
Diploma Thesis:
Hardware Task Scheduling

Targeting a Realistic FPGA device

by
George Charitopoulos

Department of Electronic and Computer Engineering
Technical University of Crete

Chania, February 2013



Advisor Professor: Prof. Dionisios Pnevmatikatos

Evaluation Committee:
Professor Dionisios Pnevmatikatos

Professor Apostolos Dollas
Associate Professor Ioannis Papaefstathiou

i



Abstract
The last few years FPGAs have penetrated the mainstream and have experienced wide 

usage through the users.  Also the concept  of  reconfigurable computing has benefited 

numerous application domains,  with FPGAs being the stronger representative of that. 

One of the most crucial  technologies incorporated in some specific FPGA families is 

called partial reconfiguration. It allows for the reprogramming of part(s) of the FPGA 

chip without disturbing the rest of its operation, even during runtime.

FPGAs  have  been  widely  adopted  in  embedded  systems.  Partial  reconfiguration 

technology  can  leverage  these  systems  by swapping  in  and  out  task  modules  in  an 

operating-system fashion. A task can be downloaded upon arrival or when needed, during 

the system operation. To this direction one of the most important parts of said embedded 

system is the Scheduling Algorithm.

The Scheduling Algorithm is responsible for the placement and scheduling of hardware 

tasks on the device when those are needed. Thus far many scheduling algorithms have 

been proposed by the research community. However these algorithms have the drawback 

that they are not compatible with the target devices,  due to the neglecting of several 

technology restrictions.

In  this  thesis  we  present  a  novel  scheduling  algorithm  that  manages  the  arrival  of 

hardware tasks and places them on the FPGA. This algorithm could be incorporated at 

any complete runtime system inhabited on a FPGA.

ii



Dedication
I would like to dedicate my thesis in my passed away grandmother, Harikleia, with the  

hope that this work will finally convince her that I, in fact, was accepted and finished my  

education at the Technical University of Crete.

Acknowledgments

I would like to thank, first and foremost, my family, who I deeply love, for their love and 

support, during all these years. 

Also  I  would  like  to  thank  Dr.  Kyprianos  Papadimitriou,  for  without  his  help  and 

guidance this work would never see the light of day, also for always being there to talk 

about the difficulties of this work and making said talks easy, pleasant and educational, 

while giving them a friendly vibe, which was very kind and helpful.

Also I would like to thank Professor Dionysios Pnevmatikatos for giving the opportunity 

to  work on this  very interesting field of  research  and for  his  support  throughout  the 

elaboration of this thesis.

Additionally I would like to thank Professor Apostolos Dollas and Associate Professor 

Ioannis Papaefstathiou, for taking the interest in my work and agreeing to evaluate it. 

Last but not least I would like to thank the Theatrical Team of the university, without 

which my studies here would have been longer and more difficult and also my friends in 

Crete and in Athens for coping with me all these years.

iii



Contents

Abstract............................................................................................................. ii

Acknowledgments ...........................................................................................iii

1 Introduction......................................................................................................................1
1.1 Field Programmable Gate Arrays............................................................................1
1.2 Partial Reconfiguration...........................................................................................2
   1.2.1 Module-Based Partial Reconfiguration.............................................................3
   1.2.2 Difference-Based Partial Reconfiguration........................................................4
   1.2.3Applications of Partial Reconfiguration............................................................4
1.3 The Embedded Operating System Hypothesis and the Scheduling Issue...............5
1.4 Thesis Contribution.................................................................................................6
1.5 Thesis Structure.......................................................................................................7

2 Related Work...................................................................................................................8
2.1 Related work regarding OS for partially reconfigurable FPGAs............................8
2.2 Related work on Scheduling and Placement Algorithms......................................11
2.3 Related work in the Technical University of Crete's Microprocessor and 
Hardware Laboratory..................................................................................................15
2.4 Conclusion............................................................................................................15

3 Development of scheduling algorithms for Partially Reconfigurable 
FPGAs..................................................................................................................................17

3.1 Basic Device Area Models....................................................................................18
3.2 A C-Language Implementation of Steiger's 1D Horizon Technique.....................18
3.3 A C-Language Implementation of Steiger's 1D Stuffing Technique.....................24
3.4 Expansion to the 2D model of Steiger's Stuffing Technique................................30
3.5 The Technology Restriction that prevent the implementation of schedulers on 
realistic FPGAs...........................................................................................................34
3.6 Conclusion ...........................................................................................................42

4 A Scheduling Algorithm targeting a realistic Partially Reconfigurable 
FPGA....................................................................................................................................43

4.1 Scheduling ideas used in our Scheduling Algorithm............................................43
4.2 Partial Reconfigurable Module Relocation on FPGA devices and its potential use 
in Scheduling Algorithms ..........................................................................................47

iv



4.3 The Partial Reconfigurable Module true FPGA size issue ..................................49
4.4 The Scheduler Analysis ........................................................................................51
4.5 Conclusion ...........................................................................................................57

5 Evaluating our Algorithm.........................................................................................58
5.1 Evaluations with our Task Sets.............................................................................58
5.2 Evaluations with task sets from other research groups.........................................65

6 Conclusions and Future Work.................................................................................68

Bibliography......................................................................................................................70

v



Chapter 1

Introduction
In this chapter, an introduction is made about FPGAs, partial reconfiguration, scheduling 

and the problems regarding an embedded operating system. Also, a presentation is made 

regarding the subjects of this thesis.

1.1 Field Programmable Gate Arrays

The Field Programmable Gate Arrays  (FPGAs) are  integrated circuits  designed to by 

configured by the end-user, in order to execute different applications. The final FPGA 

configuration is specified, by using a hardware description language (HDL), similar to 

that  used  for  an  application  specific  integrated  circuit  (ASIC).  FPGAs  can  be 

programmed to implement any logical function that an ASIC could perform. Over the 

years FPGAs have increased their popularity amongst users due to the ability to update 

their functionality after shipping, partial re-configuration of a portion of the design and 

the low non-recurring engineering costs relative to an ASIC design. 

FPGAs  contain  programmable  logic  components  called  “configuration  logic  blocks” 

(CLB)  and  a  reconfigurable  network  used  for  interconnection  between  those  blocks. 

Logic blocks can be configured in order to perform complex combinatorial functions or 

simple logic gates like AND and XOR. Also this blocks can include memory elements 

like flip-flops or more complete blocks of memory and many other more specific pieces 

of  hardware  logic  (dedicated  multipliers,  Block  RAMs  etc).  A representation  of  the 

internal structure of an FPGA, is shown in Figure 1.1.

1



In the recent years, FPGAs have become a powerful tool, due to their many advantages 

and are broadly used in several applications such as, digital signal processing, software-

defined radio, ASIC prototyping, medical imaging, computer vision, speech recognition, 

cryptography,  bio-informatics,  computer  hardware  emulation,  radio  astronomy,  metal 

detection and a growing range of other areas.

1.2 Partial Reconfiguration

Partial Reconfiguration (PR) is the process of changing the portion of a reconfigurable 

hardware circuitry. This can be done, either when the rest of the design is operational and 

the  device  is  active  (dynamic  partial  reconfiguration)  or  when  the  device  is  inactive 

(static partial reconfiguration).  PR gives the ability to share the same hardware amongst 

different applications, increase resource utilization, update the hardware remotely and to 

adapt hardware algorithms. Some of the benefits of PR are:

• Increased System Performance:  PR provides the ability, to the user, to use more  

efficient implementations of a design for different situations, while the rest of the  

system continues its execution without performance loss or disputed results during 

the reconfiguration process.

• Reduced Power Consumption:  In power-constrained designs the user can simply  

download a more power-efficient version of a module, or a blank bitstream when the 

particular  region  of  the  device  is  not  needed,  therefore  reducing  the  power  

2



consumption of the design.

• Adaptability: Designs with the use of PR can adapt to changes in their environment, 

their input data or even their functionality. This capability makes the design more  

efficient, compared to a more generic one. 

• Hardware Upgrade and Self Test: The ability to change hardware. Xilinx FPGAs 

can be updated at any time, locally or remotely. Partial reconfiguration allows the end 

user to easily support, service and update hardware in the field. Also with the use of 

self test components, the user can check, on demand, the integrity of the system. [1]

• Shorter reconfiguration times: The configuration time is directly proportional to the 

size of the configuration bitstream. Partial reconfiguration allows you to make small 

modifications without having to reconfigure the entire  device.  By changing only  

portions of the bitstream – as opposed to reconfiguring the entire device – the total 

reconfiguration time is shorter. [1]

The first device able to support partial reconfiguration of their circuitry was released by 

Xilinx in the mid 90s and it was the model XC6000. Since Xilinx has released many 

devices with the capability of partial reconfiguration ranging, from the high-end Virtex-6 

to  the  low-end  Spartan  3/E  family.  Xilinx  supports  two  basic  styles  of  partial 

reconfiguration, module-based and difference-based.

1.2.1 Module-Based Partial Reconfiguration

Module-based partial reconfiguration uses modular design concepts to reconfigure large 

block of logic. These modules are known as partially reconfigurable modules (PRM) and 

each of them implements a certain function or algorithm. These modules are loaded in 

certain regions, defined statically, called partial reconfigurable regions (PRR). In order to 

perform the loading of a PRM to a certain PRR the device needs information, which is 

encrypted in a file called partial bitstream. A partial bitstream is created at design time 

and is used to reconfigure a specified region with a PRM. It is important to note that a 

partial bitstream is in direct accordance, first to the PRM for which it was created and to 

the PRR, this PRM will be loaded on. 

The communication access to  the PRR is  achieved through special  pre-defined static 

buses called Bus Macros. These bus macros are the “gateways” through which all the 

System – PRM communication processes will occur, with the exception of clock signals. 

Bus macros can be placed, during compile time, on the boundaries of PRRs in order to 

3



define pins where PRMs can hook themselves. These macros are made with pairs of 

CLBs; one side of the CLB pair is connected to a RR signal, while the other is connected 

to a static logic signal.

1.2.2 Difference-Based Partial Reconfiguration

Difference-based partial reconfiguration can be used when a small change is made to the 

design, for example changing LUT equations or BRAM contents. In order to use this 

method the user needs to make modifications of the device layout and routing with the 

use of low-level software. The resulting partial bitstream contains only information about 

the differences, between the current design structure, that resides in the FPGA, and the 

new  content  of  the  FPGA.  Despite  the  fact,  that  this  method  allows  really  fast 

reconfiguration it introduces two limitations:

• Difficulty to change the design's routing.

• It cannot be used with a wide range of applications, due to the fact that it applies  

only in simple designs.

1.2.3Applications of Partial Reconfiguration

As stated before partial reconfiguration is a very important ability the FPGAs offer and 

with the help of, have become more popular amongst users. Currently, many application 

domains  are  being  studied,  in  order  to  explore  the  benefits  gained  from  their 

implementation with partial reconfiguration technology. Currently PR is the cornerstone 

for power-efficient and cost-effective software-defined radios (SDRs) [2]. 

Another usage of partial reconfiguration is in the migration and recovery of single-event 

upsets  (SEUs).  More  specifically  applications  that  are  space-based  have  a  high 

probability of experiencing SEUs. With the use of partial reconfiguration, a system can 

detect and repair SEUs in the configuration memory of the device without disruption of 

its operations or completely reconfiguration of the FPGA.

Implementation of cryptographic systems, can also benefit from the use of PR. PR in 

these systems gives the ability to support a range of cryptographic algorithms without the 

need of having them all integrated in the design. The system can swap algorithms in and 

out on demand with the use of PR. This not only makes these designs more simple but 

allows for more inexpensive FPGAs to be used, thus reducing the overall cost.

4



1.3 The Embedded Operating System Hypothesis and 

the Scheduling Issue.

Since  the  first  time  Xilinx  released  FPGAs  with  the  ability  of  dynamic  partial 

reconfiguration,  many research  groups  contemplated  the  construction  of  an  operating 

system accommodated in a FPGA. More specifically, the goal of the research community, 

was to create an OS that would manage the hardware implementations of numerous tasks 

and their execution on hardware. The advantages of such an OS were many, first the 

hardware acceleration produced by the device would make certain processes run much 

faster that they would in software, also the portability of the device was a great asset, plus 

the fact that even without an embedded OS the FPGAs were experiencing a vast use 

amongst experienced and simple users. The first field the researchers worked on towards 

their goal of an embedded Operating System was the Scheduling Algorithms.

The  term  scheduling  was  first  introduced  to  describe  algorithms  used  for  operating 

systems. The main job for a scheduling algorithm is to give access to threads, processes 

or data flows, to the system resources, mainly the CPU time or the memory. In real-time 

systems the scheduler is important to ensure that the processes can meet their deadlines. 

A good scheduler is characterized by its ability to keep fairness between the distribution 

of system resources to the several processes, a low declined processes rate, when our 

tasks have deadlines, good utilization of the device's resources and a low response time.

Thus, from the beginning a great deal of work was spent on the design of said Scheduling 

Algorithms  for  the  OS.  Instantly  the  researchers  saw that  the  traditional  Scheduling 

Algorithms derived from the software OS area could not work. The main problem was, 

that in hardware, we are concerned about the space used by a task in the device and as a 

conclusion,  in  order  to  plan  tasks  in  the  future;  we need  to  implement  a  free  space 

manager  or  placement  manager,  as  it  is  usually  referred  to,  inside  the  scheduling 

algorithm or in co-operation with the scheduling algorithm. 

In those first attempts researchers tended to work towards the 2D area model. Despite the 

fact that the 2D area model was not yet available in the Xilinx devices, the researchers 

used it because it offered the ability to better manage the free space and produced less 

area fragmentation. The placement manager was responsible for finding, at each point in 

time, the maximum rectangles in the device. This problem can be compared to the 2D bin 

packing  problem,  which  is  known to  be  a  combinatorial  NP-hard  problem.  For  this 

problem several solutions have been proposed, most of them consider different ways to 

5



partition  the  device,  in  order  to  create  maximum  rectangles.  Many  of  those  works 

evaluate their solutions in a discrete time framework constructed in C language. At that 

time,  the  researchers  choose  that  way to  implement  their  designs  because  it  seemed 

logical, the same program could run in the Microblaze processor inhabited in the device 

with minimum changes to the code, that has been already created.

However after many attempts to a complete Embedded OS system inhabited in a Partially 

Reconfigurable FPGA, the researches tend to neglect other restrictions induced by the 

target device. First there is the PRRs restriction, which states that the device has to be 

pre-partitioned in PRRs, that clearly state the position a PRM while be accommodated 

on. Also it is important to state that a runtime change in those PRRs is not feasible. 

Second the FPGA has certain restrictions regarding the binding between a PRR and a 

PRM, that binding is done through the bitstream as it is necessary, in order for a PRM to 

be placed on a PRR, that a bitstream would be created that binds these two. Finally the 

researchers have made many wrong assumptions regarding the use of module relocation 

on modern FPGAs. 

