

DEVELOPMENT OF THE OPERATING SYSTEM USER

INTERFACE OF A SMARTPHONE USING THE OpenGL ES API

ΑΝΑΠΤΥΞΗ ΛΕΙΤΟΥΡΓΙΚΟΥ ΣΥΣΤΗΜΑΤΟΣ ΕΝΟΣ SMARTPHONE

ΧΡΗΣΙΜΟΠΟΙΩΝΤΑΣ OpelGL ES API

ΝΤΟΥΖΟΣ ΓΕΩΡΓΙΟΣ Α.Μ:2005030019

ΕΠΙΒΛΕΠΩΝ ΚΑΘΗΓΗΤΗΣ: ΠΝΕΥΜΑΤΙΚΑΤΟΣ ΔΙΟΝΥΣΙΟΣ

PROLOGUE ... 1

THESIS OUTLINE ... 2

ACKNOWLEDGMENTS .. 3

CHAPTER 1 ... 4

1.1: AN INTRODUCTION TO OPENGL ES ... 4
1.2: BUFFERS .. 7
1.3: EGL .. 7
1.4: GLSL ES .. 8
1.5: SHADERS AND PROGRAMS ... 8
1.6: TEXTURES .. 9

CHAPTER 2 ... 10

2.1: IMAGINATION TECHNOLOGIES LTD ... 10
2.2: POWER VR SERIES 5 ARCHITECTURE ... 10

2.2.1: The Tile Based Deferred Rendering ... 11
2.2.2: SGX overview ... 11
2.2.3: SGX-MP ... 12

2.3: SDK PRESENTATION .. 13
2.4: TEXTURE COMPRESSION .. 14

2.4.1: PVRTC .. 15

CHAPTER 3 ... 15

3.1: PROJECT OVERVIEW ... 15
3.2: INTERFACE STRUCTURE ... 16
3.3: SHADERS .. 25
3.4: SHADER - PROGRAM CREATION .. 26
3.5: OBJECT GENERATION .. 29
3.6: TEXTURE LOADING ... 30
3.7: PICKING TECHNIQUES ... 32
3.8: MAIN MENU RENDERING .. 34
3.9: SLIDING ... 38
3.10: SCREEN SAVER IMPLEMENTATION .. 39
3.11: PAD IMPLEMENTATION ... 42
3.12: ALARM CLOCK IMPLEMENTATION .. 45
3.13: MESSAGES IMPLEMENTATION ... 48
3.14: PERFORMANCE TIPS .. 50

CONCLUSION / FUTURE WORK .. 51

SOURCES-BIBLIOGRAPHY ... 52

APPENDIX .. 53

CODE .. 55

1

Prologue

 The compilation of this diploma thesis started at the beginning of the current

year and finished a few weeks before the presentation date. The purpose of this thesis

is the implementation of a user interface of a smartphone using the OpenGL ES 2.0

API. Prior to this project I had no experience or knowledge in the field of graphics

and OpenGL, thus this diploma thesis was a stepping stone for me in the world of

graphics. The selected theme is a thesis proposal from Imagination Technologies Ltd

(IMG), with the collaboration of which I carried it out. After contacting IMG in order

to ask advice over my diploma thesis subject, I was pleasantly surprised as I received

an e-mail with proposals and an encouragement to download the company's SDK

which provided full documentation and guidance for the proposed subjects. After

agreeing with my supervisor over the matter, I decided to undertake the “DEVELOPMENT

OF THE OPERATING SYSTEM USER INTERFACE OF A SMARTPHONE USING THE OpenGL ES API”. The thesis

proposal was addressed to a group of students, thus it had to be limited, but at the

same time extra care should be given so that it would not lose its goals.

 The target of this project is to present a novice’s point of view while trying to

learn all concepts in 3D graphics, alone with implementing a functional interface for a

smartphone. That does not mean that the target was the implementing of all features

of a fully functional device, but more the introduction from the very basics of

OpenGL ES until addressing issues a developer can come across during a similar

project and presenting several techniques and thoughts that the author used to face the

problems that came up. Besides the graphics part, one could find highly interesting

the industry connected part of the thesis, as the SDK and the technologies described

are widely used currently in the market, in many high sale, successful devices. This of

course may not be widely known as we usually tend to focus on the brand names

which are on the cover of the products we use instead of knowing what is hidden

under the hood.

2

Thesis Outline

The project commences with an introduction that deals with OpenGL ES.

Though it does not go though many details, this part provides adequate information so

that the rest of the report can be easily read through, even from an amateur in the field

of graphics reader. The introduction deals with fundamental terms of the OpenGL ES

2.0 world like the programmable pipeline, buffers, EGL, shaders, shader language and

textures.

In chapter two follows a presentation of IMG’s innovation technology which

includes a GPU architecture as well as the SDK that I used and proved to be very

helpful. In this part one can find the SDK’s framework, on which this diploma thesis

was build, an introduction to the hardware design that IMG has launched in the

market, and the popular texture compression of the company that is widely used from

top world-wide companies in the field of portable devices.

Further analysis of the SDK and the tools included in, follows in the

presentation of the project. Before this part deepens into the code of the project, it

begins with an overview of the project and a description of the GUI of the interface.

Moreover, one can find details about the code of each section of the interface as well

as the showcase of different techniques that were used in the implementation, along

with issues that came up and the suggested solutions. Special attention is given at

performance issues throughout the report, both in the code analysis as well as with a

special section providing performance tips.

The report concludes with a sum up of the project, highlighting what it could

be done differently, acknowledging that the handling of some issues may not be ideal

due to the inexperience of the developer, and by referring to future work that can be

done in order to further expand the existing one. At the end of the project lies an

appendix with few details that could possible raise questions after a closer look at the

following code.

3

Acknowledgments

During the months I worked in this project, or even before to start it, I was

lucky enough to meet people that supported and helped me through this effort. I

would like to thank my supervisor Professor Dionisis Pnevmatikatos for the guidance

he provided and the excellent cooperation we had during this project. Also I would

like to thank him for taking me into account and giving me the opportunity to get this

thesis at a time when my obligations towards the school were such to create doubts

whether or not I would be able to carry this task out. I would like as well to thank the

other members of the committee, Professor Aikaterini Mania and Professor Ioannis

Papaefstathiou, who approved this diploma thesis and contributed with useful remarks

during my presentation.

I would specially like to thank the persons that made this collaboration with

IMG become possible, my childhood friend Thanos Grassos who led and urged me

towards this opportunity and also his manager Jamie Broome, whose help and interest

was more than anyone would expect. I would also like to mention Giorgos Koulieris,

from Technical University of Crete, who provided me with useful tips throughout my

search. Finally I want to thank my friend Marina who put up with me and helped me

out in coming through this period, when multiple and difficult tasks were assigned to

me.

