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Abstract

Massive growth in data processing power and new cyber threats have spurred the
deployment of Deep Packet Inspection (DPI) technologies. These technologies are
currently used by network intrusion detection and prevention systems, like (NIDS,
IPS, IDPS), to efficiently filter inbound and outbound traffic and prevent sophis-
ticated intrusions, such as Denial of Service (DOS) and buffer overflow attacks.
Additionally, these systems require to operate at high speed to avoid a reduction of
the Quality of Service (QoS), packet loss and additional latency.
In this Diploma thesis we present a customizable hardware DPI system, designed
to support multi-layer packet decoding combined with multiple pattern matching
against the transport-layer payload. Additionally, we incorporate a DPI configura-
tion tool for automatic hardware code generation, to increase the adjustability to
new rules and reduce maintenance. The tool creates the “header” and “pattern”
matching files, from Snort compatible rules.
Finally, we evaluate our approach by instantiating a 750 rule configuration on a
Virtex 5 FPGA with a 1Gbps GigE network interface. The results show that we
met the time requirements, as there is no decrease at the throughput with only a
store-and-forward delay.
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1. Introduction
The information revolution in modern society and the growing number of personal
computers, have increased the use of Internet. Most companies nowadays store all of
their information on computers and database servers. Many computer applications
connect to the web to exchange data such as chat clients, p2p programs, games,
web browsers and others. All these applications may have vulnerabilities due to
the lack of proper coding or bugs from the operating system. Firewalls, sometimes
together with anti-virus, had a decent performance for many years at preventing
hacker attacks, malicious programs and spam or phishing e-mails. But most of
them would lack the ability to prevent buffer overflow attacks, DoS attacks, and
exploits.
More recent protection systems, such as “Intrusion Detection Systems” IDS and
“Intrusion Prevention Systems” use Deep Packet Inspection (DPI) to inspect packets
in multiple network layers. A DPI system is a form of computer network packet
filtering that examines the header and data part of a packet as it passes an inspection
point.
Snort is a powerful open-source “Network Intrusion Detection System” NIDS that
uses DPI to inspect the network traffic. It has by default a large rule database of
suspicious signatures to block most of the known network attacks. This database is
frequently updated in order to adjust to new attacks.

Motivation

Although many software DPI systems have been developed and released, they have a
moderate network throughput even though large and energy intensive computers are
used. In the worst case, when their throughput can not keep up with the network
traffic, they drop or pass packets without inspecting them. Hackers exploit this
disadvantage and create large virtual network traffic in order to attack servers.
Hardware based DPI can perform much better in terms of network throughput, but
has a drawback in scalability and frequently updates of intruder signatures. Using
FPGA’s for DPI is an advantage, since the reconfiguration of the chip is an easy
process.
In our work we will present a complete DPI system that operates on a GigE network
interface. To configure the function of the DPI, we developed a tool that generates
hardware description code from a Snort compatible rule file.
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Chapter 1 Introduction

Focus

This work will analyze what Deep Packet Inspection is, why and where it is used. We
present the different methods of DPI in software and hardware, the advantages and
disadvantages of each method. We propose a datapath of a complete DPI system
together with a customization tool. The results of the implementation on a Virtex5
and real data transfer over GigEthernet. Also ideas for future work to make this
system even better.

Contributions

Within this work, we have created a stand-alone system for Deep Packet Inspection
based on the Snort rules. We used a FPGA from the Virtex-5 family to implement
750 Snort rules identification system, a GigEthernet receiver and transmitter, a
packet decoder and encoder. Further more we developed a tool for automatic VHDL
code generation from a Snort rules files, this extends the functionality of our system
by letting it easily to adjust to new rules and operations.
Recapitulating, this work has made the following basic contributions.

1. A stand-alone customizable DPI system with GigEth interface
2. Tools for customization of the system from Snort rule compatible files
3. Support of multiple patterns, IPs and ports on rules
4. Multiple rules match inside the same frame simultaneously

Table 1.1 shows the features of the implemented system.

Table 1.1.: List of Features

Feature Description
Implemented Snort rules 750
Wire-speed operation 1Gb/s
Decoding MAC, IP, TCP, UDP, ICMP
Multiple match on frame Yes
Simultaneous match more
than one rules

Yes

Customization tool Yes, from Snort rules
Maximum number of rules
supported

4095
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2. Deep Packet Inspection Systems

The numerous attacks from the Internet like viruses, spam, software vulnerabilities
as well as other malicious activities have increased the need for network security. For
this reason a variety of methods have been used to protect data and services: firstly
through cryptography, firewalls, IDS and finally with intrusion prevention systems
(IPS).

Most intruder activity has some sort of signature. There are databases of known
vulnerabilities that intruders want to exploit. These known attacks are also used
as signatures to find out if someone is trying to exploit them. The signatures can
be found in header parts of a packet or in the payload. A DPI system uses these
signatures in order to prevent intruder attacks.

2.1. DPI Challenges

The DPI is commonly used by proxies, packet filters, sniffers, IDS, and IPS. DPI
systems have many different challenges to overcome. Abuhmed et al[6] state the
most important ones.

1. Complexity of search algorithm : the pattern matching algorithm com-
plexity is the major affecting factor of system performance. Many DPI re-
searches deal with optimization of these algorithms.

2. Wire speed processing: DPI systems have to perform in worst case at wire
speed to prevent buffer overflow, DoS attacks and avoid dropping unchecked
incoming packets.

3. Growing number of signatures: the growing number of signatures require
continuously increasing performance of the DPI systems.

4. Bad signatures: bad written signatures may generate false alerts, drop pack-
ets that are harmless or use too many resources of the system.

5. Encrypted data: encrypted data packets cannot be inspected. A solution to
this could be the placement of DPI after the decryption device.

6. Scalability: scalability is a big issue in hardware designs. ASIC devices
usually are not scalable and most FPGA implementations need regeneration
of the initialization bit-stream to overcome this problem.
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Chapter 2 Deep Packet Inspection Systems

2.2. Software DPI systems

Many packet scanning applications use DPI systems. The most popular open-source
ones are Snort[16], Bro[14] and L7-filter[2] for Linux. Snort and Bro are intrusion
detection systems (IDS), whereas L7-filter is an application layer data classifier.
Next we will deal with Snort as it is one of the most popular IDS.

2.2.1. Snort IDS

Snort is an open source Network Intrusion Detection System (NIDS), it is extensively
used, and is ranked among the best systems available today. Snort uses rules in order
to describe the intruders signatures. These rules are stored in files which, along
with a configuration file, define Snort’s operation. Our work is based on these rule
files, which are used to generate hardware description code that inspects receiving
data for suspicious attacks. An example of a rule can be found bellow, while more
information about Snort’s rule syntax and the supported keywords of this work can
be found in Appendix A.

alert tcp any any -> 192.168.1.0/24 111 (content: "idc|3a3b|"; msg:
"mountd access";)

Snort can perform protocol and header packet analysis, but the heart of the program
is a string matching algorithm that accounts for up to 70% of total execution time.
Many different algorithms have been used for this purpose. At the beginning brute-
force pattern matching was used, with a great impact on the performance. Boyer
Moore[8] algorithm increased significantly the performance (about 200-500%).
Boyer & Moore created an efficient string search algorithm that uses heuristics to
reduce comparisons. The major drawback is the space required, which depends on
the number and length of patterns that create multiple substrings of the incoming
data.
Latest version of Snort 2.9 uses optimized versions of the Aho - Corasick[7] algo-
rithm, which is supposed to be a powerful multiple pattern matching algorithm. It
constructs a trie like finite state automaton that matches the given patterns simul-
taneously. Figure 2.1 shows an example of a simple automaton that searches for
words “HE”, “HIS”, “SHE”, “HERS”.
If the network traffic is too high and the detection engine fails to operate at this
speed, some packets may be dropped or forwarded without inspection. The load of
the detection engine depends on several parameter, with notable the following ones:

• Network load
• CPU power of the machine running Snort
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2.3 Hardware DPI systems

Figure 2.1.: Aho - Corasick FSM example

• RAM memory size

• Number of rules

2.3. Hardware DPI systems

The software DPI systems aren’t fast enough to operate on demanding networks.
Several companies have developed ASIC security programmable co-processors such
as Cisco, NetScreen and PMC-Sierra. These programmable security co-processors
have higher (but not impressive) performance compared to general purpose proces-
sors furthermore they are complicated and expensive.