All  the  above,  prevent  the  algorithms  created  thus  far  and  that  will  be  presented  in 

Chapter 2, to be implemented and work on a realistic FPGA device, thus rendering them 

useful,  only  for  theoretical  work  and  research,  or  applicable  on  the  future,  when  a 

different partial reconfiguration technology will be available.

1.4 Thesis Contribution.

In this thesis we consider the module-based dynamic partial reconfiguration of a FPGA. 

This  thesis  studies  the  scheduling  algorithms  developed  through  the  years  for 

Reconfigurable Hardware Operating Systems and presents a novel scheduling algorithm 

we constructed.

With this work we attempt to create a scheduling algorithm that not only successfully 

schedules hardware tasks on a FPGA device, but also takes in consideration all the known 

restrictions induced by the device. That way this thesis offers one of the few complete 

and implementable scheduling algorithms for hardware tasks done so far.

More specifically the thesis's subjects are the following:

• First, we study previous scheduling algorithms along with other related work on 

the field of an Operating System inhabited in a FPGA.

• Second,  we  present  the  results  of  our  implementation  off  three  scheduling 

6



algorithms  we  chose  to  implement.  The  implementation  of  other  scheduling 

algorithms was important in order to take ideas and gain useful knowledge on 

how to create efficiently a scheduling algorithm.

• Then, we discuss why any of the implemented or presented algorithms are not 

implementable  in  a  realistic  Partially  Reconfigurable  FPGA.  Here  we present 

also,  a  thorough  analysis  of  each  algorithm  and  which  particular  FPGA 

restrictions it violates.

• Moreover,  we present a scheduling algorithm, we created,  targeting a realistic 

FPGA  with  partial  reconfiguration  capability.  The  scheduling  algorithm  we 

created  is  implementable  in  almost  any  device,  as  it  obeys  to  every  known 

technology restriction, contrary to most of the current state of art.

• Finally,  we implement and evaluate our algorithm on a simulating framework. 

The  data  we feed  our  framework  with  simulate  one  of  the  most  well  known 

technologically realistic FPGAs.

1.5 Thesis Structure.

In Chapter 2 we will provide references and analysis of the related work used in this 

thesis,  mainly  the  preexisting  scheduling  algorithms  we  studied  and  research  work 

regarding the creation of an Operating System inhabited on an FPGA. In Chapter 3 we 

present, the implementations we made of three preexisting scheduling algorithms, along 

with a study of, why any of the algorithms presented or implemented, are not applicable 

in a realistic scenario. Also presented here are, the technology restrictions of the Partial 

Reconfiguration process. In Chapter 4 we present, our ideas regarding a novel scheduling 

algorithm obedient to the technology restrictions analyzed previously, which also uses the 

process of Module Relocation.  In Chapter  5 we present evaluations we made on our 

algorithm not only with task sets created by us, but also with task sets taken from other 

researchers or similar to them. Finally,  Chapter 6 summarizes our work and provides 

ideas for future modifications of the existing algorithm.

7



Chapter 2

Related Work
So  far,  several  researches  have  been  published  regarding  the  implementation  of 

scheduling and placement  algorithms for  hardware tasks.  Also there  are  few projects 

trying  to  implement  an  Operating  System based  on  a  FPGA partially  reconfigurable 

device. In this chapter we describe these works, we managed to collect information for 

and  then  we  continue  with  the  previous  work,  that  has  been  conducted  in  the 

Microprocessor and Hardware Laboratory of the Technical University of Crete.

2.1  Related  work  regarding  OS  for  partially 

reconfigurable FPGAs.

One of the first works, regarding the idea, of creating an operating system inhabited in a 

partially reconfigurable device was [3]. In this study J. Burns et al. depending on three 

different applications,  manage to extract  a  set  of common requirements and design a 

runtime  system for  managing  the  dynamic  reconfiguration  of  FPGAs.  The  resulting 

system incorporates operating-system style services, that permit sophisticated and high 

level  operations  on  circuits.  Even  though their  work  shows an  understanding  of  the 

technology restrictions, some aspects of the above-mentioned high level operations on 

circuits  are not yet  applicable in  current devices.  However,  despite the fact  that,  one 

might  consider  their  job  chronologically  old  regarding  the  knowledge  the  research 

community had for the technology restrictions  induced by the FPGAs, they correctly 

consider that circuits can be downloaded at pre-defined, at compile time, areas on the 
8



FPGA. Also the term “library of circuits”, that is often mentioned in their work, is an 

important  fact  of  the  scheduling  process.  It  is  important  in  order  to  have  a  quality 

scheduler to have many choices in different implementations of the same circuit.  

A more complete study regarding the advantages, that can be derived from the use of 

Partial Runtime Reconfiguration (PRTR) in high-performance reconfigurable computing 

is  done  in  [4].  There,  El-Araby  et  al.  first  analyzed  the  execution  model  of  PRTR, 

exploring what are the key aspects that affect its performance and then experimentally 

verified his findings. This work showed that PRTR can become the trend for improving 

the  performance,  in  high-performance  reconfigurable  computing,  as  the  experiments 

showed that PRTR can be almost twice faster than the Full  Runtime Reconfiguration 

(FRTR) alternative. Although the researchers had to assume that practical considerations 

induced  by  the  technology,  mainly  the  overhead  induced  by  the  slow  ICAP,  might 

overweight the gains. However with the potential future use of an Operating System it is 

clear that PRTR is far more beneficial than FRTR for versatility purposes, multitasking 

applications and hardware virtualization.

Shortly after, P. Lysaght, B. Blodget and J. Mason presented a partial reconfiguration 

design flow that helps the end-user efficiently create dynamic reconfigurable designs in 

[5], along with a description of some enhancements done to Xilinx FPGAs in order to 

provide  better  support  for  the  creation  of  dynamically reconfigurable  designs.   Their 

work  offers  important  insight,  on  the  way a  system should  be  built,  in  order  to  be 

implementable in a realistic partially reconfigurable device. Moreover the authors here 

present terms like PRR, PRR-PRM binding via a bitstream and device partitioning at 

compile time, that are crucial on understanding correctly the PR process.

Also, a work regarding the implementation of an operating system can be found in [6]. In 

their  work,  H.  Walder  and M.  Platzner,  present  a  runtime  environment  that  partially 

reconfigures  and  executes  hardware  tasks  on  a  Xilinx  Virtex  device.  Their 

implementation splits the reconfigurable surface of the device into vertical task slots that 

can accommodate hardware tasks. The static region that includes all operating system 

modules is organized into two OS frames. Also a bus-based communication infrastructure 

is created that allows tasks communication and I/O. A system graphical representation is 

shown in Figure 1. Their works has been tested in a Virtex-II device allowing for task 

partial reconfiguration and execution.

9



A work that has made all this possible can be found in [7], where B. Blodget et al. offered 

many insights towards the improvement of the already existing external reconfiguration 

control  interface  called  internal  configuration  access  port  (ICAP).  Their  Self 

Reconfiguring Platform (SRP) defines two APIs. The lower level one is the ICAP API, 

which provides access to the configuration cache and controls reading and writing the 

cache to the device. The higher level API is the Xilinx Partial Reconfiguration Toolkit 

(XPART),  which  abstracts  the  bitstreams  details  providing  access  to  select  FPGA 

resources.

Although all these years many works have tried to create a complete runtime system for 

reconfigurable devices, the problem is that it has yet to penetrate the mainstream. The 

reason why this happens is examined in [8], where K. Compton and W. Fu also offer 

some solutions to this issue. According to their work, one of the biggest problem is the 

management of reconfigurable hardware in a multi-threaded environment. Also in their 

work they propose simple schedulers like, a Most Frequently Used scheduler, a Best Fit  

scheduler, both of which are based on simplistic greedy methods and a more complex 

Multi-Constraint Knapsack  scheduler. These schedulers not only choose which kernels, 

i.e. hardware tasks, should be implemented in hardware for each scheduling interval, but 

also the specific hardware implementation for those kernels.

10



One of the most thorough works on the field of creating a complete Runtime Manager 

has been shown in [9]. In this paper a Run Time Manager (RTM) is introduced able to 

map multiple applications on the underlying hardware and execute them concurrently. 

The target architecture the researchers use for designing their system is shown in Figure 

2.  Moreover  it  is  illustrated  how  to  generate  this  RTM  and  how  its  modular 

implementation, along with the use of partial reconfiguration, allows the user to explore 

different  policies  regarding reconfiguration,  task  scheduling  and resource  assignment. 

Here the researchers take in consideration almost every restriction induced by the device 

and create a complete Runtime Manager that schedules task on the device. However one 

of the setbacks this work has is that the researchers do not consider deadlines for their 

tasks, which allows them to eventually place all the task on the FPGA.

2.2  Related  work  on  Scheduling  and  Placement 

Algorithms.

Many researchers after  proposing their  system have tried to  create  unique schedulers 

coupling them with that design. One of the first works in the field regarding a hardware 

task scheduling algorithm was done by C. Steiger et al. at [10]. Their work offered the 

first two online scheduling algorithms designed for operating systems for reconfigurable 

embedded platforms, which, since then, have influenced many researchers. In this paper, 

design issues for reconfigurable hardware operating systems are first discussed similar to 

the  ones  presented  in  [6].  Then  for  the  1D and  2D resource  models  the  scheduling 

11



problem  is  formulated  and  two  heuristics,  the  horizon  technique  and  the  stuffing 

technique are presented. For evaluation, a discrete-time simulation framework has been 

devised. Further analysis of Steiger's horizon and stuffing techniques, as well as, our C-

language implementation of these algorithms can be found in Chapter 3 of the current 

thesis.

A great deal of work in creating a scheduler for managing hardware tasks has been spent 

from T. Marconi et al. One of the first schedulers presented by this research group is in 

[11]. There T. Marconi and Yi Lu, inspired by Steiger's work in [10] and Y.-H. Chen and 

P.-A. Hsiung work in [12],  create a  scheduling and placement  algorithm for partially 

reconfigurable devices. The main idea used by the algorithm is to place each task on the 

opposing side of the device in order to have more space in the middle and thus better 

space utilization. The proposed algorithm outperforms the existing algorithms in terms of 

reduced total wasted area up to 89.7%, has 1.5 % shorter schedule time and 31.3% faster 

response  time.  The  simulation  experiments  where  done  by  implementing  several 

algorithms  in  ANSI-C  and  run  them on  a  Pentium-IV 3.4  GHz PC using  the  same 

artificial task sets.

Furthermore,  in  [13]  T.  Marconi  et  al.  present  a  novel  3D  total  contiguous  surface 

heuristic,  for  equipping  a  scheduler  with  the  “blocking-awareness”  capability.  The 

proposed algorithm tends to allocate tasks at positions where blocking of future tasks will 

be avoided, in order to achieve that, the algorithm calculates the horizontal and vertical 

contiguous surface between the new incoming task, previously or next scheduled tasks 

and the FPGA boundary. The main idea of the algorithm is to compactly pack the tasks 

on  the  device.  The  resulting  algorithm  is  evaluated  in  a  discrete-time  simulation 

framework in C.

Moreover, in [30] T. Marconi et al. present the scheduling algorithm that encompasses the 

3D total contiguous surface heuristic. However this algorithm is also applicable in 3D 

Partial Reconfigurable FPGAs, mainly the Virtex-6 family. Nevertheless we can see that 

the logic of the algorithm is easily applicable to 2D Partial Reconfigurable FPGAs too. 

The algorithm presented first tries to pack compactly on the device the tasks on space and 

then  in  time,  thus  maximizing  the  acceptance  rates.  The  resulting  algorithm  was 

evaluated in a discrete-time simulation framework in C.

In addition Yi Lu and T. Marconi have created, in [14], the first scheduling algorithm that 

takes into account the data dependency and the data communication, amongst hardware 

tasks and between hardware tasks and external devices. The algorithm has three steps, 

12



first a suitable placement for the task is found regarding its size, then the configuration 

port is checked for any conflicts and finally the task is scheduled in a free time and space  

slot,  in  accordance  with,  its  communication  requirements.  The  resulting  algorithm is 

evaluated in a discrete-time simulation framework in C.

In order to create  an efficient  scheduling algorithm, it  is  very important to create an 

equally efficient placement algorithm. The speed and the quality placement of hardware 

tasks on the device, in addition to the proper free space management, are very important 

attributes, not only for a good online placement algorithm, but also for a good scheduler. 

Actually those issues have been the first thing researchers examined when the partial 

reconfiguration feature became available.  In  order  to  be more accurate,  almost  every 

proposed scheduling algorithm comes along with a placement one.

A very important work on this field is presented in [15]. There K. Bazargan et al. offered 

the  first  methods  and heuristics  for  fast  and quality  online  and offline  placement  of 

templates on reconfigurable computing systems. The methods introduced here, were the 

main inspiration for many placement algorithms created in the future. Also the work done 

by Bazargan here, offers the first proof that, the creation of many representations of the 

same PRM (library of bitstreams) can improve up to 10% the system's acceptance rate. 

Also  in  the  field  of  task  placement  a  highly  respectable  work  was  presented  by  K. 

Compton and et al. in [29]. There K. Compton inspired by the concept of task relocation 

proposes several techniques, that optimize the already existing process. Those techniques 

include several task transformations in order to achieve better defragmentation via task 

relocation. However, the transformations proposed here were not applicable at the time so 

K. Compton proposes a new Relocation Architecture, that implements and fully exploits 

the benefits of her proposed transformations.

H. Walder, C. Steiger and M. Plantzer in [16] try to create methods that outperform the 

ones introduced by K. Bazargan and are focused on finding efficient ways to partition the 

reconfigurable  resources  space,  as  well  as,  creating  a  hash  matrix  data  structure  to 

maintain  the  free  space.  More  specifically  the  researchers  try  to  avoid  the  direct 

partitioning  of  the  device  after  the  insertion  of  a  PRM  and  maintain  a  series  of 

overlapping rectangles. According to simulations, which were made in a discrete time 

simulation  framework,  their  placement  methods  offer  an  improved placement  quality 

against previous art in the field.

In [17] H. Walder and M. Platzner focus on a major aspect of a reconfigurable operating-

system; task placement and transformation. First they discuss the task characteristics and 

13



system models, and then they investigate task placement techniques for non-rectangular, 

coarse-grained tasks and propose footprint transforms; that change task shapes, in order 

to find possible mappings. However, many of the proposed footprint transformations are 

not realistic, due to the complexity of the re-routing process. 

In [18] T. Marconi and Yi Lu propose three techniques regarding space management: 

Merging  Only if  Needed  (MON),  Partial  Merging  (PM),  and  Direct  Combine  (DC). 

These technique focus on the merging of non-overlapping empty rectangles, created by 

the placement of a task on the device and the partitioning done by its placement. The 

algorithm proposed uses the above techniques dynamically to exploit their advantages. 

For their simulations they constructed in a discrete-time simulation framework in ANSI-

C, to evaluate the performance of the proposed techniques and compare it to related art.