4

Chapter 1

1.1: An introduction to OpenGL ES

 OpenGL (Open Graphics Library) is an application programming interface

(API) for rendering 2D and 3D graphics. OpenGL ES is a subset of OpenGL,

designed for embedded systems such as cell phones, PDAs, consoles and vehicles’

systems. While OpenGL was originally created by Silicon Graphics in 1992, OpenGL

ES was created and managed by Khronos Group, a consortium focused on developing

free APIs.

 OpenGL is the closest point of interaction between the CPU and the GPU.

What makes OpenGL truly admirable is that, not only is a cross-platform 3D API

working on Linux, Unix, Mac OS and Microsoft Windows, but it is also "Language

Free". This means that we can use C, C++, Objective C, Java, Perl or almost any

language we want while the API will present the same behavior, functions and

commands.

 OpenGL ES was designed under certain standards and specifications. Because

the role of OpenGL ES was to be suitable for constraint devices, any redundancy from

OpenGL was removed and only the most useful methods were used while

compatibility with OpenGL was kept. Furthermore, the OpenGL ES designers aimed

to reduce power consumption needed to use the API and they kept certain agreed-on

standards for image quality, appropriate for handheld devices.

 In 2007 OpenGL ES 2.0 was launched with a great change, implementing a

programmable graphics pipeline succeeding the older fixed pipeline.

 To make things clear, the "fixed pipeline" refers to the older generation

pipeline used in GPUs that was not really controllable; the exact method in which the

geometry was transformed, and how fragments (pixels) acquired depth and color

values were built-in to the hardware and couldn't change.

 Modern GPUs have a programmable pipeline; those previously rigid, possibly

burned into the chip stages of the pipeline (transformation, shading) have been

replaced with stages that can be controlled by bits of user-supplied code called

"shaders". This is a far more flexible approach that has enabled a wide variety of

graphic effects that were not previously possible without, for example, hardware

support and extensions specifically dedicated to enable them. The older, fixed-

function pipeline has no real advantages over this one, and so it has phased out.

5

1

1
 http://www.khronos.org/opengles/2_X/

6

Before trying to explain further each step of the pipeline, it would be

preferable to introduce the three basic concepts around of which OpenGL works.

These would be primitives, buffers and rasterize. OpenGL s primitives are three kinds

of objects: 3D points, 3D lines (composed by two points) and 3D triangles (composed

by three points). Buffer is a temporary optimized storage and rasterize is the process

by which OpenGL takes all information about 3D objects to create a 2D image which

will be presented on the device's screen.

Vertex Shader:

 The vertex shader is a little programmable method for operating on vertices.

Vertex shader defines the final position of a vertex. It can be used for operations such

as transforming the position by a matrix, computing the lighting equation to generate

a per-vertex color, and generating or transforming texture coordinates.

 The inputs to a vertex shader are the attributes, which are used to construct the

vertices of your object, and the uniforms, which are constant data used by the shader.

The outputs are varying variables which are passed to the fragment shader.

Primitive assembly:

 Each vertex transformed by the vertex shader includes its position and other

information such as its color or texture coordinates. In the primitive assembly stage,

OpenGL determines the setup of the primitives. That means that vertices will be

clipped inside the viewing frustum and those which are outside or they are at the

backside - not visible part - of our frustum will be culled.

Rasterization:

 As mentioned before, rasterization is the task of taking primitives and

converting them from a 3D scene it into a raster image (pixels), a set of two-

dimensional fragments, which are processed by the fragment shader for output on the

screen.

Fragment shader:

 Fragment shader is a programmable method operating on each visible

fragment of the final image. In the fragment shader we can work everything related to

the mesh' surface like colors, materials, texture, shadows and light effects.

 The inputs to a fragment shader are the varying variables, outputs of the vertex

shader that are generated by the rasterization unit for each fragment, uniforms,

constant data used by the fragment shader and samplers, a specific type of uniforms

that represent textures.

7

Per fragment operations:

 A fragment is a candidate to become a pixel in a buffer, called frame buffer.

For every fragment, OpenGL applies a series of tests to check if the fragment meets

certain specifications in order to eliminate the fragment early and as a result to avoid

updating the frame buffer (an energy devouring procedure). If these specifications are

met, OpenGL processes the fragment's final calculations. These are the pixel-

ownership test, scissor test, multi-sample operations, stencil test, depth test, blending,

logic operations and dithering.

1.2: Buffers

 In OpenGL there are three kinds of buffers. Frame buffers, render buffers and

buffer objects.

 Frame buffers are used to store rendering results. They look like a collection

of images (like 3D objects, depth of objects and intersection of objects). By capturing

images that would normally be drawn to the screen, we can use them to implement a

large variety of image filters, and post-processing effects. They are used for their

efficiency and ease of use.

 Render buffer objects are a temporary storage of a single image. So we can

understand that a frame buffer is a collection of render buffers. The render buffer can

be used to allocate and store color, depth, or stencil values and can be used as a color,

depth, or stencil attachment in a frame buffer object.

 Buffer objects are used to hold information about our 3D objects in an

optimized format. This information can be about structures or indices. Vertex Buffer

Objects (VBOs) hold structures that can be an array of vertices that describe a 3D

object, an array of coordinates or normals. Index Buffer Objects (IBOs) hold an array

of indices which is used to indicate how the faces of our mesh will be constructed

based on an array or structure. The advantage of a buffer object is that they work

directly at the GPU processing and we don't need to hold the arrays after we create a

buffer object.

1.3: EGL

 OpenGL ES is not responsible for managing the windowing system of each

device that supports it. Khronos group, in order to create a bridge between the

rendered output of OpenGL and the device's screen, created the EGL API.

 EGL is responsible for managing the windowing system of our device,

creating drawing surfaces, synchronizing OpenGL ES 2.0 and other graphics

rendering APIs (like the drawing commands of our windowing system) and managing

rendering resources.

 Before starting to use OpenGL ES we have to setup the EGL in order to know

about our windowing system, to initialize a context about our OpenGL application

and then present our render's output on the screen.

 EGL works with 2 internal frame buffers. One presents the desired image on

our screen while the other waits for a new render output. At the next EGL call, the

buffers swap their positions. This technique provides great performance for our

8

system because the final surface is notified after we have finished our rendering. In

addition to that, the buffer on the back can receive our commands faster that the

device's screen.

