Figure 3.2: An uncertain operator given training data

We continue by providing in Figure 3.3 the training data used for training the

operator of Figure 3.2.

Figure 3.3: Example of training data used to estimate false positive/negative

probabilities

In Figure 3.4 we present the input values and probabilities, the output values

as resulted from an execution, and also the true/false positive/negative values

Lampros C. Papageorgiou 24 July 2011

3.3 Uncertainty representation

generated.

Figure 3.4: Sample operator’s IO specification and output correctness

We observe that the system for the sentences S1, S3 and S5 generated a false

positive value and for sentence S6 generated a false negative value. As a result,

we may calculate that for this operator and this training data, its false positive

ratio is 3/8=0.375 and its false negative ratio is 1/8=0.125.

In Section 3.4 we show that the introduced hierarchical pipeline model can be

described using a Bayesian network. Thus, it fulfils the local Markov property.

Also, as the graph is acyclic, we are guaranteed that a node cannot be dependent

on its own value. The above indicate that every node’s output value is condition-

ally independent from all other nodes output values apart from its parents, given
−→y pai ; the observed output value yi just depends on −→y pai . In other words:

Yi ⊥
−→
Y anci | −→y pai , where

−→
Y anci the variables for ancestor nodes of vi in the

pipeline, and ⊥ denotes independence.

Note that, in our setting, the uncertainty of the output value of an operator

is independent from the uncertainty of its inputs: the uncertainty of the output

value depends only on its observed input values and the operator’s false positive

and false negative ratios for these input values. How uncertain the input of vi is,

does not affect how uncertain the output of vi will be, only the observed input

values −→y pai determine yi’s uncertainty.

We denote as Pfp(vi,
−→y pai) the probability of the operator of a node vi to

output a false positive (fp) value (a false ”1”). Equivalently for false negative

(fn) value, Pfn(vi,
−→y pai).

Each node’s output can be one of the following:

Lampros C. Papageorgiou 25 July 2011

3. PIPELINE MODEL

Ptn(vi,
−→y pai) = P(Yi=0 | yi=0, −→y pai) true negative

Pfn(vi,
−→y pai) = P(Yi=1 | yi=0, −→y pai) false negative

Ptp(vi,
−→y pai) = P(Yi=1 | yi=1, −→y pai) true positive

Pfp(vi,
−→y pai) = P(Yi=0 | yi=1, −→y pai) false positive

The above introduce the probability of the observed output being true/false

positive/negative.

Going back to the operator of Figure 3.2, denoting it as the node vi, we write:

Pfn(vi,
−→y pai) = 0.125

and

Pfp(vi,
−→y pai) = 0.375

Having studied thoroughly the uncertain operator as a unique entity, we

should also examine how such operators interconnect to form the aforementioned

pipelines.

Not only the operators add uncertainty to their output by producing false

positives and false negatives, but also the input of an operator vi can be the

output of an uncertain parent operator vj. Thus, operators always ”operate”

on uncertain inputs. There are two sources of uncertainty for each output: one

deriving from the operator itself and another from its input, i.e., the confidence

we put on the the output of the operators parent nodes.

Figure 3.5 shows a pipeline populated with uncertain operators.

Lampros C. Papageorgiou 26 July 2011

3.3 Uncertainty representation

(a) (b)

Figure 3.5: Restaurant menu classifier pipeline (a) and the corresponding pipeline

(b) in graph representation

Figure 3.5 shows an extraction pipeline that can be described by our model,

and is used to categorize web pages into restaurant menu pages. The pipeline’s

input data is keywords that come from a web extraction task. The intermediate

operators categorize this data (e.g., Restaurant, Menu operators can be decision

tree classifiers) by aggregating their results into more general categories, and the

root node outputs the final result which declares the pipeline’s decision on a

web page being a restaurant menu page. Following the aforementioned common

learning technique, we are provided with the false positive/negative ratios for all

pipeline uncertain operators.

In Figure 3.6, we present the restaurant menu pipeline of Figure 3.5 in its

full extent, including observed output values and probabilities, i.e., the result of

a plan execution for some base input (here: bread, pie, apples, oranges).

Lampros C. Papageorgiou 27 July 2011

3. PIPELINE MODEL

Figure 3.6: Restaurant menu classifier pipeline including the operators the ob-

served output values and their corresponding probabilities

The probabilities represent the true positive/negative probabilities of the

operators observed output values. Here, again, we show that the false posi-

tive/negative probabilities of all operators are independent from the input prob-

abilities; they only depend on the observed input values to the corresponding

operator.

We continue by introducing a Boolean random variable X, DomX={T,F} to

denote the truth assignment on the correctness of an atomic event Y=y. Then,

Xi=True ≡ Yi=yi, and P(Xi=True) = P(Yi=yi | −→y pai) is the probability that

the operator’s observed output value is correct, given −→y pai . This variable will

help us provide some useful definitions later in this chapter.

So far, we conclude with the following: the output value of each node is

determined by a) the node’s input values, b) the operator specifications and c)

the uncertainty introduced by the node itself, due to false positives/negatives.

Lampros C. Papageorgiou 28 July 2011

3.4 Bayesian Network

3.4 Bayesian Network

A Bayesian network consists of a directed acyclic graph (DAG) and a set of local

distributions. Each node in the graph represents a random variable. A random

variable denotes an attribute, feature, or hypothesis about which we may be

uncertain. Each random variable has a set of mutually exclusive and collectively

exhaustive possible values. That is, exactly one of the possible values is or will

be the actual value, and we are uncertain about which one it is. The graph

represents direct qualitative dependence relationships, and the local distributions

represent quantitative information about the strength of those dependencies. The

graph and the local distributions together represent a joint distribution over the

random variables denoted by the nodes of the graph.

Up until now, it seems that the proposed model can be represented by a

Bayesian network, as it has the following characteristics1:

• A set of random variables, i.e., the random variables Yi, makes up the nodes

of the network, which represent the uncertain operators.

• A set of directed links connects pairs of nodes. The intuitive meaning of an

edge from node vi to node vj is that vi has a direct influence on vj.

• Each node has a conditional probability table (CPT) that quantifies the

effects that the parents -partially, due to operator’s inherent uncertainty-

have on the node. The parents of a node vi are all those nodes that have

edges pointing to vi.

• We assume that the graph has no cycles and all edges are directed (hence

is a directed acyclic graph, or DAG).

This conclusion -that we may use a Bayesian network as a representational

tool for our hierarchical pipeline model- gives as a very powerful background,

as there is rich literature on Bayesian Networks, which will equip us with the

appropriate tools to handle some aspects of this problem efficiently.

1We should point out that in our setting, the observed inputs of the pipeline determine

the observations and the false positive/negative probabilities of each operator’s output. As a

result, it is not completely true to say that our model can be described by a Bayesian network

Lampros C. Papageorgiou 29 July 2011

3. PIPELINE MODEL

3.5 Possible Worlds

We use the standard possible worlds semantics from probabilistic databases to

express all possible truth assignments of a set of operators (random variables).

A truth assignment −→x={x1,. . . ,xn} of n random variables, representing our

belief for each operator(node) vi, i≤n, on Yi=yi is an assignment of each random

variable Xi to one of its domain values. Every complete assignment maps to a

single possible world.

Each possible world is described by: i) a positive integer(key) k of the possible

world, ii) a truth assignment −→x on random variables and iii) the probability of

the possible world. Then, pwk ∈ PW is the kth possible world, represented by

the triplet:

<k,−→x k,P(pwk)>

As each possible world represents a truth assignment on the output values of

some (or all) nodes, the set of possible worlds PW covers all possible states of

the set of operators under consideration. Of course, if |x|=n, then 1≤k≤2n for

binary output values.

Our assumption that most or all graph nodes are uncertain, i.e., Pfp(vi,
−→y pai)

≥ 0 and Pfn(vi,
−→y pai) ≥ 0, ∀ vi, indicates that each uncertain node’s observed

output can always be characterized as True/False. So, if there are n nodes (oper-

ators) in the DAG, there are at most 2n possible worlds that describe all possible

truth assignments.

We should point out that if there were no intermediate uncertain operators

and the pipeline’s uncertainty derived only from the base input -as it is in typical

probabilistic databases, e.g.[1]- then the number of possible worlds would be much

smaller, that is 2m, where m the number of base inputs (leaf nodes).

As every node in the graph is conditionally independent to all other nodes

except for its parents, given its parents output values, the probability of every

possible world describing the root’s output confidence is the joint probability

distribution of all assignments Xi=xi in pwk ∈ PW:

P(pwk)=P(X1=xk
1,. . . ,Xn=xk

n) =
∏
n

P(Xi=xk
i | −→y k

pai
)

Lampros C. Papageorgiou 30 July 2011

3.6 Lineage

where −→y k
pai

denotes the observed output values of the parents of node vi, i.e., the

input values of vi that we consider at the kth possible world.

3.6 Lineage

Providing the lineage of a result in our setting is more complicated and chal-

lenging than in a common probabilistic database setting: following the typical

possible worlds approach to describe a pipeline result’s lineage, (i.e., find all its

possible derivations based on the input values only) would be insufficient in our

setting. In a typical probabilistic database setting, only the leaf nodes take part

in the decision process and intermediate operators only propagate the informa-

tion, they cannot interfere with it. We not only have to take into consideration

input uncertainty, we should also assign a level of ”blame”, or responsibility, to

each of the operators for an erroneous output.

Suppose that we are provided with an output value, a probabilistic database

as input source and a pipeline populated with uncertain operators. The lineage

function of an output results by taking into account all input and intermediate

operators output combinations that may result in the observed output value under

consideration.

However the overhead we get by calculating possible worlds in this new setting,

the procedure remains quite the same: the lineage of an output value is a Boolean

formula which evaluates to True for every assignment of all pipeline nodes, for

which the result under consideration appears in the output. Informally, we apply

to the whole graph what probabilistic database approaches do for the inputs only.

In our setting, all graph nodes take part in the decision process and as a result

we cannot ignore any of them, in order to keep the procedure lossless.

Lampros C. Papageorgiou 31 July 2011

3. PIPELINE MODEL

Lampros C. Papageorgiou 32 July 2011

Chapter 4

Our approach

Our ultimate goal is to invest the least effort, time and resources to locate and

refine a small subset of operators in order to gain the maximum benefit, in terms

of the root operator’s output quality. Informally, we intend to locate and rank the

influential operators of a pipeline in order to be able to repair the pipeline with

the least cost through refining some significant operators. Then, these refined

operators are enough to boost the quality of the pipeline’s result, without having

to refine all pipeline’s operators.

We approach this problem by defining each node’s influence to the result and

determine whether each pipeline operator is influential to the output or not.

4.1 Influence

We are interested in measuring the influence of each operator to the root node v1.

Among all graph nodes, there are some which, due to their topological charac-

teristics and their output value, have greater influence to the root’s output value

and probability. Such nodes are called influential and are of great importance

when aiming to improve the system with the least cost.

The term ”influential node” may be confusing though; all graph nodes are

responsible for the root’s output as they all take part in the decision process.

However, only some of them have the ability to directly determine the root’s

output value. These play the role of the so called deciding votes, which will be

Lampros C. Papageorgiou 33 July 2011

4. OUR APPROACH

better explained afterwards. Here, we use the term ”influential node” to refer to

the nodes that directly determine the root’s output value.

Unlike the classic definition of influence in probabilistic databases literature

[1], where the influence is only credited to the independent leaf nodes, here any

leaf or intermediate uncertain node can atomically influence the root’s output, as

most or all graph nodes are sources of uncertainty. Thus, we should examine every

single uncertain operator for its contribution to the result’s uncertainty. In our

approach, the probability of the output result is not simply the joint probability

of the corresponding input tuples; the probability of an output result comes from

the probability of the root node for the corresponding uncertain input values.

Recursively, every single root node output depends on the whole pipeline.

We continue our description, assuming that all pipeline operators output un-

certain values and we will then discuss how we handle cases where some operators

produce certain output. We consider this assumption because a certain operator

is a sub-case of an uncertain operator, where one output value has probability 1

and the rest 0.

Let a node vi be either a leaf or an intermediate node. The set of nodes Ci (see

Section 3.2.1) forms a ”slice” of the graph breadth-wise, a barrier which contains

all nodes that separate the rest of the graph from the nodes which vi influences

(Di). Nodes ∈ Ci are the only nodes that also affect Di nodes, apart from vi.

The properties of the set Ci of a node vi under consideration are an important

tool and reduce our effort on finding vi’s influence to the root node, because we

only have to work on the nodes that are in, or descendants of, the node set Ci.

As a result, we cut down on the number of pipeline operators that we examine

each time we calculate some node’s influence.

The topology of the aforementioned node sets can be better understood through

the following figure:

Lampros C. Papageorgiou 34 July 2011

4.1 Influence

Green: Di

Grey: Ci

Orange: vi

Figure 4.1: Example of a pipeline

We should distinguish here two cases, according to the information we have

about the pipeline:

4.1.1 Case I: Observed values

The input and output values of vi and Ci nodes may be observed, as the outcome

of an execution. In this case, we know the probability of their outputs, as it comes

from each node’s false positive/negative probability for the given input values.

The fact that the output values of Ci nodes are probabilistic suggests that we

should consider all possible truth assignments of these output values, given their

observed input values. Following the possible worlds semantics, as explained in

Section 3.5, there are 2|Ci| possible truth assignments on the observed values −→y Ci
.

