
1

DEVELOPMENT OF A LARGE SCALE, SMART, MULTI-PURPOSE

VIRTUAL ENVIRONMENT (SCIENCES BUILDING OF TUC) USING

GAME ENGINE

By

Stefan Petrovski

Submitted to the

Department of Electronics and Computer Engineering

Technical University of Crete

Examining Committee

Dr Aikaterini Mania, Advisor

Dr Aggelos Bletsas

Dr Antonios Deligiannakis

2

Table of Contents
1 Introduction ... 9

1.1 Thesis Outline ... 11

2 Technical Background ... 13

2.1 Introduction .. 13

2.2 3D computer graphics .. 13

2.2.1 Modeling ... 14

2.2.2 Layout and animation ... 14

2.2.3 Rendering.. 14

2.3 3D Models ... 14

2.3.1 Modelling Process ... 15

2.4 Texturing – Importance of texture maps ... 16

2.5 Game Engines ... 20

2.5.1 Game Engine Components ... 21

2.6 Three Modern Game Engines ... 21

2.6.1 Unity 3D .. 22

2.6.2 Torque 3D ... 22

2.6.3 Unreal Development Kit (UDK) ... 22

3 Software Architecture and Development Framework 24

3.1 Unreal Development Kit ... 24

3.1.1 Rendering Engine .. 24

3.1.2 Sound Engine .. 25

3.1.3 Physics Engine ... 25

3.1.4 Unreal Editor ... 25

3.1.5 Unreal Kismet ... 28

3.1.6 Material Editor .. 29

3.1.7 Sound Editor ... 30

3.1.8 Unreal Matinee ... 31

3.1.9 Unreal Lightmass .. 31

3.2 UnrealScript .. 32

3.2.1 The Unreal Virtual Machine .. 33

3.2.2 Class Hierarchy.. 34

3.2.3 Timers ... 35

3

3.2.4 States .. 36

3.2.5 Interfaces .. 36

3.2.6 UnrealScript Compiler... 37

3.2.7 UnrealScript Programming Strategy ... 37

3.2.8 Configuration Files .. 38

3.2.9 DLL Files .. 39

3.2.10 Input Manager .. 39

3.2.11 Materials in UDK ... 40

3.3 Scaleform GFx ... 41

3.3.1 Flash Applications ... 43

3.3.2 Authoring Environment for Interactive Content... 44

3.3.3 ActionScript 3.0... 45

3.4 Connection of the Graphical User Interfaces (GUIs) with the Application 47

3.4.1 Connecting using Kismet:.. 48

3.4.2 Connecting using - Unrealscript: ... 48

3.5 Autodesk 3ds Max .. 49

3.5.1 Predefined primitives ... 50

3.6 Setting up the Environment ... 51

3.6.1 Setting up Scaleform GFx .. 51

3.6.2 Setting up Microsoft Visual Studio with nFringe .. 52

4 Virtual Environment Creation ... 53

4.1 World Geometry ... 53

4.1.1 BSP .. 57

4.1.2 Static Meshes .. 58

4.1.3 Importing the Static Meshes ... 62

4.2 Materials ... 64

4.2.1 Textures Vs Materials ... 64

4.2.2 Textures .. 64

4.2.3 Material Creation .. 65

4.3 Doors ... 67

5 Functionality Creation (Scripting) .. 70

5.1 The Three Fundamental Classes ... 70

5.2 Application Data ... 74

5.3 Detecting Focused Actors ... 77

4

5.4 Lifts .. 79

5.5 Menu System .. 98

5.6 Heads-Up Display (HUD)... 103

5.6.1 Mini Map... 109

5.6.2 Extended Info Panel .. 113

5.7 Displaying Professor Information .. 119

5.7.1 Creation of the Professor Info Interface using Flash and ActionScript 3.0 120

5.7.2 Connecting the User Interface with the application - UnrealScript 124

5.8 Path Finding .. 127

5.8.1 Setting Up the Navigation Network .. 129

5.8.2 Target Nodes... 131

5.8.3 Connection of the UI ... 132

5.9 Interactive Map .. 140

5.10 Reading Sensors Data From a Web Server... 147

5.10.1 Display Panels ... 149

5.10.2 Connecting to a web server .. 152

6 Conclusions and Future Work ... 156

6.1 Implications for Future Work ... 156

7 Bibliography - References ... 158

8 Appendix A ... 160

8.1 Settings ... 160

8.2 Cinematics... 163

5

List Of Figures

Figure 2.1. Virtual Environment [Team Bunraku] ... 13

Figure 2.2. 3D polygonal modeling of a human face ... 15

Figure 2.3. An example of Curve Modeling... 16

Figure 2.4. 3D model without textures (left), The same model with textures (right) 16

Figure 2.5. Examples of multitexturing. 1) Untextured sphere, 2) Texture and bump maps, 3) Te 17

Figure 2.6. Specular Map applied on a 3D ball.. 18

Figure 2.7. Wall with Normal Map applied ... 19

Figure 2.8. Mesh with diffuse map only (left). Opacity texture applied on the mesh (right) 19

Figure 2.9. Architecture of a game engine ... 20

Figure 3.1. The Unreal Editor with a virtual scene loaded... 26

Figure 3.2 Static Mesh Editor ... 27

Figure 3.3. Properties of a Static Mesh Actor instance ... 27

Figure 3.4. Unreal Kismet with a simple sequence ... 29

Figure 3.5 The Material Editor with a sample material ... 30

Figure 3.6 The Sound Editor with a simple sound sequence loaded.. 31

Figure 3.7. Animating pocket door (left) using the Unreal Matinee Editor (right)................................... 31

Figure 3.8 UnrealScript Class Hierarchy ... 35

Figure 3.9. Scaleform design workflow .. 43

Figure 3.10. Flash Authoring environment with a Flash User Interface loaded 44

Figure 3.11. Initiation of a Flash User Interface Application through Unreal Kismet................................ 48

Figure 3.12. 3DS Max's User Interface.. 50

Figure 3.13. 3ds Max Standard Primitives: Box, Cylinder, Cone, Pyramid, Sphere, Tube and Torus. 51

Figure 3.14. 3ds Max Extended Primitives: Torus Knot ChamferCyl, Hose, Capsule, Gengon and Prism .. 51

Figure 4.1. The Sciences Building of TUC ... 53

Figure 4.2. Floor plan of the first floor... 54

Figure 4.3. South elevation of the ECE department ... 54

Figure 4.4. The redundant lines are removed .. 55

Figure 4.5. Floor plan imported into Max .. 55

Figure 4.6. The new closed line ... 55

Figure 4.7. The final 3D extruded object ... 56

Figure 4.8. The place holder imported into UDK .. 56

Figure 4.9. Application's BSP geometry (lit mode) ... 57

Figure 4.10. Application's BSP geometry (wireframe mode) - Additive Brushes (blu 57

Figure 4.11. Simple 3D object with material applied to it .. 59

Figure 4.12. The UVW unwrapping of an object in 3ds Max. This UV channel is..................................... 60

Figure 4.13. Setting a pivot point of a 3D model.. 61

Figure 4.14. Some of the created static meshes .. 61

Figure 4.15 Importing external 3D model into UDK .. 62

Figure 4.16. Stair rails 3D model with a simple collision applied on it .. 63

file:///C:/Users/neos/Desktop/Anafora.docx%23_Toc350511008

6

Figure 4.17. Collision data created from blocking volumes (pink lines) .. 64

Figure 4.18. Normal Map creation workflow ... 65

Figure 4.19. Creating new material in UDK .. 66

Figure 4.20. On the left is a grey matte material, with no specular color. On the right........................... 66

Figure 4.21. A material for the wooden floor surface with a normal map d ... 67

Figure 5.1 TUC Lift .. 80

Figure 5.2. An example of external Lift Button. The user has to be located in green cylind 81

Figure 5.3. When the user looks at the lift button informative box is displayed 82

Figure 5.4 Lift Control Panel .. 87

Figure 5.5 An example of lift creation ... 97

Figure 5.6. The HUD .. 104

Figure 5.7. The HUD flash file .. 105

Figure 5.8. Info panel .. 114

Figure 5.9. The detecting volumes .. 115

Figure 5.10. The user interface of the Find Path functionallity. In order to start path finding th 128

Figure 5.11. The green arow shows the way to the selected destination location................................ 129

Figure 5.12. The Navigation Network consist of interconnected PathNodes (apples)........................... 129

Figure 5.13. The data from the sensors ... 147

7

Abstract

This thesis explores a method of three-dimensional fully interactive architectural

visualization based on a game engine and presents a framework for creating such

virtual environments. Through an examination of the tools and the components of a

game engine, this thesis shows how a game engine can be used for creating large,

smart and interactive Virtual Environments (VEs). The final product of this thesis,

along with the research presented here, is a 3D computer application which

simulates a real-time Virtual Environment (The Sciences building of TUC). The

created application simulates a real-time 3D navigable environment which the user

can interact with, navigate in it and view information related to spatial location of

the faculty offices, labs or classrooms. Moreover, the user can view data from

external sensors which could be streamed in the interactive application dynamically.

The goal of the application is to show the results of modern 3D architectural

visualization using a game engine, as well as to build functionality that helps the

users in navigation and getting to know the university building simulated. In

addition to this, many of the classes created can be used by developers to add

interesting functionalities to their VEs.

8

Acknowledgements
I owe sincere thankfulness to my research advisor, Katerina Mania, who made me

believe in myself and guided me through the whole process of thesis writing. I am

sure that this thesis would not have been possible without her support,

understanding and encouragement I felt when working on my project.

I would like to express my gratitude to Prof. Aggelos Bletsas and to Eleftherios

Kampianakhs and Kostantinos Tountas for their invaluable help constructing and

installing the sensors as well as for the implementation of the software used to

send data to the web server.

Finaly, i would like to show my gratitude to my parents, friends and colleagues for

their help and moral support. I would like to thank my sister for her patience and

her help improving the readability of my thesis.

9

1 Introduction

The history of video games goes back to 1962 when a young computer programmer

from MIT, Steve Russell created the first popular computer game Starwar. Starwar

was almost the first computer game ever written, however, they were at least two

far-lesser known predecessors: OXO (1952) and Tennis for Two (1958). Since then,

video games have become so popular that over the past 30 years, they have

become an integral part of our culture, and eventually led to more sophisticated

technology for their further development. Their popularity was a major cause for

continuously increasing budgets in that sector and consequently for the

development of sophisticated technology (Game Engines) for creating these games.

This has resulted in the development of tool sets integrated with programming

interfaces we now call game engines that also support the development of real-time

virtual environments.

Virtual Environments (VEs) allow us to explore an ancient historical site, visit a new

home led by a virtual estate agent, or fly through the twisting corridors of a space

station in pursuit of alien prey. They simulate the visual experience of immersion in

a 3D environment by rendering images of a computer model as seen from an

observer viewpoint moving under interactive control by the user. If the rendered

images are visually compelling, and they are refreshed quickly enough, the user

feels a sense of presence in a virtual world, enabling applications in education,

training simulation, computer-aided design, electronic commerce, entertainment

and medicine.

This thesis explores a method of three-dimensional fully interactive architectural

visualization based on a game engine. Through an examination of the tools and the

components of a game engine, this thesis shows how a game engine can be used

for creating large, smart and interactive Virtual Environments (VEs).

3D Architectural visualization has been traditionally limited to static animation in

the sense that although the images display movement, the movement is always

from the same point-of-view. Such animations are frequently pre-rendered and not

interactive - [Kevin Conway, 2011].

The final product of this thesis, along with the research presented here, is a 3D

interactive computer application which simulates an existing university building

named 'The Building of Sciences' of the Technical University of Crete (TUC), in

Chania, Crete, Greece.

Application

10

The created application simulates a real-time 3D navigable environment which the

user can interact with and view information related to spatial location of faculty

offices, labs or classrooms. Moreover, the user can view data from external

sensors, which could be streamed in the interactive application dynamically

This virtual 3D environment represents the Sciences Building of Technical the

University of Crete (TUC) and it is built using the Unreal Development Kit game

engine. In order to match the real building (scale and position of the walls, doors,

windows etc.) as close as possible, the building's architectural floor pans, as well as

photographs, were used. Figure x.x shows the virtual environment.

The goal of the application is to show the results of modern 3D architectural

visualization using a game engine, as well as to build functionality that helps the

users in navigation and getting to know the building. In addition to this, many of

the classes created can be used by developers to add interesting functionalities to

their VEs.

The main features provided by this application are listed below:

 Navigation: The user navigates through the world interacting with the

controlable parts such as doors, elevators, menu system, popups interfaces.

 Display: A Simple and minimalistic yet intuitive and fully functional HUD is

displayed while using the application.

11

 Menu System: A User-Friendly menu from which various functionallities can

be initiated, such as, Path Finding, Interactive map, Cinematics etc.

 3D User interfaces: A 3-layer, rotating user interface is implemented to

display information related to faculty loaded from external files.

 Interactive Map: A 2D map of the building with buttons and images on it,

that depicts the building's structure.

 Data from external sensors such as, current classroom temperature and

presence detection are streamed in the application.

 Mini Map Functionality.

 Path Finding Functionality.

Navigation System

The user navigation system used in the application is the widely adapted WASD

kebord layout. WASD is controlled as follows: W and S control the user’s

forward/back movement and S and D control left and right strafing. The mouse is

used to look around the environment and the left mouse button (LMB) is controlling

the user’s interactions with the Menu System.

1.1 Thesis Outline

This thesis is divided into seven chapters, which will be outlined below.

Chapter 2 - Technical Background: This chapter reviews the process of creating

3D computer graphics and presents the basic tools for creating interactive VEs. It

first shows two basic techniques for creating 3D objects and then introduces the

reader to texture mapping. Furthermore, this chapter reviews the main components

of a game engine, and at the end compares three state-of-art engines.

Chapter 3 – Software Architecture and Development Framework: This

chapter describes the main tools used for creating the 3D application. It reviews the

core components and tools of the Unreal Development Kit (UDK) game engine and

it presents the scripting language - Unrealscript that is used for adding functionality

to the VE. Apart from this, it introduces the technology used for creating User

Interfaces (UIs) and how it can be connected to the application.

12

Chapter 4 - Virtual Environment Creation: This chapter desribes the whole

process of creating the virtual environment, starting from creating the needed

assets (static meshes, textures) to their asseble in the UDK and adding collision

and materials to them.

Chapter 5 - Implementation (Scripting): This chapter thoroughly describes

every aspect of creating the functionalities that the application supports through

code, explaining and images.

Chapter 6 - Conclusion and Future Work: The final chapter presents conclusi-

ons resulting from the thesis, as well as hints about future work.

13

2 Technical Background

2.1 Introduction

A Virtual Environment (VE) is a computer simulated scene which can be

interactively manipulated by users. Typical scenes used in such environments

generally comprise of geometric 3D models, shades, images and lights which are

converted into final images through the rendering process. The rendering process

must be conducted in real time in order to provide scenes which are updated

reacting to user interaction.

Figure 2.1. Virtual Environment [Team Bunraku]

In this chapter the technologies and the methods used for creating 3D Virtual

Environments (VEs) are discussed.

2.2 3D computer graphics

3D computer graphics are those that use a three-dimensional representation of

geometric data. This data is stored in the computer so that performing calculations

and rendering 2D images is assured.

3D computer graphics creation is a three step process:

 First comes 3D modeling , which is the process of forming a computer model

of an object's shape

14

 The second step includes layout and animation, that is the motion and

placement of objects within a scene

 The third step is 3D rendering . This basically includes the computer

calculations that, based on light placement, surface types, and other

qualities, generate the image.

2.2.1 Modeling

The model actually describes the process of forming the shape of an object. The

two most common sources of 3D models are those that an artist or engineer

originates on the computer with some kind of 3D modeling tool, and models

scanned into a computer from real-world objects. Basically, a 3D model is formed

from points called vertices that define the shape and form polygons. A polygon is

an area formed from at least three vertexes (a triangle). The overall integrity of the

model and its suitability to use in animation depend on the structure of the

polygons.

2.2.2 Layout and animation

Before rendering into an image, objects must be placed in a scene. This defines

spatial relationships between objects, including location and size. Animation refers

to the temporal description of an object, i.e., how it moves and deforms over time.

Popular methods include keyframing, inverse kinematics, and motion capture. A

combination of these techniques is often used in practice.

2.2.3 Rendering

Rendering is the process of generating an image from a model (or models in what

collectively could be called a scene file), by means of computer programs. A scene

file contains objects in a strictly defined language or data structure; it would

contain geometry, viewpoint, texture, lighting, and shading information as a

description of the virtual scene. The data contained in the scene file is then passed

to a rendering program to be processed and output to a digital image or raster

graphics image file. The rendering program is usually built into the computer

graphics software, though others are available as plug-ins or entirely separate

programs.

2.3 3D Models
3D models represent a 3D object using a collection of points in 3D space, connected

by various geometric entities such as triangles, lines, curved surfaces, etc. Being a

15

collection of data (points and other information), 3D models can be created by

hand, algorithmically (procedural modeling), or scanned.

Almost all 3D models can be divided into two categories:

 The first category is the so-called solid models. These models define the

volume of the object they represent (like a rock). These are more realistic,

but more difficult to build. Solid models are generally used for nonvisual

simulations such as medical and engineering simulations, for CAD and

specialized visual applications such as ray tracing and constructive solid

geometry

 The second category includes the shell/boundary models , which represent

the surface, for instance the boundary of the object, not its volume (like an

infinitesimally thin eggshell). These are easier to work with than solid

models.

2.3.1 Modelling Process

There are several modeling techniques, but the two most used are Polygonal and

Curve Modeling. These are briefly described in this section.

Polygonal modeling - Points in 3D space, called vertices, are connected by line

segments to form a polygonal mesh. The vast majority of 3D models today are built

as textured polygonal models, because they are flexible and because computers can

render them so quickly. However, polygons are planar and can only approximate

curved surfaces using many polygons.

Figure 2.2. 3D polygonal modeling of a human face

16

1. Curve modeling - Surfaces are defined by curves, which are influenced by

weighted control points. The curve follows (but does not necessarily

interpolate) the points. Increasing the weight for a point will pull the curve

closer to that point.

Figure 2.3. An example of Curve Modeling

The most popular programs for creating 3D models are: 3DS Max, Blender, Cinema

4D, Maya, Lightwave, Modo and solidThinking. Modeling can be performed also by

using some scene description language such as X3D, VRML, and POV-Ray.

2.4 Texturing – Importance of texture maps

Texture mapping is a method for adding detail, surface texture (a bitmap or raster

image), or color to a computer-generated graphic or 3D model.

Figure 2.4. 3D model without textures (left), The same model with textures (right)

17

A texture map is applied (mapped) to the surface of a shape or polygon. This

process is akin to applying patterned paper to a plain white box. Every vertex in a

polygon is assigned a texture coordinate (which in the 2d case is also known as a

UV coordinate) either via explicit assignment or by procedural definition. Image

sampling locations are then interpolated across the face of a polygon to produce a

visual result that seems to have more richness than could otherwise be achieved

with a limited number of polygons. Multitexturing is the use of more than one

texture at a time on a polygon. For instance, a light map texture may be used to

light a surface as an alternative to recalculating that lighting every time the surface

is rendered. Another multitexture technique is bump mapping, which allows a

texture to directly control the facing direction of a surface for the purposes of its

lighting calculations; it can give a very good appearance of a complex surface, such

as tree bark or rough concrete that takes on lighting detail in addition to the usual

detailed coloring. Bump mapping has become popular in recent video games as

graphics hardware has become powerful enough to accommodate it in real-time.

The way the resulting pixels on the screen are calculated from the texels (texture

pixels) is governed by texture filtering. The fastest method is to use the nearest-

neighbour interpolation, but bilinear interpolation or trilinear interpolations between

mipmaps are two commonly used alternatives which reduce aliasing or jaggies. In

the event of a texture coordinatebeing outside the texture, it is either clamped or

wrapped.

Figure 2.5. Examples of multitexturing. 1) Untextured sphere, 2) Texture and bump maps,

3) Texture map only, 4) Opacity and texture maps.

The essential map types are described below

18

Color (or Diffuse) Maps: As the name would imply, the first and most obvious

use for a texture map is to add color or texture to the surface of a model. This

could be as simple as applying a wood grain texture to a table surface, or as

complex as a color map for an entire game character (including armor and

accessories). However, the term texture map, as it's often used is a bit of a

misnomer—surface maps play a huge role in computer graphics beyond just color

and texture. In a production setting, a character or environment's color map is

usually just one of three maps that will be used for almost every single 3D model.

Specular Map: A specular map tells the software which parts of a model should be

shiny or glossy, and also the magnitude of the glossiness. Specular maps are

named for the fact that shiny surfaces, like metals, ceramics, and some plastics

show a strong specular highlight (a direct reflection from a strong light source).

Specular highlights are the white reflection on the rim of a coffee mug. Another

common example of specular reflection is the tiny white glimmer in someone's eye,

just above the pupil.

A specular map is typically a grayscale image, and is absolutely essential for

surfaces that aren't uniformly features. An armored vehicle, for example, requires a

specular map in order for scratches, dents, and imperfections in the armor to come

across convincingly. Similarly, a game character made of multiple materials would

need a specular map to convey the different levels of glossiness between the

character's skin, metal belt buckle, and clothing material.

Figure 2.6. Specular Map applied on a 3D ball

Bump (Normal) Map: A bit more complex than either of the two previous

examples, bump maps are a form of texture map that can help give a more realistic

indication of bumps or depressions on the surface of a model.

To increase the impression of realism, a bump or normal map would be added to

more accurately recreate the coarse, grainy surface of, for instance, a brick, and

heighten the illusion that the cracks between bricks are actually receding in space.

Of course, it would be possible to achieve the same effect by modeling each and

19

every brick by hand, but a normal mapped plane is much more computationally

efficient.

Bump, displacement, and normal maps are a discussion in their own right, and are

absolutely essential for achieving photo-realism in a render.

Figure 2.7. Wall with Normal Map applied

Transparency (or Opacity) Map: Exactly like a reflection map, except it tells the

software which portions of the model should be transparent. A common use for a

transparency map would be a surface that would otherwise be very difficult, or too

computationally expensive to duplicate, like a chain link fence. Using a

transparency, instead of modeling the links individually can be quite convincing as

long as the model doesn't feature too close to the foreground, and uses far fewer

polygons.

Figure 2.8. Mesh with diffuse map only (left). Opacity texture applied on the mesh (right)

Texture maps are crucial for the design of the virtual scene. They facilitate the

reduction of the polygonal complexity of the 3d models used, which in any other

way would hinder rendering performance. In particular, the normal maps of some

20

low polygon count models used in our scene were acquired from their high polygon

versions to keep all the fine details of the models, thus maintaining an acceptable

lighting quality with low computational cost. An example of this method can be seen

on the following picture. Another use of texture maps, are opacity maps which allow

for the otherwise opaque window in our scene to become transparent.

2.5 Game Engines

A game engine is a system designed primarily for the creation and development of

video games. The leading game engines provide a software framework that

developers use to create games for video game consoles and personal computers.

A game engine provides the framework and the Application User Interface (API) for

the developer to use and communicate with the hardware. It consists of separate

autonomous systems, each handling a specific process, e.g. the graphics system,

the sound system, the physics system, etc. Figure 2.9 shows the standard

architecture of game engines.

Figure 2.9. Architecture of a game engine

In recent years, the game engine technology has matured and became very user-

friendly. This has led the fame engines to be used in variety of different applications

such as architectural visualization, training, medical and military simulation

applications. In other words, game engines can be used in development of any 3D

21

interactive environment. It was decided early on in this project that the

implementation of the 3D interactive environment would be based on a game

engine for this reason. Although the final application is not a computer game, a

game engine offers the required tools and programming platform in order to create

an interactive photorealistic environment.

2.5.1 Game Engine Components

Game Engines contains several components. The structure of a game engine is

modularized. This means that each component work independently, but all the

modules are controled by a central core engine. The main components that appart

a game engine are: the Rendering (Graphic) Engine, the Physics Engine and the

Sound Engine.

Rendering Engine

The job of the Rendering engine is to control what the user sees when using the 3D

application. Rendering includes all the processes that take 3D geometry and

transforms it into a representation of a world. The renderer does the rendering in

real time with constantly changing variables and input to create the illusion for the

player that the player is occupying another world that he or she can interact.

Physics Engine

In virtual environments, objects and characters must respond to collisions, gravity,

acceleration, and inertia accurately. The component of a game engine that

simulates physics models is called Physics Engine. The Physics Engine is basicaly a

computer program that manages physics variables such as mass, velocity, friction

etc. In most game engines, the physics engine is a middleware software module

that is licensed from an independent software developer. Physics engines currently

available for game engines include PhysX(Nvidia), Havok, Open Dynamics Engine,

Vortex and many more.

Sound Engine

The Sound Engine is responsible for taking the sounds that we have created and

playing them based on certain events in the application (for examlple when a door

opens, when the user walks, when braking glass etc.)

2.6 Three Modern Game Engines

22

In this section, the game engines that were considered but rejected will be

presented, as well as UDK, which is the game engine that was selected for the

implementation of the 3D lighting system.

2.6.1 Unity 3D

Unity 3D is a fully featured application suite, providing tools to create 3D games or

other applications, such as architectural visualization. It provides support for editing

object geometry, surfaces, lights and sounds. It uses the Ageia physics engine,

provided by nVidia. A lightmapping system, called Beast, is included. In terms of

programming, Unity 3D supports three programming languages: JavaScript, C#

and Boo, which is a python variation. All three languages are fast and can be

interconnected. The game’s logic runs in the open-source platform “Mono”, offering

speed and flexibility. Required for the development process a debugger is also

included, allowing pausing the game at any time and resuming it step-by-step.

Unity 3D is widely used, utilized by a large community offering help. It is free for

non-commercial use and it is targeted to all platforms, such as PC, MAC, Android,

iOS and web. This game engine targets at offering increased rendering speed, even

including machines with low memory and computational power, such as iOS and

Android smartphones, and not at creating interactive photorealistic environments,

which need a lot of memory and very fast CPU and GPU to render at acceptable

speed. Unity 3D was rejected, because it was necessary to have the ability to

create photorealistic VEs and render them in real-time.

2.6.2 Torque 3D

Torque 3D is a sophisticated game engine for creating networked games. It

includes advanced rendering technology, a Graphical User Interface (GUI) building

tool and a World Editor, providing an entire suit of WYSIWYG (What-You-See-Is-

What-You-Get) tools to create the game or simulation application.

The programming language used is "TorqueScript", which resembles C/C++. It is

targeted for both Windows and MacOS platforms, as well as the web. The main

disadvantage of Torque 3D is that it is not free, but it needs to be licensed for

$100. For this reason, Torque 3D was also rejected.

