

Managing Information Extraction in a Mashup

Environment

By:

Vasiliki P. Prokopi

Advisor: Professor Minos Garofalakis

Co-advisor: Professor Stavros Christodoulakis

Co-advisor: Professor Antonios Deligiannakis

TECHNICAL UNIVERSITY OF CRETE
Department of Electronic and Computer Engineer

(ECE)

Abstract

 Unstructured text represents a large fraction of the world’s data. It often contains

snippets of structured information (e.g. people’s names and zip codes). Information

extraction (IE) techniques identify such structured information in unstructured or

semi-structured text. As a task it can be seen as a way of filling database slots from

sub-segments of text.

 In parallel, Web mashups are Web applications developed using content and

services available online. They offer the end user the ability to combine information

or functionality from two or more existing data sources in order to create applications

and Web pages customized to their unique needs.

 In this work we combine the two aforementioned technologies in order to enable

the analysis of extracted information with other structured user and enterprise data.

For that purpose we use a state-of-the art statistical IE model-Conditional Random

Fields (CRF)- in the setting of an open source data integration software application.

Acknowledgments

 First of all, I would like to dedicate this thesis to my wonderful parents. I am truly

grateful to them; their continuous support and understanding was indispensible for the

fulfillment of this work and generally for the completion of my undergraduate studies.

 Secondly, I would like to thank my thesis supervisor, professor Minos

Garofalakis, for his valuable assistance and collaboration during every step of this

work.

 Furthermore, I would like to thank my grate friends, inside and outside Technical

University of Crete, for sharing with me some of the best years of my life, giving me

so many things I will carry deep in my heart for all my life. Especially, thanks to their

support and love, I managed to walk through this last year’s difficulties.

 I would also like to mention Apostolos Nydriotis; his previous work on the

Apatar platform, and his will to help me and give me information whenever I needed

was quite enlightening. Also, I would like to thank Daisy Zhe Wang, Sunny Khatri

and Kun Li for the datasets they provided me generously.

At last, I would like to dedicate this especially work to my aunt Olga, who has

left soon, and can’t see me achieving this important goal. I know she would be full of

proud and joy.

Contents

List of figures ..

1 Introduction ... 1

 1.1 Thesis Contribution .. 1

1.2 Thesis Outline ... 2

2 Background and Related Work .. 3

 2.1 Information Extraction Basics .. 3

 2.1.1 Named Entity Recognition (NER) ... 3

 2.1.2 Methods of NER and IE ... 4

 2.1.3 The Statistical sequence model approach to NER 4

 2.1.4 Conditional Random Fields ... 5

 2.1.5 Inference algorithms .. 7

 2.2 CRF Model Selection ... 8

 2.2.1 Stanford Named Entity Recognizer (NER) ... 9

 2.3 Mashups .. 11

 2.3.1 What are Mashups? .. 11

 2.3.2 Enterprise Mashups .. 13

 2.4 Related Work .. 14

3 Mashup Platforms .. 15

 3.1 Current State ... 15

 3.2 Platform Selection ... 16

 3.3 Apatar Architecture ... 16

 3.3.1 Core Engine ... 17

 3.3.2 Connectors ... 18

 3.3.3 GUI and Data Representation Layer ... 18

4 The ARAMIS platform .. 21

 4.1 Training Widget (ieTrainer) .. 21

 4.1.1 Training and Evaluation Datasets .. 10

4.2 Information Extraction Widget (IExtractor) ... 26

 4.2.1 IExtractor Architecture .. 28

 4.2.2 Real Time In-Memory Processing ... 31

 4.2.2.1 Stage 1: Classification .. 31

 4.2.2.2 Stage 2: Post Classification Processing 32

 4.2.2.3 Stage 2: Schema Creation .. 38

 5 Demonstration ...

 6 Conclusions and Results .. 40

List of Figures

2.1: An example of CRF model on a String .. 5

2.2: A Named Entity Recognition example for PERSON and ORGANIZATION

entities identification ... 5

2.3: The architecture of a typical mashup application .. 11

2.4: A widget in Yahoo! Pipes that retrieves one or more RSS, Atom, RDF or iCal

feeds from the URL(s) entered in the input box ... 12

2.5: A simple mashup application built in the Yahoo! pipes Mashup platform 12

2.6: Enterprise application development (Copyrights of the figure belong to (10)) 13

3.1: Apatar’s Architecture ... 17

3.2: Apatar’s main GUI ... 19

4.1: The format of a training file ... 22

4.2: Architecture of ieTrainer ... 22

4.3: User interface for ieTrainer .. 23

4.4: The Property sheet page panel for the IExtractor widget .. 27

4.5: The architecture of IExtractor.. 28

4.6: IExtractor Graphical User Interface (GUI) .. 30

4.7: The TokenTable schema table showing the first three tokens extracted

(Lehman, Brothers, Federal) with k=3 ... 33

4.8: The process of constructing the Probability Bucket and the Histogram 35

4.9: The histogram presenting the probability distribution of sentence estimation 36

4.10: The prompt message user dialog. .. 36

4.11: The input dialog for viewing the k-best labels the model has identified 38

4.12: The database schemas ARAMIS supports. ... 40

5.1: IExtractor output based on scenario 1.. .. 43

5.2: Histogram for the extraction results of scenario 1.. ... 44

5.3: Prompt window of IExtractor.... ... 44

5.4: IExtractor GUI demonstrating the “weak” entities.... ... 45

5.5: The window presenting the k choices for an underlined token.... 45

5.6:The mashup application for scenario 2.... ... 46

5.7: Result map.. 47

P a g e | 1

Chapter 1

Introduction

 The majority of data we encounter, coming in their vast majority from the World

Wide Web, contain a significant amount of information expressed using natural

language. While unstructured text is often difficult for machines to understand, the

field of Information Extraction (IE) offers a way to map textual content into a

structured knowledge base. Information Extraction Systems implement tasks such as

finding and understanding limited relevant parts of text, gathering information from

many pieces of text and producing a structured representation of relevant information.

Their goal is to identify and organize information in order to be useful to people and

to put it in a semantically precise form that allows further inferences to be made by

computer algorithms.

 On the other hand, since it is important to make existing data more useful for

personal and professional use, the mashup paradigm has emerged, triggered by the

vast amount of WEB 2.0 applications created by developers and researchers. The

mashup whole idea lies in the combination of data and functionality from two or more

existing Web sources using an interactive graphical user interface. The Web sources

that are used to build mashup applications mainly include Web applications and Web

services.

 Given the above, our idea was to combine the aforementioned technologies

(namely, IE and mashups) into one, enabling users to select data of their own context

of interest and use them effectively with other data gathered from many sources.

1.1 Thesis Contribution

 In this thesis, our goal is to implement Information Extraction operations and

more specifically Named Entity Recognition functionality, for the purpose of using it

in an open source data integration platform. This flows the extracted information to be

combined with many other sources of data, local or enterprise. In details, we planned

to implement the following:

 An easy way for the user to manually train the system according to the Named

Entities she wishes to recognize while hiding the complex theoretical

knowledge needed for the feature extraction procedures (trainer widget.)

 A graphical, user friendly way to test trained models. The testing could be

applied on raw text or on a website’s content provided its url (extractor

widget).

P a g e | 2

1.2 Thesis Outline

The remainder of this thesis is structured as follows: In Chapter 2 we present

the background and related work to our project, presenting the two basic concepts

we examine: information extraction and the mashup programming paradigm.

Specifically, we introduce information extraction, briefly examining some key

methods, and present the named entity recognition model we used and its

parameters. Concerning the mashup technology, we introduce the mashup

paradigm and discuss systems similar to our platform that embed information

extraction technology inside a mashup platform. Then, Chapter 3 briefly

introduces the most popular mashup platforms that are used today and analyzes

Apatar, the platform that our system ARAMIS, is based on. Consequently,

Chapter 4 discusses the design and implementation of our ARAMIS platform and

Chapter 5 demonstrates the development of a mashup application using

ARAMIS. Finally, in Chapter 6 the conclusions and future work of our project is

presented.

P a g e | 3

Chapter 2

Background and Related Work

2.1 Information Extraction

 Information extraction is the task of automatically extracting structured

information such as entities, relationships between entities, and attributes describing

entities from unstructured and/or semi-structured machine-readable documents. This

enables much richer forms of queries on the abundant unstructured sources than

possible with keyword searches alone. Typically, information extraction systems tract

and understand limited relevant parts of texts, gather this information from different

pieces of text, and produce a structured representation of relevant information such as

relations(in the database sense) and knowledge bases. Information extraction includes

the following techniques: segmentation, classification, clustering and association.