A truth assignment, e.g., xk
j=True indicates that in possible world k, we assume

that the observed output value yj of node vj ∈ Ci is not a false positive/negative.

We map each truth assignment k to a new valuation
−→
ykCi

. This valuation can

be interpreted as a ”virtual” observation, where we ask ”what if the kth truth

assignment holds”. We consider the following:

Lampros C. Papageorgiou 35 July 2011

4. OUR APPROACH

- if xk
j = True, then yk

j = yj

- if xk
j = False, then yk

j = ¬yj

In simple words, what we do to create each valuation
−→
ykCi

is consider the kth

truth assignment, and adopt the corresponding output values.

Each possible world pwk ∈ PW assigns a probability P(Yj=yk
j | −−→ypaj), ∀ vj ∈

Ci. Then, it is:
2|Ci|∑
k=1

P(pwk) =
2|Ci|∑
k=1

∏
j:vj∈Ci

P(
−→
Yj=
−→
ykj | −−→ypaj) = 1 (1)

4.1.2 Case II: Non-observed values (General case)

If no observed input and output values of Ci nodes are provided, we have to

take into account all possible valuations of Ci nodes. Then the set of truth

assignments on observed values, where each truth assignment maps to a new

valuation, is replaced by directly considering all possible valuations of the output

values of Ci nodes. Each such valuation of all Ci nodes is represented by a possible

world, whose probability is the joint probability of all valuation’s output values

to hold. This is provided by the operators CPTs: we compute the unconditional

probability that the ”assumed” observed value is correct, given the node’s false

positive/negative probabilities, weighted over all possible inputs.

4.1.3 Influence quantification

Following the probabilistic database approach, where we have to consider all

possible worlds because we do not know what is the ”real” state of the database,

similarly here we consider all possible worlds to evaluate all possible ”correct”

states of vi and its Ci set’s nodes. Each possible world over the set Ci provides

the probability of the respective valuation to hold. The possible worlds are either

based on all possible truth assignments of an observed valuation, or on all possible

valuations of a set of nodes (vi,Ci) when no observation is available.

Lampros C. Papageorgiou 36 July 2011

4.1 Influence

4.1.3.1 Valuation of sets Ci and Di

As we have already shown in Section 3.3.2, through operators’ I/O specifications,

we know what the observed output of a node will be, given its observed input

values. Thus, given the kth valuation (kth possible world) of all nodes in Ci and

an output value for vi, (
−→
ykCi

,yk
i), the corresponding observed output values of the

descendants of vi,
−→
ykDi

, are known. Therefore, every valuation (
−→
ykCi

,yk
i) maps to a

valuation
−→
ykDi

, since the output values (
−→
ykCi

,yk
i) determine what

−→
ykDi

will be, ∀ k.

However, as the nodes vm ∈ Di are (also) uncertain operators, there is a

probability on their output value to be correct for the corresponding input, given

their observed input values. After considering an output value (yk
i) for vi for

which we will calculate its influence to the root’s output, the joint probability of

the corresponding valuation of the dependent Di nodes, is:

P(
−→
YDi

=
−→
ykDi

) =
∏

m:vm∈Di

P(Ym=yk
m |
−−→
ykpam) (2)

which is the joint probability of the values we would observe in the subgraph

at the kth valuation, given (
−→
ykCi

,yk
i). Note that, of course, not all nodes in Di are

directly fed with input by vi or vj ∈ Ci nodes; the input of some nodes comes from

another node vm ∈ Di. However, the ”primary” input was provided by either vi

or vj ∈ Ci.

Concluding, for each single valuation −→yCi
, there are 2|Ci| possible truth assign-

ments, each of which maps to a single virtual valuation of Ci nodes,
−→
ykCi

. Each
−→
ykCi

also corresponds to a single valuation of Di nodes,
−→
ykDi

, given the output value

of vi.

4.1.3.2 Deciding votes

We remind that one of our ultimate goals is to measure how each uncertain

operator influences the credibility of the root’s output, i.e., the probability of it

being correct. For this reason, we introduce the notion of deciding votes, as it

appears in the causality literature [2].

We begin by examining, out of all 2|Ci| possible valuations −→yCi
, which are the

ones that make yi the deciding vote.

Lampros C. Papageorgiou 37 July 2011

4. OUR APPROACH

Let λy1(
−→
ykCi

,yk
i) = { 1 , if for given (

−→
ykCi

,yk
i): yk

1 = 1

0 , if for given (
−→
ykCi

,yk
i): yk

1 = 0
Then, checking:

[λy1(
−→
ykCi

,yk
i) 6= λy1(

−→
ykCi

,¬yk
i)] (3)

returns the valuations
−→
ykCi

for which yk
i is the deciding vote for y1, based

on observed values. That is, for which out of all possible valuations
−→
ykCi

, the

output value of vi determines what the root’s output value will be. Informally,

we examine the effect of how vi’s output value changes the root’s output value.

We write:

vi ∈ VDV if the deciding vote criterion (3) holds.

If VyCi
denotes the set of all 2|Ci| possible valuations −→yCi

, then VyDV
Ci
⊆ VyCi

denotes the set of all valuations for which vi is the deciding vote (vi ∈ VDV); that

is, VyDV
Ci

contains every
−→
ykCi

for which (3) holds, or equivalently the corresponding

valuations of these possible worlds. In simple words, VyDV
Ci

contains all valuations

of nodes in Ci, as they resulted from the corresponding truth assignments, for

which a change in vi’s output value results in the change of v1’s output value.

The above property of the valuations VyDV
Ci

can well be seen as the support

under which vi becomes the deciding vote. If |Ci|=0 and (3) holds, or VyCi
≡

VyDV
Ci

, then vi is always the deciding vote.

Having examined the supporting role of Ci nodes, we should also examine the

role of Di nodes in whether vi is the deciding vote in each valuation. Di nodes

practically propagate the decision of the node vi to the root node. We distinguish

two methods to examine the role of the set Di:

4.1.3.3 All Dis

For all valuations VyDV
Ci

, we choose to ask for all descendant nodes of vi to be

assigned True, in order to better capture the influence of vi to the root node. As

each node’s output uncertainty depends on its input values, we have to ensure

that this input is as correct as possible.

We can calculate the total probability that yi is a deciding vote:
|V yDV

Ci
|∑

k=1

∏
j:vj∈Ci∪Di

P(Yj=yk
j | −−→ypaj) (4)

Lampros C. Papageorgiou 38 July 2011

4.1 Influence

Considering the joint probability of all Di nodes,
−→
ykDi

, for every possible
−→
ykCi

is

basically equivalent to reducing all descendants of vi in to a single node vDi
, whose

inputs are vi and vCi
nodes, and calculating its output value probability. Asking

for the probability that the output of all Di nodes is True for the corresponding
−→y k

Ci
is as if we ask for vDi

to be True under this new setting.

The above can be better understood through the following figure:

(a) (b)

Figure 4.2: Reduction of descendant nodes Di (a) into a single node (b).

Following this approach, we have the following definition of influence:

Definition: The influence of the observed output value yi of a node vi to the

observed output value y1 of the root node v1 is defined as the sum of the joint prob-

abilities of all subgraph (Ci ∪ Di) valuations on being true positives/negatives,

for which yi is the deciding vote for y1.

We write:

Infyi(y1) =

|V yDV
Ci
|∑

k=1

∏
j:vj∈Ci∪Di

P(Yj=yk
j | −−→ypaj) (5)

The definition of the influence of a node vi to the root node (v1) calculates

the total probability of all nodes ∈ Ci ∪ Di having ”correct” values, for which vi’s

output value is the deciding vote for v1’s output value. Informally, it answers the

question: ”What is the probability that yi will -correctly- determine the output?

How much do we trust the hypotheses of the truth assignments of all other nodes,

for which vi determines the result?”

Lampros C. Papageorgiou 39 July 2011

4. OUR APPROACH

4.1.3.4 Root-only

Another method to define yi’s influence is to ignore the output probabilities of all

Di nodes and only examine the root node’s output probability, for all valuations

VyDV
Ci

. We weight each output probability with the probability of the respective

possible world, from which it has emerged.

We write:

Infyi(y1) =
∑

k:pwk∈V yDV
Ci

P(Y1=yk
1 | −−→ypaj)×P(pwk) (6)

We describe this naive but ”cheap” method in order to compare it to the

other two and argue about the trade-off between the computational cost and the

quality of the results.

4.1.3.5 Total influence

As we can see, the described approaches require to apply an output value to the

node under consideration, vi. Therefore, measuring the influence by taking into

account this valuation will refer to the influence of the particular output value of

vi to the root node. However, we intend to measure the influence of the operator,

not the influence of a specific output value of it.

Thus, we have to examine both possible output values of the node vi in order

to compute the influence of vi to v1. Then, we weight over the probability of each

possible output value to determine the total influence.

We write:

Infvi(v1)=
1∑

b=0

Infybi (y1)× Φ(b), where

yb
i={

yi , if b=0
¬yi , if b=1

and Φ(b)={ P (Yi = yi) , if b=0
P (Yi = ¬yi) , if b=1

4.1.4 Summary of our approach, in steps

We summarize the above procedure in the following steps:

1. We consider the observed output values of all vCi
nodes and vi and we form

the set of all possible worlds describing all possible truth assignments over

Lampros C. Papageorgiou 40 July 2011

4.1 Influence

the observed output values −→y Ci
. If no observation is available, we consider

directly all possible valuations of Ci nodes.

2. We map each possible world k to the corresponding virtual valuation −→y k
Ci

.

3. For each valuation k and for yi, we calculate the observed output values
−→y k

Di
.

4. We identify for which of these valuations is yi the deciding vote for y1.

5. We sum over all possible worlds where the deciding vote criterion holds.

This is the influence of vi to v1 for the current observation.

4.1.5 Generalization of Re and Suciu [1] definition of in-

fluence

A very important property of the above definition of influence is that it can well be

seen as a generalization of the influence definition provided by Re and Suciu in [1],

extended to handle uncertain operators. Our definition reduces to the definition

of influence provided by [1], when considering the case where the intermediate

operators add no uncertainty to their output; all system’s uncertainty derives

from the independent leaf nodes. The reduction of our method to the definition

of influence, as described in Re and Suciu paper [1], is quite straightforward.

Suppose that we examine such a simple setting, where no intermediate node

adds further uncertainty to its output. As a result, all system’s uncertainty de-

rives from the leaf nodes, i.e., the probabilistic base input of the system. There-

fore, we need only examine the leaf nodes for measuring each single node’s influ-

ence to the result.

Let vi be a leaf node and all intermediate pipeline operators be certain. Then

the set Ci contains all other leaf nodes except for vi. This is because intermediate

nodes add no uncertainty and thus the nodes connecting to vi’s space of influence

(nodes in the set Ci), reduce to their ancestor leaf nodes.

As a result:

P(
−→
YCi

=
−→
ykCi

) =

|Ci|∏
m=1

P(YCi,m=yk
Ci,m

) =
∏

|leaf nodes\{vi}|

P(
−−→
Yleaf=

−−→
ykleaf) (8)

Lampros C. Papageorgiou 41 July 2011

4. OUR APPROACH

assuming that leaf nodes are independent. Equation (8) holds, since leaf nodes

are independent and we are provided with the unconditional probability of their

output.

Using (4) we are able to calculate the joint probability of all other leaf nodes

(Ci) to output such values, that vi becomes the deciding vote. Then, we sum

over all input value combinations’ joint probabilities for which vi is the deciding

vote.

We have:

(4)
(8)
=>

|V DV
leaf nodes\vi

|∑
k=1

|leaf nodes|−1∏
j=1

P(Yj=yk
j) (9)

Moreover, the definition of influence as it appears in [1] is as follows:

Infxi
(λt)

def
= P[λt(A) 6= λt(A⊕{i})]

The above indicates the sum of the probabilities of possible worlds for which

the leaf node xi is the deciding vote, i.e., toggling xi’s value toggles output value,

and this is shown through the lineage function.

The above definition can be expressed by using possible worlds semantics as

follows:

It is: Infxi
(λt) ≡ Infxi

(q), where q the query result, and

Infxi
(q) =

∑
k:pwk

i ∈V DV
leaves\xi

∏
j:xj∈−→x \xi

P(Yj=yk
j) (10)

where −→x the set of all leaf nodes and V DV
leaves\xi

the set of valuations (possible

worlds) over all leaf nodes except for xi, for which xi is the deciding vote.

As a result, equation (9) agrees with equation (10), proving that our definition

is a generalization of the definition of influence by Re and Suciu.

4.1.6 Influence desiderata

Intuitively, we consider that the higher the out-degree or the closest a node is to

the root node, the higher is its influence.

In order to prove that our approach satisfies our intuition, we continue by

defining some topological metrics that characterize the expected amount of influ-

ence of a node vi.

We prove that our approach satisfies the following:

Lampros C. Papageorgiou 42 July 2011

4.1 Influence

4.1.6.1 Node’s out-degree

The out-degree of a node vi (deg+(vi)) is defined as the number of outgoing edges

of vi.

We write:

if deg+(vi) > deg+(vj) then we expect Inf(vi) > Inf(vj)

The greater a node’s out-degree (deg+(vi)), the more influential we expect

it to be. This happens because toggling the output value of a node with high

out-degree, this change ”spreads” in a larger part of the graph, and thus it is

more likely to cause a change to its descendants.

