
babis babalis

A S I M U L AT O R F O R M O N I T O R I N G D ATA
S T R E A M S

A S I M U L AT O R F O R M O N I T O R I N G D ATA S T R E A M S

babis babalis

supervisor : vassilis samoladas

Development Of Simulation Systems For Monitoring Data Streams

committee :
vassilis samoladas

minos garofalakis

antonios deligiannakis

Department of Electronic and Computer Engineering
February 2013 –

Babis Babalis: A Simulator for Monitoring Data Streams, Develop-
ment Of Simulation Systems For Monitoring Data Streams, ©
February 2013

Dedicated to the loving memory of my grandpa Dimosthenes
Tsaknias.

1921 – 2010

A B S T R A C T

A new class of data has come to the foreground and it is used
by an increasing number of applications: applications in which
the data is modeled as data streams. Examples of such appli-
cations are financial applications, network monitoring applica-
tions, telecommunication applications, etc. However, the contin-
uous arrival of data in multiple, rapid, possibly time-varying,
unpredictable and unbounded streams, defines some new re-
search problems. A lot of work has been done in these fields
in recent years and in particular in monitoring data streams. A
sub-problem is monitoring data in a distributed system. Most
of the proposed publications in this field confine monitoring to
simple aggregated streams. On the problem of monitoring data
streams, an innovative geometric approach has been suggested
where a general monitoring task can be divided into (smaller)
local tasks by applying some constraints. The constraints are
used locally in order to filter out data that do not affect the mon-
itoring outcome, yet avoiding unnecessary communication.

A problem that we are dealing with, is the lack of good mod-
eling system, so as to simulate and test such approximations. It
is very difficult to have a closed-form, analytic solution for a
modeling system, due to large number of mathematical con-
straints and variables that would probably be required. We aim
to build a simulator which simulates DES (Discrete Event Sim-
ulation) and it will comply to a variety of experiments easily.
Moreover, the simulator should be of general purpose, easily
customizable and extensible. So, the simulator should be as
general as possible, without losing its main purpose which is
to simulate particular communication protocols for distributed
data streams [15] . . .

vii

We have seen that computer programming is an art,
because it applies accumulated knowledge to the world,

because it requires skill and ingenuity, and especially
because it produces objects of beauty.

— Donald E. Knuth [10]

A C K N O W L E D G M E N T S

First of all, I would like to thank my parents Dimitris and Evan-
gelia for their support in every decision and move I made all
these years (even if it proved totally wrong) and their love. I
would also like to thank my sister Vasiliki and my brother Di-
mosthenes for all their tolerance towards my whims.

Special thanks to my supervisor mr. Vassilis Samoladas for his
valuable help and useful conversations due to which I have
learnt to think as a software engineer. I would also like to thank
Professor Minos Garofalakis and Assistant Professor Antonios
Deligiannakis.

I would like to express my appreciation as well as special grati-
tudes to Kate, who stood (and still stands) by me in my darkest
moments and who helped me to understand that difficulties in
science and life exist so as to be overcome.

Last but not least, I would like to thank Manos, Dio and Panos,
for the great moments we spent together as well as the endless
discussion nights and struggle, all of which contributed to what
I have become today.

ix

C O N T E N T S

i introduction and background 1

1 introduction 3

1.1 Thesis Contribution 4

1.2 Thesis Overview 4

2 theoretical background 7

2.1 Streams - Monitoring Queries 7

2.1.1 Streams 7

2.1.2 Distributed Streams 9

2.1.3 Monitoring Queries 10

2.2 Sketches 10

2.2.1 AMS Sketch 12

2.3 A Geometric Approach 12

2.3.1 Computational Model 13

2.3.2 Geometric Interpretation 14

2.3.3 Local Constraints 16

2.3.4 Decentralized Protocol 17

2.3.5 Coordinator-Based Protocol 19

2.4 Python Programming Language 26

2.5 SimPy 27

ii problem and approach 29

3 problem statement 31

3.1 General Simulation Uses 31

3.1.1 Simulation purpose 32

3.2 Communication Protocol Simulations 32

4 related work 35

5 our approach 37

5.1 High-Level Description of the Problem 37

5.1.1 Analytical description of problem: 37

5.1.2 Description of software system 38

5.2 Levels of Design 38

5.3 Elita’s Architecture 39

5.4 Main Packages Analysis 40

5.4.1 Flexibility 41

5.4.2 Robustness 42

5.4.3 Documentation 44

6 implementation 47

6.1 Levels Design 47

xi

xii contents

6.1.1 Classes and Modules 47

6.2 API Analysis 48

6.2.1 User interface 48

6.2.2 Protocol 49

6.2.3 Node 50

6.2.4 Data 50

6.2.5 Results 51

6.2.6 Simulation 51

6.3 Code Description 52

6.4 Implementation Challenges 54

6.4.1 Addressing Physical Challenges 55

6.4.2 Addressing Protocol Challenges 55

iii the showcase 61

7 results 63

7.1 Putting it all together 63

7.2 Data Summaries 64

7.3 Experiments 64

7.3.1 Stream 65

7.3.2 Physical constraints 66

7.3.3 Complex Figures and Results 69

8 conclusions / future work 77

8.1 Conclusions 77

8.2 Future Work 78

8.2.1 More protocols to test 78

8.2.2 High-end user interface 78

8.2.3 Interconnection with other simulators 78

8.2.4 Distributed System 79

8.2.5 Map Reduce Integration 79

iv appendix 83

a appendix 85

a.1 Technical Details 85

bibliography 87

L I S T O F F I G U R E S

Figure 1 sketch visual 11

Figure 2 geometricapproach 15

Figure 3 protocol graphic representation 39

Figure 4 lvl1 46

Figure 5 activityDiagram 46

Figure 6 lvl2 58

Figure 7 umldiagram 59

Figure 8 Messages vs nodes 67

Figure 9 Waiting time average vs nodes 67

Figure 10 Waiting time variance vs nodes 68

Figure 11 balance duration vs nodes 68

Figure 12 Waiting time average vs nodes 70

Figure 13 Mean value of waiting items vs nodes 71

Figure 14 mean vs rate 71

Figure 15 timeaverage vs rate 72

Figure 16 timevariance vs rate 72

Figure 17 timevariance vs rate 73

Figure 18 Active balancing process percentage of
time vs rate 73

Figure 19 Active balancing process percentage of
time vs nodes. While rate becomes big-
ger, the time a node is in safe state, be-
comes smaller. 74

Figure 20 Active balancing process percentage of
time vs nodes. While rate becomes big-
ger, the time a node is in safe state, be-
comes smaller. 74

Figure 21 Average of waiting time of an item in
a temporary queue vs. rate. The reason
why the waiting time is bigger for more
less nodes in our setup, is due to the spe-
cific form of our stream (see Section 7.3.1). 75

xiii

Figure 22 Same metrics as in figure Figure 21. 75

L I S T O F TA B L E S

Table 1 Necessary messages for coordinator-based
protocol 20

L I S T I N G S

Listing 1 Documentation example 44

Listing 2 Project list of files 52

A C R O N Y M S

API Application Programming Interface

DES Discrete Event Simulation

SimPy Simulation in Python

BaSh Bourne Again Shell

xiv

Part I

I N T R O D U C T I O N A N D B A C K G R O U N D

1
I N T R O D U C T I O N

In recent years, interest in data streams and manipulation of
data streams is growing more and more. In particular, manipu-
lation and extraction of useful information from a data stream
is really important to the scientific computing community.

A data stream is an uninterrupted flow of a long sequence
of data. Usually, streams are consisted of large amounts of data
and we don’t have the opportunity to save a data stream (which
often "runs" on-the-fly) for further process. In our times, we can
easily observe that data streams are everywhere and we tend to
use streams everyday in our lives. Applications like twitter or
facebook can be considered as vast reservoirs of data flows. Fi-
nancial data, sensor networks, or even television-shows or live-
games in our computers consist more examples of data streams
and of their importance and use.

A big challenge is the real-time monitoring of numerous and
large data streams. This can be done with the help of a special
class of queries installed onto data, named monitoring queries
1. An example of a monitoring query is a query which counts
the frequency of discrete items that appear in a set of streams.
Another one is a query which detects if the frequency of an item
into the stream is bigger than a given number. The challenge
gets even bigger if we have to apply such a monitored query
to a distributed stream. The main problem in such queries that
are applied to distributed data streams is the communication
overhead that is needed for combining the local results and
composing the final answer for the query.

A novel approach [15] has been proposed as a solution for
the problem described above. According to this work, two al-
gorithms are proposed for minimizing the communication be-
tween the "points" (from now on named nodes) that monitor
the stream. The algorithms are based on a geometric analysis
of the problem. Even if the algorithms are tested, there is still
some concern on their effectiveness and their precise results.
The experiments and the simulations that have been done are
not quite enough.

1 Monitoring queries are different from the simple queries For more informa-
tion see chapter 2.

3

4 introduction

The problem we stated is that a set of discrete event simula-
tion (DES) experiments are missing for the given algorithms. InDES stands for

Discrete Event
Simulation

discrete event simulation the whole system is represented as a
chronological sequence of events. Each event is happening in
a particular moment (of time) and results to a change to the
system. Given such a set of experiments (DES experiments), we
could extract some precise conclusions about the efficiency of
the algorithms proposed and we could encourage and clarify
further possible research in the particular scientific area.

1.1 thesis contribution

As we conclude from above, the lack of a simulator that would
be able to simulate a variety of different scenarios and cases, is
a drawback for testing algorithms and protocols real-time. This
thesis contributes Elita, which is a simulation software applica-
tion focused on simulating the algorithms given to [15] and also
offering a wide range of true, real-time parameters and heavy
parameter-tuning for any kind of DES-experiment.

In particular, our software implements a general-purpose sim-
ulator for any kind of Discrete Event Simulation (DES) the user
may want to run. Furthermore, the simulations the user can run
through Elita, may contain a lot of parameters, depending on
user’s interests and research. Moreover, Elita is written ready
to accept any kind of new set of experiments the user wants
to run. It also can manipulate any kind of data (text or binary)
and it can run many more protocols than the ones given in [15].

Another feature of Elita is the selective use of parts of the sys-
tem. The system is well defined and implemented in a discrete
way. As a result, the user can use only the discrete parts that
may need such as the network, and/or the environment that
produces data, and/or the protocol implementations, etc.

Finally, in the extreme case that the user wants to change/im-
plement a lot of new features, Elita is able to accept any user’s
plugin that implements the desired functionality easily (and
with great pleasure).

1.2 thesis overview

Chapter 2 describes the necessary background for this thesis.
Python, SimPy, sketches, streams, distributed streams and mon-
itoring distributed queries are described as well. Furthermore,
Chapter 2 provides basic background information about the

1.2 thesis overview 5

protocols that are tested with the simulator. In Chapter 3 the
significance of a good simulator is discussed and we state the
requirements of our simulator, while in Chapter 4 we briefly
refer to the related work of others. In Chapter 5 we describe
the design of our simulator’s architecture and describe exten-
sively all the available features and functionalities it provides.
In Chapter 6 we present our simulator’s implementation from
a technical point of view. In Chapter 7 we present the proto-
col described in Chapter 2 demonstrating the effectiveness and
real-time performance of our simulator. Finally, in Chapter 8 we
discuss the results of this thesis and we suggest some possible
future research enhancements and directions.

2
T H E O R E T I C A L B A C K G R O U N D

2.1 streams - monitoring queries

A data stream is an ordered sequence of instances (data blocks,
or other). This special data type can be read only once (or few
times) by the applications (we usually name this kind of appli-
cations data stream mining applications and the procedure of
reading and processing such a data stream, data mining). Such
applications include:

1. computer network traffic

2. phone conversations

3. ATM transactions

4. web searches

5. sensor data

6. stock exchange records

etc.

In applications that are called to manipulate data streams,
the main goal is to extract useful information and conclusions
out of the data stream. This task has significant challenges, due
to the large amount of data, their rapid passing and the avail-
ability constraints of the stream (data of a stream is often avail-
able only once).