This thesis focuses on the first two techniques, segmentation and classification and

more specifically on the sub-task of Named Entity Recognition (NER).

2.1.1 Named Entity Recognition

 As its name implies, Named Entity Recognition (NER) finds and classifies names

in text. The term came at the center of attention of the Natural Language Processing

community as a subtask of Information Extraction (IE) when it was noticed that it is

essential to recognize information units like names, including person, organization

and location names, and numeric expressions including time, date, money and percent

expressions.

 Specifically, the task of NER is, given a sentence, first to segment it into words

that are part of entities, and then to classify each entity.

Uses of NER

 NER is useful is useful in a diverse set of applications: The Named Entities

recognized could be indexed, linked off, etc. Furthermore, NER is used in question

answering applications where answers are often named entities. In addition,

sentiments can be attributed to companies and products. Finally, it can be used as

preliminary level of relation extraction since a vast majority of Information Extraction

relations are associations between named entities.

P a g e | 4

2.1.2 Methods of IE and NER

 The methods performing Information Extraction and Named Entity Recognition,

analyzed in [1], are categorized along two categories: hand-coded or learning based

and rule-based or statistical. A hand-coded system requires human experts to define

rules or regular expressions or program snippets for performing the extraction

whereas rule-based and statistical methods make decisions based on a weighted sum

of predicate firings .

 In this thesis we concentrate on statistical methods which are based on designing

a decomposition of the unstructured text and then labeling various parts of it, either

jointly or independently. They are ideal for open-ended domains, which is essential

for our work in order to give the users of our system the ability to train the model on a

domain of their preference.

2.1.3 The Statistical sequence model approach to NER

 Statistical methods for performing Information Extraction and thus Named Entity

Recognition based on Machine Learning techniques include two procedures, Training

and Testing.

Training consists of the following steps:

1) Collect a set of representative training documents.

2) Label each token for its entity class or other (O)

3) Design feature extractors appropriate to the text and classes.

4) Train a sequence classifier to predict the labels from the data.

Finally, the Testing procedure is as follows:

1) Receive a set of testing documents

2) Run sequence model inference to label each token.

3) Appropriately output the recognized entities.

Sequence Models

 Statistical methods use sequence models as the most prevalent methods of

extracting data on plain text. The unstructured text is treated as a sequence of tokens

and the extraction problem is to assign an entity label to each token. The following

paragraph illustrates two examples of text segmentation taken from [2] and [3]

Example 1: Figure 2.1 shows a CRF model instantiated over an address string x

“181 Shattuck North Berkeley CA USA”. The possible labels are

 Y apt.num, street num, street name, city, state, country . A segmentation y =

{ 1,..., }Ty y is one possible way to tag each token in x into one of the field labels in Y.

P a g e | 5

Figure 2.2: A Named Entity Recognition example for PERSON and

ORGANIZATION entities identification

Example 2: Another sequence problem is presented in Figure 2.2.

The output of extraction is a tagged sequence in which every ix is classified into one

of a set y of labels. The set of labels y comprises of the set of entity types (like

PERS and ORG) and a special label “Ο” for “Other” addressed to tokens that we do

not want the model to recognize and apparently do not belong to any of the entity

types.

 There have been proposed many different models for assigning labels to a token

sequence in a sentence. A very common approach is the task of Classification where

the classifier in order to assign a label iy to each token ix uses features derived only

from the token ix and its neighbors in x . This category of models assumes that the

labels we wish to predict are independent. However, in typical extractions systems the

labels of adjacent tokens are rarely independent of each other. In addition, classifiers

predict only a single label for each token every time. The aforementioned weaknesses

of common classifiers have led to other models that can predict many variables which

are interdependent. Popular approaches are Hidden Markov Models (HMMs),

Maximum Entropy Markov Models (MEMM) and Conditional Random Fields (CRFs).

CRFs, are the state-of-the-art method in Information Extraction (IE) tasks and we will

elaborate on them the next.

2.1.4 Conditional Random Fields

 Conditional Random Field (CRF) is a leading probabilistic model for solving IE

tasks. The following definition taken from [4] and [5] defines the conditional

probabilistic distribution of y given a specific assignment x by the CRF.

 Figure 2.1: An example of CRF model on a String

P a g e | 6

Definition 1:

Let Y, X be random vectors, { }
 be a parameter vector, and

1{ (, ')}K

k kf y y be a set of real-valued feature functions. Then a linear chain

conditional random field is a distribution (|)p y x that takes the form

 1,

1

1
(|) exp ,

()

K

k k t t t

k

p y x f y y
Z x

 x ,

where Z(x) is an instance-specific normalization function

 1,

1

() exp ,

()

K

k k t t t

y k

t

Z x f y y

p x

x

 x

.

 In order to indicate that each function can depend on observations from any time

step, the feature function
kf takes as parameter the observation vector

tx which is

defined as one containing all the components of the global observations x that are

needed for computing features at time t. For example, if the CRF uses the next word

1tx as a feature, then the feature vector
tx is assumed to include the identity of word

1tx

Advantages over other probabilistic models

 As mentioned in [4], the class of Conditional Random Fields is much more

expressive, because it allows much more set of features to be used. Furthermore, their

conditional nature escapes the need to model ()p x . In addition, the features do not

need to specify a state or observation allowing us to estimate the model using less

training data. Another important property of CRFs is the convexity of the loss

function (CRFs share all of the convexity properties of general maximum entropy

models). The primary advantage of CRFs over hidden Markov models is their

conditional nature, resulting in the relaxation of the independence

assumptions required by HMMs in order to ensure tractable inference.

Feature Functions

 Since feature functions are the key components of CRF, we now briefly examine

them in further detail. For linear-chain CRFs (defined above), the general form of a

feature function is 1,,k t t tf y y x which looks at a pair of adjacent states
1,,t ty y

 , the

current observation-token tx and produces a real valued number.

P a g e | 7

 Now we present two possible feature functions, taken from [2], for Example 1 of

2.1.3 on address string segmentation:

 1 1,,t t tf y y x [appears in a city list] [city]t tx y

 2 1,,t t tf y y x
 =

1[is in a integer] [apt. num][street name]t t t

th

x y y

i

i

 The previous two feature functions produce binary values: 1 if the sequence

under examination has the specified state identity and 0 otherwise. However, it should

be mentioned that features are not limited to binary functions. Any real-valued

function is allowed. Designing features for a CRF model or selecting ones is a very

important procedure and we are going to reconsider them in chapter 4 , where we will

discuss the nature of features we are going to use for the Stanford NER classifier

which performs IE inside Apatar, our mashup platform.

2.1.5 Inference

 Inference, frequently referred to as sequential decoding, is defined as the process

of finding the best tag sequences for given inputs. Traditionally the Viterbi algorithm

is used (originally proposed in [6]). First, we present the 1-Best and k-Best Viterbi

inference algorithms for exact computation. Then, we mention a method for

approximate sequence decoding, Gibbs sampling which is a Monte Carlo method

based on sampling.

1-Best Viterbi

 The Viterbi algorithm is a classic dynamic programming based decoding

algorithm. It has the computational complexity of 2()O TL , where T is the input

sequence size and L is the size of the label alphabet. Here we give the equations of the

dynamic programming algorithm that compute the best score of the sequence from 1

to with i the ith position labeled y.

'

1

max ((1, ')) (, ',), 0
(,)

0, , 1

K

y k k t

k

V t y f y y i
V t y

i

 x
 (2.1)

The best labeling then corresponds to the path traced by
'max ((, '))y V T y where T is

the length of the observed sequence x.

K-Best Viterbi

 In order to produce k-best sequences, it is not enough to store 1-best label per

node, as nth k-best sequential decoding gives up this 1-best label memorization in the

dynamic programming paradigm. It stores up to k-best tables which are necessary to

P a g e | 8

form k-best sequences. The k-best Viterbi algorithm thus has the computational

complexity of 2KTL for both best and worst cases. Once we store the k-best labels, the

k-best Viterbi algorithm uses the equation 2.1 and implements the decoding just like

the 1-best Viterbi.