 It is also worth mentioning that we can display the frame buffer’s result

straight on our screen without the use of a windowing system, a technique known as

null-windowing system. This of course removes the abstraction layer that a

windowing system offers and thus we can’t project more than one window on the

display.

1.4: GLSL ES

 Since we talked about shaders, we should also talk about the OpenGL ES

shader language (GLSL). The shader language is quite similar to C language. It has

the same syntax, variable declarations, control flow statements, loops even macros.

GLSL is designed to be as fast as possible working directly in the GPU, thus we

should be careful with the use of loops and conditions since they limit the

performance of our program.

 A major difference between the two languages is the native data types which

are supported by GLSL ES. In computer graphics, there are two fundamental data

types that form the basis of transformations: vectors (vec i where i = 2, 3, 4 and

defines the number of components) and matrices (mat i). These two data types are

central to the OpenGL ES Shading Language as well. Furthermore, in GLSL we have

a variety of built-in functions which can be proved to be very useful. We will see the

use of some of them later. It is also important to know the precisions qualifiers which

GLSL have. Precision Qualifiers set the data range of any variable. (lowp, mediump,

highp)

 The great advantage of GLSL working directly to the GPU is the floating

point operations. We can do multiplications between vectors and matrices (respecting

their dimensions) in just a single line! Finally it is important to remember that GLSL

is an inline language. This means, for example, that if we call a function before

writing it, the call will fail.

1.5: Shaders and programs

 There are two fundamental object types you need to create to render with

shaders: shader objects and program objects.

 The shader object is an object that contains a single shader. The source code is

given to the shader object and then the shader object is compiled into object form

(like an .obj file). The shaders will be processed in the GPU and so, in order to

optimize the process, OpenGL ES compiles the source code in a binary format. After

compilation, the shader object can then be attached to a program object.

 A program object gets two shader objects attached to it. In OpenGL ES, each

program object will need to have one vertex shader object and one fragment shader

object attached to it (no more, and no less). The program object is then linked into a

final “executable.” The final program object can then be used to render.

 The general process for getting to a linked shader object is to first create a

vertex shader object and a fragment shader object, attach source code to each of them,

and compile them. Then, you create a program object, attach the compiled shader

9

objects to it, and link it. If there are no errors, you can then tell the GL to use the

program for drawing.

1.6: TEXTURES

 Textures is a very large topic in OpenGL ES. In this chapter we will just make

a little introduction in textures, mainly in 2D textures, that will help us understand

better the concepts of the project.

 Texture is one of the most fundamental operations used in graphics. Textures

allow us to display more details on a mesh that is not possible to display just with

geometry. There are 2D textures and cube map (3D) textures. 2D textures are actually

a two-dimensional array of image data. A texture pixel is also known as a texel.

 When rendering with a 2D texture, a texture coordinate is used as an index

into the texture image. Each vertex has a texture coordinate. Texture coordinates for

2D textures are given by a 2D pair of coordinates (s, t), also called (u, v) coordinates.

These coordinates represent normalized coordinates. Unlike the usual image file

formats (jpg, png, bmp, gif) which store the pixel information starting at the upper

right corner and moves through line by line to the lower left corner, textures in

OpenGL reads the pixels starting from the lower left corner moving to the upper right

corner. The lower left corner of the texture image is specified by the u, v coordinates

(0.0, 0.0) and the upper right corner u, v coordinates (1.0, 1.0). In order to solve this

issue, we can make a vertical flip to our image before loading it to the OpenGL core.

2

2
 http://db-in.com/blog/2011/02/all-about-opengl-es-2-x-part-23/

10

 Another important thing about textures in OpenGL ES is that all textures is

strongly advised to have power of two dimension values. That means that the size of a

texture can be 32x32 or 256x256 but not 300x300.

Texture mipmap:

 When trying to magnify a texture, it is quite possible that aliasing artifacts will

be produced in our image. While an object becomes smaller in our screen, pixels

quickly switch from one color to another and as a result we get a shimmering image.

The solution to resolve this problem is called mipmapping.

 The idea behind mipmapping is to build a chain of images known as a mipmap

chain. The mipmap chain begins with the original image and then continues with each

subsequent image being half as large in each dimension as the one before it. This

chain continues until we reach a single 1x1 texture at the bottom of the chain. The

mip levels can be generated programmatically, typically by computing each pixel in a

mip level as an average of the four pixels at the same location in the mip level above

it (box filtering).

Chapter 2

2.1: IMAGINATION TECHNOLOGIES Ltd

 As mentioned in the beginning of this project, OpenGL ES 2.0 is a royalty

free, cross platform API. As a result many world renowned companies implement

projects using OpenGL ES such as NVIDIA, Intel, Apple, Nokia, Panasonic, Google,

NexusChipsCo, AMD and Imagination Technologies Ltd.

 Imagination Technologies (IMG) is an international company, playing a

leading role in multimedia, communication and of course graphics/technologies

markets. The company is listed on the London Stock Exchange and is a constituent of

the FTSE 250 Index. Among other important releases, IMG has developed PowerVR,

a 3D engine used widely in mobile devices, while recently acquired the processing

technology firm MIPS.

2.2: POWER VR SERIES 5 ARCHITECTURE

PowerVR is a family of graphics IP cores from Imagination Technologies that

uses the “Tile Based Rendering Technique” (TBDR) implemented solely by IMG in

order to reduce the system memory bandwidth required by the GPU. The reduction of

transfer data between the system memory and the GPU combined with reductions in

system memory bandwidth and hardware optimizations can boost performance while

allowing the GPU working at lower power.

 The most notable difference between the traditional Immediate Mode

Renderer (IMR) and TBDR is that the first one renders all objects within the screen’s

11

boundaries whereas the second determines up in front what is visible or not, allowing

the hardware to render only what is necessary.

2.2.1: The Tile Based Deferred Rendering

What is tiling:

Tiling is a technique that allows rendering subsections of an image at each

time instant instead of rendering the whole image. The main benefit is the use of the

fast on-chip memory for rendering color, depth and stencil buffers and as a result the

reduction of system memory bandwidth. The rendering comes in two phases. The first

one takes over the geometry processing, determining which geometry has fallen in the

bounds of a tile and the second one takes over the rasterization.

What is deferred rendering:

 Deferred rendering splits the per-tile rendering into two phases, hidden surface

removal (HSR) and shading. HSR will be performed in every tile, completely

removing all fragments that will not contribute to the final image while the shading

follows determining the meshes surface.