Also, in [19] T. Marconi et al.  present a new strategy for online placement algorithms on 

2D  partially  reconfigurable  devices,  termed  the  Quad-Corner.  The  main  difference 

between QC and other work in the field are the abilities of quad-corner spreading of the 

tasks in the reconfigurable surface, i.e. the algorithm spreads the hardware tasks close to 

the four corners of the device thus maximizing the free area in the middle, an idea also 

used in [11]. The resulting algorithm is evaluated in a discrete-time simulation framework 

in C.

In [20] T. Marconi et al. present yet another task placement algorithm. Their goal is first 

to  exploit  the  fast  search  capabilities,  offered  by the  pre-partitioned  model.  For  that 

purpose in their work the FPGA is pre-partitioned into three different size logic blocks, 

small, medium and large. Also in order to manage the FPGA resources more efficiently 

the algorithm performs split, merge and recover operations. Even though the first premise 

of  this  algorithm  is  obedient  to  the  FPGA restrictions  (pre-partitioning  model),  the 

operations  done  during  runtime  by  the  algorithm  are  in  violation  of  other  FPGA 

restrictions. The algorithm is programmed using C language, and executed under Linux 

2.6 with Intel(R) Pentium(R) 4 CPU 3.00GHz.

Finally in [21] A. Montone et al. try a different approach in hardware task placement and 

space  management.  Their  work  focuses  on  a  resource-  and  configuration-aware 

floorplacement  framework, using an objective function,  based on external  wirelength. 

Their simulations showed a great reduction in wirelength and a huge reuse probability of 

existing links, i.e. pre-placed, at design time, bus macros, but has introduced significant 

area fragmentation.

14



2.2  Related work done in the  Technical  University of 

Crete's Microprocessor & Hardware Laboratory.

In the works presented above, several aspects of reconfiguration time, throughput and the 

overall  performance of partial  reconfiguration in FPGA systems,  are vague and often 

wrong assumptions are made by the researchers. Also, there is no clear clarification of the 

metrics used to evaluate the scheduling and/or the placement algorithms presented. For 

example, the assumptions made by T. Marconi et al. at [18] regarding the reconfiguration 

time of a task are very simplistic. Also the term “quality of placement” is yet undefined. 

T. Marconi et al. in all of their work consider the placement quality a measure defined by 

the total wasted area in a reconfigurable device during scheduling, whereas H. Walder et 

al.   in [16], focus more on the  total execution time  of the algorithm and the  average 

waiting time  of the scheduled tasks.  Additionally it is proven to be really difficult for 

researchers to determine the penalty factor  induced to a system from executing a task's 

software implementation instead of its hardware one. For example in [15] K. Bazargan 

simply  multiplies  a  declined  task's  dimension  with  the  time  that  it  would  be 

accommodated on the device.

However in our lab a substantial amount of work has been made in order to clarify these 

aspects  of  reconfiguration.  In  [22]  and  [23]  K.  Papademetriou  et  al.  offer  detailed 

descriptions  of  how  reconfiguration  works  internally  and  an  exact  cost  model  that 

measures  accurately  the  time  spent  in  the  reconfiguration  process  and  the  actual 

throughput of FPGAs. That way,  we can have a more specific way of measuring the 

overhead introduced in the system by the scheduling algorithms. 

Moreover  in  [24]  the  researchers  discuss  the  feasibility  for  keeping  transparent  the 

acceleration  of  certain  kernels  to  the  user,  by  injecting  automatically  configuration 

bitstreams into the FPGA co-processor.  Also,  in [25] and in  more details  in  [26],  K. 

Papademetriou  and  A.  Dollas  present  a  novel  idea,  regarding  task  prefetching  and 

preloading in dynamically reconfigurable processors that can prove very beneficial  in 

future scheduling algorithms.

2.3 Conclusion

As  presented  above,  many  researchers  have  proposed  and  created  many  scheduling 

algorithms,  placement  algorithms,  for  managing  hardware  tasks  on  a  FPGA based 

15



partially  reconfigurable  operating  system,  and complete  runtime systems inhabited  in 

partially reconfigurable devices. However, as we can see from the above descriptions of 

these works, very few of the scheduling and/or placement algorithms have been evaluated 

using an actual partially reconfigurable device. On the contrary most of them, if not all, 

have been evaluated using a C-language discrete-time framework. 

That  is  due to  the inability of  those designs  to  be implemented on a  realistic  FPGA 

device,  which  derives  from the  technology restrictions  neglected,  while  creating  the 

algorithms. Also almost all of the works listed, have made many and sometimes over-

simplifying assumptions regarding the partial reconfiguration process.

In Chapter 4 of this thesis, those assumptions will be presented, additionally with the 

technology restrictions and we will  present,  why most of the above-mentioned works 

cannot be implemented in a real device.

16



Chapter 3

Development of scheduling algorithms for 

Partially Reconfigurable FPGAs.
In this  Chapter,  after  studying and analyzing the most  notable works on the field of 

hardware  task  scheduling  in  partially  reconfigurable  FPGAs,  we  will  present  three 

scheduling  algorithms implementations,  we made.  The algorithms implemented,  in  C 

language, and presented here are:

• Steiger's 1D Horizon Technique

• Steiger's 1D Stuffing Technique

• Steiger's 2D Stuffing Technique, with Bazargan's Shorter Segment Heuristic

Our work was focused on Steiger's algorithms, because these algorithms are the ones that 

influenced most of the following work done on the area. First, we briefly analyze the two 

main models used for the mapping of tasks in a reconfigurable device. Then we present 

and analyze our implementations of the above-mentioned algorithms and we continue 

analyzing, if any of these algorithms, along with the algorithms presented in Chapter 2 

are implementable in a realistic Partially Reconfigurable FPGA. Finally we begin the 

discussion of the restrictions induced by the FPGA technology and how these restrictions 

affect the implementation of, almost every algorithms presented. It must be noted that all 

the schedulers presented in this Chapter consider tasks with deadline, i.e. a task must 

complete its execution before its deadline time is met.

17



3.1 Basic Device Area Models.

The complexity of mapping tasks to devices depends heavily on the area model used. In 

the  area  of  Reconfigurable  Computing  two  area  models  are  commonly  used  from 

researchers.  In  the  simpler  1D area  model,  tasks  can  be  placed  anywhere  along  the 

horizontal device dimension, the vertical dimension is fixed and covers the total height of 

the  hardware  task  area.  Despite  the  fact  that  the  1D area  model  leads  to  simplified 

scheduling and placement problems, it suffers from two types of external fragmentation.

The  first  one  occurs  when  the  hardware  tasks  do  not  utilize  the  full  height  of  the 

reconfigurable area. The second one occurs when the remaining area is split into several 

small but non adjacent vertical stripes. The creation of external fragmentation is a huge 

disadvantage of scheduling algorithms as it can prevent the placement of a task on the 

device, despite the fact that enough area exists. 

The more complex 2D area model allows us to place hardware tasks anywhere on the 

reconfigurable area and thus creates less external fragmentation. As a result, the 2D area 

model, offers higher device utilization.

3.2  A  C-Language  Implementation  of  Steiger’s  1D 

Horizon Technique.

In [10] Steiger et. al presented  the Horizon Technique, which was the first attempt in 

creating  an  online  scheduling  algorithm  designed  for  operating  systems  targeting 

reconfigurable embedded platforms. Our C-language implementation of the 1D Horizon 

Technique will be presented in this section. 

The 1D Horizon Technique maintains three linked lists, the reservation list, the execution 

list and the scheduling horizon. The reservation list (R) holds the currently scheduled, but 

not yet executed tasks, the list entries the task's number, its placement and its starting 

time and is sorted according to increasing starting times. The execution list (E) hold all 

the currently executing tasks,  the list  entries,  the task's number,  its  placement and its 

finishing  time,  the  list  is  sorted  according  to  increasing  finishing  times.  Finally  the 

scheduling horizon list (H) consists of all the intervals [xI, xJ] in the device with their 

release times. In order for such an interval to exist in the list at a certain point in time, it 

must not be occupied after its release time, by any task neither in the reservation nor 

execution lists, the list is sorted according to increasing release times. The linked lists are 

18



a very useful structure in maintaining the data needed for the scheduling process. An 

example of the lists state at a random point in the algorithms execution time can be seen 

in Figure 1.

The Horizon Technique's main execution flow can be described  in three steps. At each 

time the online method first checks for terminating tasks, i.e., tasks with finishing time 

equal to the current time. Then reserved tasks with starting time equal to the current are 

removed from the reservation list and added to the execution list. Finally for each newly 

arrived  task  the  scheduling  function  is  called,  which  either  accepts  a  task,  therefore 

adding it to the reservation list, or rejects it. 

When a new task arrives the scheduler walks through the list of all horizon intervals with 

release times equal to the arrival time of the task and checks whether the task can be 

appended in the horizon. At any point of this walk the scheduler maintains a new list L, 

which contains all these intervals (line 2). Then the scheduler calls the BestFit  function 

(line  4),  which  selects  the  smallest  interval  from the  L list,  that  is  large  enough  to 

accommodate the new task, the function then returns either an empty set, when no such 

interval exists, or the placement  x  for the task. If such a placement exists, the task is 

added to the reservation list, if not the schedulers proceeds to the next release time of the  

horizon list and merges adjacent horizon intervals with this release time. If at any point, 

the next release time is bigger than the latest starting time of the task, the task is rejected.  

A task's latest starting time is calculated, by the scheduler, and it is the difference between 

its deadline time and its execution time. As a result the task's scheduling period is the 

time interval [arrival time, latest starting time]. The pseudocode for the horizon scheduler 

is shown in Algorithm 1. 

19



Algorithm 1: 1D Horizon Scheduler σ1D-horizon(Ti, H)

1.   t ←  ai

2.  L ← horizon interval with t =  tr

3.  while (t ≤ si-latest) do

4.  x = BestFit(L, wi)

5. if x≠0 then

6. add reservation(Ti, x, t)

7. return(ACCEPT)

8. end if

9. t ←  tr of the next horizon interval

10. L ← MergeIntervals(L, H, t)

11. end while

12. return(REJECT)

In order to make the scheduler more easy-to-understand many functions were created. 

The main functions were, schedule, BestFit, MergeIntervals and all the functions needed 

for list management, i.e. add, remove and print. All these were the functions that were 

presented by Steiger, however there is another one, that is not mentioned on Steiger's 

work. That is the UpdateHorizon function, which must be called after every function that 

performs a change in the execution and/or the reservation lists. After this analysis we 

continue to the implementation of the scheduler. At the first phase we tried to maintain 

the  order  that  Steiger  suggested  in  his  work,  first  check  for  terminating  tasks,  then 

execute waiting tasks and finally schedule.

After  many tries it  was concluded that  in  a  C simulation of  the scheduler  this  order 

cannot  be  maintained.  In  C  things  are  done  sequentially  or  the  use  of  threads  and 

multiprogramming is required. The main problem with Steiger's order was that when a 

task arrives at t_sim=x, it is scheduled with t_start=x.  Therefore, this task will never be 

added to the execution list, because the scheduling at Steiger's order is done at the end, so 

when the algorithm tries to add the task to the execution list t_sim would be x+1, which 

will be different from the starting time assigned to the task. Thus, we decided to first 

schedule tasks, then complete the execution of any finishing tasks and finally add starting 

tasks to the execution list. 

Subsequently, we began the development of the four above-mentioned functions. While 

20



Steiger fully explains the way, the schedule function works, the absence of pseudocode 

for the BestFit, MergeIntervals functions, required some improvisations. That was more 

necessary  with  the  UpdateHorizon  function's  implementation,  which  is  based  in  an 

original idea of ours.

The  schedule  function's  inputs are:  the task to be scheduled,  the horizon list  and the 

maximum width of the reconfigurable region. The function returns a pointer to a structure 

consisting  of  the  task's  placement,  starting  time,  number  and  a  number  representing 

whether the task has been accepted or not. The way the function works is exactly as 

described by Steiger, with no modifications made by us.

The BestFit function's inputs are: the L list, which consists of horizon intervals, the task's 

width,  the  current  scheduling  time,  i.e.  the  current  L intervals'  release  time,  and  the 

maximum width of the reconfigurable region. The function walks through the L list trying 

to  find  the  smallest  interval,  that  can  accommodate  the  scheduled  task.  If  found the 

function returns the xI value of the interval, as the placement of the task or the value -1, if 

no such interval exists.

The MergeIntervals function's inputs are: the current L list, the horizon list and the time t  

at which the merging will occur. For each horizon interval  X  in the horizon list with 

release time equal to  t  the function checks all the horizon intervals with equal or lower 

release times and if  they are adjacent to  X  it  merges them. After all  the intervals are 

checked with  X,  the final merged interval is added to the  L list  and the next horizon 

interval undergoes the same processing, only if it was not one of the intervals that X was 

merged with. Upon completion the function returns the head of the L list.

Finally,  we  explain,  the  UpdateHorizon  function,  which  was  the  most  demanding 

function  to  implement  as  there  was  no  description  of  it  in  Steiger's  paper.  The only 

information for the function, was its functionality: 

• The UpdateHorizon function updated the horizon list with adding or removing  

intervals according to the current state of the reservation and execution lists. 

From that first description of the function its inputs were determined; the reservation list,  

the execution list, the task list, in order to have specific information for every task, the 

current simulation time and the maximum width of the reconfigurable device.  First  a 

temporary  horizon  list  with  one-width  intervals  [0,  x]  and  release  time  the  current 

simulation time is created, that fully partitions the spatial resource dimension.

Then every interval is cross-checked with all the entries of the reservation list, if at any 

point any task uses the interval, its release time is set as the maximum finishing time, i.e. 

21



the starting time of the task, plus its execution time. Then upon completion of the check, 

the new interval was added in the temporary horizon list. The same check is performed 

with the tasks in the execution list. After these checks the temporary horizon list consists 

of many one-width intervals with various release times, in order to list every interval only 

once we kept in the list only the one-width intervals with their maximum release times. 

Finally  the  adjacent  intervals  with  same release  time were  merged and the  resulting 

interval was added to the horizon list. The final horizon's list head was the output of the 

function. 

The other functions needed for the completion of the Horizon Scheduler were trivial list 

management functions, for each list used in it. In order to examine the accuracy of our 

implementation, we created a task set same to the one Steiger uses in his paper, then we 

cross-checked the state of the reservation, execution and horizon lists, at simulation times 

1, 2, 3 and 21 with Steiger's. The task set we created is shown below:

Steiger's Task Set Table

Task Arrival Time Execution Time Deadline Width Height

T1 0 20 30 3 3

T2 0 3 10 7 5

T3 1 12 15 3 5

T4 1 3 10 2 2

T5 2 2 10 3 4

T6 2 3 20 5 1

T7 3 2 20 3 2

The above task set produced the same results as Steiger mentions in his work. At Figure 2 

a graphical representation of the reconfigurable area after the arrival and scheduling of all 

the tasks is shown.