Many different hardware DPI systems have been proposed by researchers. The
Hardware implementations can be divided into three main categories.

1. Content Addressable Memory (CAM)

2. FPGA implementations

3. Multi-core network processors (NP)

2.3.1. Content Addressable Memory

Content addressable memory (CAM) is a computer memory used by many commer-
cial high speed pattern matching applications. In a RAM a user supplies an address
and the memory returns the stored data word. A CAM works the opposite way, the
user supplies a data word and the memory returns the address of the data if it is
stored anywhere in it. The main disadvantages of CAM are its cost and the power
consumption. Each memory bit must have its own associated comparison circuit
in order to detect a match and additionally the cells must be combined to find a
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Chapter 2 Deep Packet Inspection Systems

complete data word match. Every comparison circuit has to be active on every clock
cycle which means very high power consumption.
A more complex CAM is the Ternary CAM (TCAM) which allows for a third match-
ing state “X” or “don’t care” that adds flexibility to the search. For example a
TCAM may have stored the word “101010XX”, which means that any of the four
search words (“10101000”, “10101001”, “10101010”, “10101011”) would match.
CAMs and TCAMs are often used by network switches, routers, firewalls, network
address translation and network intrusion detection systems (NIDS) based on DPI.

2.3.2. FPGA Implementations

FPGA implementations have the advantage of flexibility on search pattern alter-
ations, they can reconfigure the design and keep the interface unchanged. A lot of
pattern matching algorithms have already been implemented for FPGAs. These in-
clude discrete comparators, Bloom Filters, regular expression based pattern match-
ing (NFAs and DFAs) and Knuth - Morris - Pratt string matching algorithm.

Discrete Comparators

A straightforward approach for pattern matching in FPGA is the use of discrete
comparators. This leads to high frequency designs but with increased area cost.
Each pattern uses at least one comparator (logic cells). Every character of a pattern
is stored in LUTs. For example a virtex 5 FPGA has 6 bit LUTs which means 4
LUTs have to be used to store 3 characters. A reduced area cost discrete comparator
solution has been proposed by I. Sourdis[17].

Bloom Filters

Bloom Filters store the patters as hash values, they have reduced area cost and good
performance but allow false positives which is a major drawback. They also require
multiple hash functions for different pattern lengths. Researchers have proposed
parallel different bloom filters to reduce the probability of false positives[10].

Finite State Machines

Finite State Machines (FSM) have been used by DPI systems. The FSM implemen-
tations can be categorized in two groups, the Deterministic Finite Automata (DFA)
and Nondeterministic Finite Automata (NFA).
The DFA is an automaton that has a set of input symbols called the alphabet, a
finite set of states, a start state, a set of accept states and a transition function to
move between the states. At each time the DFA has only one active state.

8



2.3 Hardware DPI systems

In the other hand NFA is a FSM where from each state and a given input symbol
it can jump to several possible next states. A NFA may have a multi acceptance
state.

Knuth - Morris - Pratt

Knuth - Morris - Pratt (KMP)[13] is an easy and well known string matching al-
gorithm. The KMP, creates a graph for the matching pattern, which can be im-
plemented in a FSM. An example of a graph that matches the pattern “ababaa” is
shown in Figure 2.2. As we can see in the graph in case of a mismatch, the state
machine is designed to jumps to next biggest substring matched (e.g. state 3 jumps
to state 1 and state 4 jumps to state 2). In state 4 the fsm has already matched the
substring “abab”, when a mismatch occurs it will jump to state 2 having matched
the substring “ab”.

Figure 2.2.: KMP graph for “ababaa”

The main disadvantage of KMP is the difficulty to process one incoming character
per cycle. In case of a mismatch two or more comparisons must perform for one
character.

2.3.3. Multi-core Network Processors (NP)

Network processors are typically software programmable devices like general purpose
CPUs with added optimized features or functions such as:

• Pattern matching

• Key lookup (e.g. address lookup)

• Data bitfield manipulation

• Packet queue management

Parallel processing with multiple cores is able to achieve higher throughput. The
main advantage of NP is its flexibility to adapt on a new pattern searching set. On
the other hand NPs have moderate throughput of of few hundred Mbps.

9



Chapter 2 Deep Packet Inspection Systems

2.4. Hardware DPI Systems with Network Interface

Closer to our own work are DPI systems with network interface, capable to manage
real network traffic. An implementation with four GigE network ports was proposed
by C. Clark[9]. They used a Xilinx ML300 reference platform with a V2P7 FPGA to
implemented a small fraction Snort’s rule-set (71 rules, 505 chars) and achieved an
impressive throughput of 4Gbps. Their header decoder supports IP, ARP, ICMP.
TCP and UDP protocols. A payload processor is used to search the incoming
packets against specified patterns, the processor uses a non-deterministic finite state
automata approach, supports to compare up to 8 characters per cycle. The drawback
of this implementation is the high area cost and small rule-set implementation.
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3. DPI Architecture

3.1. Introduction

This chapter describes the architecture of a fully functional Deep Packet Inspection
system that we designed in order to implement a compatible Snort sub-Ruleset in
FPGA.
The implementation in FPGA’s is an advantage compared to the ASIC because of
the frequent updates of IDS rulesets. The modification or addition of even one rule
would require the creation of a new ASIC. With FPGA’s instead we need simply
regenerate the changed code and download it on the FPGA chip.
The following sections describes in detail the overall system architecture as well as
the architecture of the various subsystems. The last section describes in detail the
code in C that was created to translate Snort rule files into VHDL code.

3.2. System Overview

Figure 3.1.: Top Level of DPI System

3.2.1. Description

The block diagram in Figure 3.1 is an overview of the Deep Packet Inspection system
architecture which uses a Ethernet Mac wrapper, a Packet Receiver, a Rule Matching

11



Chapter 3 DPI Architecture

Module and a Packet Transmit Module.

The purpose of this system is to listen on incoming packets from the Physical Inter-
face, inspect the header and the payload of the packet and find if it matches with a
rule, send a raw Ethernet packet with the SID for each matched rule to the Physical
Interface. The system operates in real time, with a clock at 125Mhz and data rate
of 1 byte per cycle.

Specifically, when a new packet arrives the Embedded TEMAC (in Ethernet Mac
wrapper) verifies the incoming FCS on every frame, strips off Preamble, SFD, Pad
and FCS from the Ethernet frame (see Figure 3.2). The remaining frame is stored
in a FIFO memory and frames marked as bad are dropped.

