
1

DEVELOPMENT OF A LARGE SCALE, SMART, MULTI -PURPOSE

VIRTUAL ENVIRONMENT (SCIENCE S BUILDING OF TUC) USING

GAME ENGINE

By

Stefan Petrovski

Submitted to the

Department of Electronics and Computer Engineering

Technical University of Crete

Examining Committee

Dr Aikaterini Mania, Advisor

Dr Aggelos Bletsas

Dr Antonios Deligiannakis

2

Table of Contents
1 Introduction ... 9

1.1 Thesis Outline ... 11

2 Technical Background ... 13

2.1 Introduction .. 13

2.2 3D computer graphics .. 13

2.2.1 Modeling ... 14

2.2.2 Layout and animation ... 14

2.2.3 Rendering.. 14

2.3 3D Models ... 14

2.3.1 Modelling Process ... 15

2.4 Texturing ς Importance of texture maps ... 16

2.5 Game Engines ... 20

2.5.1 Game Engine Components ... 21

2.6 Three Modern Game Engines ... 21

2.6.1 Unity 3D .. 22

2.6.2 Torque 3D ... 22

2.6.3 Unreal Development Kit (UDK) ... 22

3 Software Architecture and Development Framework 24

3.1 Unreal Development Kit ... 24

3.1.1 Rendering Engine .. 24

3.1.2 Sound Engine .. 25

3.1.3 Physics Engine ... 25

3.1.4 Unreal Editor ... 25

3.1.5 Unreal Kismet ... 28

3.1.6 Material Editor .. 29

3.1.7 Sound Editor ... 30

3.1.8 Unreal Matinee ... 31

3.1.9 Unreal Lightmass .. 31

3.2 UnrealScript .. 32

3.2.1 The Unreal Virtual Machine .. 33

3.2.2 Class Hierarchy.. 34

3.2.3 Timers ... 35

3

3.2.4 States .. 36

3.2.5 Interfaces .. 36

3.2.6 UnrealScript Compiler... 37

3.2.7 UnrealScript Programming Strategy ... 37

3.2.8 Configuration Files .. 38

3.2.9 DLL Files .. 39

3.2.10 Input Manager .. 39

3.2.11 Materials in UDK ... 40

3.3 Scaleform GFx ... 41

3.3.1 Flash Applications ... 43

3.3.2 Authoring Environment for Interactive Content... 44

3.3.3 ActionScript 3.0... 45

3.4 Connection of the Graphical User Interfaces (GUIs) with the Application 47

3.4.1 Connecting using Kismet:.. 48

3.4.2 Connecting using - Unrealscript: ... 48

3.5 Autodesk 3ds Max .. 49

3.5.1 Predefined primitives ... 50

3.6 Setting up the Environment ... 51

3.6.1 Setting up Scaleform GFx .. 51

3.6.2 Setting up Microsoft Visual Studio with nFringe .. 52

4 Virtual Environment Creation ... 53

4.1 World Geometry ... 53

4.1.1 BSP .. 57

4.1.2 Static Meshes .. 58

4.1.3 Importing the Static Meshes ... 62

4.2 Materials ... 64

4.2.1 Textures Vs Materials ... 64

4.2.2 Textures .. 64

4.2.3 Material Creation .. 65

4.3 Doors ... 67

5 Functionality Creation (Scripting) .. 70

5.1 The Three Fundamental Classes ... 70

5.2 Application Data ... 74

5.3 Detecting Focused Actors ... 77

4

5.4 Lifts .. 79

5.5 Menu System .. 98

5.6 Heads-Up Display (HUD)... 103

5.6.1 Mini Map... 109

5.6.2 Extended Info Panel .. 113

5.7 Displaying Professor Information .. 119

5.7.1 Creation of the Professor Info Interface using Flash and ActionScript 3.0 120

5.7.2 Connecting the User Interface with the application - UnrealScript 124

5.8 Path Finding .. 127

5.8.1 Setting Up the Navigation Network .. 129

5.8.2 Target Nodes... 131

5.8.3 Connection of the UI ... 132

5.9 Interactive Map .. 140

5.10 Reading Sensors Data From a Web Server... 147

5.10.1 Display Panels ... 149

5.10.2 Connecting to a web server .. 152

6 Conclusions and Future Work ... 156

6.1 Implications for Future Work ... 156

7 Bibliography - References ... 158

8 Appendix A ... 160

8.1 Settings ... 160

8.2 Cinematics... 163

5

List Of Figures

Figure 2.1. Virtual Environment [Team Bunraku] ... 13

Figure 2.2. 3D polygonal modeling of a human face ... 15

Figure 2.3. An example of Curve Modeling... 16

Figure 2.4. 3D model without textures (left), The same model with textures (right) 16