Thus  having  confirmed  the  functionality  of  the  Horizon  Technique  we proceeded  in 

testing the Horizon Technique in a corner situation, where it produced high space and 

time fragmentation. The task set we constructed was:

22



High Fragmentation Task Set Table

Task Arrival Time Execution Time Deadline Width Height

T1 0 5 20 10 2

T2 0 10 15 3 4

T3 1 3 10 2 2

T4 1 3 10 4 2

T5 1 3 15 3 5

T6 2 4 20 10 3

T7 3 3 20 3 2

With this  task set  the Horizon Technique has one rejected task (T7).  Although if  we 

observe the scheduling process and the utilization of the reconfigurable area it is clear 

that this rejection can be avoided. More specific at t_sim=2 the reconfigurable area is 

shown in Figure 3.

23



When Task 7 arrives plenty of area exists in the device for it to be accommodated in. In 

fact two placements for T7 can be found, either  placement  7 with starting time 8 or 

placement 4 with starting time 11, but instead the task rejected. In order to understand 

why  that  happens,  we  need  to  observe  the  Horizon  List,  the  algorithm  produces. 

Specifically the Horizon List after the scheduling of T6 is:

******HORIZON LIST******

Horizon interval x1 1, x2 10, release time 19.

So the Horizon Technique,  in  order  to  list  an interval  at  the Horizon List,  needs  the 

interval  to  be free from the time of its  release and to  not  be occupied afterward,  as 

mentioned before.. That is the reason why the intervals 8-9 at release time 8 and 4-6 at  

release time 11 are not considered as possible entries in the Horizon List, as both of them 

are later occupied by Task 6. That is the main disadvantage of the Horizon Technique as 

it produces high area fragmentation. 

3.3  A  C-Language  Implementation  of  Steiger’s  1D 

Stuffing Technique.

In  the  previous  section  we  presented  Steiger's  Horizon  Technique.  It  should  be 

acknowledged that the Horizon Technique has faults, especially regarding the free area 

management.  However  it  was  a  first  attempt  from  Steiger  to  successfully  schedule 

hardware tasks in a partially reconfigurable device. Having realized the disadvantages 

induced  by  the  maintenance  of  the  Horizon  List,  Steiger  tried  to  make  the  area 

management process more efficient, the resulting algorithm was the Stuffing Technique. 

In this section we present our C-language implementation of the 1D Stuffing Technique.

The  Stuffing  Technique  also  maintains  three  linked  lists,  the  reservation  list,  the 

execution list and the free space list. The reservation (R) and execution (E) lists hold the 

appropriate information for each task listed in one of them, task number, starting time, 

placement  for  the  reservation  list  and task number,  finishing time,  placement  for  the 

execution list. Finally the free space list consists of all the intervals [xI, xJ] that identify 

currently  unused  resource  intervals  in  the  device,  sorted  according  to  increasing  x-

coordinates. The main difference between the Horizon and the Stuffing Technique can be 

seen in the  free space list,  while in the Horizon Technique the intervals are list only if 

24



there release is permanent until the current time, in the Stuffing Technique lists the all the 

intervals that are currently unused, regardless of whether or not they will be used in a 

future time. 

The scheduling sequence for the Stuffing Technique is the same as the Horizon one, first 

the algorithm checks for terminating tasks,  i.e.  tasks with finishing time equal to the 

current time. Then reserved tasks with starting time equal to the current are removed 

from the reservation list and added to the execution list. Finally for each newly arrived 

task the scheduling function is called which either accepts a task, therefore adding it to 

the reservation list, or rejects it. 

When a new task arrives, the scheduler starts walking through the task’s planning period, 

simulating all future allocations of the device, by simulating future task terminations and 

starts together with the underlying free space management. In line 1 of Algorithm 2, the 

current free space is copied to a simulated free space list, which is then modified during 

the scheduling process. At any given time, the scheduler first checks for terminating tasks 

and then reserved tasks are started. In line 12, the function BestFit returns all the intervals 

in the simulated free space list that can accommodate the newly arrived task or returns an 

empty set if no such interval exists. The reported intervals are then checked for conflicts 

with existing reservations in a best-fit order. If an interval without conflict is found, Ti is 

accepted and the planning stops. Otherwise, the scheduler proceeds to the next event, 

until  the  end  of  the  scheduling  period  of  the  task.  The  pseudocode  for  the  Stuffing 

Technique is shown in Algorithm 2.

Algorithm 2: 1D Stuffing Scheduler σ1D-Stuffing(Ti, F)

1.   FS ←  F; t ←  ai

2.  check ← TRUE

3.  while (t ≤ si-latest) do

4.   for all Tj ɛ E with (fj = t) do

5.      TerminateTasks(Tj, FS)

6.      check ← TRUE

7. end for

8.  for all Tj ɛ R with (sj = t) do

9.      StartTask(Tj, FS)

10.      end for

11.       if check then

12.      X ← BestFit(FS, wi)
25



13.      for all (x ɛ X) do

14. if ((x, t, x+wi, t+ei) is not conflicting any

reservation in R) then

15.      add reservation (Ti, x, t) to R

16.      return(ACCEPT)

17. end if

18.      end for

19.      check ← FALSE

20.       end if

21. t ← next event form E U R

22. end while

23. return(REJECT)

This scheduler was also created with the use of many functions for increased efficiency 

and  less  complexity.  A  first  examination  showed  that  the  needed  functions  were, 

schedule, BestFit and all the functions we needed for list management, i.e. add, remove 

and print. However after careful consideration two functions that are not mentioned by 

Steiger were found. The first was the UpdateSpace function, which is called after every 

function  that  performs  a  change  in  the  execution  list.  The  second  was  the  function 

check_conflict,  which is used inside the  schedule function, but we decided it would be 

better if implemented as a separate function, in order to have better classification of the 

functions in our scheduler. 

Subsequently we began the development of the four above-mentioned functions. While 

Steiger fully explains the way the schedule function works, the absence of pseudo code 

for the BestFit  function, required some improvisations. Although the implementation of 

the BestFit  function is the same as the one in the Horizon Technique, the UpdateSpace 

and the check_conflict functions, were solely based in our ideas.

The schedule function's inputs are: the task to be scheduled, the tasks list, the execution 

and reservation lists and the free space list. The function returns a pointer to a structure 

consisting  of  the  task's  placement,  the  task's  starting  time,  the  task's  number  and  a 

number representing whether the task has been accepted or not. The way this function 

works is  exactly as described by Steiger,  with no modifications made by us.  Though 

26



some extra logic was added to this function, for example we constructed a new linked 

list, called  events  which holds the times of each event in the reservation and execution 

lists and also adds the finishing event time of a simulated starting task during scheduling.

The BestFit function's inputs are: the simulated free space list, i.e. the FS list and the task's 

width. The function walks through the free space list trying to find intervals that can 

accommodate the scheduled task. The function returns the set of intervals found or an 

empty set if no such interval exists.

Next the UpdateSpace function, which was the most demanding function to implement as 

there was no description of it in Steiger's paper, is presented. The only information for the 

function, was its functionality: 

• The UpdateSpace updated the free space list with adding or removing intervals  

according to the current state of the execution list.

From that first description of the function we determined its inputs; the execution list, the 

task list, in order to have specific information for every task, and the maximum width of 

the reconfigurable device. In the beginning, every one-width interval that fully partitions 

the spatial resource of the device, i.e. from interval [0,0] to [x, x], where x the maximum 

width of the reconfigurable area, is cross-checked with all the entries in the execution list. 

If  any  task  in  the  execution  list  uses  the  interval,  the  interval  is  not  added  in  the 

temporary free space list. After this check the temporary free space list consists of many 

one-width intervals, for every adjacent interval we perform a merge and then the merged 

entry is added to the free space list which is the output of our function.  If no tasks exist  

in the execution list then the function returns a set, which contains the whole width of the 

device.

Finally the check_conflict function was implemented. The function's inputs are: the set of 

intervals produced by the BestFit  function, the time during which the check occurs, the 

reservation list and the scheduled task. For each interval in the intervals list the function 

checks, if it conflicts in space and in time with any entry in the reservation list. If the 

above conflict occurs the interval is rule out, as a suitable placement option for the task. 

If more than one intervals are eligible for placement the choice between them is done 

with a best-fit fashion. 

The other functions needed for the completion of the Stuffing Scheduler were trivial list  

management functions, for each list used in it. In order to examine the accuracy of our 

implementation, we created a task set same to the one Steiger uses in his paper, then we 

cross-checked the state of the reservation, execution and free space lists, at simulation 

27



times 1, 2, 3 and 21 with Steiger's. The task set we created is the same as the one used in  

Section 3.2. The task set produced the same results as Steiger mentions in his work. At 

Figure  4  a  graphical  representation  of  the  reconfigurable  area  after  the  arrival  and 

scheduling of all the tasks is shown. 

Steiger introduced the Stuffing Technique in order to correct certain drawbacks he had in 

the Horizon Technique.  One of them was the necessity for the Horizon Technique to 

consider intervals that were free must be appended to the horizon. That rule created high 

fragmentation in many tasks sets we created. When the input to the Stuffing Technique 

was the high fragmentation task set  used in Section 3.2,   all  tasks were successfully 

scheduled and the device's space was utilized much better, as seen in Figure 5.

Another advantage found in Stuffing is that the scheduler can handle well tasks, with 

really small deadlines. In order to show that we created the task set show bellow.

28



Small Deadlines Task Set Table

Task Arrival Time Execution Time Deadline Width Height

T1 0 4 10 2 3

T2 0 14 20 4 5

T3 1 4 15 4 5

T4 2 2 6 2 2

T5 2 2 10 3 4

T6 2 3 17 5 1

T7 3 2 8 2 2

In the above task set we can see that task 7 has a scheduling period of only 3 time units, 

while task 4 has a scheduling period of only 2 time units.  When in this  task set  the 

Horizon Technique, is applied, task 7 is rejected, because although there is space in the 

left side of the device, the deadline of the task is not met. Also we can see that there is  

space in the right side of the device also, but the Horizon algorithm dismisses that space 

as it is not free in the entire time horizon. 

29



When the  Stuffing  Technique  is  applied  to  that  task  set,  all  the  tasks  are  scheduled 

successfully. The device after the arrival of all the tasks for the two algorithms is shown 

in Figure 6.

3.4  Expansion  to  the  2D  model  of  Steiger's  Stuffing 

Technique.

The  algorithms  described  so  far  are  designed  for  the  1D model  of  a  reconfigurable 

device. However the space utilization achieved with the 1D model is not ideal, in order to 

achieve better results on resource utilization researchers directed their work on the 2D 

area model. In the previous section, the superiority of the Stuffing Technique against the 

Horizon, in the 1D model, is shown. For that reason the scheduler we choose for further 

expansion to the 2D area model is the Stuffing Technique. 

During the expansion of the Stuffing Technique to the 2D area model, several problems 

must be considered. First it  was clear that the execution flow of the algorithm would 

remain  the  same  as  the  1D  one.  Also  it  was  observed  that  the  main  functions,  i.e.  

schedule, BestFit and check_conflict, used for the 1D Stuffing Technique could be easily 

upgraded to support the 2D area model. Also the lists used for maintaining the data the 

scheduler needs, i.e. execution, reservation and free space lists, could also be used in the 

2D area model with minor modifications. It is important to note that now the free space 

list entries, list a space rectangle like that [xI, yI, xJ, yJ].  However, the most important and 

difficult changes in the scheduler were relevant to the placement management.

When  considering  a  two-dimensional  plain,  the  problem of  managing  the  space  left 

becomes a problem of maintaining a list of free maximal rectangles in space and time. 

This problem can be compared to the 2D bin packing problem, which is known to be a 

combinatorial NP-hard problem. For this problem several solutions have been proposed, 

most of them consider different ways to partition the device, in order to create maximum 

rectangles. 

In [10] Steiger et al.  do not present the placer or the way the 2D Stuffing Algorithm 

manages the free space, instead the placer used is presented in [16]. The placer considers 

no permanent partitioning of the device, but instead creates overlapping rectangles, in 

order to have at each point the maximal rectangles as seen in Figure 7.

During  the  implementation  process  of  the  algorithm,  we  made,  excessive  efforts  to 

recreate Steiger's placer. However, due to the lack of information provided by Steiger in 

30



[16], our tries were unsuccessful. Also because of our studies, regarding the technology 

restrictions  in  FPGA devices,  we were already aware  of  the  infeasibility  of  Steiger's 

design. More on that matter will be presented later. Nonetheless this failure prompted us 

to search for other solutions. 

In [16] it is clear that the main influence of the placer presented is Bazargan's work in 

[15]. In his work Bazargan presents many heuristics that will ultimately help the placer 

perform the  best  split  possible,  the  results  of  the  experiments  showed  that  the  best 

heuristic was the Shorter Segment Heuristic (SSEG). In that heuristic after the insertion 

of a task, the split is performed, choosing the shorter of the two segments created. A 

simple  example  of  Bazargan's  SSEG  is  shown  in  Figure  8.  So  we  decided  the 

UpdateSpace function used for place management to be created according to Bazargan's 

SSEG Heuristic.

31



Despite the fact that a solution was found and the expansion in the 2D model could be 

made, this solution introduced a huge disadvantage. More specifically after many task 

insertions, it  was observed that the reconfigurable area would be split  in many small  

rectangles.  That  meant  that  although  enough  area  would  exist  on  the  device  to 

accommodate a newly arrived task,  the partitioning of this  area would not  allow the 

acceptance of said task. 

An  example  of  that  can  be  seen  in  Figure  9.  In  this  example,  we  see  that  the 

reconfigurable area is split in two Free Space rectangles, ([8,1], [10,3]) and ([8, 4], [10, 

10]). The FSA rectangle is 3 space units wide and 7 space units high while the FSB 

rectangle is 3 space units wide and 3 space units high. The newly arrived task however is 

3 space units wide and 10 space units high. Due to the current partitioning of the free 

space area this task would be rejected. However if a merging would occur between the 

two rectangles, enough space would exist for the task to be placed on.

In order to overcome this disadvantage a new  mergeIntervals  function was created. In 

this function, when two adjacent rectangles are found, the algorithm merges them into 

one, while removing the merged intervals from the free space list.  More specifically the 

function would merge adjacent rectangles that had at least one equal dimension. In the 

figure above the  mergeIntervals  function would merge the FSA and FSB rectangles, as 

they both have a width of 3 space units. into one Free Space rectangle, large enough to 

accommodate Task 3.

Another change needed for the expansion of the Stuffing Technique in the 2D area model 

was the creation of a new function called removeExecUpdate. After the completion of a 

task, that task would be removed from the device. After the removal, this function would 

32



add a Free Space entry, to the free space list with dimensions equal to the removed task's 

ones. The new  free space list  would then be given as an input to the  mergeIntervals  

function in order to better utilize the free space created from the task removal, applying 

the appropriate merges.