Figure 3.2.: Standard Ethernet Frame Format

After the frame has been stored in the receiver FIFO, the Receiver Module requests
the new frame from the FIFO and extracts useful header information from MAC
Layer, network layers (IPv4, ICMP) and transport layers (TCP, UDP). Any other
layer is not being decoded.

Frame data and header information is passed to the Rule Match Module which in
turn finds if the packet matches any of the given rules. The rules may contain:

• source & destination ip address check

• source & destination port number check

• string content match in the payload of the packet

• checks against the IP protocol header

• specific ICMP type value match.

In case a rule has been detected the SID of the rule is send to the Packet Transmit
Module, which stores the SID value in a FIFO and transmits a 60bytes raw Ethernet
packet with the SID value to the Ethernet Mac wrapper.

12



3.2 System Overview

3.2.2. System Inputs

Table 3.1 describes the input signals of the DPI System.

Table 3.1.: DPI System Inputs

Signal Direction Description
CLK_100 Input The clock input. 100Mhz

clock is the input to a
DCM which creates a
125Mhz clock used by the
system.

GMII_RX_CLK_0 Input GMII Receive Clock.
GMII_RX_CLK_0
provides a 125 MHz clock
reference for
GMII_RX_DV_0,
GMII_RX_ER_0, and
GMII_RXD_0[7:0].

GMII_RXD_0[7:0] Input GMII Receive Data.
Symbols received on the
cable are decoded and
presented on
GMII_RXD_0[7:0].

GMII_RX_DV_0 Input GMII Receive Data Valid.
When GMII_RX_DV_0 is
asserted, data received on
the cable is decoded and
presented on
GMII_RXD_0[7:0] and
GMII_RX_ER_0.

GMII_RX_ER_0 Input GMII and MII Receive
Error. When
GMII_RX_ER_0 and
GMII_RX_DV_0 are
both asserted, the signals
indicate an error symbol is
detected on the cable.

RESET Input System Reset signal.
Active high.

13



Chapter 3 DPI Architecture

3.2.3. System Outputs

Table 3.2 describes the output signals of the DPI System.

Table 3.2.: DPI System Outputs

Signal Direction Description
GMII_TXD_0[7:0] Output GMII Transmit Data

presents the data byte to
be transmitted onto the
cable. GMII_TXD_0[7:0]
are synchronous to
GTX_CLK and
GMII_TX_CLK_0.

GMII_TX_EN_0 Output GMII Transmit Enable.
When GMII_TX_EN_0 is
asserted, data on
GMII_TXD_0[7:0] along
with GMII_TX_ER_0 is
encoded and transmitted
onto the cable.
GMII_TX_EN_0 is
synchronous to
GMII_TX_CLK_0.

GMII_TX_ER_0 Output GMII Transmit Error.
When GMII_TX_ER_0
and GMII_TX_EN_0 are
both asserted, the transmit
error symbol is transmitted
onto the cable.
GMII_TX_ER_0 is
synchronous to
GMII_TX_CLK_0.

GMII_TX_CLK_0 Output GMII Transmit Clock.
GMII_TX_CLK_0
provides a 125 MHz clock
reference for
GMII_TX_EN_0,
GMII_TX_ER_0, and
GMII_TXD_0[7:0].

RESET_PHY Output Reset of the physical layer
device. Active low.

14



3.3 Ethernet Mac wrapper

3.2.4. Subsystems

• Ethernet Mac wrapper. Created by Xilinx Core Generator. A wrapper
that allows the system to communicate with the Physical layer. Described in
more detail in section 3.3

• Packet Receiver. Decodes the incoming packet, extracts header data and
passes the data to data_out with one clock cycle delay. Described in detail in
section 3.4

• Rule Match module. Compares the incoming data and header with preset
values and searches for any rule match. If a rule has been matched the module
sends the SID value of the rule and asserts the sid_vld signal. Described in
detail in section 3.6

• Packet Transmit module. Creates a raw Ethernet packet with every SID
value being received. Described in detail in section 3.9

3.3. Ethernet Mac wrapper

Figure 3.3.: Ethernet Mac wrapper Design

3.3.1. Description

The Ethernet MAC wrapper instantiates the full Ethernet MAC primitive and is
generated by Xilinx Core-Generator. The device is utilized to support full-duplex
1Gbps-only operation with physical interface GMII that connects to the I/O of the
FPGA.

3.3.2. LocalLink Interface

The Ethernet FIFO consists of independent receive and transmit FIFOs embedded
in the Local Link wrapper. Each FIFO is built around 2 Dual Port block RAMs
providing a memory capacity of 4096 bytes in each FIFO.
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Chapter 3 DPI Architecture

Data is transfered on Local Link interface with the flow governed by the four ac-
tive low signals sof, eof, src_rdy and dst_rdy. Only when the signals src_rdy and
dst_rdy are asserted simultaneously is data transferred, the individual packet bound-
aries are marked by sof and eof signals. Figure 3.4 shows the transfer of an 8-byte
frame.

Figure 3.4.: Frame Transfer across LocalLink Interface

Table 3.3 describes the receive FIFO LocalLink interface.

Table 3.3.: Receive FIFO LocalLink Interface

Signal Direction Description
rx_ll_clock Input Read clock for LocalLink

interface
rx_ll_reset Input Synchronous reset
rx_ll_data[7:0] Output Data read from FIFO
rx_ll_sof_out Output Start of frame indicator
rx_ll_eof_out Output End of frame indicator
rx_ll_src_rdy Output Source ready indicator
rx_ll_dst_rdy Input Destination ready indicator

Table 3.4 describes the transmit FIFO LocalLink interface.
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Table 3.4.: Transmit FIFO LocalLink Interface

Signal Direction Description
tx_ll_clock Input Write clock for LocalLink

interface
tx_ll_reset Input Synchronous reset
tx_ll_data[7:0] Input Write data to be sent to

transmitter
tx_ll_sof Input Start of frame indicator
tx_ll_eof Input End of frame indicator
tx_ll_src_rdy Input Source ready indicator
tx_ll_dst_rdy Output Destination ready indicator

3.3.3. GMII Physical Interface

The Gigabit Media Independent Interface (GMII), defined in IEEE 802.3, clause 35,
is an extension of the MII used to connect a 1-Gb/s capable MAC to the physical
sublayers.

The physical signals of the Ethernet MAC are connected through IOBs to the ex-
ternal interface. The Figure 3.5 shows the GMII physical interface connections.

Signals:

• GMII_RX_CLK (1 bit input) The clock signal input is sourced by the
external PHY device and should be used by the FPGA logic to clock the
receiver physical interface logic. Internally in the Ethernet MAC, this clock is
used to derive all physical and client receiver clocks.

• GMII_RXD (8 bit input) The received data signal to the PHY.

• GMII_RX_DV (1 bit input) The data valid control signal from the PHY.

• GMII_RX_ER (1 bit input) The error control signal from the PHY.

• GMII_TX_CLK (1 bit output) This clock is generated by a DCM and
provides a 125Mhz frequency to the PHY.

• GMII_TXD (8 bit output) The transmit data signal to the PHY.

• GMII_TX_EN (1 bit output) The data enable control signal to the PHY.

• GMII_TX_ER (1 bit output) The error control signal to the PHY.
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Figure 3.5.: GMII Physical Interface
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3.4. Packet Receiver

Figure 3.6.: Packet Receiver

19



Chapter 3 DPI Architecture

3.4.1. Description

The purpose of the Packet Receiver is to unpack the received data, extract valuable
header values, find where the packet and payload starts and ends. The block diagram
In Figure 3.6 is an overview of the datapath of the Receiver.