Figure 2.5. Examples of multitexturing. 1) Untextured sphere, 2) Texture and bump maps, 3) Te 17

Figure 2.6. Specular Map applied on a 3D ball.. 18

Figure 2.7. Wall with Normal Map applied ... 19

Figure 2.8. Mesh with diffuse map only (left). Opacity texture applied on the mesh (right) 19

Figure 2.9. Architecture of a game engine ... 20

Figure 3.1. The Unreal Editor with a virtual scene loaded... 26

Figure 3.2 Static Mesh Editor ... 27

Figure 3.3. Properties of a Static Mesh Actor instance ... 27

Figure 3.4. Unreal Kismet with a simple sequence ... 29

Figure 3.5 The Material Editor with a sample material ... 30

Figure 3.6 The Sound Editor with a simple sound sequence loaded.. 31

Figure 3.7. Animating pocket door (left) using the Unreal Matinee Editor (right)................................... 31

Figure 3.8 UnrealScript Class Hierarchy ... 35

Figure 3.9. Scaleform design workflow .. 43

Figure 3.10. Flash Authoring environment with a Flash User Interface loaded 44

Figure 3.11. Initiation of a Flash User Interface Application through Unreal Kismet................................ 48

Figure 3.12. 3DS Max's User Interface.. 50

Figure 3.13. 3ds Max Standard Primitives: Box, Cylinder, Cone, Pyramid, Sphere, Tube and Torus. 51

Figure 3.14. 3ds Max Extended Primitives: Torus Knot ChamferCyl, Hose, Capsule, Gengon and Prism .. 51

Figure 4.1. The Sciences Building of TUC ... 53

Figure 4.2. Floor plan of the first floor... 54

Figure 4.3. South elevation of the ECE department ... 54

Figure 4.4. The redundant lines are removed .. 55

Figure 4.5. Floor plan imported into Max .. 55

Figure 4.6. The new closed line ... 55

Figure 4.7. The final 3D extruded object ... 56

Figure 4.8. The place holder imported into UDK .. 56

Figure 4.9. Application's BSP geometry (lit mode) ... 57

Figure 4.10. Application's BSP geometry (wireframe mode) - Additive Brushes (blu 57

Figure 4.11. Simple 3D object with material applied to it .. 59

Figure 4.12. The UVW unwrapping of an object in 3ds Max. This UV channel is..................................... 60

Figure 4.13. Setting a pivot point of a 3D model.. 61

Figure 4.14. Some of the created static meshes .. 61

Figure 4.15 Importing external 3D model into UDK .. 62

Figure 4.16. Stair rails 3D model with a simple collision applied on it .. 63

file:///C:/Users/neos/Desktop/Anafora.docx%23_Toc350511008

6

Figure 4.17. Collision data created from blocking volumes (pink lines) .. 64

Figure 4.18. Normal Map creation workflow ... 65

Figure 4.19. Creating new material in UDK .. 66

Figure 4.20. On the left is a grey matte material, with no specular color. On the right........................... 66

Figure 4.21. A material for the wooden floor surface with a normal map d ... 67

Figure 5.1 TUC Lift .. 80

Figure 5.2. An example of external Lift Button. The user has to be located in green cylind 81

Figure 5.3. When the user looks at the lift button informative box is displayed 82

Figure 5.4 Lift Control Panel .. 87

Figure 5.5 An example of lift creation ... 97

Figure 5.6. The HUD .. 104

Figure 5.7. The HUD flash file .. 105

Figure 5.8. Info panel .. 114

Figure 5.9. The detecting volumes .. 115

Figure 5.10. The user interface of the Find Path functionallity. In order to start path finding th 128

Figure 5.11. The green arow shows the way to the selected destination location................................ 129

Figure 5.12. The Navigation Network consist of interconnected PathNodes (apples)........................... 129

Figure 5.13. The data from the sensors ... 147

7

Abstract

This thesis explores a method of three -dimensional fully interactive architectural

visualization based on a game engine and presents a framework for creating such

virtual environments . Through an examination of the tools and the components of a

game engine, this thesis show s how a game engine can be used for creating large,

smart and int eractive Virtual Environments (VEs). The final product of this thesis,

along with the research presented here, is a 3D computer application which

simulates a real - time Virtual Environment (The Sci ences building of TUC) . The

created application simulates a real - time 3D navigable environment which the user

can interact with, navigate in it and view information related to spatial location of

the faculty offices , labs or classrooms. Moreover, the user can view data from

external sensors which could be streamed in the interactive application dynamically .