TBDR VS IMR:

IMR relies on Z-buffer to sort the end results after all objects have been

rendered on screen. Although some progress have been made in order to increase the

performance of IMR (such as early Z-buffer operations), the brute force approach of

the technique taking the object through the entire pipeline does not leave any real

margins in performance boost comparing with TBDR.

2.2.2: SGX overview

 Taking a quick look over the PowerVR architecture is enough to understand

its unique structure comparing with other market GPU architectures. Before

continuing in describing the steps in which the data go through, we should make a

special reference to the component that makes the real difference in the architecture.

That would be the USSE (Universal Scalable Shader Engine). To cut a long story

short, the USSE is a processor standing on top of our unified GPU architecture. The

USSE is a multi-threading processor capable of processing vertex, fragment and GPU

data. As vertex and fragment processing is completely decoupled – all geometry

processing is done, then rasterization begins – the USSE thread scheduler can actually

load balance in a queue of tasks and as a result, any idle time between processes or

latency, bares to a minimum.

12

3
SGX HW SCHEMATIC

 Initially, the geometry data are submitted from the system’s memory to the

Vertex Master Data. This component takes the stream of data and sends them to CGS

(Course Grain Scheduler) which in turn breaks down the job into smaller tasks.

Thereafter, the CGS sends the data to the scheduler of any available USSE which

processes them and carries out the per vertex operations before to pass it on to TA

(Tiling Accelerator). The TA goes through the clipping, culling and updating of the

display lists, which contain all information about the objects that will finally appear

on screen. Data coming out of the TA are stored in memory of the PB (Parameter

Buffer).

 After geometry is processed, it is time about per-fragment operations.

Rasterization, texturing and shading begins at each tile separately. The tile data pass

to ISP (Image Synthesis Processor) where Hidden Surface Removal takes place. The

resultant values are taken to the Texture co-Processor for pre-fetching and they are

also distributed to the thread schedulers of the available USSEs. The USSEs process

per-tile texture in cooperation with the Texture co-Processor and the final stream of

data are send to PBE (Pixel Back End) for final operations before the rendered image

is finally flushed to the frame buffer. In order to relieve the CPU from interrupts, the

architecture also contains a micro kernel to handle these events.

2.2.3: SGX-MP

 SGX-MP architecture is designed to enable many SGX cores to operate in

parallel, scaling performance almost linearly. In real world, each additional core runs

at 95% of the efficiency of a single one. That is possible thanks to a piece of logic

called MP-WRAPPER (or Hydra) that allows the SGX cores to communicate and

work together. Hydra splits objects into chunks which are evenly distributed between

3
 IMG SDK, PowerVR Series 5, Architecture Guide for Developers.

13

the cores. As a result the idle time in each core is kept to a minimum and hotspots that

would be created, if one core for example had a lot more work than the others, are

diminished.

What it is worth mentioning, is that for every core we add to the architecture

memory bandwidth is just slightly increased. Another important feature is that all

devices that operate under the SGX core can also operate under the SGX-MP core

without any further modification.

2.3: SDK PRESENTATION

PVR Shell

 PVRShell is a light-weight framework used for the setup of applications,

shutdown and event handling. It is designed to stream line the process of writing

cross-platform applications, making programming for PowerVR platforms easier and

more portable, and it is used in many rendering engines that use PowerVR

architecture GPUs.

It consists of a C++ class which takes care of all API and OS initialisation for

the user and handles adapters, devices, screen/windows modes, resolution, buffering,

depth-buffer, viewport creation & clearing, etc.

PVRShellOS.cpp and PVRShellAPI.cpp contain all the code to initialize the

specific OS and API (Windows and OpenGL ES in our case). So we can easily

understand that this code varies depending on our implementation preferences. The

code that is always the same is the PVRShell.cpp and it interacts with the user though

an abstraction layer.

A new application must link to these three files and must create a class that

will inherit the PVRShell class. This class will provide five virtual functions to

interface with the user:

 InitApplication(),

 InitView(),

 RenderScene(),

 ReleaseView() and

14

 QuitApplication().

The user also needs to register his application class through the NewDemo() function.

 The first two functions, as their name implies, are used for the initialization of

the program. InitApplication() is called only once to initialize variables that don’t

depend on the rendering context that follows, such as object and texture handles.

InitView() is called for the initialization or change of the rendering context like the

creation, compilation and linking of the shaders, the vertices’ creation, the textures’

creation or loading and all similar variable initialization.

 RenderScene() is the main rendering loop function. The function is called in

every frame and manages all relevant OS events.

 ReleaseView() function is called before the QuitApplication() function or

before the change of the rendering context. It frees all handles from the existing

vertices and textures, programs and shaders. QuitApplication() is called before

finalizing the application.

 PVRShell also offers a wide variety of helper functions like functions for

passing and getting data from the PVRShell and other helper function which we will

see while reviewing the program.

2.4: Texture Compression

 OpenGL ES 2.0 supports both compressed and uncompressed texture image

data. It goes without saying that compressed textures should always be used against

the uncompressed ones, whenever that is possible.

 Using compressed textures can prove to be very effective on the performance

of our device. Modern applications need more and more textures in order to represent

a satisfying result. The first and obvious reason to compress textures is to reduce the

memory footprint of the textures. This allows the user to fit more textures on a given

amount of memory which will probably increase quality. Furthermore, any memory

savings are very useful for mobile devices where memory is shared across the entire

SoC (System on Chip)

 In addition, texture compression can save or utilize better the available

bandwidth of memory resulting to better performance, sacrificing unnoticeable image

quality. Finally, memory access is expensive in terms of energy consumption

something very important for mobile devices where battery life is finite. Bandwidth

savings contribute to decrease the quantity and magnitude of memory access.

The core OpenGL ES 2.0 specification does not define any compressed texture

image formats. It is up to the vendor who implements OpenGL ES to provide

compressed image data types. Most of us are familiar with the usual image file

formats such as jpg, bmp or png. However we have to state here that there is a

distinction between these kinds of formats and texture compression. Typical storage

compression although occupies a small amount of storage on hard disc, it immediately

decompresses when used or loaded in an application. So, it finally occupies a large

amount of memory bandwidth. Texture compression schemes, designed for direct use

in the GPU, always stay in the original compressed format and they are designed for

random access so, consequently, they have usually fixed bitrate and high data locality.

As a result texture compressions cannot achieve as high compression rates and image

15

quality, as the standard image compressions but they are more useful in graphics

applications.