Example:

(a) (b)

Figure 4.3: Node out-degree

We will now examine the cases presented in Fig.3. Both cases (a,b) are almost

the same; the only difference is the out-degree of node v6. It is deg+(v6)=2 in

(a) and deg+(v6)=4 in (b). In both cases, the distance of v6 from the root is the

same, distv6=2 and the in-degree of the root node is deg−(v1)=4.

Let us begin by examining (a). There might be some valuations of C6 nodes,

C6={v4, v5}, for which v6 becomes a deciding vote. However these valuations

may never occur, or they may have very low probability to occur. As a result,

whether v6 will become the deciding vote depends heavily on v4 and v5’s output

values.

Now let us take a look what changes in case (b). Changing deg+(v6) from 2 to

4 means that we will now consider the nodes v4 and v5 from being in C6, to be in

D6. They have now been ”absorbed” by D6 and have become descendants of v6.

Lampros C. Papageorgiou 43 July 2011

4. OUR APPROACH

As a result, v6’s output value will determine what v4 and v5’s output values will

be. In (b), v6 influences more graph nodes and so, it has the ability to provide

larger part of the graph with its output.

Formally, the influence of v6 in (a) is:

Inf
(a)
v6 (v1) =

|V yDV
C6
|∑

k=1

|C6|+|D6|∏
j=1

P(Yj=yk
j) (11)

which calculates the sum of the joint probability of C6 and D6 nodes, for which

v6 becomes the deciding vote. However, if we calculate the influence of v6 in (b),

we get:

Inf
(b)
v6 (v1) =

|V yDV
C6
|∑

k=1

|C6|+|D6|∏
j=1

P(Yj=yk
j) =

|V yDV
v6
|∑

k=1

|D6|∏
j=1

P(Yj=yk
j) (12)

If we take a closer look at the above equations we can see that, at the sum

function of (11), it is C6 that ”decides” whether v6 will be a deciding vote (VyDV
C6

).

In (12) there is no C set, as its nodes have become descendants of vi. Now v6’s

output value feeds all nodes that directly connect to the root node and that, it

is the one that determines their output values.

In fact, if we denote as Inf(a) and Inf(b) the influence of v6 in cases (a) and (b)

respectively, we have:

Inf(a) ≤ Inf(b), and the equality holds if v6 in case (b) is a deciding vote for

every valuation of C6 nodes (v4 and v5).

The high influence and significance of a node with high out-degree seems more

logical, if we consider a case where such a node outputs an erroneous value. This

will flood the pipeline with error and result in probably erroneous root output.

4.1.6.2 Distance

The distance of a node vi from another node vj is measured by the number of

nodes that lay between vi and vj. However, we have represented the pipeline

with a directed acyclic graph, meaning that there might be many paths through

which we can approach vj from vi. For this reason we take the shortest path

(geodesic distance).

We write:

if dist(vi1 ,vj) > dist(vi2 ,vj) then we expect that Inf(vi1 ,vj) < Inf(vi2 ,vj)

Lampros C. Papageorgiou 44 July 2011

4.1 Influence

Practically, we expect that the farther a node vi is from another node vj, the

less it influences vj. As a result, a node close to the root node is expected to be

more influential. This happens because high-level nodes are less hops away from

the root node, and as the graph width narrows while moving up, a change in a

higher level node is expected to have significant impact to the root.

This conclusion seems logical, as high level nodes (nodes close to the root

node) tend to be fewer and carry more information (information aggregated by

many nodes), so their significance is greater. Informally, it is the difference be-

tween the impact of a member of the board of directors to a strategical decision

of an organization, and the impact of the member of a department. Generally, we

may say that the less nodes are in vi node’s Ci and Di sets, the more influential

vi is.

Example:

Figure 4.4: Nodes with different distances to the root node

Consider the case where we compare the influence of two nodes, v2 and v9

from Fig.2. We see that both have the same out-degree (deg+(v2)=deg
+(v9)=1),

however v2 is much closer to the root than v9. In fact, v2 is directly connected to

the root node, where v9 is 3 hops away. Also, both nodes have the same size of

C set. The sets C and D for these nodes are:

C2 = {v3,v4}
D2 = {v1}

Lampros C. Papageorgiou 45 July 2011

4. OUR APPROACH

C9 = {v2,v4}
D9 = {v6,v3,v1}
For simplistic reasons, let us assume that both nodes are deciding votes for

the current setting, for 50% of the valuations of their Ci sets.

It is:

Infv2(v1) =

|V yDV
C2
|∑

k=1

|C2|+|D2|∏
j=1

P(Yj=yk
j |
−−→
ykpaj) =

2∑
k=1

3∏
j=1

P(Yj=yk
j |
−−→
ykpaj)

and

Infv9(v1) =

|V yDV
C9
|∑

k=1

|C9|+|D9|∏
j=1

P(Yj=yk
j |
−−→
ykpaj) =

2∑
k=1

5∏
j=1

P(Yj=yk
j |
−−→
ykpaj)

Assuming the same probabilities for all Ci and Di sets for both nodes, we have

that:

Infv9(v1) < Infv2(v1)

practically because |C9|+|D9|=5 > 3=|C2|+|D2|

4.1.7 Incorporating and managing certain operators

As we mentioned earlier, we consider pipelines that totally consist of uncertain

operators. However, our approach can also be applied to pipelines which consist

of both certain and uncertain operators. The incorporation of certain operators is

straightforward: a certain operator is described as an uncertain where all possible

outputs for an input have probability equal to zero apart from a single output

value which has probability equal to one. Certain operators in a mostly uncertain-

operator populated pipeline play the role of a stepping stone towards the effort

to improve the pipeline.

As a result, our approach can be applied to any pipeline, i.e., pipelines with i)

only uncertain operators, ii) both certain and uncertain operators, and iii) only

certain operators(in this case we have proven the reduction of our approach to

the definition of influence in [1]).

The existence of a single certain operator will also cut down on the size of

possible worlds, as it will assign zero probability to all possible worlds that do not

meet the constraint set by the way the certain operator works, i.e., consider output

values other than the one which is the correct/certain value for the respective

Lampros C. Papageorgiou 46 July 2011

4.1 Influence

input. Informally, some possible worlds cannot exist (will have zero probability)

as they will consider a zero probability input-output combination for the certain

operator.

4.1.8 Measuring the influence of multiple nodes simulta-

neously

We extend our approach by considering the case where we want to calculate the

”joint” influence of multiple operators simultaneously.

(a) (b)

Figure 4.5: Ci and Di sets of nodes v6 and v13 respectively

Figure 4.6: Sets C6,13 and D6,13

Lampros C. Papageorgiou 47 July 2011

4. OUR APPROACH

We will examine the joint influence of nodes vi and vj. The new Cij and Dij

sets result from the intersection of the previous Ci, Cj and Di, Dj sets respectively.

Every possible output value combination (yi,yj) is considered as a new state, for

which we calculate the influence of both vi, vj to the root’s output, through Cij

and Dij, just like we did when examined a single node.

However, we consider that the study and the challenges that arise when de-

termining the influence of multiple nodes simultaneously are outside the scope

of this thesis. We currently investigate the properties of joint influence with the

intuition that although the high complexity of the problem, it will reveal a new

facet of influence in uncertain operators pipelines. We leave the complete study

of the influence of multiple nodes simultaneously for future work (Section 6.2).

4.1.9 Root node influence

At this point, we should examine how the influence metric works in case of the

root node. Clearly, the presented metric cannot be applied to the root node, since

there are neither Ci nor Di sets for the root node.

However, we think that it is obvious that the root node operator is the operator

that is responsible for the whole pipeline’s output. As a result, should the root be

erroneous, then consequently the final result would be wrong. Thus, there would

be no point improving any other pipeline operator, if root node would ruin this

effort.

This remark leads us to draw the conclusion that the root node v1 is always

the most influential node of any pipeline, and so, we say that: Infv1 = 1.

4.1.10 Calculating local influence

Another aspect of our approach is its ability to be used in order to perform an

influence analysis at only a small part of a larger pipeline. For example, let

us assume that we need to know the most influential nodes in case that the

pipeline under consideration is a part/subgraph of a larger graph. Then, we may

set a starting set of nodes and an ending node, as the leaf and the root nodes

respectively and locally discover the top-k influential nodes.

Lampros C. Papageorgiou 48 July 2011

4.1 Influence

Suppose that we are given a website classification pipeline populated with

uncertain classifiers, whose task is to gradually classify a given website into a

restaurant website. In such a pipeline there might exist food, wine, and dessert

classifiers at the bottom levels of the pipeline, and at the upper levels we may

find more complex classifiers, using the results of previous levels. We want to

examine the influence of some intermediate food classifiers to an also intermediate

restaurant menu classifier at an upper level. Such information can be immediately

drawn by our approach, enabling local influence study of any pipeline.

4.1.11 Example

Now let us explain the above through an example. Suppose that we are given the

following graph:

Figure 4.7: Example

We want to calculate the influence of v7 to the output of v1, supposing that

y11=1, y12=1, y13=0, and y14=0. We know that the observed values are y7=1

and y1=0. Then, we will examine how correct would be to observe y1=0, when

y7=1. Formally, we want to calculate Infv7(v1) for this observation/execution.

It is: C7={V6,V8,V3} and D7={V4,V2,V1}.
We start by calculating all possible worlds (truth assignments) over the output

values of C7 nodes, as they resulted by output values of their parent nodes, y11,

y12, y13, and y14=0. Since we are provided with an observation, we will follow the

observation-based approach, as presented in section 4.1.1. Then we associate each

Lampros C. Papageorgiou 49 July 2011

4. OUR APPROACH

possible world with the respective virtual valuation. Based on these valuations,

we know what the output values of Di nodes would be.

We continue by finding the set VyDV
C7

for the node v7, given the observed input

values of the C7 nodes. That is, we identify out of all possible worlds over the set

C7, those where the output values of C7 nodes,
−→
ykC7

, are such, that v7 becomes

the deciding vote. These valuations would be included in VyDV
C7

.

Let VyDV
C7

={pw1,pw3,pw7}, and
−→
y1C7

={y6=0,y8=0,y3=1},
−→
y3C7

={y6=0,y8=1,y3=1},
−→
y7C7

={y6=1,y8=1,y3=1}.
That is, for {y6,y8,y3}={001,011,111}, y7 is the deciding vote for y1.

Also, for y7=1, it is:
−→
y1D7

={y4=0,y2=1,y1=0},
−→
y3D7

={y4=1,y2=1,y1=0},
−→
y7D7

={y4=0,y2=0,y1=0}.
This means that, e.g., when in pw1, where {y6,y8,y3}={001} and y7=1, we

have {y4,y2,y1}={0,1,0}.
After, we sum over all possible worlds where the above hold. In this case, we

would calculate:

Infy7=1(y1=0) =
∑

k=1,3,7

∏
j=1,2,3,4,6,8

P(Yj=yk
j |
−−→
ykpaj)

Suppose that in our case, it is: Infy7=1(y1=0) = 0.56.

This means that the probability that the values of Ci and Di nodes are such,

that y7=1 would cause y1=0 is 0.56.

Now, in order to compare this with another node’s influence, we follow the

exact same procedure for node v9, when again y11=1, y12=1, y13=0, and y14=0.

For this valuation let y9=0. Suppose that we calculate that Infy9=0(y1=0) = 0.29.

Comparing, we see that Infy7(y1)>Infy9(y1), which means that the influence

of node v7 to node v1 is greater than the influence of node v9, when y11=1, y12=1,

y13=0, and y14=0. That is, should we confront this observation, we may draw the

conclusion that node v7 is more probable to cause y1=0. Informally, it is more

probable that v7 has determined y1 and so, v7’s output should have the least

possible uncertainty, in order to ensure that the ”liability” of the other pipeline

nodes onto node v7 has the best possible results in terms of output quality.

Now let us use the same graph, however we will consider no uncertainty in-

troduced by intermediate nodes/operators; all uncertainty derives from the leaf

nodes. As a result, there is no point examining intermediate nodes for their in-

fluence to the root node, as their output is fully determined by the corresponding

Lampros C. Papageorgiou 50 July 2011

4.2 Beneficial plan for node refinement

leaf nodes(their ancestor leaf nodes). We will use our approach to compare the

influence of two leaf nodes.

Suppose that we choose v12 and v13.

It is: C12={v11,v13,v14} and C13={v11,v12,v14}. As we have previously men-

tioned, there is no uncertainty introduced by the leaf nodes and so, all other leaf

nodes of a leaf node under consideration, compose its Ci set. This is expressed

by (8).

So, as in the previous case, we continue by identifying for which valuations

of C12 nodes (possible worlds), v12 becomes a deciding vote, and sum over all

possible worlds where this holds. This example also proves that our method

reduces to the definition of influence given in [1].

4.2 Beneficial plan for node refinement

The blame we put on each influential node is the measure we use in order to

decide which small subset of operators to refine in order to gain as much benefit

as possible, in terms of the pipeline’s output credibility.

Therefore, we suggest that if we rank the operators according to the blame

we have put on them and refine the top-k selected, we will achieve to improve

the pipeline’s output results quality, while having the least cost: the k nodes we

have suggested to refine are just a small fraction of all nodes.