After implementing all the changes needed for the expansion of the Stuffing Technique to 

the  2D  area  model,  a  task  set  was  created  to  test  the  correct  functionality  of  our 

algorithm. The task set created was Steiger's task set, used in all the previous evaluations, 

however, in order to present the better space management done by the 2D area model, we 

decreased the device's dimensions from 10×10 to 10 space units wide and 6 space units 

high. The final results produced by our program were the following: 

Task 7 was rejected!

The number of declined tasks is: 1

The percentage of declined tasks is: 10.00

The results  shown above are  different,  from the  results  Steiger  showed in  his  work. 

Specifically this task set produced no rejected tasks when the 2D Stuffing Algorithm was 

applied  in  Steiger's.  A graphical  representation  of  the  reconfigurable  area  before  the 

arrival of task 7 is shown in Figure10. 

In the figure above it is clear that although there is enough space in the device for Task 7  

to be accommodated on, the algorithm rejects this task. In order to understand why this 

happens the instance of the free space list before the arrival of Task 7 is presented.

33



******FREE SPACE LIST******

Free Space interval x1 3, y1 4, x2 3, y2 5.

Free Space interval x1 6, y1 6, x2 10, y2 6.

Free Space interval x1 7, y1 5, x2 10, y2 5.

Free Space interval x1 10, y1 1, x2 10, y2 4.

Now it is clear, why our implementation of the algorithm produces a rejected task. The 

chosen way of merging the intervals in the free space list after each update and the choice 

of conducting the split  after  the insertion of a task,  opposing to Steiger's overlapping 

rectangles technique, led to this device instance, where the intervals are managed and 

listed in a way that is not optimal and leads to space fragmentation and finally to the  

rejection of Task 7. However as stated before this choices were inevitable.

It is important to note that, despite the fact, the same task set used in the 1D model, in 2D 

model produces one rejected task, ultimately the 2D model surpasses the 1D model in 

terms of space utilization, as we can see that the device's dimensions are clearly smaller, 

in the 2D area model evaluation. 

With the extension of the Stuffing Algorithm to the 2D area model, the presentation of 

other scheduling algorithms implementations, comes to an end. All the work done above 

provided great insight, experience and understanding in the inner works and the design 

process of a scheduling algorithm for hardware tasks.  This experience came to use when 

designing our scheduling algorithm. Also having a good understanding of the inner works 

of  a  scheduling  algorithm  combined  with  our  knowledge  about  the  technology 

restrictions  induced  by  the  FPGAs,  is  very  important  in  deciding  whether  or  not  a 

scheduling  algorithm  could  be  implementable  in  a  realistic  Partially  Reconfigurable 

FPGA.

3.5  The  technology  restrictions  that  prevent  the 

implementation of schedulers on realistic FPGAs.

So far several scheduling algorithms have been presented by the research community, 

most important of which, were analyzed in Chapter 2 of the current thesis. However, it is 

important to make a more thorough analysis, of said algorithms in order to be able to 

decide  whether  or  not  these  algorithms  could  work  on  a  realistic  Operating  System 

targeting a FPGA device. In order to begin this analysis of the scheduling algorithms, 
34



first a presentation of the restrictions, involving FPGA technology is made.

Since  the  first  time  Xilinx  Inc.  released  FPGAs  with  the  ability  of  dynamic  partial 

reconfiguration, around 1998, many research groups contemplated the construction of an 

operating  system  accommodated  in  a  FPGA.  The  advantages  of  such  an  OS  were 

numerous, first the hardware acceleration produced by the device would make certain 

processes run much faster that they would in software, also the portability of the device 

was a great  asset,  plus the fact  that even without  an embedded OS the FPGAs were 

experiencing a vast use amongst experienced and simple users. 

However, around that time the Xilinx Company, due to the fear of competitive industries 

in  the  field,  kept  many  FPGA technology  specifications  concerning  dynamic  partial 

reconfiguration  “secret”.  This  did  not  discourage  the  researchers,  who  made  several 

assumptions  and  began  the  creation  of  an  Operating  System  for  Reconfigurable 

Embedded Platforms.

Be  that  as  it  may,  many  years  later,  since  the  dynamic  reconfiguration  feature  was 

introduced, Xilinx Inc. released the Partial Reconfiguration Design Flow. In that Design 

Flow Xilinx stated that Reconfigurable Functional Units must be placed and routed, at 

design time, and configured during runtime on Partially Reconfigurable Regions, Figure 

11. 

That was a huge hurdle in all the previously developed placement algorithms and some 

scheduling ones, which considered online partitioning of the device in order to construct 

the maximum rectangles. In addition,  it also became clear that a PRR must at any point 

in time be used by only one PRM  (Partial Reconfigurable Module). As a result, another 

35



PRM cannot be configured in that same PRR even if there is enough space for it, this 

restriction is shown in Figure 12. The unusable area is shown with vertical white stripes.

Finally it became clear that in order to download a PRM on the FPGA a bitstream of said  

PRM must exist, which is created during compile time and it is bound to a specific PRR. 

A graphical representation of this restriction is shown in Figure 13.

Also very few of the scheduling algorithms, described in Chapter 2, have considered 

inner-task communication or I/O task communication. The way communication occurs in 

the FPGA devices was known from the very beginnings of research but through the years 

36



has  been  subject  of  many  improvements  and  changes  from  Xilinx.  The  current 

technology used for task communication is hardware bus macros. According to the PR 

flow macros can be placed, during compile time, on the boundaries of RRs in order to 

define pins  where RFUs can hook themselves.  These macros are  made with pairs  of 

CLBs; one side of the CLB pair is connected to a RR signal, while the other is connected 

to a static logic signal. That means that each RFU can communicate with the static logic 

part of the device and through that and only that with each other.

Another  technology  restriction  that  no  scheduling  algorithm  has  considered  is  the 

devices'  heterogeneity.  This  means  that  certain  special  resources  (BRAM,  dedicated 

multipliers,  etc.)  are  in  certain positions  on the device and not  scattered through the 

whole reconfigurable surface. This fact is not considered by any scheduling algorithms, 

which consider a heterogeneous design of the device. Moreover some tasks might require 

these certain resources, so their positioning must be narrowed down to the places on the 

FPGA, where those resources exist. Although this is a wrong assumption to be made and 

it was already known to the researchers that FPGA devices are of a heterogeneous design, 

we can consider some areas of the device to be in fact homogeneous. 

Finally a fact that researchers in their works seem to neglect is the ratio between the 

reconfigurable resources needed by a module and the reconfigurable resources which are 

part of the PRR. Moreover in several of their works and simulations of them, developers 

of scheduling algorithms seem to pack the tasks in the reconfigurable region, as much 

tightly as they can, attempting to reach 100% use of the available reconfigurable area. 

However that may affect the tasks' communication. A “rule” that designers should use in 

this occasion is the “80%-90% Golden Rule”, which states that, between the used CLBs 

on  a  FPGA device  and  the  available  CLBs  should  be  at  most  90% [27]  and  [28].  

Following this rule; will have a more balanced use between the logic and communication 

resources provided by the device.

Next some scheduling algorithms alongside with their placement policies, are presented, 

along with the assumptions that these algorithms are based on and which of them can be 

potentially overlooked. It is important to note, that the technology restrictions analyzed 

earlier, are not mentioned in the works described below, a sign that researchers spent 

more time creating near-optimal algorithms than studying the technology restrictions:

• First the Horizon and Stuffing Techniques proposed by Steiger et al. in [10] are 

presented,  the  functionality  and  our  implementations  of  these  Techniques  are 

37



presented in Sections 3.2, 3.3 and 3.4 of this Chapter. While in his work Steiger 

fully describes a model that has a communication channel, loosely based on the 

macros  provided  by  Xilinx,  he  only  made  simulation  experiments  without 

communication  between  tasks,  so  we  cannot  be  sure  in  which  degree  these 

Techniques would work if communication is taken into account. Additionally the 

system  described  by  Steiger  has  the  reconfigurable  region  partitioned  into 

columns,  at  compile  time,  but  the  scheduling  algorithm  presented  considers 

runtime partitioning, mapping and routing of the tasks on the device, which is a 

clear  technology  restriction  violation.  In  Figure  14  we  can  see  the  system 

presented by Steiger. 

• Communication  Aware  algorithm  by  Lu  and  Marconi  [14].  This  algorithm 

partitions  the  device  in  design  time  first  into  columns  and each of  them into 

configuration blocks, which will be the PRRs (Partial Reconfigurable Regions) 

managed by the algorithm. Next the algorithm manages and configures tasks into 

the device according to their communication needs. Even though the algorithm 

pre-partitions the device, the scheduling algorithm uses a placer that partitions the 

device online and manages, applying further partitions or merges, the maximal 

free rectangles in an arbitrary way. All the communication buses Lu and Marconi 

38



suggest can be implemented with the Xilinx provided hardware macros, but they 

neglect the fact that these macros need to be placed also at compile time. The 

FPGA paradigm Lu and Marconi use is shown in Figure 15. It is important to not 

that the communication infrastructure proposed by Marconi is correct, according 

to the FPGA technology.

• 3D Compaction by Marconi et al.  [13], [30]. The algorithm uses the 3D Total 

Contiguous Surface Heuristic, which packs compactly the tasks by calculating the 

“touching” area between the new task and previously scheduled tasks or future 

ones and the device's boundaries. Their model does not support communication 

between tasks and considers a homogeneous design. The 3DTCS Heuristic may 

cause serious problems with the tasks' execution and communication as it violates 

the common 80%-90% “Golden Rule”. The 3DTCS Heuristic is also in violation 

of the fact that PRRs need to be predefined and that one PRR can be used from 

only one PRM at any time. Also Marconi et al. consider no partitioning of the 

device, leaving the scheduling algorithm to manage one big PRR, which it is then, 

partitioned and merged at runtime. Also, the concept of tightly packing the tasks 

in  the  partial  reconfigurable  surfaces  considers  a  homogeneous  design  of  the 

device. The functionality of the 3D Heuristic is shown in Figure 16. 

39



• Most  Frequently  Used,  Best  Speedup,  Multi-Constraint  Knapsack  by  Fu  and 

Compton [8]. These algorithms proposed decide on which kernels, i.e. hardware 

tasks,  should  be  implemented  in  hardware,  provided  they  fit  in  the  available 

space. Here the algorithms work in an off-line scenario, where the user has many 

kernels and needs to decide, which of them is best to implement in hardware. Due 

to the offline scenario, the algorithms don't make any assumptions and can work 

with any of the restrictions provided by the device's technology. Although Fu and 

Compton do not present a complete system description in [8] we can assume that 

their algorithms can work with a pre-partitioned device. However, considering the 

simplicity of these algorithms it can be assumed, that they can also work at online 

scenarios.

• Intelligent Stuffing algorithm by Marconi and Lu [11]. The algorithm presented is 

based upon Steiger's Stuffing Technique. As Steiger did, Marconi also assumes an 

online scenario of his algorithm, where the device can partition the reconfigurable 

surface and place tasks in seemingly random areas on the device, during runtime. 

Apart from that Marconi takes no account in communication between tasks and I/O 

and considers a homogeneous device design. A paradigm of the Intelligent Stuffing 

algorithm is shown in Figure 17.

40



All the algorithms described above also consider the tasks as relocatable rectangles that 

can be placed anywhere in the 2D area model. This is a huge assumption that is made by 

almost anyone who wishes to develop a scheduling algorithm. The reason most of the 

researchers use this is, because they consider that with the use of relocation, they can 

override the restrictions inducted by Xilinx, considering the bitstream PRR-PRM binding 

and the necessity of the pre-definition of PRRs at compile time. The starting point for this 

assumption was the work done by Katherine Compton in [28].

Many researchers, referencing the work of Katherine Compton on task relocation, assume 

that tasks can become subject to many alterations concerning their placement and can 

overcome many footprint transforms, such as flips, both horizontal and vertical, rotations 

and vertical and horizontal offset movement. However, technology does not yet support 

the  majority  of  these  functions  regarding  task  transformation,  alongside  with  task 

relocation.  The  way  task  relocation  is  used  by  the  researchers,  is  to  override  the 

fundamental requirement that partial bitstreams, for reconfigurable modules, are created 

in direct accordance with the Partial Reconfigurable Region, on which they will later be 

placed. Also the PRR in reference must have been stated during compile time.

In our opinion the research community needs to work towards more realistic runtime 

scheduling scenarios, regardless the fact that the limitations provided by the technology 

may reduce  some of  the system's  performance.  In  simple terms  a  return  to  basics  is 
41



required.  Complex  scheduling  algorithms  with  online  partitioning  of  the  device  are 

unfeasible and unimplementable at the moment. Simplest designs have more chances to 

be implemented and towards these kind of design our efforts will be focused.

3.6 Conclusion

In this Chapter we have presented the implementations we made of Steiger's 1D Horizon 

and Stuffing Techniques,  as  well  as,  the 2D Stuffing Technique using the Bazargan's 

Shorter Segment splitting heuristics. The results we gained were consistent with the ones 

provided  by  Steiger  in  his  works.  Through  the  development  of  those  simple,  but 

fundamental  scheduling  algorithms,  we  gained  valuable  knowledge  about  the 

development of our scheduling algorithm. 

Moreover, in this Chapter we analyzed the reasons why, almost all of the current state of 

art algorithms cannot be implemented in a realistic FPGA device. To sum up the reasons 

were, the fact that developers, often made over-simplifying assumptions regarding the 

partial reconfiguration process, or neglected key restriction introduced by FPGAs. Next 

we will begin analyzing the development of our scheduling algorithm that was created 

with respect to the restrictions mentioned here.

42



Chapter 4

A  Scheduling  Algorithm  targeting  a 

realistic Partially Reconfigurable FPGA.
So far in this thesis we have presented many scheduling algorithms developed through 

the  years.  The  main  disadvantage  of  all  those  algorithms  was  their  inability  to  be 

implemented in a realistic FPGA device. That is the main advantage of the algorithm we 

will present here. In this chapter we present the scheduling algorithm we developed in 

respect to the technology restrictions described in Chapter 3. The Chapter will be split in 

three sections:

• First we present the ideas used from other scheduling algorithms on the field, 

alongside  with  our  ideas,  which  are  focused  on  how,  to  make  a  scheduling 

algorithm,  that  will  also  be  obedient  to  the  technology  restrictions  analyzed 

before.

• Finally, we present and analyze our novel scheduling algorithm for hardware tasks, 

targeting a realistic PR FPGA.

4.1 Scheduling ideas used in our Scheduling Algorithm.

Whereas  the  limitations  described  in  Chapter  3  might  seem,  and  surely  are,  really 

restrictive, while creating an OS for reconfigurable devices a system has to be obedient in 

them in order to be applicable in a realistic partially reconfigurable FPGA. Furthermore 

the scheduling process must also obey in these restrictions.