To extract knowledge from a stream, a query is installed to
the data stream. Depending on data values, the query returns
its results.

2.1.1 Streams

In telecommunications and computing, a data stream is a se-
quence of digitally encoded coherent signals (packets of data
or data packets) used to transmit or receive information that is
in the process of being transmitted.

A formal definition follows: A data stream is an ordered pair data stream
definition

7

8 theoretical background

(s, ∆) where:

• s: is a sequence of tuples (or bits, elements, etc) and

• ∆: a sequence of positive real time intervals.

Nowadays, data streams are almost everywhere. We are stream-
ing video from the internet. Social media can be seen as stream
repositories. More generally, there is so much information that
can not be saved in a hard disk for further processing. Volume
of data flow is enormous and the stream keeps going really fast.
This form of data has the following characteristics:

1. it carries a vast amount of data (hence, it usually can’t be
saved for further processing).

2. it passes only one time (no repetition in terms of seeing
again the same part of a stream).

Hence, this recent data type needs special manipulation tech-
niques.

dive into streams : Intuitively, a data stream represents
input data that comes at a really high rate [13]. This is trans-
lated to computer infrastructure and communication stress. Con-main stream

problems sequently, it often is hard to:

• transmit the whole input to the application/node/etc. (see
Section 2.1.2 for more information),

• compute query results or make data process that require
hardware load, at the rate that data is presented, and

• store the data stream either short term or long term.

As we easily now understand, the particular data form depends
on many parameters that affect the overall system performance
and quite often these parameters are the bottleneck in an appli-
cation.

data stream models : Muthukrishnan [13] describes three
main data stream models. Given a data stream

S = [a1,a2, . . . ,an],n ∈N

the relation between i and ai is described:

2.1 streams - monitoring queries 9

• Time Series Model. Each i equals ai and values of ai (and
hence, i) are only being increased by the time.

• Cash Register Model. The correlation here resembles to the
one of the previous model, but it is more general. Here,
aj = aj-1 + i. To restate, each stream element could incre-
ment an aj, but not in the linear, smooth way the previous
model did.

• Turnstile Model. This is the most general model of all. Here,
each new element is just an update to stream. It could
either increase or decrease the values of the stream.

Presenting the models by ascending order of generality, we
have the time series model, the cash register model and the
turnstile model. Even if we would love to design elegant algo-
rithms and protocols for the turnstile model, we cannot. Fortu-
nately, all three models are useful, as they successfully model
different types of problems. Therefore, an algorithm is designed
according to the model that better fits to the problem. Admissi-
bly, the most popular model is the cash register model.

2.1.2 Distributed Streams

The problem of data stream manipulation becomes more
complex when the stream is distributed. In many instances,
streams are generated at multiple distributed nodes. These data
streams should be manipulated with different techniques than
usual and criteria about what is important are different.[1] In
distributed streams communication costs across different nodes
or computational and network requirements become more im-
portant.

With the rapid development of web and web’s infrastructure,
distributed streams have been appeared everywhere. Some mon-
itoring tasks and useful applications depend completely on dis-
tributed streams. For example, http traffic monitoring, or how
many IPs visited a particular node, are simple queries. How-
ever, this kind of information is hidden into data streams (and
in particular, distributed data streams) and data mining de-
mands special handling.

The main concern is the communication and network over-
head. Not only do the algorithms have to deal with data streams’
steady nature, but also they have to minimize infrastructure
sources’ consumption. Even nowadays the scientific community

10 theoretical background

presents decent activity about distributed data streams and the
new challenges that have arisen.

To sum up, algorithms responsible for data mining from streams,
should be efficient not only in terms of space and processing
time, but also in terms of communication load. [9]

2.1.3 Monitoring Queries

Due to the nature of the particular data form (streams), a
new category of queries has arisen, the continuous queries. These
queries implement the very same operators as the ordinary
queries do (select, join, etc) but they are applied continuously to
the stream. A special class of queries is the monitoring queries.
These queries usually monitor a stream by watching the current
(incoming) values. Then an aggregate (usually simple, such as
sum) is computed and is being compared to a given threshold.
The (monitoring) result depends on whether the threshold has
been violated or not. This is the class of queries we are inter-
ested in this thesis.

In particular, the monitoring query is defined as follows: Let
X1,X2, . . . ,Xd be frequency counts for d items over a set of
streams. Let f(X1,X2,Xd) be an arbitrary function over the
frequency counts. We are interested in detecting when the value
of f rises above or falls below a predetermined threshold value
[15].

The problem is more complex than it seems. A big challenge
is that the function f is not linear and as a result it needs special
treatment.

2.2 sketches

Sketches is an advanced data synopsis. It is an array that it
actually saves frequencies of stream items. Naively speaking,
sketches are data structures which can be represented as linear
transform of the input. They are mostly focused on stream sum-
maries. Each update observed in the stream potentially causes
this synopsis to be modified and as a result, the synopsis can be
used to answer queries (approximately) over the original data
[5].

The basic idea behind sketches is as follows: Let a stream
S = a1,a2, . . . ,an. Now, let us define an array A and store to
it numbers that correspond to the frequency of each stream
element. This is an improvement over the stream and we can

2.2 sketches 11

Figure 1: Visualization of sketch creation

have some data conclusions about the stream given by this new-
found array.

properties of sketches : We prefer sketches on other data
synopses due to the following advantages:

• They support queries

• Their size is log(N), N: size of stream

• Their update speed.

• The time that is needed to answer a query.

There are different kinds of sketches that implement the ba-
sic idea. To name some, we have the CM-sketches (count-min
sketches), Count sketches, FM-sketches (Flajolet-Martin [8]) etc.
In this thesis, AMS sketches [3] are in use.

12 theoretical background

2.2.1 AMS Sketch

Ams sketch is a pioneer variation of basic sketch idea. It was
first presented by Alon et al. for confronting a different problem
than it is now used, but it turned out to be an optimal data
structure for saving and extracting data from a sketch and (as a
result) for answering a monitoring query. The main advantages
(moreover to other sketches) of the AMS synopsis are that:

• it is very fast

• it guarantees that the answer will be well bounded ap-
proximately.

More specifically, this powerful data stream synopsis struc-
ture [3] consists of O(1/ε2)×O(log(1/δ)) atomic sketches. An
atomic AMS sketch X is a randomized linear projection.AMS sketch

definition
Definition: X =< α, ξ >=

n∑
i=1
α[i]ξ(i), where ξ : random vector

of four-wise independent random variables that map in [±1].
Let us now examine a simple example the AMS sketches

work: Let a stream S with elements S = a1,a2, . . . ,an. Let an
AMS sketch A. While stream passes, each element is hashed by
four-wise independent hash functions, and the number that is
produced is the position that each atomic sketch corresponds to
the particular element. The idea is that due to many indepen-
dent hash functions (four-wise independent at least) the num-
ber that shows up will be different for each atomic sketch. As a
result, when a query is installed into a stream, the query is an-
swered by sketch’s saved data. Despite the fact that the sketch
is just a summary of the stream, the answer is approximately
precise (and the error is bounded, too). For a mathematically
strict proof, see [3].

2.3 a geometric approach

Monitoring data streams in a distributed system is the focus
of much research. A batch of new problems have arisen. The
most important set of problems of them refer to the very high
communication overhead that is required. The reason why this
is happening is the centralized, naive algorithms that are in use.
A novel geometric approach has been proposed by Sharfman
et al.. Here, an arbitrary monitoring task can be split into a set
of constraints applied locally on each of the streams. In this

2.3 a geometric approach 13

approach, the constraints are used to locally filter out data in-
crements that do not affect the monitoring outcome and as a
result, unnecessary communication is avoided.

In brief, we have a distributed data stream as described above.
We also have a monitoring query installed to the distributed
stream. The challenge here is to reduce the communication of
the nodes to an absolutely necessary level. This piece of work
has two main algorithms presented: One fully-distributed (but
a bit naive) and another coordinator-based, but truly elegant
and effective. We name the algorithms protocols (actually, they
are communication protocols) and we analyze them.

2.3.1 Computational Model

The computational model behind the protocols is based on a
geometric approach and description of the problem. The prob-
lem in brief is the monitoring of a distributed stream where we
check if any violation happens. It is modeled as follows:

Let S = [s1, s2, . . . , sn] be a set of n data streams, monitored
from a set of nodes P = [p1,p2, . . . ,pn] respectively. Each node
pi collects items from the stream corresponding to it. As a re-
sult, the node forms a d-dimensional vector ~vi(t), t : time. This
vector is called local statistics vector and each node has one. Ad- local statistics

vector definitionditionally to the local statistics vector, each node has a positive

weight 1 which can be changed over time. Let ~v(t) =

n∑
i=1

wi
~vi(t)

n∑
i=1

wi

. global statistics
vector definition

~v(t) is called the global statistics vector. Let f : Rd → R be an
arbitrary function from d-dimensional vectors to reals. f is the
monitored function. Now we want to continuously figure out
if f(~v(t)) > r, where r : threshold value.

Except the local and global statistics vectors, more vectors are
defined in the computational model. We have the last statistics
vector, named ~v ′i, consisted of the last m elements of the node
pi. We then have the estimate vector, denoted ~e(t), defined as estimate vector

definition
~e(t) =

n∑
i=1

wi
~v ′i

n∑
i=1

wi

. Intuitively the estimate vector is a local answer

to the function f. One more vector, common in both protocols,
is defined, the statistics delta vector. The statistics delta vector

1 The weight wi assigned to the node pi usually depends on the rate of data
items coming from stream.

14 theoretical background

is denoted by ~∆vi(t). This vector holds the difference between
the current local statistics vector and the last statistics vector
and it is defined as

~∆vi(t) = ~vi(t) − ~v ′i
.
The vectors we described so far are the same for both of the

protocols. Now, we will define two more vectors, necessary to
both protocols, but different in the way they are computed.

The first vector is the drift vector, denoted by ~ui(t). In the
decentralized protocol , the drift vector is a displacement ofdecentralized

protocol drift vector delta statistics vector ~∆vi(t) and it is defined as
~ui(t) = ~e(t) + ~∆vi(t).

The coordinator-based protocol implements a whole mecha-
nism for balancing local statistics vectors of some of the nodes.
Hence, another vector is defined, called slack vector and de-
noted by ~δi. In the particular setting, there is one condition that
should be satisfied for the protocol to run normally:

condition:
n∑
i=1

~δi = 0

Consequently, we define the drift vector ascoord-based protocol
drift vector ~ui(t) = ~e(t) + ~∆vi(t) +

~δi
wi

.

2.3.2 Geometric Interpretation

Having in mind the theory described above, we will try to ap-
proach in a more "visual" way the main idea of [15]. Let us
think of each node as an individual. As data arrives, each node
checks its local constraint on its stream and verifies that it has
not been violated. As long as no violation happens, no commu-
nication is needed between the nodes.

explanation : Each node collects data from its local stream
(or set of streams). Then, the node forms the local statistics vec-
tor. According to the idea, the important node pi 2 should have
some knowledge of others nodes’ collected data. This knowl-
edge is extracted by the last statistics vector, that the nodes send
to pi 3. The last statistics vector though, could be slightly dif-

2 The important node is the coordinator in the coord-based protocol, and ev-
ery node in the decentralized protocol.

3 in decentralized protocol, each node sends its last statistics vector to every
other node, while in coord-based protocol each node sends its last statistics
vector to coordinator.

2.3 a geometric approach 15

Figure 2: Illustration of the computational model and the basic idea.In this
case, we have five nodes and each one of them constructs a
ball. The grey-highlighted aera is the convex hull of the drift
vectors and it is covered by the union of the balls. Even if
estimate vector is a bit different than the real global statistics
vector, it is covered by the convex hull. Note: The model is
the same for the d-dimensional space.

16 theoretical background

ferent than the actual local statistics vector (due to the fact that
the local statistics vector is updated every time a new update
comes to the stream, while the last statistics vector is updated
once in a while 4.