2.4.1: PVRTC

 One of the most popular texture compressions in the graphics market (used in

all generations of the iPhone, iPod Touch, iPad.) is PVRTC designed by Imagination

Technologies. This differs from block-based texture formats such as S3TC and

Ericsson Texture Compression in the representation of the compressed image. The

image is represented by two lower resolution images which are bilinearly upscaled

and then blended according to low precision, per-pixel weights, which results in

considerable visual enhancement. This allows the use of 4-bits or 2-bits per pixel

compression ratio which in turn leads to memory footprint savings compared with 32-

bits per pixel textures. To conclude the use of PVRTC leads to reduced power

consumption, increased performance, more textures in the same budget or instead

noticeable high quality.

Chapter 3

3.1: Project Overview

At this project we are implementing an interface for a smartphone, using

OpenGL ES 2.0 alongside IMG’s SDK, which supports all basic menu functionality

using 2D textures. This means, for example, that we can type a phone number but not

make the actual phone call. We will present all code, talking about all implementation

details, difficulties faced, tools used and general approach. At this point I would like

to mention that before to undertake this project I had no previous experience in the

field of graphics thus I will present it from the point of view of a newbie, which I

think makes this project suitable for anyone who wants to use it as a stepping stone to

enter the OpenGL ES world.

While trying to plan my next step in order to find a suitable approach on this

thesis, I tried to build a plan of how I was going to start. As expected, it makes more

sense to start from a general design of the interface and then gradually move on

details. The basic parts of any mobile phone should be included as well as a structure

for each one of the sections of the menu.

Starting from the main menu structure, one of the main features that any

smartphone interface includes is the viewport sliding. Usually this happens after a

prolonged gesture along the screen. This gesture is usually captured by certain tools,

often provided by the operating system used by the smartphone. Since the SDK of

IMG does not provide such tools, as that is not its purpose, the sliding will be done

with a touch of the user at a certain part of the screen. Furthermore, the placement of

the objects in the main menu was designed so that it will be stylish and user friendly

at the same time.

Following the same philosophy, the other parts of the interface are meant to be

functional and pleasantly designed. The alarm clock provides a clear structure of

setting it up, with notifications both at its section and at the main menu which clarify

if it is activated or not. The part of the messages is furnished with a sliding interface

which gives information about the number of sent messages, and it leads as well to the

creation menu where the user can write a message with a virtual keyboard. A similar

approach can be also found in the calling menu where another virtual telephone

16

keypad is located along with other necessary buttons. Finally, in case the screen

remains inactive for some time, the screensaver of the device interferes to protect the

screen from burn-in pixels – although nowadays thanks to the new LCD screens,

screensavers are mostly used for entertainment.

3.2: INTERFACE STRUCTURE

 Before getting deep in to the code of this program it would help a lot to take a

look at the structure of the interface and see what features were implemented.

 The main menu of the interface is divided in four columns and six lines

forming 24 objects of the same size with equal spaces between them. Only half of

them are used in the menu mostly for aesthetic purposes. When running the

application what you actually see is eight out of the twelve objects you would expect.

In order to see the other options on which you can click on, you have to slide down

your screen by clicking at the bottom left corner of your window. Clicking at the top

right corner of the window slides the screen up, bringing you back where you were.

17

18

All objects in the main menu have taken their names (number) in the VBO

depending on their position, according to the following diagram. The objects that

were not used in the main menu are used in other parts of the interface, sometimes

with changes to size or even position.

19

All icons in the menu interact with the user after a left mouse-click but

because not all of them lead to another screen in the interface, I have chosen to project

a green tick to show the interaction. The objects that do lead to another part of the

interface are the messages, the alarm clock and the phone calls.

Now let us take a further look into the other parts of the interface. If you

decide to navigate through the alarm clock, you will find a variety of settings that you

can use. There are two “plus-minus” buttons that allow you to set the hour indication

and minute indication. Under these buttons you will find the time indication and next

to them you will find the buttons that set the alarm on or off. The orange button gives

you the possibility of activating the snooze setting in order to set the alarm to ring

again after a few minutes. The black and white bell at the right bottom of your screen

is only visible if the alarm is activated. The blue button at the left bottom of the screen

leads you back to the main menu.

20

Finally, if the alarm is activated you can also see it at the upper right in the

main menu, where a relevant little box appears.

21

If the user wants to take a phone call, he can tap on the “call now” button and

immediately the phonecall pad will appear. The upper part of the screen is covered

from a pad that contains all necessary characters for a call. At the bottom right part of

the screen we can find two buttons: a green one for trying a phone call and a red one

that cancels our current phone call. Above these two buttons, there is a circled light

blue button which is used to erase any number that we might have typed and at the

left bottom side of our screen we can see the arrow button that takes us back to the

main menu. The numbers which the user types appear at the left centre part of the

screen and under them occasionally appears a message depending on the user trying

to make a phone call.

The messages main screen is divided in two parts. The first part that the user

comes across entering from the main menu is the left part where you can see the

incoming messages, the button that leads to the screen where you can create a

message, and the back arrow. Pressing at the right part of the screen, slides you to the

right where the other part of the messages menu is.

22

 The thing to note here is the counter that keeps track of the amount of

messages sent and similarly if we press at the left centre part of the screen we slide

left to where we previously were.

23

If you try to create a message, you will find a virtual keypad with all letters

and a few punctuation marks, a button to erase a part of the text in case you want to

correct it, and a button that sends the message. The body of the text appears under the

pad and it can take up to three lines. At the bottom left part of the screen you can see

the back arrow as usual. After every sent message you will note that you are

transferred to the message menu and the counter next to “sent messages” increments

by one.

24

Finally, another feature that is added to the interface is the screen saver. After

not clicking for some time on the screen, the screen saver comes along. That is in fact

an IMG logo spinning around that disappears the moment we click again on the

screen and we return to where we last were. Here follows an instant of the

screensaver:

25

3.3: Shaders

Though we have not yet talked about the project itself, I think it would be

more appropriate to start reviewing it starting from the shaders rather than taking it

from top to bottom.

const char* pszFragShader = "\
 uniform sampler2D sampler2d;\
 varying mediump float varDot;\
 varying mediump vec2 varCoord;\
 void main (void)\
 {\
 gl_FragColor.rgb = texture2D(sampler2d,varCoord).rgb * varDot;\
 gl_FragColor.a = 1.0; \
 }";

 const char* pszVertShader = "\
 attribute highp vec4 myVertex;\
 attribute mediump vec3 myNormal;\
 attribute mediump vec4 myUV;\
 uniform mediump mat4 myPMVMatrix;\
 uniform mediump mat3 myModelViewIT;\
 uniform mediump vec3 myLightDirection;\
 varying mediump float varDot;\
 varying mediump vec2 varCoord;\
 void main(void)\
 {\
 gl_Position = myPMVMatrix * myVertex;\
 varCoord = myUV.st;\
 mediump vec3 transNormal = myModelViewIT * myNormal;\
 varDot = max(dot(transNormal, myLightDirection), 0.0);\
 }";

First we should take a look at the variable type modifiers used in our shaders.

