
Technical University of Crete, Greece

Department of Electronic and Computer Engineering

Implementation of a Client-Server Mashup System

using the Android Platform

Georgios Komninos

Thesis Committee

Professor Minos Garofalakis

Professor Stavros Christodoulakis

Assistant Professor Antonios Deligiannakis

Date

Georgios Komninos

Abstract

In today’s world, Web services offer great opportunities so that

applications of different kinds may interact and produce modern and

more sophisticated products. The mashup programming paradigm is

a perfect example of how to combine such services in order to achieve

a dynamic interaction with ease and flexibility. Moreover, mobile de-

vices have invaded our everyday life more than ever, offering attractive

features such as larger displays, powerful CPUs, GPS sensors and fast

internet access using 4G networks. This thesis suggests a methodol-

ogy on how to take advantage of the mashup programming paradigm

using the conveniences of a mobile device. Following the mashup con-

cept, we propose a simple way to access data from different sources

in a mobile device and offer the ability to use that data in order to

produce sophisticated mobile applications.

Georgios Komninos

Contents

1 Introduction 1

1.1 Thesis contribution . 1

1.2 Thesis Outline . 2

2 Background and Related Work 3

2.1 Mashups . 3

2.2 Mobile Applications[2] . 4

2.3 Related Work . 5

3 Mashup Platforms 7

3.1 Current State . 7

3.2 Platform Selection . 8

3.3 Apatar’s Architecture . 9

3.3.1 Core Engine . 9

3.3.2 Connectors . 11

3.3.3 GUI and Data Representation Layer 11

3.3.4 Extensibility . 11

4 Mobile Operating Systems 13

4.1 Current State . 13

4.2 Mobile OS Selection . 15

4.3 Android Application Fundamentals[7] 17

4.3.1 Application Components 19

4.3.2 Activating Components 22

4.3.3 The Manifest File . 23

4.3.4 Application Resources 23

5 Apatar Android Version 25

5.1 Client . 26

5.2 Server . 28

5.3 Functionality . 31

6 Demonstration 34

7 Conclusions and Future Work 42

References 44

List of Figures

3.1 Apatar’s architecture . 10

4.1 Android architecture . 17

4.2 Android application components 20

5.1 Client-server interaction . 25

5.2 Application homepage . 26

5.3 Connector selection screen . 27

5.4 Example of connector properties input-MySQL connector . . . 28

5.5 Record source selection screen 29

5.6 MySQL connector added . 30

5.7 List of operations screen . 32

5.8 Enter join operation details screen 33

5.9 Qualifying attributes screen 34

6.1 The mashup application . 35

6.2 Application homescreen . 36

6.3 Route to next destination . 37

6.4 All destinations . 38

6.5 Android MySql connection . 39

6.6 Selecting a destination . 40

6.7 Symbol explanation . 41

Georgios Komninos

1 Introduction

1 Introduction

Nowadays, the continuous growth of the Internet and related technologies,

has made possible the interaction of heterogeneous data and different existing

Web services. That interaction maximizes efficiency and extends the limit

of possible service combinations. Currently, a single application may well

perform the same workload that in the past required manual interaction of

many different applications and do it rapidly, automatically and therefore

more effectively.

The mashup paradigm also favors the continuous development of new Web

services to cover the ever more demanding needs of Web users. These new

Web services are, in reality, the combinations of already existing Web services

that interact in order to produce their results quickly and straightforwardly.

While the required data was already available since long ago, what was miss-

ing was a tool that would allow developers to access the data and make it

work altogether. The mashup approach offers the opportunity to compose

data quickly and with as little effort as possible, even by end-users with either

very limited or even no programming expertise.

On the other hand, another ever-growing trend of today is the use of

mobile devices. Smartphones and tablets with their new impressive features

are used more and more to the point that they can almost substitute the use

of PCs or laptops, especially in the everyday use of a non-expert user and

the trivial tasks that they need to perform. The current range of available

mobile applications is rich and fulfills the needs of an average user, but having

the ability to use the mashup programming paradigm in mobile applications

would greatly increase the variety.

1.1 Thesis contribution

In this thesis we attempt to offer mobile application developers the op-

portunity to take advantage of the privileges of mashups. We develop an

application that makes it possible to implement mashups on Android mobile

Georgios Komninos Page 1 of 45

1.2 Thesis Outline

devices, using Apatar platform for data integration. This way any developer

can create through their mobile device or emulator the datamaps that are

required for the application they have in mind. Then, using a Java class

that we provide they can use the output files of the application in order to

implement an application of their desire. That way, we believe that we can

expand the already existing capabilities of mobile devices and offer mobile

users more sophisticated applications.

1.2 Thesis Outline

The remainder of this thesis is organized as follows. In Chapter 2, we

present the background and related work to our project. We introduce the

mashup prorgamming paradigm as well as an introduction to moblie appli-

cations. Chapter 3, briefly introduces the most popular mashup platforms

that are used today and explains the reasons behind our choice of Apatar as

our core platform on which we will add the mobile device capability. Chap-

ter 4 consists of a presentation of the best-known mobile device operating

systems and a documentation about why we chose to work with Android. In

Chapter 5 we present the implementation of our mobile version of Apatar

and in Chapter 6 we demonstrate it by using it to produce a mobile mashup

application. Finally, in Chapter 7 we discuss the conclusion and the future

work for our project.

Georgios Komninos Page 2 of 45

2 Background and Related Work

2 Background and Related Work

2.1 Mashups

The Internet and related technologies have created an interconnected

world in which we can exchange information easily, process tasks collabo-

ratively and form communities among users with similar interests to achieve

efficiency and improve performance. Web services are emerging as a ma-

jor technology for deploying automated interactions between distributed and

heterogeneous applications and for connecting business processes which might

span companies’ boundaries. As a result, there is an emerging need for

users to combine multiple services and data sources to best serve their goals.

Mashups are applications developed specifically to satisfy that need.