After collecting the last statistics vectors of all nodes, node pi
computes an estimate of all vectors. In our geometric approach,
the real-time, real global statistics vector might be found some-
where else than it is estimated, but it is covered by the convex
hull. This means that it is safe to assume that the global con-
straint is satisfied.

An important note here is that regardless of the protocol run-
ning, any node has the required information to construct its
own ball at any time. For a more detailed description and math-
ematical proof, see [15].

2.3.3 Local Constraints

As this idea is the heart of the protocols and our simulator is fo-
cused on simulating these protocols, we will further analyze the
local constraints each node applies to its stream(s). Let us imag-
ine that the set of vectors that make the equation [~x|f(~x) > r]

true, are green, while the set of vectors that make the equation
[~x|f(~x) 6 r] are red.

By mapping the vectors to green and red, now the local con-
straint each node maintains, is to check whether the ball formed
locally by the estimate vector ~e(t) and the local statistics vector
~ui(t) is monochromatic or not.
This is a straightforward task. First the ball center and ra-

dius are computed, given by the formulas c =
~e(t)+ ~ui(t)

2 and

r = ‖
~e(t)+ ~ui(t)

2 ‖ respectively. Hence, each node checks locally if
its ball is monochromatic or not. If it is, there is no reason to
communicate and overload the network. More generally, each
node does the same. If the ball is monochromatic, then the set
of vectors which form the union of the balls is monochromatic,
too. This means that the global statistics vector also is contained
in the convex hull that the balls contain. Consequently, both the
global statistics vector and the estimate vector are on the same
side of the threshold 5.

4 last statistics vector is updated pretty frequently, but still, it could be a bit
outdated. Still it cannot be totally different than the local statistics vector.

5 This means the estimate vector is correct.

2.3 a geometric approach 17

2.3.4 Decentralized Protocol

We elaborate the concept of the decentralized protocol in detail.
The decentralized algorithm is oriented to fully distributed sys-
tems. Given the above, the concept to every protocol is that
each node should be able to construct its own ball. In order for
this to happen, since no coordinator or lead-node exists, every
node should send its statistics (and ask for the others’ statistics)
to every other. Therefore, we do not really have a communica-
tion reduction here. Even naive, this protocol implements the
fundamentals which is to not send any data if not necessary.

Specifically, a random node ni obeys to the following two
stages:

1. initialization stage:

• broadcast a message containing the initial statistics
vector,

• update ~v ′i to hold the initial statistics vector,

• after receiving every similar message from the other
nodes, calculate the estimate vector ~ei(t).

2. processing stage:

• Upon arrival of new data on the local stream:

– recalculate ~vi(t)

– recalculate ~ui(t)

– check if the ball (B(~e(t), ~ui(t))), remains monochro-
matic. If not, go to initialization phase but broad-
cast < i, ~vi(t) > instead of initial statistics vector.

• Upon receipt of new message < j, ~vj(t) >:

– update ~v ′j to hold ~vj(t)

– recalculate ~e(t)

– check the ball for monochromicity. If ball is not
monochromatic, then broadcast < i, ~vi(t) > and
update ~v ′i to hold ~vi(t).

The pseudocode that implements the protocol, is presented
below:

18 theoretical background

The init phase is presented:

Algorithm 2.3.1: Initialization(ni)

comment: Initialization phase of distributed protocol.

msg← broadcast(~v0)

update(~vi, ~v0)
newMsg← receipt(−)

while newMsg 6= 0

do

{
list← add(newMsg)

newMsg← receipt(−)
~ei(t)← calc-estimate(list)

Then, the processing stage at a random node pi is presented:

Algorithm 2.3.2: LocalArrival(arrival)

comment: Actions taken in a local arrival of new data.

~vi(t)← recalcLocal(arrival)
~ui(t)← recalcDrift(−)

if ball is not monochromatic:

then

{
broadcast((i, ~vi(t)))

update(~v ′i,
~vi(t))

Finally, the processing stage upon a new message receipt is
presented:

Algorithm 2.3.3: MsgArrival(msg)

comment: Actions taken in a new message arrival.

update(~v ′j ,
~vj(t))

recalcEstimate(~e(t))

if ball is not monochromatic:

then

comment: i is the node’s id.broadcast(i, ~vi(t))

update(~v ′i,
~vi(t))

2.3 a geometric approach 19

2.3.5 Coordinator-Based Protocol

This protocol is more complex than the previous, naive one. It
is necessary to dive into the details of this protocol, because it is
effective in terms of communication. Another interesting aspect
is that if something is not going as expected (i. e.a node’s ball
is not monochromatic), then it is able to gussy things up 6.

The main idea here is the existence of a special node, named
coordinator which is responsible to compute the estimate vector coordinator
and to send it to the other nodes.

A new idea is also presented here, the idea of balancing pro-
cess. According to the idea, if a node’s ball is not monochro-
matic, then the coordinator is able to decide and choose a ran-
dom node to balance things. The idea is that small "movings" of
another node (or more), can restore the balance back to where
it used to be. To implement this, we use a "helpful" vector, the
slack vector. For the coordinator to ensure that the convexity
property of the drift vectors is maintained, the sum of all slack
vectors should bee zero.

When coordinator-based algorithms starts, first of all, all nodes
send their initial statistics vector to the coordinator. If a local
constraint is violated, then the coordinator sends a message
containing its current drift vector and its current statistics vec-
tor. At first, the coordinator tries to resolve the constraint viola-
tion, executing a balancing process.

balancing process : During balancing process, the coor-
dinator establishes a group of nodes chosen by coordinator,
form a monochromatic ball with the estimate vector, such that
the balancing vector creates a monochromatic ball with the es- balancing vector

definition

timate. Indeed, the balancing vector is ~b =

∑
pi∈P ′

wi
~ui(t)∑

pi∈P ′
wi

.

The details about balancing process is as follows: When a
node pi notifies the coordinator, that means that its local con-
straint has been violated. Therefore, its drift vector and its cur-
rent statistics vector are appended to the message. If the ball
B(~e(t),~b) is now monochromatic, then no more communication
is needed. On the contrary, if there is some local violation, then
more nodes are notified to participate in the balancing process.

The adjustment calculated to the slack vector is as follows:

6 This is not always possible, but small adjustments in a set of nodes can fix
things up.

20 theoretical background

signal from to description

< INIT , ~vi > nodes coord Report initial statis-
tics vector

REQ coord nodes Request statistics and
drift vector (balanc-
ing process)

< REP, ~vi, ~ui > nodes coord Report local statistics
vector when a local
constraint has been
violated.

< ADJ− SLK, ~∆δi > coord node Report slack vector

< NEW − EST ,~e > coord node Report new estimate
vector

Table 1: Necessary messages for coordinator-based protocol

~∆δ = wi~b−wiui(t)

Now, every node adds the slack vector adjustment to its own
slack vector: ~δi = ~δi + ~∆δ

As it is easily implied, after a successful balancing process

procedure, we have
n∑
i=1

~δi = ~0. The bottom line here is that the

atomic drift vectors have accepted small adjustments and due
to the fact that the drift vector is computed with the help of the
slack vector Section 2.3.1, the union of balls is still monochro-
matic.

In the case that the balancing process has failed 7 , then it isbalancing process
failure unavoidable to recalculate everything from scratch. Thereafter,

all nodes send their (most recent) statistics vectors and coor-
dinator computes a new global estimate and broadcasts it to
nodes. Moreover, all slack vectors are set to ~0.

A set of messages is defined for the protocol to run Table 1:messages definition

protocol’s individual algorithms The coordinator-based
protocol has four main points of view:

1. initialization,

2. processing stage at an ordinary node pi,

3. processing stage at the coordinator and

7 A balancing process failure means that at last, every node has been asked
for its statistics and drift vectors and it has sent them, but still no smoothing
could be figured out.

2.3 a geometric approach 21

4. balancing process at the coordinator.

initialization Initialization is the first stage of the proto-
col. Both ordinary nodes and coordinator have it.

An "ordinary" node starts to review and collect data from
its local stream 8. At some point, a node decides that it has
sufficient data and sends it to the coordinator. It sends a <INIT>
signal with its initial statistics vector and sets its slacks vector
to ~0. Pseudo-code that describes the above, is presented:

Algorithm 2.3.4: NodeInit(initStats)

comment: Node Initialization.

msg← createMsg(initStats)

send(INIT , ~v0)
~v ′ ← ~v0
~δi ← ~0

Coordinator waits for messages to come. At the same time,
the coordinator implements the "ordinary" node’s protocol, as
it collects data, too. At the time that every node has sent its
initial vector, the coordinator calculates the estimate vector and
broadcasts it to the other nodes.

Algorithm 2.3.5: CoordInit(msg)

comment: Coordinator Initialization.

while msg is coming

do
{
msgList← add(msg)

calcEstimate(msgList)

broadcast(NEW − EST ,~e)

8 or streams. A node may monitor more than one stream.

22 theoretical background

random node’s processing stage : Here the things start
to become more interesting. We dive into an ordinary node’s
processing stage. The concept here is that the following algo-
rithms are running in parallel. Each algorithm presents a func-
tionality that should be implemented independently of the other
algorithms. In this stage, events are happening simultaneously.
The four different actions are:

1. new data arrival,

2. REQ signal received,

3. NEW-EST signal received and

4. ADJ-SLK signal received.

During arrival of new data from local stream, a node has
to process the new data and finally to decide if sending data
should take place. The decision is taken after ball checking, as
described in Section 2.3.3. In other words, if a local constraint
happens, then the node sends its statistics vector to the coor-
dinator and waits for the appropriate answer. If coordinator
manages to balance the situation, then the node receives and
ADJ-SLK signal. Else, a NEW-EST signal is coming and node
resends its statistics vector, etc.

Algorithm 2.3.6: NodeLocalArrival(data)

comment: Actions taken in node, at a local arrival of new data.

~vi(t)← recalcLocal(data)
~ui(t)← recalcDrift(−)

if ball is not monochromatic:

then

{
send(REP, (i, ~vi(t)), coord)
waitMsg(NEW − EST ,ADJ− SLK)

During a receipt of a REQ message 9, the node sends a REP
message to the coordinator and waits for a NEW-EST or an ADJ-
SLK message. A useful observation here 10 is that the following

9 for messages meaning, check Table 1.
10 This observation is useful for implementing the algorithms. With extensive

use of inheritance, the implementation becomes straightforward.

2.3 a geometric approach 23

algorithm is exactly the same as the previous one, except for
constraints checking and the drift vector sending.

Algorithm 2.3.7: REQ-Receipt(REQ)

comment: Actions taken in case of a REQ receipt.

msg← createMsg(REP, ~vi(t), ~ui(t))

send(msg, coord)
waitMsg(NEW − EST ,ADJ− SLK)

During a NEW-EST receipt, the node updates its estimate
vector and nullifies its slack vector. Everything is reseted and
ready to start from the beginning.

Algorithm 2.3.8: NEW-EST-Receipt(NEW − EST)

comment: Actions taken in case of a NEW-EST receipt.

update(~e(t),NEW − EST)

~v ′ ← ~v

~δ← 0

Finally, when an ADJ-SLK message is received, the node just
adds the value that has come to its slack vector.

Algorithm 2.3.9: ADJ-SLK-Receipt(ADJ− SLK)

comment: Actions taken in case of ADJ-SLK receipt.

~δ← ~δ+ (ADJ− SLK). ~∆δ

coordinator processing stage : Now let us examine
the steps the coordinator follows. An important thing to remem-
ber is that coordinator actually is a node too. Hence, no special
description about local arrival is in need, as the steps the coor-
dinator follows are the same as the other nodes’. Here we will
examine how the coordinator manipulates the messages arriv-
ing from nodes. Coordinator has two possible scenarios, which
are described below:

24 theoretical background

1. new data arrival on local stream and

2. REP message receipt.

During the arrival of new data the coordinator follows the
algorithm below:

Algorithm 2.3.10: CoordLocalArrival(data)

comment: Actions taken in coordinator,

comment: at a local arrival of new data.