Uniform variables are variables that store read only values. They are useful for storing

all kind of data like transformation matrices, light parameters or colours. There is also

a special type of uniform variable, called sampler. Sampler is used to fetch from a

texture map. The sampler uniform will be loaded with a value specifying the texture

unit to which the texture is bound. Attribute variables are used only in the vertex

shaders and are used to store the per-vertex inputs, such as positions, normal or

texture coordinates. The final variable type modifier used in shader is varying

variables. These are used to store the outputs of the vertex shaders which will be

passed in the fragment shaders. So as we understand the varying declarations will be

declared in both shaders identically.

 OpenGL ES 2.0 also provides build-in special variables which can be output

from the vertex shader and input to the fragment shader or output from the fragment

shader. The first one we use to our shaders is gl_Position. gl_Position is used to

output the vertex position in clip coordinates. The gl_Position values are used for

converting vertex position from clip coordinates to screen coordinates. Another

build-in function used in our shaders is “dot” function, which is used to compute the

dot product (inner product) between two vectors. Finally, gl_FragColor contains the

final output colour of a fragment.

26

Now lets take all declarations in our shaders to explain them one by one.

Starting from the vertex shader, we have declared three attributes for the position,

texture coordinates and normals of a vertex. An object such as a line or vector is

called a normal to another object if they are vertical to each other. For example, in the

two-dimensional case, the normal line to a curve at a given point is the line vertical to

the tangent line to the curve at the point.

 Then we have declared our projection matrix, our modelview matrix and a

vector for the light direction. In short, the modelview matrix is used to define our

camera and the projection matrix defines the frustum
4
 of our scene. We pass the

transformed vertex position as output by writing it to gl_Position and we also pass the

x, y texture coordinates (since our interface will be 2 dimensional) into varCoord

varying variable. Then we transform the normal vector from object coordinates to eye

coordinates and we store the result in TransNormal vector. Since the normals are used

to specify how much light falls on a surface or a vertex, by computing the inner

product of the normal vector and the light vector we can find the diffuse lighting term

and we store that term into varDot varying variable.

 In the fragment shader, we declare the two varying variables that come as

inputs from the vertex shader and a sampler. With gl_Fragcolor we pass the final

color of the fragment and we define the RGB and the alpha value. We set the default

alpha value to be 1.0 and we set the RGB values to be taken from the loaded 2D

texture whose value is multiplied by the light diffusion in order to get the appropriate

result.

3.4: Shader - Program Creation

The first step, after we write the code of our shaders, is to create a shader

object. This is done using glCreateShader. This function has one enum type argument

which can take either GL_VERTEX_SHADER value, if we want to create a vertex

shader object, or GL_FRAGMENT_SHADER, if we want to create a fragment shader

object. Once the object is created, the next thing that should be done is to provide the

shader source code using glShaderSource. Then it would be time to compile our

shader with glCompileShader. The first thing you want to know after compiling is

whether there were any errors. This, along with other information about the shader

object, can be queried for using glGetShaderiv. In case the shader fails to compile, the

error will be written into the info log. This is a log written by the compiler for errors

and messages. What we need to do next is to find the length of the log, allocate

enough memory and then retrieve it. Finally we display the message in a dialog box

before the application to quit. Note that this procedure should be done for both

shaders. Here follows the code:

4
 a frustum is the portion of a solid (normally a cone or pyramid) that lies between two parallel planes

cutting it.

27

// Create the fragment shader object
m_uiFragShader = glCreateShader(GL_FRAGMENT_SHADER);

// Load the source code into it
glShaderSource(m_uiFragShader, 1, (const char**)&pszFragShader, NULL);

// Compile the source code
glCompileShader(m_uiFragShader);

 // Check if compilation succeeded
GLint bShaderCompiled;
glGetShaderiv(m_uiFragShader, GL_COMPILE_STATUS, &bShaderCompiled);
if (!bShaderCompiled)
{
 // An error happened, first retrieve the length of the log message

int i32InfoLogLength, i32CharsWritten;
 glGetShaderiv(m_uiFragShader, GL_INFO_LOG_LENGTH, &i32InfoLogLength);

 // Allocate enough space for the message and retrieve it

char* pszInfoLog = new char[i32InfoLogLength];
glGetShaderInfoLog(m_uiFragShader, i32InfoLogLength, &i32CharsWritten,
pszInfoLog);

 /*
 Displays the message in a dialog box when the application quits
 using the shell PVRShellSet function with first parameter prefExitMessage.
 */
 char* pszMsg = new char[i32InfoLogLength+256];
 strcpy(pszMsg, "Failed to compile fragment shader: ");
 strcat(pszMsg, pszInfoLog);
 PVRShellSet(prefExitMessage, pszMsg);

 delete [] pszMsg;
 delete [] pszInfoLog;
 return false;
}

// Loads the vertex shader in the same way
m_uiVertexShader = glCreateShader(GL_VERTEX_SHADER);
glShaderSource(m_uiVertexShader, 1, (const char**)&pszVertShader, NULL);
glCompileShader(m_uiVertexShader);
glGetShaderiv(m_uiVertexShader, GL_COMPILE_STATUS, &bShaderCompiled);
if (!bShaderCompiled)
{
 int i32InfoLogLength, i32CharsWritten;
 glGetShaderiv(m_uiVertexShader, GL_INFO_LOG_LENGTH, &i32InfoLogLength);
 char* pszInfoLog = new char[i32InfoLogLength];
 glGetShaderInfoLog(m_uiVertexShader, i32InfoLogLength, &i32CharsWritten,
pszInfoLog);
 char* pszMsg = new char[i32InfoLogLength+256];
 strcpy(pszMsg, "Failed to compile vertex shader: ");
 strcat(pszMsg, pszInfoLog);
 PVRShellSet(prefExitMessage, pszMsg);

 delete [] pszMsg;
 delete [] pszInfoLog;
 return false;
}

28

 The next step is to create a program and attach the two compiled shaders onto

it. We have to say here that a shader can be attached to any point. It does not need to

be compiled or even have a loaded source code. The only restriction is that one

program object should have exactly one vertex and one fragment shader attached onto

it. I just followed this order because it was suggested from all documentation I had

studied and it actually seems like the most logical order to follow.