Gibbs Sampling

 Gibbs sampling [7] defines a Markov chain in the space of possible variable

assignments (in this case, hidden state sequences) such that the stationary distribution

of the Markov chain is the joint distribution over the variables. The idea is to be able

to sample from a posterior distribution (e.g. Defined by a CRF) Given a hidden state

sequence Markov Model with N unknown variables choose an initial state for each

variable at random, then samples as follows:

i. Select one variable at random, say Xi

ii. Compute the posterior over the states of Xi

iii. Select a state of Xi from this distribution

iv. Replace the value of Xi with the selected state

v. Repeat

2.2 CRF Model Selection

 Taking into consideration all the benefits of Conditional Random Fields we

talked about in section 2.1.4, we decided to use them for our NER needs inside the

Apatar Platform. After selecting the model type, we focused on java implementations,

because Apatar is a desktop Java application.

The two model implementations we found more suitable for our purposes were the

CRF project by Sunita Sarawagi of IIT Bombay [8] and the Stanford Named Entity

Recognizer (NER) by The Stanford Natural Language Processing Group [9].

 After examining and experimenting with both of the implementations, we

selected the Stanford Named Entity Recognizer. Our choice is based on the following

reasons:

 Stanford NER provides a wide variety of well-engineered feature extractors

for Named Entity Recognition providing the ability for the user to activate and

deactivate any of them easily.

 This software package includes also three trained models: a 4 class model

trained for ConLL
1
, a 7 class model trained for MUC

2
 , and a 3 class model

trained on both data sets for the intersection of those class sets. These trained

models contributed significantly on gaining a practical understanding of the

purposes of Named Entity Recognition.

 It is a very well organized, structured and documented implementation that

made comprehension and debugging an easy task.

1
 : http://www.cnts.ua.ac.be/conll2003/

2
 : http://cs.nyu.edu/faculty/grishman/muc6.html

http://www.cnts.ua.ac.be/conll2003/
http://cs.nyu.edu/faculty/grishman/muc6.html

P a g e | 9

 It makes it easy for the user to train new models.

P a g e | 10

2.2.1 Stanford Named Entity Recognizer (NER)3

 Stanford NER (also known as CRFClassifier) is a Java implementation of a

Named Entity Recognizer. The software provides a general (arbitrary order)

implementation of linear chain Conditional Random Field (CRF) sequence models,

coupled with well-engineered feature extractors for Named Entity Recognition. It is a

product of the Stanford Natural Language Processing Group.

Types of Features of Stanford NER

 Word Features: Current word, previous word, next word, all words within a

window.

 Orthographic Features: Identify patterns internal word or phrase features, (

Jenny Xxxx , IL 2 XX ,

 Prefixes and Suffixes: Jenny J, Je, Jen, ,nny ,ny , y

 Label sequences

 Feature conjunctions

Trained Models/Classifiers Provided

 We already mentioned in section 2.2that four different trained Models/classifiers

are offered for recognition of named entities. The table below depicts the entities the 4

classifiers identify. The models were trained on a mixture of CoNLL, MUC-6,

MUC-7 and ACE named entity corpora, and as a result they are fairly robust across

domains. This is why we provide the users of our platform the ability to test their

documents or websites of preference on these models besides the choice of training

their own model.

Class

ifier

Name

Person Location Organization Misc Time Money Percent Date

3

class

+ + + - - - - -

4

class

+ + + + - - - -

7

class

+ + + + + + + +

3

: http://nlp.stanford.edu/software/CRF-NER.shtml

http://nlp.stanford.edu/software/CRF-NER.shtml

P a g e | 11

An important characteristic of the above models is that they use Distributional

Similarity Features which offer some important properties such as:

 Induce a distribution over contexts (each word will appear in contexts.)

 Cluster words based on how similar their distributions are, use cluster IDs as

features

 Provide a great way to combat sparsity.

 This family of features provides some performance gain at the cost of increasing

their size and runtime of the model, and the users of our platform should be advised to

use it in order to train their own models via the properties file, in a way that we will

demonstrate in Section 4.1.

2.3 Mashups

2.3.1 What are mashups?

 A new breed of Web-based data integration applications is sprouting up all across

the Internet. Colloquially termed mashups, they are defined as applications that

combine data from more than one source into a single integrated tool. These

applications are developed specifically for satisfying the users’ need to combine

multiple services and data sources to best serve this need. For example, many popular

mashups make use of the Google Maps service to provide a location display of data

taken from another source. The architecture of a typical mashup application is

demonstrated in Figure 2.3

The main characteristics of a mashup are combination, visualization, and aggregation.

It is important to make existing data more useful, for personal and professional use.

To be able to permanently access the data of other services, mashups are generally

client applications or hosted online. It is clearly observed that such kind of

Figure 2.3 : The architecture of a typical mashup application

P a g e | 12

applications are easy to implement and reusable. The first prerequisite comes under

the notion of being used by non-expert users, and the second is necessary for saving

time and effort needed to develop.

 The core component of a mashup application is widget. A Widget (often called

gadget, block, and flake) is a small program or piece of dynamic content that can be

easily placed into a web site. Widgets can be written in any language (JAVA
TM

,

.NET, PHP, etc.) and can be as simple as an HTML fragment. They provide intuitive

graphical user interfaces (GUIs) and are responsible for limited computational tasks.

The most important property of “mashable” widgets is the one of passing events, so

that they can be wired together, enabling data to flow into one, be processed and then

flow out of it into another. This widget composition can lead to an application created

as a network of widgets, wired together to produce the desired output.

 Example of a Widget built on Yahoo! Pipes and a mashup application are shown

on Figure 2.4 and Figure 2.5 respectively. Once the mashup is designed, the creator

has the option to reuse it and/or and share it so that other users can use and edit it.

Figure 2.4: A widget in Yahoo! Pipes that retrieves one or more RSS, Atom,

RDF or iCal feeds from the URL(s) entered in the input box.

Figure 2.5: A simple mashup application built in the

Yahoo! pipes Mashup platform

P a g e | 13

 On the purpose of understanding the use and effectiveness of mashups, we

demonstrate a real estate purchase scenario. A hotel business channel wants to buy

land in Crete in order to build touristic resort in the island. The supervisor of the

project wants to have a first view of the lands available, their exact locations and how

much do they cost. A mashup the following way: A widget could fetch all the

available lands and real estates in Greece (e.g. from Craigslist site) another service

would filter the results to eliminate the lands out of Crete and finally a map service

can be used for a visual representation of the results. The mashup application

drastically simplifies the whole procedure since all the user has to do is to “describe”

the data she needs and the mashup will deliver it. In addition, this simple mashup

could be extended by the same or another user in constructing another more complex

application.

P a g e | 14

2.3.2 Enterprise Mashups

 The popularity of mashups has attracted the attention of enterprises that are

beginning to take mashups from a pleasant Web hobby to enterprise-class systems

because they see this as a way to augment their model for delivering and managing

applications. Businesses can remix information from inside and outside the enterprise

to solve situational problems quickly.

 The lightweight nature of enterprise mashups enables employees to create and

customize content on-the-fly [10], for the purpose of solving situational problems and

taking advantage of business opportunities. The data enterprise mashups use often

spreadsheets, e-mails and presentations.

 Furthermore, these situational applications, having short-term lifespans, are

usually address a smaller community of users and focus on solving specific local

business requirements. On the other hand, typical enterprise applications are

developed by IT experts for a large number of generic users and a more general

purpose. Thus, enterprises represent the long-tail of enterprise application

development, illustrated in mashup systems 2.6

Figure 2.6 Enterprise application development

(Copyrights of the figure belong to [10])

P a g e | 15

2.4 Related Work

Previous approaches of IE usage in mashup Platforms

 Earlier, we examined the state-of-the art in both Information Extraction and

mashup development. In this section, we examine the conjunction of the two worlds:

mashup platforms that perform information extraction tasks.

 There has been some recent work concerning the manipulation of information

extraction inside a data integration environment. However, the vast majority of

mashup and data integration tools, web-based or desktop simply use information

retrieval for the purposes of partial extraction of information.

 MashRank, [11], provides a mashup authoring tool that builds on supervised

extraction methods, where users annotate and refine examples, during the data

gathering. Rules are the result produced by the example learning procedure and those

learned extraction rules are applied to a given page before they result in schema

records. Another approach based on rule induction is SystemT [12] (integrated in

IBM’S MashupHub) which supports the iterative process of constructing and refining

rules for information extraction via an annotation language. The result of the

annotator (the rules produced on the specified documents provided by the user) is

published.