NodeLocalArrival(data)

if ball is not monochromatic:

then

comment: P’ is the balancing group.

P ′ ← add(1, ~v1(t), ~u1(t))

BP-Init(P ′)

During receipt of a REP message from a node pi, a balancing
process is initiated. This node with its statistics vectors is added
to the balancing group.

Algorithm 2.3.11: REP-Receipt(REP)

comment: Actions taken in coordinator upon a REP receipt.

P ′ ← add((1, ~vi(t), ~ui(t)), (REP.i,REP. ~vi(t),REP. ~ui(t)))

BP-Init(P ′)

balancing process : Finally, we consider the balancing pro-
cess. Balancing process can be seen as an independent kind of
protocol/algorithm. It is on the heart of the geometric approach.

2.3 a geometric approach 25

Balancing Process also consists of three main steps. We appose
the individual algorithms below:

Algorithm 2.3.12: BalancingProcess(−)

comment: Balancing Process.

calculate(~b)

if ball is not monochromatic:
then FailedBalance(−)

else SuccessfulBalance(−)

Below, a balancing process in action is presented.

Algorithm 2.3.13: SuccessfulBalance(−)

comment: P’ is the balancing group. i is an item.

for each i ∈ P ′

do

{
calcSlack(~∆δi)

send(pi,ADJ− SLK)
BP-Exit(−)

Here, if the balancing process has failed, follow the relevant
algorithm is presented:

26 theoretical background

Algorithm 2.3.14: FailedBalance(−)

comment: P is the set of nodes not contained into balancing group

node← select(P)

send(node,REQ)

while node ∈ P ′

do

if pi.msg is REQ:

then

{
add(P ′,pi)
goto(BalancingProcess)

else

calcNewEst(−)

broadcast(NEW − EST)

BP-Exit(−)

node← select(P)

2.4 python programming language

Python is a powerful programming language. Python was con-
ceived in late 1980’s by Guido van Rossum and its name is
inspired by the famous british surreal comedy group Monty
Python. Python is a script, object-oriented language. It is well-
written, with a continuously growing supporting community.
It is a general purpose language with many uses (web, sim-
ulations, applications are among them). Furthermore, python
is a complete language, well documented, and tested in large
project with great success. Another important fact about python
is the high-level libraries that are being developed as well as the
strict rules for developing them.

The main principles (and core philosophy) of the language
are described perfectly below:

Beautiful is better than ugly.
Explicit is better than implicit.
Simple is better than complex.

Complex is better than complicated.
Readability counts.

Comparing to other languages, python has the following ad-
vantages:

2.5 simpy 27

• Shorter code: Last years many comparisons [12] have been
made between different programming languages. It turns
out that the same piece of work needs six times less code
to be implemented in python than in c. Also, we need
to write as much as twice source code to implement the
same functionality in java, than doing it in python.

• Easy to read: Python is a really elegant programming lan-
guage. Writing code in python is a comprehensive, plain
procedure. It is the exactly opposite of c++ and its messy
templates, etc. It is an easy-to-read format. A novice pro-
grammer is usually able to read and understand python
pretty easy, comparing to c/c++ code.

• Easy to learn: Python has an easy syntax. Everything is
simple and plain. This is another reason why python is
getting more and more popular amongst programmers.
A pleasant consequence is that maintainabilty of source
code is facilitated.

• Extensive: Python supports modules and packages. There-
fore, program modularity and code reuse is encouraged.

• Built-in functions: Python implements a lot of useful func-
tions and data types (such as dictionaries and lists) na-
tively. As a result, there are many good theoritical (at
least) reasons to trust these functions and data types and
use it without doubts about their implementation.

To sum up, python is a well-written, clear, and powerful tool
with a bright future.

2.5 simpy

Simulation in Python (SimPy) is an object-oriented, process-based
Discrete Event Simulation (DES) language based on python and
released under GNU GPL. It provides very solid and robust
libraries for DES (discrete event simulation). It provides all ele-
ments of DES in a very elegant way. It includes components as
processes, time, events, resources and it describes all the above
in a complete way.Moreover, SimPy comes with data collection
capabilities, real-time monitoring capabilities, GUI and plotting
packages. Besides, it’s easy to be interfaced to other packages
as plotting, statistics, spreadsheets, data bases etc.

Simpy is being used for:

28 theoretical background

• modeling/simulation of epidemics

• traffic and network simulation

• industrial engineering

• computer hardware performance simulation

• workflow

It is a well-tested, well-documented and clean simulation im-
plementation. Its robustness and clear components was a criti-
cal contribution to our selection for python and simpy.

Part II

P R O B L E M A N D A P P R O A C H

Problem statement follows. After the problem, the
main points in simulator’s approach and implemen-
tation are exhibited as well.

3
P R O B L E M S TAT E M E N T

For every complex problem
there is an answer that is
clear, simple, and wrong.

— H. L. Mencken

3.1 general simulation uses

Simulations appeared to a great extend last century. There are
many different scientific sections where simulations took place
and developed, mostly independently. At first simulations used
to test physical concepts, but development of computing sci-
ence revolutionized the concept of simulation. In our time, peo-
ple are really familiar with simulations. They meet them from
home games (such as flight simulator) to heavy industry appli-
cations and research.

Simulation is the imitation of the operation of real-world pro- simulation
definitioncess or system, over time [?]. For a simulation to take place, first

of all, a model is needed. A good model should represent phys-
ical characteristics to a detail, as well as behaviors that need to
be tested. A model need not to describe every detail and param-
eter. On the contrary, it should be pretty abstract and describe
key characteristics and concepts. The model represents the sys-
tem (natural, human, abstract, imaginary) while the simulation
represents the set of actions and operations that take place on
system over time.

Simulation is heavy used. Some examples are simulations
built for testing, training, education and video games. There
are simulations that involve huge numbers of parameters and
details. An example is a set of flight simulators, where poten-
tial pilots are trained to almost real-time conditions. Simula-
tion concepts and applications are developing more and more.
There are really detailed models developed for monitoring and
testing durability and resistance of physical environments. An
example is the simulations developed for volcanic activity and
eruptions. Another one is the simulation of a natural, well-
bounded physical space and the plant growing on it.

31

32 problem statement

3.1.1 Simulation purpose

The main object of a simulation is to provide a tool for explain-
ing and foreseeing systems’ development over time. At many
times it is not easy to test and install in a straightforward way
a novel idea to a system that it is barely known. Let us think
for example a totally new, novel way of airplane navigation. It is
not wise to just implement and install the system to an airplane
and let it fly the next day, since it is not heavily tested and tried
to a big set of different, very demanding environments and con-
ditions. If despite all of the above, someone decides to take the
risk, then it is very possible for the plain to dramatically crash.
In other words it is very important and useful to make an ex-
tensive use of simulation, because in a demanding simulation
it is very easy to note omissions or oversights.

A batch of other, maybe less important problems may come
up, such as big delays, undesired workload, sudden network
overhead, communication problems, etc., depending on the prob-
lem and the model that is simulated. Another important fact of
simulation importance, is the simulation of a time-consuming
system, or more generally, a system that evolves really slow
over time. In this case, when a novel approach is intended to be
used, a simulation is necessary. A simulation can simulate even
the time and hence there is the possibility to simulate months
or years in a few minutes or hours.

Concluding, simulations are almost necessary to every big
task, application, idea or algorithm and system that is going to
be used in practice.

3.2 communication protocol simulations

A lot of research has been done on communication protocols.
Many algorithms have been invented and applied with differ-
ent results each. The existence of protocol simulations is really
important, because communication is expensive in terms of
money and energy. Message exchange rate is usually frenetic
and network and computer sources are crucial. Physical con-
straints are introduced in the particular scientific section and
due to large scaling, there is a need for strict, detailed simula-
tions.

Much research has been done recently about distributed data
streams and data mining on them. Many algorithms and proto-

3.2 communication protocol simulations 33

cols have been proposed. They usually manage to manipulate
pretty efficiently specific challenges, but not many general pur-
pose experiments have been done by now.

All algorithms present some basic efficiency and performance
plots, but the experiments that have been done are simple (to
naive). Parameters are very specific (and just a few). Datasets
are of small variety and of specific format. Most important of
all, to our knowledge, no real-time, real data experiments have
been done.

More generally, we noted the absence of a good simulator
that could handle and execute a variety of experiments with a
variety to system parameters, variables and data sets. We would
like to have a simulator, robust but also flexible. Such a simula-
tor, it would also include a good, well documented Application
Programming Interface (API)

our problem : The overall problem we deal with, is as fol-
lows: Let a distributed system consisted of N nodes. Let a dis- problem definition
tributed stream S = s1, s2, . . . , sm to be monitored by the nodes
distributed system (see Section 2.1.2). In other words, each node
ni monitors one or more streams (i.e. ni,nj, . . .). Some proto-
cols have been proposed in order to deal with communication
issues between the nodes. The problem is to evaluate these pro-
tocols in terms of effectiveness, quality and correctness. The
main protocols we are interested in are described in Section 2.3.
Moreover, we want at the same time to make experiments and
check the output and effectiveness 1 of the protocols, if the
nodes communicate with sketches Section 2.2.1 instead of raw
data, extracted from local sub-streams.

Given the fact that installing the protocols to a real node-
system as the one described above is risky and expensive, we
need some detailed, good simulations of such a system. The
system should be described with great detail and precise re-
quirements. It also should implement many environment vari-
ables and parameters. It should also include a random factor in
some of them (such as network delays, a missing message now
and then). Finally, it should also deal with real time, real en-
vironments and use cases that a protocol in theory never deals
with. An example is a case from coordinator based protocol Sec-
tion 2.3.5 where the coordinator asks for a message from node

1 criteria for this approximation can be extracted by running the protocols
for a long time and measure network metrics and statistics, such as total
messages traveled through network, size of messages, etc.

34 problem statement

ni and at the same time the node ni sends by itself this message
to the coordinator.

To conclude, the problem is reduced to the following one:
Build a simulator, focused on the implementation of the proto-
cols that described above (Section 2.3), that implements DES and
using sketches in messages. The simulator should be very flexi-
ble, in order to simulate (or add) any environment or technical
variable the user may need. It has to consist of many indepen-
dent parts, in order for the user to use what exactly he may
need. It also should have have a well designed API and be well
documented, so as to be absolutely portable and extensible.

4
R E L AT E D W O R K

There is a lot of independent, focused on particular protocols
and parameters software for protocol simulation. Not much has
been done for the implementation of a good, event-driven and
general purpose, simulator. There is always need of libraries
which help the experiments in a solid way. Variance is experi-
mented as well.

Basic experiments and work have been done by Sharfman
et al. where the efficiency of the algorithms is presented. Still,
variety in nodes and network parameters is missing. For exam-
ple, size of messages or network speed are absent. Special cases
are not confronted, too. An example is the behavior of algo-
rithm in a very easy-to-occur anomaly in real time exhibition.

A well-written set of libraries was developed in Technical
University of Crete by Samoladas et al. This project has been
written in C++ and is focused on the very same algorithms that
this thesis does, too. The approach of simulation was differ-
ent than the one of this thesis. The libraries have been written
from time’s perspective. In other words, a simulator using these
libraries runs a "time-centric" simulation rather than discrete
event simulations.

Another work worth mentioning, in terms of libraries is tor-
tuga ([11]). Tortuga is a software framework for DES written in
Java. A tortuga simulation can be written either as interacting
processes or as scheduled events. Tortuga in theory is pretty
similar to SimPy but to our knowledge, SimPy is more robust
and extensible.

35

5
O U R A P P R O A C H

The development of a DES tool focused on protocols [15], which
meets the requirements stated on Chapter 3 was always high
in our tasks list. To address the environment and monitoring
needs, we have developed a simulator, named Elita 1 which is
the subject of this thesis. Elita allows the user to inspect and
use effectively each one of the basic modules of the existed
code. This is done by having fully independent modules. Sys-
tem consists of several different modules that implement envi-
ronmental and structural detail in several levels. User has just
to use what he wants so as to run a simulation, according to
her needs.