First of all to receive a frame, src_rdy and dst_rdy has to be asserted low to 0
as shown in Figure 3.4. The signal dst_rdy is connected to ground and src_rdy is
input from the FIFO’s Interface. Also to receive a new frame, signal sof has to be 0
for the first byte of data_in to indicate the start of the frame. In this case rx_frame
register turns high to 1 and holds this value until an eof signal is transmitted from
the FIFO, eof is delayed by one clock cycle so that the last byte of data remains
valid.

The rx_frame signal triggers the enable signal of Mac Decoder, which decodes the
Mac layer and extracts the ethertype value which is used to indicate the protocol
that is encapsulated in the payload of the Ethernet frame.[4]

IP Decoder is enabled when the End of Mac (eomac) is asserted high and ethertype
is x”0800”, this means that the following protocol is IPv4. The IP Decoder extracts
from the header, the source & destination ip address and the protocol, that is used
in the data portion of the IP datagram. The IP Decoder supports an IPv4 Header
format of 20 bytes with an optional options field.

The protocol byte from the IP header is compared with x”06” (TCP), x“11” (UDP)
and x”01” (ICMP) and anded with the End of IP (eoip) signal to trigger the corre-
sponding enable signal of TCP, UDP or ICMP Decoder.

TCP and UDP Decoder when enabled, they extract the source and destination port
number from the header. When the header of the packet ends, eotcp or eoudp
is asserted signal. The Decoders support TCP and UDP packets as described in
RFC793 and RFC768.

If Icmp Decoder is enabled, then the Decoder extracts the type of the icmp packet.
This information is useful for Snort rules that search for suspicious Icmp packets.
Signal eoicmp is asserted when the header of the packet ends. The Decoder supports
the ICMP packet as described in RFC792

After extracting all the header data from the nested packets, a registered Header
Data output (width 120 bit) is created. This register contains Source IP address
(32 bit), Destination IP address (32 bit), the Protocol (8 bit) that is used in the
data portion of the IP datagram, Source Port (16 bit) if a UDP or TCP packet
was decoded, Destination Port (16 bit) if a UDP or TCP packet was decoded, icmp
Type (8 bit) if an Icmp packet was decoded and the Decoded Protocol (8 bit) x”04”
for IP, x”06” for TCP, x”011” for UDP and x”01” for ICMP.

A Header Data valid signal is asserted high when all the enabled decoders rise an
end signal. This is established by xor ing the enable signal with the end signal of
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3.4 Packet Receiver

all the Decoders and nor them. Which ensures that all activated Decoders have
terminated.

The following signals are described briefly:

• Frame valid is true when the rx_frame register is 1.

• Data Out valid is true when rx_frame is 1 and Data Out is the payload of a
Mac frame.

• Data Payload valid signal is true when the Data Out is a TCP, UDP or ICMP
payload data.

• Src_Rdy_Out is same as src_rdy_in delayed by one clock cycle.

• Data Out is same as Data In delayed by one clock cycle.

• Frame valid is true when the rx_frame register is 1.

• Data Out valid is true when rx_frame is 1 and Data Out is the payload of a
Mac frame.

• Data Payload valid signal is true when the Data Out is a TCP, UDP or ICMP
payload data.

• Src_Rdy_Out is same as src_rdy_in delayed by one clock cycle.

• Data Out is same as Data In delayed by one clock cycle.

3.4.2. Inputs

Table 3.5 describes the input signals of Packet Receiver.

Table 3.5.: Packet Receiver Inputs

Signal Direction Description
CLK Input Clock signal
RESET Input Reset signal
DATA_IN[7:0] Input Data in from FIFO
SOF Input Start of frame indicator
EOF Input End of frame indicator
SRC_RDY Input Source ready indicator
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3.4.3. Outputs

Table 3.6 describes the output signals of Packet Receiver.

Table 3.6.: Packet Receiver Outputs

Signal Direction Description
DST_RDY Output Destination ready indicator
DATA_OUT[7:0] Output Data out
FRAME_VLD Output Frame valid signal
DATA_OUT_VLD Output Data out valid signal
DATA_OUT_
PAYLOAD_VLD

Output Indicator of (Tcp, Udp,
Icmp) packet payload

SRC_RDY_OUT Output Source ready out
HEADER_DATA_
VLD

Output Header data valid indicator

HEADER_DATA_
OUT[119:0]

Output Header data out

3.4.4. Subsystems

• MAC Decoder that strips off mac layer header

• IP Decoder extracts source & destination IP address and protocol type of
the next layer.

• TCP Decoder extracts source & destination port.

• UDP Decoder same as tcp decoder, extracts source & destination port.

• ICMP Decoder extracts the icmp type.

The Decoders are described in more detail in section 3.5
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3.5. Decoders
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Figure 3.7.: Overview of TCP Decoder

3.5.1. Description

The Decoders of MAC, IP, TCP, UDP and ICMP have almost the same datapath
and FSM, the most complex is the TCP decoder which has to decode a non standard
size of header. To avoid duplication we will analyze only the case of TCP Decoder.
Figure 3.7 shows the overview of the TCP Decoder.
The FSM controls two shift registers, a register that stores the offset of the header,
two Mux that send the source and destination port and EoTCP signal that indicates
the end of the TCP header. The shift registers are designed to store the source and
destination ports when enabled. Figure 3.8 shows the FSM of the TCP Decoder.
The inputs of the FSM are clk, reset, en, src_rdy. When reset = 1 or en = 0 the
FSM goes to initial state to read the first byte of source port. If src_rdy = 1 the
FSM remains at its current state, this means that the current data byte is not valid
because the source (FIFO receiver) was not ready. After reading the source and
destination port, the Decoder reads the header offset from the packet header and
compares it with a variable that stores the current length of header. This variable
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has initial value 20, this is the length in bytes of the default TCP header without
options. If the header offset is greater than the variable, the FSM waits for one cycle
and rechecks. When the header offset is equal to the variable value the FSM jumps
to end of header state and asserts the signals EoTCP and en_send_head high.

Figure 3.8.: FSM of TCP Decoder

3.5.2. Inputs

Table 3.7 describes the input signals of the Decoders.

Table 3.7.: Decoder Inputs

Signal Direction Description
CLK Input Clock signal
RESET Input Reset Signal
EN_MAC, EN_IP,
EN_TCP, EN_UDP,
EN_ICMP

Input Decoders enable signals

SRC_RDY Input source ready signal
DATA_IN[7:0] Input 8 bit data in

3.5.3. Outputs

Table 3.8 describes the output signals of the Decoders.
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Table 3.8.: Decoder Outputs

Signal Direction Description
ETHERTYPE Output Packet protocol that

follows the MAC layer,
only for MAC Decoder

PROTOCOL Output Packet protocol that is
encapsulated in the IP
data, only for IP Decoder

SRC_IP[31:0] Output Source IP address, only for
IP Decoder

DEST_IP[31:0] Output Destination IP address,
only for IP Decoder

SRC_PORT[15:0] Output Source Port, only for TCP
and UDP Decoders

DEST_PORT[15:0] Output Destination Port, only for
TCP and UDP Decoders

ITYPE[7:0] Output ICMP type, only for ICMP
Decoder

EoMAC, EoIP,
EoTCP, EoUDP,
EoICMP

Output End of header signal of
Decoders
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3.6. Rule Match

Figure 3.9.: Overview of Rule Match Datapath
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3.6.1. Description

Figure 3.9 shows the datapath of the Rule Match module. The entire design is fully
pipelined and meets the desired clock rate. Data is received in vectors Data in (8
bit) and Header data (120 bit). A process (Transform No Case) creates a new vector
of data in that has no upper case characters to support non-case sensitive content
rules. This process checks if data in is greater or equal to x”41” (character “A”) and
less or equal to x”5A” (character “Z”), in this case data in nocase vector is equal to
data in + x”20” else data in nocase is equal to data in.