 Finally, we have examined the Location Extractor of Yahoo! Pipes, which we

briefly describe in Section 3.1 . This module analyzes text in each feed items title and

description and attempts to identify addresses, location names or popular map service

URLs. If the extractor finds location entities in the feed, it will annotate each item

with a y: location sub-element containing that item's latitude and longitude in order to

be presented by a map module. Location Extractor provides users with an already

trained model, but only for addresses and locations. It does not give the user the

ability to train a model on a domain of her preference, as we provide in our platform.

 None of these earlier systems has the flexibility of our platform.

First, the system we propose allows users to train their own model, according to their

personal preferences. Second, contrary to previous approaches that use rule-based

techniques, training is based on a statistical approach with the use of Conditional

Random Fields. This exploits the special properties of Conditional Random Fields

that are more robust to noise in the unstructured data while long-range dependencies

are well represented.

P a g e | 16

Chapter 3

Mashup Platforms

 A mashup platform offers an intuitive, GUI based framework where an average

user with no programming experience can build mashups easily. Section 3.1 gives an

overview of the current state in mashup platforms.

3.1 Current State

 Currently a number of platform tools exist, both consumer and enterprise

oriented. Here, we briefly present some of the most popular ones, which are analyzed

in [13]. Our objective is not to analyze all the tools but to give a view on the current

state.

 Damia: a mashup tool provided by IBM. It offers users the ability to assemble

data feeds from the Internet and enterprise sources. This tool focuses on data

feed aggregation and transformation inside the enterprise environments. It also

offers various presentation tools and technologies like QUED-Wiki and feed

readers that consume Atom and RSS, to illustrate the data feeds of the

platform.

 Yahoo! pipes is a web-based tool by Yahoo. The users can build mashup

applications by aggregating data from web feeds, web pages, and other

services. The mashups inside Yahoo! Pipes comprise one or more modules,

each performing a separate task, like loading feed from a website, filtering,

aggregating or sorting data. Feeds.

 Popfly is a web-based mashup application provided by Microsoft. Users use

Popfly to create mashups combining data and media sources. Just like the

modules of Yahoo! pipes, here we have blocks that construct the mashup.

Each block is associated to a service like “Flickr” and exposes one or more

functionalities. Popfly focuses on data presentation rather than data

manipulation.

 Google Mashup Editor (GME) is a Mashup development, deployment and

distribution environment by Google. It uses technologies like HTML,

JavaScript, CSS along with GME, XML tags and JavaScript API that further

allow a user to customize the presentation of the mashup output.

 Exhibit is a framework for creating webpages that contain dynamic and rich

visualization of structured data. It enables its users to aggregate data obtained

in various formats, like RDF/XML and Bibtex. Exhibit uses HTML pages as

P a g e | 17

standard output but also provides functionality for exporting its output to

different formats, such as RDF/XML or Exhibit JSON.

 Mashmaker is an interactive web-based tool by Intel Corporation. It allows

editing, querying, manipulating and visualizing semi-structured data. It differs

from other tools in the sense that it works directly on Web pages and allows

users to create mashups when browsing by combining content from different

Web pages. The final goal of MashMaker is to suggest mashups or widgets for

the visited Web pages that the user may want to use.

 Apatar is a mashup data integration tool that helps users integrate desktop data

with the web. It is addressed both to individuals and organizations that need to

move data, with tools for application integration, data migration and

warehousing and synchronization. Apatar provides to its users connectivity to

Microsoft Access and SQL Server, MySQL, Oracle, PostgreSQL, Sybase and

XML. Its goal is to aggregate and manipulate data that can be reused from

other applications, so additional tools that consume Apatar output formats can

be used as the presentation layer.

 In our work, we build on Apatar platform, an open source cross-platform data

integration tool designed to enable batch data integration and provide simple user

interfaces so that anyone, not just technical experts, can set up data integrations. The

platform’s architecture is described analytically in next section.

3.3 Apatar Architecture

 Apatar
4
 is an open source ETL (Extract-Transform-Load) and data integration

software application. The platform’s architecture is presented in Figure 3.1. The

platform consists of three main components: the core component, the connectors

component and the user interface component.

4
 : http://www.apatar.com

http://www.apatar.com/

P a g e | 18

Figure 3.1: Apatar’s Architecture

3.3.1 Core Engine

 The core component consists of the application’s ETL engine, the main data

processing unit. In order to perform an operation, the input to the Core is provided

through the connectors component and comes from one or more data sources.

Subsequently, the data is transformed to tuples in Apatar’s internal database. In this

form, data is processed by the application’s engine, and then loaded again to one or

more connectors and probably to the presentation layer. The operations that are

supported from the platform are both high level operations such as joins, selection,

aggregations, filtering and so on, as well as lower level operations, such as

transformations between different data types.

 The core component is also responsible for defining fundamental structures that

hold the relevant data manipulation information. Furthermore, it provides a

mechanism to secure the system’s consistency and extensibility. For instance, core

defines all the structures that comprise the platform’s internal database, its tables and

its records, and also abstractly provides the basic features and structures that a

connector must have in order to be functional.

P a g e | 19

3.3.2 Connectors

 The connectors component, as its name implies, plays the role of connecting the

core engine with data sources. Every connector provides a connection point for a

specific data source through which data can be read, written or both. The platform

supports over 30 connectors from various data source categories like database

connectors (MySQL, Oracle, PostgreSQL, etc.), application connectors (Salesforce,

etc.), file (.XML,.TXT) and others like e-mails, custom tables, and WEB 2.0 APIs

3.3.3 GUI and Data Representation Layer

 The last component of Apatar comprises of a graphical user interface and a data

presentation layer that offers the user ease of use and navigation by having supreme

control over the data. Through the GUI, users take advantage of Apatar’s features;

they can create, modify, publish or run mashup applications, while the data

presentation layer allows data supervision during the users’ manipulations over the

data.

The main GUI is presented in Figure 3.2. As can be clearly seen, the platform’s main

window is divided into two areas. The connectors and functions’ area, where all the

connectors and operations offered to the user are displayed as widgets, and the work

area where the data integration job, called Datamap takes place. In order to create a

Datamap user only has to drag and drop the connectors of their choice in the work

area, configure them and connect them together.

P a g e | 20

3.3.4 Extensibility

 One of Apatar’s great features is its extensibility. This is achieved through the use

of Java Plug-in Framework (JPF). JPF provides a runtime engine that dynamically

discovers and loads “plug-ins”. A plug-in is a structured component that describes

itself to JPF using a “manifest”. Plug-ins are added to the registry at application start-

up or while the application is running but they are not loaded until they are called.

 The major goal of JPF is that the application (and its end user) should not pay any

memory performance penalty for plug-ins that are installed, but not used. So, plug-ins

are added to the registry at application start-up or while the application is running but

they are not loaded until they are called.

 Based on the above mechanism, every new widget (connector, operation, function

or GUI component) in Apatar is implemented as a plug-in. This is achieved with an

XML file that describes the widget, named after the name of the plug-in. This

necessary document describes the plug-in to JPF in order to be registered in the

framework and loaded upon call. Thus, whenever the application starts, a predefined

Figure 3.2: Apatar’s main GUI

P a g e | 21

plug-in folder containing the entire manifest files is scanned, the available plug-ins are

registered to JPF and are available for use.

P a g e | 22

Chapter 4

The ARAMIS Platform

 This chapter introduces the main work of this thesis, the ARAMIS (Automatic

Recognition and Mashup Integration System) platform, which extends the Apatar

platform (analyzed in Chapter 3) in order to implement named entity recognition

(NER) tasks inside the Apatar mashup environment. To achieve this goal, the work

was split in 2 basic components-widgets; the training component (ieTrainer) where

the CRF model is trained by the user and the extractor component (iExtractor) that

performs the Named Entity Recognition task, the extraction of named entities as

described in chapter 2.

4.1 Training widget (ieTrainer)

 Generally, ARAMIS is designed as a learning-based system, requiring manually

labeled unstructured examples to train the machine learning model for extraction. The

purpose of this widget is to train a Conditional Random Field Model (the selected

Named Entity Recognizer statistical model) and offer its users the ability to train the

model for the purpose of recognizing entities specific to their application. For

instance, one could train the model to recognize location names, organization names,

car names, sport teams, university names and courses, etc.