4.2.1 Budget

We consider the case that we are given a budget, i.e., either a maximum number

of nodes which we can refine, or an amount of training data available, which we

may use in order to refine the selected nodes. The most efficient way to spend

this budget is to refine the top-k blamed nodes. However, if we are not given a

budget, we should calculate the trade-off between the cost of refining some nodes

and the benefit we get by it and then find the optimal k. This, because after

having refined some nodes (the top-`) the benefit we would get by the rest might

be small and thus not worth refining the rest k-` nodes.

Lampros C. Papageorgiou 51 July 2011

4. OUR APPROACH

In order to do the above, we propose to quantify the benefit we get from each

refinement. However, the study of the outcome of an operator refinement process

is out of the scope of this thesis and as a result we leave this for future work (see

Section 6.4).

4.2.2 One-at-a-time

Our approach so far examines each operator atomically. Since we measure the

influence and the blame we put on each operator atomically, it is risky to apply

batch refinement to the top-k nodes. The fact that refining a single node improves

the result, does not imply that if we refine two or more nodes at once, this will

be the most beneficial refinement plan; on the contrary, this may result in worse

results than before, as performing a batch refinement may have side-effects, i.e.,

drastically changing the way the pipeline performs, create other/more deciding

vote nodes and result in repairing a ”new, non-examined” pipeline.

Refining an operator, i.e., applying further targeted training data to it in order

to improve its output, may occur in the change of what the observed output values

are, for some input. As a result, this would change the way a part or the whole

pipeline works. As a result, in this new setting we cannot apply what we have

calculated previously.

However, we may refine the top-k nodes according to our primary rank and

simultaneously examine what are the consequences of each operator’s refinement.

Should we identify a change in a node’s observed output values, we should then

consider examining the case again. Else, we may continue refining the nodes

following our primary rank.

We handle this problem by considering the changes that occur after refining

the top-blamed node each time. After refining this node, in the new state that

has emerged, we find the next node that it is more beneficial to refine. It is an

iterative process in which, after every iteration we take into account the changes

made by the previous iteration and continue appropriately.

We expect that the cost will not be as high as it seems, because there is

high probability that the top-k blamed nodes will be in the higher levels of the

graph (distance desideratum, Section 4.1.6.2). As a result, after every iteration

Lampros C. Papageorgiou 52 July 2011

4.3 User Feedback - Debugging

little changes will have occurred in the way the pipeline works. On the other

hand, should the top-blamed nodes be found lower in the graph, the lower the

connectivity of the graph in these lower levels, the lower would be the changes; the

spread of the change will be delayed until it reaches nodes with high out-degree.

4.3 User Feedback - Debugging

In many community information management (CIM) platforms today, users not

only need to evaluate their trust on the data returned, but are also frequently

willing to offer to the community by flagging erroneous output. Thus, a CIM

platform should provide users with the ability to give feedback about the quality

of the results, report erroneous outputs, and indicate possible sources of error.

Thus, the platform should exploit this valuable feedback to efficiently repair the

pipeline.

Human users have expertise in a large number of heterogeneous domains.

Getting feedback from users is on one hand valuable, as it indicates the correct

output values and is something that usually users do not offer generously. So,

when user feedback is available, such platforms should take anything they can

from it. On the other hand, user feedback is sometimes biased, erroneous or may

come from malicious behaviour and collusion among users.

The combination of the knowledge upon how the system works -the deciding

votes- and what the correct output should be -the user feedback- can help us

provide an even more beneficial improvement plan, as we would then have the

posterior knowledge about what is the correct output for given input.

4.4 Guarantees

Refining a node does not indicate that its output will definitely change for the

given observed input. So, we cannot assure that if we follow the proposed optimal

improvement plan, we will have the desired improvement, as we cannot be sure

that the refined nodes will have their CPT changed. However, we can guaran-

tee that, should the output value of a node for a given input changes after the

refinement, then we will have improved the system with the least possible cost.

Lampros C. Papageorgiou 53 July 2011

4. OUR APPROACH

4.5 Alternative approach for measuring influ-

ence

We provide an alternative, more naive approach for finding influential operators

worth refining.

4.5.1 Toggle

This approach answers the question: ”Given that we observed the input of a

node, what is the best case scenario for its output to its descendant nodes, so as

to lead the whole system and the root node to higher quality results?”

After an execution is performed, we are provided with the observation, i.e., the

output values of all nodes. Our task is quantify the influence that the observed

output value of node vi had on the root’s output y1, i.e., how has each leaf and

intermediate node’s output value contributed to/affected the root’s output value

and probability.

In order to locate the top-k influential nodes, based on the current execution,

we apply the following procedure:

We begin by introducing some sets of nodes, according to their position in the

pipeline and their relative position to node vi.

Let path(vi,vj) denote a path from a node vi to a node vj:

path(vi,vj)=E(vi,vk1)+E(vk1 ,vk2)+. . .+E(vkm ,vj).

Then, the sets of Unreachable, Ancestor and Descendant nodes of a node vi

are:

- vj ∈ Ui if @ path(vi,vj) || path(vj,vi) :nodes with no connection to vi

- vj ∈ Ai if ∃ path(vj,vi) :ancestor nodes of vi

- vj ∈ Di if ∃ path(vi,vj) :descendant nodes of vi

We denote all observed output values with −→yi . As every yi has a probability

to be correct, P(Yi=yi | −→ypai), we examine what if yi is wrong, i.e., what if vi

would output ¬yi for the same input −→ypai? Therefore, we consider a ”virtual”

execution, where we intervene and force vi, for the same input values as in the

initial observation, −→ypai , to output the complement value of what we observed.

Lampros C. Papageorgiou 54 July 2011

4.5 Alternative approach for measuring influence

We denote
−→
ŷi the new ”virtual” observation’s output values, resulting from

toggling yi. The superscript here indicates which node we toggled in the current

virtual observation. Then ŷii=¬yi.

Node vi can only affect -with its output- all nodes vj ∈ Di, i.e., its space of

influence of vi. As a result, the new observations
−→
ŷi will differ from the initially

observed −→y at least in one value, yi, and at most in |Di| values.

We have:

- ŷii = ¬yi

-
−→
ŷiUi

= −→yUi

-
−→
ŷiAi

= −→yAi

- ∀ vj ∈ Di, ŷ
i
j = Fvj(

−−→
ŷipaj)

The above introduce that in the new virtual observation
−→
ŷi , the only nodes

that have different observed output value from the initial is vi and possibly some of

the descendants of vi, according to functions Fvj(
−−→
ŷipaj) that describe the observed

output of every vj ∈ Di, given their input
−−→
ŷipaj .

We then want to calculate the probability of the new virtual observation,
−→
ŷi .

This is:

P̂i =
∏
n

P(Yj=ŷ
i
j |
−−→
ŷipaj)

Then we may compare each P̂i with the initial probability P0, in order to

examine if toggling vi would lead us to a more correct execution. Specifically,

the difference that may occur between P̂i and P0 comes from the change that

the toggle caused in Di nodes. So, we practically examine the change of the

probability of the subgraph defined by vi and v1, when we toggle yi.

If P̂i > P0, then changing the observed output value of vi, for its input −→ypai ,
would result in a more correct execution, for the same base input.

That is, the whole subgraph has a higher joint probability. However, making

the execution more certain in total, does not indicate that we trust more the

root’s output, as now the root’s observed input values may have changed. For

this new input, the root node may be more uncertain than before.

As a result, we ask for the nodes that maximize both the probability of the

nodes Di and the root node v1.

Lampros C. Papageorgiou 55 July 2011

4. OUR APPROACH

Based on the gain of vi, the subgraph’s and the root’s output probability

that we get when toggling each node’s output value, we are able to rank the

nodes. This ranking will provide which nodes are better candidates for refinement.

However, we should clarify that refining a node does not indicate that the observed

output value of the node, for the same input will change. But, we guarantee that

if this output value changes, then we will have the maximum benefit in terms of

root’s output correctness, while having refined a small subset of the graph nodes.

Lampros C. Papageorgiou 56 July 2011

Chapter 5

Experimental Evaluation

In order to prove the correctness of our definitions, we have implemented our

approach in the environment of a probabilistic database management system and

run a series of experiments.

We start by providing some information about the available platforms, the

setting of our experiments and continue with the results.

5.1 MayBMS probabilistic database platform

MayBMS is a state-of-the-art probabilistic database management system that

has been built as an extension of Postgres. It focuses on representation problems,

query language design, and query evaluation

We provide here an overview:

- An extension of the Postgres server backend. Compiles and runs on the same

platforms as Postgres.

- Postgres APIs and middleware can be used, e.g., ODBC, JDBC, PLSQL,

PHP.

- Full SQL support. Same performance as Postgres on nonprobabilistic data.

- Full support for updates, transactions and recovery.

- Secondary storage implementations for all operations.

- Probabilistic world-set algebra: relational algebra operations + operation to

compute tuple confidence + operation for introducing uncertainty

- Operations evaluated in parallel in each possible world

Lampros C. Papageorgiou 57 July 2011

5. EXPERIMENTAL EVALUATION

- U-relational databases: dbs are finite sets of possible worlds with probability

weights

Much theory used for MayBMS is based on the U-Relations. Confidence com-

putation in MayBMS can be efficiently approximated by Monte Carlo simulation.

MayBMS implements both an approximation algorithm and several exact al-

gorithms for confidence computation. The approximation algorithm is a com-

bination of the Karp-Luby unbiased estimator for DNF counting in a modified

version adapted for confidence computation in probabilistic databases and the

Dagum-Karp-Luby-Ross optimal algorithm for Monte Carlo estimation. The lat-

ter is based on sequential analysis and determines the number of invocations of

the Karp-Luby estimator needed to achieve the required bound by running the

estimator a small number of times to estimate its mean and variance.

The exact algorithm for confidence computation is based on an extended ver-

sion of the Davis-Putnam procedure that is the basis of the best exact Satis-

fiability solvers in AI. Given a DNF (of which each clause is a conjunctive lo-

cal condition), the algorithm employs a combination of variable elimination (as

in Davis-Putnam) and decomposition of the DNF into independent subsets of

clauses (i.e., subsets that do not share variables), with cost-estimation heuristics

for choosing whether to use the former (and for which variable) or the latter.

An important definition in MayBMS is the repair-key operation for intro-

ducing uncertainty. The repair-by-key operation is motivated by data clean-

ing scenarios. When applied to a relation that violates a uniqueness constraint,

a repair-by-key query generates a world-set representing all possible repairs of

that relation: ”An uncertainty-introducing operation, repair-key, which can be

thought of as sampling a maximum repair of a key for a relation. Repairing a key

of a complete relation R means to compute, as possible worlds, all subset-maximal

relations obtainable from R by removing tuples such that a key constraint is sat-

isfied.”

Also, aconf(ε, δ) aggregate to compute an (ε, δ)-approximation of the proba-

bility, i.e., the probability that the computed value p̂ returned by aconf deviates

from the correct probability p by more than ε * p is less than δ.

MayBMS provides two extensions of SQL, ”repair key” and ”[a]conf”. SQL

extended by just these two features allows for very powerful queries, including

Lampros C. Papageorgiou 58 July 2011

5.2 Experimental setting

the computation of conditional probability tables, maximum likelihood estimates,

maximum-a-posteriori, Bayesian learning, and much more.

Some more operations introduced by MayBMS are, in brief, the following:

argmax: Return the argument with the maximum value

conf: Return the exact confidence of distinct tuples

aconf: Return the approximate confidence of distinct tuples

tconf: Return the exact confidence of tuples

esum: Return the expected sum over distinct tuples

ecount: Return the expected count over distinct tuples

5.2 Experimental setting

5.2.1 Implementation choices on our approach

We have chosen to consider an approach similar to MayBMS, i.e., extending the

PostgreSQL with some useful functions and operators in order to make our system

more eligible and extendible. This approach would also allow us to use some of

the operators introduced by MayBMS. However, unlike MayBMS, we do not use

the theory of U-Relations and as a result, there is very little use of MayBMS

operators in our system; we chose to implement our own model and operations

in order to achieve better adaptation to our problem domain.

The reason why we have not used any of the aforementioned available sys-

tems is that the problem we study -to the best of our knowledge- has not been

approached before. The nature of our problem and its special characteristics,

especially the fact that we consider intermediate uncertain operators, have not

allowed to use an existing system or approach.

We use PostgreSQL to describe and store the pipeline; all pipeline specifica-

tions are stored in the database. We have implemented a series of User Defined

Functions (UDFs) in C and integrated them in PostgreSQL in the form of func-

tions and operators. These UDFs allow high speed operations on the data outside

the database.

A UDF is a function written outside PostgreSQL in C language and is inte-

grated to PostgreSQL by the CREATE FUNCTION command. UDFs can take

Lampros C. Papageorgiou 59 July 2011

5. EXPERIMENTAL EVALUATION

as argument and return any base or complex type. Such functions are compiled

into dynamically loadable objects (also called shared libraries) and are loaded by

the server on demand. PostgreSQL also allows the user to define her own oper-

ators through the CREATE OPERATOR command. As a result, a UDF can be

used to implement a user-defined operator.

We have implemented our system in C language and used the gcc compiler.

The code implementation is about 4000 lines of C code, including the implemen-

tation of all approaches, graph generator and comments. We use PostgreSQL

8.3.3 to store the relations, the UDFs, and the query results. All experiments

were run on a 2.1GHz Core 2 Duo machine under a VirtualBox xUbuntu 10.10,

with 1Gb of dedicated main memory.