2.6.3 Unreal Development Kit (UDK)

The Unreal Development Kit (UDK) is a fully functional version of the Unreal Engine

3 that is available for anyone to download from Epic. UDK is currently one of the

leading game engines. It became free on November 2009 for non-commercial use

23

and it is used by the world’s largest development studios. The UDK community

includes thousands of people from around the world, providing help and advice.

UDK’s core is written in C++, making it very fast. It offers the ability to use both

"UnrealScript", UDK’s object-oriented scripting language, and C/C++ programming

languages. It provides many different tools for the creation and the rendering of a

virtual scene. The Unreal Development Kit includes the Unreal Lightmass, which is

an advanced global illumination solver. The Unreal Lightmass supports the

illumination with a single sun, giving off soft shadows and automatically computing

the diffuse interreflection (color bleeding). It also offers a variety of options to

optimize the illumination solution. It can provide detailed shadows by using

directional light mapping, static shadowing and diffuse normal-mapped lighting. An

unlimited number of lights can be pre-computed and stored in a single set of

texture maps. The complete software architecture of UDK will be presented in

Chapter 3 – Software Architecture and Development Framework.

24

3 Software Architecture and Development

Framework

In this chapter, the software architecture and the framework used in the

development process will be described in detail.

3.1 Unreal Development Kit

For the purposes of this project, the power of building and extending upon a

framework was preferred to building from scratch. As already discussed, UDK is a

powerful framework used mostly in creating computer games and visualization.

UDK consists of different parts, making it act both like a game engine and a 3D

authoring environment. It provides the necessary tools to import 3D objects, create

and assign materials on objects that affect the lighting distribution, precompute

lighting effects and import and use sounds and sound effects. It, also, allows the

designed application to seemingly attach to Flash-based User Interfaces (UI).

UDK can also be used to render the created VEs, as well as create and respond to

events while navigating the synthetic scenes. UDK offers the ability to use both

C/C++ and UnrealScript, which provides the developers with a built-in object-

oriented programming language that maps the needs of game programming and

allows easy manipulation of the actors in a synthetic scene.

The core components of UDK are briefly described next.

3.1.1 Rendering Engine

The Rendering (Graphic) engine monitors whatever appears on the screen during

the game. It determines which items will be displayed in front of others or what

would stay hidden.

The Unreal Development Kit comes along with Gemini, a flexible and highly

optimized multi-threaded rendering system, which creates lush computer graphics

scenes and provides the power necessary for photorealistic simulations. UDK

features a 64-bit color High Dynamic Range (HDR) rendering pipeline. The gamma-

corrected, linear color space renderer provides for immaculate color precision while

supporting a wide range of post-processing effects such as motion blur, depth of

field, bloom, ambient occlusion and user-defined materials.

25

UDK supports all modern per-pixel lighting and rendering techniques, including

normal mapped, parameterized Phong lighting, custom user-controlled per material

lighting models including anisotropic effects, virtual displacement mapping, light

attenuation functions, pre-computed shadow masks and directional light maps. UDK

provides volumetric environmental effects that integrate seamlessly into any

environment. Camera, volume and opaque object interactions are all handled per-

pixel. Worlds created with UDK can easily feature multi-layered, global fog height

and fog volumes of multiple densities.

It also supports a high-performance texture streaming system. Additionally, UDK’s

scalability settings ensure that the application will run on a wide range of PC

configurations, supporting both Direct3D 9 and Direct3D 11.

3.1.2 Sound Engine

An important element of 3D applications is sound. The UDK audio engine enables

the designer to add sounds to the user's walking, to breaking a glass, water flowing

in a river etc.

3.1.3 Physics Engine

UDK’s physics engine is powered by NVIDIA’s PhysX, providing unparalleled control

over character movement, dynamic fluid simulation and even soft body physics.

Tweak and modify your physics using the Unreal PhAT visual modeling tool. Create

destructible worlds and physically simulated cloth and clothing using NVIDIA’s APEX

modules, which are tightly integrated into UE3.

UDK Tools

The main tools inside UDK are the Unreal Editor, which is used to create and edit

VEs, handling all the actors and their properties located in the VEs, the Unreal

Kismet, which allows for the creation of sequences of events and corresponding

actions, and Unreal Matinee, responsible for the animation of actors or real-time

changes in the actors’ properties.

3.1.4 Unreal Editor

The Unreal Editor (UnrealEd) is a fully integrated editing environment inside UDK

used to create and edit VEs. The engine's tools can be accessed from within Unreal

Editor, as well as 3D objects, sounds, videos, textures and images can be imported

to the Content Browser library and inserted in the VEs. Moreover, the Unreal Editor

26

can create and assign materials to 3D objects, as well as alter lighting and

rendering configurations. Figure 3.1 presents the Unreal Editor.

Figure 3.1. The Unreal Editor with a virtual scene loaded

Actors and their properties

Everything inside the virtual scene created in the Unreal Editor is considered from

UDK to be an "Actor", from 3d objects to lights and sounds. This is in accordance

with Unreal Script (see below), which is an Object-Oriented Programming language

and every object is assigned to a class that extends from Actor. So, 3d objects are

assigned to StaticMeshActor class, lights can be variedly assigned to PointLight,

PointLightToggleable, DominantDirectionalLight classes according to their function,

sounds are assigned to Sound class, while all these classes extend from the Actor

class.

The 3D objects imported into Unreal Editor can be assigned to Static Mesh, used for

static objects, or Skeletal Mesh, used for character bodies. After an object is

imported through the Content Browser, we can change its main attributes, like the

collision box, materials, light map UVs and polygon count with the Static Mesh

Editor. These changes will affect all the instances of this object that will be inserted

in the virtual scene, unless they are overridden.

27

Figure 3.2 Static Mesh Editor

Once an object is inserted in the editor from the Content Browser library, an

instance of its predefined Actor class is created and the editor offers the option to

change the configuration of the specific instance, without affecting the other

instances. This is true for all kinds of actors loaded in a scene, either being a light

or any other possible Actor. The options that can be changed include the object’s

position, draw scale, properties for the lighting system, materials, collision,

components, etc.

Figure 3.3. Properties of a Static Mesh Actor instance

28

Some engine’s tools that are accessible through the UnrealEd are the following:

Unreal Content Browser, a powerful asset browser for organizing game content,

including instant game-wide asset search, a robust content tagging system and

drag-and-drop actor placement.

Unreal Kismet Editor, a visual scripting tool for the UDK. It enables level

designers to create scripts in UnrealScript for gameplay events using a visual

interface.

Unreal Matinee Editor, a tool within Unreal Editor that is used to change

properties of actors over time, or to animate them.

Material Editor, an intuitive tool for visually designing materials and shaders using

a graph network.

Unreal Cascade, an advanced particle physics and environmental effects editor.

Level Construction tools, including geometry editing features and BSP-based model

creation.

Mesh Editor, for previewing meshes and adjusting physics properties. Also

includes support for simplification of meshes, generating LODs and texture

coordinates and fracturing objects.

3.1.5 Unreal Kismet

Unreal Kismet is a visual scripting system. It allows level designers or even artists

to create scripting behaviour it the virtual environment in a quick intuitive maner,

without touching a single line of code.The behaviour is created by connecting nodes

(sequence object) with wires. The nodes have inputs and outputs and in order to

use them, they are dragged and dropped on a canvas. These nodes represent

events, actions or variables and their interconnection allows the change of the

program flow. There are some predefined events and actions, however, more can

be created through Unreal Script. The nodes form a network called sequence. These

sequences are managed in a separate window.

An example of kismet sequence is presented in Figure 3.4. This example shows a

sequence which is responsible for opening a door. The most left node is an event, in

particular a trigger event. This event is listening out for the player to make use of

the trigger placed in the world (triggers are used by pressing the E button). As soon

as the trigger is used, the event output is activated which will cause activation of

the switch node because of the connection between them (the arrow from the event

output to the input of the switch node). The node on the right is a special one and it

http://www.unrealengine.com/features/kismet
http://www.unrealengine.com/features/cinematics
http://www.unrealengine.com/features/cascade

29

represents the animation of the door. Two if its inputs, one for playing the opening

animation and one for the closing, are used. These are activated in correspondence

to the switch outputs.

Figure 3.4. Unreal Kismet with a simple sequence

3.1.6 Material Editor

A useful tool within Unreal Editor, necessary for creating realistic environments, is

the Material Editor. This tool handles the creation and editing of different materials

that can be assigned to objects inside the scenes created. Materials affect the

objects they are assigned to in a variety of ways, mainly in terms of their texture

and their interaction with the light.

The Material Editor is node-based, much like the Unreal Kismet. However, its nodes

do not represent events or actions, but textures, colors and several processing

filters, such as addition of two different textures. The Material Editor provides the

main node which has all the supported properties of the material, such as the

diffuse, emissive and specular properties and each property can receive the output

from a node or from a sequence of nodes.

30

Figure 3.5 displays the Material Editor displaying material for tiles. It can be seen

that a texture node, containing a tile texture, is connected to the diffuse chanel of

the main node and a normal map texture is connected to the normal map chanel.

Figure 3.5 The Material Editor with a sample material

3.1.7 Sound Editor

The Unreal Editor supports its own sound engine and a Sound Editor provides the

necessary tools, in order to create various sound effects. It supports immersive 3D

location-based sounds and gives complete control over pitch, levels, looping,

filtering, modulation and randomization.

As the rest of the Unreal Editor’s tools, the Sound Editor provides a node-based

User Interface to import and use several sound cues, change their properties, mix

them together and channel the resulting output as a new sound effect.

31

Figure 3.6 The Sound Editor with a simple sound sequence loaded

3.1.8 Unreal Matinee

The Matinee animation tool provides the ability to animate the properties of actors

over time, either to create dynamic gameplay or cinematic in-game sequences. The

system is based on the use of specialized animation tracks which can have

keyframes placed to set the values of certain properties of the actors in the level.

The Matinee editor is similar to the non-linear editors used for video editing, making

it familiar to video professionals.

Figure 3.7. Animating pocket door (left) using the Unreal Matinee Editor (right)

3.1.9 Unreal Lightmass

Unreal Lightmass is an advanced global illumination solver. It uses a refined version

of the radiosity algorithm, storing the information in each illuminated 3D object’s

light map, while providing ray-tracing capabilities, by supporting Billboard

reflections, which allows complex reflections even with static and dynamic shadows

with minimal CPU overhead. Unreal Lightmass is provided as part of the Unreal

32

Development Kit (UDK) and it can only work on scenes created through it. Its

performance depends on the complexity of the scenes created and the types of light

emitting sources that exist in the scene. It is optimized to increase the renderer’s

performance. Its main features include:

 Area lights and shadows: Within Lightmass, all lights are area lights by

default. The shape used by Point and Spot light sources is a sphere. The

radius of the sphere is defined by LightSourceRadius under

LightmassSettings. Directional light sources use a disk, positioned at the

edge of the scene. Light source size is one of the two factors controlling

shadow softness, as larger light sources will create softer shadows. The other

factor is distance from the receiving location to the shadow caster. Area

shadows get softer as this distance increases, just like in real life.

 Diffuse interreflection: Diffuse Interreflection is by far the most visually

important global illumination lighting effect. Light bounces by default with

Lightmass, and the Diffuse term of each material controls how much light

(and what color) bounces in all directions. This effect is sometimes called

color bleeding. It's important to remember that diffuse interreflection is

incoming light reflecting equally in all directions, which means that it is not

affected by the viewing direction or position.

 Mesh Area Lights from Emissive: The emissive input of any material applied

to a static object can be used to create mesh area lights. Mesh area lights

are similar to point lights, but they can have arbitrary shape and intensity

across the surface of the light. Each positive emissive texel emits light in the

hemisphere around the texel's normal based on the intensity of that texel.

Each neighboring group of emissive texels will be treated as one mesh area

light that emits one color.

 Translucent shadows: Light passing through a translucent material that is

applied to a static shadow casting mesh will lose some energy, resulting in a

translucent shadow.

3.2 UnrealScript

UnrealScript is designed to provide the developers with a powerful, built-in

programming language that maps the needs of game programming. The major

design goals of UnrealScript are:

33

 Enabling time, state and network programming, which traditional

programming languages do not address but are needed in game

programming. UnrealScript includes native support for time state and

network programming which not only simplifies game programming, but also

results in low execution time, due to the native code written in C/C++;

 Programming simplicity, object-orientation and compile-time error checking,

helpful attributes met in Java are also met in UnrealScript. More specifically,

deriving from Java UnrealScript offers:

o A pointerless environment with automatic garbage collection;

o A simple single-inheritance class graph;

o Strong compile-time type checking;

o A safe client-side execution "sandbox";

o The familiar look and feel of C/C++/Java code.

Often during the implementation, design trade-offs had to be made, choosing

between execution speed and development simplicity. Execution speed was then

sacrificed, since all the native code in UnrealScript is written in C/C++ and resulted

performance outweighs the added complexity. UnrealScript has very slow execution

speed compared to C, but since a large portion of the engine's native code is in C

only the 10%-20% of code in UnrealScript that is executed when called has low

performance.

3.2.1 The Unreal Virtual Machine

The Unreal Virtual Machine consists of several components: The server, the client,

the rendering engine, and the engine's support code. The Unreal server controls all

the gameplay and interaction between players and actors (3D objects, lights or

sounds that can be inserted in a synthetic scene). A listen server is able to host

both a game and a client on the same computer, whereas the dedicated server

allows a host to run on the computer without a client. All players connect to this

machine and are considered clients.

The gameplay takes place inside a level, containing geometry actors and players.

Many levels can be running simultaneously, each being independent and shielded

from the other.

This helps in cases where pre-rendered levels need to be fast-loaded one after

another. Every actor on a map can be either player-controlled or script-controlled.

The script controls the actor's movement, behavior and interaction with other

actors. Actor's control can change in game from player to script and vice versa.

34

Time management is done by dividing each time second of gameplay into Ticks.

Each Tick is only limited by CPU power, and typically lasts 1/100th of a second.

Functions that manage time are really helpful for gameplay design. Latent

functions, such as Sleep, MoveTo and more cannot be called from within a function

but only within a state.

When latent functions are executing in an actor, the actor's state execution does

not continue until the latent functions are completed. However, other actors may

call functions from the specific actor that handles the latent function. The result is

that all functions can be called, even with latent functions pending.

In UnrealScript, every actor is as if executed on its own thread. Windows threads

are not efficient in handling thousands at once, so UnrealScript simulates threads

instead. This means that 100 spawned actors will be executed independently of

each other each Tick.

3.2.2 Class Hierarchy

UnrealScript is purely object-oriented and comprises of a well-defined object model

with support for high level object-oriented concepts such as serialization and

polymorphism. This design differs from the monolithical one that classic games

adopted, having their major functionality hardcoded and being non-expandable at

the object level. Before working with UnrealScript, understanding the classes

hierarchy within Unreal is crucial in relation to the programming part.

The main gain from this design type is that object types can be added to Unreal at

runtime. This form of extensibility is extremely powerful, as it encourages the

Unreal community to create Unreal enhancements that all interoperate. The five

main classes one should start with are Object, Actor, Pawn, Controller and

Info.

Object is the parent class of all objects in Unreal. All of the functions in the Object

class are accessible everywhere, because everything derives from Object. Object is

an abstract base class, in that it doesn't do anything useful. All functionality is

provided by subclasses, such as Texture (a texture map), TextBuffer (a chunk of

text), and Class (which describes the class of other objects).

Actor (extends Object) is the parent class of all standalone game objects in Unreal.

The Actor class contains all of the functionality needed for an actor to be placed

inside a scene, move around, interact with other actors, affect the environment,

and complete other useful game-related actions.

35

Pawn (extends Actor) is the parent class of all creatures and players in Unreal which

are capable of high-level AI and player controls.

Controller (extends Actor) is the class that defines the logic of the pawn. If Pawn

resembles the body, Controller is the brain commanding the body. Timers and

executable functions can be called from this type of class.

Info (extends Actor) is the class that sets the rules of gameplay. Players joining

will be handled in this class, which decides which Pawn will be created for the

player in the scene and which Controller will handle the behavior of the pawn.

3.2.3 Timers

Timers are a mechanism used for scheduling an event to occur. Time management

is important both for gameplay issues and for programming tricks. All Actors can

have more than one timer implemented as an array of structs. The native code

involving timers is written in C++, so using many timers per tick is safe, unless

hundreds expire simultaneously. This would require the execution of UnrealScript

code for each one of the timers and the heavy computational demands would lead

to unwanted delay to the handling of the timers.

The following function fires the function Foo after 10 seconds:

SetTimer(10, false, 'Foo');

TUCInfo TUCPawn

TUCPlayerController

GamePawn

GameInfo

GamePlayerController

PlayerController Pawn

Actor

Object

Info

Controller

Figure 3.8 UnrealScript Class Hierarchy

36

3.2.4 States

States are known from Hardware engineering where it is common to see finite state

machines managing the behaviour of a complex object. The same management is

needed in game programming, allowing each actor to behave differently, according

to its state. Usually, when implementing states in C/C++ there are many switch

cases used, based on the object's state. This method, however, is not efficient,

since most applications require many states, resulting to difficulties in developing

and maintaining the application.

UnrealScript supports states at the language level. Each actor can include many

different states, however, only one can be active at any time. The state the actor is

in reflects the actions it wants to perform. Attacking, Wandering, Dying are

potential states a Pawn may acquire. Each state can have several functions, which

can be the same as another state's functions. However, only the functions in the

active state can be called. For example, if an application dictates that an action

should only be performed in a specific stage, then this stage could be encapsulated

in a different state that implements the function corresponding to that action

differently than other states.

States provide a simple way to write state-specific functions, so that the same

function can be handled in different ways depending on which state the actor is in

when the function is called. Within a state, one can write special "state code", using

the regular UnrealScript commands plus several special functions known as "latent

functions". A latent function is a function that executes slowly (i.e. non-blocking),

and may return after a certain amount of "game time" has passed. Time-based

programming is enabled which is a major benefit that neither C/C++, nor Java

offer. Namely, code can be written in the same way it is conceptualized. For

example, a script can support the action of "turn the TV on; show video for 2

seconds; turn the TV off". This can be done with simple, linear code, and the Unreal

engine takes care of the details of managing the time-based execution of the code.

3.2.5 Interfaces

UnrealEngine3’s UnrealScript has support for interface classes that resembles much

of the Java implementation. As with other programming languages, interfaces can

only contain function declarations and no function bodies. The implementation for

these declared methods must be conducted in the class that actually implements

the interface. All function types, as well as events, are allowed. Even delegates can

be defined in interfaces.

37

An interface can only contain declarations which do not affect the memory layout of

the class: enums, structs and constants can be declared. Variables cannot be

declared for this reason.

3.2.6 UnrealScript Compiler

The UnrealScript compiler is three-pass. Unlike C++, UnrealScript is compiled in

three distinct passes. In the first pass, variable, struct, enum, const, state and

function declarations are parsed and remembered, e.g. the skeleton of each class is

built. In the second pass, the script code is compiled to byte codes. This enables

complex script hierarchies with circular dependencies to be completely compiled

and linked in two passes, without a separate link phase. The third phase parses and

imports default properties for the class using the values specified in the default

properties block in the .uc file.

3.2.7 UnrealScript Programming Strategy

UnrealScript is a slow programming language when compared to C/C++. A program

in UnrealScript runs about 20x slower than C. However, script programs written in

UnrealScript are executed only 5-10% of the time with the rest of the 95% being

handled in the native code written in C/C++. This means that only the 'interesting'

events will be handled in UnrealScript. For example, when writing a projectile

script, what is typically written is a HitWall, Bounce, and Touch function describing

what to do when key events happen. Thus, 95% of the time, a projectile script is

not executing any code and is just waiting for the physics code to notify it of an

event. This is inherently very efficient.

The Unreal log may provide useful information while testing scripts. The

UnrealScript runtime often generates warnings in the log that notify the

programmer of non-fatal problems that may have occurred.

UnrealScript's object-oriented capabilities should be exploited as much as possible.

Creating new functionality by overriding existing functions and states leads to clean

code that is easy to modify and easy to integrate with other peoples' work.

Traditional C techniques should be avoided, such as writing a switch statement

based on the class of an actor or the state because code like this tends to clutter as

new classes and states are added or modified.

38

3.2.8 Configuration Files

Unreal Development Kit relies on configuration files to dictate how it will function

and initialize. These Configuration files allow low-level file interaction such as

reading user data from external files or writing the output of a program in order for

files to be preserved after it has terminated. The advantage of using configuration

files is that they allow us to change some settings of the application without having

to recompile the source code.

Configuration files are just plain text files that are saved with the extension ".ini"

and they hold information that is used by the UDK and/or the user application. .Ini

files are read when the class they are associated with is first loaded. After that,

they can only be written to, but the values from their reading remains in memory.

In order to associate or bind the class with some configuration .ini file, one has to

add the config modifier in the class definition. For instance:

class ClassName extends SomeOtherClass config(ConfigName);

This example class declares that its configuration variables are saved/loaded

to/From the 'ConfigName ' configuration file:

Every UnrealScript class that binds to a configuration file can define which of its

variables should be loaded from and/or saved in the respective configuration file.

So, when the Unreal Editor loads up and initializes its components, it uses the

configuration files to recall their properties. For instance, if one has a string that is

a config variable, and they change its value in the .Ini file, its default value for that

string will be updated when that class's package is next loaded. In order to use

configuration variable it first has to be declared as presented below:

var config int X;

Writing to an .ini file is a two-step process, but it is something that is simple to be

done. First, the value of the variables that we wish to write to disk must be set.

Once that is done, the native final SaveConfig() or native static final

StaticSaveConfig(), defined in Object is called in the class. SaveConfig() writes the

contents of all the config variables in the instance of the class to the .ini file

assigned to that class. An Example of writiing to a configuration file is given below:

X=15;

SaveConfig();

Typical configuration files consist of sections of key-value pairs, arranged as

follows:

39

[Section]

Key=Value

[TUCProject.TUC_FrontEnd_Hud]

WorldWidth=9320

3.2.9 DLL Files

UDK provides the option for an UnrealScript class to bind to an external DLL file, by

declaring it in the class definition. For example, the following line declares that

ExampleClass binds to the ExampleDLL:

class ExampleClass extends GameInfo DLLBind (ExampleDLL);

By binding to a DLL file, an UnrealScript class can call the declared in that DLL file

methods or functions, which are written in C/C++. This proves to be an easy and

efficient way to implement functions that either UDK does not support at all, such

as I/O operations, or it would slow down the application, due to the fact that

UnrealScript is slow.

A function residing inside the DLL must be declared in the UnrealScript class file

and then it can be called exactly like it would be if it was an original UnrealScript

function. Following the previous example and assuming that the ExampleDLL

contained a function called ExampleDLLFunction, the code inside the UnrealScript

class would be:

dllimport final function ExampleDLLFunction(); // function declaration

…

ExampleDLLFunction (); // function call

3.2.10 Input Manager

The input manager is responsible to handle the communication between the input

hardware, such as keyboard, mouse, joystick or button boxes, and the application.

The input manager examines a configuration file based on DefaultInput.ini and

according to it binds each input action, such as the joystick/mouse movement or

key press to a specific method designated to perform the selected action. The

Unreal Editor comes with a default configuration file including a limited set of

predefined bindings between buttons and methods. However, this file can be

altered to match the needs of each application.

In order to create a new binding between a button press and the performed action

or to change an already defined binding, this change must be reflected in the

40

configuration file. Also, the method defined in the configuration file must exist in

the UnrealScript code of the new application being developed.

For example, if we wanted to add or change the action performed when the Left

Mouse Button is pressed, we would add or change these lines in the

“DefaultInput.ini” configuration file:

.Bindings = (Name="LeftMouseButton”, Command="GBA_Fire")

.Bindings = (Name="GBA_Fire", Command="JProcessItem");

In the first line, it is defined that the press of the left mouse button corresponds to

the game bindable action named GBA_Fire. In the next line, we define that if a

game bindable action named GBA_Fire occurs, then the Input Manager should start

the JProcessItem method, located in the application’s UnrealScript file. Inside that

method we could effectively develop the application to perform whatever action is

necessary to correspond to the press of the left mouse button.

3.2.11 Materials in UDK

A Material is an asset which can be applied to a mesh to control the visual look of

the scene. In general, when light from the scene hits the surface, the lighting

model of the material is used to calculate how that light interacts with the surface.

There are several different lighting models available within Unreal Engine 3's

material system, but the Phong lighting model is use for what might be called

"regular" lighting.

When the lighting calculation is being performed, several material properties are

used to come up with the final color of the surface. These material properties are

also called material inputs in the material editor and are things like DiffuseColor,

EmissiveColor, SpecularColor, SpecularPower, etc.

Diffuse

The diffuse color of a material represents how much of the incoming light reflects

equally in all directions. A value of (1,1,1) means that 100% of the incoming light

reflects in all directions. Diffuse is not view dependent so it will look the same from

any angle, but it does depend on the normal at each pixel. Diffuse color will only

show up when affected by some un-shadowed lighting, because it scales the

incoming lighting.

Emissive

The emissive color of a material represents how much light the material emits, as if

it were a light source, although it does not actually light up other surfaces in the

41

scene. Since emissive is acting like a light source, it is not affected by lights or

shadows. Emissive is sometimes used to represent the ambient lighting term.

Specular

Specular color represents how much of the incoming light reflects in a directional

manner. The specular response is brightest when your eye lines up with the

direction of the reflected incoming light, so specular is view dependent. The normal

also affects specular because it affects the reflected light direction. Specular power

controls how shiny or glossy the surface is. A very high specular power represents a

mirror-like surface while a lower power represents a rougher surface.

Opacity

Opacity controls how much light passes through the surface for translucent

materials. This means a translucent surface acts like a filter on the scene that you

see through it. A material with an opacity of 1 is fully opaque, while an opacity of 0

means it lets all light through.

Normal

The normal property represents the surface orientation. It can be specified per-

pixel with the use of a normal map, and it has an effect on both diffuse and

specular lighting.

3.3 Scaleform GFx

The way in which the application interacts with the user is extremely important.

There are three type of user interfaces used in virtual environments. These are:

Heads-Up Display (HUD), Menus and In-game Interfaces.

Unreal Devolopment Kit (UDK) offers two very different systems for building GUIs:

Canvas, which is the Unreal Engine's native GUI support, and Scaleform GFx, which

is flash-based UI. This application uses the Scaleform GFx system for the creation

of the GUIs. The reason that it is preffered to Canvas, is that the process of

creating the interfaces is visual and not by writing code. When using Canvas, one

needs to guess the image coordinates and the objects placed on the screen, then to

see the result they have to compile the project and start the application. That is a

time consuming process that has to be avoided. When using Scaleform, on the

other hand, visual tools are provided objects to be placed and animated. The Only

downfall of the Scaleform process is that it requires learning Flash and ActionScript.