 Concerning the ieTrainer’s design, a training file is given as input to the

component. It can be either a text file (.txt), a file with comma separated (.csv) values

or a file with tab separated values (.tsv). The training file must be in a one token per

line format in order to be read by the ColumnDocumentReaderAndWriter class of the

CRFClassifier package. The training data source should be also annotated with the

correct answer (appropriate entity), or with the other symbol (O). This is done

manually by the user or by an annotation tool. Furthermore, the users can explicitly

specify more features for the word, by adding these in the training file in a new

column and then put the appropriate structure of their file in the map line (map

property) in the features file discussed in section 4.2. Figure 4.1 illustrates an

example of the input format required for the ARAMIS training component.

P a g e | 23

Figure 4.1: The format of a training file

 In addition to the training file, ieTrainer takes for input a features file. The

features generally, are the most important part of the Named Entity Recognizer task

because they significantly determine how well the model is trained in order to

recognize the majority of the entities it has learned during the extraction procedure.

The format of a features file is the form property value for every row. The addition

of new features and even the selection of the features provided with NER recognizer

is a procedure that requires experience with natural language processing issues. Thus

we have chosen to provide the non-expert user the ability to train a model by only

worrying about having a proper training file. This is done by creating the features file

(.prop file) on the fly inside the folder where the user has chosen to save the trained

model. The default features created include some basic features (illustrated in section

4.2.). This design achieves its goal of hiding the complex linguistic details of the

features. Figure 4.2 illustrates the architecture of the ieTrainer connector.

Apatar

 ieTrainer

.prop

.ser.gz

Trained
Model

.txt

.csv

.tsv

Features
File

Training
File

Figure 4.2: The ieTrainer connector’s architecture

Figure 4.2: Architecture of ieTrainer

P a g e | 24

In Figure 4.3 the simple ieTrainer user interface is depicted. Via the GUI, the user

performs the following actions (in order):

 1) Adds a file for the training of the model.

 2) Chooses the folder where the model is going to be saved,

 3) Inserts a name for the trained model.

 4) Uploads a properties file (this action is optional).

Figure 4.3: User interface for ieTrainer

 As soon the user inserts all the appropriate elements in the GUI form, ieTrainer

performs the following actions:

 The training file is parsed. The property value contents of a features file are

being processed.

 An instance of the model is created taking as parameter a Properties object that

contains the features of the model to train.

 The training of the model is performed. (the parameters of the model are

estimated).

 The trained model is serialized to a file on the given path the user has chosen

through the Trained Model File Name and the Trained Model Folder name.

 The serialized trained file (.ser) is zipped automatically making it faster and

smaller.

P a g e | 25

 One thing that must be mentioned is that the design of ieTrainer allows the user to

process the input of the training file (the labeled words) and to perform any

manipulations enabled in the Apatar platform enables through the its widgets and

operations.

Feature Selection

 As we already mentioned, the selected features are a very important aspect of the

Conditional Random Fields model. In this section we are going to examine in more

details the selection of features for the NER Stanford classifier we used for the

purposes of the ARAMIS platform.

 Through a text file some properties can be defined. The properties define a great

number of features which are all included in SeqClassifierFlags class. Every property

enables one or more family features to perform on the data. The properties file is

either created on the fly or provided by the user. The default properties that are

created automatically for the non-expert user are the following:

 0, 1map word answer :

This property defines the structure of the training file; for example, this

tells the classifier that the word is in column 0 and the correct answer

is in column 1.

 :useClassFeature

It includes a feature for every class (label). It is triggered whenever a

token is identified as a class we want to recognize.

 :useWord

 It gives a feature for every word/token.

 :useNGrams

 It creates features for letter n-grams
5
, substrings of each word.

 noMidNGrams :

Do not include character n-gram features for n-grams that contain

either the beginning or end of the word.

 usePrev :

 It is triggered for previous words.

 :useNext
 It gives features for next word

5 :

 An n-gram is a contiguous sequence of n items from a given sequence of text or speech. An n-gram

could be any combination of letters.

P a g e | 26

 :useDisjunctive
Used to include as features disjunctions of words anywhere in the left

or right disjunctionWidth words (preserving direction but not position)

 :useSequences
 This feature enables previous and next words or classes (labels).

 :usePrevSequences

Used just like useSequences to trigger only previous words and tokens

that belong to previous classes.

 The following properties are word shape features. These types of features map

words to simplified representation that encodes attributes such as length,

capitalization, numerals, Greek letters, internal punctuation, etc.

 :useTypeSeqs

 This provides basic zeroeth order word shape features.

 2:useTypeSeqs

 Adds additional first and second order word shape features.

 :useTypeySequences

 It includes some first order word shape patterns.

 2 :wordShape chris useLC

This is the class used for identifying lexical patterns for each word.

Other classes to choose exist in WordShapeClassifier class.

 1:maxleft

This specifies the order of the CRF: order 1 means that features apply

at most to a class pair of previous class and current or current class and

next class.

Besides the default properties, in our experiments we have used the following:

 :useTitle

 Matches a word against a list of name titles (Mr., Mrs.)

 :useLastRealWord

Checks whether the previous word is of length 3 or less, and in this

case it adds an extra feature that combines the word two back and the

current word’s shape.

 :useNextRealWord
Similar to the previous one, it checks whether the next word is of

length 3 or less, and adds an extra feature that combines the word after

next and the current word’s shape.

P a g e | 27

 :disjunctionWidth
Defines the number of words on each side of the current word that are

included in the disjunction features.

 :saveFeatureIndexToDisk

 Used to save the feature index to disk and read in later.

 :useLongSequences

Allows plain higher-order state sequences out to minimum of length or

maxLeft

 :useOccurencePatterns

This is a much engineered feature designed to capture multiple

references to names.

4.1.1 Training and Evaluation Datasets

 The datasets that we trained our model were:

 DBLP Computer Science Bibliography (around 36000 records) with 5 classes

i. Title

ii. Author

iii. Topic

iv. Editor

v. Date

 Address Strings (around 5000 records) extracted from the yellow pages

trained to recognize 5 classes:

i. Street Number

ii. Street Name

iii. City

iv. State

v. Zip Code

 The documents we used for training were datasets of the above two categories and

some webpages where we performed extraction using the models described in 2.2.1.

One website we used for extracting entities is Craigslist
6,

 a classified advertisements

website with sections devoted to jobs, housing, personals, for sale,

6

: http://www.craigslist.org/about/sites/

http://www.craigslist.org/about/sites/

P a g e | 28

4.2 Information Extraction Widget (IExtractor)

 The basic widget of the ARAMIS platform is the IExtractor widget; this is

responsible for performing the Named Entity Recognition task, based on user input

(text or a website) and a trained model. This service enables a mashup platform to

focus on some semantics of the data in order to save in its internal database a portion

of the data that are mostly important to the user instead of keeping long segments of

text. As long as the data a user daily encounters and saves augment significantly, it is

easily understood that an information extraction task is a very useful tool for a

Mashup platform like Apatar.

 For the purpose of implementing information extraction, user can is provide in

the means of a text file or a website. In more detail, users can perform the recognition

task either locally (on a text file located inside their hard drives), or in a website of

their choice. Concerning the first choice offered, as explained in Section 4.1 , the test

file can be either a text file (.txt), a file with comma separated values (.csv) or a file

with tab separated values (.tsv). The training file must be in a one class of

CRFClassifier package. On the other hand, a URL could be provided by the user to

extract the desirable entities. We should note that the target website for extraction

should be a simple html page because the JEditorPane class that is used to display

the unstructured content for extraction has limited html and Css support while it does

not support JavaScript or applets. However, some basic html websites can be

displayed and those are the ones we aim to focus on for our experiments. Finally, the

user can also type some text inside the JEditorPane panel through the keyboard

device in order to get the extracted entities.

 User’s input to IExtractor, is given through the widget’s user interface that is

borrowed from Apatar’s Presentation and User Interface component and is called

Property sheet page panel. This is shown in Figure 4.4 . The parameters the user must

insert are the following:

 testFile : The text file to perform the extraction task.

 trainedModel : The trained serialized NER model. This could be a file that the

user already has trained using the ieTrainer (section 4.1) or one from the

included serialized models which is provided with the NER Stanford Named

Entity Recognizer (NER). These models are located inside IExtractor’s folder

inside the classifier folder.

 url : In case user prefers to extract structured entities from a website, this is

the field where the url is provided. In addition, the checkbox readFromFile
must be unchecked in order to inform the platform that the input comes from a

website and not a user file. In other words, testFile and url fields are used in a

mutually-exclusive manner.

 k : This parameter concerns the number of possible sequences we want the

classifier to extract. Particularly, this refers to the k-best Viterbi inference

algorithm used for extraction.

P a g e | 29

Figure 4.4: The Property sheet page panel for the IExtractor widget.