The goal of the application is to show the results of modern 3D architectural

visualization using a game engine, as well as to build functionality that helps the

users in navigation and getting to know the univer sity building simulated . In

addition to this, many of the classes created can be used by developers to add

interesting functionalities to their VEs.

8

Acknowledgements
I owe sincere thankfulness to my research advisor, Katerina Mania , who made me

believe in myself and guided me through the whole process of thesis writing. I am

sure that this thesis would not have been possible without her support,

understanding and encouragement I felt when working on my project .

I would like to expr ess my gratitude to Prof. Aggelos Bletsas and to Eleftherios

Kampianakhs and Kostantinos Tountas for their invaluable help constructing and

installing the sensors as well as for the implementation of the software used to

send data to the web server.

Finaly, i would like to show my gratitude to my parents, friends and colleagues for

their help and moral support. I would like to thank my sister for her patience and

her help improving the readability of my thesis.

9

1 Introduction

The histor y of video games goes back to 1962 when a young computer programmer

from MIT, Steve Russell created the first popular computer game Starwar. Starwar

was almost the first computer game ever written, however, they were at least two

far -lesser known predecess ors: OXO (1952) and Tennis for Two (1958). Since then,

video games have become so popular that over the past 30 years, they have

become an integral part of our culture, and eventually led to more sophisticated

technology for their further development. Thei r popularity was a major cause for

continuously increasing budgets in that sector and consequently for the

development of sophisticated technology (Game Engines) for creating these games.

This has resulted in the development of tool sets integrated with pr ogramming

interfaces we now call game engines that also support the development of real - time

virtual environments.

Virtual Environments (VEs) allow us to explore an ancient historical site, visit a new

home led by a virtual estate agent, or fly through the twisting corridors of a space

station in pursuit of alien prey. They simulate the visual experience of immersion in

a 3D environment by rendering images of a computer model as seen from an

observer viewpoint moving under interactive control by the user. I f the rendered

images are visually compelling, and they are refreshed quickly enough, the user

feels a sense of presence in a virtual world, enabling applications in education,

training simulation, computer -aided design, electronic commerce, entertainment

and medicine.

This thesis explores a method of three -dimension al fully interactive architectural

visualization based on a game engine. Through an examination of the tools and the

components of a game engine, this thesis show s how a game engine can be used

for creating large, smart and interactive Virtual Environments (VEs).

3D Architectural visualization has been traditionally limited to static animation in

the sense that although the images display movement, the movement is always

from the sa me point -of -view. Such animations are frequently pre - rendered and not

interactive - [Kevin Conway, 2011] .

The final product of this thesis, along with the research presented here, is a 3D

interactive computer application which simulates a n existing university building

name d ' The B uilding of Sciences' of the Technical University of Crete (TUC), in

Chania, Crete, Greece.

Application

10

The created application simulates a real - time 3D navigable environment which the

user can interact with and view informa tion related to spatial location of faculty

offices, labs or classrooms. Moreover, the user can view data from external

sensors, which could be streamed in the interactive application dynamically

This virtual 3D environment represents the Science s Building of Technical the

University of Crete (TUC) and it is built using the Unreal Development Kit game

engine. In order to match the real building (scale and position of the walls, doors,

windows etc.) as close as possible, the building's architectural floor pa ns, as well as

photographs, were used. Figure x.x shows the virtual environment.

The goal of the application is to show the results of modern 3D architectural

visualization using a game engine, as well as to build functionality that helps the

users in na vigation and getting to know the building. In addition to this, many of

the classes created can be used by developers to add interesting functionalities to

their VEs.

The main features provided by this application are listed below:

¶ Navigation: The u ser nav igates through the world interacting with the

controlable parts such as doors, elevators, menu system, popups interfaces.