5.1 high-level description of the problem

First of all, we define the problem as follows, trying to re-state
it and make it more clear. Let us define the problem as follows: abstract problem

definition

Given as input by user:

• a monitoring query Q,

• a set of parameters P,

• an architecture and

• an algorithm among the given choices,

run a simulation with the characteristics as described above.

5.1.1 Analytical description of problem:

We aim to develop a simulator that simulates the communica-
tion (of a peculiar type) of a distributed system consisting of
nodes. The problem divides into many sub-problems.

1 The name is an inspiration given by Elita One character of Transformers (it
is an old animation). Elita One is a devoted Autobot and powerful warrior,
fearless in the face of the enemy, but compassionate to those who need her
help. She is sometimes the wielder of a great special power: "the ability to
stop time" (which is pretty much what a simulator is also capable of).

37

38 our approach

A sub-problem is the type of nodes. What are the character-
istics of the nodes (CPU, RAM, network channels, etc.). Are all
the nodes identical, or different? Do they have different values
in some of their characteristics?

Another sub-problem is the type of system we want to simu-
late. How many nodes are there in the system? Which protocol
do they use so as to communicate? P2p, client-server, a hybrid
system between these two, something else? Also, how reliable
is the network?

A third sub-problem is the query (which is a monitoring query
- see Section 2.1.3) that the user wants to "install" to the system.

A fourth sub-problem is the kind of data that the nodes
gather.

We try to answer to all problems above and as a consequence,
to build the software that simulates all these parameters in a
system, using the algorithms that are described in [15] in a sat-
isfying way.

5.1.2 Description of software system

First of all, our simulator should include parameters that de-
scribe all the problems above. We define as components all
these problems and using this as core, we build our system.
As a result, we conclude to the following components: We have
user-interface component in which the user pass all the param-
eters he is interested in. After that, these parameters form the
nodes which number is set also by user. User also selects the
architecture of the simulated system and its general character-
istics.

All these parameters configure the simulation form, that also
takes as input the nodes. Then, the simulation simulates the
system and saves the results for further processing. A graphical
representation is shown in Figure 3.

5.2 levels of design

Our simulator has been developed according to the strict pro-
gramming principals that are described in [12]. Hence, many
description levels of the system have been created. These lev-
els present the software system from the most general, abstract
one to the most detailed one. Here, three levels of design have
been used. They all are high-levels. At first, we organize the

5.3 elita’s architecture 39

[graphicProtocol]

Figure 3: Visualization of protocol’s operation

system into sub-systems. Secondly, sub-systems are further di-
vided into classes, and finally the classes are divided into rou-
tines and data.

5.3 elita’s architecture

Here, we organize the system thinking through higher level
combinations of classes, such as subsystems or packages.

We recognize five sub-systems/packages:

1. User interface sub-system

2. Node configuration sub-system

3. Simulation sub-system

4. Results sub-system

5. Data storage sub-system

The relationships between the sub-systems above is described
in the Figure 4. We made a big effort in planning the communi-
cation rules between sub-systems, so as to simplify as much as
possible the interactions between sub-systems. A good feature
of this design is the directed graph representation. Represent-
ing each sub-system as a graph node and each communication
arrow as a directed edge, we make the observation that our
graph is a Directed Acyclic Graph. This is important because

40 our approach

when software components and their communication are rep-
resented in this way, and no cycles are observed, then the com-
plexity is as low as possible. This happens because we avoid
bad calls. A bad call example follows: a class B instance calls a
class A’s instance and this particular class A instance calls the
previous class B’s instance.

An important feature to observe here is that it is pretty straight-
forward for the user to run a simulation, without understand
the whole simulator software. A user has only to give as input
the environment’s and system’s parameters and wait for the
simulation to finish. After that, the user just gathers the results.
In this software description stage, an activity diagram is given
for further comprehension of system’s functionality in Figure 5

5.4 main packages analysis

Our approach is directly related to the main packages. Hence,
we bother to give a move detailed explanation of their utilities
and uses. It is once more noted that they can be used indepen-
dently.

To begin with, we have the userInterface package. The user-
Interface is responsible for reading configuration files (*.conf)
files and prepare their data for further use. It also is its respon-
sibility to handle streams. Due to the fact that our simulator
should manipulate streams, this sub-system can handle both
binary and text stream. Of course, if user wants to give a dif-
ferent stream than the default, then he should define stream’s
format. Other than that, user interface is ready to manipulate
any stream and pass any parameters to the environment and
the simulation.

NodeConfiguration package is responsible for creating a node
and configure it. Here, a lot of individual jobs are made. The
NodeConfiguration sub-system simulates nodes’ hardware (such
as CPU, RAM) and network’s physical characteristics (such as
overall bandwidth, channel’s bandwidth etc.) and it is parame-
terized at will. All the configuration parameters and variables
are already set from userInterface sub-system. Here the proto-
col is also set. Depending on configuration file, we can fully
customize each node. Thus we can have a totally unique nodes,
with unique characteristics each (RAM, CPU, even bandwidth).
Of course, all these parameters are used in the simulation.

5.4 main packages analysis 41

Simulation sub-system is responsible for everything related
to simulation. It inputs from user (userInterface) as well as the
nodes. It simulates the environment in big detail. It is respon-
sible for the data incoming rating, the network, etc. This sub-
system is the heart of simulation. Among others, here is the
place where simulations run.

Results is the sub-system responsible for results manipula-
tion and presentation This sub-system collects all variables re-
sponsible for the results. It then exports statistics, means, usage
ratings, load ratings etc. When everything is collected and pro-
cessed, this sub-system sends the results for storage.

Finally, DataStorage is responsible for storing the data (usu-
ally in files) and makes them available to the user. Note that
the user interacts only with this part of software (except for the
configuration files that gives as input to the program).

Before moving to implementation explanation and details
we emphasize some key points on our approach. These are:

• Flexibility,

• Robustness,

• Well designed API and documentation.

5.4.1 Flexibility

By having independent sub-systems, we manage to maintain a
fully flexible, fully-extensive piece of software. All sub-systems
need minimal or no communication between them. Whereas
minimal communication is required, this is well-defined by the
API of the sub-system. Consequently, by using (or even imple-
menting his own) API, the user can use the whole sub-system
to his own simulation. Inspecting the same problem by a differ-
ent perspective, if the user wants to use the whole simulator but
for a sub-system, he can implement this particular subsystem’s
API and embody it to his own code. The rest of the packages
are designed to collaborate with the new sub-system, given that
the abstract API of the replaced one is implemented. In this way,
we manage to maintain flexibility to the greatest extend.

42 our approach

5.4.2 Robustness

The simulator is pretty robust. We strengthen Elita’s robustness
in three ways:

1. technical inferiority and completeness

2. good API

3. many but solid packages

5.4.2.1 Technical inferiority and completeness

We use many corporation techniques in our software as de-
scribed in [12] and [Pragmatic programmer]. We also imple-
ment heavy unit-testing on every package, module, class and
function in our program. We include both simple and complex
unit tests. We test each function and each module indepen-
dently, but also in combination with others. We grant a suffi-
cient error-message number and we follow a strict error policy
2. As a result, a lot of assertions and use cases have been imple-
mented. To further clarify this part, we present two examples:

protocol problem : Let us think of coordinator based pro-
tocol as described in Chapter 2. Let us think the special case of
a lost message from coordinator to a node. That is a case that
the protocol does not predict, but is is not a simulation error.
The system will continue running in such a case.

code problem : Let us suppose the unlikely event of a null
pointer, or of a data type that contains wrong data. This is an
error that is not supposed to happen, and if the simulator meets
such a bug, then it exits immediately.

Finally, in order to give more qualities to the source code
implementing the simulator, we try to have good encapsulation,
no global data, and very strict coupling criteria [12].

2 This means that if an error is encountered, then the program is terminated
immediately. We prefer this strategy rather than "continue execution even
with errors" strategy. Even if our strategy is more annoying to the user, we
preferred it in our implementation because we need accurate measurements
and precision, over a finished simulation. After all, we interested in precise
results and performance.

5.4 main packages analysis 43

5.4.2.2 API Design

A good API, minimal but also abstract in order for someone
else than the usual user to implement it, helps the robustness.
It clarifies the individual functions and sub-systems and helps
the user to understand it. Moreover, by implementing the API
correctly, the simulator’s modules will work, no matter what
the rest of third-party source code qualities are 3.

5.4.2.3 Solid packages

This part is strongly connected to Section 5.4.1. As mentioned
above, simulator is designed to have several, discrete parts. Each
one performs a well-defined, discrete from others, function. From
this point, further split is not possible. This means that the mod-
ules that consist a subsystem can not be used separately For
instance, the coordinator module which is a module that im-
plements coordinator, can not be used outside its sub-system.
There are several dependencies, inheritance issues, etc.

There are though a few modules, that can be used outside
their packages but they are concerning to the simulation func-
tion exclusively. The network.py and environment.py modules
are totally independent. Extra attention and effort have been
given to these modules, mainly because they could be useful by
their own in many other simulation implementations. Besides,
network and environment are core elements in every simula-
tion of this type. Same rules apply to some of the protocols too,
but the external usage is not recommended.

Another characteristic that enforces robustness is that imple-
mentation details are encapsulated [12]. In addition to encap-
sulation, there is as much information hiding as the design
allows. The concept of "black boxes" comes from information hiding secrets
hiding. Python does not encourage such concepts (there is no
formal private concept in python) but still, the idea is that the
user who wants to heavily meddle with the simulation parts in
order to create her own, fully-customized simulation, should
not trouble herself with all the modules. Instead, all she has to
do is to implement the API (and thus avoid the dragons ahead!
[2])

3 theoritically, at least.

44 our approach

5.4.3 Documentation

Last but not of least importance, is the documentation. Even if
documentation should not be considered as a special feature,
to our experience, even the most complete libraries and project
lack documentation. The absence of good, full documentation
leads to API misunderstandings as well as code misunderstand-
ings. Our approximation to documentation is as follows:

1. API documentation

2. in-line documentation

api documentation API should be documented very well.
No space for misunderstandings should exist. The aim as well
as the parameters should be clearly discrete and described in
detail. Returns should be described as well. If there are any
constraints, they should be included, too. This approximation
is specially designed for our simulator, because it is figured out
that even a small misunderstanding can lead to wrong results.

inline documentation From our high-level schema, as
described in Figure 4, we break it down to classes. We analyze
the variables of classes as well as the API of each one. After the
API documentation (see paragraph above) we further describe
every function and variable. We build documentation for each
function the same way we do it for API.

Finally, before ever writing a single line of code, we design
an algorithm that implements the function’s desired functional-
ity in abstract, high-level, but detailed pseudocode. Then, after
each pseudocode’s line, we write the code which implements it.
With this methodology, we clearly reveal the small but hidden
details in source code and enhance readability.

documentation example An example of inline documen-
tation is given below. A random function has been chosen for
exhibition methods.

Listing 1: Documentation example

def findRecipientNode(self, message):

""" finds the recipient node searching from message

recipient

and returns the recipient node.

5.4 main packages analysis 45

@param message (Message)is an incoming message, that

contains

information for the recipient.

@return the recipient. If no recipient has been found,

print an error

message (recipient will contain a <None> value.

"""

init the recp to nothing

self.recp = None

and search the node list for the recipient

for node in self.NodeList:

if recipient exists and is found:

if self.recp == node.name:

assign it to recp and return

self.recp = node

return self.recp

else, print an error message

print ’No such recipient exists ! ’ �

46 our approach

Figure 4: Top level simulator design. The main, (idependent) pack-
ages of simulator are distinguished. We observe no cyclic
paths in packages’ communication.

Figure 5: Activity diagram for the simulator.