Data In, Data In Nocase, Header Data and signals Frame vld, Data in vld, Data
in payload vld feed three Fan-Out Trees. These Fan-Out trees are designed to
distribute the incoming data to 16 copies in the FPGA with 2 clock cycles delay.
This is implemented with 4 registers in first level, which feed 16 registers in the
second level. Each registered output of the tree is the input to 16 shift registers.
For every fan-out tree we create up to 256 shift registers. We also create a shift
register block of the Data in payload vld signal, this information lets us know when
the compared data is in the payload of the packet.

Header Compare module, uses comparators to match preset values of header options
(ip address, port address ...) against the registered tree-outputs of header data. Each
registered output of the header tree is the input to 16 comparators. This means that
our design supports to check:

• 256 distinct source IP addresses

• 256 distinct destination IP addresses

• 256 individual source Ports or 128 range source Ports

• 256 individual destination Ports or 128 range source Ports

• all ICMP types

• all protocols

Content Compare module, uses comparators to match preset text strings against
the shift registered data in. It also performs a check if the data is inside the borders
of the packet payload data. Each shift register feeds 15 comparators, which means
that this design can support up to:

• 3840 distinct case sensitive strings

• 3840 distinct non-case sensitive strings

When a content has been matched a register (with simple logic added) will be raised
and hold it’s value until reset (Figure 3.10a). With this registers we can support
more than one separate content matches in the same rule, because the text matches
may occur at different clock cycles and the information of the previous match will
have been stored.
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(a) Content Match Register (b) Rule Match Register

Figure 3.10.: Match Registers

The registered results of the comparators are combined together using an AND gate
for every rule. A register for each matched rule will be asserted high until it is sent
or reset (Figure 3.10b).

An Inverse Priority Encoder 4096 to 12bit is used to encode the matched rules. This
encoder supports 4095 rules beginning from address x“001” to x”FFF” , address
x“000” is reserved and not assigned to a Rule to avoid conflicts with the default
output of the encoder. The encoder has 3 clock cycles delay and encodes the signals
in three stages using small 16 to 4 priority encoders.

Rule Match module has an output vector with the matched rule’s sid and a signal
that indicates when the vector is valid. A read only memory SID Rom is initialized
with the Sid’s of the rules. The encoder’s output is the read address of the memory.
The sid valid signal is asserted high for every new valid address, this is implemented
by comparing the current address with the registered (1 clock) previous.

To support more than one rules to be matched and sent in the same data packet,
we use a 12 to 4096 Decoder that decodes the output address of the encoder. The
signal outputs of the Decoder are connected to registers that will remain high until
reset. These registers are the input signals (is_sent) in rule match registers and
when enabled they set the output of the register to zero (see Figure 3.10b). By
zeroing the register of the sent rule, we let the encoder to send the next highest
priority matched rule.

The registers of the whole module will reset when a new frame arrives. This is
implemented by tracking the Frame_vld signal and sending a is_new_frame signal
each time Frame_vld signal changes value from low to high.

The whole module is created automatically by an executable script with a text file
of Snort Rules as input.
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3.6.2. Inputs

Table 3.9 describes the input signals of the Rule Match module.

Table 3.9.: Rule Match module Inputs

Signal Direction Description
CLK Input Clock signal
RESET Input Reset signal
FRAME_VLD Input A valid frame is received

when high
DATA_IN_VLD Input Valid data in signal
DATA_IN_
PAYLOAD_VLD

Input Indicates that the data
received is in the payload
of the packet

SRC_RDY Input Source ready signal
DATA_IN[7:0] Input Data in
HEADER_
DATA[119:0]

Input Header data vector

HEADER_DATA_
VLD

Input Valid header data

3.6.3. Outputs

Table 3.10 describes the output signals of the Rule Match module.

Table 3.10.: Rule Match module Outputs

Signals Direction Description
SID[15:0] Output The Sid of the matched

rule
SID_VLD Output Sid valid signal

3.6.4. Subsystems

• Transform No Case: Transforms the Data In uppercase characters to lower-
case.

• Fan-Out Tree: A register tree that used to broadcast its input Data to 16
registered copies in order to achieve the desired timing clock.

• Header Compare: Compares the header vector with predefined values and
outputs a registered signal for each matched value.
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• Content Compare: Compares the Data from the shift registers with predefined
content text. This module will be described in detail in section 3.7

• Inverse Priority Encoder: A inverse priority encoder that encodes in 3 stages
4096 signals to 12bit. The Encoder is described in section 3.8

• Decoder: Decodes the 12 bit address of the Sid Rom back to 4096 signals that
indicate which rule register was sent.

• Sid Rom: A single port Rom has been used to store the sid values of the rules.

• Is New Frame: Is a register with added simple logic. The register’s output is as-
serted high only when a new Frame Valid signal is raised. This is implemented
by setting the input of the register as (Frame_vld and not prv_Frame_vld).

3.7. Content Compare

Figure 3.11.: Content Compare example datapath

3.7.1. Description

The block diagram of Figure 3.11 is an example for text match inside the payload
of the received packet. Snort has also a modifier keyword “rawbytes” that allows
rules to look at the raw packet data, ignoring any decoding that was done (see Snort
Manual Rawbytes), this is not currently supported by our system.

To check for specific strings we use parallel comparators. This is anded with a logic
that controls if the shift registered data is in the payload. We want the first and the
last byte of comparison to be inside the payload.
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3.8 Inverse Priority Encoder

The shift register pairs of Data in and Data in payload feed 15 comparators and
and gates respectively. Our system supports up to 256 shift register pairs for each
fan-out tree, that means 3840 comparators.

3.8. Inverse Priority Encoder

Figure 3.12.: Inverse Priority Encoder Datapath

3.8.1. Description

The Inverse Priority Encoder is responsible for taking the registered rule match
signals and encode them in order to find the smallest active rule id. We used a 3-
Stage pipeline encoder with 16-to-4 encoders and 16-to-1 variable width multiplexers
instead of using a very large single cycle 4096-to-12 priority encoder (this would be
too slow and probably not meet timing constraints). Figure 3.12 shows the datapath
of our encoder.
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To avoid making the datagram illegible we assume that clock signal is routed to the
registers and reset to the registers and multiplexers. This encoder supports up to
4096 input signals and the output result (12 bit) is active after three cycles.

In the first level we have only encoders which encode 16 sequential input bits. When
at least one input bit is high ’1’ the Active encoder output is asserted high, otherwise
it is set to zero. In this level we can have at most 256 encoders.

In the second and third level a multiplexer is paired to every encoder. Each encoder
in this level encodes (in groups of 16) the Active output signals of the previous level.
The paired multiplexer uses the data output of the encoder as a select vector and
selects among the corresponding 16 encoded data outputs of the previous level. In
second level at most 16 encoders and 4-bit 16-to-1 multiplexers are used, while in
the last third level only one encoder and one 8-bit 16-to-1 multiplexer is used.