¶ Display : A Simple and minimalistic yet intuitive and fully functional HUD is

displayed while using the application.

11

¶ Menu System: A User -Friendly menu from which various fu nctionallities can

be initiated, such as, Path Finding, Interactive map, Cinematics etc.

¶ 3D User interfaces: A 3-layer, rotating user interface is implemented to

display information related to faculty loaded from ex ternal file s.

¶ Interactive Map: A 2D map of the building with buttons and images on it ,

that depicts the building's structure.

¶ Data from external sensors such as, current classroom temperature and

presence detection are streamed in the application .

¶ Mini Map Functional ity.

¶ Path Finding Functionality.

Navigation System

The user navigation system used in the application is the widely adapted WASD

kebord layout. WASD is controlled as follows: W and S control the userôs

forward/back movement and S and D control left and right strafing . The mouse is

used to look around the environment and the left mouse button (LMB) is controlling

the userôs interactions with the Menu System .

1.1 Thesis Outline

This thesis is divided into seven chapters, which will be outlin ed below.

Chapter 2 - Technical Background : This chapter reviews the process of creating

3D computer graphics and presents the basic tools for creating interactive VEs. It

first shows two basic techniques for creating 3D objects and then introduces the

reader to texture mapping. Furthermore, this chapter reviews the main components

of a game engine, and at the end compares three state -of -art engines.

Chapter 3 ï Software Architecture and Development Framework : This

chapter describes the main tools used for creating the 3D application. It reviews the

core components and tools of the Unreal Development Kit (UDK) game engine and

it presents the scripting language - Unrealscript tha t is used for adding functional ity

to the VE. Apart from this, it introduces the technology used for creating User

Interfaces (UIs) and how it can be connected to the application.

12

Chapter 4 - Virtual Environment Creation : This chapter desribes the whole

process of creating the virtual environment, starting from creating the needed

assets (static meshes, textures) to their asseb le in the UDK and adding collision

and materials to them.

Chapter 5 - Implem entation (Scripting): This chapter thorough ly describes

every as pect of creating the functional ities that the application supports thr ou gh

code, explaining and images.

Chapter 6 - Conclusion and Future Work : The final chapter presents conclusi -

ons resulting from the thesis, as well as hints about future work.

13

2 Technical Background

2.1 Introduction

A Virtual Environment (VE) is a computer simulated scene which can be

interactively manipulated by users. Typical scenes used in such environments

generally comprise of geometric 3D models, shades, images and lights which are

converted into final images through the rendering pr ocess. The rendering process

must be conducted in real time in order to provide scenes which are updated

reacting to user interaction.

Figure 2 .1 . Virtual Environment [Team Bunraku]

In this chapter the technologies and the methods used for creating 3D Virtual

Environments (VEs) are discussed.

2.2 3D computer graphics

3D computer graphics are those that use a three -dimensional representation of

geometric data. This data is stored in th e computer so that performing calculations

and rendering 2D images is assured.

3D computer graphics creation is a three step process:

¶ First comes 3D modeling , which is the process of forming a computer model

of an object's shape

14

¶ The second step includes layout and animation, that is the motion and

placement of objects within a scene

¶ The third step is 3D rendering . This basically includes the computer

calculations that, based on light placement, surface types, and other

qualities, generate the image.

2.2.1 Modeling

The model actually describes the process of forming the shape of an object. The

two most common sources of 3D models are those that an artist or engineer

originates on the computer with some kind of 3D modeling tool, and models

scanned into a compu ter from real -world objects. Basically, a 3D model is formed

from points called vertices that define the shape and form polygons. A polygon is

an area formed from at least three vertexes (a triangle). The overall integrity of the

model and its suitability to use in animation depend on the structure of the

polygons.

2.2.2 Layout and animation

Before rendering into an image, objects must be placed in a scene. This defines

spatial relationships between objects, including location and size. Animation refers

to the t emporal description of an object, i.e., how it moves and deforms over time.

Popular methods include keyframing, inverse kinematics, and motion capture. A

combination of these techniques is often used in practice.