// Create the shader program

m_uiProgramObject = glCreateProgram();

 // Attach the fragment and vertex shaders to it
glAttachShader(m_uiProgramObject, m_uiFragShader);
glAttachShader(m_uiProgramObject, m_uiVertexShader);

 Next, we have to bind a generic vertex attribute index to an attribute variable

in the vertex shader. This will happen with the use of glBindAttribLocation command.

Generic attribute indices are used to enable a generic vertex attribute and specify a

constant or per-vertex value. This binding will take effect when the program will be

linked. The linking is responsible for generating the final executable program. We

actually have to check if linking was successful in the same way that we checked if

the compilation of the shaders succeded.

 // Bind the custom vertex attribute "myVertex" to location VERTEX_ARRAY
glBindAttribLocation(m_uiProgramObject, VERTEX_ARRAY, "myVertex");
 // Bind the custom vertex attribute "myUV" to location TEXCOORD_ARRAY
glBindAttribLocation(m_uiProgramObject, TEXCOORD_ARRAY, "myUV");

 // Link the program
glLinkProgram(m_uiProgramObject);

 // Check if linking succeeded in the same way we checked for compilation
success
GLint bLinked;
glGetProgramiv(m_uiProgramObject, GL_LINK_STATUS, &bLinked);

if (!bLinked)
{
 int i32InfoLogLength, i32CharsWritten;
 glGetProgramiv(m_uiProgramObject, GL_INFO_LOG_LENGTH, &i32InfoLogLength);
 char* pszInfoLog = new char[i32InfoLogLength];

glGetProgramInfoLog(m_uiProgramObject, i32InfoLogLength, &i32CharsWritten,
pszInfoLog);

 char* pszMsg = new char[i32InfoLogLength+256];
 strcpy(pszMsg, "Failed to link program: ");
 strcat(pszMsg, pszInfoLog);
 PVRShellSet(prefExitMessage, pszMsg);
 delete [] pszMsg;
 delete [] pszInfoLog;
 return false;
}

29

 Next we have we have to get the uniform location and set the sampler 2d

variable to the first texture unit and finally decide the background colour of the

screen. The first three values of glClearColor determine the RGB value of the colour

and the final argument describes the alpha value.

 // Sets the sampler2D variable to the first texture unit
glUniform1i(glGetUniformLocation(m_uiProgramObject, "sampler2d"), 0);

 // Sets the clear color
glClearColor(0.99f, 0.99f, 0.99f, 1.0f);

 The RBG colour model is based in the addition of three basic colours (red,

green and blue) in order to reproduce all other colours. The main purpose of the

model is the display of images in electronic devices, like for example a portable

device on which this program can be used to. The alpha value determines the

transparency of an object; in this case the transparency of the background and that is

why it is set to 1.0 as we want the background to be opaque.

3.5: Object generation

 Thereafter, we have to generate an array buffer object in which we will store

all the vertex attribute data for our vertices. We proceed to this generation after

calling the glGenBuffers command in which we pass as arguments the number of

objects we want to create and a pointer to the array of the objects.

glGenBuffers(26, &m_ui32Vbo[0]);

 Each object should be bound at one position in the array after we have

initialized its primitives, texture coordinates and normal. Each primitive has a triad of

x, y, z coordinates, a pair which shows the texture coordinate and a triad with the

normals’ coordinates sequentially. We always have to keep in mind that in OpenGL

ES 2.0 we can only create points, lines or triangles. So if we want to create a square or

a rectangular we have to use two triangles. The z coordinate is always zero in our case

since the interface will be 2 dimensional.

 // Position UVs Normals
GLfloat zerVertices[] = { -0.51f,0.70f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 -0.96f,0.70f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,
 -0.96f,1.00f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 -0.51f,0.70f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 -0.96f,1.00f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 -0.51f,1.00f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f};

The vertex array data storage is created and initialized using the glBufferData

command. In this command we have to pass the size of the buffer data in bytes, a

pointer which shows to the buffer data and a hint of how the application will use the

30

buffer object. In this case we have used the GL_STATIC_DRAW argument which

declares that the buffer object will be specified once and it will be used many times in

order to draw the primitives. After the initialization of the buffer object data, we can

unbind current selection and move on.

glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[0]);
glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride, zerVertices,
GL_STATIC_DRAW);
glBindBuffer(GL_ARRAY_BUFFER, 0);

 Taking a look at the matrices that store the vertices information about each

object, we will notice that are grouped together in a certain structure. This is not

actually essential for the application rather than it makes it easier for the developer to

read out the information. Each line in the matrix contains information about a single

point on the screen.

The first three numbers are the x, y and z coordinates of the point. These

coordinates can take values from -1 to 1, with the (-1,-1) coordinate being the bottom

left of the screen and the (1, 1) coordinates being the top right of the screen. The next

two values are the texture coordinates. What we actually have to do here is match the

bottom left side of our texture with the bottom left side of our object, the top left side

of our texture with the top left side of our object and so on. The values that the

textures coordinates can take, has range from 0.0 to 1.0.

Finally, the last three values in the row are the normals. As we mentioned

before, normals are vectors which are vertical to the tangent plane of the surface and

actually determine the surface’s orientation towards the light source.

3.6: Texture loading

PVRTexTool:

PVRTexTool is a suite of utilities for compressing textures, an important

technique that ensures the lowest possible texture memory overhead at application

run-time. PVRTexTool’s components include a library, a command line with GUI

tools and a set of plug-ins, all available for Autodesk 3DSMax, Maya, and Adobe

Photoshop. The tool offers the user a variety of compressed texture formats such as

PVRTC and ETC. It also includes many pre-process image features like, resizing,

border generation and image bleeding.

My experience, though I did not go deep into the features offered, was quite

pleasant. The tool was easy to use, the GUI had adequate clarity and the

documentation offered had clear and up to the point instructions. The only feature I

found a bit weak was the resizing of objects. Final texture was often blurry especially

when taking very large pictures and creating smaller – which was my case mostly. I

overcame this problem using Microsoft Windows Paint. I resized all textures I used in

Paint, in which the result was more than satisfying, and then I performed vertical

flipping and encoding using the PVRTexTool. Another point that the user should keep

in mind, and this one has nothing to do with the tool but mostly with PVRTC, is the

quality which will choose for the encoding of his texture. Surely that won’t be the

31

case in a portable device where the screen is small and at the same time the processing

speed limited, but at the screen of my personal computer choosing a medium quality

encoding had unpleasant effects at the final result, thus I preferred to use higher

quality – since the processing power was more than plenty. Of course, installing the

interface in a portable device will maybe demand to lower graphics quality in favour

of rendering speed and at the same time it is quite probable that this decision won’t

have any real cost at the result illustrated.