In every stage when the input signal are not equal to multiple of 16, the remaining
input signals of the last encoder and multiplexer will be padded with zeros.

3.8.2. Input Signals

Table 3.11 shows the input signals of the encoder.

Table 3.11.: Inverse Priority Encoder Inputs

Signal Direction Description
CLK Input Clock signal
RESET Input Reset signal
RULE_MATCH[N:0] Input Rule signals that indicate a

match

3.8.3. Output Signals

Table 3.12 shows the output signals of the encoder.

Table 3.12.: Inverse Priority Encoder Outputs

Signal Direction Description
Active Output Active signal that indicates

when the output address is
valid

SID_ADDRESS[11:0] Output ID address of the active
rule
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3.9. Packet Transmitter

Figure 3.13.: Datapath of Packet Transmitter

3.9.1. Description

Packet Transmitter is used to transmit the Sid value of the matched rules. Figure 3.13
shows the data path of the transmitter. In order support more than one incoming
Sid values while at the same time a packet is transmitted, we use a FIFO memory to
store the data to be sent. This memory has 12bit width and 1024 write depth. The
inputs of the transmitter are the outputs from Rule Match module (SID, SID_VLD)
and are connected to Data in and Data in vld.

Figure 3.14.: FSM of Packet Transmitter

A FSM is used to control an 8bit 3-to-1 multiplexer, signals SRC_RDY, SOF and
EOF. Figure 3.14 represents the function of the FSM. When reset or FIFO is empty
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the FSM is in its initial state wait_data. Otherwise the read_en signal is asserted
requesting data from the memory. The multiplexer selects the first byte of data
out to be send and SOF & SRC_RDY signals are tied low so that the Ethernet
MAC wrapper begins the transmission of a new valid frame. In the next cycle if
DST_RDY is zero we continue the transmission with the second byte of data. When
and the second byte has been sent we pad the remaining packet with zero bytes and
in the last byte transmitted EOF is set zero, so that the wrapper indicates the end
of packet.

3.9.2. Input Signals

Table 3.13 shows the input signals of packet transmitter.

Table 3.13.: Packet Transmitter Inputs

Signals Direction Description
CLK Input Clock signal
RESET Input Reset signal
DATA_IN[11:0] Input Data in from rule match

module (SID data)
DATA_IN_VLD Input Data in valid signal from

rule match module
(SID_VLD)

DST_RDY Input Transmission Destination
ready signal from Ethernet
Mac wrapper

3.9.3. Output Signals

Table 3.14 shows the output signals of packet transmitter.

Table 3.14.: Packet Transmitter Outputs

Signals Direction Description
SRC_RDY Output Source ready signal to

transmitter wrapper
SOF Output Start of frame indicator
EOF Output End of frame indicator
DATA_OUT[7:0] Output Data out to Ethernet Mac

wrapper transmitter
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3.10. Automated Code Generation

Figure 3.15.: Automated Code Generation system overview

3.10.1. Description

The Automated Code Generator is a program written in C, Flex and Bison that
creates the vhdl file for Rule Match module (see section 3.6) and a “SID_ROM.coe”
file for Sid ROM initialization. The input ruleset passes through a Lexical ana-
lyzer and grammar parser, to create a Rule List structure. Figure 3.15 is a general
overview of the code generator while Figure 3.16 represents the schematic structure
of the Rules List.

When the code generator is called with a ruleset file as parameter it sets the lexer
to read from the file in other case from the standard input. Thereafter we call the
parser which purpose is to validate syntax of the input using the tokens that the
lexer returns. The parser also combines the data returned from the lexer to create
a valid rules list. The parser and lexer support the whole rules syntax as described
in the Snort Manual. Options that are not supported by our hardware system are
parsed but their data is never used.

RULES Library is a very important library used in all the code files. This library
contains the rule structure and basic functions, such as list manipulation and ex-
traction functions. The lexer creates ip, port or option nodes with the data matched
and returns the token found. Then the parser assumes to join this nodes into lists
and create rules. For example the following rule would create the tokens and return
nodes as described below.
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# A simple comment row
alert tcp any any -> 192.168.1.1 [80, 443] (sid:123; content:”Hello World”; nocase;)

# Token Returned Value
1 COMMENT -
2 ACTION ALERT
3 TCP -
4 ANY -
5 ANY -
6 “->” -
7 IP_ADDR headerNode with data = ipNode,

address = x”C0A80101” and cidr
= 32

8 “[” -
9 PORT headerNode with data =

portNode, port1 & port2 = 80
10 PORT headerNode with data =

portNode, port1 & port2 = 443
11 “]” -
12 “(” -
13 OPTION optionNode with data = int, sid

= 123
14 OPTION optionNode with data =

optContent, string = “Hello
World”, len = 11

15 NOCASE -
16 “)” -

The parser with the above example would check if the tokens are placed in the right
order and create a rule from the extracted data. Append the two ports to create a
list, set the nocase value of the second option “true” and append the two options to
a list.

The Main function calls the “rules2vhdl” function and passes the rule list. This
function will at first create unique lists of ip addresses, port addresses, content
options1, itype and ip_proto from the given rules list and then call functions for
each list created to write in the output file the generated vhdl code.

Back again to the main this time it calls “rules2vhdl_sid” function to create a coe
file with the sid values of the rules.

1The unique content list is also sorted so that the created but unused shift registers will be
trimmed by the vhdl synthesis tool efficiently.
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Figure 3.16.: Rule structures

In order to change the default variables of Snort for: • $HOME_NET

• $EXTERNAL_NET

• $DNS_SERVERS

• $SMTP_SERVERS

• $HTTP_SERVERS

• ...

,

we have to edit the rules.c file, set the desired values and recompile the code.

3.10.2. Inputs - Outputs

The input file to the code generator is a Snort compatible “.rules” file or if no file is
given the STD IN.
The output files are the rule match module and a initialization “.coe” file for the Sid
Rom.
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4. Results

4.1. Introduction

This chapter presents the implementation results for a specific rule configuration,
the performance of the system, how this was calculated and the evaluation method
of measuring the results accuracy.

4.2. Rule Configuration

The configuration of the symbolic variables used in the snort rules (e.g $HOME_NET,
$EXTERNAL_NET) were:

• $HOME_NET: set to 147.27.3.0/24 (cidr is 24, that means we are interested
only in the first 24 bits of the IP address)

• $EXTERNAL_NET: set to !HOME_NET
• $HTTP_SERVERS: set to 147.27.4.0
• $TELNET_SERVERS: set to 147.27.5.0
• $SMTP_SERVERS: set to 147.27.6.0
• $DNS_SERVERS: set to 147.27.7.0
• $SQL_SERVERS: set to 147.27.8.0
• $SSH_SERVERS: set to 147.27.9.0
• $FTP_SERVERS: set to 147.27.10.0
• $SIP_SERVERS: set to 147.27.11.0
• $AIM_SERVERS: set to the same values used by Snort. These are IP ad-

dresses 64.12.24.00/23, 64.12.28.00/23, 64.12.161.0/24, 64.12.163.0/24, 64.12.200.00/24,
205.188.3.0/24, 205.188.5.0/24, 205.188.7.0/24, 205.188.9.0/24, 205.188.153.0/24,
205.188.179.0/24 and 205.188.248.0/24

• $HTTP_PORTS: set to 10 ports. These are ports 80, 81, 8000, 8008, 8014,
8028, 8080, 8088, 8800 and 8888

• $SHELLCODE_PORTS: set to !80
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• $ORACLE_PORTS: set to 1024

• $SSH_PORTS: set to 22

• $FTP_PORTS: set to ports 21, 2100 and 3535

• $SIP_PORTS: set to ports 5060, 5061 and 5600

A sub-set of 750 rules of the whole Snort-2.9[16] ruleset was used in this work.