2.2.3 Rendering

Rendering is the process of gen erating an image from a model (or models in what

collectively could be called a scene file), by means of computer programs. A scene

file contains objects in a strictly defined language or data structure; it would

contain geometry, viewpoint, texture, light ing, and shading information as a

description of the virtual scene. The data contained in the scene file is then passed

to a rendering program to be processed and output to a digital image or raster

graphics image file. The rendering program is usually bui lt into the computer

graphics software, though others are available as plug -ins or entirely separate

programs.

2.3 3D Models
3D models represent a 3D object using a collection of points in 3D space, connected

by various geometric entities such as triangles, lines, curved surfaces, etc. Being a

15

collection of data (points and other information), 3D models can be created by

hand, a lgorithmically (procedural modeling), or scanned.

Almost all 3D models can be divided into two categories:

¶ The first category is the so -called solid models. These models define the

volume of the object they represent (like a rock). These are more realistic ,

but more difficult to build. Solid models are generally used for nonvisual

simulations such as medical and engineering simulations, for CAD and

specialized visual applications such as ray tracing and constructive solid

geometry

¶ The second category includ es the shell/boundary models , which represent

the surface, for instance the boundary of the object, not its volume (like an

infinitesimally thin eggshell). These are easier to work with than solid

models.

2.3.1 Modelling Process

There are several modeling tec hniques, but the two most used are Polygonal and

Curve Modeling. These are briefly described in this section.

Polygonal modeling - Points in 3D space, called vertices, are connected by line

segments to form a polygonal mesh. The vast majority of 3D models today are built

as textured polygonal models, because they are flexible and because computers can

render them so quickly. However, polygons are planar and can only approximate

curved surfaces using many polygons.

Figure 2 .2 . 3D polygonal modeling of a human face

16

1. Curve modeling - Surfaces are defined by curves, which are influenced by

weighted control points. The curve follows (but does not necessarily

interpolate) the points. Increasing the weig ht for a point will pull the curve

closer to that point.

Figure 2 .3 . An example of Curve Modeling

The most popular programs for creating 3D models are: 3DS Max , Blender , Cinema

4D, Maya, Lightwave, Modo and solidThinking. Modeling can be performed also by

using some scene description language such as X3D , VRML, and POV -Ray.

2.4 Texturing ï Importance of texture maps

Texture mapping is a method for adding detail, surface texture (a bitmap or raster

image), or color to a computer -generated graphic or 3D model.

Figure 2 .4 . 3D model without textures (left), The same model with textures (right)

17

A texture map is applied (mapped) to th e surface of a shape or polyg on. This

process is akin to applying patterned paper to a plain white box. Every vertex in a

polygon is assigned a texture coordinate (which in the 2d case is also known as a

UV coordinate) either via explicit assignment or by procedural definition. Image

sampling locations are then interpolated across the face of a polygon to produce a

visual result that seems to have more richness than could otherwise be achieved

with a limited number of polygons. Multitexturing is the use of more than one

texture at a ti me on a polygon. For instance, a light map texture may be used to

light a surface as an alternative to recalculating that lighting every time the surface

is rendered. Another multitexture technique is bump mapping, which allows a

texture to directly contro l the facing direction of a surface for the purposes of its

lighting calculations; it can give a very good appearance of a complex surface, such

as tree bark or rough concrete that takes on lighting detail in addition to the usual

detailed coloring. Bump m apping has become popular in recent video games as

graphics hardware has become powerful enough to accommodate it in real - time.

The way the resulting pixels on the screen are calculated from the texels (texture

pixels) is governed by texture filtering. Th e fastest method is to use the nearest -

neighbour interpolation, but bilinear interpolation or trilinear interpolations between

mipmaps are two commonly used alternatives which reduce aliasing or jaggies. In

the event of a texture coordinate being outside th e texture, it is either clamped or

wrapped.

Figure 2 .5 . Examples of multitexturing. 1) Untextured sphere, 2) Texture and bump maps,

3) Texture map only, 4) Opacity and texture maps.

The essentia l map types are described below

18

Color (or Diffuse) Maps: As the name would imply, the first and most obvious

use for a texture map is to add color or texture to the surface of a model. This

could be as simple as applying a wood grain texture to a table surface, or as

complex as a color map for an entire game character (including armor and

accessories). However, the term texture map, as it's often used is a bit of a

misnomer ðsurface maps play a huge role in computer graphics beyond just color

and texture. In a produc tion setting, a character or environment's color map is

usually just one of three maps that will be used for almost every single 3D model.