5.2.2 Data model

We use the underlying DBMS to store the pipeline. We represent each pipeline

operator’s topological characteristics with a table node {node id, input edges,

output edges, Ci, Di} and its CPT with a table cpt {cpt id, node id(FK), in-

put values, output value, P}. Attribute P of the cpt table represents the proba-

bility of the corresponding output value. The DBMS recognises the P attribute

as a common floating point value. The qualitative characteristic of this value, i.e.,

the fact that this is a probability value, will be added by the way we handle this

value afterwards. Attribute output value of the cpt table refers to the observed

output value. For every operator vi, there are 2|pavi | tuples in the table cpt for

each tuple of the table node.

Figure 5.1: SQL schema

We use the aforementioned table representation to describe both the pipeline

structure and the operators specifications. However, in order to introduce the

Lampros C. Papageorgiou 60 July 2011

5.2 Experimental setting

Bayesian network semantics, identify variable dependencies, and calculate possi-

ble worlds, conditional probabilities, calculate the influence of a node,and gen-

erally run numerous graph algorithms efficiently, we use UDFs to create a data

structure that represents the directed acyclic graph. The database approach will

efficiently store data and provide it, through the UDFs, to the data structure,

which will in turn handle and operate on these data. Then, the results are re-

turned to the database, allowing to run queries on them. This allows to use

various graph algorithms (e.g., BFS, etc.) within a structural language (i.e., C)

context, and not in the database. After having identified all useful information

on graph dependencies etc., we are able to answer queries on these data by using

separate UDFs.

5.2.3 Implementation details

All operators used in the pipelines for experimentation are binary and uncertain,

i.e., a probability is assigned to their output values (0 or 1), for every input, to

represent the false positive and false negative probabilities. The false positive

and negative probabilities are uniformly distributed in [0.01,0.3].

To make things harder for our system, we have used general operators, i.e.,

operators that work much more complex than simple AND,OR,XOR etc. This

allows to prove that our approach outperforms even in such a complex environ-

ment where nothing is obvious and complex dependencies and operators exist.

Moreover, this approach is a more accurate representation of a real world system,

where the operators used would be of this kind.

We have run a series of experiments assuming the following two cases: i)general

setting, where no observation is available, and ii)given observations, i.e., the result

of system executions over some input data. We examine both cases separately

and provide the results below.

In the case where we assume that an observation is provided, the pipelines

are fed with data coming from a probabilistic database, and all operators ob-

served output values have been stored in advance. In simple words, we assume

that we are provided with information from previous executions. This approach

ultimately allows us to either provide the pipeline’s influential operators for a

Lampros C. Papageorgiou 61 July 2011

5. EXPERIMENTAL EVALUATION

given execution, or study the pipeline in general and provide the most influential

operators over all possible execution scenarios.

Also, a significant detail is that the general setting approach allows us to

measure the influence of a given operator, even if we have no information about

all pipeline operators below the given operator.

5.2.3.1 Sampling

Our approach is implemented by firstly considering the exact case, where all pos-

sible worlds are taken into account while measuring the influence of an operator.

The need to make our approach applicable to even larger pipelines has made

imperative the implementation of an approximate extension to out approach that

considers sampling over possible worlds. As a result, in order to calculate the

influence of an operator vi, we sample over the possible worlds of its Ci set, i.e.,

the possible worlds because of which vi becomes the deciding vote.

As a result, we have much fewer possible worlds to calculate and examine and

thus much less operations performed. This approximation technique makes our

approach much faster, without sacrificing the quality of our results. This is better

shown below, in the Experimental Results section.

In our experiments, we randomly choose the 10%, 30%, 50% or 70% of all

possible worlds over the operators of the Ci set of a given operator vi.

This approximation provides a great benefit in means of execution time, since

we randomly pick some possible worlds id’s and we just have to calculate these

worlds and examine only these to check if the node under consideration is the

deciding vote. This is better shown in the experimental results section.

5.2.3.2 User-Defined Functions

We have implemented a series of UDFs in order to:

• create the DAG structure,

• find Ci and Di sets,

• calculate joint probabilities,

Lampros C. Papageorgiou 62 July 2011

5.2 Experimental setting

• calculate valuations and execution results,

• enumerate possible worlds,

• sample over possible worlds,

• find the deciding votes, and

• identify influential nodes.

This allows to precompute various important information, i.e., Ci and Di sets,

etc.. The returned results are stored back in the database.

The UDFs implemented are split into two main categories: UDFs to create

and describe the pipeline and its characteristics as a graphical model (creatin-

gUDFs), and UDFs to operate on the graphical model and answer queries (op-

eratingUDFs). Whenever the pipeline is altered, so does the graphical model

described by the external C language data structures and all database dependent

information are updated.

CreatingUDFs populate a data structure with nodes that keep each pipeline

operator’s useful information: node’s id, parent nodes, children nodes, nodes of

Ci and Di sets, and CPT values and probabilities.

Populating set Di is a simple breadth-first search (BFS), starting from the

target node vi and moving up to the root. Then, the set Ci can be found by

finding the direct parents of all Di nodes and excluding from this set all Di nodes

and node vi:

{Ci}={paDi
}-{Di}-{i}.

For the data structural approach, we use an adjacency list to denote the

dependencies between nodes. This approach also guarantees low complexity of

the BFS algorithm used to find Di nodes, which is O(|V|+|E|).
OperatingUDFs use data stored in the database to answer simple (e.g., find

the output value of a node, given its input values) and more complex queries

(e.g., find influential nodes, find deciding vote nodes, calculate possible worlds).

The use of operatingUDFs is independent from the pipeline, i.e., they are able to

operate on any pipeline that is stored in the database.

Lampros C. Papageorgiou 63 July 2011

5. EXPERIMENTAL EVALUATION

Briefly, we have implemented operatingUDFs to i)enumerate all possible worlds,

ii)find whether an operator is the deciding vote and in which possible worlds this

takes place, iii)calculate the influence of an operator, iv)generate mean output

probabilities of the operators for the general setting case, v)simulate all possible

execution scenarios of the pipeline, and vi)compute the influence through the

heuristics approaches used for the evaluation of our results. These are the main

and most important operatingUDFs.

5.2.3.3 Dataset

We have built numerous pipelines in order to experiment on, prove the correctness

of our method and draw conclusions. These pipelines vary in size and character-

istics. We have also implemented a pipeline generator function, which generates

pipelines with the desired characteristics, for exhaustive testing.

Since there is not much work available that shares similarities to ours, there is

not much information provided by the related work about the size of the graphs

that other approaches use. Below, we provide some information on the datasets

used by other, quite similar, approaches:

5.2.4 Graph and dataset characteristics of other approaches

• PROBER: In PROBER [3] is used a collection of 500 million web pages

crawled by the Yahoo! search engine as dataset. They implemented two

pipelines, Business and Iterative. Business pipeline contains a simple queue

of 8 operators (degenerated DAG), and there is no description available for

the Iterative pipeline.

• PurpleSOX: In PSOX prototype [4] there is no information about the size

and characteristics of pipelines they plan to handle. Their paradigms show

small size and low-depth pipelines, however these are used for simplifying

their representation.

• In Kanagal et al. [21], they have synthesized a 100 MB TPC-H dataset

augmented with tuple uncertainty for each tuple. The probabilities of ex-

istence were chosen uniformly between [0,1]. They have also built indexes

Lampros C. Papageorgiou 64 July 2011

5.3 Baseline metrics and heuristics used for evaluation

on the primary and foreign key attributes of each relation. There is also no

information available on the structural characteristics of the trees used.

• MayBMS: In the MayBMS manual, the paradigms provided show that their

testing experiments were carried out over random undirected graphs of 5-

100 nodes with the same or different probabilities among the edges. Also,

random directed graphs were tested, composed of 1000 to 3000 nodes, in-

cluding both certain and uncertain edges, with the latter ranging from 0 to

0.1 probability.

5.3 Baseline metrics and heuristics used for eval-

uation

We continue by providing some simple heuristic approaches that can be used

instead, in order to choose the top-k nodes for refinement. Also, we have im-

plemented the approaches proposed by the related work. We do this in order to

evaluate our technique, compare it to the heuristics results and the prior art, and

show that the quality of our results outperforms simplistic approaches, providing

much better cost-benefit ratio.

5.3.1 Related work-based metrics

5.3.1.1 Simple Re-Suciu [1] Influence metric

Here we calculate influence following the definition of influence provided by the

paper of Re and Suciu [1], and we choose the set of top-k nodes for refinement

based on each node’s influence. This ignores all intermediate operators uncer-

tainty and only chooses some leaf nodes for refinement.

5.3.2 Structure-based heuristics

5.3.2.1 Node out-degree heuristic

Using this heuristic, we rank all nodes based on the amount of outgoing edges

they have (node out-degree deg+(vi)), i.e., how many child nodes they have. The

Lampros C. Papageorgiou 65 July 2011

5. EXPERIMENTAL EVALUATION

idea is that, the more nodes a node connects to, the higher its influence. This

happens, because a node with high out-degree affects a larger part of the pipeline,

i.e., many other nodes.

5.3.2.2 Node distance heuristic

This heuristic is based on the distance of a node from the root node. We consider

that, the shorter the distance to the root, the higher the influence. If a node

is very close to the root, its decision (output) cannot be overshadowed by many

other nodes and thus, it is more possible to influence the root node.

Moreover, since the pipelines we consider result in a single root, this means

that while moving up in the pipeline, the pipeline narrows. As a result, there

might be only few other nodes connecting to the root in short distance. This

indicates that we should expect highly influential nodes closely to the root node.

5.3.2.3 Combined out-degree and distance heuristic

This heuristic combines the above two. It considers nodes that are both in short

distance to the root node and have high out-degree. The following formula is

used to rank the nodes:

Influencecombo heuristic(vi) = 2distance(max)−distance(vi)+deg+(vi)

where distance(max) is the distance of the node with the maximum distance

from the root node in the pipeline under consideration.

The above heuristic emphasizes the role of the node’s distance, as we expect

that the node distance is more important than the out-degree.

5.3.3 Summary

To sum up all the parameters considered for experimentation, we have:

We consider the following two cases:

i) General setting, where neither observed output data nor input data are

available. As a result we run a series of experiments while having computed a

mean probability for the input values of a node under consideration, based on the

false positive/negative probabilities of its parents. In this case, we reason about

Lampros C. Papageorgiou 66 July 2011

5.4 Experimental results

the influence of the pipeline operators in the general case, not based on one or

some observations.

ii) Given observation, where we are provided with either some input data,

or data coming from previous executions. In this case, we compute each node’s

influence based on the data provided. For each pipeline, we show the aggregated

results for all input datasets used.

Also, for each of the above cases, we have tested our system for both the exact

and the approximate case:

i) The exact case enumerates all possible worlds for which a node is the de-

ciding vote.

ii) The approximate case samples 30%, 50% and 70% of the above worlds.

We continue by providing some plots to show the scalability of the model

and how the influence of a node is affected by various parameters. The follow-

ing results confirm our intuitions, prove that our approach outperforms both the

heuristic and the simplistic approaches, and show that our approach and imple-

mentation can also be used in the operator influence analysis of large pipelines.

5.4 Experimental results

After running a series of experiments, the setting of which is described in section

5.2, we provide and comment the results.

We provide the experimental results for each pipeline tested, separately.

Root node is denoted as v0, instead of v1 that was used so far, in every pipeline.

We remind that by definition (Section 4.1.9), the influence of the root node

v0 is: Inf(v0) = 1.

Time is measured in seconds, in all figures.

The execution times provided, do not contain the time needed to transfer the

data from PostgreSQL and create the graphical model, i.e., the execution time of

createUDFs. This stage was separately executed, once for each pipeline, and the

time needed was from 0.001 to 0.02 seconds for the following pipelines, depending

on the size and the pipeline operators topological characteristics.

We consider the ground truth, with which we will compare the quality of

results of each method, the case where we are given all possible valuations of

Lampros C. Papageorgiou 67 July 2011

5. EXPERIMENTAL EVALUATION

all pipeline operators, i.e., all possible execution scenarios. On these data, we

perform exact calculation of the influence of each operator, given observations.

Since we use the ”exact, observation given” approach for the ground truth, the

results by this method are not included in the following diagrams.

5.4.1 Pipeline no.1

Figure 5.2 provides a visualization of the pipeline:

Figure 5.2: Pipeline no.1

5.4.1.1 Pipeline characteristics and structure

Pipeline no.1 (Fig.5.2) consists of 5 nodes, 6 edges, has 2 leaf nodes and the

distance(max) is 2.

We can identify that the leaf nodes are the nodes 3 and 4.

Figure 5.3 shows the Ci and Di sets for each node of the pipeline:

Figure 5.3: Ci and Di sets of pipeline no.1

Figure 5.4 provides the conditional probability tables of all pipeline operators.

The input value column denotes the decimal representation of the input values

Lampros C. Papageorgiou 68 July 2011

5.4 Experimental results

combination, i.e., input value=3 for node 0 denotes that the input values in this

case is ”011”, or y1=0, y2=1, and y4=1.

Figure 5.4: CPTs of pipeline no.1

We continue by providing figure 5.5, which shows the number of all possible

worlds over this pipeline, and also the number of possible worlds for each node

separately. We should remind that #pwvi=2|Ci|.