The purpose of mashups is to allow users to control data in a self-service

way, without any interference of experts in order to produce a result that

would be perfectly suited to the individual needs of each user. As implied,

a mashup should be easy to implement, so that the experts’ interference is

unnecessary, and reusable in order to reduce the time and effort needed to

develop similar mashups over and over again.

In order to demonstrate the effectiveness of mashups, we present their use

in a product delivery service. Assume that a courier company is responsible

for delivering products from different e-shops. Each e-shop has its stores in

different locations in a city so that the employees of the courier company have

to visit all the locations before they deliver their orders. Considering that

different e-shops may use different DBMS to store their records it would be

impossible for the courier company that works together with all of them to

use all the data in a homogeneous way. Using a mashup, the courier company

can access data from its database and integrate it with all the different DBMS

of its partners in a universal environment, that way, saving time and effort.

Georgios Komninos Page 3 of 45

2.2 Mobile Applications[2]

2.2 Mobile Applications[2]

In the past couple of years we have witnessed tremendous growth in mo-

bile users all over the world as the entry of smartphones in the market at

affordable prices has augmented their usage. We have experienced a major

shift in the way we access the internet today with mobiles becoming the pri-

mary access point for internet usage. In today’s fast paced world, phones

are not used just for calling, playing games etc. but with smartphones we

can schedule our complete day, check emails, make conference calls, connect

using social network and perform a host of other activities.

The growth of mobile phone market has generated a huge demand for var-

ious mobile applications. Numerous mobile phone applications are available

that simplify various tasks for the users due to which we saw an accelerated

growth of software/application development for mobile devices. Mobile ap-

plication development is the course of action by which application software

is designed and developed for hand-held devices like mobile phones, tablets

etc.

Earlier mobile developers face many difficulties while writing applications

as they had to build better, unique, competing and hybrid applications which

would incorporate command tasks like messaging and contact list calling in

a user friendly manner. The launch of Android smartphones in the market

brought a revolution in Mobile Application Development. If you have some

basic knowledge about scripting and coding you can start building your own

applications and as a result Mobile Application Development was never as

easy as it is now.

Every mobile phone company platforms like Android, Apple iPhone OS,

Rim, Blackberry OS, Symbian Os provide their own SDK (Software Devel-

opment Kit) to the developer enabling them to create applications and even

publish them to the world at the provided market.

Considering the current market trends online businesses like web host-

ing, shopping, job portals, etc. have developed mobile applications for their

Georgios Komninos Page 4 of 45

2.3 Related Work

clients to provide better services. As per market research experts there were

8.2 billion mobile app downloads in 2010 globally and is expected to reach

76.9 billion in 2014.

2.3 Related Work

To our knowledge, there has not been much work on using the mashup

programming paradigm on a mobile platform. The only two similar projects

we are aware of are The TELAR Mobile Mashup Platform for Nokia Internet

Tablets described in [3]and the Dynamic Mashup Platform for Mobile Web

Applications described in [4].

The TELAR Mobile Mashup Platform for Nokia Internet Tablets was, in

our knowledge, the first complete idea of combining mobile devices, tablets

in this case, with mashup applications. The implemented program was a

map-based application in which maps were obtained from Google Maps [4],

other kind of data such as WLAN access point locations and pictures of the

specific places were obtained by other services and using the GPS sensor of

the mobile device, it presented the local points of interest which were updated

as the user was moving.

[4] was the first attempt to implement a dynamic mashup platform which

was adapted according to the user’s preferences. Two significant assumptions

are made in order to implement this idea. Firstly, it is assumed that the

mashup relations, such as the connection between the location of a place on

the map and pictures of the place, are already known. Secondly, the user

preferences are specified by by their usage patterns or programmed by the

user-specified setting and therefore according to these preferences a list of

mashups is proposed. After the user selects the target services or categories,

a mashup engine generates recommendations of possible mashup services and

finally the user selects the specific mashup service of their desire.

The main difference between the two projects and our work is that our

work is a general purpose application. Although it does not straightly pro-

Georgios Komninos Page 5 of 45

2.3 Related Work

duce an application ready for use, it provides the mashup infrastructure to

implement any application a user desires according to their needs. This is

achieved by taking advantage of the conveniences of a mashup platform that

is already implemented for desktop computers in a mobile environment.

Georgios Komninos Page 6 of 45

3 Mashup Platforms

3 Mashup Platforms

3.1 Current State

Many mashup tools have been developed to support the creation and ex-

ecution of both consumer-focused and enterprise mashup applications. Here,

we briefly introduce some of the most popular tools, which are more exten-

sively analyzed in [4,5].

• Yahoo! Pipes1 (developed by Yahoo! Inc.) is a Web-based, consumer-

oriented mashup platform. Mashups here called pipes = are created by

connecting widgets provided by the platform. Currently data from Web

feeds, Web pages and other services like flickr2, can be mashed. Output can

be accessed by a client as RSS or JSON, or can be visualized on a Yahoo!

Map, or through an HTML page.

• Damia [8],[12] is an enterprise-oriented mashup platform developed by

IBM. It enables users to create mashups by assembling data feeds from In-

ternet as well as enterprise data sources. It mainly focuses on data feed

aggregation and allows additional tools like feed readers to be used at the

presentation layer for the data feeds that it provides.

•Apatar is a mashup data integration platform developed by Apatar Inc.

It allows users to aggregate and integrate locally-stored data with the Web by

using visual editor to create mashups. Apatar mainly aims in manipulating

data that will be used from other applications and this its output can be

consumed by external tools.

• Exhibit [9] is a framework for creating web pages with dynamic and

rich visualizations of structured data. It enables its users to aggregate data

obtained in various formats, like RDF/XML and Bibtex. Exhibit uses HTML

pages as output but it also provides functionality for exporting its output to

different formats, such as RDF/XML or Exhibit JSON.