Specular Map: A specular map tells the software which parts of a model should be

shiny or glossy, and also the magnit ude of the glossiness. Specular maps are

named for the fact that shiny surfaces, like metals, ceramics, and some plastics

show a strong specular highlight (a direct reflection from a strong light source).

Specular highlights are the white reflection on the rim of a coffee mug. Another

common example of specular reflection is the tiny white glimmer in someone's eye,

just above the pupil.

A specular map is typically a grayscale image, and is absolutely essential for

surfaces that aren't uniformly features . A n armored vehicle, for example, requires a

specular map in order for scratches, dents, and imperfections in the armor to come

across convincingly. Similarly, a game character made of multiple materials would

need a specular map to convey the different leve ls of glossiness between the

character's skin, metal belt buckle, and clothing material.

Figure 2 .6 . Specular Map applied on a 3D ball

Bump (Normal) Map: A bit more complex than either of the two previous

examples, bump maps are a form of texture map that can help give a more realistic

indication of bumps or depressions on the surface of a model .

To increase the impression of realism, a bump or normal map would be added to

more accurately recreate the coars e, grainy surface of, for instance, a brick, and

heighten the illusion that the cracks between bricks are actually receding in space.

Of course, it would be possible to achieve the same effect by modeling each and

19

every brick by hand, but a normal mapped p lane is much more computationally

efficient.

Bump, displacement, and normal maps are a discussion in their own right, and are

absolutely essential for achieving photo - realism in a render.

Figure 2 .7 . Wall w ith Normal Map applied

Transparency (or Opacity) Map: Exactly like a reflection map, except it tells the

software which portions of the model should be transparent. A common use for a

transparency map would be a surface that would otherwise be very diffic ult, or too

computationally expensive to duplicate, like a chain link fence. Using a

transparency, instead of modeling the links individually can be quite convincing as

long as the model doesn't feature too close to the foreground, and uses far fewer

polyg ons.

Figure 2 .8 . Mesh w ith diffuse map only (left). Opacity texture applied on t he mesh (right)

Texture maps are crucial for the design of the virtual scene. They facilitate the

reduction of the polygonal complexity of the 3d models used, which in any other

way would hinder rendering performance. In particular, the normal maps of some

20

low polygon cou nt models used in our scene were acquired from their high polygon

versions to keep all the fine details of the models, thus maintaining an acceptable

lighting quality with low computational cost. An example of this method can be seen

on the following pictu re. Another use of texture maps, are opacity maps which allow

for the otherwise opaque window in our scene to become transparent.

2.5 Game Engines

A game engine is a system designed primarily for the creation and development of

video games. The leading game engines provide a software framework that

developers use to create games for video game consoles and personal computers.

A game engine provides the framework and the Application User Interface (API) for

the developer to use and communica te with the hardware. It consists of separate

autonomous systems, each handling a specific process, e.g. the graphics system,

the sound system, the physics system, etc. Figure 2.9 shows the standard

architecture of game engines.

Figure 2 .9 . Architecture of a game engine

In recent years, the game engine technology has matured and became very user -

friendly. This has led the fame engines to be used in variety of different applications

such as architectural v isualization, training, medical and military simulation

applications. In other words, game engines can be used in development of any 3D

21

interactive environment. It was decided early on in this project that the

implementation of the 3D interactive environme nt would be based on a game

engine for this reason. Although the final application is not a computer game, a

game engine offers the required tools and programming platform in order to create

an interactive photorealistic environment.

2.5.1 Game Engine Component s

Game Engines contains several components. The structure of a game engine is

modularized. This means that e ach component work indepen dently, but all the

modules are controled by a central core engine. The main components that appart

a game engine are: the Render ing (Graphic) Engine , the Physics Engine and the

Sound Engine .

Render ing Engine

The job of the Rendering engine is to control what the user sees when using the 3D

application. Rendering includes all the processes that take 3D geometry and

tra nsforms it into a representation of a world. The renderer does the rendering in

real time with constantly changing variables and input to create the illusion for the

player that the player is occupying another world that he or she can interact.

Physics Engine

In virtual environments , objects and characters must respond to collisions, gravity,

acceleration, and inertia accurately. The component of a game engine that

simulates physics models is called Physics Engine. The Physics Engine is basicaly a

comput er program that manages physics variables such as mass, velocity, friction

etc. In most game engines , the physics engine is a middleware software module

that is licensed from an independent software developer. Physics engines currently

available for game e ngines include PhysX(Nvidia), Havok, Open Dynamics Engine,

Vortex and many more.