Figure 5.5: Possible worlds over all Ci sets for pipeline no.1

5.4.1.2 Execution time

Figure 5.6 provides the execution time needed to perform the following actions,

i.e., run the corresponding operateUDFs:

Lampros C. Papageorgiou 69 July 2011

5. EXPERIMENTAL EVALUATION

Figure 5.6: Execution time for pipeline no.1

The execution time needed for each operation agrees with our prior expecta-

tion; we expected that the time needed to compute the heuristics would be much

smaller than the time needed for the exact approaches, and quite similar to the

time needed for the approximate approach. The execution time for the general

case is slightly higher than the time needed by the observation-based approach,

since we have to calculate the mean output probability for every node, for each

output value.

5.4.1.3 Ground truth

The results considered as the ground truth for this pipeline are shown in figure

5.7:

Figure 5.7: Ground truth for pipeline no.1

Lampros C. Papageorgiou 70 July 2011

5.4 Experimental results

As the ground truth for the influence rank, we consider the exact approach

over all possible observations.

5.4.1.4 Heuristics

Figure 5.8 provides the ranking of the nodes based on their influence, as it has

been computed by using each of the heuristics:

Figure 5.8: Results of heuristics for pipeline no.1

5.4.1.5 Our approach

Continuing with our approach, figure 5.9 shows all nodes and their influence

values, sorted from higher to lower influence:

Figure 5.9: Influence values of all nodes, sorted by influence, for pipeline no.1

Lampros C. Papageorgiou 71 July 2011

5. EXPERIMENTAL EVALUATION

Figure 5.10 provides the ranking of the nodes, as resulted by the computation

of influence by following both the exact and the approximate approaches, and for

all sampling ratios used.

Figure 5.10: Node ranking by influence for exact and approximate cases, for both

general and given observation cases, for pipeline no.1

Figure 5.11 provides information about how much each approach verges on

the ground truth provided above.

The first column (pos) includes in which positions of the ranking each ap-

proach’s result matches with the ground truth. As a result, the second column

(hits) shows the amount of nodes found in the same ranking position with the

ground truth, i.e., in which nodes’ ranking do the ground truth and each approach

agree.

The last three columns show how much each approach achieved to agree with

the ground truth at the top 25% nodes of the pipeline, the top 40% and finally

at the top influential node.

Lampros C. Papageorgiou 72 July 2011

5.4 Experimental results

Figure 5.11: Figure of the quality of results for all cases, for pipeline no.1

As we may observe, our approach outperforms in every case the heuristic

approaches. None of the heuristics approaches managed to identify even the top

influential node, which is the root node.

Among our results, we can identify that observation-given cases achieve better

results than the general case. This happens due to the fact that in the general

case we calculate the mean probability for each node’s output value, thus we just

have a general notion on the operators false positive/negative ratios.

If we take a closer look at the node rankings by the general case, even with

approximations, we can see that although we have a low hit rate (40%), each

node’s distance from its correct position in the ranking is not more than 1 position,

in most of the cases. Moreover, this malfunction takes place mostly below the

top-40% influential nodes ranking, meaning that in almost the top half of the

ranking, we have totally correct results.

The above conclusions can be better confirmed by the following diagrams in

figures 5.12, 5.13, 5.14, and 5.15:

Lampros C. Papageorgiou 73 July 2011

5. EXPERIMENTAL EVALUATION

Figure 5.12: Hit rate for pipeline no.1

Figure 5.13: Top-25%, top-40% and top-1 results for pipeline no.1

Figure 5.14: Square distance from ground truth per ranking position

Lampros C. Papageorgiou 74 July 2011

5.4 Experimental results

Figure 5.15: Total square distance from ground truth per approach

The following two figures (5.16 and 5.17) show each node’s influence value

convergence to the influence value by the ground truth, as calculated by each

approximation approach.

Figure 5.16: Influence value convergence to ground truth value for each approxi-

mation approach, observation-based approach

Lampros C. Papageorgiou 75 July 2011

5. EXPERIMENTAL EVALUATION

Figure 5.17: Influence value convergence to ground truth value for each approxi-

mation approach, general case

The results of figure 5.16 might be quite misleading though; we assume that

approx-30 approach was enough ”lucky” to have sampled all possible worlds for

which each operator is the deciding vote and, as a result, went so well calculating

the influence value for each node, apart from node 4. Approx-30 failed to calculate

node’s 4 influence value due to the very few possible worlds of node 4.

The following figures (5.18 and 5.19) show how the influence value is correlated

to each node’s Ci and Di sets size.

Figure 5.18: Influence value correlation to size of sets Ci and Di, observation-

based approach

Lampros C. Papageorgiou 76 July 2011

5.4 Experimental results

Figure 5.19: Influence value correlation to size of sets Ci and Di, general case

Due to the fact that pipeline no.1 is quite small, it is not yet clear how the

size of the sets Ci and Di affects the influence value; however, this is better shown

in the following pipelines.

5.4.1.6 Concluding remarks

The conclusions drawn by pipeline no.1 show that our approach outperforms in

means of quality of the results, in comparison to the heuristic approaches. The

execution time of our approach is higher, however we manage to have almost

top-quality results, when most heuristic approaches almost completely fail.

This first pipeline presented, also gives us the opportunity to discuss an impor-

tant aspect of the influence computation. Studying the above pipeline in detail,

we should recognise that not the pipeline structure, but mostly each operator’s

conditional probability table, determines if a given operator would have high or

low influence. In simple words, it is not how the operators interconnect, but their

IO-specifications (see section 3.3.2) and their false positive/negative ratios that

determine if and how much is each node influential.

This can be better understood by taking a closer look at pipeline no.1: most

users would argue that the most influential node would be node 4. This node

seems more ”central” or important in the pipeline. However, looking at how its

neighbouring operators work, we will see that the other nodes practically ”ignore”

its output, or to put it right, there are very few cases, very few possible worlds

in which node 4 is the deciding vote. In short, should we replace one or more

operators, i.e., change their CPT and their false positive/negative ratios but keep

Lampros C. Papageorgiou 77 July 2011

5. EXPERIMENTAL EVALUATION

the same pipeline structure, the heuristic approaches would still output the above

results, where the most influential nodes of the pipeline would have probably

been altered. This change is captured by our approaches, where an operator

replacement would immediately yield revision of the influence of all operators.

5.4.2 Pipeline no.2

Figure 5.20 shows pipeline no.2. This pipeline consists of 8 nodes, 10 edges, has

2 leaf nodes and the distance(max) is 4.

Figure 5.20: Pipeline no.2

5.4.2.1 Pipeline characteristics and structure

Figure 5.21 shows the Ci and Di sets for each node of the pipeline:

Lampros C. Papageorgiou 78 July 2011

5.4 Experimental results

Figure 5.21: Ci and Di sets of pipeline no.2

The next figure, 5.22, provides the conditional probability tables of all pipeline

operators. The input value column denotes the decimal representation of the

input values combination, i.e., input value=2 for the node 1 denotes that the

input values in this situation is ”10”, or y4=1 and y5=0.

Figure 5.22: CPTs of pipeline no.2

We continue by providing figure 5.23, which shows the number of all possible

Lampros C. Papageorgiou 79 July 2011

5. EXPERIMENTAL EVALUATION

worlds over this pipeline, and also the number of possible worlds for each node

separately. We should remind that #pwvi=2|Ci|.

Figure 5.23: Possible worlds for pipeline no.2

5.4.2.2 Execution time

We continue with figure 5.24, which provides the execution time needed to per-

form the following actions, i.e., run the corresponding operateUDFs:

Figure 5.24: Execution time for pipeline no.2

Again in this pipeline, the execution time needed for each operation agrees

with our prior expectation, that the time needed to compute the heuristics would

be much smaller than the time needed for the exact approaches, and quite similar

to the time needed for the approximate approach. The execution time for the

general case is also slightly higher than the time needed by the observation-based

Lampros C. Papageorgiou 80 July 2011

5.4 Experimental results

approach, since we have to calculate the mean output probability for every node,

for each output value.

5.4.2.3 Ground truth

The results considered as the ground truth for this pipeline are shown in figure

5.25:

Figure 5.25: Ground truth for pipeline no.2

As the ground truth for the influence rank, we consider the exact approach

over all possible observations.

5.4.2.4 Heuristics

Figure 5.26 provides the ranking of the nodes based on their influence, as it has

been computed by using each of the heuristics:

Figure 5.26: Results of heuristics for pipeline no.2

Lampros C. Papageorgiou 81 July 2011

5. EXPERIMENTAL EVALUATION

5.4.2.5 Our approach

Continuing with the results of our approach, figure 5.27 shows all nodes and their

influence values, sorted from higher to lower influence:

Figure 5.27: Influence values of all nodes, sorted by influence, for pipeline no.2

Figure 5.28 provides the ranking of the nodes, as resulted by the computation

of influence by following both the exact and the approximate approaches, and for

all sampling ratios used.

Lampros C. Papageorgiou 82 July 2011

5.4 Experimental results

Figure 5.28: Node ranking by influence for exact and approximate cases, for both

general and given observation cases, for pipeline no.2

Figure 5.29 provides information about how much each approach verges on

the ground truth provided above.

The first column (pos) includes in which positions of the ranking each ap-

proach’s result match with the ground truth. As a result, the second column

(hits) shows the amount of nodes found in the same ranking position with the

ground truth, i.e., in which nodes’ ranking do the ground truth and each approach

agree.

The three last columns show how much each approach achieved to agree with

the ground truth at the top 25% nodes of the pipeline, the top 40% and finally

at the top influential node.

Figure 5.29: Figure of the quality of results for all cases, for pipeline no.2

Lampros C. Papageorgiou 83 July 2011

5. EXPERIMENTAL EVALUATION

Figure 5.29 shows that our approach outperforms the heuristic approaches, in

all cases.

The heuristic approaches have mostly failed in all aspects. The worst results

were returned by out degree heuristic, which achieved no hits and even failed

to identify the top influential node, i.e., the root node. Distance heuristic only

achieved 25% hits, however we should mention that it did well finding top-25% of

the influential nodes. Finally, only combo heuristic managed to have 50% hits.

Among our results, we can identify that again, observation-given cases achieve

better results than the general case. This happens, due to the fact that in the

general case we have to calculate the mean probability for each node’s output

value. However, even in the general case with 50% sampling which achieved the

worst results among our approaches, these results outperform combo heuristic in

terms of top-40% influential nodes.

The above conclusions can be better understood by the diagrams in figures

5.30, 5.31, 5.32, and 5.33:

Figure 5.30: Hit rate for pipeline no.2

Lampros C. Papageorgiou 84 July 2011

5.4 Experimental results

Figure 5.31: Top-1 influential node results for pipeline no.2

Figure 5.32: Top-25% influential node results for pipeline no.2

Figure 5.33: Top-40% influential node results for pipeline no.2

Lampros C. Papageorgiou 85 July 2011

5. EXPERIMENTAL EVALUATION

We continue by providing some diagrams which show the square distance from

the ground truth, per ranking position, for each approach (Fig. 5.34) and the

total square distance of all rankings for each approach (Fig. 5.35).

Figure 5.34: Square distance from ground truth per ranking position

Figure 5.35: Total square distance from ground truth per approach

Figure 5.35 shows that two out of three heuristic approaches did quite well in

terms of total square distance of the returned ranking positions from the ground

truth. This means that these two techniques ranked almost correctly the nodes

Lampros C. Papageorgiou 86 July 2011

5.4 Experimental results

by their influence. Also, figure 5.32 shows that the heuristic approaches also

performed well in ranking highly influential nodes.

However, figures 5.30 and 5.33 clearly show that the heuristics only perform

well in only the few first (≤25%) ranking positions. Going down the ranking,

we observe that the heuristic approaches do not perform well at all. As a result,

heuristics fail to rank correctly most of the pipeline nodes, whereas our approach

succeeds in all ranking positions, in all cases, by distributing a very small ranking

error into all ranking positions.

The following two figures (5.36 and 5.37) show each node’s influence value

convergence to the influence value by the ground truth, as calculated by each

approximation approach.

Figure 5.36: Influence value convergence to ground truth value for each approxi-

mation approach, observation-based approach

Lampros C. Papageorgiou 87 July 2011

5. EXPERIMENTAL EVALUATION

Figure 5.37: Influence value convergence to ground truth value for each approxi-

mation approach, general case

We may observe that both approximation approaches had provided similarly

high quality results.

The following figures (5.38 and 5.39) show how the influence value is correlated

to each node’s Ci and Di sets size.

Figure 5.38: Influence value correlation to size of sets Ci and Di, observation-

based approach

Lampros C. Papageorgiou 88 July 2011

5.4 Experimental results

Figure 5.39: Influence value correlation to size of sets Ci and Di, general case

The above diagrams prove that the influence value is closely related to the

size of the set Di, at least in such small pipelines where Ci set’s size is quite small.

This is expected, as the larger the Di set, the more nodes we have to assign True

(see Section 4.1.3.3).

5.4.2.6 Concluding remarks

One useful conclusion that we can draw by this pipeline, is that small-sized

pipelines, and especially the narrow ones (small Ci set’s size), need larger sam-

pling ratios (≥50%) in order to return satisfying results. This happens because

such pipeline nodes have only a few nodes in their Ci sets and thus, lower sampling

rates are not able to find possible worlds in which a node under consideration is

the deciding vote. On the other hand, as we will show in the next pipeline, larger

graphs allow to have good results even with low sampling ratios (eg. 30%), since

it is more probable to sample a possible world were a node under consideration

is the deciding vote, should there be many such possible worlds.