Firstly,  one  of  the  most  important  restrictions  a  scheduler  must  obey to,  is  the  pre-

43



partitioning of the reconfigurable surface and the finality of this partitioning. Very few 

works  have  considered  a  pre-partitioned  device,  without  later  applying  merge-split 

operations to utilize the remaining space, these are [3], [9] and [21]. So we had to be 

certain, that our scheduler would consider this restriction and pre-partition the device into 

several PRRs, but also would not perform any merge-split operations during runtime. In 

all the works mentioned here, the authors do not state clearly how the partitioning occurs 

or if a specific partitioning plan exists.

On the contrary, in the work done in [20] by T. Marconi et. al a clear partitioning plan is 

presented.  Their  work  however,  is  deemed  unimplementable  due  to  the  merge-split 

operations on these PRRs, performed during runtime. In their work, the FPGA is pre-

partitioned into three different PRR sizes, small, medium and large, a partitioning plan, 

which we initially used. However, we found that the partitioning of the device with the 

use of only three different sizes, was restrictive. We reckon, it is really important to offer 

the  scheduler  several  alternatives  in  the  scheduling  of  tasks,  for  that  reason  we 

experimented with four or five different block sizes. Moreover the problem of initially 

positioning the PRRs on the device had to be addressed. For that matter we found useful 

the 2D Stuffing algorithm we have already implemented. 

More specifically,  with  giving as  inputs  to  the  scheduling-placement  algorithm many 

tasks of fixed sizes, the algorithm would provide a near-optimal positions for those tasks, 

moreover the whole process would be done offline. Eventually the placement of those 

tasks would provide the initial partitioning of our device. Furthermore, one might use a 

different scheduling-placement algorithm to obtain an even better initial partitioning.

Another important fact that is often neglected,  as stated before,  is  that the remaining 

space in an occupied PRR is unusable. That is a major drawback in all of the placement 

managers, developed through the years and is not addressed to any of the scheduling 

algorithms presented in the current thesis. However, the majority of the works presented, 

are neglecting this restriction depending on [28], as stated in Section 3.5. 

As we see in Figure 1 the PRM has been configured on PRR2. However we see that the 

space left in the PRR, marked with horizontal light gray lines is too much. In fact it could 

be large enough to accommodate another PRM. But since this PRR is in use this large 

amount of space is unusable and the choice of the scheduler to configure PRM1 on PRR2 

should  be  considered  bad  scheduling.  In  order  to  avoid  bad  decisions,  like  the  one 

presented here a Best Fit kind of policy was used for deciding the best PRR placement of  

a  PRM.  This  placement  decision  can  change  depending  on  the  choice  made  by the 

44



developer, who could chose a Most Frequently Used or Best Speedup policy, like the ones 

used in [8].

Also,  we  have  stated  in  Chapter  3  of  the  current  thesis,  the  absolute  and  necessary 

binding between the created bitstream of a PRM and the corresponding PRR. If only one 

bitstream per  PRM would exist,  then  the scheduling process  would be very straight-

forward and very few alternatives would exist, for the scheduler to consider. As a result, 

like the researchers in [3] and [9], we consider a large “library of bitstreams”, i.e. a PRM 

can  have  many  implementations,  that  are  routed  to  different  PRRs.  That  way  the 

scheduler can choose which implementation of this PRM will be placed on the device. 

Even though in [3] and [9] the researchers create a large “library of bitstreams” they do 

not consider the advantage of creating one bitstream implementing two or more PRMs. In 

order to explain why, this consists an advantage in scheduling, we present the following 

example. 

Let  us  consider  a  hardware AES fast  encryptor,  which  takes  up 342 slices  [31]  in  a 

Virtex-5 device. In comparison with the total slices in a Virtex-5, i.e. 17,280 slices [32], 

the percentage of space that AES uses is 1.9%, which is pretty small, so a designer may 

choose to create a single bitstream that not only implements an AES encryptor but also a 

DES encryptor. It is observed a gain in space utilization and also we still have one PRR 

free for future use,  while  we have both AES and DES algorithms configured on the 

device, the example described above is shown in Figure 2.

45



The designer  must  decide,  which  tasks  will  be  joint  and implemented  in  one  partial 

bitstream. In order to simplify this decision, one might use the idea presented in [9]. In 

their  works  the authors  introduce  a  source  code annotation  called  OpenMP pragmas, 

which they use to state the level of parallelism between different tasks. Also the designer 

could create a task graph or tree to understand the parallelism between his tasks and then 

make the choice on which tasks should have a joint implementation.  A great advantage 

of the joint bitstreams technique is that, when a designer has mutually exclusive tasks on 

his task set,  with a careful coupling of tasks the scheduling process can become very 

easy.

It is a crucial feature for every scheduler to be able to plan the execution of the tasks. For 

example if a task cannot be placed immediately on the device the scheduler has to plan it 

for a latter execution, provided that the task will meet its deadline. The way we tried to 

integrate this feature in our scheduler, was the reservation list idea presented by Steiger 

in his work. So if a task is not able to be directly placed on the device, the scheduler will 

plan it for later execution. 

The research done in [27] and in [28] has showed to the community that it is of little to 

no use trying to achieve 100% logic utilization of the resources provided. Moreover it 

would be more beneficial to try and achieve a good interconnect resources utilization in a 

design.  The general rule one can obtain from these works is  that  the logic resources 

utilization may vary from 80%-90%. This is taken into account on our design as in order 
46



for a PRM to be placed on a PRR it must leave at least 20% of the PRR's logic resources 

unused.

Finally the FPGA technology offers certain advantages that could be used in a beneficial 

way, while designing a scheduler and have not yet be used by any work on the field that  

we  are  aware  of.  First  is  the  possibility  of  a  module  running  at  a  higher  frequency 

depending on its placement on the device. In order to understand that, let us consider a 

device, which reconfigurable surface is partitioned in two PRRs. The designer wants to 

download a PRM and thus has created two partial bitstreams, each corresponding to a 

different PRR. Due to, the topology of the processing elements a PRR includes, or the 

wiring between them and/or the static part of the device, an implementation of the PRM 

might be able to run at a higher frequency in PRR1 than in PRR2.

In a highly advanced scheduler, that difference may prove crucial, as it would decide the 

completion or not of a task, provided that the task has a deadline it has to meet. However,  

in order to succeed this high-level functionality, the developer must know at compile time 

the frequencies at which a module can be executed in association with the PRR it will be 

placed, a feature that is not yet available. Also, another important advantage, offered by 

the FPGAs, is the relocation of PRMs, a feature that will be explained in details, in the 

following section.

4.2 Partial Reconfigurable Module Relocation on FPGA 

devices and its potential use in Scheduling Algorithms.

As we have stated before, the bitstream for configuring one PRR is tightly bound to the 

physical location of that region and cannot be used directly to reconfigure any other 

portion of the chip. In many cases though, it is possible to modify an existing bit-stream 

and adapt it to a different physical location. This process is termed bitstream relocation 

and can  be  performed statically  by tools  operating  on the  designer’s  workstation,  or 

dynamically by the agent that loads the bit-stream on chip.  The key element is that a 

portion of the chip is reconfigured at runtime, without interfering with the operation of 

the rest of the chip.

So far,  Xilinx has presented two forms of  relocation.  The first  one,  was the internal 

relocation. In this form the designer with the use of specialized software, could create a 

partial bitstream and after its placing on the device, could change the frame address of the 

bitstream and as a result change the “physical” placement of the module on the device. 

47



The second,  modern to  the previous,  states  that  when invoking relocation the device 

searches the host computer's memory or the internal FPGA memory for the bitstream that 

corresponds to the module, that is about to be relocated, and the PRR that this module 

will  be relocated into.  That  not  only increases  the time need for  relocation,  but  also 

defeats the true purpose of relocation, which is relocating a module to a PRR with no 

need of a previously generated bitstream for that combination of module-PRR. In this 

thesis when referring to relocation, we mean the first form of internal relocation with no 

use of the extra partial bitstream. A simple example of relocation is presented in Figure 3.

Considering the above example the relocation process can become a powerful tool, with 

its limitations of course, in the scheduling process. An example of its use is shown at 

Figure 4. Let us consider a situation, where two PRMs are being scheduled with two 

PRRs to be configured into.  One of the modules is  already configured in the device 

(PRM1 to the PRR2) and a second one (PRM2) is waiting to be configured but does not 

fit in the free PRR1 or in another scenario a bitstream binding PRM2 to PRR1 might not 

exist. The scheduling algorithm would perform relocation of the first module, if possible, 

and configuration of the second one to the now empty PRR. We would like to note that 

these kinds of operations or this use of relocation are not supported, nor mentioned at any 

state  of  art  scheduling  algorithms  that  we know of  or  even  in  simple  and  complete 

runtime systems as in [3] and [9]. In order to perform this operation there is no need of a 

partial bitstream binding PRM 1 to PRR1. 

48



We have shown that relocation, if applied correctly, can become a viable alternative for 

scheduling a PRM on a FPGA even though initially the scheduler could not come up with 

an  appropriate  placement  for  that  module.  In  our  scheduling  algorithm  we  use  the 

Relocation  Alternative  exactly  with  the  way it  was  described  here.  A more  detailed 

execution flow of the Relocation Alternative will be presented later.

4.3 The Partial Reconfigurable Module true FPGA size 

issue.

Another  big mistake  made on all  of  the  existing  scheduling  algorithms and research 

regarding the creation of an Embedded Operating System is the true size of a PRM when 

that PRM is placed on the FPGA device. So far researchers assumed that the size of a  

PRM could be counted by the amount of reconfigurable units it uses when placed on the 

device.  However  that  is  not  the  case  in  a  highly  realistic  scenario  and  in  order  to 

understand that, a deeper understanding of the FPGA technology is required.

The  generic  structure  of  a  Virtex-II  Pro  FPGA is  the  one  showed  in  Figure  5.  The 

smallest  addressable  segment  of  the  device's  configuration  memory  space  are  called 

frames. A frame is one bit wide and stretches from the top edge to the bottom of the 

device,  a  frame does  not  directly  map  to  any single  piece  of  hardware;  rather,  they 

configure a narrow vertical slice of many and different physical resources. In order to 

perform reconfiguration of the device, one has to produce a partial bitstream that makes 

changes to one or more frames.

49



The important fact of all the above is that when defining a PRR the designer first must be 

absolutely sure that the partitioning of the device leads to the same amount of logic on 

each PRR. For example a designer could split the device shown in Figure 6 in two PRRs.  

However the first one contains a switch, whereas the second does not. Also even when 

the logic in a PRR is the same, the usage percentage of the logic can be different. In 

Figure 7 we see a design that uses 4 “number 1” resources and 4 “number 2” resources 

from the CLBs contained in a PRR. However in PRR1 the design uses 4 out of 5 CLBs 

and in PRR2 it uses 5 out of 5 due to a difference in routing of the resources.

50



This is a very thorough and detailed analysis of the FPGA technology and many might 

argue  that  this  analysis  and  this  level  of  detailed  understanding  of  the  FPGA  is 

unnecessary. However we think that, in big designs this difference between the true PRM 

size and the one produced by the offline simulation tools could be crucial as to whether a 

PRM could be placed on a certain PRR. Also considering the above example we have an 

increase of CLB usage on the second PRR of 20%. If we add to this the rule presented in 

[27] and [28] then despite the fact that the analysis is very deep it is important to be done, 

in order to have a truly realistic system in terms of technology.

So based on this analysis, in our scheduler we create several partial bitstreams for each 

PRM, binding them to different PRRs. However despite having a fixed FPGA task size 

depending on the task's functionality, each bitstream is characterized by a different FPGA 

size. 

4.4 The Scheduler Analysis.

After having analyzed the ideas we will use and implement in our scheduling algorithm 

we now present the scheduler we created. First we will sum up the ideas presented thus 

far in our work and will find use in our scheduler.

• Reservation list, initially presented by Steiger in [10].

• Multiple Bitstreams per Task,  initially presented in [3] but also used in [9], the 

51



only complete runtime systems that we have studied.

• Initial device partitioning, presented in [3], [9] and [21].

• The  Golden  Rule,  this  “rule”  presented  in  [27]  and  [28]  has  not  be  taken  in 

account by any of the researchers, who tried to create a complete runtime system 

in the best of our knowledge.

• The PRM Size Issue,  is an idea used by us following a detailed analysis of the 

internal  FPGA structure  and  the  understanding  of  PRM  implementation  and 

routing. 

• The Relocation Alternative. A novel technique that allows relocation to be used as 

a scheduling alternative.

• Joint Bitstreams. A novel technique that gives priority in downloading bitstreams, 

that implement one or more tasks in one bitstream file.

In order to efficiently implement our scheduler, several data structures for representation 

of  available  information,  were  used.  More  specifically,  a  list  structure  was  used  for 

representing the PRRs, the tasks, the mappings for each task and the reservations made 

from the scheduler. The three structures and their fields are mildly influenced by [9].

struct task_list{ 
    int TaskNum;
    int Task_exTime;
    int Task_arrTime;
    int Task_recTime;
    int Task_endTime;
    int Task_state; //1=running, 0=not_running, 2=completed
    int Executed_PRR_num; //0=if the task is not running in any PRR, x=the PRR number
    int implem_num; //0=if no implementation is currently running, x=the implem_num
    int completion_time;
    struct task_list* next; struct mappings_list{ 
}task_list;     int Tasknum;

    int implem_num;
     int PRR_num;

struct PRR_list{     int implem_width;
    int PRR_num;     int implem_height;
    int PRR_state;   // 1=in use, 0=not in use        int numOfDownloads;
    int reserved;    //1=reserved, 0=not reserved         struct mappings_list* next;    
    int PRR_releaseTime; }mappings_list;
    int width;
    int height; struct reserv{ 
    int x_placement;     int PRR_num;
    int y_placement;     int PRR_time;
    int currentTask_num;        int task_num;
    int currentTask_implem;     int task_implem;
    struct PRR_list* next;                   struct reserv* next;
}PRR_list; }reserv;

Above we see the four main structures we used to implement our algorithm. These are, 
52



the task list, the PRR list, the mappings list and the reservation list.

Our scheduler begins its execution by accepting as input the initial partitioning of our 

device, the tasks to be scheduled and the different mappings of these tasks, i.e. different 

bitstreams corresponding to different implementations of one task. 

More specifically the algorithm needs the execution, reconfiguration and deadline times 

of the task. Also the PRRs size is needed in order to use the Best Fit policy. Finally 

information  about  the  bitstreams  is  needed,  specifically  the  binding  each  bitstream 

creates between the task and the PRR and the size used by the bitstream to implement the 

task on the device.

At  each  point  in  time,  our  scheduler  checks  if  there  is  a  newly  arrived  task  to  be 

scheduled onto the device, then informs the user as to if this task was directly placed onto 

the  device or  a  different  scheduling  alternative was chosen.  After  that,  the  scheduler 

checks  if  a  task  has  completed its  execution  on the  device  and finally the  scheduler 

checks, if there are reserved tasks that must start their execution on the device. 