P a g e | 30

4.2.1 IExtractor Architecture

 We focus on architecture of IExtractor in this section. It is illustrated in Figure

4.5. There are two main components in the platform: the Presentation Layer and the

Real-Time In-Memory Processing Unit.

Figure 4.5: The architecture of IExtractor.

Presentation Layer

 The presentation layer comprises all the components that handle the visual

representation of the iExtractor. First of all it contains the Property sheet page Panel

(shown in Figure 4.2), which is borrowed from Apatar’s Presentation and GUI

layer. Furthermore, it contains IExtractor GUI the basic representation component of

the IExtractor widget and the File/URL loader that identifies the source of text that is

going to be passed to the editor of the GUI, and loads the file or the contents of the

website. The first component of the Presentation Layer is analyzed in 4.2, therefore

we are going to examine the other two.

 From the three components of Presentation layer, the IExtractor GUI is the most

important, as it visualizes the user input, presents the output of the classifier, and

P a g e | 31

visualizes the results of the post-classification processing unit over the data. Figure

4.6depicts IExtractor GUI’s layout. The main area of the panel is occupied by the

JEditorPane which is the white editable area where the contents of user input are

presented before and after extraction. At the top of the editor area there is a tool bar

that allows some basic actions over the data. The File menu offers the ability to save

the contents of the editor. The user can save untagged contents of the editor area or

the tagged contents that result after the extraction. The Edit option consists of all the

common edit options such as Cut, Copy, Paste, and Clear. At the bottom of the text

area the NER button triggers the Named Entity Recognition procedure.

 The panel on the right of the editor demonstrates the colors for each entity tag.

In other words, every entity label such as Person, Location, etc. is mapped during

runtime (dynamically) with a tag color in order to get every entity of the category

highlighted, thus distinguished from the raw text and the other tagged entities.

The colors are assigned randomly, independent from the name of the labels or their

number.

 Finally, the interaction with users offered by the IExractor GUI is a product of

the Event Listeners registered to the GUI’s components. Except from the Listeners

for the buttons and menu items detecting mouse action events, one less obvious case

is the Caret Listener. This is triggered by caret events that occur when the caret – the

cursor in the editor indicating the insertion point – moves or when a selection in a

text component changes. The use of Caret Listener enables capturing of users’

actions in the editor and the editing of its contents. Section 4.2.2.2 justifies the

choice for CaretListener because the caret events that occur are very important in

gathering information for some procedures of the Post Classification Processing

Unit.

P a g e | 32

Figure 4.6: IExtractor Graphical User Interface (GUI)

 The File/URL Loader component does a very simple job. It takes the input from

the property sheet page, checks whether its source is a user file or a website and loads

the content to the JEditorPane panel that represents the editable text area of the GUI.

In the website case, the component does the following trick: it causes the thread that is

handling the IExtractor GUI to suspend execution (sleep) for a 2 second period. This

was done because the editor sometimes could not load the website to the editor, so by

pausing the thread’s execution, the elements of the website would have enough

processor time to be fetched.

4.2.2 Real Time In-Memory Processing

 After examining the structure, the visualization and the parameters IExtractor

takes, we proceed to analyze the essential task of IExtractor widget, extraction. This

is performed by the Real Time In-Memory Processing unit, and specifically by the

Classifier and the Post Classification Processing component. The first one performs

the statistical classification procedure and the second processes the output of the

classifier and performs important tasks in order to deliver it at first to the Presentation

P a g e | 33

Layer and then to the platform’s warehouse database. Eventually, the selection and

creation of the schemas to be saved in database take place. The remainder of this

chapter explores these stages’ procedures in further detail.

 The tasks performed from this unit, are split in three stages: The first stage

implements the core procedure of Named Entity Recognition (generally called

classification) in the contents of the editor either the source is a local file or a website.

The second stage performs various post classification processes in order to deliver the

text content properly to the platform’s database and to visualize it in a nice manner to

a degree of user interaction. The last stage concerns the creation of the schemas in the

database based on user’s choices.

4.2.2.1 Stage 1: Classification

 This stage is performed after user input is loaded in the text editor and the NER

button is pressed.

Text file/Html Contents Classification

 The first step of the classification concerns reading the text contents of the file or

the html contents of a website. The Stanford NER classifier uses the

DocumentReaderAndWriter general interface for reading data and writing output into

and out of SequenceClassifier models. For text and xml (html format is treated

similarly to xml) format the model uses the PlainTexDocumentReaderAndWriter to

read plain text documents and write those documents once classified. The classifier

will tokenize the text and treat each sentence as a separate document. Note that every

whole sentence is assigned a probability as a result of the inference procedure.

Afterwards, we take this whole sentence and split it in tokens in order to process them

and save them inside the ARAMIS database schemas. Once a

PlainTexDocumentReaderAndWriter object is instantiated the init method is

called taking as parameter a SeqClassifierFlags object that represents the

properties discussed in section 4.1 . As we already know, the properties are defined by

default or by the user specified properties file. So init loads these properties to the

model in order to define its behavior. Furthermore, the contents of the text editor are

processed as a String object by a method called makeObjectBankFromString. The

latter reads the String in an ObjectBank, a collection of Objects taken from input

sources and then tokenized and parsed into the desired kind of Object. This process

helps to wrap the tokenized contents into lists of CoreLabels; each list represents all

the appropriate info for each token (the token itself, the start and end character offset

inside the sentence, its shape annotation and its sequence number in the sentence.)

 After the text has been tokenized and read into proper objects supported by the

model, the classification process takes place where classifyKBest method

classifies and returns the k-best sequences based on the k parameter the user has chosen.

This method runs for every list of CoreLabel. Concerning the inference algorithm

that finds the k-best sequences, the Viterbi algorithm is run on the sequence model in

order to find the best sequence. Afterwards, every classified list is sorted from

highest count to lowest. The output of the classifier is in inlineXMLformat (e.g.,

file:///C:/Users/VIP/Desktop/DesktopFiles/DIPLOMATIKI/stanford-ner-2012-03-09/stanford-ner-2012-03-09/stanford-ner-javadoc-2012-03-09/javadoc/edu/stanford/nlp/sequences/SeqClassifierFlags.html

P a g e | 34

<PERSON>Bill Smith</PERSON> went to <LOCATION>Paris</LOCATION>). This

format is used to benefit all the post classification procedures we are going to examine

in the following section. Both for file and html content, the classified contents for only

the best sequence-the sequence with the greatest probability score-are passed to the

editor and presented through IExractor GUI .

4.2.2.2 Stage 2: Post Classification Processing

 This stage implements all the processes that follow the classification procedure.

These processes include:

a) Construction of the structure to hold the all the appropriate information about

the classified tokens

b) Processing of the inlineXml formatted classified tokens, highlighting them similarly

to their assigned entities/labels, and visualization of the result through the editor.

c) Construction of a structure to hold the tokens and their information per probability

only for the best sequence and histogram creation to illustrate the distribution of

the sentences classification, based on this structure.

d) Highlight “weakest” sentences.

e) Presentation of the k-options for a specific token and update the content of the

structure that will fill the database’s tuples (this process is optional and depends on

the user’ purpose.)

a) Priority queue construction for the classified tokens

 Since the text or html contents are classified per sentence – every sentence is

assigned a probability and its tokens are recognized and labeled with the entity the

model chose to assign. The labeling is implemented with an inlineXmlFormat

output format we mentioned in 4.2.2.1. Since our final goal is to construct a schema

table with one token per tuple, the first step is to split every classified sentence and

deduce the desired information. The information we want to save for every token is

stored in a TokenTableRecord object. This structure consists of the following

fields:

 :pos The word position of every special token inside a sentence

 :sentenceId The sequential number of the sentence that the token belongs to.

 :token The word token that has been labeled from the classification

procedure.

 :label The labeled entity assigned to every token during the classification

process

 :prob The probability score counted for every sentence during inference

(top k best Viterbi).

 :k The k parameter defining the entities with the top-k highest probabilities.

 :characterOffsetBegin The sequence number of the first character of each

token inside the classified sentence.

 :characterOffsetEnd The sequence number of the last character of each token

inside the classified sentence.