42

Scaleform GFx is a piece of middleware developed by Scaleform Corporation that

enables modern game engines to render a Flash-based interfaces. These interfaces

can be rendered directly to the screen or rendered as textures which can be used in

materials and applied to geometry within the world. Being integrated in UDK,

Scaleform allows UnrealScript to communicate with Flash Actionscript, which means

one can build their interface’s visual design and animation using some Flash IDE,

add minimal Actionscript for controlling the display, load it into their game, and let

Unrealscript take over all the heavy lifting and calculations.

In order to improve the interface development, Scaleform provides a variety of

different tools. These are:

 Scaleform 3Di - 3D interface rendering system that can be used to tilt and

rotate any 2D Flash element in 3D space, including changing the Z and X/Y

rotation. Adds stereoscopic 3D UI support to give the appearance that they

are floating.

 Scaleform CLIK (Common Lightweight Interface Kit) - easily customizable

Flash UI component framework, including buttons, list boxes, drop down

menus, sliders, trees and windows, designed by gskinner.com.

 Scaleform UI Kits - prebuilt customizable Flash-based UI templates for high-

performance HUD, front end Menu and Multiplayer Lobby that are used to get

started quickly.

 Scaleform AMP (Analyzer for Memory and Performance) - profiler tool used to

analyze memory and performance of Flash content inside a game or 3D

application while running on PC, console or mobiles. AMP gives detailed stats

for CPU usage, rendering, and memory, and includes a complete ActionScript

profiler with function and per-line timing.

The User Interface creation is a four-step process. The first thing to do is to

create UI assets, such as, images and audio clips. Next, these assets are

imported and a flash file is created at this point, some interactivity can be

implemented using action script. Then the flash file is exported using the

Scaleform launcher. The last step is to import the flash file into udk from where

it can be used in an unrealscript class. The Figure below shows these steps

graphicaly:

43

Figure 3.9. Scaleform design workflow

3.3.1 Flash Applications

As it was mentioned above, Scaleform GFx process is Flash-based, meaning that

Flash files have to be created. A Flash file consists of many frames, placed in the

main timeline. The flow of the frames being displayed can be changed through

ActionScript - Flash’s scripting language, thus allowing control over which frame will

be displayed next and when this is going to happen. Each frame can have its own

set of graphics, texts, movie clips and buttons and a script controlling the behaviour

of the frame’s components.

Adobe Flash uses a movie-making metaphor in how they define their concepts and

areas of their interface. The basic terms used in flash files are:

 Movie - A Flash movie is the generic term for content created in Flash. It is

also the overall container for Flash content, e.g. the .fla file created in Adobe

Flash Professional.

 Scene - A scene is a "clip" of a movie. A Flash movie can have multiple

scenes, each of which are self-contained units.

 Stage - The stage is the area that will be visible in the published Flash

movie. It defines the work area within Flash where elements are placed and

manipulated.

44

 MovieClip - A movieclip is a reusable piece of Flash animation. Essentially,

they are self-contained Flash movies that can be used within other Flash

movies. These can contain graphics, shapes, ActionScript, etc.

 Graphic - A bitmap graphic.

 Button - A button is an object that responds to interactivity such as clicks,

key presses, etc. and performs actions based on those interactions.

Figure 3.10. Flash Authoring environment with a Flash User Interface loaded

3.3.2 Authoring Environment for Interactive Content

In order to create a Flash application, a Flash authoring environment is necessary.

There are many different Flash authoring environments available, yet, the most

powerful is Adobe Flash Professional. Although it is not free, a 30-day trial version

is available for download.

A freshly created Flash application is equiped with an empty stage and an empty

timeline. Objects, such as movie clips, graphics, buttons, text, sounds or other

Flash components, can be inserted into the application’s library, or directly into the

scene in the currently selected frame. Various different frames can be created,

carrying different components inserted into each frame and the control of the

application can be handled through ActionScript.

45

When the Flash application is fully developed and working, the authoring

environment can compile the assets and the ActionScript, comprising the

application into an executable file in SWF format. Such files can be directly

executed by a Flash player and also this is the format that UDK supports.

3.3.3 ActionScript 3.0

The scripting language behind Flash is the ActionScript. UDK supports the

integration of Flash applications with ActionScript version 2.0 (AS2) and version 3.0

(AS3). As AS3 is faster and more powerfull than AS2 it was preferred for scritipting

the flash applications.

ActionScript 3.0 is an object-oriented language for creating applications and media-

content that can then be played back in Flash client runtimes. It is a dialect of

ECMAScript, meaning it has a superset of the syntax and semantics of the more

widely known JavaScript. It is suited to the development of Flash applications. The

language itself is open-source in that its specification is offered free of charge and

both an open source compiler and open source virtual machine are available. It is

often possible to save time by scripting something rather than animating it, which

usually also enables a higher level of flexibility when editing.

ActionScript 3.0 executes on the AVM2 virtual machine which is available in Flash

Player 9 and up.

ActionScript 3.0 consists of two parts: the core language and the Flash Player API.

The core language defines the basic building blocks of the programming language,

such as statements, expressions, conditions, loops, and types. The Flash Player API

is made up of classes that represent and provide access to Flash Player–specific

functionality.

Two main aspects of the language:

 AS3 is a strongly typed language. This means that whenever you use a

variable, you must provide information about the type of data that this

variable is expected to hold. If you want to use a counter and keep track of

the counter progress in a variable, the type of data to be held in this variable

will be of integer type (non negative numbers). To define that counter

variable in AS3, you will type something like

var counter:int = 0;

46

 AS3 is an object oriented language. This means that you have the possibility

to split your code into specialized classes rather than writing a single

program of 3,000 lines of code. This contributes to making the code easier to

maintain and easier to re-use. One can then design specialized components

that will be re-used across different applications. A typical example of such a

component would be a calendar object that pops up to let you specify a date.

3.3.3.1 ActionScript Data Types

The primitive data types supported by ActionScript 3.0 are:

 Boolean - The Boolean data type has only two possible values: true and

false or 1 and 0. No other values are valid.

 int - The int data type is a 32-bit integer between -2,147,483,648 and

2,147,483,647.

 Null - The Null data type contains only one value, null. This is the default

value for the String data type and all classes that define complex data types,

including the Object class.

 Number - The Number data type can represent integers, unsigned integers,

and floating-point numbers. The Number data type uses the 64-bit double-

precision format as specified by the IEEE Standard for Binary Floating-Point

Arithmetic (IEEE-754). values between -9,007,199,254,740,992 (-253) to

9,007,199,254,740,992 (253) can be stored.

 String - The String data type represents a sequence of 16-bit characters.

Strings are stored internally as Unicode characters, using the UTF-16 format.

Previous versions of Flash used the UTF-8 format.

 uint - The uint (Unsigned Integer) data type is a 32-bit unsigned integer

between 0 and 4,294,967,295.

 void - The void data type contains only one value, undefined. In previous

versions of ActionScript, undefined was the default value for instances of the

Object class. In ActionScript 3.0, the default value for Object instances is

null.

There are additional "complex" data types. These are more processor and memory

intensive and consist of many "simple" data types. For AS3, some of these data

types are:

 Object - The Object data type is defined by the Object class. The Object

class serves as the base class for all class definitions in ActionScript. Objects

47

in their basic form can be used as associative arrays that contain key-value

pairs, where keys are Strings and values may be any type.

 Array - Contains a list of data. Though ActionScript 3 is a strongly typed

language, the contents of an Array may be of any type and values must be

cast back to their original type after retrieval. (Support for typed Arrays has

recently been added with the Vector class.)

 Vector - A variant of array supported only when publishing for Flash Player

10 or above. Vectors are typed, dense Arrays (values must be defined or

null) which may be fixed-length, and are bounds-checked during retrieval.

Vectors are not just more typesafe than Arrays but also perform faster.

 flash.utils:Dictionary - Dictionaries are a variant of Object that may

contain keys of any data type (whereas Object always uses strings for its

keys).

 flash.display:Sprite - A display object container without a timeline.

 flash.display:MovieClip - Animated movie clip display object; Flash

timeline is, by default, a MovieClip.

 flash.display:Bitmap - A non-animated bitmap display object.

 flash.display:Shape - A non-animated vector shape object.

3.4 Connection of the Graphical User Interfaces (GUIs)

with the Application

The Scaleform GFx integration in UDK enables the use of flash-based interfaces and

menus built in Adobe Flash Professional to be used as GUIs in a UDK application.

The integration of a Scaleform UI inside a UDK application requires that the flash

file that represents the UI is first compiled into an swf file and imported imported

inside the UDK asset library. Afterwards, the imported swf file can be connected to

the UDK application using one of the two possible methods. The first method is to

use Unrealscript and the second is to connect the UI through the visual scripting

system Kismet.

48

3.4.1 Connecting using Kismet:

An example can be seen in Figure 3.11, which shows the action "Open GFx Movie"

firing up when it receives the "Level loaded" event. This action performs the

required operations to start the Flash Movie that is inserted as an argument in its

properties. It can also be set whether this movie can capture user input, as well as

where to project this movie, either in the screen or on an Actor’s surface.

Also, Unreal Kismet provides the action "Close GFx Movie", which handles the

termination of the selected flash application.

Figure 3.11. Initiation of a Flash User Interface Application through Unreal Kismet

3.4.2 Connecting using - Unrealscript:

The Scaleform UIs can be integrated in UDK application using Unrealscript. To

embed a swf file into Unrealscript, an Unrealscript class that is extension of the

GFxMoviePlayer class, has to be created. The GFxMoviePlayer class is the base class

of all classes responsible for initializing and playing a Scaleform GFx movie. This

49

class will be subclassed in order to implement specialized functionality unique to the

individual movie for which the player is responsible.

For example, the bellow line of code shows a custom class which extends the

GFxMoviePlayer class:

class TUC_FrontEnd_ProfInfo extends GFxMoviePlayer;

The actual swf file is binded to the Unrealscript class in the defaultproperties section

of the class using the command:

MovieInfo=SwfMovie'TUCProjectFrontEnd.FrontEnd.TUC_ProfInfo'

Usually, in the custom class there are variables declared for caching a reference to

the actual flash buttons and/or movie clips. After instantiating the class and

initializing the newly created object, the above variables can be used to populate

some text fields, to listen for an event etc.

The Scaleform flash files often contains some predefined components, such as

buttons, lists, indication bars etc. These components are called widgets and they

have to be binded to the Unrealscrip class in order to access them. Their binding is

performed in the defaultproperties section of the Unrealscrip class by adding the

widgets to the WidgetBindings array. An example of widget binding is shown below.

WidgetBindings.Add((WidgetName="dm",WidgetClass=class'GFxCLIKWidget'))

While a Flash application is playing inside the application, the UnrealScript can

initiate a call of an ActionScript function and vice versa. This feature allows full

interaction between the Flash interface and the application. Consequently, it is easy

and efficient to create an application that initiates a Flash interface whenever it is

required and then to receive the user’s response and order it to stop playing.

3.5 Autodesk 3ds Max

All of the 3D models that constitute the virtual environment are created with the

help of the industry-standard 3D modeling software, namely, 3ds Max.

Autodesk 3ds Max is 3D computer graphics software for making 3D models,

animations, and images. It is developed and produced by Autodesk Media and

50

Entertainment. Although it is not free, a 30-day trial version is available for

download.

Autodesk 3ds Max has modeling capabilities, a flexible plugin architecture and it can

be used on the Microsoft Windows platform. It is frequently used by video game

developers, TV commercial studios and architectural visualization studios.

Figure 3.12 shows the 3ds Max 2010 IDE.

Figure 3.12. 3DS Max's User Interface

3.5.1 Predefined primitives

This is a basic method, in which one models something using only boxes, spheres,

cones, cylinders and other predefined objects from the list of Predefined Standard

Primitives or a list of Predefined Extended Primitives. One may also apply boolean

operations, including subtract, cut and connect. For example, one can make two

spheres which could work as blobs that will connect with each other.

Some of the 3ds Max Primitives as they appear in the perspective view of 3ds Max

2010:

51

Figure 3.13. 3ds Max Standard Primitives: Box, Cylinder, Cone, Pyramid, Sphere, Tube and

Torus.

Figure 3.14. 3ds Max Extended Primitives: Torus Knot ChamferCyl, Hose, Capsule, Gengon

and Prism

After creating the models (model creation is described in the section x.x), they are

exported to a FBX file format. FBX is a file format owned by Autodesk and - it is

used to provide interoperability between digital content creation applications and it

is also the file format that UDK supports for importing 3D models.

3.6 Setting up the Environment

3.6.1 Setting up Scaleform GFx

In order to use Scalform and its visual components in Adobe Flash Professional, first

it has to be set up. That includes installing the Scaleform GFx launcher - and the

CLIK library. The Scaleform GFx Launcher allows us to test scenes created in Adobe

Flash Professional without needing to import them into UDK and run the game.

52

To install the GFx launcher, we go to the Manage Extension options and install from

there the extension that is found in the C:\UDK\UDK-2012-07\Binaries\GFx folder.

The launcher is then accessd form the window->other panels options but it is not

ready to be used yet. It first needs to be set up to access a GFx player. This is done

adding the path to the player in the launcher panel.

To install the visual components that Scaleform provides we have to install the CLIK

library. This library is found in the C:\UDK\UDK-2012-

07\Development\Flash\AS3\CLIK folder and is added in the Source Path options of

the ActionScript settings.

3.6.2 Setting up Microsoft Visual Studio with nFringe

UDK comes with a compiler for UnrealScript, however, it lacks a proper IDE. The

IDE that was prefered is MS Visual Studio with nFringe module for unrealscript

language support installed. Primary components of nFringe are a text editor and a

source level script debugger. It provides context-sensitive IntelliSense, and support

for standard tool panes like Class View and the Code Definition Window.

After installing nFringe, the first thing to do is to obtain license. In our case a non-

comercial licnse was used. Next, new project is set up. This is done by creating new

Unrealscript project named TUCProject in the directory C:\UDK\UDK-2012-

07\Development\Src. As a final step, the path of unrealscript compiler is specified

in the projct properties.

53

4 Virtual Environment Creation

The Virtual Environmenet represents an existent building called 'The Building of

Sciences' of the Technical University of Crete (TUC). The building "is placed" on

thousends of square meters, has four floors and complex structure which consists

of many curved walls. Figure 4.1 shows the architectural beauty and complexity of

this building.

Figure 4.1. The Sciences Building of TUC

The Virutal Environment consists of lot of different objects. These objects are called

Actors in UDK and these can be: Geometry, Materials, Triggers, Ligths, Sounds etc.

In the next paragraphs the creation of the geometry and the materials is

thoroughly described.

4.1 World Geometry

The main structures in the virtual environment, as well as the decorations are

considered world geometry. There are two types of Actors in UDK that are used to

create the world geometry: BSP Brushes and Static meshes.

In order to precisely reconstruct the Science Building of TUC, architectural plans

and photographs of the building were used. The following two figures show the

complexity and the building's structure through architerctural floor plan and

elevation (face).

54

Figure 4.2. Floor plan of the first floor

Figure 4.3. South elevation of the ECE department

The purpose of using the architectural drawings in building a huge VE from an

actual building is to determine the shape, the location and the size of the main

structures that appart that building.

At this stage creating small geometry objects and assembling them in the UDK

without knowing their correct position is almost imposible task if we wanted precise

design. In order to overcome that problem, a big 3D object which was used as

placeholder for the geometry pieces, was created. The procedure of creating this

place holder and the final results are presented next.

The first step was to remove the unimportant, redundant lines from one of the

drawings (say floor 1) and to leave the lines that represent the main building

structures.

55

Figure 4.4. The redundant lines are removed

The next step was to import the drawing in the 3DS Max and to scale it correctly.

To be more precise, the drawing had to be enlarged 52,5 times.

Figure 4.5. Floor plan imported into Max

In order to extrude walls from the drawing the lines have to be closed. Because

that wasn’t the case we had to create new closed lines on the top of the already

existing. Inside the 3D modeling studio, the lines were created and attached one to

another and the result was a complex shape as shown in Figure 4.6.

Figure 4.6. The new closed line

56

When the new closed shape was created, it had to be converted to editable polygon

in order to make a 3D object out of it. The 3D object was created by extruding the

shape usning the Extrude modifier.

Figure 4.7. The final 3D extruded object

The finial step was to import this place holder in UDK as shown in Figure 4.8.

Figure 4.8. The place holder imported into UDK

Note that this 3D object can't be used for modeling the world for many reasons.

These are: the object is static - neither doors nor windows can be created, the

object is too complex for applaying materials to it, the object can't have correct

UVW map etc. This place holder helped us to position the created geometry in the

world correctly.

The Virtual Environment consists of more than 1100 objects, 2.000.000+ polygons

and 1.500.000+ vertices. Next, the creation of the general geometry is explained.

57

4.1.1 BSP

BSP brushes are the most basic building blocks in Unreal Engine. They are used to

carve out or fill in volumes of space in the world. These used to be the primary

method of creating world geometry in previous versions of the engine, but they

have been replaced by more specialized and efficient types of geometry, namely

Static Meshes.

The BSP brushes (volumes) are created using the builder brush tool. The builder

brush is the template out of which BSP brushes are created inside UDK. One can

use this tool to crate additive, subtractive, blocking and other volumes when

creating their level. The builder brush tool show up only in the Unreal Editor and

not in the created application. To see the created volume the level has to be

rebuilded.

The geometry created using BSP brushes is shown in the next two figures.

Figure 4.9. Application's BSP geometry (lit mode)

Figure 4.10. Application's BSP geometry (wireframe mode) - Additive Brushes (blue),

Subtructive Brushes (yellow)

58

4.1.2 Static Meshes

A Static Mesh is a set of polygons that is drawn by the hardware of the graphics

card. They are much faster, can handle many more polygons, are invulnerable to

BSP holes and look better than BSP brushes. Static Meshes get their name since

they are drawn as meshes that never change, so they can be cached in the video

memory which leads to better efficiency and performance. [UDN]

All of the static meshes populating the virtual environment are created manually

with the help of an industry-standard 3D modeling software - 3DS Max 2010. The

method that is used for the asset creation is described next.

The first thing that is done, is setting up the 3DS max to use generic units. This is

done in order to have one-to- one unit mapping with UDK. The shape and the size

of the assets is determined with the help of the provided floor pans and the taken

pictures.

The geometry for the most of the assets apparting the virtual environment is fairly

simple and thus, the most 3D models are created out of standard primitives (box,

sphere, cylinder...). After giving shape to the model, two UV channels, one that

contains the model’s texture data and the other containing its lightmap data, are

set. The first one is set up by creating a material in the material editor and adding

it to the created asset as the Figure 4.11 depicts.

59

Figure 4.11. Simple 3D object with material applied to it

The second UV channel is needed by UDK so that illumination and shading effects

are correctly applied on the object. This channel is created in 3ds Max by applying a

UVW unwrap modifier on the editable mesh that is exported and then, in the editor

that pops up select to automatically flatten the UVW mapping. An example of this

can be seen in Figure 4.12.

60

Figure 4.12. The UVW unwrapping of an object in 3ds Max. This UV channel is used by UDK

in order to realistically illuminate an object

Before the Static Mesh is exported, it's pivot point is set at the world origin (0,0,0).

In the most cases the pivot point is placed on the corner of the mesh to allow for

proper grid alignment once in UDK. The 3DS Max’s Snap to Grid function and the

alignement tool are used for setting correct pivot point.

61

Figure 4.13. Setting a pivot point of a 3D model

The static mesh is exported as an FBX file. An FBX is a file format owned and

developed by Autodesk. It is used to provide interoperability between digital

content creation applications such as Autodesk MotionBuilder, Autodesk Maya and

Autodesk 3ds Max [wikipedia]. UDK features an FBX import pipeline which allows

simple transfer of content from any number of digital content creation applications

that support the format.

The above methodology was used for creating simple box-shaped Static Meshes.

Some of the needed assets are curved shape and those were created using

different techics such as, Line Extruding and Loft Shaping.

Figure 4.14. Some of the created static meshes

62

4.1.3 Importing the Static Meshes

Once created, the static mesh is ready for import into UDK. Inside UDK, the

created 3D objects are imported by selecting the import option in the Content

Browser of the Unreal Editor. UDK reads the file containing the exported 3D objects

and recreates the geometry of the objects. It also creates the different material

slots for each part of the 3D object and initializes the UV channels of the object.

Figure 4.15 Importing external 3D model into UDK

The most of the collision detection requirements of the application are automatically

performed by UDK, after assigning a collision data to each 3D object, according to

its geometry. UDK provides several different ways of creating a collision data for a

given geometry.The more complex collision data produce, the more realistic

collision detection is achived. However, they suffer from increased need for

computation. For the purposes of the application, the collision detection mechanism

was required to simply prevent the user from intersecting other objects, or passing

through walls. So, simple collision data is chosen, thus, decreasing the

computational needs.

An example of the creation of a collision is presented in Figure 4.16, which shows

the – imported in the UDK – Stair Rails 3D object opened in the Unreal Editor. The

green box surrounding the geometry of the object is the collision vector that is

created for that object. Although the geometry of the actual 3D object is quite

complex in terms of polygon count, the collision vector is extremely simple,

represented by a simple box. This does not offer great accuracy in collision

63

detection, but nevertheless, it serves the purpose of the application being

computationally efficient.

Figure 4.16. Stair rails 3D model with a simple collision applied on it

For some of the static meshes, the automatic collision creation is either too complex

or not functional at all. In such cases, collision data is manually set up in the Unreal

Editor by addind blocking volumes. Blocking volumes are created using the brush

builder tool. In order to create the volume, the shape of the builder brush is made

first. Then, the collision is created by right clicking on the Volume button in Unreal

Editor and selecting BlockingVolume from the list. The collison data for the stairs

which is manually created is shown below:

64

Figure 4.17. Collision data created from blocking volumes (pink lines)

4.2 Materials

Materials are the most important factor in the final look of a 3D virtual

environment. They control the look of every object created - Static Mesh or BSP

volume. A material, in essence, is a small computer program that describes how a

surface appears. Materials can be used for adding color to the objects, making them

shiny, reflective, and even transparent.

4.2.1 Textures Vs Materials

There is a difference between textures and materials in UDK.

Textures are a single file. It is usually a diffuse, specular or normal map file that is

created in an image editing software such as Adobe Photoshop, GIMP or other

software.

Materials are made up of various textures combined together inside the Material

Editor in UDK. Material includes various textures and material expressions that

create a network of nodes. The final result is a material that can be used for

applying one’s BSP geometry or Static Meshes.

4.2.2 Textures

Some of the textures are downloaded from image repositories while the others are

created externally within the image editing application - Photoshop, and then

imported into Unreal Editor through the Content Browser.

65

Before importing, all of the textures are scaled to be power of 2, as the UDK

supports only those dimmensions. The textures were saved as either .bmp file

either .png, as jpeg is not supported by UDK.

The normal maps are created using the Nvidia's normal map filter. Nvidia normal

map filter is a plug-in for photoshop and it is used to create normal maps from

grayscale images. Hence, the image that is used for creating the normal map is first

grayscaled using the Hue/Saturation options. Next, a highpass filter is run on the

image to sharp it a little bit. The last step is to run the Normal Map Filter on the

image. In the most cases the default settings are used.

Figure 4.18. Normal Map creation workflow

4.2.3 Material Creation

The materials used for coating the 3D objects are created in the UDK's Material

Editor. The first thing in creating materials is to import texture images. New

material is in the content browser by clicking the right mouse button and selecting

the New Material option from the contex menu. In the pop-up panel a package

name is specified, as well as a group name and the name of the material following

some name convention. Figure 4.19 shows creating new material

66

Figure 4.19. Creating new material in UDK

After creating a brand new material, the UDK’s Material Editor is used for modifying

it. As already mentioned, UDK’s Material Editor offers the ability to not only set a

diffuse texture or expression for a material, but also alter its properties, such as

setting the specular color and power of the material, or defining a normal map,

which can realistically differentiate the lighting of a rough (not smooth) surface.For

example, Figure 4.20 shows two different materials in the Material Editor, applied

on a sample sphere object. The first material on the left is a matte grey one, with

no specular properties and consequently does not produce any lighting effects on

the object’s surface. The material on the right has a white color connected to its

specular property, with high specular power (20.0), so it produces a specular effect

due to the light that the object receives.

Figure 4.20. On the left is a grey matte material, with no specular color. On the right is the

same grey material with white specular color

There is, also, the option provided to set up a normal map for a material, which

helps Lightmass to calculate the light that bounces on the object when each specific

67

material is applied and scatter it according to the supplied normal map. This is very

helpful in order to create the illusion of rough surfaces on objects with smooth

geometry, such as the wooden surface of a table, or a carpet.

The geometry of a wooden floor is very complex. When creating a normal map for

the wooden material, although the geometry’s surface is smooth, the light should

scatter as though bouncing on a rough surface, as it can be seen in Figure 4.21.

Figure 4.21. A material for the wooden floor surface with a normal map defined. As can be

seen from the sample cube with the material applied on it, the lighting effects seem as

though falling on a rough surface

4.3 Doors

This section deals with creating a door opening and closing as the player interacts

with it. The doors are created using Static Meshes, Matinee Animations, Prefabs and

Kismet sequences. The method used for creating a simple single door is described

below. This method is general and it is used for creating all the buildings’ (facility)

doors.

Door Geometry

68

First, the static meshes that apart the door are created in 3ds MAX. These include:

a door frame, a door handle, a door lock, door hinges and the door panel. Creating

static meshes is thoroughly described in the section x.x. After importing the static

meshes in UDK, they are, all except the door frame, placed in the virtual scene

from where they are converted to InterpActor objects, to enable interpolation of the

door parts, in this case rotation.

The InterpActor (interpolating actor) is a special dynamic version of the StaticMesh

Actor. It supports a variety of physics types, it uses dynamic lighting, it can be

controlled in a variety of ways with Unreal Kismet and Matinee, and it can play a

number of sounds for specific actor states. When the static mesh actors are

converted to InterpActors they lose the collision properties, which means that they

do not block the player, so they are added manually. This is done by setting the

collision type to “COLLIDE_BlockAll”.

In order to enable user interaction with the door, a trigger actor is added to the

level and attached to the door panel. The trigger actor is listening when the player

gets to the proximity of the door. For the user to activate/use the trigger from

specified distance, the trigger’s collision radius is scaled from its properties. The

next step is to wire up this trigger to the Door Panel in Kismet, but before this is

done, a Matinee object for the door animation has to be set up.

Animating the door in Matinee

The following step is animating the door. Only the door panel is animated in

Matinee and the other door parts that have to move together with the door panel

are attached to it. The attaching is done in the Unreal Editor by selecting the other

parts that include the door and that have to move together with the door panel,

and by setting their Attachment properties. To be more precise, the door panel is

added to the “Base” property of the selected actors and it is ensured that the “Hard

Attached” property is checked.