To represent the statistical data of the rules with the above configuration we use
histograms for the number of ports used by rules and the number of searching
contents in rules (Figure 4.1). As we can see, most of the rules search for only one
port or for ten, this occurs because of the variable “$HTTP_PORTS” which has
ten ports. Rules have from zero up to six searching contents. Almost all the rules
search on two ips ($EXTERNAL_NET and $HOME_NET).
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Figure 4.1.: Statistical data of rules

Ports have fixed 16bit length, while the ip addresses length is variable which depends
on the cidr variable. On the other hand the searched content has big variance in its
length (146.7). In our implemented ruleset, contents have a size between 1 and 109
bytes. Figure 4.2 shows a histogram of the 1062 content’s size with a summary of
12803 characters, used by the implemented rules. Table 4.1 presents the statistical
infotrmation of the contents.
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Figure 4.2.: Size of contents in bytes

Table 4.1.: Content Statistics

Num. of Contents 1062
Min Length 1
Max Length 109
Mean Length 12.1

Median Length 9
Variance 146.7

Sum of Chars 12803

4.3. FPGA Implementation

The design was implemented in a Genesys™ Virtex-5 FPGA Development Board[1].
This board has aVirtex-5 LX50T FPGA with 28800 6-input LUTs/FFs. Due to the
limited capacity of our FPGA, only a fraction of the default Snort rule set could be
implemented in the development board. We implemented a rule set of 750 rules and
utilized 28018 LUT Flip Flop pairs out of the available 28800 (97,3%) and 99% of
the slices. Table 4.2 shows the LUT usage of individual components.
To optimize the design we used the following parameters, optimization goal to “area”,
register duplication “true” and remove equivalent register to “false”. Flag “remove
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Table 4.2.: LUT Utilization

Component #LUT
Wrapper 409
Decoder 291

Match Mod. 27209
Packet Trans. 109

equivalent registers” is important to be set “false” in order the “place and route”
process to implement the design.
With a 2.1GHz processor the compilation time of the design was:

• '15min for Synthesize with XST

• '13min for mapping

• '25min for Place and Route

4.4. Performance

The implemented design is a real time system which operates on Gig-Ethernet speed
with a 125Mhz clock. It does not delay the receiving frame at no point, this means
that the throughput is depended on the ability of the transmitter to send data to
our system.
Taking into account the minimum interframe gap (12 bytes) -as specified by IEEE
Std 802.3- for full duplex systems , preamble (7 bytes), start of frame delimiter (1
byte) and mac layer (18 bytes), we calculated the data transfer speed of an ideal
transmitter as follows. The IP packet size varies from 46 to 1500 bytes, with 38
Ethernet overhead bytes as previously mentioned.

tr_speed = IP _packet_size
38+IP _packet_size

1000Mbit/sec

Figure 4.3 shows the maximum Ethernet Payload data rate in relation to the IP
packet size sent by an ideal Gigabit Ethernet transmitter.
All rules are matched at wire speed, generating an Ethernet frame of 46 bytes
containing the sid of the matched rule. In the case of multiple match the sid’s of
the rules matched are transferred to the transmitter fifo-memory at a rate of one
sid every four cycles. This means that in the worst case of a multiple match at the
end of an IP frame with another frame following by a 38 byte gap, it will manage
to store 9 sid values to the transmitter fifo. Because of the inverse priority encoder
only the 9 sid’s with the smallest values1 will be transmitted.

1We have to take into account that when writing rules, the most important ones should have
lower values
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Figure 4.3.: Data Rate of an IP packet on Gigabit Ethernet

4.5. Evaluation

The evaluation of the results was done by hand, creating packets that met the given
rules using an open source program Packeth-1.6 and a network analyzer Wireshark
to receive the sent packet from the FPGA board. The (16 bit) received “sid” was
compared to the actual “sid” of the rule which the created packet met, with 100%
accurate results.

Figure 4.4.: Setup used to test the design
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5. Conclusion
In this diploma thesis, we have presented a complete DPI system that works on
GigE wire speed compatible with Snort rules. A physical interface and a MAC
wrapper are responsible for the data exchange on network. Packet receiver decodes
“network” and “transport” layers. A pattern matching module that searches strings
in the payload of a packet and specific header values has been presented.
The background of Deep packet inspection systems, why they are used and the
advantages - disadvantages of software and hardware implementations was described
in chapter 2.
We presented on chapter 3 a DPI-on-a-chip architecture with network interface
working on wire speed 1Gbps.
Results have been presented in chapter 4, for a rule-set of 750 rules implemented in
a V5-LX50T utilizing the 97,3% of the available LUTs.

Future Work

There is a variety of opportunities for future work. Our architecture uses parallel
comparators to match patterns on the incoming data, this has a good performance
in speed, but on the other hand a large area cost. Better algorithms could be used,
such as the optimized discrete comparators I. Sourdis proposed in his work[17].
Furthermore, another physical medium could be used such as the XGMII and extend
the input data vector to 32 bits. If the design achieves a clock rate of 152,25MHz
(currently 125MHz), it would have a throughput of 5Gbps.
The compatible Snort ruleset could be extended to support more options such as:

• rawbytes: The rawbytes keyword allows rules to look at the raw packet data,
ignoring any decoding that was done. This acts as a modifier to the content
keyword.

• depth: The depth keyword allows to specify how far into a packet should be
searched for a specified pattern.

• pcre: The pcre keyword allows rules to be written using perl compatible
regular expressions.

Last but not least, FPGA - Power PC co-design could be used to manage session
layer options (e.g. flow:to_server,established;) or to join fragmented packets.
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A. Snort Rules

A.1. Introduction

Like viruses, most intruder activity has some sort of signature. Snort’s detection
system is based on rules which in turn are based on intruder signatures. A rule may
be used to generate an alert message, log a message or drop the data packet. Snort
rules are written in an easy to understand syntax.

This chapter provides information about the structure of a rule, a short description
of the basic functions and what our system supports.

A.2. Structure of a Rule

All the rules have the following structure:

Action Protocol Address Port Direction Address Port (Options)

A Snort rule has two logical parts the rule header and rule options.

The rule header contains information about what action should be taken and on
what protocol the rule applies. It contains also the source and destination address.
In case of TCP or UDP protocol, the port determines the source and destination
ports of a packet on which the rule is applied.

The part of the rule enclosed by the parentheses is the options part. This part
usually contains an alert message, a sid number that uniquely identifies Snort rules
and more specific information about the signature of suspicious packets.