6
I M P L E M E N TAT I O N

What I wanted to say, I finally get in, is that I’ve
a set of instructions at home which open up great realms

for the improvement of technical writing. They begin,
"Assembly of Japanese bicycle require great peace of mind."

— Robert M. Pirsig [14]

6.1 levels design

Continuing from Chapter 5, we further analyze the top level
design as seen in Figure 4 to the sub-packages and modules
that consist each system. This top-down approximation has the
advantage of minimizing complexity when viewing the system.
Each new level of design reveals more content than the previ-
ous one.

In Figure 6 more system pieces are revealed and many con-
cepts described in [15] become visible in the design. Here, we
observe that the userinterface package consists of NodeFeatures,
where the hardware features of the node are placed, ParamsDef-
inition, where parameters relevant to simulation (such as nodes
number, streams number, threshold, etc) are set, the QueryDef-
inition and ArchDefinition (arhcitecture definition, it concerns
the algorithm/protocol used for communication between the
nodes). Into the node the protocol and all the basic piece for a
protocol to run are implemented and included.

6.1.1 Classes and Modules

The UML diagram of classes that consist API are presented
in Figure 7. We insist on the analysis of the UML diagram as
the heart of the system is revealed. The main module is the
Simulation module. A simulation is set there. The user writes
her own simulations calling all the necessary modules.

The most important pieces a simulation needs are

• the network,

47

48 implementation

• the environment,

• the node, and

• the simulation parameters.

The Network module implements the network. It is responsi-
ble for simulating the messages’ traveling through it, the delays,
the available bandwidth etc.

The Environment module generates data (in a rate) for the
simulation. Our simulator is focused on stream, so the environ-
ment simulates a distributed stream.

The Node takes as input the hardware specification it sup-
posed to have as well as the protocol. All this input comes from
the user. It then is called by the simulation module.

Finally, other simulation parameters (such as network char-
acteristics, protocols, etc.) are also being given as input by the
user.

6.2 api analysis

In this section we attempt a more analytical description of
API and its classes. We briefly describe each module and its
functionality.

6.2.1 User interface

The userinterface package contains the readinput and streamhan-
dler modules. The first is responsible for reading configuration
files given by the user, while the second is responsible for han-
dling and manipulating a stream. The only commitment the
user has, is to give as input the path where the stream is. For
more advance uses, (for example a different format in stream)
the user gives as input the format of a stream’s item (i.e. Integer-
Integer- Integer- Character).

Let us analyze the simple case where the user wants to just
change the data set. In this case, the user just gives to the sim-
ulator as input the path where the new data set is found. If
the new data set has a different form of data from the default
one, then the user just describes that form. For instance, if the
user wants to override the current form (say it is I-I-I-I-C-C-C-C

6.2 api analysis 49

1), she just types the new form (i.e. I-I-L-C-C). Note that there
is no constraint both in type and length of the new form. The
supported types are well documented.

Now, let us take into consideration the more complex sce-
nario, where the user wants to deeply customize the system.
Let us consider a user who wants to give unique names to the
nodes and she also wants to connect the nodes in a particular
way. The simulator supports configuration files as much cus-
tomized as the user wants. Of course, the user needs to write
some code so as to implement her special needs. It is not easy
to predict and implement the user’s wishes and needs, but an
interface is offered to the user for doing this.

6.2.2 Protocol

The protocol package contains everything related to protocols.
First of all, it contains some basic modules that implement
math (vecOps.py module) as well as core modules (computa-
tionalmodel.py that implements the computational model, the
monitoredfunction.py, an abstract protocol ready to implement,
signals, system state variables, etc). Given these modules, a set
of different protocol implementations have been made (decen-
tralized protocol, ordinary node protocol, coordinator protocol).
The most important (and independent) of them all is the proto-
col module. There, a basic API is required to be implemented by
the advanced user, and then she is able to run any simulation
she wants. This is a real simple API. It just requires the imple-
mentation of basic functionality: a sendMessage() function, a
recvMessage() function and a broadcast one.

Of course, the user can use other modules as well. She can
build on already given implementations of protocols, even in-
tegrate them to her code. For example, the user may want to
use the decentralizedProtocol.py module, which implements
the abstract protocol plus a few more functions in a complete
way (unit testing included) and add her own code. This ap-
proximation and usage strategy though is risky, and it is not
recommended, as it requires a complete understanding of the
whole module’s functionality. Moreover, it is possible for errors
or bugs to exist (dragons ahead!). The "clear" way of implement-
ing just the API is suggested, instead.

1 I corresponds to Integer while C: corresponds to character

50 implementation

Protocols are independent of the simulator. The only require-
ment of the simulator is a good implementation of the just three
functions mentioned above. Other than that, no more depen-
dencies exist. This is a useful feature because user can imple-
ment new protocols and run them to the simulator without
any concern of external dependencies and increased debugging
complexity. If her protocol operates in a wrong way, then the
simulator guarantees that something goes wrong with her pro-
tocol and not into the simulator.

6.2.3 Node

The node package contains the basic elements a node consists
of. It contains hardware specification in sources module (RAM,
CPU, channels, etc), and a message data type, where all the
information of the message (recipient(s), sender, content, size)
is contained. The node module implements a node, but also
a nodeProcess.py module, which is responsible for the simula-
tion. NodeProcess.py module is a heavily dependent module
and is not recommended to try to use it alone. Nevertheless,
the node module is independent of the simulation and it can
be used at will.

The node simulates a lot of things that are probably useless to
some simulations (but at the same time, useful to some others).
For instance, it implements CPU and RAM as resources that
cost processing time if the user deems this feature necessary. In
our exhibition simulations this feature is of no use, but another
user would consider it essential to her simulations.

6.2.4 Data

Data package contains all files relative to data. It contains an
AMS sketch implementation, probabilistic random number gen-
erators, operations to ams sketches. As mentioned above, the
simulator is focused on simulating the protocol described in
[? , lift:2006]ith heavy use of sketches. There is also a module
named data.py. This last module exists in case the user wants a
data type implementation of hers.

6.2 api analysis 51

6.2.5 Results

Results package is responsible for the results collection and ma-
nipulation. Data that come of the program’s execution are col-
lected. When a simulation has finished, then this package is
responsible for the elaboration of simulation’s raw data and its
presentation. A variety of functions implemented and are avail-
able to the user, so as she may select the most appropriate to
her needs. The user can either have all the simulation’s execu-
tion log file or just the processed, refined results of it. The user
can also either save the results to one or more files, or just print
them.

Monitoring data and results are deep intertwined. Monitor-
ing elements are implemented in crucial points and monitor
crucial variable and information of the simulation. After sim-
ulation’s ending, they are summed up and combined so as to
give the results. The only native, built-in monitoring element
in our simulation concerns the network. Network data (such as
number of messages and total traveling time of data into the
network) are saved. In addition to the network monitoring, a
lightweight monitoring is happening to the nodes, too. Data
that accumulate in the nodes are also monitoring by our simu-
lator.

Other kinds of monitoring should be implemented by the
user in the protocols. Usually the user wants to measure her
protocols’ performance and overall attribution and hence, she
is called to implement the monitoring elements needed. As it
is expected, monitoring elements of the simulator are at her
disposal as well.

6.2.6 Simulation

Finally, Simulation package is presented. This package is the
heart of the simulator. It contains core modules such as net-
work and environment, which implement what exactly their
names describe, respectively. These modules are very important
to any simulation and as a result they enjoy special treatment.
They are two modules that can be used in every other kind of
simulation and experiment.

network The network module is responsible for the net-
work in the simulation. It has a really simple and straightfor-
ward API. Its primary job is to collect and redistribute mes-

52 implementation

sages. The network delays the incoming messages for a short
period of time, in order to simulate the true delay which is ob-
served during a message’s sending.

Network has also physical restrictions and constraints, fully
customizable. User can define the delay time as well as its ca-
pacity. She can also enable small crucial details such as message
loss, if the protocols that she is called to implement, demand so.

environment The environment module is perhaps the most
important module of the simulator. It is responsible for coor-
dinating all the modules. It reads the data set and produces
streams, it finds the appropriate node for a stream item to be
sent, etc. It includes the network and the nodes.

Simulation package also contains some simulations. In this
package, simulations are created and run. This is where the
user that runs conventional simulations, focus.

6.3 code description

The UML class presented in Figure 7 does not present all pieces
of software used for the implementation of Elita. There are lots
of packages and sub-packages, as well as many more modules
implemented which contribute to what Elita is.

It is not on the purposes of this chapter to show the analytical
design tries, and all UML diagrams and classes that have been
created and operate into Elita. More information can be found
in Appendix. Thus, it deems appropriate that the user should
have a complete picture of our work. Hence, the structure of
the simulator is presented, with the help of the tree command
2 in a uniX-like system.

Listing 2: Project list of files

.

|-- code_samples

| |-- events.py

| ‘-- testEvents.py

|-- data

| |-- ams_ops.py

| |-- ams_ops.py~

| |-- ams.py

| |-- data.py

2 tree - list contents of directories in a tree-like format.

6.3 code description 53

| |-- __init__.py

| ‘-- prng.py

|-- DEPENDENCIES

|-- __init__.py

|-- node

| |-- __init__.py

| |-- message.py

| |-- node.py

| |-- old-node.py

| ‘-- sources.py

|-- protocol

| |-- balancingprocess-old.py

| |-- balancingprocess.py

| |-- computationalmodel.py

| |-- coordbasedProtocol

| | |-- coordProtocol.py

| | ‘-- nodeProtocol.py

| |-- coordprotocol.py

| |-- decentralizedProtocol.py

| |-- __init__.py

| |-- monitoredfunctionimpl.py

| |-- monitoredfunction.py

| |-- ordinarynodeprotocol.py

| |-- protocol.py

| |-- signals.py

| |-- systemstate.py

| ‘-- vec_ops.py

|-- README.txt

|-- results

| |-- __init__.py

| ‘-- results.py

|-- runit.py

|-- simulation

| |-- coordbasedsim

| | |-- coordclass.py

| | |-- coord_sim.py

| | |-- final_sim.py

| | |-- __init__.py

| | ‘-- nodecoordclass.py

| |-- environment.py

| |-- __init__.py

| |-- network.py

| |-- nodeprocess.py

| |-- sim_prototype.py

| ‘-- simulation.py

|-- tests

54 implementation

| |-- testAMS.py

| |-- testCoordclass.py

| |-- testCoordProtocol.py

| |-- testDecentralizedProtocol.py

| |-- testMessage.py

| |-- testMonitorFuncImpl.py

| |-- testNetwork.py

| |-- testOrdinaryNodeProtocol.py

| |-- testPrng.py

| |-- testReadInput.py

| |-- testStreamHandler.py

| ‘-- testVectorOps.py

|-- test.txt

|-- TODO.txt

‘-- userinterface

|-- __init__.py

|-- readinput.py

‘-- streamhandler.py

10 directories, 62 files �
6.4 implementation challenges

Here we describe some of the most interesting implementation
challenges we met. Our target is to implement a good simu-
lator that can really simulate real-life situations in high detail.
Consequently, except to protocol special cases and problems,
we deal with a range of problems about the network and the
environment we simulate. Eventually the following questions
occur:

• are the messages being sent in a non-deterministic way?

• more generally, is there any random factor in the system?

• is there enough randomness to ensure almost indepen-
dent results and experiment executions?

Moreover, special irregularities arise. For the particular pro-
tocol we implement in order to exhibit our simulator, we have:

• What happens when two critical nodes send a message to
each other?

• What happens when the system is to unsafe mode?

6.4 implementation challenges 55

6.4.1 Addressing Physical Challenges

For the first set of challenges, we decided to attack the problem
by importing to our system as much complexity as possible.
Thereafter, we implement the environment and the network of
our system with as much randomness imported as possible.

The environment reads a stream and sends its element to the
nodes in a random way. It selects randomly a node and sends
it an element. This procedure results to almost independent ex-
periments and simulations, due to the fact that the nodes don’t
receive items from the stream in a determined way. Moreover,
it is possible enough for a node to receive less elements than an-
other node. Sometimes two, three, or more times less elements.
This is also a real-life situation and results to more randomness
in the system.