Algorithm 1: The pseudocode for the scheduler we created
/*Partition the device*/
PRR_list = initializeDevice(PRR_list);

/*Bitstream Creation*/
mapping_list = createBitstream(mapping_list);

/*Task input*/
task_list = initializeTasks(task_list);

/*Scheduling of newly arrived tasks*/
if (t == arrival_time) then
    schedule(task_list, PRR_list, mapping_list, reservation_list);
    Notify user for scheduling outcome

/*Completion of tasks*/
if (t == ending time of task) then
    Mark task as complete and PRR as empty.

/*Beginning of execution of reserved tasks*/
if (t == starting time of task) then
    Begin execution of task, mark PRR as occupied

One of the main functions of our program is the scheduling function. Inside that, we try 

to find a way to either place the newly arrived task on the device or schedule it for a later 

start. In order to schedule the task on the reconfigurable device, the scheduler first creates 

a list of the available mappings for the newly arrived task. According to the PRRs this 
53



mappings  have  been  created  for,  a  list  of  PRRs  is  also  created.  In  essence  this  list  

contains the PRRs, the task has mappings for. If this list contains more than one PRR a 

Best  Fit  policy is  used to  decide,  which PRR the  task will  be placed on.  Inside the  

function that implements the Best Fit policy it is also checked whether or not the PRR is 

free at that moment. The Best Fit  policy will place the newly arrived task on the PRR, 

which will produce the less unused area.

After applying the Best Fit function if no suitable PRR could be found the scheduler will 

perform the  Relocation Alternative.  With that method the scheduler tries to relocate a 

previously placed task on another PRR so that the newly arrived task can be placed also 

on the device. If this proves to be unsuccessful the scheduler tries to make a reservation 

for the newly arrived task, in order to be executed on the device at a later time. Finally if 

none  of  the  above  works  the  scheduler  informs  the  user  that  the  task's  software 

implementation should be executed. The execution flow of the process described above is 

shown in Figure 8.

An important function in our scheduler is the relocation function, which is used as a first 

alternative, if no immediate placement for the task is found. Specifically the relocation 

alternative is performed when none of the PRRs, for which the task has mappings for is 

free.  The  relocation  alternative  first  considers  the  available  mappings  for  the  newly 

arrived task and chooses the first occupied PRR, for which a mapping already exists. 

Afterwards the scheduler tries to find for the task currently occupying the PRR a new 

placement, considering again a Best Fit policy. If no new placement can be found the 

scheduler considers the next occupied PRR and tries to find a new placement for the task 

currently occupying this. If all the mappings for the newly arrived task are considered 

and no relocation could be done for any of them the relocation alternative is considered 

as unsuccessful and the scheduler tries to perform reservation of the newly arrived task. 

The Relocation Alternative execution flow is shown in Figure 9. As stated before if the 

Relocation Alternative cannot find a solution to place immediately the newly arrived task 

on the device, the scheduler will try to make a reservation for it in a currently occupied 

PRR, in order to start execution once the PRR is free. A task can be reserved in a PRR 

that is not currently reserved for another task, also a mapping corresponding to that PRR 

must exist. Finally the PRR that will be chosen for a reservation is that with the shortest  

release  time,  without  considering  a  best  fit  policy,  that  way  the  task  will  start  its 

execution, as soon as possible. 

54



55



56



Of course for all the operations done regarding the task scheduling and placement on the 

device, the algorithm considers the deadline, set for each task. If an alternative, either 

relocation or reservation is available but the deadline is not met then the task is either 

rejected or executed on software.

 

4.5 Conclusion

In this Chapter we presented a hardware task scheduling algorithms that targets a realistic 

partially reconfigurable FPGA device. The development of the scheduler was done, with 

respect  to  the  technology  restrictions  analyzed  on  Chapter  3  of  this  thesis.  In  the 

implementation  process  several  ideas  were  used.  Some  were  derived  from  works 

presented earlier in our thesis, mainly [3], [9], [10], [21], [27] and [28], while others were 

novel  ideas,  of  ours,  regarding  task  relocation  and  its  use  in  scheduling, the  joint 

bitstreams and several restrictions that have never been taken in account, in the best of 

our knowledge, even in more complete works, like the ones done in [3] and [9]. 

57



Chapter 5

Evaluating our Scheduling Algorithm.
After the presentation we made, of our novel scheduler in Chapter 4, here we will attempt 

a  thorough  evaluation  of  our  design.  Following  the  above-mentioned  flows  and 

guidelines a C-language implementation of our scheduler was made. We have built  a 

discrete-time  simulation  framework  in  C  to  evaluate  the  proposed  algorithm.  The 

framework was compiled and run under Windows 7 operating system on an Intel Core i3 

CPU @ 3.10GHz PC. The evaluations were made, with simulating a FPGA device and 

synthetic tasks. as well as, real application tasks too.

5.1 Evaluations with our task sets.

One  of  the  most  important  aspects  in  evaluating  our  algorithm  is  to  successfully 

determine the inputs our system needs in order to work properly. If we refer to Chapter 4 

and the representation of the structures that are used in our algorithm, we can derive the 

inputs  needed.  First  it  is  necessary  that  the  designer  provides  the  data  of  the  pre-

partitioned FPGA. Mainly the algorithm needs the number of the PRRs that were made, 

their placement on the device as a pair of [x, y] coordinates and the PRR's size, as it is 

defined by its placement on the FPGA, e.g. a PRR might have a placement [1, 1] and its 

size be 4×5 reconfigurable units.

Second the user needs to provide certain data, regarding the tasks that will be scheduled 

by  the  device.  At  this  state  of  our  algorithm,  those  data  need  to  be  defined  before 

executing the algorithm. However it would be possible in future versions that this data 

would be given during runtime of the algorithm, mainly the arriving time of the tasks. 

58



The data needed for each task are, its arrival, execution and reconfiguration times along 

with its deadline. 

An important  advantage  of  our  algorithm is  the  library of  bitstreams that  should  be 

created from the user in  order  to improve the quality of scheduling and increase the 

acceptance rates. So for each task the user must provide the algorithm with the available 

mappings for  this  task.  Each mapping must  come with  information regarding,  which 

task(s) it implements, which PRR is bound to and the size it occupies when placed on the 

PRR.

Once the designer has supplied the algorithm with these information, then the scheduling 

process can begin. First we feed our algorithm with a simple task set we created and a 

partitioning plan. The task set consists of four tasks and 1 or 2 implementations per task, 

the device is partitioned in two PRRs. The main purpose of this task set is to show a 

simple scheduling process, using both the  Relocation Alternative  and the  Reservation 

Alternative.  In  the  tables  that  follow  we  present  the  data  regarding,  the  tasks,  the 

mappings and the PRRs, which are the inputs of our scheduler.

Task Table

Task Number T1 T2 T3 T4

Execution time 12 4 7 3

Configuration time 3 1 2 5

Arrival time 1 2 3 3

Deadline 20 10 20 25

Mappings Table

Task number T1 T1 T2 T3 T3 T4 T4

Implementation number 1 2 1 1 2 1 2

PRR number 1 2 1 1 2 1 2

Implementation width 2 3 2 3 2 3 3

Implementation height 2 2 2 2 3 3 4

PRRs Table

PRR number 1 2

PRR width 3 4

PRR height 3 4

PRR x placement 1 5

PRR y placement 1 1

59



Considering the above we can produce a graphical representation of our device, which 

can be seen in Figure 10.

60



After the specification of the scheduler inputs we begin the execution of our program. In 

order to make it more user friendly we have several simulation time stops, where the 

program informs the user for the current device representation. In Simulation time Stop 1 

we see the configuration of Task 1 on PRR 1, next in Simulation Time Stop 2 we see the 

application of the  Relocation Alternative  for the configuration of Task 2, in Simulation 

Time Stop 3 we see the reservations the scheduler made for Tasks 3 and 4 and finally we 

see  the  configuration  of  these  tasks  on  the  device.  A graphical  representation  of  the 

process described above is shown in Figure 11. The final message from the scheduler is 

shown in Figure 12.

In order to check the deadlines parameter on our scheduler we have to perform two kinds 

of  new  checks.  First  we  check  the  deadline  parameter  regarding  the  reservation 

alternative and then for the relocation. For the first check the only thing we have to do is 

put the deadline for task 4 earlier that t_sim=25. Let us assume we put the deadline at  

t_sim=12. The now changed task table is shown bellow, with bold we show the change 

made.

Task Table

Task Number T1 T2 T3 T4

Execution time 12 4 7 3

Configuration time 3 1 2 5

Arrival time 1 2 3 3

Deadline 20 10 20 12

After  successfully  scheduling  the  first  three  tasks,  the  message  we  receive  from the 

scheduler during the planning of task 4 is the following.

61



Now we have to check the deadline parameter regarding the relocation alternative. In 

order to have the relocation alternative rejected, the deadline of the task to be relocated 

will have to be earlier than the new completion time of the task when that is moved to a 

new PRR and restarts its execution. So, to achieve that we change the deadline for task 1 

from 20 to 16. Without that change in Figure 11 we have seen that after the relocation the 

new completion time of task 1 would be 17. However applying the change mentioned 

task 1 is forbidden to be relocated as the new completion time exceeds its deadline. In 

order though to show the successful reservation of task 2 we have to change its short 

deadline from 10 to 25. The new task table is shown bellow, with bold we show the 

change made.

Task Table

Task Number T1 T2 T3 T4

Execution time 12 4 7 3

Configuration time 3 1 2 5

Arrival time 1 2 3 3

Deadline 16 25 20 25

The result is that the scheduler now tries and successfully manages to reserve task 2 for 

later  execution  on  PRR 1.  That  means  that  the  whole  scheduling  process  of  task  3 

changes accordingly to that fact. Now that a PRR is free task 3 can begin its execution 

immediately. Next the scheduler reserves task 4 for later execution and succeeds, after it  

secures that its deadline will be met.  A graphical representation of the process described 

above  is  shown in  Figure  13.  The  final  message  of  the  scheduler,  which  shows  the 

completion times for each task is shown bellow.

62



The next step in evaluating our design is to check the joint bitstreams. As stated before a 

great advantage in the scheduling process could be the creation of bitstreams that could 

not only implement one task but two. With that premise, when such a bitstream is placed 

on the device the scheduling of the accompanying task is useless regardless the time this 

task would normally arrive, as it already place on the device. 

One of the tweaks, we have inserted in our algorithm, is to always give priority in placing 

a joint bitstream on the device. It is our belief that it is more important to be able to place 

63



one more task on the device, than having better space utilization via the Best Fit function. 

In  order  to  check  our  algorithm  we  provide  a  joint  bitstream.  The  joint  bitstream 

implements both task 1 and task 2 and is bind with PRR1. So when the scheduler places  

that  bitstream  on  the  device  task  2  will  also  be  placed  on  the  device.  A detailed 

representation of the device in that case is shown in Figure 14.

64



5.2 Comparing our scheduler with other works.

Apart  from applying  our  task  sets  and  evaluating  our  scheduler  with  tasks  sets  we 

created, we continued with tests and evaluations of our algorithms with task sets taken 

from other works of the field. 

However there were many difficulties in the course of achieving this. First and foremost 

our  scheduling  algorithm  is  the  only  one  that  considers  almost  every  technology 

restriction in the best of our knowledge. Also our algorithm needed a pre-partitioned 

device in order to work, so every work done by T. Marconi was almost impossible to 

compare to. 

First,  because the way our scheduler works the pre-partitioning of the device and the 

bitstreams  creation  process  are  part  of  the  scheduling  process.  Also  the  lack  of 

technology restrictions in Marconi's work gave outstanding results to the acceptance rates 

achieved by the algorithm. However, those results are ideal and do not correspond to a 

realistic FPGA device. 

The only work on the field that was so careful with realizing the technology restrictions  

and with the system prototype we used was [9]. In their paper Santambrogio et al. test 

their system by simulating two algorithms by the imaging process field. More specifically 

they consider a Canny Edge Detection Filter and a Motion Detection Filter. The Canny 

Edge Detection Filter, performs a gray scale conversion, a noise removal filter, the edge 

detection and finally it  applies a threshold.  The Motion Detection Filter performs the 

same actions,  except the edge detection one that is substituted by a motion detection 

filter. 

After  setting  up  their  framework  the  researchers  give  specific  information  and  data 

regarding the execution times of each of the tasks and their size. The device considered in 

the experiments of the Italians is a Virtex 5-LXT110 with 17.280 slices of reconfigurable 

area. Here we present the same data on the following table:

Task Execution time
[clock cycles]

Reconfiguration time 
[clock cycles]

Area
[slices]

Gray Scale 88.713 390.745 5.120

Noise remove 90.434 390.745 3.613

Edge Detection 78.234 390.745 2.723

Motion Detection 52.348 390.745 3.354

Threshold 47.688 390.745 3.224

65



Although in our set we have made different assumptions regarding the task's execution 

time and area. The execution and reconfiguration time are measured in microseconds and 

the area is measured in CLB “tiles”. The conversion of cycles to microseconds was easy 

because the clock frequency of the experiments was documented at 100MHz. In order to 

convert the slices to CLB, we need to make some assumptions. First for each task we find 

the usage percentage of the total reconfigurable area.  Then we apply that to the total 

amount of CLBs on our framework and find an approximation of the CLBs each task 

uses.. In order to make the calculations and the simulations simpler we consider an 18×6 

device with a total of 108 CLBs. 

The table showing the tasks information with our metrics is shown bellow.

Task Execution time
[μs]

Reconfiguration time 
[μs]

Area
[CLBs]

Gray Scale 887 3.907 32

Noise remove 904 3.907 23

Edge Detection 782 3.907 17

Motion Detection 523 3.907 21

Threshold 476 3.907 20

After converting the task information to the ones we use, we continued with studying the 

pre-partitioning of the device. Unfortunately no specific data was provided in [9], apart 

from the fact that the experiments were held with varying PRR numbers from 1 to 6. 

However if we assume that the all PRRs must cover the area of the largest task, then there 

is no way to partition the device in more than 3 PRRs of 36 CLBs each. Despite that we 

initialized our device first with 1 PRR of 42 CLBs size, then with 2 PRRs one 42 and one 

36 CLBs size and finally with 3 PRRs of 42, 36 and 30 CLBs size each. Also when 

making experiments with more than one PRRs, the bitstreams we created, bound every 

task to almost every PRR, with the exception of the Gray Scale conversion. 

Giving this setup as an input to our scheduler and after disabling the deadlines parameter 

(the Italians did not consider task deadlines) we saw that in all the cases the scheduler  

managed  to successfully place all the tasks on the device, while applying the  Best Fit  

function for achieving better space utilization. For each test we measured the times a 

Canny Edge Detection followed by a Motion Detection Filter would be performed per 

second. The results we obtained were the following:

66



• For  1  PRR;  the  execution  time  of  one  CED  +  MDF  sequence,  was  37.696 

microseconds, i.e. 26 times per second.

• For  2  PRRs;  the  execution  time  of  one  CED  +  MDF  sequence,  was  18.878 

microseconds, i.e. 52 times per second.