P a g e | 35

As soon as we construct the object that holds the entire classified token information,

we have to decide on the structure to place. We choose a PriorityQueue, because

we want to keep the classified entities sorted by the sentenceId , the position in the

sentence (pos) and k. In other words, starting from the first token of the first

sentence, we put in the queue all the k best TokenTableRecord objects for it and

only then we go on to the next sentence. The output of this structure is maintained in

the TokenTable (see Figure 4.7 for a snapshot), which is the schema table with all the

tokens that have been extracted by the Named Entity Recognition procedure. Note

that regardless the k parameter the user has entered, if a probability of the sentence

segmentation is under a very low threshold defined internally by the model, this

sentence is eliminated and discarded from the structure.

Figure 4.7: The TokenTable schema table showing the first three tokens extracted (Lehman,

Brothers, Federal) with k=3

b) Visualization of the classification results

 This process takes place after classification has finished and all the appropriate

structures have been created. Because our platform is user oriented, the recognized

named entities should be visualized through the IExtractor GUI. For this purpose, the

best only sequence is passed back to the Presentation Layer which examines the

tagged string sequence and with the help of the inlineXml format, it distinguishes the

tagged entities. As explained in 4.2.2.1 the tags are expressed with angle brackets (<

>). An example of a classified tagged sentence is:

“Several possible plans emerged from the talks, held at the

<ORGANIZATION>Federal Reserve Bank of New York</ORGANIZATION> and led

by <PERSON>Timothy R. Geithner</PERSON>, the president of the

<ORGANIZATION>New York Fed</ORGANIZATION>, and Treasury Secretary

<PERSON>Henry M. Paulson Jr.</PERSON>“.

In order to identify the entities and the tagged classes, the Presentation GUI initially

constructs a regular expression of the form
1 2|(| ... |)NX X X where iX is the i-th

entity and N the number of all entity categories of the model. (e.g. PERSON,

ORGANIZATION, LOCATION, STREET NAME, etc.). The “|” symbol represents

P a g e | 36

the logical disjunction (OR) operator. The purpose of this regular expression is to

catch all the tagged entities in the insideXMLformat of the string. Subsequently, the

regular expression is compiled through the Pattern class which represents the regular

expression’s compiled representation. The resulting pattern is used to create a

Matcher object that can match arbitrary character sequences against the regular

expression. Once we create a logical expression for the end of the tag notations “< /

>”, we run the Matcher object on both compiled expressions and we mark the start

and end positions inside the string sequence where each pattern is identified. The

substring these two positions define produces a recognized entity. The only thing that

has remained is to define the AttributeSet object that will add style properties to the

string entity. After the addition of Color properties to every entity class, the enriched

string entity is passed to the editor, which finally presents the initial text or html

contents.

c) Construction of the Probability Bucket and Histogram creation

 At the time we construct the PriorityQueue structure containing all the

TokenTableRecord objects, we create a 10 length array; a local list that creates all the

TokenTableRecord objects for each sentence and parallel to this list an array that

holds only the probabilities for every sentence. The goal is to have a structure that

will hold, for the probability range 0 to 1 with a 0.1 step, all the tokens of the

sentences that were assigned a probability from the classifier that belongs to that

range. For example, the tokens of sentences assigned with a probability of 0.45 will be

saved to the BucketCounter’s position 5, because this position is addressed to any

probability in the 0.4 - 0.5 range.

 Therefore, the construction of the BucketCounter array we described goes as

following: First of all, since every position in the array must contain probabilities of a

specific range, before insertion of any tokens in the array take place, we use a simple

method called findBucketPos to return an index that represents the position of the

token given the probability assigned to the sentence. As soon as we get the position

index in the array, there are two options. Either the bucket in this position is empty so

we first need to instantiate a list that will keep the lists of sentence tokens. Otherwise,

the array contains at this position at least one list of tokens, so the outer list has

already been instantiated. Finally we put the list of TokenTableRecord objects inside

the outer list, and we keep on building the BucketCounter array by processing the

remaining sentences. The complete process is illustrated in Figure 4.7

 The remaining step to complete this procedure is the creation of the histogram. Its

purpose is to demonstrate the distribution of the sentences over the probabilities.

Particularly, by finding how many sentences belong to each probability portion, we

get a visual way to evaluate the precision and accuracy of our model. For example, the

more many sentences belong to higher probabilities the best our classification model

is.

P a g e | 37

 Concerning the technical details of the histogram creation, we have used the

JFreeChart Java open-source library that allows the creation of a wide-variety of

charts. Our HistogramClass creates an IntervalXYDataset object that creates the

data that the histogram will demonstrate. This takes for input the probabilities array,

the number of bins (how many probability slots we wants to have) and the minimum

and maximum numbers in x axis (minimum and maximum probabilities). After the

creation of the dataset we instantiate a JFreeChart ChartPanel object to visualize

the histogram. Figure 4.8 depicts the result of this process.

 The design of the histogram class is such to perform some actions when certain

actions take place. Specifically, our HistogramClass listens to WindowEvents and

performs the two following tasks. As soon as the user has pressed the “Close” button

the windowClosing() method is called that shows a popup prompt message window

as shown in Figure 4.9. The user is asked to enter a probability as an upper bound in

order to highlight the tokens that have been assigned probabilities equal or less than

this threshold. The probability entered is the base for the highlight process. This

process, triggered from the windowClosed() method is the center of our focus in next

section.

Figure 4.8: The process of constructing the Probability Bucket and the Histogram

P a g e | 38

Figure 4.9: The histogram presenting the probability distribution

of sentence estimation.

Figure 4.10: The prompt message user dialog.

d) Highlight “weakest” sentences given the user’s option.

 Previously we discussed about the need to demonstrate the sentences the system

has assigned with small probability scores in order to estimate how well the classifier

of our model has performed. In conjunction with the quantified result of the

histogram, it is desirable to view via the editor the “weak” sentences. The user’s input

via the prompt message, defines the upper bound from under which we consider a

sentence to be “weak”. Ideally, the user has observed the histogram and identified

approximately the bucket where there are many sentences gathered. Of course, this

interaction with the user is optional.

 In order to highlight the “weak” tokens, firstly we construct a HashMap structure

named highlighenedTokens that will keep tokens of the sentences we want to

highlight based on the user’s input; a HashMap is chosen to map an encoded String

identity of each token to its TokenTableRecord object. Specifically,

"_"key characterOffsetBegin characterOffsetEnd .The HashMap structure, even

though it is created during the highlight procedure, it is not used at the time, but it

P a g e | 39

serves as the basic structure for the next procedure that presents all the alternative

labels assigned to every token by the classifier. Furthermore, user’s given probability

is passed to the familiar findBucketPos function that returns the position until

which we will scan the BucketCounter array to track the tokens. Therefore, we

process the array and for each position until the BucketCounter’s index, we take

the list of lists of TokenTableRecord objects (list of sentences) and for each list of

TokenTableRecord records we take every token’s start and end character offsets.

Having these, it is simple to highlight the tokens by setting a different AttributeSet

on data with the Color parameter we prefer. IExtractor GUI highlights tokens using

yellow color.

e) Illustration of the k-best sentence segmentations and database update

 This is the last process of the Post Classification Processing Unit and its result is

forwarded and demonstrated to Presentation Layer. It follows as an aftermath of the

highlighting procedure, but it is triggered only if the user demands it. As soon as the

“weak” entities are illustrated through the editor, it is desirable to view all the top-k

labels assigned to each one of them and inspect them. In addition to marking the

“weakest” entities, entities the model has assigned a different label/class from the top-

1 segmentation are being underlined. This action encourages the user to seek other

options for this token. Therefore, if the user decides to view these other options by

clicking on a highlighted entity a window popup appears presenting the k-best entities

list for the word the user clicked on. This process is enabled by the services of the

Caret listener we have previously discussed.

 Concerning the implementation details, similar to the construction of the

highlighenedTokens HashMap, another HashMap is constructed mapping every

highlighted token to a list that contains the k-alternative TokenTableRecord objects

we discussed. Then, this k-best tokens list is being scanned and for every token it is

checked whether there any other classes assigned to it. As soon as these actions are

executed, caret events present the k-best classified entities when occur. The

caretUpdate function when triggered calls createPopupWithKbestAlternatives,

which identifies whether the caret event was caused by a mouse action over a

highlighted entity or not. In case a “weak” entity has been clicked, the JOpionPane

input Dialog of Figure 4.10 is demonstrated containing the k-best entities. The user

views the possible label assignments for the word she has clicked, and has the option

of choosing a different one that suits her belief about the word class. Once the user

has made an option, the findTokenAndUpdateTokenTable is called that searches

through the general structure that contains all the TokenTableRecord objects to find

the token and replace its label class with the user option. The token is identified

uniquely from its sentenceId in conjunction with its pos .