In Kismet, a new Matinee object is selected in the context menu. After the Matinee

object appears, the UnrealMatinee Editor is brought up and/which allows us to

animate the Door. With the InterpActor Door Panel selected, a new empty group is

created in the Matinee editor. This action creates InterpActor variable that will hold

the animation. What is done next is creating a Movement Track which represents

the animation of the door opening. The movement track comes with a keyframe

that is established with the initial position of the selected InterpActor (the door

panel). In the UnrelEd, the Door Panel is rotated 90 degrees, and a keyframe that

represents the end of the animation, is added to the timeline at 1sec in the matinee

editor. This completes the door open sequence.

69

Kismet

In order to achieve interaction, the trigger has to be wired with the Matinee Object.

Once the trigger is selected, in Kismet, a new trigger used event is created from the

context menu. Trigger allows us to interact with the trigger by pressing the 'E'

button. The door is toggleable, that is, when the button E is pressed, if the door is

open we want to close it, and when the door is closed, pressing the e key will open

the door. In order to allow multiple door openings and closings, a switch action is

added between the trigger event and the matinee object.

The switch action has a definable number of outputs, and increments to the next

one every time it is fired. When the switch is activated it looks at the Index variable

to determine which outputs should be activated. Two output links are added and

the looping property is checked so that the switch loops back to the first output

once all outputs have fired.

At this stage the "Used" output of Trigger Event is connected to the Input of the

Switch. Next, the first Switch output (link 1)is hooked up to the Play input of

Matinee Object and the second output is hooked up to the Reverse input of the

Matinee Object. This means that when the trigger is pressed once, it opens the

door. On the second time it will close (reverse) the door. And the sequence will loop

because the switch is set to Looping.

Prefabs

Prefabs are collections of actors and associated Kismet that can be stored in

a package and easily instanced into a level. Prefabs can have changes made

to them in a level, and those changes can then be propagated to all existing

instances of that Prefab.

70

5 Functionality Creation (Scripting)

The Unreal Engine contains a large amount of UnrealScript classes already

implemented in several different packages which the user can put in action to

extend its own classes. The first thing to do is to understand what these classes are

and how they can be used in one's own application. The existing classes mainly

provide basic and generic functionality. They are essentially a part of the engine

itself and not part of "the game".

The typical approach to class design in UnrealScript is to make a new class which

extends an existing class that has most of the functionality that one needs

Some of the more important class packages that the programmer extend from are:

Engine, GameFramework, UDKBase, and UTGame. While the UTGame classes

implement a lot of First Person Shooter Game (FPS) functionalities, such as AI,

Networking, Scorebords, Menus etc., in this case it is decided to extend from the

lightweigth package UDKBase. UDKBase is, in essence, the bare bones of a project,

meaning that there is much more freedom with functionalities, but still there are

many issues left to deal with.

5.1 The Three Fundamental Classes

The three fundamental classes that form the framework skeleton of this project are

TUCInfo, TUCPawn and TUCPlayerController. All three classes extend from

UDKBase and their purpose is to to create a working, yet generic gameplay

experience.

The TUCPawn and TUCPlayerController construct the character that the user

controls while navigating in the virtual scene. The TUCPawn is the physical

representation of the player in the world. It has a mesh, collision, and physics

enabling it to handle all the functionality involved with the physical interaction

between the character and the world. In unrealscript each Pawn can have a single

Controller at any time. In this application the TUCPlayerController is the

Controller associated with the TUCPawn. As its name suggests,

TUCPlayerController takes care of telling the TUCPawn what to do and how to

behave. It is essentially the brains behind it. The main purpose of Controllers is

to accept input from the player or other stimuli in the world, to process that input

and act accordingly.

71

The "main" class of the application is the TUCInfo class. It is responsible for

telling the engine which classes to use for Controller, Pawn, HUD, etc.

Generally, this kind of classes (gametype classes) do much more than assigning

PlayerControllers, Pawns and HUDs used in the application. They usually

determine the rules of the game, the conditions under which the game

progresses or ends etc. These three classes are presented below.

TUCPawn

The visual representation of the character and the logic for determining how it

interacts with the physical world is encapsulated in this class.

class TUCPawn extends UDKPawn;

When a virtual scene is started, a new TUCPawn is instantiated, as instructed from

the TUCInfo class. It extends from the UDKPawn class which means that the logic for

interacting with the environment does not need to be implemented. This class

defines some characteristic properties for the Pawn, such as the height, the speed,

the acceleration and the body of the Pawn which is represented by a Collision

Cylinder.

An important aspect that is configured through the Pawn class is the collision

cylinder of the Pawn, which is taken into account by UDK to detect collisions

between the Pawn and the objects in the synthetic scenes. A primitive cylinder

object is with radius of 15 units and height of 20 units, is created in the default

properties and then it is added as a component of this Pawn. Next, The eyes of the

Pawn are set to 50 unreal units and the ground speed is set to 500 uu. The

acceleration rate is modified to 400 uu.

DefaultProperties

{

 Begin Object Name=CollisionCylinder

 CollisionRadius=+0015.000000

 CollisionHeight=+0020.000000

 End Object

 CylinderComponent=CollisionCylinder

 BaseEyeHeight=50.0

 GroundSpeed=+00500.0000

 AccelRate=+000400.0000

}

72

TUCPlayerController

The TUCPlayerController class is an extension of the UDKPlayerController

class. It is used as the Controller of the TUCPawn and it takes control of the

created Pawn when the application starts, as instructed by TUCInfo. This class

controls the main flow of the aplication. It handles all aspects of the application,

such as navigation, interactions etc. The menu manager that is responsible for the

flow of the user interaction is implemented here. The most of the other classes are

instanciated and controlled in this class. All the functionalities that the application

supports are started and ended here. It is understood from the above statements

that the TUCPlayerController class is quite large. For this reason, only the

member variables and function names are presented here. The function

implementations are described in the sections where the related functionality is

thorougly explained.

This class extends from the UDKPlayerController class.

class TUCPlayerController extends UDKPlayerController;

The variables used in this class are:

/* Navigation related variables */

var TUC_NavArrow NavArrow; //arrow that shows us the path to the destination

var String NavTargetString; // take values in TUC_FrontEnd_ShowPathMenu

var TUC_NavTargetNode NavTargetObject; // holds the target of our search

var bool bBtnSearchPressed_FE_SPM; // the search button

var bool bNavFindPath; // flag for activating the pathfinding

var Vector NavArrowLocation; // the location of the arrow

var TUC_TCPLink TCPLink;

/* FrontEnd varibles */

var TUC_FrontEnd_MainMenu FE_MainMenu; // the main menu

var TUC_InfoData Info; // data for professors, classrooms, labs

The functions that this class implements are given below, together with a simple

description:

PostBeginPlay() - Initialization

TUC_ShowMenu() - This is a exec function that is called when the M button is

 pressed by the user.

MenuManager() - Handles all user input from the menu.

73

PlayerWalking - State in which the user is found while moving.

FindPath() - The actual path finding occurs in this function.

SpawnAndAttachNavArrow() - Spawns the navigation arrow and attaches it to the

Pawn.

NavFindTarget() - Iterates through TUC_NavTargetNode Actors to find the target

 object and returns it.

GetTriggerUseList() - Enable use command for our custom triggers.

Teleport() - Teleports the user to the desired location.

TUCInfo

This is the class of the application that defines the main properties, such as the

Pawn that is used in the application and the Controller that handles the Pawn. This

class extends the GameInfo class, as it can be seen in its declaration:

class TUCInfo extends UDKGame;

When the user starts the application, the TUCInfo class creates a controller for this

user. In order for the TUCInfo class to create the correct class, the code shown

below is added to the end of the source file. In the below code chunk we see that

the TUCPlayerController class is used as the Controller class The Pawn used in this

application is instanciated from the TUCPawn class and the HUD is created from the

FrontEnd_HudWrapper class.

DefaultProperties

{

 PlayerControllerClass=class'TUCProject.TUCPlayerController'

 DefaultPawnClass=class'TUCProject.TUCPawn'

 HUDType=class'TUCProject.TUC_FrontEnd_HudWrapper'

}

74

5.2 Application Data

Configuration File

The information about the level height or width, or the names of the professors, or

the number of classroom seats, are stored in an .ini configuration file named

TUC.ini. This configuration file consists of two sections of key-value pairs.

These are:

[TUCProject.TUC_FrontEnd_Hud]

[TUCProject.TUC_InfoData]

The first section [TUCProject.TUC_FrontEnd_Hud], refers / (is associated) to the

TUC_FrontEnd_Hud class which is responsible for displaying objects on the HUD. The

information about the level/world width and height is added after the line
[TUCProject.TUC_FrontEnd_Hud]:

WorldWidth=9320

WorldHeight=2900

These two variables, which are used in the calculation of the position of the user on

the minimap, are declared in the TUC_FrontEnd_Hud class, as follows:

var config float WorldWidth, WorldHeight;

The second section is associated with the TUC_InfoData class. This class uses the

configuration file for storing information for the professors, the labs and the

classrooms. An example of the stored data is shown below:

Professors=(ID="KaterinaMania",PName="Katerina Mania",Position="Assistant

Professor",Department="Department of Electronic & Computer

Engineering",Sector="Computer Science Division",Speciality="3D Graphics,

Virtual Reality, Simulation Engineering, Human Computer Interaction,

Perception-based Computer Graphics",Edu="- Ph.D in Computer Science,

Department of Computer Science, University of Bristol, 2001 '\n'- Master of

Science (M.Sc.) in Advanced Computing (Global Computing and Multimedia),

University of Bristol, UK, 1996 '\n'- Bachelor of Science (B.Sc.) in

Mathematics, Department of Mathematics, University of Crete, Greece,

1994",CV="Dr Katerina Mania completed a B.Sc. in Mathematics at the

University of Crete, Greece, an M.Sc. in Advanced Computing (Global Computing

and Multimedia) and a Ph.D in Computer Science at the Univeristy of Bristol,

UK, Department of Computer Science. Her Ph.D studies were fully funded by

Hewlett Packard Laboratories. Prior to her Ph.D, she was a full-time

researcher and consultant at Hewlett Packard Laboratories in Bristol, UK

working on architectural visualisation, 3D user interfaces and 3D graphics

for the web, from 1996 till 1998. After completion of her Ph.D in 2001 she

75

was appointed as an Assistant Professor in the Department of Informatics,

University of Sussex, UK, achieving tenure in

2004",ResearchAreas="Perception-based Computer Graphics, Simulation

Engineering, Human factors/HCI and Virtual Environments, Human factors

Engineering, Fidelity Metrics for Computer Graphics Simulations, 3D Spatial

cognition",Courses="Introduction to Computer Programming, Computer

Graphics",Phone="+30 28210

37222",Email="k.mania@ced.tuc.gr",OfficeID="145.A14",Location=(X=63.6,Y=-

2267.29,Z=279.4))

Professors=(ID="AggelosBletsas",PName="AggelosBletsas",Department="Telecommun

ications",OfficeID="141.A28",Edu="Edu1,Edu2,Edu3",Bio="BioBioBio",Location=(X

=304.0,Y=-2960.0,Z=-66.0))

Classrooms=(ID="137P39",NumOfSeats="90",Location=(X=-504.0,Y=-5.0,Z=-190.0))

Labs=(ID="E01",LName="Electronics",OfficeID="A158",Stuff="Giwrgos A, Mitsos

B",Location=(X=100.0,Y=210.0,Z=-250.0)))

The Professors, Classrooms and The Labs variables are arrays of structs declared in

the TUC_InfoData class and are populated with the data found in the configuration

file when the the class is instanciated. Then the arrays can be used in various

classes that have need of this data.

TUC_InfoData Class

It was already seen in the previous paragraph that the configuration data for

the application is stored in an external configuration file with .ini extension.

In this paragraph, the class that is associated with that file, in particular with

the section [TUCProject.TUC_InfoData] of the configuration file, is described. The

class is declared in the TUC_InfoData.uc file as follows:

class TUC_InfoData extends Object

 config(TUC);

It extends from the Object class as specialized functionalities are not needed here.

In order to use the configuration file, the config modifier is added in the declaration.

When the class is instanciated in the program, the variables that are prefixed with

the config modifier will be populated with data from the configuration file.

The data that defines a professor is constructed using a structure. The struct is

called (obviously) Professor and it has fields for the name of the professor, the

department he belongs to etc. Using this struct, an array of Professor is declared.

This array stores all the data for the professors and it is populated on class

instanciation. The array has the keyword "config" added after the "var" keyword to

76

indicate that the data for this array is found in a config file. These data structures

are declared as follows:

struct Professor

{

 var string ID;

 var string PName;

 var string Position;

 var string Department;

 var string Sector;

 var string Speciality;

 var string Edu;

 var string CV;

 var string ResearchAreas;

 var string Courses;

 var string Phone;

 var string Email;

 var string OfficeID;

 var Vector Location;

};

var config array<Professor> Professors; //array loaded with Professors from

the config file

The data that defines a Lab is constructed using a struct. This struct holdes data for

the lab id, the staff etc. An array of Lab is then declared. This array stores all the

data for the professors and it is populated on class instanciation. These variables

are declared as follows:

struct Lab

{

 var string ID;

 var string LName;

 var string Staff;

 var Vector Location;

};

var config array<Lab> Labs; // array loaded with Labs from the config file

In a similar manner, classrooms are defined as follows:

struct Classroom

{

 var string ID;

 var string NumOfSeats ;

 var Vector Location;

};

var config array<Classroom> Classrooms; //array loaded with Classrooms from

the config file

77

When the user wants to make a search for a specific professor or classroom he/she

can use one of the Find functions that are implemented and shown below. These

three functions, one for each of the entities, accept a string which is used in the

function body to compare with the id of the stored data. The search is done using

the Find() function. This function allows to search for values in an array. It returnes

the index of the first element containing the specified value.

/**

 * FindProfessor

 * @return Professor - the professor with the ProfessorID ID.

 */

function Professor FindProfessor(string ProfessorID)

{

 return Professors[Professors.Find('ID', ProfessorID)];

}

/**

 * FindLab

 * @return Lab - the lab that has id equal to LabID string

 */

function Lab FindLab(string LabID)

{

 return Labs[Labs.Find('ID', LabID)];

}

/**

 * FindClassroom

 * @return Classroom - the lab that has id equal to ClassroomID string

 */

function Classroom FindClassroom(string ClassroomID)

{

 return Classrooms[Classrooms.Find('ID', ClassroomID)];

}

5.3 Detecting Focused Actors

Some of the in-game interfaces are displayed on the screen when the user's look is

focused on certain actors in the virtual environment. For example, when the user is

looking at a lift button, a panel with instructions for calling the lift is shown on the

screen. Another example is when the user focuses on a professor's office door; in

such case an interface is displayed with some basic info (name and picture) for the

78

specific professor and a text message telling him/her to press the 'Q' button if they

want to see more information.

The below Figures ilustrate these pop-up interfaces.

The logic behind focused actor detection is implemented in the GetFocusedActor

function of the TUC_FocusedActor class:

class TUC_FocusedActor extends Actor;

The built-in function Trace does all the heavy lifting. It casts a ray into the world

and returns what it collides with first. Trace takes into account both this actor's

collision properties and the collision properties of the objects Trace may hit. If

Trace does not hit anything it returns NONE; if Trace hits level geometry (BSP) it

returns the current LevelInfo; otherwise Trace returns a reference to the Actor it

hits.

If Trace hits something, the two local variables HitLocation and HitNormal

declared at the beginning of the function will be filled in with the location of the hit

and the normal of the surface.

The Trace function takes the location of the beginning and the ending of the line

that we want to trace. The two vectors that are declared to hold these locations

are StartTrace and EndTrace. The user's location is used as starting location. In

order to calculate the trace from the user's eyes, the z (height) variable of the

starting location is filled with the pawn's EyeHeight variable. The ending position is

defined to be the starting positon of the user, plus the rotation of its head

multiplied by some coefficient.

var PlayerController PlayerOwner;

var int SearchDistance;

simulated function PostBeginPlay()

{

79

 PlayerOwner = GetALocalPlayerController();

}

function Actor GetFocusedActor()

{

 local vector HitLocation, HitNormal, StartTrace, EndTrace;

 local Actor HitActor;

 StartTrace = PlayerOwner.Pawn.Location;

 StartTrace.Z += PlayerOwner.Pawn.EyeHeight;

 EndTrace = StartTrace+SearchDistance*vector(PlayerOwner.Pawn.Rotation);

 HitActor = PlayerOwner.Pawn.Trace(HitLocation, HitNormal, EndTrace,

 StartTrace, true, vect(0,0,0),,

 TRACEFLAG_Bullet);

 return HitActor;

}

The GetFocusedActor is called every tick (frame) from the HudWrapper class.

5.4 Lifts

In order to resemble the real building, lifts are implemented in Unrealscript and

then placed in the virtual environment.

The Lifts consist of the following five classes:

- TUC_LiftPlatform

- TUC_LiftControlPanel

- TUC_LiftButton

- TUC_FrontEnd_LiftControlPanel

- TUC_LiftDoor

These classes can be used by level designers for fast and easy lift creation. One of

the created lifts in the virtual environment is shown in the figure below:

80

Figure 5.1 TUC Lift

The first two classes, TUC_LiftPlatform and TUC_LiftDoor, represent the

platform that the user steps on and goes up and down, and, the doors of the lift.

The TUC_LiftPlatform is the more important class. All the other classes are

associated with this class and instantiated in it. They are placeable, which means

that they can be placed in the virtual scene.

The next two classes, TUC_LiftButton and TUC_LiftControlPanel, are used for

the interaction between the user and the lift. These classes extend the trigger class

and they are not the actual user interfaces. These are simply Trigger actors which

listen when the player is entering the proximity of the lift. The first one,

TUC_LiftButton, represents the outside/external button used for calling the lift.

The second one, TUC_LiftControlPanel, is used inside the lift as a controller

panel.

The last class, TUC_FrontEnd_LiftControlPanel, is the actual user interface for

the control panel which is located inside the lift and it is used for controlling it.

Next, the above classes are described in details.

TUC_LiftButton

The external buttons used for calling the lift are implemented using this class.

TUC_LiftButton extends the Trigger class, which means that it listens when the

81

user enters the proximity area of the lift button, in which the user can call the lift.

The class declaration is as follows.

class TUC_LiftButton extends Trigger

 ClassGroup(TUC);

The next figure shows the placement of a trigger and its interaction area in which

the user has to be located in order to call the lift:

Figure 5.2. An example of external Lift Button. The user has to be located in green cylinder

in order to interact with the lift

When the user enters the trigger’s area (in other words he/she is in the interaction

range), an information string "Call Lift [E]" is displayed on the HUD. Inside this area,

the user can call the lift by pressing the 'E' button.

82

Figure 5.3. When the user looks at the lift button informative box is displayed

A lift button is associated with one LiftPlatform. Its more important variables are

LiftID and FloorID. The first one holds information for the lift that is associated

with this button. For example, in this application the lifts are given names (in the

editor) such as: Lift1, Lift2 etc. The second one is holding information about the

floor on which this button is placed. This variable also takes values in the Unreal

Editor. The actual reference to the associated lift platform is held in the variable

LiftPlatform. The last instance variable is IsInInteractionRange. This Boolean

is true when the user enters the triggers' radius and further on it is checked in

UsedBy function.

var TUC_LiftPlatform LiftPlatform;// LiftPlatform associated with this button

var bool IsInInteractionRange;//true when user has entered in the triggers'

var() string LiftID; //lift assosiated with this button

var() int FloorID; // the floor on wich is placed this button (

A reference to the lift platform associated with this button is found when the

PostBeginPlay event is fired after all other actor has been initialized.

simulated event PostBeginPlay()

{

 LiftPlatform = FindLift(); // reference to the platform

}

Next, The trigger-related events and functions are overridden. When the user

enters the Triggers’ radius, the Touch event is fired. Here, not much effort is

envolved, to be more precise, the parent implementation of the event is called and

83

IsInInteractionRange is set to true. Similar actions are taken in the Untouched

event.

event Touch(Actor Other, PrimitiveComponent OtherComp, Vector HitLocation,

Vector HitNormal)

{

 super.Touch(Other, OtherComp, HitLocation, HitNormal);

 if(Pawn(Other) != none)

 IsInInteractionRange = true;

}

event Untouch(Actor Other)

{

 super.Untouch(Other);

 if(Pawn(Other) != none)

 IsInInteractionRange = false;

}

When the user finds himself/herself in the trigger’s area and they press the E

button, the UsedBy function is fired. This function checks if the user is within the

interaction range and if so, it first plays a sound which announces that the button is

pressed and then tells the lift platform to execute its MovePlatform function passing

to it the FloorID variable(the floor on which the button is placed).

function bool UsedBy(Pawn User)

{

 local bool used;

 used = super.UsedBy(User);

 if(IsInInteractionRange)

 {

 PlaySound(SoundCue'a_interface.menu.UT3MenuCheckboxSelectCue');

 LiftPlatform.MovePlatform(FloorID);

 return true;

 }

 return used;

}

The function that performs the finding of the lift platform is the FinfLift. It simply

iterates through all the actors that are instances of the TUC_LiftPlatform class,

and when the correct platform that is associated with this button is found, it stops

the searching and returns the platform to the caller.

function TUC_LiftPlatform FindLift()

{

 local TUC_LiftPlatform p;

84

 foreach AllActors(class 'TUC_LiftPlatform', p)

 {

 if(p.LiftID == LiftID)

 {

 break; // found

 }

 }

 return p;

}

TUC_LiftControlPanel

This class is not the actual user interface for controling the lift, but a trigger that is

listening when the user is in interaction range with the control panel. It simply

allows the user to interact with the control panel by pressing the ‘E’ button. An

instance of this actor is attached to one moving platform in the world because one

lift controller is allways associated with one lift.

class TUC_LiftControlPanel extends Trigger

 ClassGroup(TUC);

A lift control panel is associated with one lift platform and the reference to this

platform is held in the TUC_LiftPlatform variable called LiftPlatform. The

variable LiftID holds information for the lift platform that is associated with control

panel. A reference to the flash movie that is played when the user presses the ‘E’

button is held in the LiftControlPanelMovie variable. The last instance variable is

IsInInteractionRange. This Boolean is set to true when the user enters the

triggers' radius and it is checked in UsedBy function.

var TUC_LiftPlatform LiftPlatform; //reference to the assosiated platform

var TUC_FrontEnd_LiftControlPanel LiftControlPanelMovie; //the flash ui movie

var bool IsInInteractionRange;

var() string LiftID; // lift assosiated with this door

A reference to the lift platform associated with this control panel is found when the

PostBeginPlay event is fired after all other actor has been initialized.

simulated event PostBeginPlay()

{

 LiftPlatform = FindLift(); // take reference to the platform

}

85

When the user enters the Triggers’ radius the Touch event is fired. The parent

implementation of the event is called and IsInInteractionRange is set to true.

Similar actions are taken in the Untouched event.

event Touch(Actor Other, PrimitiveComponent OtherComp, Vector HitLocation,

Vector HitNormal)

{

 super.Touch(Other, OtherComp, HitLocation, HitNormal);

 if(Pawn(Other) != none)

 IsInInteractionRange = true;

}

event Untouch(Actor Other)

{

 super.Untouch(Other);

 if(Pawn(Other) != none)

 IsInInteractionRange = false;

}

When the user is in the triggers’ area and presses the 'E' button, the UsedBy

function is fired. This function checks the IsInteractionRange variable, and, when

true, it first plays a sound which announces that the button is pressed and then

calls the OpenMovie function which instantiates the movie class for the control

panel.

function bool UsedBy(Pawn User)

{

 local bool used;

 used = super.UsedBy(User);

 if(IsInInteractionRange)

 {

 PlaySound(SoundCue'a_interface.menu.UT3MenuCheckboxSelectCue');

 OpenMovie(); // Show the control panel to the user

 return true;

 }

 return used;

}

When the user chooses destination floor from the control panel, which is instance of

TUC_FrontEnd_LiftControlPanel, the CalculateLiftMovement function is called. This

function closes the lift control panel and calls the LiftPlatform's MovePlatform

function passing which button was pressed. MovePlatform function based on the

pressed button and on which floor is the platform calculates the lift movement.

86

function CalculateLiftMovement(int PressedFloorButton)

{

 CloseMovie(); // first off, close the panel then do the calculations

 LiftPlatform.MovePlatform(PressedFloorButton);

}

The function that performs the finding of the lift platform is the FinfLift. It simply

iterates through all the actors that are instances of the TUC_LiftPlatform class

and, when the correct platform that is associated with this button is found, it stops

the searching and returns the platform to the caller.

function TUC_LiftPlatform FindLift()

{

 local TUC_LiftPlatform p;

 foreach AllActors(class 'TUC_LiftPlatform', p)

 {

 if(p.LiftID == LiftID)

 return p; // we found it

 }

}

After pressing the 'E' button, the program calls the OpenMovie function. A new

movie that represents what the user interacts with is created and then initialized by

calling its InitMovie function.

function OpenMovie()

{

LiftControlPanelMovie = new class'TUC_FrontEnd_LiftControlPanel';

LiftControlPanelMovie.InitMovie(self);

}

When the user selects the destination floor, the first thing to do is to close the

associated flash movie which represents the control panel that the user interacts

with.

function CloseMovie()

{

 LiftControlPanelMovie.Close();

 LiftControlPanelMovie = none;

}

87

TUC_FrontEnd_LiftControlPanel

The interface that is displayed on the HUD, and with which the user can actually

interact in order to controll the lift, is implemented in this class. This class is a

wrapper for the scaleform flash file that is created for the user interface and

represents a panel with three buttons on it, one for each of the buildings’ floors.

This panel is displayed on the HUD when the user presses the 'E' button while it is

located in the associated Triggers’ area.

Figure 5.4 Lift Control Panel

The same as the other classes used for displaying flash content, this class also

extends from the GFxMoviePlayer as it can be seen bellow:

class TUC_FrontEnd_LiftControlPanel extends GFxMoviePlayer;

References to the button components are stored in the GFxClikWidget variables:

BtnFloor0, BtnFloor1, BtnFloor2 . A variable of integer type is used to hold

information which button is pressed. The last member variable is LiftControlPanel

and it is used as a pointer to the associated trigger.

var GFxClikWidget BtnFloor0, BtnFloor1, BtnFloor2;// buttons

var int PressedFloorButton; //the selected floor button

var TUC_LiftControlPanel LiftControlPanel; // the associated trigger

88

The movie is initialized in the InitMovie function. InitMovie takes reference to the

trigger that is associated with this class, playes the movie and tells the program

not to scale the control panel when it is rendered.

function InitMovie(TUC_LiftControlPanel Panel)

{

 LiftControlPanel = Panel; // reference to the trigger

 Start(); //

 Advance(0);

 SetViewScaleMode(SM_NoScale);

}

The attaching event listener function to the buttons is done in the WidgetInitialized

evet. This event is fired when the CLIK components in the associated Flash file call

this function after they are done with all the ActionScript initialization. The name of

the button is checked in a switch statement.

event bool WidgetInitialized(name WidgetName, name WidgetPath, GFxObject

Widget)

{

 local bool bWasHandled;

 bWasHandled = false;

 switch(WidgetName)

 {

 case ('btn_Floor0'):

 BtnFloor0 = GFxClikWidget(Widget);

 BtnFloor0.AddEventListener('CLIK_click', InputFloor0);

 bWasHandled = true;

 break;

 case ('btn_Floor1'):

 BtnFloor1 = GFxClikWidget(Widget);

 BtnFloor1.AddEventListener('CLIK_click', InputFloor1);

 bWasHandled = true;

 break;

 case ('btn_Floor2'):

 BtnFloor2 = GFxClikWidget(Widget);

 BtnFloor2.AddEventListener('CLIK_click', InputFloor2);

 bWasHandled = true;

 break;

 default:

 break;

 }

 return bWasHandled;

}

89

When one of the buttons is pressed, its corresponding attached event listener

function is fired. The function sets the destination floor by assigning the correct

value to the PressedFloorButton variable. It then calls the function

CalculateLiftMovement passing it the variable for the destination floor.