In terms of the quality results by our approaches, pipeline no.2 also confirms

that our method outperforms all heuristics, since our worst returned results (ap-

proximation with 50% of possible worlds sampled in the general case) match with

the best returned results of the heuristic approaches (combo heuristic).

Again, the observation-given approach managed to do better than the general

case approach; the cause of this has been thoroughly discussed earlier.

Lampros C. Papageorgiou 89 July 2011

5. EXPERIMENTAL EVALUATION

5.4.3 Pipeline no.3

Pipeline no.3, shown in figure 5.40, consists of 8 nodes, 11 edges, has 5 leaf nodes

and the distance(max) is 2.

Figure 5.40: Pipeline no.3

5.4.3.1 Pipeline characteristics and structure

Figure 5.41 shows the Ci and Di sets for each node of the pipeline:

Figure 5.41: Ci and Di sets of pipeline no.3

The next figure, 5.42, provides the conditional probability tables of all pipeline

operators. The input value column denotes the decimal representation of the

input values combination, i.e., input value=9 for the node 0 denotes that the

input values in this situation is ”1001”, or y1=1, y2=0, y4=0, and y6=1.

Lampros C. Papageorgiou 90 July 2011

5.4 Experimental results

Figure 5.42: CPTs of pipeline no.3

Lampros C. Papageorgiou 91 July 2011

5. EXPERIMENTAL EVALUATION

We continue by providing Figure 5.43, which shows the number of all possible

worlds over this pipeline, and also the number of possible worlds for each node

separately. We should remind that #pwvi=2|Ci|.

Figure 5.43: Possible worlds for pipeline no.3

5.4.3.2 Execution time

We continue with figure 5.44, which provides the execution time needed to per-

form the following actions, i.e., run the corresponding operateUDFs:

Figure 5.44: Execution time for pipeline no.3

Pipeline no.3 differentiates from the previous two pipelines, in terms of the size

of most Ci node sets. In this pipeline, the size of Ci sets varies from 3 to 5 nodes,

i.e., 8 to 32 possible worlds need to be calculated and examined for each node

in order to discover if and in which possible worlds the deciding vote criterion

Lampros C. Papageorgiou 92 July 2011

5.4 Experimental results

holds. As a result, the execution time for the exact case, for both the general

and the observation-based scenarios, are high. Even the low cost approximation

approach with 30% of possible worlds sampling ratio costs about twice as much

as the heuristics.

Because of the aforementioned increased size of most Ci sets in pipeline no.3,

we have chosen to further reduce the possible worlds sampling ratio for this

pipeline. As a result, we have also used 10% sampling ratio to approximate

possible worlds.

Figure 5.44 shows that in the approximate-10% case, the execution time is

less or equal to the execution time needed by the heuristic approaches.

5.4.3.3 Ground truth

The results considered as the ground truth for this pipeline are shown in figure

5.45:

Figure 5.45: Ground truth for pipeline no.3

As the ground truth for the influence rank, we consider the exact approach

over all possible observations.

5.4.3.4 Heuristics

Figure 5.46 provides the ranking of the nodes based on their influence, as it has

been computed by using each of the heuristics:

Lampros C. Papageorgiou 93 July 2011

5. EXPERIMENTAL EVALUATION

Figure 5.46: Results of heuristics for pipeline no.3

5.4.3.5 Our approach

Continuing with the results of our approach, figure 5.47 shows all nodes and their

influence values, sorted from higher to lower influence:

Figure 5.47: Influence values of all nodes, sorted by influence, for pipeline no.3

Figure 5.48 provides the ranking of the nodes, as resulted by the computation

of influence by following both the exact and the approximate approaches, and for

Lampros C. Papageorgiou 94 July 2011

5.4 Experimental results

all sampling ratios used.

Figure 5.48: Node ranking by influence for exact and approximate cases, for both

general and given observation cases, for pipeline no.3

Figure 5.49 provides information about how much each approach verges on

the ground truth provided above.

The first column (pos) includes in which positions of the ranking each ap-

proach’s result match with the ground truth. As a result, the second column

(hits) shows the amount of nodes found in the same ranking position with the

ground truth, i.e., in which nodes’ ranking do the ground truth and each approach

agree.

The three last columns show how much each approach achieved to agree with

the ground truth at the top 25% of the pipeline node, the top 40% and finally at

the top influential node.

Figure 5.49: Figure of the quality of results for all cases, for pipeline no.3

Lampros C. Papageorgiou 95 July 2011

5. EXPERIMENTAL EVALUATION

They very first conclusion that can be drawn by figure 5.49 is that our

worst performing approaches are better than the best performing heuristic ap-

proach. The heuristic approaches continue to have very low hit rate and in

this pipeline, they even fail to find the second most influential node, or in the

out degree heuristic, even the most influential node.

Our general case approach starts returning wrong results after about the top-

30% of the nodes.

The above conclusions can be better understood by the diagrams in figures

5.50 and 5.51:

Figure 5.50: Hit rate for pipeline no.3

Figure 5.51: Top-25%, top-40% and top-1 results for pipeline no.3

Lampros C. Papageorgiou 96 July 2011

5.4 Experimental results

The above figures explain better what we have earlier mentioned: observation-

based approach performs better than the general case, and all our approaches,

even when approximations are used, outperform the result quality of the heuris-

tics.

We should point out that the general-approximate-10% method did remark-

ably well in terms of hits. However, we cannot accept this result as credible, and

as a result we believe that in this case, the method was ”lucky” enough to sample

the most representative/important possible worlds for each node.

We continue by providing two diagrams that show the square distance from

the ground truth, per ranking position totally, for all approaches

Figure 5.52: Square distance from ground truth per ranking position

Lampros C. Papageorgiou 97 July 2011

5. EXPERIMENTAL EVALUATION

Figure 5.53: Total square distance from ground truth per approach

A remarkable spot of the above results is the following: if we take a closer look

at the ranking that has been returned, we may notice that even in the cases where

our approach did not do as well as we would expect, each wrongly ranked node

is not more than one position away than it should be. As a result, we may say

that misplaced nodes appear close to their original ranking and thus, should we

be asked to return the top-4 influential nodes, what will most probably happen is

to return the top-3 influential and the 5th more influential node. Unfortunately,

the above conclusion does not apply to all cases: the approximate-10% has not

managed to rank the nodes close to their correct ranking position. However, even

with this problem, it still performs better than the heuristics.

In this pipeline, our approach clearly outperforms the heuristic approaches,

which not only misplaced most nodes in the ranking, but also the ranking was

many positions away from the correct.

The following two figures (5.54 and 5.55) show each node’s influence value

convergence to the influence value by the ground truth, as calculated by each

approximation approach.

Lampros C. Papageorgiou 98 July 2011

5.4 Experimental results

Figure 5.54: Influence value convergence to ground truth value for each approxi-

mation approach, observation-based approach

Figure 5.55: Influence value convergence to ground truth value for each approxi-

mation approach, general case

The results of the above figures (Fig. 5.54 and 5.55) show that in this case

our approximation approaches perform very well. All methods converge to the

ground truth results, increasing the sampling ratio increases the quality of the

results.

The following figures (5.56 and 5.57) show how the influence value is correlated

to each node’s Ci and Di sets size.

Lampros C. Papageorgiou 99 July 2011

5. EXPERIMENTAL EVALUATION

Figure 5.56: Influence value correlation to size of sets Ci and Di, observation-

based approach

Figure 5.57: Influence value correlation to size of sets Ci and Di, general case

In figure 5.57 we show how the influence value depends on the size of the set

Ci of each node under consideration. In this case, this correlation is more clear,

since the sizes of the Ci sets are bigger than in the two previous pipelines, whereas

the size of the sets Di are quite the same.

5.4.3.6 Concluding remarks

A very important conclusion that can be drawn by pipeline no.3 derives from the

introduced 10% approximation method. This is the first pipeline where we have

used this sampling ratio, as in pipeline no.3 the sizes of the Ci sets are larger

than in the other two pipelines. The results of the 10% approximation method

Lampros C. Papageorgiou 100 July 2011

5.4 Experimental results

show that our method is applicable to pipelines with larger Ci sets, since the

quality of the returned results is quite good -better than the heuristics- and the

execution time cost is proportional to the time cost by the heuristic approaches.

Specifically, figures 5.50 and 5.51 show that even 10% sampling ratio is enough

to have good quality results in pipelines with large Ci sets. As expected, 10%

sampling ratio is slightly worse than the rest sampling ratios used. This, however,

does not imply many ”mis-ranked” nodes, but from the bigger distance of the

few mis-ranked nodes from their correct ranking position, as showed in figures

5.52 and 5.53. The 10% approximation method has achieved good performance

for the top-”few” nodes and it is surely much more preferable than any heuristic,

since they cost the same in means of execution time.

Apart from the common conclusions to the previous two pipelines which we be-

lieve that have already been thoroughly discussed, another important conclusion

drawn by pipeline no.3 is the following: even though the ranking of the influ-

ential nodes is not perfect by using our approximate approaches, the misplaced

nodes are positioned very close to their original ranking position (see figures 5.52

and 5.53). Unlike the heuristic approaches which fail in this aspect, even our

average performing 10% approximation method provided good results in terms

of the square distance of each ranking position from the ground truth. This is a

very important characteristic: if a user asks to have the top-k influential nodes

refined, the worst-case scenario would be to have the top-(k-1)∪(k+1)th ranked

nodes refined, in most of the cases.

5.4.4 Comparison with the influence definition provided

by [1]

We have already discussed in section 2.5 that the definition of influence provided

by the paper of Re and Suciu [1] does not consider the case of uncertain inter-

mediate operators and thus, all the system’s uncertainty derives from the input

data. We expect that, should their definition be applied to our problem, the

results would be of very low quality, since only input data would be identified as

influential components of the pipeline. As a result, there is no point comparing

Lampros C. Papageorgiou 101 July 2011

5. EXPERIMENTAL EVALUATION

their method to ours, since we not only seek for the influential input data, but

for all pipeline influential operators and input data.

5.5 Analysis of the results, general remarks and

discussion

In this section, we provide some general remarks on our approach, the heuristic

metrics tested and the experimental results. We also sum up our conclusions for

each approach used, and we propose the most appropriate method (e.g., exact or

approximate) for each case.

5.5.1 Execution time

In general, our experiments have shown that the execution time for our approach

in the exact cases is about 5-8 times more than the time needed by the heuristic

approaches, and 1-5 times more for the approximate cases. This is definitely a

significant increase in the execution time. However, a comparison of the quality

of the returned results by our approaches and the heuristic approaches shows

that the time overhead is clearly taken over by the results quality, in most of the

cases. There are cases (e.g., pipeline 3, figure 5.13) where there is no point using

the heuristic approaches at all, due to very low result quality, and others (e.g.,

pipeline 3, figure 5.33) where our approximation approach results outperform the

heuristics, with only a small time overhead.

As a result, when choosing between these approaches and having only the

execution time cost in mind, there might be a few cases where it is more beneficial

to choose a heuristic approach, however paying the cost of missing even the top-1

or the top-3 influential operators correctly identified. Also, there are cases where

the approximation approach performs remarkably well in almost the same time

as the heuristics, where it is surely more beneficial to use our approach, since the

quality of the results is much better than the quality of the heuristic approaches.

Lampros C. Papageorgiou 102 July 2011

5.5 Analysis of the results, general remarks and discussion

5.5.2 Heuristics

Overall, the quality of the returned results by the heuristic approaches is lower

than our approaches in most of the cases, even when low sampling ratio (30%) is

used.

Among the three heuristics used, the combo heuristic returned the highest

quality results in most of the cases. Also, the distance heuristic returned good

quality results in many cases. The lowest quality results where returned by the

out degree heuristic, which failed to identify the top-k influential nodes, in most

of the cases. However, it was ”by definition” expected for the out degree heuristic

to fail in identifying the most influential node, i.e., the root node, since the root

node has zero out-degree.

5.5.3 Observation based approach

The experimental results for the observation based approach, both for the exact

and the approximate cases, have shown that we can achieve high quality results

with comparably low execution time, especially when approximations are used.

We consider that this approach will be very helpful when deciding to include users

in the pipeline repairing process: the observation based approach combined with

user feedback (section 4.3) will boost the repairing process, enabling to come up

with a much more beneficial pipeline improvement plan, since we will be able

to know the influential operators of a specific execution and the desired output

value of it.

5.5.4 General approach

The results presented for both the exact and the approximate cases for the general

approach (no observed values provided) have shown that this approach is a little

more time consuming - in terms of execution time - than the observation based

approach. Due to the fact that we are not provided with observed output values

coming from an execution (we study how the pipeline works in general), we have

to consider some input values for all nodes of the set Ci, for every pipeline node vi.

Lampros C. Papageorgiou 103 July 2011

5. EXPERIMENTAL EVALUATION

For each node, we also have to calculate its mean output false positive/negative

probabilities.

The above indicate that it is expected, for the general approach, to be more

time consuming and less accurate than the observation based approach. How-

ever, we have shown through our experiments that it can achieve almost the same

quality of the results with just 10-20% more execution time and sampling ratio

than the observation based approach. This is very important, as it enables us

to reason about the influential operators of a pipeline, without having any infor-

mation coming from an execution. Moreover, the general approach avoids being

overfit by observations, ultimately allowing to have a more general view of how

the operators affect the output of any pipeline.