Sound Engine

The Sound Engine is responsible for taking the sounds that we have created and

playing them based on certain events in the application (for examlple when a door

opens, when the user walks, when braking glass etc.)

2.6 Three Modern Game Engines

22

In this section, the game engines that were considered but rejected will be

presented, as well as UDK, which is the game engine that was selected for the

implementation of t he 3D lighting system.

2.6.1 Unity 3D

Unity 3D is a fully featured application suite, providing tools to create 3D games or

other applications, such as architectural visualization. It provides support for editing

object geometry, surfaces, lights and sounds. It uses the Ageia physics engine,

provided by nVidia. A lightmapping system, called Beast, is included. In terms of

programming, Unity 3D supports three programming languages: JavaScript, C#

and Boo, which is a python variation. All three languages are fast and can be

interconnected. The gameôs logic runs in the open-source platform ñMonoò, offering

speed and flexibility. Required for the development process a debugger is also

included, allowing pausing the game at any time and resuming it step -by -step.

Unit y 3D is widely used, utilized by a large community offering help. It is free for

non -commercial use and it is targeted to all platforms, such as PC, MAC, Android,

iOS and web. This game engine targets at offering in creased rendering speed, even

including machines with low memory and computational power, such as iOS and

Android smartphones, and not at creating interactive photorealistic environments,

which need a lot of memory and very fast CPU and GPU to render at acceptable

speed. Unity 3D was rejected, be cause it was necessary to have the ability to

create photorealistic VEs and render them in real - time.

2.6.2 Torque 3D

Torque 3D is a sophisticated game engine for creating networked games. It

includes advanced rendering technology, a Graphical User Interface (GUI) building

tool and a World Editor, providing an entire suit of WYSIWYG (What -You-See- Is -

What -You-Get) tools to create the game or simulation application.

The programming language used is " TorqueScript " , which resembles C/C++. It is

targeted for both Windows and MacOS platforms, as well as the web. The main

disadvantage of Torque 3D is that it is not free, but it needs to be licensed for

$100. For this reason, Torque 3D was also rejected.

2.6.3 Unreal Development Kit (UDK)

The Unreal Development Kit (UDK) is a fully functional version of the Unreal Engine

3 that is available for anyone to download from Epic. UDK is cur rently one of th e

leading game engines . It became free on November 2009 for non -commercial use

23

and it is used by the worldôs largest development studios. The UDK community

includes thousands of people from around the world, providing help and advice.

UDKôs core is written in C++, making it very fast. It o ffers the ability to use both

"UnrealScript ", UDKôs object-oriented scripting language, and C/C++ programming

languages. It provides many different tools for the creation and the rendering of a

virtual sce ne. The Unreal Development Kit includes the Unreal Lightmass, which is

an advanced global illumination solver. The Unreal Lightmass supports the

illumination with a single sun, giving off soft shadows and automatically computing

the diffuse interreflection (color bleeding). It also offers a variety of options to

optimize the illumination solution. It can provide detailed shadows by using

directional light mapping, static shadowing and diffuse normal -mapped lighting. An

unlimited number of lights can be pre -computed and stored in a single set of

texture maps. The complete software architecture of UDK will be presented in

Chapter 3 ï Software Architecture and Development Framework.

24

3 Software Architecture and Development

Framework

In this chapter, the software architecture and the framework used in the

development process will be described in detail.

3.1 Unreal Development Kit

For the purposes of this project, the power of building and extending upon a

framework was preferred to buil ding from scratch. As already discussed, UDK is a

powerful framework used mostly in creating computer games and visualization.

UDK consists of different parts, making it act both like a game engine and a 3D

authoring environment. It provides the necessar y tools to import 3D objects, create

and assign materials on objects that affect the lighting distribution, precompute

lighting effects and import and use sounds and sound effects. It, also, allows the

designed application to seemingly attach to Flash -base d User Interfaces (UI).

UDK can also be used to render the created VEs, as well as create and respond to

events while navigating the synthetic scenes. UDK offers the ability to use both

C/C++ and UnrealScript, which provides the developers with a built - in object -

oriented programm ing language that maps the needs of game programming and

allows easy manipulation of the actors in a synthetic scene.