CalculateLiftMovement function is found in the control panel and based on the

PressedFloorButton variable, it calculates how many floors the platform has to be

displaced.

function InputFloor0(EventData data)

{

 PressedFloorButton = 0;

 LiftControlPanel.CalculateLiftMovement(PressedFloorButton);

}

The event listeners for the other buttons are similar to above function and therefore

, they are ommited here.

The binding of the flash file as well as the widget binding with this class is done in

the default properties section.

DefaultProperties

{

 MovieInfo=SwfMovie'TUCProjectFrontEnd.FrontEnd.TUC_LiftControlPanel'

 WidgetBindings.Add((WidgetName="btn_Floor0",WidgetClass=class'GFxCLIKWi

 dget'))

 WidgetBindings.Add((WidgetName="btn_Floor1",WidgetClass=class'GFxCLIKWi

 dget'))

 WidgetBindings.Add((WidgetName="btn_Floor2",WidgetClass=class'GFxCLIKWi

 dget'))

 TimingMode=TM_Real

 bPauseGameWhileActive=true

 bCaptureInput=true

}

Lift Doors

The lift doors and their open-closing functionality is implemented in this class. This

class is extension of the Actor class, it is placeable and can be found in the

content's browser 'Actor Classes' options, under the TUC group.

class TUC_LiftDoor extends Actor

 placeable

 ClassGroup(TUC);

90

In order to use the doors, an instance of this class actor it first has to be added to

the virtual environment. One lift door is associated with one lift platform. This is set

in the actor properties by typing the name of the lift platform, for example Lift1.

Other information that is added in the editor and that is needed for correct using of

the lift doors is, the floor on which the door is placed, the static meshes that appart

the door, the light environment used for correct lightning of the moving doors and

the sounds played when opening or closing. The variables used for holding such

information are declared using parenthesis and are shown below:

var() int FloorID; // the floor on wich is placed this door

var() string LiftID; // lift assosiated with this door

var() StaticMeshComponent LeftDoor, RightDoor; // reference to the left

var() const editconst DynamicLightEnvironmentComponent LightEnvironment;

var() SoundCue OpenDoor, CloseDoor; // open/close sound

In order to see this Actor in the world, two StaticMeshComponent representing the

right and the left door are added in the default properties of the class. The

StaticMeshComponents consists of static mesh and a LightEnvironment. In order to

form a two-part sliding door, one of the static meshes is translated in its x axis by

36 unreal units.

begin object class=StaticMeshComponent name=LeftDoorMesh

 StaticMesh=StaticMesh'TUC_BasicVolumes.SM.SM_Box_01'

 LightEnvironment=MyLightEnvironment

end object

LeftDoor=LeftDoorMesh

Components.Add(LeftDoorMesh)

begin object class=StaticMeshComponent name=RightDoorMesh

 StaticMesh=StaticMesh'TUC_BasicVolumes.SM.SM_Box_01'

 Translation=(X=36.0,Y=0.0,Z=0.0)

 LightEnvironment=MyLightEnvironment

end object

RightDoor=RightDoorMesh

Components.Add(RightDoorMesh)

// dynamic light environment component

begin object class=DynamicLightEnvironmentComponent

 Name=MyLightEnvironment

 bEnabled=TRUE

end object

LightEnvironment=MyLightEnvironment

Components.Add(MyLightEnvironment)

91

The other instance variables which are explained in the comments are shown

below:

var bool bIsOpen; // the door is open or closed

var float MovementTime; // the time needed the doors to full open/close

var() int FullOpen; // number of unreal units needed for full door opening

var float SleepTime; //

var float RightTranslation, LeftTranslation; RightTranslation=0 and

LeftTranslation=36

var float DeltaDistance; // uu/sec

var vector L, R; // left and right translation vectors

var int i; // counter used in the state and right door

The opening and closing of the doors is performed when the Door actor enters in its

Moving state. This state uses the ignores keyword to ignore callings to the Toggle

function which practically means that when the doors start to open or close they

will not be interrupted by(od strana na korisnikot, taka?) the user. The actual door

movement is performed in a loop which executes FullOpen times. The FullOpen

variable holds the distance (in unreal units) between the start(closed) end the

end(opened) point of the door's movement. In every loop execution, the left door is

translated in one direction and the right door in(?) another direction. The

translating is done by adding or subtracting one unit (DeltaDistance) depending

on whether it is performed opening or closing doors. Due to the need for the

opening or closing to take some time, the latent function Sleep is called on every

cycle. Sleep pauses the state execution for a certain amount of time, and then

continues. This function call does not return immediately, but it returns after a

certain amount of game time elapses. When the doors’ opening/closing terminates,

the program exits this state and goes to the idle state.

state Moving

{

 ignores Toggle;

Begin:

 PlaySound(SoundCue'TUC_Sounds.Sounds.S_LiftOpenDoor');

 SleepTime = MovementTime/FullOpen;

 /* Opening/Closing the Doors */

 for(i=0; i<FullOpen; i++)

 {

 R.X = LeftTranslation += DeltaDistance;

 RightDoor.SetTranslation(R);

92

 L.X = RightTranslation += -DeltaDistance;

 LeftDoor.SetTranslation(L);

 Sleep((SleepTime));

 }

 GotoState('Idle');

}

The logic for toggling the door is imlemented in the Toggle function. This function

checks the boolean bIsOpen variable to see if the door is opened or closed. If open,

(bIsOpen=true) it inverses the DeltaDistance variable and continues to the

moving state. The DeltaDistance variable is an integer and represents one unreal

unit. When positive, it is used for opening the doors and when negative, for closing

them.

function Toggle()

{

 if(!bIsOpen)

 DeltaDistance = default.DeltaDistance;

 else

 DeltaDistance = -default.DeltaDistance;

 bIsOpen = !bIsOpen;

 GotoState('Moving');

}

TUC_LiftPlatform

The platform that the user steps on and goes up and down is implemented in the

LiftPlatform. While all the classes that are described above are used in the lift

creation, this class is somewhat more important due to its direct association with all

the other classes. As it is expected, it extends from the Actor class and it can be

placed in the virtual environment.

class TUC_LiftPlatform extends Actor

 placeable

 ClassGroup(TUC);

Every lift platform has: liftID - the name which is given in the Unreal Editor, a static

mesh component - which is used for holding the specified static mesh from the

library, a sound component - for playing sound when it moves and a light

environment.

93

var() string LiftID;

var() StaticMeshComponent LiftPlatform; // the static mesh used for the

var() AudioComponent LiftMovementSound; // holds references to the lift

var const editconst DynamicLightEnvironmentComponent LightEnvironment;

The other lift platform variables are given below:

var TUC_LiftDoor Doors[3]; // references to the lift doors

var int Floor; // current floor

var int NextFloor; // next floor

var() float DeltaDistance; // uu/sec

var() float MovementTime; // the time needed for the

platform to move from one floor to another

var float SleepTime;

var vector DeltaDistanceVector; // [0, 0, DeltaDistance]

var int FloorsDisplacement; // num of floors we should move

var int FloorHeight; // floor height

var int i; // counter used in the 'Moving' state

enum LiftDirection

{

 Stationary, // not used

 Up,

 Down

};

var LiftDirection Direction;

When this class is instantiated, the PostBeginPlay function is fired. The

PostBeginPlay function is often used as a constructor. In this case, a timer is

set except the parent implementation. The timer waits for two seconds and calls

the InitDoors function which is used for finding the associated doors and opening

them. There is a waiting time in order to get the doors opened, after this class is

first initialized by the engine. The opened doors are those found on the floor 0, the

same as the lift platform. This is done so that the doors at the floor on which the lift

platform is, are always opened.

simulated event PostBeginPlay()

{

 super.PostBeginPlay();

 SetTimer(2, false, 'InitDoors');

}

function InitDoors()

{

 FindLiftDoors(); // load the assosiated doors

94

 Doors[0].Toggle(); // open the doors on the first floor

}

When the lift platform has to find the associated doors, it uses the FindLiftDoors

function. This function itterates trough all the lift doors that are placed in the virtual

scene and when it finds that the LiftID of the door equals to itself, it captures a

reference in the Doors array.

function FindLiftDoors()

{

 local TUC_LiftDoor D;

 foreach AllActors(class'TUC_LiftDoor', D)

 {

 if(D.LiftID == LiftID)

 {

 Doors[D.FloorID] = D; // capture reference

 }

 }

}

When the user presses the buttons in the lift or calls the lift, the program flow is

transfered eventually to the MovePlatform function. MovePlatform function accepts

a integer parameter which represents the pressed lift button (basically the floor) or

the chosen floor, and based on the variable value, it calculates how many floors

does the lift platform has to move up or down, or stay where it is. This calculation

is done by taking the diference of the passed variable and its current floor. The

difference is stored in the Move variable. If the Move is 0, the function returns and

no lift movement is performed. If the value is negative (which means that the lift

has to move down), the Direction variable is set to Down, and if positive, it is set

to Up. Before going to the Moving state, which is done by the platform movement,

this function takes the absolute value of the Move variable and assigns it to the

FloorDisplacement variable. This variable is used in the movement loop as an

upper bound of the loop.

function MovePlatform(int CallingFloor)

{

 local int Move;

 NextFloor = CallingFloor;

 Move = CallingFloor - Floor; // the diference gives how many floors

the lift has to move up or down.

 if(Move == 0)

 return;

95

 else if(Move < 0)

 Direction = Down;

 else

 Direction = Up;

 FloorsDisplacement = abs(Move);

 GotoState('Moving');

}

The movement of the lift platform is implemented in the state named Moving. Upon

entering the state code, the doors are closed and the state execution is paused for

2.1 seconds, in order the doors to close properly. Next, depending on the

Direction variable, the DeltaDistance variable is set with the default value or the

inverse value. The DeltaDistance variable is used for translating the platform. Its

default value is 1, and represents one unreal unit. Next, the movement sound

starts to play. The loop that does the platform movement is next defined, it is

executed FloorsDisplacement * FloorHeight times. The floors in the virtual

environment are 220 unreal units high and it was already seen that the

FloorsDisplacement variable takes values such as 1, 2, 3 etc. At every loop

execution, the platform is moved one unreal unit up or down referring to the

DeltaDistanceVector vector, which is passed to the Move function.

The move function moves the actor in the 3d space according to its vector

parameter. The vector's x and y variables are set to 0 and the z variable is set to

DeltaDistance (-1 or 1). When the loop terminates the execution, which means

that the lift has stopped moving, the sound is also stopped, the current floor of the

lift platform is updated with the nextfloor variable, the doors are opened and finally,

the state is turned to Idle.

state Moving

{

 ignores MovePlatform, FindLiftDoors;

Begin:

 Doors[Floor].Toggle(); // first close the lift doors

 Sleep(2.1);

 if(Direction == Up) // go up

 DeltaDistance = default.DeltaDistance;

 else // go down

 DeltaDistance = -default.DeltaDistance;

 LiftMovementSound.Play(); // plays the movement sound

 DeltaDistanceVector.z = DeltaDistance;

 SleepTime = MovementTime/FloorHeight;

96

 /* Move the platform */

 for(i=0; i<(FloorsDisplacement*FloorHeight); i++)

 {

 Move(DeltaDistanceVector);

 Sleep(SleepTime);

 }

 LiftMovementSound.Stop();

 Floor = NextFloor;

 Doors[Floor].Toggle(); // open the doors

 GotoState('Idle');

}

The LightEnvironment, the StaticMeshComponent, the AudioComponent and some

of the other variables are set up in the defaultProperties section. As For the

static mesh, the SM_Box_01 mesh is loaded from the library and then scaled properly

in order to fit in the lift shaft.

DefaultProperties

{

 //

 begin object class=DynamicLightEnvironmentComponent

 Name=MyLightEnvironment

 bEnabled=TRUE

 end object

 LightEnvironment=MyLightEnvironment

 Components.Add(MyLightEnvironment)

 begin object class=StaticMeshComponent name=Platform

 StaticMesh=StaticMesh'TUC_BasicVolumes.SM.SM_Box_01'

 Scale3D=(X=4.5, Y=20.0, Z=0.25)

 LightEnvironment=MyLightEnvironment

 end object

 LiftPlatform=Platform

 Components.Add(Platform)

 Begin Object Class=AudioComponent Name=LiftSound

 SoundCue=SoundCue'a_movers.Movers.Elevator01_LoopCue'

 End Object

 LiftMovementSound = LiftSound

 Components.Add(LiftSound)

 CollisionComponent=Platform

 bCollideActors=true

97

 bBlockActors=true

 Floor=0

 Direction=Stationary

 DeltaDistance=1

 FloorHeight=220

 MovementTime=3

}

An example of lift creation

The steps taken in creation of a lift involve: First, a lift platform is added in the

world and it is given a name (say Lift1). Next, A control panel is attached to it. In

it LiftID propery, the name of the platform is typed. The buttons for calling the lift

are added next, one button for every floor. They are also associated with the lift

platform and in their Floor ID property we have given int values representing the

floor on which they are placed.

Figure 5.5 An example of lift creation

98

5.5 Menu System

The application's menu is accessed when the user presses the 'M' keybord key. The

menu consists of black transparent background and buttons that are used to access

some of the application's functionalities. The functionality of these buttons is briefly

explained next.

Find Path: The Find Path functionality helps the user in finding a specific Professor

office, lab, classroom and even department secretary. When this functionality is

active, a transparent green arrow is created in front of the user which shows

him/her the way to the destination.

 Toggle Mini Map: The "Toggle Mini Map" button toggles a miniature map of

the building and it is placed in the right top corner of the screen.

 Toggle Extended Info: This button is used to show and hide a panel which is

placed at the right bottom corner of the screen. The panel is populated with

information from Unrealscript with information about the floor on which the

user stands as well as about the department. Nearby objects are also

dynamically added to the panel.

 Interactive Map: The Interactive Map button allows the user to see

information for the staff, classrooms, labs, coffee shops, stairs, secretaries

and lift, all of them placed on a 2D map.

 Cinematics: When the user press the "Cinematics" button, a menu page with

a list of cinematics (film-style scenes) is presented.

 Settings: The "Settings" button opens a page from where the user can

change some application parameters, such as, video resolution an anti-

aliasing.

The interface is built in Adobe Flash and the logic behind it is implemented in

Unrealscript.

99

A black transparent background is first set in Flash, and Scaleform CLIK buttons are

added on top of it. All of the buttons are then given instance name in order to be

accessible from Unrealscript. After placing them on the stage, the buttons are

skinned as needed. After the menu system is completed, it is then imported in UDK

and accessed from Unrealscript. The Unrealscript side of the menu system is

analyzed in the following section.

The Unrealscript wrapper class for the swf file is called TUC_FrontEnd_MainMenu and

extends from GFxMoviePlayer.

class TUC_FrontEnd_MainMenu extends GFxMoviePlayer;

References to the flash file buttons are declared at the begining of the class:

var GFxClikWidget btnShowPath, btnToggleMiniMap, btnToggleExtendedInfo,

BtnInteractiveMap, BtnSettings, BtnCinematics, BtnExitMainMenu, btnExitApp;

The same goes for the reference to the next menu page:

var GFxMoviePlayer NextMenuPage;

The sfw file is initialized and the movie started playing using the following function:

100

function Init(optional LocalPlayer player)

{

 Start();

 Advance(0.f);

 SetViewScaleMode(SM_ExactFit);

}

References to the swf's file buttons are taken in the next function. At this function,

event listeners are also assigned to the buttons.

event bool WidgetInitialized(name WidgetName, name WidgetPath, GFxObject

Widget)

{

 local bool bWasHandled;

 bWasHandled = false;

 switch(WidgetName)

 {

 case ('btnShowPath'):

 btnShowPath = GFxClikWidget(Widget);

 btnShowPath.AddEventListener('CLIK_click', ShowPath);

 bWasHandled = true;

 break;

 case ('btnToggleMiniMap'):

 btnToggleMiniMap = GFxClikWidget(Widget);

 btnToggleMiniMap.AddEventListener('CLIK_click',

ToggleMiniMap);

 bWasHandled = true;

 break;

 case ('btnToggleExtendedInfo'):

 btnToggleExtendedInfo = GFxClikWidget(Widget);

 btnToggleExtendedInfo.AddEventListener('CLIK_click',

ToggleExtendedInfo);

 bWasHandled = true;

 break;

 case ('btnCinematics'):

 BtnCinematics = GFxClikWidget(Widget);

 BtnCinematics.AddEventListener('CLIK_click',

ShowCinematics);

 bWasHandled = true;

 break;

 case ('btnInteractiveMap'):

 BtnInteractiveMap = GFxClikWidget(Widget);

 BtnInteractiveMap.AddEventListener('CLIK_click',

ShowInteractiveMap);

 bWasHandled = true;

 break;

101

 case ('btnSettings'):

 BtnSettings = GFxClikWidget(Widget);

 BtnSettings.AddEventListener('CLIK_click', Settings);

 bWasHandled = true;

 break;

 case ('btnExitMainMenu'):

 BtnExitMainMenu = GFxClikWidget(Widget);

 BtnExitMainMenu.AddEventListener('CLIK_click',

ExitMainMenu);

 bWasHandled = true;

 break;

 case ('btnExitApp'):

 btnExitApp = GFxClikWidget(Widget);

 btnExitApp.AddEventListener('CLIK_click', ExitApp);

 bWasHandled = true;

 break;

 default:

 break;

 }

 return bWasHandled;

}

When one of the ShowPath, ShowCinematics, ShowInteractiveMap or the

Settings event listener is triggered, the function simply calls the

LoadNextMenuPage function which takes care of loading a new movie.

The LoadNextMenuPage is declared as shown in the code chunk below. It first

creates a new instance of the menu class, it initializes it and then closes itself - the

current menu page. The false parameter in the Close function tells the program to

not delete from the memory this page, because it might be accessed soon.

function LoadNextMenuPage(class<GFxMoviePlayer> NextMenuClass)

{

 NextMenuPage = new NextMenuClass;

 NextMenuPage.Init();

 Close(false);

}

The Mini Map and the Extended Info are components of the HUD - meaning that

their showing and hiding is performed from functions defined in the HUD class. The

toggling of the Mini Map and the Extended info is done in similar manner. After the

ToggleMiniMap or the ToggleExtendedInfo function is triggered, the current movie

is closed and the function responsible for the toggling is called. The last code line

calls the MenuMenager function defined in the player controller.

102

*/

function ToggleMiniMap(EventData data)

{

 Close(false);

 TUC_FrontEnd_HudWrapper(TUCPlayerController(GetPC()).myHUD).HudMovie.To

ggleMiniMap();

 TUCPlayerController(GetPC()).MenuManager();

}

function ToggleExtendedInfo(EventData data)

{

 Close(false);

 TUC_FrontEnd_HudWrapper(TUCPlayerController(GetPC()).myHUD).HudMovie.To

ggleExtendedInfo();

 TUCPlayerController(GetPC()).MenuManager();

}

The user presses the red x button, the program closes the main menu and transfers

the program flow to the Controller.

function ExitMainMenu(EventData data)

{

 Close(false);

 TUCPlayerController(GetPC()).MenuManager(); // PC will handle

}

The console command "exit" is used in order to terminate the application.

function ExitApp(EventData data)

{

 ConsoleCommand("exit");

}

The associated swf file, as well as the buttons found in it, are bounded to this class

in the default properties as follows:

DefaultProperties

{

 MovieInfo=SwfMovie'TUCProjectFrontEnd.FrontEnd.TUC_MainMenu'

 WidgetBindings.Add((WidgetName="btnShowPath",WidgetClass=class'GFxCLIKW

idget'))

 WidgetBindings.Add((WidgetName="btnToggleMiniMap",WidgetClass=class'GFx

CLIKWidget'))

 WidgetBindings.Add((WidgetName="btnToggleExtendedInfo",WidgetClass=clas

s'GFxCLIKWidget'))

103

 WidgetBindings.Add((WidgetName="btnInteractiveMap",WidgetClass=class'GF

xCLIKWidget'))

 WidgetBindings.Add((WidgetName="btnCinematics",WidgetClass=class'GFxCLI

KWidget'))

 WidgetBindings.Add((WidgetName="btnSettings",WidgetClass=class'GFxCLIKW

idget'))

 WidgetBindings.Add((WidgetName="btnExitMainMenu",WidgetClass=class'GFxC

LIKWidget'))

 WidgetBindings.Add((WidgetName="btnExitApp",WidgetClass=class'GFxCLIKWi

dget'))

 bShowHardwareMouseCursor=true

 TimingMode=TM_Real

 bPauseGameWhileActive=true

 bCaptureInput=true

 bDisplayWithHudOff=true

 bIgnoreMouseInput=false

}

The bShowHardwareMouseCursor command tells the Movie to use the system

mouse cursor, the TimingMode tells the Movie to proceed at normal playback

speed, disregarding slomo and pause, the bPauseGameWhileActive pauses the

application when this movie is played and the other three commands tell the movie

to capture keybord input, to hide the HUD and to take input from the mouse.

5.6 Heads-Up Display (HUD)

The HUD (heads-up display) is the method by which information is visually relayed

to the player as part of a game's user interface. In video games, the HUD is

frequently used to simultaneously display several pieces of information including

the main character's health, items, and an indication of game progression -

[wikipedia]. However, concerning this application, what is displayed on the HUD is a

MiniMap (a map on which the player's location is shown), a panel showing

navigation-related infromation, a panel that displays how to enter the main menu,

and an informative label that is visible when the path finding functionality is

activated. The HUD is non-interactive, meaning the user does not click elements of

the HUD.

There are two basic methods that are used when creating HUDs in Unreal

Development Kit. These are:

104

 Canvas - Utilizes the Canvas class to draw HUD graphics.

 Scaleform GFx (Flash) - Utilizes the Scaleform GFx integration to display HUD

graphics and menus.

These two methods of HUDs are not mutually exclusive; it is possible to use a

combination of both

This application utilizes the second method, the Scaleform GFx. The Scaleform GFx

makes the use of interfaces built in Adobe Flash Professional to be able to be used

as heads-up displays.

Figure 5.6 shows the HUD created for this application.

Figure 5.6. The HUD

The components that constitute the HUD are: Menu panel, Mini Map, a label that is

set visible in the path finding and an ExtendedInfo panel.

The MiniMap and the ExtendedInfo components are independent objects that are

created in separate files and classes from the HUD file and class, but they are

instantiated and controlled by the HUD. These two components are thoroughly

described later in this section.

105

Setting up the Scaleform/Flash scene

The HUD scene is first set up using Adobe Flash. It is fairly simple, it consists of a

movie clip that shows the static text: "Menu [M]", and a label that is dynamically

updated and displayed when the user uses the find path functionality. After setting

up the scene, it is publlished as a swf flie and placed in the

..\UDK\UDKGame\Flash\TUCFrontEndProject folder. Then it is imported from the

content browser in the application library. The resulting flash scene is shown in the

Figure 5.7. Next, the unrealscript side of the HUD is examined.

Figure 5.7. The HUD flash file

There are two unrealscript classes involved in the HUD creation. These are:

 TUC_FrontEnd_HudWrapper

 TUC_FrontEnd_Hud

The TUC_FrontEnd_Hud class is the Unrealscript class that represents the HUD. It

is used as a wrapper for the flash file that was created before, and it is responsible

for initializing and playing the movie file, as well as executing all Unrealscript

106

funtionality for communicationg with the swf file. It is an extension of the

GFxMoviePlayer class.

class TUC_FrontEnd_Hud extends GFxMoviePlayer;

The other class, TUC_FrontEnd_HudWrapper, extends from the HUD class. The HUD

class is the base class for displaying elements overlaid on the screen. Which HUD

type is going to be used depends on the gametype being used. In the case

presented, this is done by specifying the HUD class in the default properties of the

TUCInfo class, as follows:

HUDType=class'TUCProject.TUC_FrontEnd_HudWrapper'

These two classes are described next.

TUC_FrontEnd_Hud

The first thing that is done is to bind the swf movie that represents the HUD to this

class. This is done in the class's DefaultProperties area by specifying the path to the

sfw file. Along with the swf binding, the HUD related properties are set up. These

properties are used for disabling mouse input, enabling keybord input, disabling

pausing the application while the HUD is active etc. These commands are shown in

the below code chunk.

DefaultProperties

{

 MovieInfo=SwfMovie'TUCProjectFrontEnd.FrontEnd.TUC_HUD'

 bIgnoreMouseInput = true

 bDisplayWithHudOff = false

 bEnableGammaCorrection = false

 bPauseGameWhileActive = false

 bCaptureInput = false;

}

The Menu label that can be seen in the figure x.x is static and therefore it is not

accessed in this class. However, the info label found above the center of the HUD

scene is dynamic. It is accessed from the unrealscript and thus, a variable holding a

reference to the label is defined. The label in the flash file is created using a

Scaleform component and therefore, the variable used here is of type

GFxClikWidget.

var GFxClikWidget InfoLabel;

107

To bind these variable to the respective one in the swf file, the following code is

used:

event bool WidgetInitialized(name WidgetName, name WidgetPath, GFxObject

Widget)

{

 switch (WidgetName) // WidgetName = instance name of a Flash object.