5.5.5 Approximation

For the experimental evaluation of our approach we have used three, and in one

case four, sampling ratios over possible worlds, for approximating the influence of

each node: 30%, 50%, 70%, and 10% sampling ratios. Our experimental results

have shown that even for 50% ratio -where the execution time is considerably

low- we have achieved very good quality of the returned results. Especially for

the observation based approach, our 50% approximation approach managed to

return nearly perfect results in most of the cases. In the general case, high quality

results were returned by using 70% sampling ratio.

In pipeline no.3, where also 10% sampling ratio has been used, the results are

still much better than the results of the heuristic approaches, while the execution

time is the same as the execution time needed by the heuristic approaches. This

show the efficiency of our technique, that it can achieve high quality results while

maintaining a low execution time cost.

The above conclusions show that our approach performs well even when ap-

proximation is used to reduce the execution time needed. As a result, by using

approximation we manage to output high quality results while the execution time

is comparable to the execution time of the heuristic approaches.

At this point we should make a very important notice about sampling in such

a setting. We recognise that our approaches have not followed the common path

Lampros C. Papageorgiou 104 July 2011

5.5 Analysis of the results, general remarks and discussion

of using sampling ratios of at least one order of magnitude less than the exact

case, in most of the cases, but even with 10% and 30% sampling ratios, we have

achieved very low execution times, compared to the heuristics. However, in a

setting where we look for possible worlds in which a node is the deciding vote, it

is not feasible to sample too few possible worlds as it becomes very rare to sample

a possible world where the deciding vote criterion holds and thus calculate the

node’s influence. Especially in our experiments, the small number of nodes of our

pipelines make the use of smaller sampling ratios difficult.

We plan to extend the experimental evaluation in much bigger pipelines while

considering even lower sampling ratios, in the near future. Early experiments

have already shown that our approaches maintain the high quality of results as

the ones that we have already presented.

5.5.6 Conclusions

Through our experiments, we have shown that our approach outperforms the

heuristic approaches in all cases. The quality of our results has be proven to be

much higher than the quality of the results returned by the heuristic approaches,

and the execution time of our approach, when approximation is used, is compa-

rable to the execution time of the heuristic approaches.

In general, it is more beneficial to use our approach even in the most simple

pipelines. In larger and more complex pipelines, the use of our approach is im-

perative since the heuristic approaches fail to rank the influential nodes correctly.

Lampros C. Papageorgiou 105 July 2011

5. EXPERIMENTAL EVALUATION

Lampros C. Papageorgiou 106 July 2011

Chapter 6

Future Work

This chapter proposes some possible future directions for enhancing and improv-

ing this work.

6.1 Reduce computational complexity

The problem we handle is an inherently hard problem with unavoidably high

computational complexity. We plan to apply more optimizations in the future,

in order to reduce the computational complexity. One step towards this goal has

been made by introducing Monte Carlo sampling over the possible worlds.

6.1.1 Parallelization

In order to avoid large scale approximations that will reduce the results quality,

we plan to process the pipeline in parallel, i.e. calculate possible worlds and

multiple node’s influence simultaneously, in order to achieve both high quality

results and speed.

6.2 Find multiple causes simultaneously - cliques

of influential nodes

We currently examine each node atomically. We should consider examining mul-

tiple nodes at a time in order to find out how sets of nodes influence the output.

Lampros C. Papageorgiou 107 July 2011

6. FUTURE WORK

6.3 Non boolean setting

Our current setting is Boolean, i.e. the random variables are assigned either True

or False(0 /1). We intend to extend this work beyond Boolean values in the

future.

6.4 Operator refinement

Although operator refinement simply translates to further targeted training to

the selected node, we plan to provide a concrete approach to this problem in the

future. This because much more study is needed, in order to model the process

and examine the case where not only the probabilities, but also the operator’s

observed output values, are changed after the refinement has taken place.

6.5 User feedback

We leave for future work the development of a technique to exploit the user

feedback, when such precious information is available.

Lampros C. Papageorgiou 108 July 2011

Chapter 7

Conclusions

Enhancing information extraction pipelines with operators from the Machine

Learning community helps Community Information Management (CIM) plat-

forms adapt to more domains with minimum human involvement and improve

over time. However, such operators are inherently uncertain and thus add another

source of uncertainty besides the input data.

In this thesis, we have investigated a novel lineage problem setting, where

extraction pipelines are populated with uncertain operators that come from the

Machine Learning community. Moreover, we have proposed a method for quan-

tifying the influence of each uncertain operator to the returned results and use

this information to efficiently repair pipelines populated with uncertain operators.

Providing a low-cost repairing strategy allows to rapidly improve the system by

only refining the top-k influential operators. Moreover, we have considered ap-

proximation techniques which enabled us to achieve equally high quality results,

as in the exact case, while cutting down on the execution time cost.

We have also provided a generalization of the influence definition of Ré and

Suciu [1], in order to handle uncertain operators. We strongly believe that the

generalization of their definition introduces new perspectives in the intersection

of the areas of information extraction and uncertain data management. The in-

tuition behind this suggests that our approach enables the study of more complex

and sophisticated pipelines, extends its use to a wider range of research areas and

reveals a great amount of challenges for the future.

Lampros C. Papageorgiou 109 July 2011

7. CONCLUSIONS

Our results have shown that our approach outperforms all heuristic approaches

tested. Up to our knowledge there is no prior art handling an equivalent problem,

ergo there are unfortunately no experimental results to compare with.

Concluding, we believe that this thesis provides the first steps towards effi-

cient lineage processing in uncertain operator pipelines, influence analysis, and

beneficial refinement plan of uncertain operators in such a setting.

Lampros C. Papageorgiou 110 July 2011

Chapter 8

References

[1] C.Re, D.Suciu ”Approximate Lineage for Probabilistic Databases”, In VLDB

2008

[2] H.Chockler, J.Halpern, ”Responsibility and Blame: A Structural-Model Ap-

proach”, In Journal of Artificial Intelligence Research, 2004

[3] A.D.Sarma, A.Jain, P.Bohannon, ”PROBER: Ad-Hoc Debugging of Informa-

tion Extraction Pipelines”, Technical Report, April 2010

[4] P.Bohannon, S.Merugu, C.Yu, V.Agarwal, P.DeRose, A.Iyer, A.Jain, V.Kakade,

M.Muralidharan, R.Ramakrishnan, W.Shen, ”Purple SOX Extraction Manage-

ment System”, In ACM SIGMOD Record 37(4), 2008

[5] A.Meliou, W.Gatterbauer, K.Moore, D.Suciu, ”WHY SO? or WHY NO?

Functional Causality for Explaining Query Answers”, In MUD Workshop, VLDB

2010

[6] A.Deshpande, L.Getoor P.Sen, ”Graphical Models for Uncertain Data”, In

Managing and Mining Uncertain Data, 2009 - Springer, book chapter

[7] R.Ikeda, J.Widom, ”Data Lineage: A Survey”, In Stanford InfoLab, Technical

Report, 2009

[8] A.Meliou, W.Gatterbauer, J.Halpern, C.Koch, K.Moore, D.Suciu, ”Causality

in Databases”, In IEEE Data Engineering Bulletin, Special Issue on Provenance,

33(3), Sept. 2010

[9] A.Meliou, W.Gatterbauer, K.Moore, D.Suciu, ”The Complexity of Causality

and Responsibility for Query Answers and non-Answers”, To appear in PVLDB

2011

Lampros C. Papageorgiou 111 July 2011

8. REFERENCES

[10] C.Hitchcock, ”Probabilistic Causation”, entry in the Stanford Encyclopedia of

Philosophy, http: // plato. stanford. edu/ entries/ causation-probabilistic /

[11] J.Y.Halpern, J.Pearl, ”Causes and Explanations: A Structural-Model Ap-

proach. Part I: Causes / Part II: Explanations”, British Journal for the Philoso-

phy of Science, December 2005

[12] P.Agrawal, A.Das Sarma, J.Ullman, J.Widom, ”Foundations of Uncertain-

Data Integration”, In VLDB 2010

[13] J.Pearl, ”Causality: Models, Reasonging and Inference, 2nd edition”, Cam-

bridge University Press

[14] A.Doan, R.Ramakrishnan, F.Chen, P.DeRose, Y.Lee, R.McCann, M.Sayyadian,

W.Shen, ”Community Information Management”, In IEEE Data Engineering

Bulletin, Special Issue on Probabilistic Databases, 29(1), March 2006

[15] P.DeRose, W.Shen, F.Chen, Y.Lee, D.Burdick, A.Doan, R.Ramakrishnan,

”DBLife: A Community Information Management Platform for the Database

Research Community”, In CIDR-07 (demo)

[16] D.Suciu, ”Probabilistic Databases”, In: Encyclopedia of Database Systems

(2009), p.2150-2155

[17] N.Dalvi, C.Re, D.Suciu, ”Probabilistic Databases: Diamonds in the Dirt”,

In CACM, vol.52, no.7, 2009

[18] T.Heinis, G.Alonso, ”Efficient lineage tracking for scientific workflows”, In

SIGMOD 2008, Proceedings of the 2008 ACM SIGMOD international conference

on Management of data, p.1007-1018

[19] N.Dalvi, D.Suciu, ”Management of Probabilistic Data, Foundations and

Challenges”, In PODS 2007

[20] N.Dalvi, D.Suciu, ”Efficient Query Evaluation on Probabilistic Databases”,

In VLDB 2004

[21] B.Kanagal, J.Li, A.Deshpande, ”Sensitivity Analysis and Explanations for

Robust Query Evaluation in Probabilistic Databases”, In SIGMOD 2011

[22] C.Re, N.Dalvi, D.Suciu, ”Efficient Top-k Query Evaluation on Probabilistic

Data”, In ICDE 2007

[23] A.D.Sarma, M.Theobald, J.Widom, ”Exploiting Lineage for Confidence Com-

putation in Uncertain and Probabilistic Databases”, In ICDE 2008

[24] O.Benjelloun, A.D.Sarma, A.Halevy, J.Widom, ”ULDBs: Databases with

Lampros C. Papageorgiou 112 July 2011

http://plato.stanford.edu/entries/causation-probabilistic

Uncertainty and Lineage”, In VLDB 2006

[25] P.Sen, A.Deshpande, L.Getoor, ”Representing Tuple and Attribute Uncer-

tainty in Probabilistic Databases”, In ICDM Workshop on Data Mining of Un-

certain Data (DUNE), 2007

[26] A.Gupta, ”Data Provenance”, In: Encyclopedia of Database Systems (2009),

p.608

Lampros C. Papageorgiou 113 July 2011

	1 Introduction
	1.1 Overview and Problem Statement
	1.2 Motivating example
	1.3 Contributions and Prior Work

	2 Background and Related Work
	2.1 Probabilistic Databases
	2.2 Possible Worlds Semantics
	2.3 Data Lineage
	2.4 Causality
	2.5 Influence

	3 Pipeline Model
	3.1 Model Description
	3.2 Preliminaries
	3.2.1 Definitions
	3.2.2 Notation

	3.3 Uncertainty representation
	3.3.1 Probabilistic base input
	3.3.2 Uncertain Operators

	3.4 Bayesian Network
	3.5 Possible Worlds
	3.6 Lineage

	4 Our approach
	4.1 Influence
	4.1.1 Case I: Observed values
	4.1.2 Case II: Non-observed values (General case)
	4.1.3 Influence quantification
	4.1.4 Summary of our approach, in steps
	4.1.5 Generalization of Re and Suciu [1] definition of influence
	4.1.6 Influence desiderata
	4.1.7 Incorporating and managing certain operators
	4.1.8 Measuring the influence of multiple nodes simultaneously
	4.1.9 Root node influence
	4.1.10 Calculating local influence
	4.1.11 Example

	4.2 Beneficial plan for node refinement
	4.2.1 Budget
	4.2.2 One-at-a-time

	4.3 User Feedback - Debugging
	4.4 Guarantees
	4.5 Alternative approach for measuring influence
	4.5.1 Toggle

	5 Experimental Evaluation
	5.1 MayBMS probabilistic database platform
	5.2 Experimental setting
	5.2.1 Implementation choices on our approach
	5.2.2 Data model
	5.2.3 Implementation details
	5.2.4 Graph and dataset characteristics of other approaches

	5.3 Baseline metrics and heuristics used for evaluation
	5.3.1 Related work-based metrics
	5.3.2 Structure-based heuristics
	5.3.3 Summary

	5.4 Experimental results
	5.4.1 Pipeline no.1
	5.4.2 Pipeline no.2
	5.4.3 Pipeline no.3
	5.4.4 Comparison with the influence definition provided by [1]

	5.5 Analysis of the results, general remarks and discussion
	5.5.1 Execution time
	5.5.2 Heuristics
	5.5.3 Observation based approach
	5.5.4 General approach
	5.5.5 Approximation
	5.5.6 Conclusions

	6 Future Work
	6.1 Reduce computational complexity
	6.1.1 Parallelization

	6.2 Find multiple causes simultaneously - cliques of influential nodes
	6.3 Non boolean setting
	6.4 Operator refinement
	6.5 User feedback

	7 Conclusions
	8 References