 This ability offered by the ARAMIS platform is an important one, because it

makes the system quite flexible by enabling both automatic recognition and human

annotation and correction of the automated results the model produces. Therefore, the

system becomes more reliable.

P a g e | 40

4.2.2.3 Stage 3: Schema Creation

 The final stage of the Real Time In-Memory Processing concerns the creation of

the schema tables inside Apatar’s Database. Because the nature of the extracted

tokens offers many options for the attributes (columns) of the database tables, we

have decided to create two kinds of database schema: a) TokenTable, a predefined

schema table and b) a dynamically defined schema table or tables (during runtime),

that contains separately all the entries of an extracted entity.

 As it is observed from Figure 4.11, TokenTable contains for every recognized

entity all the information extracted that exist inside a TokenTableRecord object and

are explained in 4.2.2.2.

 The other schema table the ARAMIS platform supports is a table that contains all

the appropriate information for a recognized entity, that is the token_id the

Entity_Name and prob. For example, in a task that we recognize a PERSON and a

LOCATION entity, we have two entity tables, PERSON_TABLE and

LOCATION_TABLE. This type of tables are defined dynamically depending on the

entities that the model has been trained to recognize every time.

Figure 4.12: The database schemas ARAMIS supports.

Figure 4.11: The input dialog for viewing the k-best labels the model has

identified

P a g e | 41

 After the user makes a table selection and schemas have been created, the data

integration and transfer of the ARAMIS platform is ready to unfold.

P a g e | 42

P a g e | 43

Chapter 5

Demonstration

 To demonstrate our work, we will focus on presenting the IExtractor

functionality. The ieTrainer widget does not present its output in a graphical way

since it just produces the trained model file. The demonstration is based on two

scenarios. The first is to recognize Author, Editor, Date, Topic and Title from a file

containing raw DBLP Computer Science Bibliography. To accomplish that, the user

creates a mashup application, loads the IExtractor widget into ARAMIS platform and

makes the appropriate configuration by loading the file she prefers, the trained model,

she has previously trained and pressing the “Run NER” button. The output of the

IExtractor GUI is presented in Figure 5.1

Figure 5.1: IExtractor output based on scenario 1.

P a g e | 44

Figure 5.2: Histogram for the extraction results of scenario 1.

 At the same time the histogram is presented automatically to the user (Figure

5.2). The user observes the sentence distribution based on the probabilities assigned to

them by the model. When the histogram window is closing, a prompt appears

encouraging the user to enter a probability number (Figure 5.3)

Figure 5.3: Prompt window of IExtractor.

 The user enters 0.5 as the probability value and IExtractor GUI presents all the

highlighted entities (“weak entities”) (Figure 5.4)

P a g e | 45

Figure 5.4: IExtractor GUI demonstrating the “weak” entities.

 Finally the user “clicks” on an underlined word and views all the entities the

model has recognized having a different label. (Figure 5.5)

Figure 5.5: The window presenting the k choices for an

underlined token.

P a g e | 46

 The second scenario is the following one: A user wants to extract only location

information from apartments in Athens from Craigslist website and illustrate it in

Google Maps. To achieve this goal, she creates a mashup application (Figure 5.6) and

makes the proper configurations in IExractor GUI inserting the website url. She adds

a Transform widget in order to keep only the location information from the

LOCATION table. Finally she uses a Table widget for putting results in a supported

format from the Google maps widget. The output demonstrated in Google Maps is

presented in Figure 5.7

Figure 5.6: The mashup application for scenario 2

P a g e | 47

Figure 5.7: Result map

P a g e | 48

Chapter 6

Conclusions and Future Work

 Based on the Apatar open-source mashup platform, we designed and

implemented ARAMIS, an information extraction system that implements supervised

named entity recognition based on linear-chain Conditional Random Field (CRF)

sequence models. Such functionality offered by our platform enables the users to train

models based on datasets of their interest and extract information from local files or

websites based on these user trained models or some already trained classifier models

provided. In addition, ARAMIS provides an explicit representation layer and a post-

classification processing unit that benefits users for visualization and data validation

purposes. Considering the vast amount of data being manipulated inside the APATAR

platform, we have come up with this idea in order to automatically populate Apatar’s

databases inserting uncertainty over the extracted data due to the probabilistic nature

of information extraction used for the extraction. In this way we enable database

operations over probabilistic data. Another important feature we consider is user’s

ability to self-annotate the extracted entities in case the model provides alternative

solutions for mislabeled tokens.

 Besides the work presented in this thesis, there are many additions and

optimizations that could be done. First of all, concerning the training of the model, an

automated feature generation system could be designed in order to produce

automatically the appropriate features based on the user’s annotations in the training

file. Even though we provide in ARAMIS some automatically produced features,

these are some very basic options to perform the extraction without taking into

account the user’s preferences concerning what patterns to take into consideration

during the learning procedure.

P a g e | 49

 In addition, some procedures could be added to Post Classification Processing

Unit. For example, when k parameter is greater than 1 the best segmentation’s

probability could be boosted with the probability of the other k-1sentence

segmentations, in case their label sequence remains the same with the best.

 Finally, the IExtractor GUI could be enriched in order to gain more flexibility

and interactivity, such as maintaining the label information after the highlighting

procedure and replacing the JEditorPane with another editor that allows better

representation of websites.

P a g e | 50

Bibliography

(

[1] Sunita Sarawagi, "Information Extraction," Foundations and Trends in

Databases, vol. 1, no. 3, pp. 261-377, 2008.

[2] Daisy Zhe Wang, Eirineos Michelakis, Michael J. Franklin, Minos Garofalakis,

and Joseph M Hellerstein, "Probabilistic declarative information extraction," in

ICDE 2010, Long Beach, California, USA, 2010, pp. 173-176.

[3] Christopher Manning. (Winter 2012) Stanford University. [Online].

http://www.stanford.edu/class/cs124/lec/Information_Extraction_and_Named_Ent

ity_Recognition.pdf

[4] John D Lafferty, Andrew McCallum, and Frenando C.N. Pereira, "Conditional

Random Fields: Probabilistic Models for Segmenting and Labeling Sequence

Data," in ICML '01 Proceedings of the Eighteenth International Conference on

Machine, 2001.

[5] Charles Sutton and Andrew McCallum, Introduction to Conditional Random

Fields for Relational Learning.: MIT PRESS, 2006.

[6] G.D Forney, "The Viterbi Algorithm," vol. 61, no. 3, pp. 268-278, March 1973.

[7] Jenny Rose Finkel, Trond Grenager, and Christopher Manning, "Incorporating

non-local information into information extraction systems by Gibbs sampling," in

ACL '05 Proceedings of the 43rd Annual Meeting on Association for

Computational Linguistics , University of Michigan, USA, 2005.

[8] Sanita Sarawagi. CRF Project Page. [Online]. http://crf.sourceforge.net/

[9] The Stanford NLP Group. The Stanford Natural Language Processing Group.

[Online]. http://nlp.stanford.edu/software/CRF-NER.shtml

[10

]

Nicole Carrier, Tom Deutch, Chris Gruber, Mark Heid, and Lisa Lucadamo, "The

business case for enterprise mashups.," 2008.

[11

]

Mohamed A. Soliman, Ihab F. Ilyas, and Mina Saaleeb, "Building ranked

mashups of unstructured sources with uncertain information," vol. 3, no. 1-2, pp.

826-837, September 2010.

[12

]

David E. Simmen, Frederick Reiss, Yunyaou Li, and Suresh Thalamati, "Enabling

enterprise mashups over unstructured text feeds with InfoSphere MashupHub and

SystemT," in Proceedings of the 2009 ACM SIGMOD International Conference

on Management of data , New York, 2009, pp. 1123-1126.

[13

]

Giusy Di Lorenzo , Hakim Hacid, Hye-young Paik, and Boualem Bentallah, "Data

integration in mashups," in ACM SIGMOD Record, vol. 38, New York , NY,

USA, March 2009, pp. 59-66.

[14

]

Apostolos K. Nydriotis, "Dynamic Web Service Mashups," Chania, December

2010.

http://www.stanford.edu/class/cs124/lec/Information_Extraction_and_Named_Entity_Recognition.pdf
http://www.stanford.edu/class/cs124/lec/Information_Extraction_and_Named_Entity_Recognition.pdf
http://crf.sourceforge.net/
http://nlp.stanford.edu/software/CRF-NER.shtml