 {

 case ('infoLabel'):

 InfoLabel = GFxClikWidget(Widget);

 break;

 default:

 break;

 }

 return true;

}

The MiniMap and the ExtendedInfo panels are hold in the varibles:

var TUC_FrontEnd_MiniMap MiniMap;

var TUC_FrontEnd_ExtendedInfo ExtendedInfo;

Their implementation is explained later on, but for now let us see how they are

used (instantiated, and toggled) here. When the user presses the button for

toggling the MiniMap, the Main Menu object calls the function ToggleMiniMap which

is implemented in this class. Its code is shown below, and what it does is: It first

checks whether the MiniMap is created. If it is created, meaning that the mMiniMap

is displayed on the HUD, it closes the MiniMap movie and assigns null value to it. In

the other case, when the miniMap is not displayed, it creates new MiniMap object it

initializes it, and sets it location on the HUD and disables the scaling of that movie.

function ToggleMiniMap()

{

 if(MiniMap != none && MiniMap.bMovieIsOpen)

 {

 MiniMap.Close();

 MiniMap = none;

 }

 else

 {

 if(MiniMap == none)

 {

 MiniMap = new class'TUC_FrontEnd_MiniMap';

 MiniMap.Init();

 MiniMap.SetViewScaleMode(SM_NoScale);

 MiniMap.SetAlignment(Align_TopRight);

 }

108

 }

}

The method for toggling the Extended Info panel is the same as the above, but for

completeness, the code is provided here.

function ToggleExtendedInfo()

{

 if(ExtendedInfo != none && ExtendedInfo.bMovieIsOpen)

 {

 ExtendedInfo.Close();

 ExtendedInfo = none;

 }

 else

 {

 if(ExtendedInfo == none)

 {

 ExtendedInfo = new class'TUC_FrontEnd_ExtendedInfo';

 ExtendedInfo.Init();

 ExtendedInfo.SetViewScaleMode(SM_NoScale);

 ExtendedInfo.SetAlignment(Align_BottomRight);

 }

 }

}

The last function defined in this class is the UpdateMiniMap. This function is called

on every engine tick by the HUD Wrapper class. It checks whether the MiniMap is

displayed, and if yes, it makes a call to the MiniMap's function

CalculateSpotPosition which does the calculation for finding the correct player's

position.

function UpdateMiniMap(float DeltaTime)

{

 if(MiniMap != none)

 {

 MiniMap.CalculateSpotPosition();

 }

}

The binding of the swf file, as well as setting up some default properties, is shown

below. The meaning of the properties is obvious by looking at their names.

DefaultProperties

{

 WidgetBindings(0)={(WidgetName="infoLabel",WidgetClass=class'GFxClikWid

get')}

109

 MovieInfo=SwfMovie'TUCProjectFrontEnd.FrontEnd.TUC_HUD'

 bIgnoreMouseInput = true

 bDisplayWithHudOff = false

 bEnableGammaCorrection = false

 bPauseGameWhileActive = false

 bCaptureInput = false;

}

5.6.1 Mini Map

The mini-map is a miniature map of the virtual environment that is placed at the

top right screen corner. On the top of the map there is a blip that shows the

user's position. Its purpose is to aid users in having better orientation in the virtual

world.

The mini-map is implemented using Scaleform/Flash and ActionScript for the

interface that represents the mini-map and UnrealScript for updating the blip

position on the mini-map.

Flash Setup

The images used for the world's map are screenshots of the facility that are taken

in the UDK. In Adobe Photoshop, the image is resized, namely, its dimensions are

set to be powers of two so that they are imported in udk (UDK)without problem. A

new transparent layer is then added to the layer stack and it is placed at the

bottom of the stack. Parts of the images are next converted to transparence in

order to make visible only the facility. This is done by selecting the areas that are

not needed with the 'Quick Selection Tool' and then removed by pressing the delete

button. The procedure is illustrated in the next two figures:

110

The resulting images are imported to the flash library and then their properties are

set up, namely, image smoothing is enabled and the compression is set to lossless

PNG. At the end they are converted to movie clips.

Movie clips that represent the player blip and the semi trasparent black background

are created from basic shapes.

All the movie clips that constitute the mini-map are added to the flash stage with

the help of Actionscript. In the actionscript file that is associated with the flash file,

the mini-map components are added by declaring them as instance variables. In

the class constructor, these components are attached to the stage using the

addChild function. The component that represents the first floor is set visible while

the other two are hidden. This is done because the user starts using the application

from the first floor. The class implementing the above stuff is as follows:

public class TUC_MiniMap extends MovieClip {

 /* instance variables */

 public var bg:Background = new Background();

 public var floor0:Floor0 = new Floor0();

 public var floor1:Floor1 = new Floor1();

 public var spot:SpotMC = new SpotMC();

 public function TUC_MiniMap() {

 // x and y coords of the minimap

 x = 377;

 y = 140;

 rotationY = 35; // rotate it

 //attach the bacground

 addChild(bg);

 // attach the floor mc to the minimap

111

 addChild(floor0);

 addChild(floor1);

 // attach the player's spot

 addChild(spot); // attach the user spot to the minimap

 floor0.visible = false;

 floor1.visible = true;

 }

 }

UnrealScript

In order to be used by the applicaton, the flash file created for the mini-map is first

imported into UDK. The class that uses this file is named TUC_FrontEnd_MiniMap

and it is an extension of the GFxMoviePlayer class. The purpose of the class is not

only to display the file that was created in flash, but to map the player's position

from the 3D virtual environment to the 2D mini-map. Note that the size of the two

are different. The class is declared as follows:

class TUC_FrontEnd_MiniMap extends GFxMoviePlayer

 config(TUC);

The variables that are used for referencing the flash components are:

var GFxObject RootMC; // the stage

var GFxObject Floor0MC, Floor1MC; // current level map we are on

var GFxObject SpotMC; // red dot on the minimap

The RootMC is the variable representing the root variable of the flash file, the

Floor0MC and Floor1MC variables are the floor images and the SpotMC is the

player's blip movie clip.

In order to map the player's position from the virtual environment to the 2D mini-

map variables for holding the dimensions of the 3D world and the mini-map's

dimensions are declared.

var float MiniMapWidth, MiniMapHeight;

var config float WorldWidth, WorldHeight;

The dimensions of the 3D world are larger than the dimensions of the mini-map, so

variables are needed for storing the following information:how many times the

world's width contains the mini-map's width and the same information for the

heigth. Dividing the user's position by those ratios we can compute user's position

on the mini-map. The variables used for the ratios are declared as follows:

var float xRatio, yRatio;

112

When objects of this class are instantiated, the first function that is called is the one

shown below. The Init function initializes the flash movie, cashes a reference to

the movie's components and calculates the width and height ratios. It is fired off by

the HUD Wrapper when the HUD is instantiated.

function Init(optional LocalPlayer player)

{

 Start();

 Advance(0.f);

 RootMC = GetVariableObject("_root"); // caches a reference to the

 Floor0MC = RootMC.GetObject("floor0"); // level 0

 Floor1MC = RootMC.GetObject("floor1"); // level 1

 Floor2MC = RootMC.GetObject("floor2"); // level 2

 SpotMC = RootMC.GetObject("spot"); // reference to the User Spot

 MiniMapWidth = RootMC.GetFloat("width");

 MiniMapHeight = RootMC.GetFloat("height");

 xRatio = WorldHeight / MiniMapHeight;

 yRatio = WorldWidth / MiniMapWidth;

}

When the mini-map is displayed on the screen, the player's position on the mini-

map is calculated on every tick. As presented above, this is done by dividing the

players's position, namely, the x and y location, by the x and y ratio respectively.

The 3D world and the mini-map have different coordinate system. The world's x

axis is y axis in flash and also fash has inverted y axis. In order to overcome

mapping problems, the function inverts the value of the calculated mini-map's y

location. The function responsible for the calculation is shown below.

/**

 * CalculateSpotPosition

 * world width -> y, minimap width -> x

 * world height -> x, minimao height -> y

 */

function CalculateSpotPosition()

{

 local float x, y;

 x = GetPC().Pawn.Location.X;

 y = GetPC().Pawn.Location.Y;

 if(x >= 0)

 {

 x = -(x / xRatio);

 y = (y / yRatio);

 SpotMC.SetPosition(y, x);

113

 }

 else

 {

 x = Abs(x / xRatio);

 y = (y / yRatio);

 SpotMC.SetPosition(y, x);

 }

 }

When the user goes on another floor the mini-map is updated with the correct floor

image:

function UpdateFloor(int l)

{

 if(l == 0)

 {

 Floor0MC.SetVisible(true);

 Floor1MC.SetVisible(false);

 }

 else if(l == 1)

 {

 Floor0MC.SetVisible(false);

 Floor1MC.SetVisible(true);

 }

}

5.6.2 Extended Info Panel

The extended info panel is a flash based interface that is placed at the bottom right

corner of the screen. Its purpose is to aid users by providing information for the

floor on which the user is at the current moment, for the department (HMMY,

Geniko and Core) and the near "objects" such as Classrooms, Secretary office etc.

The extended info panel is implemented using Scaleform/Flash for the interface and

UnrealScript for populating the panel with the information.

A populated info panel is shown in the figure below:

114

Figure 5.8. Info panel

Flash Setup

A flash file with dimmension of 310 x 160 is first created. It consists of three layers

placed on the file's timeline. Thelayer on the top, named "Actions", is used for

writing actionscript code. A single line of code is added here for the purpose of

rotating the panel by 35 degrees. One layers(bez s) is used for placing the labels

and the textfields, and one for the background. After creating the panel, it is

published to swf file which is next imported in the UDK.

UnrealScript

Two classes are written in unrealscript in order to implement the Extenden Info

functionality. One is for wrapping the flash file in unrealscript in order to access and

populate its textfields, and the other one is used for detecting the user when it is

near some objects of interest, such as stairs, classrooms, labs etc.

The floor and department detection, as well as the detection of the objects of

interest, are represented by a class which stores information for the floor on which

these objects are placed, the department in which they are placed and their name.

This class is named TUC_ExtendedInfo_TriggerVolume and it is extension of the

TriggerVolume class and allows the objects to detect user presence. The

TriggerVolume is volume that is created using the builder brush and it is used as a

non-interactive Trigger. When the user steps into the trigger volume, a touch

event is fired. An untouched event is fired when the user steps out of the volume.

Our class overrides those two events in order to implement the required behaviour.

115

class TUC_ExtendedInfo_TriggerVolume extends TriggerVolume

 ClassGroup(TUC);

The created volumes are shown in the following figure:

Figure 5.9. The detecting volumes

The stored information that was mentiond above is stored in the following

variables:

// these values are modified in the editor

var() String Floor;

var() String Department;

var() String NearObject;

var TUC_FrontEnd_ExtendedInfo ExtendedInfoMovie; // the movie that we will

write extended info data to

Some of the created volumes do not have assigned value to the NearObject

variable. These volumes are used only for Floor and Department detection. The

other volumes have assigned value only to the NearObject. Their values are used

for updating the NearObject list in the Extended Info Panel.

When the user enters the trigger volume, the Touch event is fired. This event first

checks if the actor that entered the volume is the player. Then it takes reference

object that represents the flash file and checks to see if the volume is used for floor

and department detection. If true, it passes the Floor and Department variables to

the respectative Setters function. If false, it calls the Setter function for adding

the name of the near object to the textfield of the flash file.

event Touch(Actor Other, PrimitiveComponent OtherComp, Vector HitLocation,

Vector HitNormal)

{

 super.Touch(Other, OtherComp, HitLocation, HitNormal);

116

 if(Pawn(Other) != none)

 {

 ExtendedInfoMovie =

TUC_FrontEnd_HudWrapper(WorldInfo.GetALocalPlayerController().myHUD).HudMovie

.ExtendedInfo; // reference to the movie

 if(NearObject == "") // when used for floor and department

detection

 {

 /* fill the movie with our data */

 ExtendedInfoMovie.SetFloor(Floor);

 ExtendedInfoMovie.SetDepartment(Department);

 /* update the minimap with the correct floor */

 TUC_FrontEnd_HudWrapper(WorldInfo.GetALocalPlayerController().myHUD).Hu

dMovie.MiniMap.UpdateFloor(Floor);

 }

 else

 {

 ExtendedInfoMovie.SetNearObjects(NearObject);

 }

 }

}

When the user steps out of the volumes, we want the name of the nearObject to

be deleted from the panel. This is done in the Untouch event. The event checks if it

was fired by the user, and when that is the case, it checks to see if this volume is

used a NearObject. It then removes the name of the near object from the panel by

calling the RemoveNearObject function.
event Untouch(Actor Other)

{

 super.Untouch(Other);

 if(Pawn(Other) != none)

 {

 if(NearObject != "")

 ExtendedInfoMovie.RemoveNearObject(NearObject);

 }

}

TUC_FrontEnd_ExtendedInfo

In order to use the flash file, it has to be first wrapped in an unrealscript class. The

class declaration is as follows:

117

class TUC_FrontEnd_ExtendedInfo extends GFxMoviePlayer;

The variables used for updating panel's texfields are:

var GFxClikWidget FloorLabel, DepartmentLabel;

var GFxObject NearObjects; // textfiled polpulated with near bjects

var int NumOfNearObjects; // how many near object are added to the list

The first two variables are of GFxClikWidget type and those are initialized in

WidgetInitialized function in a manner that was seen many times, thus the

function code is ommited here.

The NearObjects variable though, is of GFxObject type and holds reference to the

flash NearObjects textfield. The reference is grabbed when the object is initialized

using the init function.

function Init(optional LocalPlayer player)

{

 Start();

 Advance(0.f);

 NearObjects = GetVariableObject("_root.NearObjects");

}

The values of these instance variables are modified using setter functions. The

Floor and the Department are variables that hold only one word, for example,

HMMY, 1, Geniko etc, and these are simply assigned String values using the

SetText function. As for the NearObjects, which can contain many words (because

of their nature) we have to perform some checks and stick a comma between the

different near objects.

/**

 * SetFloor

 */

function SetFloor(string Floor)

{

 FloorLabel.SetText(Floor);

}

/**

 * SetDepartment

 */

function SetDepartment(string Department)

{

 DepartmentLabel.SetText(Department);

}

118

/**

 * SetNearObjects

 * Add nearObject to the list

 */

function SetNearObjects(String no)

{

 local String s;

 s = NearObjects.GetText();

 if(s == "") // if empty textfield

 {

 NearObjects.SetText(no); // add it

 }

 else

 {

 s = s $ ", " $ no; // stick comma and space at the begining of the

near objcet

 NearObjects.SetText(s);

 }

 NumOfNearObjects++;

}

When the user steps out of the nearObject's trigger volume that near object has

to be deleted from the extended info panel. This is done in the RemoveNearObject

function. The string representing a list of near objects is handled using string

functions. These functions can not be used directly from this class because this

class is not an extension of the Actor class. They are accessed using the GetPC

helper function to get the owning player controller for this movie. If the list

contains only one near object, it is simply removed by replacing the text of the

string list with an empty string. If the list contains two or more near objects, a

check is required to see if the object is the first in the list or no. If first, then it is

removed from the list, as well as the succeeding coma. If not first, then it is

removed together with the preceding comma.

function RemoveNearObject(String NearObject)

{

 local String s;

 s = NearObjects.GetText();

 if(s != "") // there are objects in the list

 {

 if(NumOfNearObjects > 1) // the list has two or more near objects

 {

 if(GetPC().InStr(s, NearObject) == 0) // if the string is at the

begining we need to remove and the succeeding comma

119

 {

 GetPC().ReplaceText(s, NearObject$", ", ""); // remove the

nearObject and the succeeding comma

 NearObjects.SetText(s);

 }

 else // the string is not the first object

 {

 GetPC().ReplaceText(s, ", "$NearObject, ""); // remove the

nearObject and the preceeding comma

 NearObjects.SetText(s);

 }

 }

 else // the list has exactly one near object

 {

 GetPC().ReplaceText(s, NearObject, "");

 NearObjects.SetText(s);

 }

 NumOfNearObjects--;

 }

5.7 Displaying Professor Information

While navigating in the virtual university environment, it is of great importance for

the user to read screen-displayed information about the academic staff.

This application provides such information. There are two types of information

provided: Basic and Advanced.

The Basic information is displayed on a small panel when the user simply looks at a

professor office door while is located at a certain distance. The displayed

information is the professor's name, its picture and a text message telling the user

to press the Q button if he or she wants to see more information. Figure 5.10

shows the Basic information interface. The showing and hiding of this interface is

part of the HUD system and for that reason it is explaind in the HUD section. The

system that allows to detect the actor that the user is looking was explaind in

section 5.3.

The rest of the section is focused on the Advanced information panel.

120

Figure 5.10. Basic professor information

The Advaced information is displayed on the screen when the user presses the 'Q'

keybrord button while it is located near professor's office and is looking at the office

door. Some of the displayed information are: Professor's name, its position at work,

the department in which is employed, its specialities, research areas, education, the

office number etc.

The interface on which the information are presented is created using flash

technology. Characteristic of this interface is that it belongs to the desktop three

dimensional family of interfaces. This in fact means, that, exept x and y axis, the

component constituting the interface have z axis which gives them sense of depth.

The 3D transformations are achived using the ActionScript 3.0 built-in 3D

functionality. A flash object essentially has three 3D transforms that can be applied

to it: X rotation, Y rotation, and Z translation The created flash file is imported into

the UDK and wrapped in an unrealscript class. The unrealscript class loades the

data about the professors from a configuration file. The implementation of this

functionality is thoroughly explained in the next two sections.

5.7.1 Creation of the Professor Info Interface using Flash and ActionScript

3.0

The user interface for showing information for the professors is created using

Scaleform-Flash and ActionScript 3.0. It consists of three main components which

are placed on three different layers. In order to achieve feeling of 3D space, the

layers are given different depth by translalating them on the z axis. This is done by

giving values to the z variable on their timeline as shown below:

z = 200;

121

Note that negative values of the z translate the object toward the screen and

positive values translate it away from the screen.

The first layer is used as a background and as a place where the field labels are

placed. Movie clips that represent sort of 'shadows' used for enhancing the depth of

the interface are placed on the second layer. Finally, the fields that contain the

information about the professors are placed on the third layer. These fields are

loaded with data from configuration file at the run time. The professor icons are

imported from the library that is created for the project and dynamically loaded

when needed. Figure 5.11 shows the final result.

Figure 5.11. Professor Information projected on a 3D UI

122

Now we are going to examine the ActionScript side of the interface.

The rotation of the interface is implemented in the associated actionscript file called

TUC_ProfInfo.as as follows:

public class TUC_ProfInfo extends MovieClip

The rotation of the interface is enabled when the user has first pressed any of the

mouse buttons. To check this condition a boolean flag called isRotationEnabled is

declared. It is set to true when the user clicks on any of the mouse buttons. At the

variable declaration section, variables that hold the coordinates of the mouse at the

moment of the clicking and reference to the actual interface are declared. The last

variables used in the script are those that store the x and y rotation of the

interface.

var isRotationEnabled:Boolean = false;

var InitialMouseCoordX:Number = 0;

var InitialMouseCoordY:Number = 0;

var InfoPanelRotationY:Number = 0;

var InfoPanelRotationX:Number = 0;

public var InfoPanelMC:InfoPanel;

In the class constructor, the mouse related event listeners are added to the stage

object of the flash file. The Stage in Adobe Flash Professional is the rectangular

area where the graphic content is placed when creating documents. These listeners

listen for events such as mouse pressing, mouse releasing and mouse movement.

public function TUC_ProfInfo()

{

 stage.addEventListener(MouseEvent.MOUSE_DOWN, enableRotation);

 stage.addEventListener(MouseEvent.MOUSE_UP, disableRotation);

 stage.addEventListener(MouseEvent.MOUSE_MOVE, MouseMove);

}

When the user presses any of the mouse buttons, the enableRotation function is

fired. This function sets the isRotationEnabled flag to true and grabs the

coordinates of the mouse cursor and the rotation of the interface.

function enableRotation(evt:MouseEvent):void

{

 isRotationEnabled = true;

 InitialMouseCoordX = root.mouseX;

 InitialMouseCoordY = root.mouseY;

 InfoPanelRotationX = InfoPanelMC.rotationX;

 InfoPanelRotationY = InfoPanelMC.rotationY;

123

}

Upon releasing the pressed button, the disableRotation function is called. What this

function does is that it disables the interface rotation.

function disableRotation(evt:MouseEvent):void

{

 isRotationEnabled = false;

}

The next function does the actual rotation of the interface. It first checks if the

rotation flag is true, and if true, it calculates the rotation of the interface.

In order to understand the computation of interface rotation the Flash coordinate

system has to be explained first. The origin point of the stage (the main timeline) is

always in its upper left corner. The main difference with regard to the classic

system is that Flash has an inverted Y axis. Therefore in Flash, the negative Y

values are above the origin point and the positive ones below it. Here is a visual

representation:

Figure 5.12. Flash Coordinate System

We can conclude from the above figure that when the user moves the mouse in the

x axis, we want the interface to rotate in its y axis and vice versa.

124

function MouseMove(evt:MouseEvent):void

{

 if (isRotationEnabled)

 {

 InfoPanelMC.rotationY = InfoPanelRotationY + (root.mouseX -

InitialMouseCoordX);

 InfoPanelMC.rotationX = InfoPanelRotationX + (root.mouseY -

InitialMouseCoordY);

 }

}

In the next section we are going to describe how the flash file is connected with the

application and how the interaction with interface is possible.

5.7.2 Connecting the User Interface with the application - UnrealScript

The file that is created in Flash is first imported into the UDK and then wrapped in

an unrealscript class. The class that is discussed at this point is declared as follows:

class TUC_FrontEnd_ProfInfo extends GFxMoviePlayer;

Variables that hold references to the components of the flash file and that need to

be populated are shown below. These are not explained for they are, all in all, self

explanatory.

var GFxObject RootMC; // the root object of the file

var GFxObject InfoPanelMC; // the interface panel

var GFxObject Layer2; // the layer on which are placed the info fields

var GFxObject ProfImageHolder; // icon holder

/* Professor Data */

var GFxObject PName;

var GFxObject Position;

var GFxObject Department;

var GFxObject Sector;

var GFxObject Speciality;

var GFxObject Edu;

var GFxObject CV;

var GFxObject ResearchAreas;

var GFxObject Courses;

var GFxObject Phone;

var GFxObject Email;

var GFxObject OfficeID;

var String ProfessorName;

125

The class that handles loading the data from a configuration file is TUC_InfoData

and it is explained in the section x.x

var TUC_InfoData Info; // array with professors

var TUC_InfoData.Professor PData; // structure that holds data for a

specified profssor

Having this class instantiated, it is initialized by callind the function InitMovie.

InitMovie Initializes everything, takes references to the text filds that we want to

populate with the porfessor data. It accepts a string which is the name of the

specified professor.
 */

function InitMovie(String ProfName)

{

 Info = new class'TUC_InfoData';

 Start();

 Advance(0.f);

 ProfessorName = ProfName;

 RootMC = GetVariableObject("root");

 InfoPanelMC = RootMC.GetObject("InfoPanelMC");

 Layer2 = InfoPanelMC.GetObject("Layer2MC");

 ProfImageHolder = Layer2.GetObject("ProfImageHolder1");

 PName = Layer2.GetObject("ProfName");

 Position = Layer2.GetObject("Position");

 Department = Layer2.GetObject("Department");

 Sector = Layer2.GetObject("Sector");

 Speciality = Layer2.GetObject("Speciality");

 Edu = Layer2.GetObject("Education");

 CV = Layer2.GetObject("CV");

 ResearchAreas = Layer2.GetObject("ResearchAreas");

 Courses = Layer2.GetObject("Courses");

 Phone = Layer2.GetObject("Phone");

 Email = Layer2.GetObject("Email");

 OfficeID = Layer2.GetObject("OfficeID");

 PopulateProfInfo();

}

PopulateProfInfo function as as suggested by its name, populates the interface

with the correct data. It first removes the space from the string containing the

professor name. This is done because the icon names are stored without the space

between the first name and the last name. Next, the icon is attached to to the icon

holder. information for the professor, except the associated icon are stored in the

126

Info class and are accessed here by calling the FindProfessor function.

FindProfessor accepts a string which is used for searching in the array of professor

and returns a structure with the data for the specified professor. Using the data

from the returned structure, we populate the text fields of the interface with help of

the SetText function.

function PopulateProfInfo()

{

 local string ImageName;

 ImageName = ProfessorName;

 ImageName = Repl(ImageName, " ", ""); // remove the space in the name

 ProfImageHolder.AttachMovie(ImageName, "KM"); // attach the associated

icon for this prof

 PData = Info.FindProfessor(ImageName); // load the data for the

specified professor

 PName.SetText(PData.PName);

 Position.SetText(PData.Position);

 Department.SetText(PData.Department);

 Sector.SetText(PData.Sector);

 Speciality.SetText(PData.Speciality);

 Edu.SetText(PData.Edu);

 CV.SetText(PData.CV);

 ResearchAreas.SetText(PData.ResearchAreas);

 Courses.SetText(PData.Courses);

 Phone.SetText(PData.Phone);

 Email.SetText(PData.Email);

 OfficeID.SetText(PData.OfficeID);

}

As previously stated in the introduction, in order to activate the interface (to display

it on the screen) the user has to be facing the office door not further than a

predefined distance. This is achived using Triggers. Basicaly, we crated a class that

is extension of the Trigger class.

class TUC_ProfInfo extends Trigger

 placeable

 ClassGroup(TUC);

This class does not implement anything at all nor overrides the functionality defined

in the parent class. It is simply used because we want to detect it later on, as a

different class.

127

The final peace that is missing for the completion of the functionality is binding the

'Q' keybord button with an exec function. The way that this is done is by adding the

key binding into the DefaultInput.ini file:

.Bindings=(Name="Q",Command="TUC_ShowProfInfo")

The exec functions that is mapped to the 'Q' key, is implemented in the

TUC_FrontEnd_HudWrapper class. Note that the job of TUC_FrontEnd_HudWrapper

is to instantiate the HUD and to tell it to update after each frame is rendered. To

allow the function to be exectuted by the user at runtime, the exec keyword is

added in front of the function. Its purpose, however, is to show and hide the

interface.

exec function TUC_ShowProfInfo()

{

 if(ProfInfoMovie != none && ProfInfoMovie.bMovieIsOpen)

 {

 ProfInfoMovie.Close();

 ProfInfoMovie = none;

 bShowHUD = true;

 }

 else

 {

 if(ProfInfoMovie == none && ActorTooltip.bUserIsLooking)

 {

 ProfInfoMovie = new class'TUC_FrontEnd_ProfInfo';

 ProfInfoMovie.InitMovie(ActorTag);

 ProfInfoMovie.SetViewScaleMode(SM_NoScale);

 bShowHUD = false;

 }

 }

}

5.8 Path Finding

The path finding functionality provides navigational aid for the application users and

it assists them in locating professors' offices, classrooms, secretary office, cafeteria

and other staff facilities.

To activate this functionality, the user has to choose the option "Find Path" in the

Main Menu. After pressing that button, the "Find Path" menu page opens. This two

main componetns of this menu page are one dropdown menu from which the user

128

can chose destination location and a button ("Find Path") to start the functionallity.