1http://pipes.yahoo.com/pipes
2http://www.flickr.com

Georgios Komninos Page 7 of 45

3.2 Platform Selection

• MashMaker [10],[11] is an interactive Web-based tool developed by

Intel Corporation for editing, querying, manipulating and visualizing semi-

structured data. It differs from other tools in the sense that it works directly

on Web pages and allows users to create mashups when browsing by com-

bining content from different Web pages. The final goal of MashMaker is

to suggest mashups or widgets for the visited Web pages, that the user may

want to use.

There are certainly many more mashup tools and platforms currently

available, but describing and analyzing them is beyond the scope of this

thesis.

3.2 Platform Selection

The goal of our work is to give mobile device users the opportunity to

take advantage of the mashup paradigm and use it to develop sophisticated

applications that perfectly match their demands. We wanted our application

to be easy to use as we want it to be used from people with merely basic

knowledge of scripting and coding. Therefore we believed that a platform

that offers a visual editor to the users and involves limited coding would be

an ideal choice.

Apatar is a mashup data integration tool that best meets our needs for sev-

eral reasons. First of all, it essentially uses the mashup paradigm to support

data integration. It provides a visual job designer through which the user

may intuitively connect widgets to create a data integration schema. The

fact that at worse very limited coding is needed in order to use it enables the

platform to be used by people with very limited technical knowledge. Apatar

also provides mechanisms called connectors for accessing and manipulating

data stored locally or data from corporate resources. Additionally, connec-

tors for accessing content on the Web, such as RSS feeds and some popular

Web 2.0 APIs as Flickr, Salesforce.com and amazon Simple Storage Service

(Amazon S3) are provided. Therefore, one can access data stored in spread-

sheet documents in a local hard drive and mash it with data residing in a

Georgios Komninos Page 8 of 45

3.3 Apatar’s Architecture

corporate database or even data stored in the cloud (eg. in Amazon S3). This

feature also qualifies Apatar as a potential enterprise-oriented mashup tool.

Finally, Apatar supports operators for manipulating data by performing ag-

gregations, filtering, joins, transformations and so on. Hence, we concluded

that as far as functionality is concerned, this set of capabilities makes Apatar

a good choice as a base to start building on.

However, there are also some technical aspects that we had to consider.

The most important one is the source code availability. Apatar is open source

software, distributed under the GNU General Public License (GPL). This is

a key feature because it allows us to actually use its source code, modify

it and extend it to meet our goals. We must note here, that Apatar is

one of the very few options offering source code availability since the source

code of most mashup platforms is not publicly available. Another significant

feature is that Apatar’s source code is very well structured thus simplifying

the procedure of reading and understanding it, which is necessary in order

to modify it and extend it. Finally, Apatar is designed to be extensible,

and thus, it provides a standard procedure for the developer to create new

functionality and plug it in the core application engine. These features, as

well as those mentioned in the previous paragraph, make Apatar the best

available choice for a starting point for our work.

3.3 Apatar’s Architecture

Apatar is an open source Extract Transform and Load (ETL) project. As

illustrated in Figure 3.1, it is structured in three basic components: The core

component, the connectors’ component and the user interface component.

3.3.1 Core Engine

The core component consists mainly of the application’s ETL engine,

which is where the actual data processing takes place. For every operation,

Georgios Komninos Page 9 of 45

3.3 Apatar’s Architecture

Figure 3.1: Apatar’s architecture

data is retrieved from one or more data sources through the connectors’ com-

ponent and is transformed to tuples in Apatar’s internal database. In this

form, data is processed by the application’s engine, and then loaded again

to one or more connectors and probably to the presentation layer. Some of

the operations that are currently available are high level operations, such

as joins, selections, aggregations, filtering and so on, as well as lower level

operations, such as transformations between different data types.

The core component is also responsible for defining fundamental struc-

tures to hold information relevant to the data manipulation, as well as for

providing a mechanism to support and ensure the platform’s consistency and

extensibility. For example, the core component defines structures to repre-

sent the platform’s internal database, its tables and its records, and also

abstractly defines the way that a connector must be structured in order to

be functional.

Georgios Komninos Page 10 of 45

3.3 Apatar’s Architecture

3.3.2 Connectors

The connectors’ component is used to connect the application’s core engine

with data sources. Every connector provides a connection point for a specific

data source through which data can be read, written, or both. Currently, a

large set of connectors are provided and the supported data sources can vary

from corporate databases and personal files, to e-mails and Web 2.0 APIs.

3.3.3 GUI and Data Representation Layer

Finally, the third component consists of a graphical user interface and a

simple data presentation layer that simplifies both the use of the application

and user control over data. Through the GUI, users interact with Apatar, to

create, modify, publish or run mashup applications, while the data presenta-

tion layer enables data supervision at any stage of the workflow.

The main application window is divided in two areas. The connectors and

functions’ area, where the different connectors and functions are displayed

as widgets, and the work area which is used for creating mashups called

datamaps. To create a mashup application, the user just needs to drug and

drop the necessary connectors in the work area, configure them and connect

them together to form a datamap.

3.3.4 Extensibility

As stated earlier, Apatar is designed to be an extensible platform, a goal

achieved though the use of the Java Plug-in Framework (JPF). JPF provides

a run-time engine which can dynamically discover and load plug-ins. A plug-

in is considered to be a structured component that describes itself to the

use of a manifest. Plug-ins and the functions they provide are added to a

registry at start-up-time or at run-time but are not loaded until they are

called. In this manner, applications using JPF avoid paying any memory or

performance penalty for plug-ins that are installed but not used.

Georgios Komninos Page 11 of 45

3.3 Apatar’s Architecture

Everything in Apatar is implemented as a plug-in. Every component, from

core components and functions to connectors and GUI, is described by an

XML document called plugin.xml. This document contains all the necessary

information to describe the plug-in to JPF so that it can be registered in

the framework and loaded upon call. This information would be the plug-

in’s identification, the path of the implementation classes, references to other

plug-ins that are required and so on. Every time the application starts, a

predefined plug-in folder is scanned for the manifest files, the available plug-

ins are registered to the JPF and from this point on they are ready to be

used on demand.