The network is programmed to add a random delay to each
message. This simulates the delay of a message traveling through
network. In addition, there is a possibility of having lost mes-
sages in the network. This feature is optional and it is not used
in the simulations presented here. Though there is the probabil-
ity of using this feature to other experiments.

6.4.2 Addressing Protocol Challenges

Protocols use to approach problems and describe algorithms
and solutions from an abstract level. It is understood that they
do not focus on practical problems or even theoretical extreme
cases. The following problems represent a trivial, but still com-
plex case that a simulator needs to solve, and a more difficult,
almost to the limits of the protocol authorization.

simple scenario : A node sends a REP message to the co-
ordinator while at the same time, the coordinator sends to the
node a REQ message. In this trivial, but yet special case a node
observes a violation to its local constraint and sends its local
statistics vector to the coordinator. At the same time, the coor-
dinator is in the middle of a balancing process, which cannot
yet balance, and hence it decides to request the statistics vector
of the node. The messages happen to be sent and eventually
arrive at the same time.

56 implementation

Node⇐= receives REQ receives REP =⇒ Coord

The actions taken by each part are presented below:
Upon reception of the REQ message, the node ingores coor-

dinator’s request. It already has sent its last statistics. vector.
Upon reception of the REP message, the coordinator just sends
an ACK to the node. Even if a new REQ message arrives from
the same node, this node will be in the balancing group and
hence it is ignored.

complex scenario : A node has stated that is in USAFE
mode but items keep coming.

In this more complex case, a node observes a violation in
its local constraint. It sends a REP message so as to notify the
coordinator, but the data stream keeps flowing and new data
arrive. Now the node has to deal with the situation. Should it
keep collect the new data as they come or should ignore them,
until the coordinator sends a notification?

The algorithm that is used is the following:

Algorithm 6.4.1: UnSafe mode(−)

comment: item is an item from stream.

node← send(coord,REP)
while REQ is not coming

do

{
if item has come:

then
{

append(list, item)

sendToSketch(list)

comment: Now, notify for new data arrival.

LocalArrival(arrival)

algorithm explanation : Let us consider the scenario
described above. Summing up, the node has to select between
two choices: Either the node continues to update its local statis-
tics vector, or stop updating it and wait for an answer. Still
the node can not simply ignore the incoming data. The algo-
rithm we propose, tries to combine both of the solutions above.

6.4 implementation challenges 57

Therefore the node maintains another list where the stream is
"pinning" the items. Then, it withdraws the items for this list.
In other words this list of items is a broker between the envi-
ronment and the protocol. If for some reason node’s state is
unsafe, then no items are promoted to the local statistics vector.
On the contrary, the items wait there until the node is in safe
mode. Then, they all are directed to the local statistics vector, as
a batch of data. Since the list may be very big, we consider the
local statistics vector as as sketch data structure Section 2.2.1,
which have a great advantage over the conventional vectors,
both in terms of space and time complexity.

epilogue Concluding, we would like to point out that our
simulator meets its purpose. It is a robust, flexible simulator,
which simulates in great detail protocols and systems. Partic-
ular attention has been given to its portability. Moreover, our
simulator comes ready to be used. A suite of tests supports
and enhances it.

58 implementation

Figure 6: A more detailed sketch of ??. Sub-systems that implement
each system are presented.

6.4 implementation challenges 59

Figure 7: The uml diagram of main classes (that consist the API of
our simulator) is presented. Diagram has been rotated 90

degrees.

Part III

T H E S H O W C A S E

Results are presented in this part. A brief set of con-
clusions is presented. Last chapter contains sugges-
tions for future work on the simulator.

7
R E S U LT S

7.1 putting it all together

Summing up, we created a simulation as described below: First
of all, we built Elita. We also wrote for Elita the protocols de-
scribed in [15]. Our main focus as well as the results we present
are for the coordinator based protocol specifically. An addi-
tional problem with this protocol is the really big lists of wait-
ing data that occur Section 6.4.2. Hence, taking advantage of
Elita’s flexibility features, we replaced the vector data structures
in the computational model of the protocol with sketches. Now,
Elita operates on sketches instead of heavy, large vectors. To
sum up, until this point, we have a simulator written in Python
and powered by SimPy, which is ready to run the protocols
cited above but uses sketches instead of vectors.

Our only outstanding is the monitoring of a stream. The
stream is produced by the environment. This is not happen-
ing in a random way, but instead, the WCup data set is used.
Section 7.3.1 This data set is the data collected by many servers
during a day of the World Cup ’94 [4].

An exhibition of our simulator follows. The simulator runs
the coordinator-based protocol and collects several different
metrics. The results that are produced, they are compared to
these in [15].

The protocol runs for several different parameters. The num-
ber of nodes is a variable. Another variable is the rate the items
arrive to the nodes. The simulations run with full randomness
enabled (both in network travel times and item arrivals in the
nodes). No random loss is imported though. In other words,
there is no message loss through the network.

threshold and monitoring function Another impor-
tant issue to the simulations is the monitoring function and the
threshold. The problem becomes more interesting when every
time there is a violation, a new threshold is computed. In this
way the problem approaches even more a real situation. The
way the new threshold is computed, is presented below.

63

64 results

Let a system be as described above. A variable with time
threshold is presented.Let a function f be, where

‖f(sk)‖ = median{‖sk[j]‖2, j = 1, . . . ,d}
This function is the median of the norms of the sketches that
a node maintains. The monitoring function checks if the new
data affect to a significant extent the already existed threshold.
To restate, the monitoring function checks if the new f, after
the updating stage, is quite different from the original one. Itmonitoring function
checks the condition

f(sk) < (1+ θ)f(sk)old, where θ < ε 1

If a violation is observed and after balancing process, a re-
computation of new threshold is inevitable, the coordinator
computes the new threshold.

7.2 data summaries

What we are interested in simulating the particular protocol, is
some information about the waiting time of items before the
node inserts them to its sketches and their size as well. More-
over, we are interested in state changes of the nodes. In partic-
ular, we are interested in the percentage of time during which
a node is in safe mode or not. Furthermore, we are interested
in balancing process duration and some protocol qualities. Fi-
nally, we are interested in network’s metrics, both quantitative
and qualitative. Thereafter we measure the total number of mes-
sages in the network and the total time of messages’ traveling
through network.

A feature of our simulator is that it gathers data and data
summaries (count, total, mean, variance, time average, time
variance - [6]) but at a performance cost. Due to the fact that
we aim to a good simulator with detailed environment, we have
to sacrifice performance for detailed and completed data sum-
maries.

7.3 experiments

A set of simulations and experiments has been done using our
simulator. During protocol testing, we focus on different envi-
ronments and situations. We also pay special attention to the
physical constraints that apply to the nodes and the stream.

1 θ is the margin of difference between the new and the old functions. ε is the
margin error of sketches. Usually ε is much smaller than θ.

7.3 experiments 65

parameters The parameters we mostly are interested in
are the number of nodes and the rate with which data arrive to
each node. Passing different values to each parameter, we eval-
uate the performance, the possible bottlenecks, the efficiency,
etc.

We run several simulations for different numbers of nodes (2,
4, 6, 8, 10, 15, 20, 30, 40, 50) and different values of rate 90.2, 0.4,
0.6, 0.8, 1.0, 2.0, 3.0, 6.0). Of course, results are heavily affected
by stream’s format and structure.

7.3.1 Stream

Some details about the stream should be presented here. Our
stream comes from the wc day44 data set. This data set meets
all the requirements for giving birth to a distributed data stream.
It consists of the data collected by a distributed system of servers
in a single day of the World Cup ’94. In particular, it contains
all the connections done that day.

Its structure is analyzed below. It is a binary file which con-
tains millions of tuples (each one is a connection between the
server and a random user’s pc). A tuple’s format is following:
(time stamp, node id, data, size of request, ...)
We obviously are interested in the fields that are described
only. A characteristic of the stream is that it contains twenty to
twenty-five same time stamps. This is a very convenient feature,
because in this way, a concurrent item sending can be simulated.
This very feature can also become a little tricky and potentially
create a little anomaly to the results in few nodes setup. This
happens because we send each tuple in the node with id that
comes up from the following formula:

id = (timestamp mod nodesnumber)
That means that in a setup with three only nodes, the nodes

will probably receive several tuples each in a moment, while
in a setup with let us say twenty nodes, the nodes will receive
one or two tuples each, in a moment. This means that many
more balancing processes will probably happen, as the sketches
are updated much faster. In other words, a fair comparison be-
tween a twenty-node setup and a three-node setup would hap-
pen if the first setup has a five or maybe six times bigger rate
than the other.

66 results

7.3.2 Physical constraints

In order to run simulations in a great detail and test the pro-
tocol in real-time conditions, we arbitrarily applied a physical
constraint to our network. We decided to limit the number of
messages that can concurrently travel through the network to
ten. In this way, we could observe the network’s performance
in a heavy loaded environment.

Results are presented now:

explanation : We choose to present figures like Figure 11

because in our opinion this is the best way for a simulator to be
exhibited. This plot’s behavior is not foreseen by the protocol
and it presents a new, yet inconvenient situation. Explanation
for this is that that the setup with 2 nodes, updates its nodes
six or more times more frequently than the setup with the 7

nodes does. As a result, a balancing process is happening more
often (and each occurrence adds a little bit of time to the total
waiting time).

7.3 experiments 67

Figure 8: Messages number vs. nodes number. Rate here is 0.2.

Figure 9: Messages are waiting before a node sketches them. Here the
waiting time average to such a queue (but for all nodes) is
presented. This figure needs a second read to be well un-
derstood. Waiting time average decreases over time. This
makes sense, as even if a few nodes may accumulate many
items during balancing process, the majority of them runs
smoothly. Rate here is 0.2, time in miliseconds.

68 results

Figure 10: Messages are waiting before a node sketches them. Here
the waiting time variance to such a queue (but for all
nodes) is presented. Rate here is 0.2, time variance is
squared.

Figure 11: A balance process’s duration is presented. Here an early
peak is presented. This is because of the stream’s structure
Section 7.3.1. Rate here is 1, time is in seconds.

7.3 experiments 69

7.3.3 Complex Figures and Results

We present figures about three different monitoring stages. We
monitor:

• the balancing process.

• the items being accumulated in the list of each node (be-
fore being placed to sketches) .

• the state of each node (safe-unsafe, depending on the bal-
ancing process).

figures explanation Each figure shows one or more sim-
ulation results. The time average, time variance, mean an vari-
ance values are the mean values of all nodes for a simulation
setup. For example, we compute the mean value of the waiting
time average of all nodes and we present it.

7.3.3.1 Data accumulation monitoring

Here we present figures that are relative to Section 7.3.3. It
refers to the accumulated items in a node, before the node
sketches them. We present the system’s behavior for a variety
of different rates and number of nodes, as well.

70 results

Figure 12: Mean waiting time average to the lists of the nodes. Green
line (rate 1.0) presents the waiting time average for only
few nodes. Explanation of the really high waiting time av-
erage is as follows: Nodes are too few and they all par-
ticipate in the balancing process. Meanwhile, due to the
nature of the stream, items tend to come more rapidly to
the few nodes setup rather than a setup with more nodes.
Time in miliseconds.

7.3 experiments 71

Figure 13: Mean value of waiting items is not much different than the
waiting time average.

Figure 14: Total comparison figure. All nodes are represented here,
for different rate values. Rate over mean is represented, for
different number of nodes.

72 results

Figure 15: All nodes are represented for different values of rate. Time
is in miliseconds.

Figure 16: Wait time variance vs rate is presented here. Note that time
variance has been squared.

7.3 experiments 73

Figure 17: Let us have a function f where f(x) = 1, if state:safe and
f(x) = 0, elsewhere. The more time f(x) = 1, the higher
value will have in time. Hence, this figure makes sense,
because for a bigger rate, more items are coming at the
same time to the nodes and as a result, more balancing
processes happen. Time is in sec.