At this screen the user can also use a back button for returning to the main menu

or a exit button to completly exit the menu. When pressing the "Find Path" button,

the menu page is closed and a 3D arrow is displayed in the virtual scene in front of

the user. While navigating through the virtual building the arrow is showing the

selected path by rotating left and right, and the user has to follow the arrow in

order to reach the desired destination. While the player is in this "searching" state,

a text is being displayed on the HUD informing the player of the current player’s

state. When the user reaches the destination the arrow disappears (is destroyed)

and sound is played.

Figure 5.13. The user interface of the Find Path functionallity. In order to start path finding

the user has to select one of the posible dropdown menu entries and then press the "Find

Path" button

129

Figure 5.14. The green arow shows the way to the selected destination location

5.8.1 Setting Up the Navigation Network

The navigation in this application is based on a pre-generated path network. This is

done in the virtual scene using the Unreal Editor. First and foremost, PathNodes (a

subclass of NavigationPoint) were placed in the virtual scene on surfaces which

the player can walk on. For the PathNodes to connect, they were placed less

than 1200 Unreal units apart. The goal was to cover every area of the level

excluding the offices, classrooms and the elevators. After placing the PathNodes,

connections between the NavigationPoints are built from the Build menu by

selecting Rebuild All option. Portion of the navigation network that was created for

this application is shown in the next figure:

Figure 5.15. The Navigation Network consist of interconnected PathNodes (apples)

130

The implementation of this functionality is described below in details.

The menu page from which the user chooses destination location is created in

Flash. The interface is shown in Figure 5.12. From the figure it can be seen that

interface contains two labels, three buttons and one dropdown menu. All of the

buttons are creted using the CLIK DefaultButton component. After adding the

buttons on the stage they are skinned in order to take the desired shape. The

dropdown menu is also a CLIK component that constitutes of three different

subcomponents. These are: ListItemRender, ScrollingList and a ScrollingBar.

Clicking on the dropdown menu component opens a list that contains the elements

to be selected. The menu list is populated with professor names, classrooms and

labs inside the associated Unrealscript class.

The Unrealscript classes that implement this functionality are:

- TUC_NavArrow

- TUC_NavTargetNode

- TUC_FrontEnd_ShowPathMenu

- TUCPlayerController

TUC_NavArrow

Instances of this class represent the arrow that shows the path. In the default

properties of the class first we define Light Environments which allow a non-static

actor to be lighted by static lights. Then the code defines a static mesh which

represents the arrow. The static mesh is loaded from the library and the light

environment is assigned to it. Eventually, the static mesh is added to the

components of the class instance. The Implementation can be seen in the following

code chunk.

class TUC_NavArrow extends Actor;

DefaultProperties

{

 Begin Object Class=DynamicLightEnvironmentComponent

Name=MyLightEnvironment

 bEnabled=TRUE

 End Object

 Components.Add(MyLightEnvironment)

 Begin Object class=StaticMeshComponent name=NavArrowMesh

 StaticMesh=StaticMesh'TUC_Misc.SM.SM_TUC_Arrow_01'

 LightEnvironment=MyLightEnvironment

 End Object

 CollisionComponent=NavArrowMesh

131

 CollisionType=COLLIDE_TouchAll

 Components.Add(NavArrowMesh)

}

5.8.2 Target Nodes

This class TUC_NavTargetNode represents the target object of the FindPath

functionality. It is placed in the world at different locations that represent target

objects. These target objects are in fact professors’ offices, secretary office,

classrooms etc. They are used in the FindPathToward algorithm as target. In the

UDK editor, names are given for the actors in the tag field. Tags are compared with

the user input string in TUC_FrontEnd_ShowPathMenu menu page when the user

enters destination string.

The class extends the Trigger class, it is placeable and put in TUC group for better

organization and finding in the editor.

class TUC_NavTargetNode extends Trigger

 placeable

 ClassGroup(TUC);

In order to implement the wanted behavior, the well known Trigger's Actor

events and functions are overridden. To be more precise, these are Touch and

Untouch event and the UsedBy function. When the user is in the "Path Finding"

state and navigates in the world he/she eventually collides with this Node. When

the collision ocures, the Touch function is fired. In the Touch event the parent

implementation of the function is called first. Then the user checks if this NavNode is

the target node that is found in the controller class. If this is true the flag

bNavFindPath is set to false because the destination is reached and the finding path

has to be stopped. At the same time, the arrow is destroyed, sound is played

announcing that the destination is reached and the target object is set to none for

the next search. At the same time the string "Destination Reached" is also printed

on the HUD.

event Touch(Actor Other, PrimitiveComponent OtherComp, Vector HitLocation,

Vector HitNormal)

{

 super.Touch(Other, OtherComp, HitLocation, HitNormal);

 if(Pawn(Other) != none)

 {

 if(TUCPlayerController(Pawn(Other).Controller).NavTargetObject==self)

 {

132

 TUCPlayerController(Pawn(Other).Controller).bNavFindPath = false;

 TUCPlayerController(Pawn(Other).Controller).NavArrow.Destroy();

 PlaySound(SoundCue'TUC_Sounds.Sounds.S_NavDestinationReached');

 TUC_FrontEnd_HudWrapper(WorldInfo.GetALocalPlayerController().myHUD).Hu

 dMovie.InfoLabel.SetText("Destination Reached");

 TUCPlayerController(Pawn(Other).Controller).NavTargetObject =

none;

 }

 IsInInteractionRange = true;

 }

}

When the Player exits the Trigger, Untouch event is fired. In this event the text

from the HUD that informs the player that he/she has reached the destination is

removed.

event Untouch(Actor Other)

{

 super.Untouch(Other);

 if(Pawn(Other) != none)

 {

 TUC_FrontEnd_HudWrapper(WorldInfo.GetALocalPlayerController().myHUD).Hu

 dMovie.InfoLabel.SetText("");

 IsInInteractionRange = false;

 }

}

At the end of the class, in the default properties, the sprite of the Trigger is scaled

to 0.2 because it is too big and annoying in the editor, and the radius is increased

to 80.0 to meet the requirements.

DefaultProperties

{

 Begin Object Name=Sprite

 Scale=0.2

 End Object

 Begin Object NAME=CollisionCylinder

 CollisionRadius=+0080.000000

 End Object

}

5.8.3 Connection of the UI

The TUC_FrontEnd_ShowPathMenu class is a wrapper class for the

TUC_ShowPathMenu Flash file.

133

class TUC_FrontEnd_ShowPathMenu extends GFxMoviePlayer

 dependson(TUC_InfoData);

The dependson modifier tells the compiler to process the TUC_InfoData class first

because this class depends on a struct declared in that class. TUC_InfoData holds

data for professors, classrooms and labs.

Four global variables of GFxClickWidget type are defined at the beginning of the

class. These are: BtnFindPath, BtnBack, BtnExitMainMenu, DropdownMenu. They are

used for holding references to the CLIK components in the flash file. An Unrealscript

GFxClikWidget is like a wrapper for an ActionScript CLIK component. The

GFxClikWidget class extends GFxObject, which is a wrapper for the ActionScript

Object class (the root class for all other classes). Buttons' functionality is easily

understood frome their names.

var GFxClikWidget BtnFindPath, BtnBack, BtnExitMainMenu, DropdownMenu;

Next step is write a function which is called after instances of this class are created.

The initialization is performed in the Init function. The flash movie is initialized and

stared by calling the Start function and the play head is placed to the first frame by

calling the Advanced function.

Then, references to the root and cursor variables from the swf are grabbed and

assigned to RootMC and CursorMC GFxObject variables.

function Init(optional LocalPlayer player)

{

 Start();

 Advance(0);

 SetViewScaleMode(SM_NoScale);

 RootMC = GetVariableObject("_root");

 CursorMC = RootMC.GetObject("cursor");

 SetCursorPosition();

}

The movie's buttons and dropdown menu are initialized using the

WidgetInitialized mechanism. This event is fired when the CLIK components in

the associated Flash file call this function after they are done with all the

ActionScript initialization. This function simply checks the name of the ActionScript

CLIK widget and uses a switch statement to assign it to the correct GFxClikWidget

Unrealscript object after which an event listener function is added to it. These

functions are fired when the buttons are clicked.

134

event bool WidgetInitialized(name WidgetName, name WidgetPath, GFxObject

Widget)

{

 local bool bWasHandled;

 bWasHandled = false;

 switch(WidgetName)

 {

 case ('btnFindPath'):

 BtnFindPath = GFxClikWidget(Widget);

 BtnFindPath.AddEventListener('CLIK_click', FindPath);

 bWasHandled = true;

 break;

 case ('dm'):

 DropdownMenu = GFxClikWidget(Widget);

 PopulateDropdownMenu();

 bWasHandled = true;

 break;

 case ('btnBack'):

 BtnBack = GFxClikWidget(Widget);

 BtnBack.AddEventListener('CLIK_click', Back);

 bWasHandled = true;

 break;

 case ('btnExitMainMenu'):

 BtnExitMainMenu = GFxClikWidget(Widget);

 BtnExitMainMenu.AddEventListener('CLIK_click',

ExitMainMenu);

 bWasHandled = true;

 break;

 default:

 break;

 }

 return bWasHandled;

}

Furthermore, the event listener functions that are attached to the buttons are

described next.

When the user presses the back button (green arrow), the Back function is fired.

This function returns the user to the main menu page by calling the LoadNextMenu

(implemented in the FrontEnd class) with the TUC_FrontEnd_MainMenu class as

parameter.

function Back(EventData data)

{

 LoadNextMenu(data, class'TUC_FrontEnd_MainMenu');

}

135

When the user presses the exit main menu button (the red x) the function closes

the flash movie and tells the TUCPlayerController to take the needed actions.

function ExitMainMenu(EventData data)

{

 Close();

 TUCPlayerController(GetPC()).MenuManager(); // PC will handle

}

After the dropdown menu is initialized, it is populated with destination locations.

These locations are professor offices, clasrooms and labs. It was seen above that

this data is found in instances of the TUC_InfoData class. The CLIK components are

populated using the DataProvider object. DataProvider is basicaly a array of

strings. So, first the DataProvider object is created and then populated in a foor

loop. After that, the DataProvider is added to the dropdown menu. These step are

shown next.

function PopulateDropdownMenu()

{

 local byte i;

 local GFxObject DataProvider;

 Info = new class'TUC_InfoData';

 DataProvider = CreateObject("scaleform.clik.data.DataProvider");

 for (i = 0; i < Info.Professors.Length; i++)

 {

 DataProvider.SetElementString(i, Info.Professors[i].PName);

 }

 DropdownMenu.SetObject("dataProvider", DataProvider);

}

function FindPath(EventData data)

{

 local int i;

 TUCPlayerController(GetPC()).btnFindPathPressed_FE_SPM = true;

 i = DropdownMenu.GetInt("selectedIndex");

 TUCPlayerController(GetPC()).NavTargetString=Info.Professors[i].PName;

 Close();

 TUCPlayerController(GetPC()).MenuManager(); // PC will handle

}

The last step in setting up the CLIK widget initialization is to add each

GFxClikWidget variable to the WidgetBindings array. This is done in the default

136

properties of the class. This is also the place where the class is associated with the

flash file.

DefaultProperties

{

MovieInfo=SwfMovie'TUCProjectFrontEnd.FrontEnd.TUC_ShowPathMenu'

WidgetBindings.Add((WidgetName="textInput",WidgetClass=class'GFxCLIKWidget'))

WidgetBindings.Add((WidgetName="btnSearch",WidgetClass=class'GFxCLIKWidget'))

WidgetBindings.Add((WidgetName="btnCancel",WidgetClass=class'GFxCLIKWidget'))

}

TUCPlayerController

This is the class where, among many other things, navigation logic is implemented.

In this paragraph, the code which is responsible for the FindPath functionality is

thoroughly explained.

Variables of the above classes are defined at the beginning of the class among

many other data types. These are:

var TUC_NavArrow NavArrow - which represents the 3D arrow that shows the path.

var String NavTargetString – Holds the user input in

TUC_FrontEnd_ShowPathMenu class.

var TUC_NavTargetNode NavTargetObject - holds the target object of our search

var bool bBtnSearchPressed_FE_SPM – flag

var bool bNavFindPath - flag

var Vector NavArrowLocation – Vector that holds the location of the arrow

When the user enters a search string and presses the “Search” button in FindPath

menu page, the program flow continues to the MenuMenager function as explained

above. This function checks if the bBtnSearchPressed_FE_SPM flag is set to true which

means that the “Search” button is pressed. If this flag is set to true, the function

does the following steps:

- It finds the target object and assigns it to the NavTargetObject variable so

that we have reference.

- Next, the arrow is destroyed so that we do not have two arrows if the

user was previously searching.

- Next, the arrow is spawned and attached to the Pawn.

- The flag bNavFindPath is set to true. This flag is used in the search

algorithm.

- “…Finding Path” string is displayed on the screen.

137

if(bBtnSearchPressed_FE_SPM)

{

 bBtnSearchPressed_FE_SPM = false;

 NavTargetObject = NavFindTarget(NavTargetString);

 NavArrow.Destroy(); // we don't want two arrows if the user

 makes another search without reaching the first destination

 SpawnAndAttachNavArrow();

 bNavFindPath = true;

 TUC_FrontEnd_HudWrapper(myHUD).HudMovie.InfoLabel.SetText("...Finding

 Path");

 GotoState('PlayerWalking');

}

The two functions (NavFindTarget and SpawnAndAttachNavArrow) that are seen in the

above code chunk are described below.

NavFindTarget iterates through all TUC_NavTargetNode Actors placed in the virtual

scene to find the target object and return it to the caller. It accepts string

parameter which is the string that the user enteres and represents the target of the

search. A temporal NavTargetNode variable is created inside the function body. Then

the function iterates through all the actors TUC_NavTargetNode Actors placed in the

virtual scene and when the tag of the current node equals the Target string the

function returns that node to the caller.

function TUC_NavTargetNode NavFindTarget(String Target)

{

 local TUC_NavTargetNode t;

 foreach AllActors(class 'TUC_NavTargetNode', t)

 {

 if(t.Tag == Name(Target))

 {

 return t;

 break;

 }

 }

 return t;

}

Spawning and Attaching the Arrow

The Spawning of the arrow in the virtual environment and Attaching it to the user is

handled by the SpawnAndAttachNavArrow function. The navigation arrow is a subclass

of Actor. That means that the Spawn method had to be used in order to create the

object instead of using the new keyword. The Spawn function can only be called from

138

a non-static function and can only create Actors of class that are specified in its

parameter list in contrast with the new keyword which is used to create new object

that are not a subclass of Actor. The returned object from the Spawn function is

stored in the NavArrow variable.

We want the arrow to be set in front of the user and that is moving together with

him. The relative (to the Pawn) location of the arrow is stored in the

NavArrowLocation vector. The arrow is then attached to the pawn using the SetBase

function after which the location is set using the SetRelativeLocation function.

function SpawnAndAttachNavArrow()

{

 /* spawn the navigation arrow that will show us the path to the

objective */

 NavArrow = Spawn(class'TUCProject.TUC_NavArrow', self);

 /* set the location of the arrow */

 NavArrowLocation.Z = 40;

 NavArrowLocation.X = 90;

 NavArrowLocation.Y = 0;

 if (NavArrow != none)

 {

 NavArrow.SetBase(Pawn); // attach it to the pawn

 NavArrow.SetRelativeLocation(NavArrowLocation);

 }

}

The Actuall path finding

The actual path finding logic is implemented in the FindPath function. It was seen

that when the level is built, the NavigationPoints placed in the virtual environment

generate Navigation Network between them which has data used by path finding

which allows the player to find the path from its position to the goal. The route from

the starting position to the goal is created by the built-in native function called

FindPathToward. This function executes a traversal of the navigation network

generating a route from the Player's position to the passed goal, placing the

generated route (An ordered list of NavigationPoints) in the RouteCache array of the

Controller. This finction is called on every user's movement when the path find

functionality is activated. The arrow direction (orientation) is calculated by, first,

subtructing its position from the position of the next NavigationPoint and then

using the resulting vector in a rotator that rotates the arrow to face the next

NavigationPoint.

function FindPath()

{

139

 local Vector ArrowDirection;

 local Rotator ArrowRotation;

 local NavigationPoint tempNavPoint;

 local int Length;

 local float Distance;

 /* Create the Path - Searches the navigation network for a path to the

 node closest to the given actor */

 FindPathToward(NavTargetObject);

 Length = RouteCache.Length;

 if(Length != 0)

 {

 tempNavPoint = RouteCache[0];

 Distance = VSize(Pawn.Location - tempNavPoint.Location);

 if((Length >= 2) && (Distance < 160))

 {

 tempNavPoint = RouteCache[1];

 ArrowDirection = tempNavPoint.Location - NavArrow.Location;

 ArrowRotation = Rotator(ArrowDirection);

 ArrowRotation.Pitch = 0;

 }

 else if ((Length == 1) && (Distance <160))

 {

 ArrowDirection = NavTargetObject.Location -

 NavArrow.Location;

 ArrowRotation = Rotator(ArrowDirection);

 ArrowRotation.Pitch = 0;

 }

 else

 {

 tempNavPoint = RouteCache[0];

 ArrowDirection = tempNavPoint.Location - NavArrow.Location;

 ArrowRotation = Rotator(ArrowDirection);

 ArrowRotation.Pitch = 0;

 }

 }

 else

 {

 ArrowDirection = NavTargetObject.Location - NavArrow.Location;

 ArrowRotation = Rotator(ArrowDirection);

 ArrowRotation.Pitch = 0;

 }

 NavArrow.SetRotation(ArrowRotation);

}

140

5.9 Interactive Map

The Interactive Map functionality allows the user to see VE's relative information in

a map-based manner. The interface itself is implemented in Flash and it is accessed

from the main menu. The interface consists of several parts. These are: Buttons for

displaying one of the three floors, a Main area where a map with buttons is shown,

buttons for closing the interface and returning to the main menu, next, there is a

legend at the bottom right corner, and last, at the left bottom corner there is a

panel for displaying information when the user presses one of the buttons on the

map. Figure 5.16 presents the Interactive map.

Figure 5.16. Interactive Map

The Interactive Map is accessed from the application's main menu. When the "Show

Interactive Map" is selected from the menu, the program starts playing the

associated flash file. The starting scene of the movie includes the name of the

functionality, three buttons for showing the three floors and a legend showing the

meaning of the symbols which are placed on the map (when activated). All of these

movie clips and buttons are static objects that are placed in the flash scene. Figure

5.17 shows the flash scene loaded in the flash editor. The layers created for better

organizing the work can be seen in the timeline window. The Buttons layer holds

141

the buttons for canceling the menu option and returning to the main menu (the

green arrow and the red x), and three buttons used for dynamically loading one of

the three floors. The BG layer is used for the dark transparent background, the

Main layer is used for the map that is displayed in the center of the scene, when

clicking on one of the related buttons, and last, the Info layer holds the legend

panel (the green panel at the bottom).

Figure 5.17. The IM flash scene loaded in Flash Editor

On the right side, in the library window, are shown all the assets used in this flash

file. The assets are buttons, movie clips and images.

With the exception of the static content shown in Figure 5.17, the scene includes

some other movie clips which are added to the scene using ActionScript. These

movie clips represent the interactive map and the info panels. There are three

different info panels. One is used for showing information for a professor, one for

the classrooms and one for the labs.

Figure 5.18. Info Panels

142

The associated ActionScript class is called TUC_InteractiveMap. The class first

declares the movie clips that have to be displayed dinamically.

/* Levels */

public var l0:Level0 = new Level0(); // Level 0

public var l1:Level1 = new Level1(); // Level 1

public var l2:Level2 = new Level2(); // Level 1

/* Info Panels */

public var OfficeIP:OfficeInfoPanel = new OfficeInfoPanel();

public var ClassroomIP:ClassroomInfoPanel = new ClassroomInfoPanel();

public var LabIP:LabInfoPanel = new LabInfoPanel();

In the class constructor, three functions are called. These function have initializing

character and are used for populating the scene with the maps and info panels to

set their location inside the scene and last to hide them. The further showing and

hiding is implemented in Unrealscript.

public function TUC_InteractiveMap() {

 PopulateMap();

 SetLocation();

 HideMovieClips();

}

The ActionScript built-in function addChild allows adding movie clips to the scene. It

is used in our PopulateMap function to add the maps and the info panels to the

scene as follows:

/** Populate the map with diff movie clips */

function PopulateMap() {

 /* attach Levels */

 addChild(l0);

 addChild(l1);

 addChild(l2);

 /* attach info panels */

 addChild(OfficeIP);

 addChild(ClassroomIP);

 addChild(LabIP);

 addChild(ProfDeatailedInfoMC);

}

In the function SetLocatation, the location of the panels is defined using their x and

y coordinates.

/** Set the location of the movie clips */

143

function SetLocation() {

 /*

 * Set Levels

 */

 /* Level 0 */

 l0.x = LEVEL_XCOORD;

 l0.y = LEVEL_YCOORD;

 /* Level 1 */

 l1.x = LEVEL_XCOORD;

 l1.y = LEVEL_YCOORD;

 /* Level 2 */

 l2.x = LEVEL_XCOORD;

 l2.y = LEVEL_YCOORD;

 /*

 * Set Info Panels

 */

 OfficeIP.x = INFOPANEL_XCOORD;

 OfficeIP.y = INFOPANEL_YCOORD;

 ClassroomIP.x = INFOPANEL_XCOORD;

 ClassroomIP.y = INFOPANEL_YCOORD;

 LabIP.x = INFOPANEL_XCOORD;

 LabIP.y = INFOPANEL_YCOORD;

 ProfDeatailedInfoMC.x = 846.9;

 ProfDeatailedInfoMC.y = 455.25;

}

Next, all of the movie clips are hidden by setting their visible property to false.

/**

 * Hide the movie clips

 * we will display them in UnrealScript

 */

function HideMovieClips() {

 l0.visible = false;

 l1.visible = false;

 l2.visible = false;

 OfficeIP.visible = false;

 ClassroomIP.visible = false;

 LabIP.visible = false;

 ProfDeatailedInfoMC.visible = false;

}

On the top of the map that is currently displayed, there are placed some 2D

graphics. The blue ones are only images that show information on the location of

the coffee shops, the stairs, the lifts and the toilets. The other graphics are not only

144

images but buttons at the same time. These buttons are used for showing

information about the professors' office, the labs and classrooms, in a panel placed

at the right bottom corner (the purple panels).

The professors' office panel shows the name of the professor, his/her department

and the office number. The panel also includes a button for showing additional

information for the relevant professor, and a button to teleport the user directly to

the professor's office.

The classroom panel shows the name of the classroom, the number of the seats

and a teleport button.

The Lab panel shows the name of the lab, the staff and a teleport button.

The embedding of the flash file, the population of the info panels, as well as their

showing and hiding, is implemented in the associated UnrealScript class. The class

declaration is as follows:

class TUC_FrontEnd_InteractiveMap extends TUC_FrontEnd

 dependson(TUCPlayerController);

This class is quite large, and for that reason, only the most important lines of code

are shown in this text. It can be seen from the class declaration that the class

extends the TUC_FrontEnd class because it is part of the menu. The dependson

145

modifier tells the compiler to process the class in the parenthesis first, because this

class depends on an enum or struct declared in that other class. In our case the

TUC_FrontEnd_InteractiveMap class depends on TUCPlayerController class.

That is done because the data for the professors, the labs and the classrooms is

declared in a variable found in the TUCPlayerController class.

After instanciating this class the Init function has to be called. This function

initializes and starts playing the movie. Moreover, it takes references to all the

movie clips that have to be accessed from Unrealscript. A reference to the data

structure that holds data for professors, labs and classrooms is also captured here.

function Init(optional LocalPlayer player)

{

 Start();

 Advance(0.f);

 RootMC = GetVariableObject("_root");

 CursorMC = RootMC.GetObject("cursor");

 SetCursorPosition();

 Level0 = RootMC.GetObject("l0"); // reference to the level 0

 Level1 = RootMC.GetObject("l1"); // reference to the level 1

 Level2 = RootMC.GetObject("l2"); // reference to the level 2

 OfficeInfoPanel = RootMC.GetObject("OfficeIP");

 LabInfoPanel = RootMC.GetObject("LabIP");

 ClassroomInfoPanel = RootMC.GetObject("ClassroomIP");

 InitProfDetailedInfo();

 Info = TUCPlayerController(GetPC()).Info;

}

The functions used for populating and displaying panels with data for professors,

labs and classrooms work in a similar manner, so therefore only the function for

displaying the professor info panel is presented here.

It was seen above that all of the office buttons were assigned the same event

listener function. This function is called ShowProfessorInfoPanel and it is fired every

time one of the office buttons is pressed. In Flash those buttons were given

instance name using professor names. The ShowProfessorInfoPanel function first

displays the panel for the professors and it populates it with data which is loaded in

structure, in an instance of the Info class.

function ShowProfessorInfoPanel(EventData data)

{

 local GFxObject Button;

146

 local string ButtonName;

 local string ProfID;

 ShowInfoPanel("Professor");

 Button = data._this.GetObject("target");

 ButtonName = Button.GetString("name");

 ProfID = GetRightMost(ButtonName);

 PData = Info.FindProfessor(ProfID);

 OfficeInfoPanel.GetObject("ProfInfoPanel_ImageHolder").AttachMovie(Prof

ID, "KM"); // attach prof image

 OfficeInfoPanel.GetObject("ProfInfoPanel_ProfessorNameLabel").SetText(P

Data.PName); // display prof name

 OfficeInfoPanel.GetObject("ProfInfoPanel_OfficeIDLabel").SetText(PData.

OfficeID); // display office id

}

When the user presses the teleport button, the program calls the PTeleport

function. The actual teleporting of the user is done from the Controller class

because from there we have reference to the Pawn - the body of the user in the VE.

The teleporting basically consists of changing the user's location. The new location

is retreived from the PData structure.

function PTeleport(EventData data)

{

 TUCPlayerController(GetPC()).Teleport(PData.Location);

 CloseInteractiveMap();

}

147

5.10 Reading Sensors Data From a Web Server

Data from a Temperature Sensor and a Switch Sensor is directly streamed in the

application at runtime. The sensor is used for measuring current room temperature

and the data from the switch is used as it was sensor for detecting presence - if a

professor is at his/her office. The set up of these sensors, as well as sending their

data to a web server, was done by the Telecommunication lab of TUC (should i

include names- no names, good as it is). The data sent to the web server, as it can

be viewed from a browser, is shown in the figure below:

Figure 5.19. The data from the sensors

The data from the sensors is sent to Arduino Ethernet is a microcontroller. Arduino

can sense the environment by receiving input from a variety of sensors and can

affect its surroundings by controlling lights, motors, and other actuators. It has 14

digital input/output pins, 6 analog inputs, a 16 MHz crystal oscillator, a RJ45

connection, a power jack, an ICSP header, and a reset button.

Figure 5.20. Arduino Ethernet board front view with optional PoE module

148

The Arduino Ethernet has a number of facilities for communicating with a computer,

another Arduino, or other microcontrollers. A SoftwareSerial library allows for serial

communication on any of the Uno's digital pins. Eventually, the data from the

sensors is written to web server from where it is retreived.