Georgios Komninos Page 12 of 45

4 Mobile Operating Systems

4 Mobile Operating Systems

4.1 Current State

A mobile operating system, also referred as mobile OS, is the operating

system that operates a smartphone, tablet, PDA or other digital mobile

devices. Modern mobile operating systems combine the features of a personal

computer operating system with touchscreen, cellular, Bluetooth, WiFi, GPS

mobile navigation, camera, video camera, speech recognition, voice recorder,

music player, Near field communication, personal digital assistant (PDA) and

other features.

The most common mobile operating systems are:

• Android was developed by a small startup company that was pur-

chased by Google Inc. in 2005, and Google continues to update the software.

Android is a Linux-derived OS backed by Google, along with major hard-

ware and software developers (such as Intel, HTC, ARM, Samsung, Motorola

and eBay, to name a few), that form the Open Handset Alliance. Released

on November 5th 2007, the OS received praise from a number of developers

upon its introduction. Android releases prior to 2.0 (1.0, 1.5, 1.6) were used

exclusively on mobile phones. Most Android phones, and some tablets, now

use a 2.x release. Android releases are nicknamed after sweets or dessert

items like Cupcake (1.5), Frozen Yogurt (2.2), Honeycomb (3.0), Ice Cream

Sandwich (4.0) and Jelly Bean (4.1). Most major mobile service providers

carry an Android device. Since the HTC Dream was introduced, there has

been an explosion in the number of devices that carry Android OS. From

Q2 of 2009 to the second quarter of 2010, Android’s worldwide market share

rose 850% from 1.8% to 17.2%. On November 2011, Android reached 52.5%

of the global smartphone market share.

• bada is a mobile system being developed by Samsung Electronics. Sam-

sung claims that bada will rapidly replace its proprietary feature phone plat-

form, converting feature phones to smartphones. The name ’bada’ is derived

Georgios Komninos Page 13 of 45

4.1 Current State

from the Korean word for ocean or sea. The first device to run bada is called

’Wave’ and was unveiled to the public at Mobile World Congress 2010. The

Wave is a fully touchscreen running the new mobile operating system. With

the phone, Samsung also released an app store, called Samsung Apps, to the

public. It was close to 3000 mobile applications.

Samsung has said that they don’t see bada as a smartphone operating

system, but as an OS with a kernel configurable architecture, which allows

the use of either a proprietary real-time operating system, or the Linux kernel.

Though Samsung plans to install bada on many phones, the company still

has a large lineup of Android phones.

• BlackBerry OS released from RIM, is focused on easy operation and

was originally designed for business. Recently it has seen a surge in third-

party applications and has been improved to offer full multimedia support.

Currently Blackberry’s App World has over 50000 downloadable applications.

RIM’s future strategy will focus on the newly acquired QNX, having already

launched the BlackBerry PlayBook tablet running a version of QNX and

expecting the first QNX smartphones in early 2012.

• iOS from Apple inc. is used by the Apple iPhone, iPod Touch, iPad, and

second-generation Apple TV and is derived from Mac OS X. Native third-

party applications were not officially supported until the release of iOS 2.0

on July 11th 2008. Before this, jailbreaking allowed third-party applications

to be installed, and this method is still available. Currently all iOS devices

are developed by Apple and manufactured by Foxconn or another of Apple’s

partners.

• S40 from Nokia is used by Nokia in their low end phones (aka feature

phones). Over the years over 150 phone models have been developed running

S40 OS. Since the introduction of S40 OS it has evolved from monochrome

low resolution UI to full touch 256k color UI.

• Symbian OS from Nokia and Accenture has the largest smartphone

share in most markets worldwide, but lags behind other companies in the

relatively small but highly visible North American market. This matches the

Georgios Komninos Page 14 of 45

4.2 Mobile OS Selection

success of Nokia in all markets except Japan. In Japan Symbian is strong due

to a relationship with NTT DoCoMo, with only one of the 44 Symbian hand

sets released in Japan coming from Nokia. It has been used by many major

handset manufacturers, including BenQ, Fujitsu, LG, Mitsubishi, Motorola,

Nokia, Samsung, Sharp and Sony Ericsson. Currently Symbian-based devices

are being made by Fujitsu, Nokia, Samsung, Sharp ans Sony Ericsson. Prior

to 2009 Symbian supported multiple user interfaces, i.e. UIQ from UIQ

Technologies, S60 from Nokia, and MOAP from NTT DOCOMO, As part

of the formation of the Symbian OS in 2009 these three UIs were merge into

a single OS which is now fully open source. Recently, through shipments of

Symbian devices have increased, the operating system’s worldwide market

share has declined from over 50% to just over 40% from 2009 to 2010. Nokia

handed the development of Symbian to Accenture, which will continue to

support the OS until 2016.

• Windows Phone from Microsoft was unveiled on February 15th,

2010 as their next-generation mobile OS. The new mobile OS includes a

completely new over-hauled UI inspired by Microsoft’s Metro Design Lan-

guage. It includes full integration of Microsoft services such as Microsoft

SkyDive and Office, Xbox music, Xbox Video, Xbox Live games and Bing,

but also integrates with many other non-Microsoft services such as Facebook

and Google accounts. The new software platform has received some positive

reception from the technology press.

4.2 Mobile OS Selection

Although Windows Phone and BlackBerry OS are looking for the op-

portunity to exploit any possible opening and weakness in the smartphone

market, it is quite obvious that the battle of the giants is between iOS and

Android.

The best solution would be to develop multi-platform apps in order to

allow them being used from both OS. However Android apps are Java-based

while iPhone are Objective-C-based so apps from one platform cannot run on

Georgios Komninos Page 15 of 45

4.2 Mobile OS Selection

the other. Some multi-platform app development tools have shown up lately

but they have proven to be ineffective in displaying the original information

on another mobile OS, so multi-platform development is currently not viable.