The core components of UDK are briefly described next.

3.1.1 Rendering Engine

The Rendering (Graphic) engine monitor s whatever appears on the screen during

the game. It determine s which items will be displayed in front of others or what

would stay hidden.

The Unreal Development Kit comes along with Gemini, a flexible and highly

optimized multi - threaded rendering system , which creates lush computer graphics

scenes and provides the power necessary for photorealistic simulations. UDK

features a 64 -bit color High Dynamic Range (HDR) rendering pipeline. The gamma -

corrected, linear color space renderer provides for immaculate color precision while

supporting a wide range of post -processing effects such as motion blur, depth of

field, bloom, ambient occlusion and user -defined materials.

25

UDK supports all modern per -pixel lighting and rendering techniques, including

normal mapped , parameterized Phong lighting, custom user -controlled per material

lighting models including anisotropic effects, virtual displacement mapping, light

attenuation functions, pre -computed shadow masks and directional light maps. UDK

provides volumetric envi ronmental effects that integrate seamlessly into any

environment. Camera, volume and opaque object interactions are all handled per -

pixel. Worlds created with UDK can easily feature multi - layered, global fog height

and fog volumes of multiple densities.

It also supports a high -performance texture streaming system. Additionally, UDKôs

scalability settings ensure that the application will run on a wide range of PC

configurations, supporting both Direct3D 9 and Direct3D 11.

3.1.2 Sound Engine

An important element o f 3D applicat ions is sound. The UDK audio engine enables

the designer to add sounds to the user's walking , to break ing a gl ass, water flowing

in a river etc.

3.1.3 Physics Engine

UDKôs physics engine is powered by NVIDIAôs PhysX, providing unparalleled control

over character movement, dynamic fluid simulation and even soft body physics.

Tweak and modify your physics using the Unreal PhAT visual modeling tool. Create

destructible worlds and physically simulated cloth and clothing using NVIDIAôs APEX

modules, whic h are tightly integrated into UE3.

UDK Tools

The main tools inside UDK are the Unreal Editor, which is used to create and edit

VEs, handling all the actors and their properties located in the VEs, the Unreal

Kismet, which allows for the creation of seque nces of events and corresponding

actions , and Unreal Matinee, responsible for the animation of actors or real - time

changes in the actorsô properties.

3.1.4 Unreal Editor

The Unreal Editor (UnrealEd) is a fully integrated editing environment inside UDK

used to create and edit VEs. The engine's tools can be accessed from within Unreal

Editor, as well as 3D objects, sounds, videos, textures and images can be imported

to the Content Browser library and inserted in the VEs. Moreover, the Unreal E ditor

26

can create and assign materials to 3D objects, as well as alter lighting and

rendering configurations. Figure 3.1 presents the Unreal Editor .

Figure 3 .1 . The Unreal Editor with a virtual scene loaded

Actors and their properties

Everything inside the virtual scene created in the Unreal Editor i s considered from

UDK to be an " Actor ", from 3d objects to lights and sounds . This is in accordance

with Unreal Script (see below), which is an Object -Oriented P rogramming language

and every object is assigned to a class that extends from Actor. So, 3d objects are

assigned to StaticMeshActor class, lights can be variedly assigned to PointLight,

PointLightToggleable, DominantDirectionalLight classes according to th eir function,

sounds are assigned to Sound class, while all these classes extend from the Actor

class.

The 3D objects imported into Unreal Editor can be assigned to Static Mesh, used for

static objects, or Skeletal Mesh, used for character bodies. After an object is

imported through the Content Browser, we can change its main attributes, like the

collision box, materials, light map UVs and polygon count with the Static Mesh

Editor. These changes will affect all the instances of this object that will be inse rted

in the virtual scene, unless they are overridden.

27

Figure 3 .2 Static Mesh Editor

Once an object is inserted in the editor from the Content Browser library, an

instance of its predefined Actor class is c reated and the editor offers the option to

change the configuration of the specific instance, without affecting the other

instances. This is true for all kinds of actors loaded in a scene, either being a light

or any other possible Actor. The options that can be changed include the objectôs

position, draw scale, properties for the lighting system, materials, collision,

components, etc.

Figure 3 .3 . Properties of a Static Mesh Actor instance