Figure 18: Active balancing process percentage of time vs rate

74 results

Figure 19: Active balancing process percentage of time vs nodes.
While rate becomes bigger, the time a node is in safe state,
becomes smaller.

Figure 20: Active balancing process percentage of time vs nodes.
While rate becomes bigger, the time a node is in safe state,
becomes smaller.

7.3 experiments 75

Figure 21: Average of waiting time of an item in a temporary queue
vs. rate. The reason why the waiting time is bigger for
more less nodes in our setup, is due to the specific form
of our stream (see Section 7.3.1).

Figure 22: Same metrics as in figure Figure 21.

8
C O N C L U S I O N S / F U T U R E W O R K

8.1 conclusions

After careful examination of the results, the user could note the
usefulness of a good simulator. We have more than enough fig-
ures during which interesting conclusions and results come up.
Through simulations we noticed the effectiveness of the pro-
tocols tested. We also took useful conclusions about protocol’s
performance. After extensive simulating of the protocol, we can
predict its overall performance with accurate estimations.

Moreover, useful observations came up, like potential bottle-
necks in the number of maximum nodes permitted to partici-
pate in the system or the maximum range of rate values.

indirect results In addition to the above, some interest-
ing stats came up. An example is that the waiting time average
is smaller, if the number of nodes becomes bigger. That is hap-
pening due to the fact that not all the nodes participate to the
balancing process. Hence, while some of them block the incom-
ing items waiting for answer from the coordinator, the majority
of system’s nodes continues their operation, without intermis-
sion. Another reason for this is that items are coming to a lower
rate (due to the form of the stream).

overall conclusions Finally, we can decide on the over-
all effectiveness and performance of the tested protocol. Com-
bining all the individual sub-conclusions, we can evaluate the
protocol as not easily-scalable over the number of nodes and
over the rate, too. That means that by increasing the number of
nodes or the rate, the protocol becomes especially "heavy", in
terms of computational effort. Moreover, nodes that are found
in unsafe mode, wait a long period of time being stand-by, and
as a result, more and more items are accumulated to the nodes
without being processed.

77

78 conclusions / future work

8.2 future work

8.2.1 More protocols to test

A significant amount of work can be done in testing a batch
of different protocols. The protocols referred to [15] have been
implemented, as well as the basic functionality of any protocol
(sending messages, receiving messages and broadcasting mes-
sages is some of it). Still, many protocols should be further im-
plemented. This will strengthen the simulator as a useful and
productive tool, with reliable results. Moreover, implementing
a lot of protocols could lead to many "hidden" situations to
be revealed. In other words, situations and cases that are nothidden cases
covered by a protocol could come to the foreground and be re-
vealed. This can lead to a more detailed and strict evaluation
of the efficiency of a protocol. It can also lead to modifications
or suggested improvements. An example of this has already
been given in Section 6.4.2. Rare cases that a protocol only "con-
fronts" in an abstract, high-leveled way or does not confront
them at all, should be written down and be confronted.

8.2.2 High-end user interface

At this time, the simulator offers a wide range of ready-to-use
interfaces. The user can just import her data to the system, if
she wishes to execute a simulation exactly like the simulations
that are presented here, or she can heavily modify the input
making use of configuration files. The simulator implements an
API which prompts the user to use configuration files (.conf)
the way she likes it and totally modify the system (from the
data, to the names of each node and their unique connections).

However, the simulator is addressed to the user who is famil-
iar with Linux and Unix environments and has a little knowl-
edge of shell commands. In other words, a graphical interface
is missing. SimPy offers libraries which can help for building a
graphical interface. By having a graphical interface, the system
hides a big amount of its complexity while at the same time it
becomes more attractive and eye-candy.

8.2.3 Interconnection with other simulators

Another future work for this simulator would be the intercon-
nection of parts of the simulator (or even the whole simulator)

8.2 future work 79

with other simulators. A very progressive step towards simula-
tion would be the use of our simulator or parts of it to other
simulators. For instance, the module that implements the net-
work, it could be used unchanged by another simulator.

8.2.4 Distributed System

A high-quality feature, (even if its implementation would be
of increased complexity) that could be added in the future is a
distributed execution of the simulator. As of now, our simulator
is not distributed. This means that it runs in a procedural way.
Such a feature would be a great improvement over the simula-
tor. Let us think the protocol we tested and examined in this
thesis. Now, let us think of it operating in a distributed system.
That means that every node (or small set of nodes) could run
in one single node of a distributed computer system (i.e. grid)
while the coordinator could acquire another node only for it-
self. Such a possibility could make the execution of simulations
much faster, almost real-time. In this way, the only performance
bottleneck in our system would be the network.

Of course, such a feature requires totally different algorithms,
libraries and dependencies than the ones used in this thesis.
Distributed algorithms are a great challenge but also add com-
plexity to the project. Even more issues arise of such an ap-
proximation, including data safety algorithms and confidence
guarantees about data receiving.

8.2.5 Map Reduce Integration

Last but not least, simulator’s tasks parallelism could be an-
other challenge. As long as we refer to streams monitoring and
manipulation, and to data mining in general, we should always
consider the size of our data. The latter, combined with the one-
pass feature of the streams, demands extremely powerful ma-
chines to be effectively processed. To our disappointment, ex-
tremely powerful computers still have high costs and solutions
like parallelism are preferred. Hence, a map-reduce implemen-
tation of demanding computational tasks that a detailed simu-
lation could have, is crucial.

Of course, this challenge is advanced and even more complex
than the above, as it usually demands a "parallel" way of think-
ing. Moreover the problems are way more complex, because not
only should we confront the problems of the simulation effec-

80 conclusions / future work

tively, but also we have to think how the parallelization should
work.

8.2 future work 81

**

Part IV

A P P E N D I X

A
A P P E N D I X

a.1 technical details

The concept of this thesis has been made exclusively with free
and (only in a few points) open source software. We imple-
mented our simulator in python (Section 2.4) and we also used
some shell scripts (shell we used is the bash shell Bourne Again
Shell (BaSh)). All the shapes and sketches have been designed
in free software applications (dia and gimp in particular) as
well. Finally, this thesis is written in LATEX . We tested the sim-
ulator in a variety of different systems so as to be sure for its
portability. Hence, the simulator has bee tested in both debian
and fedora-based systems. In particular, we tested it in 64-bit
Ubuntu, Debian and Fedora. Moreover, we ran the simulator in
the Technical University of Crete’s grid system (which runs a
redhat operating system).We ran heavy simulations in grid in
Torque (free software-[7]).

85

B I B L I O G R A P H Y

[1] Charu C. Aggarwal and Philip S. Yu, editors. Privacy-
Preserving Data Mining - Models and Algorithms, volume 34

of Advances in Database Systems. Springer, 2008. ISBN 978-
0-387-70991-8.

[2] Alfred V. Aho, Ravi Sethi, and Jeffrey D. Ullman. Compilers:
principles, techniques, and tools. Addison-Wesley Longman
Publishing Co., Inc., Boston, MA, USA, 1986. ISBN 0-201-
10088-6.

[3] Noga Alon, Yossi Matias, and Mario Szegedy. The space
complexity of approximating the frequency moments. J.
Comput. Syst. Sci., 58(1):137–147, 1999.

[4] Martin Arlitt. World cup 1994, 1994.

[5] Graham Cormode, Minos Garofalakis, Peter J. Haas, and
Chris Jermaine. Synopses for massive data: Samples, his-
tograms, wavelets, sketches. Found. Trends databases, 4

(1–3):1–294, January 2012. ISSN 1931-7883. doi:
10.1561/1900000004. URL http://dx.doi.org/10.1561/

1900000004.

[6] SimPy developer team. Simpy data summaries, 2004-2012.

[7] Altair Engineering. Torque portable batch system, 1991.

[8] Philippe Flajolet and G. Nigel Martin. Probabilistic count-
ing algorithms for data base applications. J. Comput. Syst.
Sci., 31(2):182–209, September 1985. ISSN 0022-0000. doi:
10.1016/0022-0000(85)90041-8. URL http://dx.doi.org/

10.1016/0022-0000(85)90041-8.

[9] Minos Garofalakis. Distributed data streams.

[10] Donald E. Knuth. Computer Programming as an Art. Com-
munications of the ACM, 17(12):667–673, December 1974.

[11] Fred Kuhl and Richard Weatherly. Tortuga, 2004-2006.

[12] Steve McConnell. Code Complete, Second Edition. Mi-
crosoft Press, Redmond, WA, USA, 2004. ISBN 0735619670,
9780735619678.

87

http://dx.doi.org/10.1561/1900000004
http://dx.doi.org/10.1561/1900000004
http://dx.doi.org/10.1016/0022-0000(85)90041-8
http://dx.doi.org/10.1016/0022-0000(85)90041-8

88 bibliography

[13] S. Muthukrishnan. Data streams: algorithms and applica-
tions. In Proceedings of the fourteenth annual ACM-SIAM
symposium on Discrete algorithms, SODA ’03, pages 413–
413, Philadelphia, PA, USA, 2003. Society for Industrial
and Applied Mathematics. ISBN 0-89871-538-5. URL
http://dl.acm.org/citation.cfm?id=644108.644174.

[14] Robert M. Pirsig. Zen and the Art of Motorcycle Maintenance:
An Inquiry into Values. William Morrow and Company, 25

edition, 1974.

[15] Izchak Sharfman, Assaf Schuster, and Daniel Keren. A ge-
ometric approach to monitoring threshold functions over
distributed data streams. ACM Trans. Database Syst., 32(4),
2007.

http://dl.acm.org/citation.cfm?id=644108.644174

D E C L A R AT I O N

Put your declaration here.

Technical University of Crete, February 2013

Babis Babalis

	Dedication
	Abstract
	Zusammenfassung
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Listings
	Acronyms
	Introduction and Background
	1 Introduction
	1.1 Thesis Contribution
	1.2 Thesis Overview

	2 Theoretical Background
	2.1 Streams - Monitoring Queries
	2.1.1 Streams
	2.1.2 Distributed Streams
	2.1.3 Monitoring Queries

	2.2 Sketches
	2.2.1 AMS Sketch

	2.3 A Geometric Approach
	2.3.1 Computational Model
	2.3.2 Geometric Interpretation
	2.3.3 Local Constraints
	2.3.4 Decentralized Protocol
	2.3.5 Coordinator-Based Protocol

	2.4 Python Programming Language
	2.5 SimPy

	Problem and Approach
	3 Problem Statement
	3.1 General Simulation Uses
	3.1.1 Simulation purpose

	3.2 Communication Protocol Simulations

	4 Related Work
	5 Our Approach
	5.1 High-Level Description of the Problem
	5.1.1 Analytical description of problem:
	5.1.2 Description of software system

	5.2 Levels of Design
	5.3 Elita's Architecture
	5.4 Main Packages Analysis
	5.4.1 Flexibility
	5.4.2 Robustness
	5.4.3 Documentation

	6 Implementation
	6.1 Levels Design
	6.1.1 Classes and Modules

	6.2 API Analysis
	6.2.1 User interface
	6.2.2 Protocol
	6.2.3 Node
	6.2.4 Data
	6.2.5 Results
	6.2.6 Simulation

	6.3 Code Description
	6.4 Implementation Challenges
	6.4.1 Addressing Physical Challenges
	6.4.2 Addressing Protocol Challenges

	The Showcase
	7 Results
	7.1 Putting it all together
	7.2 Data Summaries
	7.3 Experiments
	7.3.1 Stream
	7.3.2 Physical constraints
	7.3.3 Complex Figures and Results

	8 Conclusions / Future Work
	8.1 Conclusions
	8.2 Future Work
	8.2.1 More protocols to test
	8.2.2 High-end user interface
	8.2.3 Interconnection with other simulators
	8.2.4 Distributed System
	8.2.5 Map Reduce Integration

	Appendix
	A Appendix
	A.1 Technical Details

	Bibliography
	Declaration