As mentioned previously in the presentation of the most common mobile

OS, Android is the most commonly used mobile OS. On November 2011, it

reached 52.5% of the global smartphone market share. Hence, it starts with

an edge in order to be our OS of choice. The technical aspects that follow it

enhance that edge making it the ideal OS for our work.

Android allows its developers to use open development platforms and

enables the use of third-party tools. This offers the opportunity to play

around with more specific aspects of the developed application and therefore

makes it more sophisticated and increases its functionality. This feature is

key to the success of Android, specifically given the fact that it comes to a

great variety of devices. On the contrary, iOS is quite restrictive concerning

its developers, giving them specific developer guidelines. A fixed set of tools

is available but nothing else can be used apart from those, which significantly

limits the options of the programmer.

Testing your mobile app is made an easy task for Android developers,

as it offers an excellent testing environment. All the testing tools available

are neatly indexed and the IDE offers a good model of the source code.

Therefore testing the app and even more importantly debugging whatever

needs it before publishing the app to Google Play store is done with ease and

comfort. Apple’s Xcode is fare behind Android’s level and has a long way to

cover before it can even be compared with it.

Furthermore, Android is far easier in getting your app on the device and

publishing it to Google Play store, as the App Store review process has proven

to be unpredictable and inconsistent.

Finally, focusing in our specific work, after as already mentioned choosing

Apatar, which is written in Java as our mashup platform, it would be really

convenient to be able to write our mobile app also in Java. This would allow

the client and server parts of our program to interact easily and be compatible

Georgios Komninos Page 16 of 45

4.3 Android Application Fundamentals[7]

in many aspects. Moreover, the fact that we can even use the same IDE,

Eclipse, for both parts, as there are Eclipse plugins both for Apatar and

Android app development, makes choosing Android as the mobile OS we are

going to use certain and undoubted.

4.3 Android Application Fundamentals[7]

Android applications are written in the Java programming language. The

Android SDK tools compile the code-along with any data and resource files-

into an Android package, an archive file with an .apk suffix. All the code

in a single .apk file is considered to be one application and is the file that

Android-powered devices use to install the application.

Figure 4.1: Android architecture

Once installed on a device, each Android application lives in its own se-

curity sandbox:

Georgios Komninos Page 17 of 45

4.3 Android Application Fundamentals[7]

• The Android operating system is a multi-user Linux system in which

each application is a different user.

• By default, the system assigns each application a unique Linux user ID

(the ID is used only by the system and is unknown to the application). The

system sets permissions for all the files in an application so that only the

user ID assigned to that application can access them.

• Each process has its own virtual machine (VM), so an application’s code

runs in isolation from other applications.

• By default, every application runs in its own Linux process. Android

starts the process when any of the application’s components need to be exe-

cuted, then shuts down the process when it’s no longer needed or when the

system must recover memory for other applications.

In this way, the Android system implements the principle of least privilege.

That is, each application, by default, has access only to the components that

it requires to do its work and no more. This creates a very secure environment

in which an application cannot access parts of the system for which it is not

given permission.

However, there are ways for an application to share data with other ap-

plications and for an application to access system services:

• It’s possible to arrange for two applications to share the same Linux

user ID, in which case they are able to access each other’s files. To conserve

system resources, applications with the same user ID can also arrange to run

in the same Linux process and share the same VM (the application must also

be signed with the same certificate).

• An application can request permission to access device data such as the

user’s contacts., SMS messages the mountable storage (SD card), camera,

Bluetooth, and more. All application permissions must be granted by the

user at install time.

That covers the basics regarding how an Android application exists within

the system. The rest of this section introduces you to :

Georgios Komninos Page 18 of 45

4.3 Android Application Fundamentals[7]

• The core framework components that define your application.

• The manifest file in which you declare components and required devices

features for your application.

• Resources that are separate from the application code and allow your

application to gracefully optimize its behavior for a variety of device config-

urations.

4.3.1 Application Components

Application components are the essential building blocks of an Android

application. Each component is a different point though which the system

can enter your application. Not all components are actual entry points for

the user and some depend on each other, but each one exists as its own entity

and plays a specific role-each one is a unique building block that helps define

your application’s overall behavior.

There are four different types of application components. Each type serves

a distinct purpose and has a distinct lifecycle that defines how the component

is created and destroyed.

Here are the four types of application components as shown in figure

4.2[13]:

An activity represents a single screen with a user interface. For example,

an email application might have one activity that shows a list of new emails,

another activity to compose an email, and another activity for reading emails.

Although the activities work together to form a cohesive user experience

in the email application, each one is independent of the others. As suck,

a different application can start any one of these activities (if the email

application allows its). For example, a camera application can start the

activity in the email application that composes new mail, in order for the

user to share a picture.

A service is a component that runs in the background to perform long-

Georgios Komninos Page 19 of 45

4.3 Android Application Fundamentals[7]

Figure 4.2: Android application components

running operations or to perform work for remote processes. A service does

no t provide a user interface. For example, a service might play music in the

background while the user is in a different application, or it might fetch data

over the network without blocking user interaction with an activity. Another

component such as an activity, can start the service and let it run or bind to

it in order to interact with it.

A content provider manages a shared set of application data. You can

store the data in the file system, an SQLite database, on the web, or any

other persistent storage location your application can access. Through the

content provider, other applications can query or even modify data (if the

content provider allows it). For example, the Android system provides a con-

tent provider (such as ContactsContract.Data) to read and write information

about a particular person.

Georgios Komninos Page 20 of 45

4.3 Android Application Fundamentals[7]

Content providers are also useful for reading and writing data that is

private to your application and not shared.

A broadcast receiver is a component that responds to system-wide

broadcast announcements. Many broadcasts originate from the system-for

example, a broadcast announcing that the screen has turned off, the battery

is low, or a picture was captured. Applications can also initiate broadcasts-for

example, to let other applications know that some data has been downloaded

to the device and is available for them to use. Although broadcast receivers

don’t display a user interface, they may create a status bar notification to

alert the user when a broadcast event occurs. More commonly, though, a

broadcast receiver is just a gateway to other components and is intended to

do a very minimal amount of work. For instance, it might initiate a service

to perform some work based on the event.