An example of a (very bad) rule, that alerts on every ip packet sent or received:

alert ip any any -> any any (msg: “IP Packet detected”;)

More information about Snort rules can be found in the Snort Manual[3].
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A.3. Supported Rules

The rule description language (as defined by Snort) can be parsed by our code
generator tool, but only a subset is functionally supported by our system.
More specifically, the rule options that functionally work in our design are:

• sid: The sid keyword is used to add a “Snort ID” to rules. The only argument
to this keyword is a number. The sid value is used by our system as the output
value of the matched rule. Syntax: sid:<snort rules id>;

• ip_proto: The ip_proto keyword is used to determine the protocol num-
ber that follows an IP header. The keyword requires a protocol number as
argument. Protocol numbers are defined in RFC 1700 at http://www.rfc-
editor.org/rfc/rfc1700.txt. Syntax: ip_proto:[!|>|<] <number>;

• itype: The ICMP header comes after the IP header and contains a type field.
The itype keyword is used to detect attacks that use the type field in the ICMP
packet header. Syntax: itype:min<>max; or itype:[<|>]<number>;

• content: One of the most important features of Snort is the ability to find
patterns inside a packet. The content keyword is used to find intruder signa-
tures in the packet. The pattern may be an ASCII string or a binary data in
the form of hexadecimal data. Syntax: content:[!]"<content string>";

• nocase: The nocase keyword is used in combination with the content keyword.
It has no arguments. Its only purpose is to make a case insensitive search of
a pattern within the data part of a packet. Syntax: nocase;

One or more options may be used simultaneously in a rule. The multiple options
form a logical AND. Rules can contain more than one searching contents and the
nocase modifier is applied to each content separately.
All the header rule parts (as defined by Snort) are supported:

• Action: This part shows what action will be taken when rule conditions are
met. The keywords used are: pass, log, alert, activate and dynamic.

• Protocol: The protocol part shows on which type of packet the rule will be
applied. Supported protocols are IP, ICMP, TCP and UDP.

• Address: The two address parts are used to check the source and destination
address of the packet. It can be a single IP, a network address or the keyword
any if the rule applies to all the addresses. (e.g. 192.168.1.0/24 or 147.27.3.1
or a list [147.27.3.1 192.168.1.0/24]).

• Port: Port number is meaningful only for TCP and UDP protocols. The two
ports are the source and destination port of the packet. It can be a single
port (e.g. 80) a port range (e.g. 1024:1050) a list (e.g [80 1024:1050]) or the
keyword any.

• Direction: Symbol that indicates the direction of source and destination
addresses and ports (e.g. src -> dest, dest <- src and src_dest <> src_dest).
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B. Packet Header Formats

B.1. Overview

Snort rules use the protocol type field to distinguish among different protocols.
Various header parts in packets are used to identify the protocol type used in a
packet. Furthermore, rule options such as (ip_proto and itype) can test some of the
header fields. The purpose of this appendix is to explain the headers of different
protocols used in Snort rules. The packet header formats are very important to
understand the function of the packet receiver and decoder of our design and also
useful for writing effective Snort rules.

B.2. IP Packet Header

The default IPv4 header consists of 20 bytes. An option part may be presented after
the first 20 bytes of the header and can be up to 40 bytes long. Figure B.1 presents
the IP header structure.

V IHL TOS Total Length

ID Frag OffsetF

ProtocolTTL Header Checksum

Source Address

Destination Address

Figure B.1.: IP header

More information can be found in RFC 791 at http://www.ietf.org/rfc/rfc791.txt.
Table B.1 is a brief explanation of the IP packet header fields.
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Chapter B Packet Header Formats

Table B.1.: IP Packet Header Fields

Field Description
V Version number. The value is 4 for IPv4. Four bits are

used for this part
IHL This field shows length of IP packet header. This is

used to find out if the options part is present after the
basic header. Four bits are used for IHL and it shows
length in 32-bit word length. The value of this field for
a basic 20-bytes header is 5.

TOS This field shows type of service used for this packet. It
is 8 bits in length.

Total Length This field shows the length of the IP packet, including
the data part. It is 16 bits long.

ID This field packet identification number. This part is 16
bits long.

F This part is three bits long and it shows different flags
used in the IP header.

Frag Offset This part is thirteen bits long and it shows fragment
offset in case an IP packet is fragmented.

TTL This is time to live value. It is eight bits long.
Protocol This part shows transport layer protocol number. It is

eight bits long.
Header Checksum This part shows header checksum, which is used to

detect any error in the IP header. This part is sixteen
bits long.

Source Address This is the 32 bit long source IP address.
Destination Address This is the 32 bit long destination IP address.

B.3. ICMP Packet Header

Internet Control Message Protocol is a network layer protocol that uses the basic
support of IP as if it were a higher level protocol. Figure B.2 shows the basic
structure of ICMP header. Note that depending upon type of ICMP packet, this
basic header is followed by different parts.

CodeType Checksum

ICMP Information

Figure B.2.: ICMP header
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B.4 TCP Packet Header

Table B.2 provides an explanation of the basic ICMP header fields.

Table B.2.: ICMP Packet Header Fields

Field Description
Type This part is 8 bits long and shows the type of ICMP

packet.
Code This part is also 8 bits long and shows the sub-type or

code number used for the packet.
Checksum This part is 16 bits long and is used to detect any

errors in the ICMP packet.

The ICMP information field is variable depending on the ICMP type field. Figure B.3
shows an ICMP ECHO REQUEST used for the ping command.

CodeType Checksum

Identifier Sequence Number

Figure B.3.: ICMP Echo Request Packet

ICMP protocol details are explained in RFC 792 at http://www.ietf.org/rfc/rfc792.txt.

B.4. TCP Packet Header

Transmission Control Protocol is a transport layer protocol, encapsulated in a IP
packet. TCP packet header is described in detail in RFC 793, available on the web
at http://www.ietf.org/rfc/rfc793.txt. Figure B.4 shows the TCP header structure.

Source Port Destination Port

Sequence Number

Acknowledgement Number

Offset

Checksum

FlagsReserved Window

Urgent Pointer

Options and Padding

Figure B.4.: TCP header

The basic TCP header length is 20 bytes. A variable options field may be presented.
Header parts are explained in Table B.3.
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Chapter B Packet Header Formats

Table B.3.: TCP Packet Header Fields

Field Description
Source Port This part is 16 bits long and shows source port number.
Destination Port This is a 16-bit long field and shows the destination

port number.
Sequence Number This is the sequence number for the TCP packet. It is

32 bits long. It shows the sequence number of the first
data octet in the packet. How- ever if SYN bit is set,
this number shows the initial sequence number.

Acknowledgement
Number

This number is used for acknowledging packets. It is
32 bits long. This number shows the sequence number
of the octet that the sender is expecting.

Offset This is a 4- bit field and shows the length of the TCP
header. Length is measured in 32-bit numbers.

Reserved Six bits are reserved.
Flags or Control bits The flags are six bits in length and are used for control

purposes. These bits are URG, ACK, PSH, RST, SYN
and FIN. A value of 1 in any bit place indicates the
flag is set.

Window This is 16 bits long and is used to tell the other side
about the length of TCP window size.

Checksum This is a checksum for TCP header and data. Its 16
bits long.

Urgent Pointer This field is used only when the URG flag is set. It is
16 bits long.

Options This part has variable length.

B.5. UDP Packet header

User Datagram Protocol is transmission layer protocol encapsulated in an IP pro-
tocol. The UDP header is very simple, it has four field as shown in Figure B.5.

Source Port Destination Port

Length Checksum

Figure B.5.: UDP packet header

Table B.4 describes the header fields of a UDP packet.
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B.5 UDP Packet header

Table B.4.: UDP Header Packet Fields

Field Description
Source Port This part is 16 bits long and shows source port number.
Destination Port This is a 16-bit long field and shows the destination

port number.
Length A 16-bit long field that specifies the length in bytes of

the entire datagram: header and data.
Checksum This part is 16 bits long and is an optional checksum,

if not used the field must be all zeros.

More information about UDP packets can be found in RCF 768, available on the
web at http://www.ietf.org/rfc/rfc768.txt.
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