• For  3  PRRs;  the  execution  time  of  one  CED  +  MDF  sequence,  was  14.072 

microseconds, i.e. 71 times per second.

However the results the Italians documented in their paper showed the throughput in each 

of the cases with providing the frames per second achieved. The image they had as an 

input  was  a  640×480  BMP image.  Also  the  Italians  did  a  partitioning  of  each  task 

mentioned before into four subtasks, however it is not clear whether each subtask was of 

the same size as the “parent” task or a fraction of it. Also several other problems arise 

with the division of tasks. For example, in order for a task to be complete, all the subtasks 

have to be complete. Nonetheless, in a case where two task complete first their execution 

and the other two complete theirs much later, how does the system store the intermediate 

results? 

We have come to the conclusion that even though it is not mentioned in their work, the 

researchers do not built a real system, but they perform simulations of their system after 

first obtaining realistic data regarding the execution times and the sizes of their tasks. The 

comparison  of  our  scheduling  algorithm  with  their  task  sets,  confirmed  its  proper 

execution. Finally we would like to add that the advantages of our scheduling algorithms 

are not visible with this task set. First the tasks do not have deadlines and second the 

advantages offered by the  Relocation Alternative  are better shown in cases of different 

PRR sizes and fewer bitstreams per task. More thorough examinations with real life tasks 

and applications are scheduled to be done in the near future.

67



Chapter 6

Conclusion and Future Work.
For the purposes of this thesis, we first studied excessively the most notable works done 

so  far  in  the  field  of  hardware  task  scheduling  and  Embedded  Operating  Systems 

targeting a FPGA device. Following the studies made we evaluated every one of these 

scheduling  algorithms,  with  respect  to  the  technology  restrictions  introduced  by  the 

FPGA devices and the Partial Reconfiguration process, in terms of their  ability to be 

implemented in a realistic FPGA device.

Then we continued with the development of a novel scheduling algorithm targeting a 

realistic  FPGA device.  In  this  scheduling  algorithms  we  included  ideas  taken  from 

previous work on the field, but also some novel ideas of ours that have not been used so 

far, in the best of our knowledge, such us numerous technology restrictions and Partial 

Module Relocation as a scheduling alternative.

Afterward,  we evaluated  our  algorithm by creating  numerous  synthetic  task sets  and 

gathering the scheduling results. These results proved to be quite promising. Despite the 

fact that, they were slightly worse compared to the ones other researchers have published, 

their  high  advantage  is  that  these  results  refer  to  a  realistic  FPGA device  with  no 

simplifying assumptions. 

As part of future work, we first of all, plan to create a complete Runtime System that will 

use  this  Scheduling  Algorithm,  in  order  to  measure  execution  times  and  overheads, 

introduced by the scheduling process. Also one might explore different placing policies 

besides the Best Fit,  that has been used here. Some of them could be,  Most Frequently  

Used, Power-constrained scheduling policies, Best-Fit  Not Ready, First  Fit  and many 

more. 

68



We have mentioned this before, but it is important for the community to understand that  

the  scheduling  process  does  not  begin  and  end  with  the  execution  of  a  scheduling 

algorithm. In fact the scheduling process begins with the bitstreams creation and the pre-

partitioning of the device, as well as with the task graph creation and analysis, and ends 

with the efficient and quality placement of the tasks on the FPGA device. 

As a result, a significant amount of research could be spent on methods and heuristic that 

will  help  the  designer  in  the  process  of  bitstream  creation  and  the  initial  device 

partitioning. Some of that research could be towards the creation of efficient task graphs 

that exploit the technique of Joint Bitstreams and multitasking. A good start towards that 

could be [25] and [26]. We also plan to add a priority constraint to our tasks, in order to 

signify a task that must be executed. Finally, as we have stated earlier, the advantage of 

different clocking frequencies depending on the placement of a task could be exploited.

69



Bibliography
[1] C.  Kao  (2005):  “Benefits  of  Partial  Reconfiguration”.  In:  Xcell  Journal.  Fourth 

Quarter.

[2] Software-defined radio. http://en.wikipedia.org/wiki/Software-defined_radio

[3]  Burns, J.; Donlin, A.; Hogg, J.; Singh, S.; de Wit, M.; "A dynamic reconfiguration 

run-time  system"  Field-Programmable  Custom  Computing  Machines,  1997.  

Proceedings., The 5th Annual IEEE Symposium on, vol., no., pp.66-75, 16-18 Apr 1997 

[4]  Esam  El-Araby,  Ivan  Gonzalez,  Tarek  El-Ghazawi  (2009):  “Exploiting  Partial 

Runtime Reconfiguration for High-Performance Reconfigurable Computing”. In Journal 

ACM  Transactions  on  Reconfigurable  Technology  and  Systems  Volume  1  Issue  4, 

January 2009 Article No. 21.

[5]  Lysaght,  P.;  Blodget,  B.;  Mason,  J.;  Young,  J.;  Bridgford,  B.;  ,  "Invited  Paper: 

Enhanced  Architectures,  Design  Methodologies  and  CAD  Tools  for  Dynamic 

Reconfiguration of Xilinx FPGAs," Field Programmable Logic and Applications, 2006.  

FPL '06. International Conference on, vol., no., pp.1-6, 28-30 Aug. 2006 

[6] H.  Walder  and M.  Platzner  (2004):  “A Runtime Environment  for  Reconfigurable 

Hardware  Operating  Systems,”.  In:  Proc.  Int’l  Conf.  Field-Programmable  Logic  and 

Applications (FPL).

[7]  Brandon  Blodget,  Philip  James-Roxby,  Eric  Keller,  Scott  Mcmillan,  Prasanna 

Sundararajan (2003): “A self-reconfiguring platform”. In: Field Programmable Logic and 

Application Lecture Notes in Computer Science Volume 2778, 2003, pp 565-574 

[8]  Fu, W.; Compton, K.;,  "An execution environment for reconfigurable computing," 

Field-Programmable  Custom Computing  Machines,  2005.  FCCM 2005.  13th  Annual  

IEEE Symposium on, vol., no., pp. 149- 158, 18-20 April 2005 

[9]  Durelli, G.; Pilato, C.; Cazzaniga, A.; Sciuto, D.; Santambrogio, M.D.; "Automatic 

run-time manager generation for reconfigurable MPSoC architectures,"  Reconfigurable  

Communication-centric Systems-on-Chip (ReCoSoC), 2012 7th International Workshop  
70

http://en.wikipedia.org/wiki/Software-defined_radio


on, vol., no., pp.1-8, 9-11 July 2012 

[10]  Steiger,  C.;  Walder,  H.;  Platzner,  M.;  "Operating  systems  for  reconfigurable 

embedded  platforms:  online  scheduling  of  real-time  tasks,"  Computers,  IEEE 

Transactions on, vol.53, no.11, pp. 1393- 1407, Nov. 2004 

[11] Thomas Marconi, Yi Lu, Koen Bertels, and Georgi Gaydadjiev: “Online Hardware 

Task  Scheduling  and  Placement  Algorithm on  Partially  Reconfigurable  Devices”.  In: 

ARC '08 Proceedings of the 4th international workshop on Reconfigurable Computing: 

Architectures, Tools and Applications Pages 306-311

[12] Chen,  Y.,  Hsiung,  P.   (2005):  “Hardware  Task  Scheduling  and  Placement  in 

Operating Systems for Dynamically Reconfigurable SoC”. In: Yang, L.T., Amamiya, M., 

Liu,  Z.,  Guo,  M.,  Rammig,  F.J.  (eds.)  EUC  2005.  LNCS,  vol.  3824,  pp.  489–498. 

Springer, Heidelberg.

[13]  T. Marconi, Y. Lu, K.L.M. Bertels, G. N. Gaydadjiev (2010): "3D Compaction: a 

Novel Blocking-aware Algorithm for Online Hardware Task Scheduling and Placement 

on  2D  Partially  Reconfigurable  Devices".  In:  Proceedings  of  the  International 

Symposium  on  Applied  Reconfigurable  Computing  (ARC),  pp.  194-206,  Bangkok, 

Thailand.

[14]  Y. Lu, T. Marconi, K.L.M. Bertels, G. N. Gaydadjiev (2010): "A Communication 

Aware  Online  Task  Scheduling  Algorithm  for  FPGA-based  Partially  Reconfigurable 

Systems".  In:  FCCM  '10  Proceedings  of  the  2010  18th  IEEE  Annual  International 

Symposium on Field-Programmable Custom Computing Machines Pages 65-68.

[15] K. Bazargan, R. Kastner, and M. Sarrafzadeh (2000): “Fast Template Placement for 

Reconfigurable Computing Systems”. In: IEEE Design and Test of Computers, vol. 17, 

no. 1, pp. 68-83.

[16]  Herbert  Walder,  Christoph  Steiger,  Marco  Platzner  (2003):  “Fast  Online  Task 

Placement  on  FPGAs:  Free  Space  Partitioning  and  2D-Hashing”.  In:  IPDPS  '03 

Proceedings of the 17th International Symposium on Parallel and Distributed Processing 

Page 178.2

[17]  Herbert  Walder,  Marco Platzner:  “Non-preemptive Multitasking on FPGAs: Task 

Placement and Footprint Transform”. In: Proceedings of the 2nd International Conference 

on Engineering of Reconfigurable Systems and Architectures (ERSA).

[18]  Thomas  Marconi,  Yi  Lu,  Koen  Bertels,  Georgi  Gaydadjiev  (2008):  “Intelligent 

Merging  Online  Task  Placement  Algorithm for  Partial  Reconfigurable  Systems”.  In: 

Proceedings of the conference on Design, automation and test in Europe Pages 1346-

71



1351

[19] T. Marconi, Y. Lu, K.L.M. Bertels, G. N. Gaydadjiev (2009): "A Novel Fast Online 

Placement Algorithm on 2D Partially Reconfigurable Devices". In: Proceedings of the 

IEEE International Conference on Field-Programmable Technology (FPT), pp. 296-299, 

Sydney, Australia.

[20] Y. Lu, T. Marconi, G. N. Gaydadjiev, K.L.M. Bertels, R. J. Meeuws (2008): "A Self-

adaptive on-line Task Placement Algorithm for Partially Reconfigurable Systems". In: 

Proceedings of the 22nd Annual IEEE International Parallel  & Distributed Processing 

Symposium (IPDPS), pp. 1-8, Miami, Florida, USA.

[21]  Montone, A.; Santambrogio, M.D.; Sciuto, D.; "Wirelength driven floorplacement 

for  FPGA-based  partial  reconfigurable  systems,"  Parallel  &  Distributed  Processing,  

Workshops and Phd Forum (IPDPSW), 2010 IEEE International Symposium on,  vol., 

no., pp.1-8, 19-23 April 2010 

[22]  K.  Papadimitriou,  A.  Anyfantis,  A.  Dollas  (2010):  “An Effective  Framework  to 

Evaluate Dynamic Partial Reconfiguration in FPGA Systems”. In: IEEE Transactions on 

Instrumentation and Measurement (TIM), vol. 59, no. 6, pp. 1642-1651.

[23]  K.  Papadimitriou,  A.  Dollas,  S.  Hauck  (2011):  “Performance  of  Partial 

Reconfiguration in FPGA Systems: A Survey and a Cost Model”. In: ACM Transactions 

on Reconfigurable Technology and Systems (TRETS), vol. 4, no. 4. 

[24] Papadimitriou, K.; Vatsolakis, C.; Pnevmatikatos, D.; "Invited paper: Acceleration of 

computationally-intensive  kernels  in  the  reconfigurable  era,"  Reconfigurable  

Communication-centric Systems-on-Chip (ReCoSoC), 2012 7th International Workshop  

on, vol., no., pp.1-5, 9-11 July 2012 

[25]  K.  Papademetriou,  A.  Dollas  (2006):  “A Task  Graph  Approach  for  Efficient 

Exploitation  of  Reconfiguration  in  Dynamically  Reconfigurable  Systems”.  In:  IEEE 

International  Symposium  on  Field-Programmable  Custom  Computing  Machines 

(FCCM), pp. 307-308.

[26]  K.  Papadimitriou,  A.  Dollas  (2006):   “Performance  Evaluation  of  a  Preloading 

Model in Dynamically Reconfigurable Processors”. In: IEEE International Conference on 

Field Programmable Logic and Aplications (FPL), pp. 901-904.

[27] André DeHon (1999): “Balancing interconnect and computation in a reconfigurable 

computing array (or, why you don't really want 100% LUT utilization)”. In: FPGA '99 

Proceedings  of  the  1999  ACM/SIGDA  seventh  international  symposium  on  Field 

programmable gate arrays Pages 69-78.

72



[28] R. Tessier,  H. Giza (2000): “Balancing Logic Utilization and Area Efficiency in 

FPGAs”.  In:  Proceedings  of  the  The  Roadmap  to  Reconfigurable  Computing,  10th 

International Workshop on Field-Programmable Logic and Applications Pages 535-544.

[29] Compton, K.; Zhiyuan Li; Cooley, J.; Knol, S.; Hauck, S.; "Configuration relocation 

and  defragmentation  for  run-time  reconfigurable  computing,"  Very  Large  Scale  

Integration (VLSI) Systems, IEEE Transactions on , vol.10, no.3, pp.209-220, June 2002 

[30]  Marconi, T.; Mitra, T.;  "A novel online hardware task scheduling and placement 

algorithm  for  3D  partially  reconfigurable  FPGAs,"  Field-Programmable  Technology 

(FPT), 2011 International Conference on, vol., no., pp.1-6, 12-14 Dec. 2011 

[31] Overview Datasheet for High Performance AES (Rijndael) cores for Xilinx FPGA – 

Helion Technology

[32] Xilinx, Virtex-5 Family Overview, DS100 (v5.0) February 6, 2009

73


	Chapter 1
	Introduction
	1.1 Field Programmable Gate Arrays
	1.2 Partial Reconfiguration
	1.2.1 Module-Based Partial Reconfiguration
	1.2.2 Difference-Based Partial Reconfiguration
	1.2.3Applications of Partial Reconfiguration
	1.3 The Embedded Operating System Hypothesis and the Scheduling Issue.
	1.4 Thesis Contribution.
	1.5 Thesis Structure.

	Chapter 2
	Related Work
	Chapter 3
	Development of scheduling algorithms for Partially Reconfigurable FPGAs.
	3.6 Conclusion
	Chapter 4
	A Scheduling Algorithm targeting a realistic Partially Reconfigurable FPGA.
	4.1 Scheduling ideas used in our Scheduling Algorithm.
	4.2 Partial Reconfigurable Module Relocation on FPGA devices and its potential use in Scheduling Algorithms.
	4.3 The Partial Reconfigurable Module true FPGA size issue.
	4.4 The Scheduler Analysis.
	
	4.5 Conclusion
	Chapter 5
	Evaluating our Scheduling Algorithm.
	5.1 Evaluations with our task sets.
	5.2 Comparing our scheduler with other works.
	Chapter 6
	Conclusion and Future Work.
	Bibliography