A unique aspect of the Android system design is that any application can

start another application’s component. For example, if you want the user to

capture a photo with the device camera, there’s probably another application

that does that and your application can use it, instead of developing an

activity to capture a photo yourself. You don’t need to incorporate or even

link to the code from the camera application. Instead, you can simply start

the activity in the camera application that captures a photo. When complete,

the photo is even returned to your application so you can use it. To the user,

it seems as if the camera is actually a part of your application.

When the system starts a component, it starts the process for that ap-

plication (if it’s not already running) and instantiates the classes needed for

the component. For example, if your application starts the activity in the

camera application that captures a photo, that activity runs in the process

that belongs to the camera application, not in your application’s process.

Therefore, unlike on most other systems, Android applications don’t have a

single entry point (there’s no main() function, for example).

Because the system runs each application in a separate process with file

permissions that restrict access to other applications, your applications can-

Georgios Komninos Page 21 of 45

4.3 Android Application Fundamentals[7]

not directly activate a component from another application. The Android

system, however, can. So, to activate a component in another application,

you must deliver a message to the system that specifies your intent to start

a particular component. The system then activates the component for you.

4.3.2 Activating Components

Three of the four component types-activities, services, and broadcast

receivers-are activated by an asynchronous message called an intent. In-

tents bind individual components to each other at runtime (you can think

of them as the messengers that request an action from other components),

whether the component belongs to your application or another.

For activities and services, an intent defines the action to perform (for

example, to view or send something) and may specify the URI of the data to

act on (among other things that the component being started might need to

know). For example, an intent might convey a request for an activity to show

an image of to open a web page. In some cases, you can start an activity to

receive a result, in which case, the activity also returns the result in an intent

(for example, you can issue an intent to let the user pick a personal contact

and have it returned to you-the return intent includes a URI pointing to the

chosen contact).

For broadcast receivers, the intent simply defines the announcement being

broadcast (for example, a broadcast to indicate the device battery is low

includes only a known action string that indicates battery is low).

The other component type, content provider, is not activated by intents.

Rather, it is activated when targeted by a request from a ContentResolver.

The content resolver handles all direct transactions with the content provider

so that the component that’s performing transactions with the provider

doesn’t need to and instead calls methods on the ContentResolver object.

This leaves a layer of abstraction between the content provider and the com-

ponent requesting information (for security).

Georgios Komninos Page 22 of 45

4.3 Android Application Fundamentals[7]

4.3.3 The Manifest File

Before the Android system can start an application component, the system

must know that the component exists by reading the application’s Android-

Manifest.xml file (the manifest file). Your application must declare all its

components in this file, which must be at the root of the application project

directory.

The manifest does a number of things in addition to declaring the appli-

cation’s components, such as:

• Identify any user permissions the application requires, such as Internet

access or read-access to the user’s contacts.

• Declare the minimum API Level required by the application, based on

which APIs the application uses.

• Declare hardware and software features used or required by the appli-

cation, such as a camera, bluetooth services, or a multitouch screen.

• API libraries the application needs to be linked against (other than the

Android framework APIs), such as the Google Maps library.

• And more.

4.3.4 Application Resources

An Android application is composed of more than just code-it requires

resources that are separate from the source code, such as images, audio files,

and anything relating to the visual presentation of the application. For ex-

ample, you should define animations, menus, styles, colors, and the layout of

activity user interfaces with XML files. Using application resources makes it

easy to update various characteristics of your application without modifying

code and-by providing sets of alternative resources-enables you to optimize

your application for a variety of device configurations (such as different lan-

guages and screen sizes).

Georgios Komninos Page 23 of 45

4.3 Android Application Fundamentals[7]

For every resource that you include in your Android project, the SDK

build tools define a unique integer ID, which you can use to reference the

resource from your application code or from other resources defined in XML.

One of the most important aspects of providing resources separate from

your source code is the ability for you to provide alternative resources for

different device configurations. For example, by defining UI strings in XML,

you can translate the string into other languages and save those string in

separate files. Then, bases on the language qualifier that you append to

the resource directory’s name and the user’s language setting, the Android

system applies the appropriate language strings to your UI.

Georgios Komninos Page 24 of 45

5 Apatar Android Version

5 Apatar Android Version

The key contribution of our work is to offer app developers the ability to

take advantage of the mashup programming paradigm in their mobile appli-

cations. We developed a simple Android client application that simulates the

Desktop GUI of Apatar in a more simple and explanatory way so that ex-

perienced Apatar users were familiar with the applications environment and

newer users got easily accustomed with it. We also developed the server part

of the application, which is an expansion of the standard Apatar program.

Its responsibility is to receive input from the client, process it and produce

output, sending it to the client.

Figure 5.1: Client-server interaction

Georgios Komninos Page 25 of 45

5.1 Client

Figure 5.2: Application homepage

5.1 Client

The main challenge in order to create an implementation of Apatar’s GUI

in a mobile platform such as Android is to adapt all the required data in a

smaller display losing as less information as possible. As already mentioned,

the main window of the desktop application is divided in two areas, the

connectors’ and functions’ area, and the work area. Since our display resource

in a mobile device could be quite small (smallest Android device display is

2.7”) we have decided that these two areas should be divided into two screens.

Another important decision we had to make was where to place the dif-

Georgios Komninos Page 26 of 45

5.1 Client

Figure 5.3: Connector selection screen

ferent options from which the user can choose. We decided to place buttons

in the bottom of each screen so that the user could see the options they had

at any given time, simply by scrolling down each page. The input methods

of the application, is the touch screen of the device and the default keyboard

whenever input is required. We tried to use the most standard input mech-

anisms such as text fields, checkboxes and menus so that the application

would be as easy as possible to use.