The data from the temperature sensor is presented on display panels which are

placed in front of the classroom entrances. In view of the demonstrative character

of this functionality, the same readings are presented to all of the display panels.

However, the other information presented on the panel is different for every panel

and it is loaded and presented dynamically.

Figure 5.21. Display Panel: deactivated (left), activated(right)

The data from the switches is presented in three different ways. First, in the display

panels, the data is used for showing if the classroom is occupied or not. Second,

the data is used in the Interactive Map functionality that is described above. In the

Interactive Map, specifically in the Office Info panel, the data from the switch is

used for telling if a professor is at his/her office at the moment. Third, when a

professor is at his/her office, a green light which is placed in front of the office is

turned on.

149

5.10.1 Display Panels

The display panels are panels that are placed in front of the classroom entrances

and are used for presenting information about the classroom, such as its id,

number of seats, occupancy status and room temperature. The UI is implemented

in Flash as all other interfaces. However, the difference is that it is not displayed on

the user's screen, but instead it is displayed on a texture placed on a static mesh

placed in the VE. A display panel is shown in Figure. The classroom id and the

number of seats are loaded from an external configuration file. The data for the

temperature and the occupancy is sent from sensors to a web server and then

streamed dynamically in to the application.

The wrapper class for the swf file representing the UI is described next.

TUC_FrontEnd_SensorPanel

As allways this class is an extension of GFxMoviePlayer:

class TUC_FrontEnd_SensorPanel extends GFxMoviePlayer;

The variables that hold references to the UI's text labels that need to be populated

are declared as:

var GFxObject RootMC, Title, NumOfSeats, IsItOcupied, CurrentTemperature;

Reference to the classroom loaded from a configuration file:

var TUC_InfoData.Classroom CData;

The Init function has to be called after instance of this class is created. This function

initializes the movie, gets the movie started, and it also captures the references to

the components of the swf file.

function Init(optional LocalPlayer player)

{

 Start();

 Advance(0.f);

 SetViewScaleMode(SM_ExactFit);

 RootMC = GetVariableObject("_root");

 /* References to the texfields */

 Title = RootMC.GetObject("title");

 NumOfSeats = RootMC.GetObject("numOfSeats");

150

 IsItOcupied = RootMC.GetObject("isItOcupied");

 CurrentTemperature = RootMC.GetObject("currentTemperature");

}

The UI's textfields are populated using the below setter functions:

function SetTitle(string Tag)

{

 Title.SetText("Classroom: "$Tag);

}

The information about the number of seats is taken from the info object found in

our Player Controller class. The info object contains all the information about

classrooms, professors and labs.

function SetNumOfSeats(String Tag)

{

 CData = TUCPlayerController(GetPC()).Info.FindClassroom(Tag);

 NumOfSeats.SetText(CData.NumOfSeats);

}

The data streamed from the web server is held in an instance of the TUC_TCPLink

class declared in the PlayerController class. This data is accessed by casting the

player controller which is returned from the GetPC function to our

TUCPlayerController and. The next two classes show how it is done:

function SetIsItOcupied()

{

 if(TUCPlayerController(GetPC()).newLink.Door == "o")

 IsItOcupied.SetText("Yes");

 else

 IsItOcupied.SetText("No");

}

function SetCurrentTemperature()

{

 CurrentTemperature.SetText(TUCPlayerController(GetPC()).newLink.Current

 Temperature);

}

In the default properties of the class reference to the associated swf file is taken, as

well as reference to the texture used for projecting the movie.

DefaultProperties

{

 RenderTexture=TextureRenderTarget2D'TUC_SensorPanel.RT_SensorPanel'

 MovieInfo=SwfMovie'TUCProjectFrontEnd.FrontEnd.TUC_SensorPanel'

}

151

TUC_SensorPanel

This class defines the static mesh used as a monitor on which the data is presented,

as well as a Trigger that is used for activating and deactivating the display panel.

In order to sense presence, the display panel is a subclass of Trigger.

class TUC_SensorPanel extends Trigger

 placeable

 ClassGroup(TUC);

The reference to the static mesh component used as display panel (modified in the
editor) is declared as:

var() StaticMeshComponent Panel;

The variable below is used for creating the movie - the interface.

var TUC_FrontEnd_SensorPanel SensorPanelMovie;

When the user enters the proximity of the display panel, the Touch event is fired.

What is done here is that the material of the panel is changed to the material

(M_SensorPanel) used for projecting the movie. The material is created in the

UDK's Content Browser and it uses RenderTexture as basic texture. It was seen

above that the Movie is projected to exactly that texture. Consequently, after

applying the material to the panel, the movie will be projected on the panel and not
on the screen. The panel has no material by default (actually, it has assigned black

material in the material editor. After that, the movie is created and started by
calling the OpenSensorPanelMovie function.

event Touch(Actor Other, PrimitiveComponent OtherComp, Vector HitLocation,

Vector HitNormal)

{

 super.Touch(Other, OtherComp, HitLocation, HitNormal);

 if(Pawn(Other) != none)

 {

 Panel.SetMaterial(0, Material'TUC_SensorPanel.M_SensorPanel');

 OpenSensorPanelMovie(string(Tag));

 }

}

When the user leaves the Trigger's area, the Untouch event is fired. The code of

this event calls the CloseSensorPanelMovie used for closing the movie and then

changes the material of the panel. The new material is set to none, and this will
cause to use its default black color material.

event Untouch(Actor Other)

{

152

 super.Untouch(Other);

 if(Pawn(Other) != none)

 {

 CloseSensorPanelMovie();

 Panel.SetMaterial(0, none);

 }

}

Instances of the UI movie are created in the following function:

function OpenSensorPanelMovie(string ClassroomID)

{

 SensorPanelMovie = new class'TUC_FrontEnd_SensorPanel';

 SensorPanelMovie.Init();

 SensorPanelMovie.PopulateMovie(ClassroomID);

 SetTimer(1, true, 'SetSensorsData', SensorPanelMovie);

}

This function, except creating, it also initializes the new movie,then populates it and
it sets a loop timer executed every second, which calls a function that populates the
sensor textfields of the UI.

The movie is closed by the following function:

function CloseSensorPanelMovie()

{

 SensorPanelMovie.Close();

 SensorPanelMovie = none;

 ClearTimer('SetSensorsData', SensorPanelMovie);

}

The static mesh component is defined in the default properties.

DefaultProperties

{

 Components.Remove(Sprite)

 begin object class=StaticMeshComponent name=SM

 StaticMesh=StaticMesh'TUC_SensorPanel.SM.SM_DisplayPanel_01'

 Scale3D=(X=0.025,Y=0.25,Z=0.125)

 end object

 Components.add(SM)

 Panel=SM

 bHidden=false

}

5.10.2 Connecting to a web server

153

The data from the sensors is retreived from a web server. In order to connect to a

web server, one can subclass the engine's TcpLink class which is used for

establishing internet tcp/ip connection. The subclass that we wrote uses native

functions to open and close a connection to a web server, and it also sends a http

request message to the web server to read the data stored there.

class TUC_TCPLink extends TcpLink

 config(TUC);

This class constitutes most of event functions that are fired when some event, such

as when established connection, occurs.

The domain name of the server or its ip address is held in the Host variable. The

port is also needed by the class and it is held in the HostPort. These two variables

are declared with the config modifier, which means that their values are set in a

configuration file. That is done because we do not want to compile the project if

their values have to be changed.

/** domain name or ip */

var config string Host;

/** remote port */

var config int HostPort;

The http requests that are sent to the web server contain a lot newline ('\r''\n' =

carriage return + line feed) characters. The newline character is assigned to the

CRLF variable.

/** newline: carriage return + line feed */

var string CRLF;

The data from the sensors is stored in the following variables:

/** data from the temperature sensor */

var string CurrentTemperature;

/** data from the switch sensor */

var string Door;

When a new instance of this class is created, the PostBeginPlay event is fired. In

this event, the newline is defined and the receiving mode is set to MODE_Line. In

MODE_Line the ReceivedLine event is executed. The line argument contains a

single line, without the line terminator. The other two possible modes are

MODE_Text and MODE_Binary.

154

event PostBeginPlay()

{

 super.PostBeginPlay();

 CRLF = chr(13)$chr(10);

 LinkMode = MODE_Line;

}

After an object of this class is created, in order to connect to the web server, the

Connect function has to be called.

function Connect()

{

 // resolve the hostname

 Resolve(Host);

}

The Resolve function is native function that resolves a domain name or dotted ip.

It is a nonblocking operation and triggers the Resolved event if the resolving is

successful otherwise the ResolveFail event.

Upon success, the host port is set and tries are given to open connection using the

ip address that is created for the specified host.

event Resolved(IpAddr Addr)

{

 Addr.Port = HostPort;

 BindPort();

 Open(Addr);

}

When the connection opens, the Opened event is triggered. In this event a super

simple http request is written to communicate with the server. The request

message consists of a request line using GET method. The GET method retreives

whatever information is identified by the Resource path. The domain name of the

server is defined in the Host header. The last command is to close the connection.

event Opened()

{

 // The HTTP request

 SendText("GET / HTTP/1.1"$CRLF);

 SendText("Host: "$Host$CRLF);

 SendText("Connection: Close"$CRLF);

 SendText(CRLF); // end of request

}

155

When a response message is sent by the server, the ReceivedLine event is fired.

The string parameter contains a line of text from which the newline character is

removed. For every http request that is sent, 10 lines of text which constitute the

response, are received. The first 7 lines and the last one are html tags, therefore

they can be ignored. The 8th line contains the data from the switch sensor and it

goes like this: Door = open
. It can be observed that by using the 7th

character only it can be determined if the door is open or closed. The Mid was used

to extract this character. The Mid function generates a substring of S by starting at

character i and copying j characters. Using this function, the temperature from the

8th line is also extracted.

event ReceivedLine(string L)

{

 if(counter == 8)

 {

 Door = Mid(L, 7, 1);

 ToggleLight(Door);

 }

 else if(counter == 9)

 {

 CurrentTemperature = Mid(L, 15, 4);

 }

 else if(counter >10)

 {

 counter = 1;

 }

 counter++;

}

function ToggleLight(String s)

{

 local TUC_PresenceDetectionLight l;

 foreach AllActors(class'TUC_PresenceDetectionLight', l)

 {

 if(s == "o")

 l.TurnOn();

 else

 l.TurnOn();

 }

}

defaultproperties

{

156

 counter=1

}

6 Conclusions and Future Work

Since the first game was published in 1962, video games have become so popular

that over the past 30 years, they have become an integral part of our culture, and

eventually led to more sophisticated technology for their further development. Their

popularity was a major cause for continuously increasing budgets in that sector and

consequently for the development of sophisticated technology for creating these

games. This has resulted in game engines that support development of real-time

rendering, large virtual environments, global illumination, dynamic shadows,

dynamic lighting, sophisticated audio and networking.

This thesis presents an interactive 3D application which is developed using the

state-of-art game engine, namely, Unreal Development Kit (UDK). The application

simulates a real-time large, smart and multi-purpose virtual environment (the

science building of TUC). The VE's geometry is created using the UDK's native

geometry objects and static meshes that was created externally with the help of the

modeling tool Autodesk 3DS Max. The most important factor in the final appearance

of the 3D virtual environment includes the materials created in UDK. These

materials include textures that are created from the photographs are taken and

also downloaded from texture repositories. All of the functionality that is created

was implemented using the scripting language of UDK - the Unrealscript. The

provided features are: path finding, mini map, reading data from external sensors

via tcp link, interactive map and many more. The User Interfaces (UIs) are created

using the Scaleform GFx technology. This technology allows importing Flash-based

interfaces and rendering them on the screen or on a texture inside UDK. The

scripting language for the flash applications used was ActionScript 3.0. The created

application simulates a real-time 3D navigable environment which the user can

interact with, navigate in it and see information for professors, labs or classrooms.

Moreover, the user can see data from external sensors. This thesis explored a

method of 3D architectural visualization based on a game engine, including

dynamically updated information derived from the real-environment streamed in

the 3D simulation.

6.1 Implications for Future Work

157

Some possible future extensions and improvements of this application may be the

following:

 Interactive Virtual Environments on mobile platforms: Applications for mobile

phones are widly used today. The Virtual Environment itself is very complex

and heavy, so its geometry has to be simplifyed in order to be used on

mobiles. However, Unrealscript provides a large set of classes that allows the

development of mobile applications.

 Adding many sensors will allow building interesting applications. Audiovisual

applications on top of the data collected from real-time sensors could be bult.

 Connecting the application with a Database: Data is often more important

than programs and threrefore the safe, correct, and efficient management of

those data is of crucial importance. The data stored by this application at the

moment does not require such systems, but in the future, if more data is

stored, for example, if many sensors are added, the way to organize the data

would benefit by a database.

 Gameplay: An interesting extension of this application would be adding some

gameplay. This application as is, allows adding First Person Shooter (FPS)

gameplay easily.

158

7 Bibliography - References

Richard J. Moore, 2011 - Unreal Developement Kit 3: Beginner's Guide

Jason B, Zak P Jeff W, 2009 - Mastering Unreal Technology, Volume I: Introduction

to Level Design with Unreal Engine 3

Jason B, Zak P Jeff W, 2009 - Mastering Unreal Technology, Volume II: Advanced

Level Design Concepts with Unreal Engine 3

Rachel Cordone, 2011 - Unreal Development Kit Game Programming with

UnrealScript: Beginner's Guide

Thomas Mooney, 2012 - Unreal Development Kit Game Design Cookbook

Tim Sweeney, 1998 - UnrealScript Language Reference

Texture Mapping - http://en.wikipedia.org/wiki/Texture_mapping

Unreal Engine - http://www.unrealengine.com/

Unreal Development Kit - http://www.unrealengine.com/udk/

Unreal Developer Network - http://udn.epicgames.com/Main/WebHome.html

UDK Community Links - udn.epicgames.com/Three/UDKCommunityLinks.html

UDK Forum - http://forums.epicgames.com/forums/366-UDK

3D Buzz - http://www.3dbuzz.com/Training

Hourences - http://www.hourences.com/tutorials/

Chris Albeluhn - http://www.chrisalbeluhn.com/3D_Tutorials.html

UnrealScript - http://www.moug-portfolio.info/

UncodeX - http://uncodex.elmuerte.com/

MS Visual Studio - http://www.microsoft.com/visualstudio/eng/team-foundation-

service

Adobe Flash Professional - http://www.adobe.com/products/flash.html

159

Scaleform - http://gameware.autodesk.com/scaleform

Scaleform - http://udn.epicgames.com/Three/Scaleform.html

Settings Menu Page - http://www.mavrikgames.com/tutorials/udk-scaleform-menu

ActionScript 1:1 with Doug Winnie - http://tv.adobe.com/show/actionscript-11-

with-doug-winnie/

Coordinate system in Flash - http://flashexplained.com/basics/understanding-how-

the-coordinate-system-in-flash-works/

Scaling in AutoCAD - http://www.youtube.com/watch?v=vXZxKjpyupU

Loft Mapping - http://www.cadtutor.net/tutorials/3ds-max/loft-mapping.php

3DS Max UVW -www.youtube.com/watch?v=ZlZgH3O_vxw&feature=related

Textures Repository - http://www.cgtextures.com/

Normal Map Creation -

http://www.game-artist.net/forums/spotlight-articles/43-tutorial-introduction-

normal-

mapping.htmlhttps://developer.valvesoftware.com/wiki/Normal_Map_Creation_in_P

hotoshop_or_Paint_Shop_Pro

Christodoulou Ioannis, 2011 - An Interactive 3D Lighting System for fMRI

Rendering Fidelity Experiments

160

8 Appendix A

8.1 Settings

This is the functionality that allows the user to change the resolution and the anti-

aliasing settings of the application. The section below includes description of both

the Scaleform/Flash side of the application and the Unrealscript side.

Flash Side

The Settings menu page is fairly simple – it contains two option steppers to change

the resolution and the anti-aliasing settings, and two simple buttons, one of which

to save the changes and one to cancel the current operation and return to the main

menu. First, the file that represents the page and holds the buttons is created. It is

named TUC_SettingsMenu. In the second place, three layers are created in the

timeline: one layer that holds the page background, one for the buttons and one for

the ActionScript timeline code named Actions. Then, we started laying out the

Scaleform CLIK components. The default button from the shared library is used

for the Cancel and Save buttons. The labels and the option steppers are imported

from the CLIK component library. All the components are scaled a little. The

buttons were given instance name because we want to access them in UnrealScript.

What follows is a description of the ActionScript side of the implementation and

then the UnrealScript side.

ActionScript

The ActionScript class that is associated with the above flash file is

TUC_SettingsMenu class. This class, as all the other Menu related classes, extends

TUC_FrontEnd. The DataProvider class is imported at the beginning of the class.

161

The data provider is basically an array of options that the user are going to want to

step through. In this case, it will be an array of common video resolutions and anti-

aliasing multipliers. In the class constructor after calling the super(), we populate

the two the correct data.

package {

 import scaleform.clik.data.DataProvider;

 public class TUC_SettingsMenu extends TUC_FrontEnd {

 public function TUC_SettingsMenu() {

 super();

 aliasingStepper.dataProvider = new DataProvider(["None",

"2x", "4x", "8x", "16x"]);

 resolutionStepper.dataProvider = new

DataProvider(["800x600", "1024x768", "1152x864", "1280x720", "1280x1024",

"1600x1200", "1680x1050", "1920x1080"]);

 }

 }

}

/**

 * @class TUC_FrontEnd_SettingsMenu

 * @author

 */

class TUC_FrontEnd_SettingsMenu extends GFxMoviePlayer config(TUC);

var config int ResolutionIndex, AliasingIndex;

/** reference to the root object of the flash file */

var GFxObject RootMC;

var GFxClikWidget ResolutionStepper, AliasingStepper, BtnBack,

BtnExitMainMenu, BtnSave;

/** the next menu page */

var GFxMoviePlayer NextMenuPage;

function Init(optional LocalPlayer player)

{

 Start();

 Advance(0);

 SetViewScaleMode(SM_ExactFit);

 RootMC = GetVariableObject("_root");

}

event bool WidgetInitialized(name WidgetName, name WidgetPath, GFxObject

Widget)

{

162

 local bool bWasHandled;

 bWasHandled = false;

 switch(WidgetName)

 {

 case ('resolutionStepper'):

 `log("Resolution Stepper Option");

 ResolutionStepper = GFxClikWidget(Widget);

 ResolutionStepper.SetInt("selectedIndex", ResolutionIndex);

 bWasHandled = true;

 break;

 case ('aliasingStepper'):

 AliasingStepper = GFxClikWidget(Widget);

 AliasingStepper.SetInt("selectedIndex", AliasingIndex);

 bWasHandled = true;

 break;

 case ('btnBack'):

 BtnBack = GFxClikWidget(Widget);

 BtnBack.AddEventListener('CLIK_click', Back);

 bWasHandled = true;

 break;

 case ('btnExitMainMenu'):

 BtnExitMainMenu = GFxClikWidget(Widget);

 BtnExitMainMenu.AddEventListener('CLIK_click',

ExitMainMenu);

 bWasHandled = true;

 break;

 case ('btnSave'):

 BtnSave = GFxClikWidget(Widget);

 BtnSave.AddEventListener('CLIK_click', SaveSettings);

 bWasHandled = true;

 break;

 default:

 break;

 }

 return bWasHandled;

}

function Back(EventData data)

{

 NextMenuPage = new class'TUC_FrontEnd_MainMenu';

 NextMenuPage.Init();

 Close(false);

}

function ExitMainMenu(EventData data)

{

 Close();

 TUCPlayerController(GetPC()).MenuManager(); // PC will handle

}

function SaveSettings(EventData data)

{

 local int ASI, RSI;

 ASI = AliasingStepper.GetInt("selectedIndex");

163

 RSI = ResolutionStepper.GetInt("selectedIndex");

 if (AliasingIndex != ASI)

 {

 AliasingIndex = ASI;

 ConsoleCommand("Scale Set MaxMultiSamples " $

AliasingStepper.GetString("selectedItem"));

 }

 if (ResolutionIndex != RSI)

 {

 ResolutionIndex = RSI;

 ConsoleCommand("Setres " $

ResolutionStepper.GetString("selectedItem") $ "w");

 }

 SaveConfig();

 NextMenuPage = new class'TUC_FrontEnd_MainMenu';

 NextMenuPage.Init();

 Close(false);

}

DefaultProperties

{

 MovieInfo=SwfMovie'TUCProjectFrontEnd.FrontEnd.TUC_SettingsMenu'

 WidgetBindings.Add((WidgetName="resolutionStepper",WidgetClass=class'GF

xCLIKWidget'))

 WidgetBindings.Add((WidgetName="aliasingStepper",WidgetClass=class'GFxC

LIKWidget'))

 WidgetBindings.Add((WidgetName="btnSave",WidgetClass=class'GFxCLIKWidge

t'))

 WidgetBindings.Add((WidgetName="btnBack",WidgetClass=class'GFxCLIKWidge

t'))

 WidgetBindings.Add((WidgetName="btnExitMainMenu",WidgetClass=class'GFxC

LIKWidget'))

 bShowHardwareMouseCursor=true

 TimingMode=TM_Real

 bPauseGameWhileActive=true

 bCaptureInput=true

 bDisplayWithHudOff=true

 bIgnoreMouseInput=false

}

8.2 Cinematics

164

class TUC_FrontEnd_Cinematics extends GFxMoviePlayer;

165

var GFxClikWidget Cinematic1, Cinematic2, Cinematic3, Cinematic4, BtnBack,

BtnExitMainMenu;

/** the next menu page */

var GFxMoviePlayer NextMenuPage;

function Init(optional LocalPlayer player)

{

 Start();

 Advance(0.f);

 SetViewScaleMode(SM_ExactFit);

}

event bool WidgetInitialized(name WidgetName, name WidgetPath, GFxObject

Widget)

{

 local bool bWasHandled;

 bWasHandled = false;

 switch(WidgetName)

 {

 case ('Cinematic1'):

 Cinematic1 = GFxClikWidget(Widget);

 Cinematic1.AddEventListener('CLIK_click',

ActivateCinematic1);

 bWasHandled = true;

 break;

 case ('Cinematic2'):

 Cinematic2 = GFxClikWidget(Widget);

 Cinematic2.AddEventListener('CLIK_click',

ActivateCinematic2);

 bWasHandled = true;

 break;

 case ('Cinematic3'):

 Cinematic3 = GFxClikWidget(Widget);

 Cinematic3.AddEventListener('CLIK_click',

ActivateCinematic3);

 bWasHandled = true;

 break;

 case ('Cinematic4'):

 Cinematic4 = GFxClikWidget(Widget);

 Cinematic4.AddEventListener('CLIK_click',

ActivateCinematic4);

 bWasHandled = true;

 break;

 case ('btnBack'):

 BtnBack = GFxClikWidget(Widget);

 BtnBack.AddEventListener('CLIK_click', Back);

166

 bWasHandled = true;

 break;

 case ('btnExitMainMenu'):

 BtnExitMainMenu = GFxClikWidget(Widget);

 BtnExitMainMenu.AddEventListener('CLIK_click',

ExitMainMenu);

 bWasHandled = true;

 break;

 default:

 break;

 }

 return bWasHandled;

}

function ActivateCinematic1(EventData e)

{

 `log("[TUC_FrontEnd_Cinematics] - ActivateCinematic1");

 Close(true);

 TUCInfo(GetPC().WorldInfo.Game).TriggerGlobalEventClass(class'TUC_SeqEv

ent_Cinematics', GetPC(), 0);

}

function ActivateCinematic2(EventData e)

{ `log("[TUC_FrontEnd_Cinematics] - ActivateCinematic2");

 Close(true);

TUCInfo(GetPC().WorldInfo.Game).TriggerGlobalEventClass(class'TUC_SeqEvent_Ci

nematics', GetPC(), 1);

}

function ActivateCinematic3(EventData e)

{ `log("[TUC_FrontEnd_Cinematics] - ActivateCinematic3");

 Close();

TUCInfo(GetPC().WorldInfo.Game).TriggerGlobalEventClass(class'TUC_SeqEvent_Ci

nematics', GetPC(), 2);

}

function ActivateCinematic4(EventData e)

{

 `log("[TUC_FrontEnd_Cinematics] - ActivateCinematic4");

 Close();

TUCInfo(GetPC().WorldInfo.Game).TriggerGlobalEventClass(class'TUC_SeqEvent_Ci

nematics', GetPC(), 3);

}

function Back(EventData data)

{

 NextMenuPage = new class'TUC_FrontEnd_MainMenu';

 NextMenuPage.Init();

167

 Close(false);

}

function ExitMainMenu(EventData data)

{

 Close();

 TUCPlayerController(GetPC()).MenuManager(); // PC will handle

}

DefaultProperties

{

 MovieInfo=SwfMovie'TUCProjectFrontEnd.FrontEnd.TUC_Cinematics'

 WidgetBindings.Add((WidgetName="Cinematic1",WidgetClass=class'GFxCLIKWi

dget'))

 WidgetBindings.Add((WidgetName="Cinematic2",WidgetClass=class'GFxCLIKWi

dget'))

 WidgetBindings.Add((WidgetName="Cinematic3",WidgetClass=class'GFxCLIKWi

dget'))

 WidgetBindings.Add((WidgetName="Cinematic4",WidgetClass=class'GFxCLIKWi

dget'))

 WidgetBindings.Add((WidgetName="btnBack",WidgetClass=class'GFxCLIKWidge

t'))

 WidgetBindings.Add((WidgetName="btnExitMainMenu",WidgetClass=class'GFxC

LIKWidget'))

 bShowHardwareMouseCursor=true

 TimingMode=TM_Real

 bPauseGameWhileActive=true

 bCaptureInput=true

 bDisplayWithHudOff=true

 bIgnoreMouseInput=false

}

class TUC_SeqEvent_Cinematics extends SequenceEvent;

event Activated()

{

 `log("****************ACTIVATED*****************");

}

defaultproperties

{

 ObjName="TUC_SeqEvent_Cinematics"

168

 ObjCategory="TUCProject Events"

 OutputLinks[0]=(LinkDesc="Cinematic 1")

 OutputLinks[1]=(LinkDesc="Cinematic 2")

 OutputLinks[2]=(LinkDesc="Cinematic 3")

 OutputLinks[3]=(LinkDesc="Cinematic 4")

}

class TUC_SeqAction_CinematicsMenuActivation extends SequenceAction;

var TUC_FrontEnd_Cinematics C;

event Activated()

{

 C = new class'TUC_FrontEnd_Cinematics';

 C.Init();

}

defaultproperties

{

 ObjName="TUC_SeqAction_CinematicsMenuActivation"

 ObjCategory="TUCProject Actions"

 VariableLinks.Empty

}

169

170