The latest Android versions do not allow the application to access any

network in the main thread of the former. Hence, in order to communicate

with the server, our client will have to create multiple threads that send

Georgios Komninos Page 27 of 45

5.2 Server

Figure 5.4: Example of connector properties input-MySQL connector

and receive data. The most common way of doing so is by using the class

AsyncTask. AsyncTask.class is a Java class that enables proper and easy use

of the UI thread. It allows to perform background operations and publish

results on the UI thread without having to manipulate threads and handlers.

Therefore it is ideal for our purpose.

5.2 Server

The server part of our application is where most of the work is done.

When the server is run, apart from the main Apatar application another

Georgios Komninos Page 28 of 45

5.2 Server

Figure 5.5: Record source selection screen

thread is executed which awaits for data to be received. Depending on the

data that is received, the server performs the according actions.

When data is received, firstly another server thread initiates, so that the

server can handle multiple and simultaneous requests. After that, the data

string that was sent by the client is analyzed. Each data string consists

of two parts. The first one, contains the serial number of the requested

operations and the second one, the variables needed to adjust the operation.

For instance, if the user wants to create a new MySql connector, the first part

of the string contains the serial number of the function Create new connector

and the serial number that corresponds to MySql; the second part, contains

Georgios Komninos Page 29 of 45

5.2 Server

Figure 5.6: MySQL connector added

the values of the variables of the connector such as username, password, host,

port and DB name.

After analyzing the data string, the server gives the received values to the

appropriate variables and if needed asks the client for further information,

such as the desired record source of the DB. In the end, when the server

has all the information needed, it performs the action requested by the client

and awaits for further requests. Each server window corresponds to a specific

client, so that confusion between requests from different users is avoided.

Apart from the application part of the server, a server directory was es-

sential. In it, we have stored resources needed by the application. We have

Georgios Komninos Page 30 of 45

5.3 Functionality

files which contain the currently available connectors and operations, the

properties of each connector, and images used to make the GUI of the ap-

plication more pleasant. Using this directory has two benefits. Firstly it

allows us to perform trivial tasks such as loading standard data from the

server without having to write complicated source code and merge it to the

main application code. These trivial tasks are performed with a simple php

script that is accessed whenever the client attempts to connect to the server.

Secondly it makes extensibility easier. More specifically, if the server admin-

istrator wishes to add a new connector of the already existing kind, such as

DB connector, all they need to do, is enter the name of the connector in the

connector.txt file of the directory, create a new file with the connector serial

number as a name and the properties that need to be completed as a body

and add a picture file for the connector.

5.3 Functionality

After creating the connectors needed, they choose the operation they want

and the results are stored in a custom table connector, which is the most

versatile Apatar connector. After this one (or two) input connector datamap

is completed, the user may view its results and decide whether they want

to save or discard the datamap. As already mentioned, the small display

of some Android devices is a significant limiting factor. Therefore, we felt

that in order to make the functionality of the application easier, we had

to use the divide and conquer approach. More specifically, users, initially

have the option to create datamaps with either one or two input connectors.

Datamaps are saved in the SD card of the device and may be used in the

future as one of the inputs of a new datamap. In this way, by creating

small, simple and independent datamaps consisting of one or two inputs, an

operation and a custom table to store the output and by combining them,

users may create more complicated datamaps in order to suit their needs.

Saved datamaps are simple text files that contain all necessary informa-

tion to reproduce the initial datamap. When one of them is selected as input

Georgios Komninos Page 31 of 45

5.3 Functionality

Figure 5.7: List of operations screen

the server instantly reproduces the datamap and waits for the rest of the

inputs. These files can be used on the later stage of the app development.

The developer needs to use the apatarClient.class we created and give to it as

input the desired datamap file. The class, will send the necessary information

to the Apatar server. The server will create the datamap described by the in-

put file, execute it and send the resulting records back the apatarClient.class.

Hence, the records can be accessed in application.

ApatarClient.class’s implementation is quite straightforward. It consists

of a constructor and a ’run’ function. The constructor needs a String type

argument that defines the path of the datamap file that the developer wants

Georgios Komninos Page 32 of 45

5.3 Functionality

Figure 5.8: Enter join operation details screen

to be executed. After constructing an ApatarClient object we call the ’run’

function that sends the datamap to the server and receives the records in

a two-dimension array. the first row of the array keeps the names of the

attributes that are fetched and the rest of the rows keep the records. It has

to be mentioned that since an Android app cannot access the Internet in its

main thread of execution, the run function must be called in another thread,

otherwise it will not be able to connect to the server. AsyncTask.class is

ideal for that use.

Georgios Komninos Page 33 of 45

6 Demonstration

Figure 5.9: Qualifying attributes screen

6 Demonstration

To demonstrate our work we have created an application that would take

advantage of the mashup programming paradigm, the Google Maps API

that exists for Android app development and the fact that we are using a

mobile device. The senario of the application is that a courier who works for

an e-shop begins his route from the central shop of the company to deliver

the customer orders. Some of the products that they need to deliver are

available in the central shop whereas others are available in warehouses that

are distributes in random locations. To deliver an order, the courier must first

Georgios Komninos Page 34 of 45

6 Demonstration

Figure 6.1: The mashup application

collect all its products from the warehouse in which they are available. Our

goal is to produce the shorter route that exists so that the courier delivers

all the orders that can be delivered without making unnecessary detours.

We are assuming that the e-shop company and the warehouse company

are different, so they keep their records using different databases. The e-shop

company keeps the records that contain orders and product availability in

a MySQL database whereas the warehouse company keeps them in a Post-

greSQL database. Therefore we need a mashup in order to integrate the

records of the two heterogenerous databases. Figure 6.1 depicts the com-

plete mashup application.

In the beginning of the datamap we join the order and productInOrder

table of the e-shop database in order to find the products that exist in an

order and we join the result with the product table so that we have extra

information about these products such as product name and product avail-

ability. After that we filter out the products that are available since we need

to keep the unavailable products. Those unavailable products will be the

first input of our mashup.

Georgios Komninos Page 35 of 45

6 Demonstration

Figure 6.2: Application homescreen

The second input is simpler. We just joined the products table and the

warehouse table of the warehouse database so that we keep track of which

product is available in which database.

The actual mashup takes place here, where we join the products that are

unavailable in the central shop and the products that exist in the warehouses.

The output will be a table with all the information we need about a product

such as product name, productId etc, information about the order that it

belongs and information on the warehouses in which it is available. Using

all these information we can create a list that contains all the addresses that

the courier must visit and the order in which they have to visit them.

Georgios Komninos Page 36 of 45

6 Demonstration

Figure 6.3: Route to next destination

By reviewing the datamap fuctionality carefully, one sees that the data

accessed from it does not contain the whole order table records. Hence, apart

from the mashup we needed to access the MySQL database of our eshop in

order to gain access to all the orders that need to be delivered. Android

cannot accurately connect to a DBMS. In order to overcome that problem

we wrote a simple php script that fetches the data from the order table and

we connected our Android app to it (figure 6.5).

This is where we needed a service that would provide us with the maps and

a means to mark locations and routes on them. Google Maps is the perfect

choice for our needs as it offers us whatever we need and also has an available

Georgios Komninos Page 37 of 45

6 Demonstration

Figure 6.4: All destinations

API for Android. From the information we had from the mashup we create a

list with all the places that the courier has to visit. Google maps informs us

about the distance between each destination and our location, which is found

using the GPS sensor of the mobile device. We then use a simple algorithm

to create the best available route. We check if the closest destination is a

warehouse. If indeed it is, then we visit it. If it is a delivery address we

check if all its products are available and if they are we deliver it; if not, we

lower it to the priority list and check the next closes destination. Finally we

have two lists, one priority list of the future destinations in the order that

we need to visit them and one list of the orders that cannot be delivered as

Georgios Komninos Page 38 of 45

6 Demonstration

Figure 6.5: Android MySql connection

the required products are not available in the required quantities neither in

our store nor in any warehouse. When the user runs the application it shows

the map centered near their current location, a route to the next destination

and different colour spots for different categories of future destinations.

Georgios Komninos Page 39 of 45

6 Demonstration

Figure 6.6: Selecting a destination

Georgios Komninos Page 40 of 45

6 Demonstration

Figure 6.7: Symbol explanation

Georgios Komninos Page 41 of 45

7 Conclusions and Future Work

7 Conclusions and Future Work

Expanding a powerful tool such as the Apatar open-source mashup plat-

form in a mobile version enabled mobile applications to enjoy the benefits of

the mashup programming paradigm. This, by itself, opens countless avenues

of possible applications that can be developed and combine mobility and

data integration. We believe that our work can help so that the transforma-

tion from a sophisticated idea to a mobile application is possible. We also

demostrated the power of such a combination through a simple application

we created.

We intend to perform a lot of improvements to our system so that it is more

stable, pleasant to work with and as close as possible to the original Apatar

version. Apart from debugging and optimization we plan to add the option

of a drag-and-drop GUI so that connector nodes and connection arrows can

be manipulated using the touch screen of any mobile device, instead of just

browse back and forth via menus.

Apart from creating applications using our platform, work can be done

in order to add functionality to the platform itself. Mobile devices have in

their inventory various devices such as GPS sensor, compass, thermometer

etc. We believe that using our initial mobile version of the Apatar server one

could develop connectors that recieve data from these devices and use them

to perform SQL queries on them. For instance, it would be useful for location

based applications to send GPS indications to the server and include them

to the queries that are excecuted.

Moreover, as mentioned apart from Android there are many more mobile

device operation systems. It would be a good idea to develop an equal

plaftorm for iOS, Windows Mobile or any other popular mobile OS.

All our work is based on open source systems such as Android and Apatar.

We consider it our obligation to return our work back to the open-source

community so that it can be used and improved by anyone. Therefore, we

intend to open-source our system.

Georgios Komninos Page 42 of 45

7 Conclusions and Future Work

Georgios Komninos

References

[1] Apostolos K. Nidriotis, ”Dynamic Web Service Mashups”, Technical

University of Crete, Department of Electronic and Computer Engi-

neering, December 2010

[2] http://blog.teamgrowth.net/index.php/mobile-application-

development/a-brief-introduction-to-mobile-application-development

[3] Andreas Brodt, Daniela Nicklas: The TELAR mobile mashup platform

for Nokia internet tablets.

[4] Seongho Cho, Hyoungshick Kim, Dongshin Jung, Hoyeon Park: Dy-

namic Mashup Platform for Mobile Web Applications

[5] G. D. Lorenzo, H. Hacid, H. young Paik. Data Integration in Mashups.

SIGMOD Record, 38(1), March 2009

[6] G. D. Lorenzo, H. Hacid, H. young Paik, B. Benatallah. Mashups

for Data Integration: An analysis. Technical Report UNSW-CSE-TR-

0810, 2008

[7] developer.android.com/guide/components/fundamentals.html

[8] D. E. Simmen, M. Altinel, V. Markl, S. Padmanabhan, A.Singh.

Damia: Data Mashups for Intranet Applications. SIGMOD ’08, 2008.

[9] D. F. Huynh, D. R. Karger, R. C. Miller. Exhibit: lightweight struc-

tured data publishing. WWW ’07, New York, USA, pages 737-746,

2007. ACM.

[10] R. Ennals, E. Brewer, M. Garofalakis, M. Shadle, P. Gandhi, Intel

Mash Maker: Join the Web. SIGMOD Record, 36(4), December 2007.

[11] R. Ennals, M. Garofalakis. MashMaker: Mashups for the Masses. SIG-

MOD’07, June 2007.

[12] M. Altinel, P. Brown, S. Cline, R. Kartha, E. Louie, V. Markl, L. Mau,

Y. H. Ng, D. Simmen, A. Singh. Damia - A Data Mashup Fabric for

Intranet Applications. VLDB ’07, 2007.

[13] http://www.knowledgefolders.com