Filewrap:

“Filewrap is a utility that 'wraps' external data required for an application so

that it can be included within an executable. Data is statically linked into the

application and may be accessed at run time using the PVRTResourceFile tools code

or from your application. This is useful for platforms without a file system and for

application distribution and deployment because it keeps all required data in one

place: the application executable.”
5

Further use of available tools:

The last tool we will use to load textures in our application is the

PVRTTextureLoadFromPVR function. This function which is included in IMG’s SDK

takes as first parameter the name of the file which we are going to load and as a

second parameter the resulting texture handle. The third parameter is a CPVRTString

for error message output.

Finally, it is necessary to set up our filtering mode in order to use mipmaps.

The result will be to avoid aliasing artifacts that occur if the ratio between screen

pixels and texture pixels is not good. There are two kinds of filtering: minification

(when the texture should be compressed to the size of the polygon in which should fit)

and magnification (when the texture should stretch in order to fill up the polygon).

The decision between minification and magnification is done automatically by the

hardware, but the developer has control over the type of filtering that he will use in

each case.

This is all done by the glTexParameter fuction. In the first parameter we

declare if our texture is 2D or 3D, then if the following type of filtering refers to the

minification or the magnification filter, and finally we decide which type of filter to

use depending on how much performance we are willing to sacrifice in order to get

high visual quality. For the magnification, we can choose between GL_LINEAR and

GL_NEAREST filter. In the first case, a single point is taken from the texture nearest

to the texture coordinate while in the second case an average of four samples is taken.

When it comes to the minification filter we certainly have more options as we are

allowed to choose not only between linear or nearest filters, but also a combination of

filters which take samples from the mip-map levels of the image. The main aspect that

sets our decision on deciding which filter to use, is the hardware. Knowing the

features of the hardware on which we will run the application, help us balance

between performance and quality. In our case we chose a linear filter for

5
 IMG forum

32

magnification and a bilinear fetch from the closest mip level for minification as our

application should run efficiently on portable devices on which resources are limited.

The mip-map filtering mode is usually the best choice when it comes to minification

as it provides good quality.

……………
………………
…………………

if(PVRTTextureLoadFromPVR(c_aeTextureFile, &m_uiTexture[29]) != PVR_SUCCESS)
{
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 30th texture\n");
 return false;
}
 /////////////////// MesPad
if(PVRTTextureLoadFromPVR(c_afTextureFile, &m_uiTexture[30]) != PVR_SUCCESS)
{
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 31th texture\n");
 return false;
}

glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);
glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

3.7: Picking Techniques

 When we use the term picking in graphics, we refer to selection of objects via

a mouse click or a tap when it comes to mobile devices. There are several methods to

implement picking in OpenGL ES. We will mention the main methods and after this

we will go through our choice in the project and how did we end up with this solution.

 To start with, the most straight forward technique when it comes to picking is

ray tracing. Before implementing the ray tracing technique, it is quite useful to create

a bounding box around every object, especially if the object does not have a

homogenous form. Then, you fire a ray from the user’s side, starting at the pixel that

was clicked and then run an intersection test to determine which object has been

intersected first by the ray. This technique is very efficient in 3D graphics world

where not only we find many objects in the screen but also many of them could be

placed one behind the other. That way we can easily determine which object is closest

to our camera. The disadvantage of this technique comes when we have moving

objects on screen. In that case, since firing a ray and having the intersection test takes

some time, there is a chance that until the procedure to be completed the object to

change position. So the user may click on the object, but there is a chance that the

results of the intersection test to show he has not tapped on it.

Another way to determine which object is selected by the user is colour

picking. What happens in this case is that after we apply one flat colour to each

object, we try to determine which colour is under the pixel the user has selected, and

so we get to know which object is chosen. However, there is one major drawback in

this technique. The only way in which we can check onto what colour the user has

33

clicked on, is by using glReadPixels command which essentially slows down the

application significantly.

To further explain this we have to take a closer look at hardware side of a

system. What happens generally is that the CPU and the GPU are working in parallel.

Since they have different amounts of workloads to deal with, all calls are queued and

served when the GPU is ready to do so. When we call the glReadPixels command we

actually wait for the GPU to have finished all processing, since an undone texture is

useless. So as a result the CPU, which is always a bit ahead of the GPU in terms of

the stream that is being processed, actually stays idle waiting for the GPU to finish

processing. So glReadPixels should be used only if there is no other way to perform

our tasks.

After taking sometime tracking down all available options about picking, what

I realised is that all solutions offered online and in bibliography where actually trying

to deal with 3D issues, like objects hiding one behind another. So, since our

application is 2D and our objects are not moving around, there was no need to get

involved with so complex techniques. The solution that seemed simpler was to locate

the user click on our screen, and since we know where the app’s objects are located in

each section of the menu, we would decide accordingly what our next action should

be.

In order to achieve this, we need a variable –it is called “pressed” in our case-

which takes its value depending on the click position and on the screen of the

interface we are into. To get a mouse event and determine the coordinates of it, we

use the PVRShellGet() tool function which is used to bring data from PVRShell. By

passing as an argument the prefPointerLocation key word we can take at all times the

mouse position. We temporarily pass the return value of the function in a vector, as it

returns two values – one for the x and one for the y coordinate - , and then we store

the first position of the vector in a new x variable and the second position in a y

variable. So at each frame that is rendered we store the new coordinates of the mouse

at these variables. To get the a mouse event we pass the argument prefButtonState at

the PVRShellGet function and in that case it returns value 1 if the mouse button is

pressed or otherwise returns 0. Here follows an example of how the “pressed”

variable takes its value depending on mouse events and how the x and y variables

contain the mouse position at the frame.

34

// Depending on click position pressed takes the appropriate value
if(0 != PVRShellGet(prefButtonState) && x<0.25 && y<0.25) {pressed=1;}
else if(0 != PVRShellGet(prefButtonState) && x<0.75 && x>0.5 && y<0.25)
 {pressed=2;}
else if(0 != PVRShellGet(prefButtonState) && x<0.5 && x>0.25 && y>0.25 && y<0.5)
 {pressed=3;}
else if(0 != PVRShellGet(prefButtonState) && x>0.75 && y>0.25 && y<0.5)
 {pressed=4;}
else if(0 != PVRShellGet(prefButtonState) && x<0.25 && y>0.5 && y<0.75)
 {pressed=5;}
else if(0 != PVRShellGet(prefButtonState) && x<0.75 && x>0.5 && y>0.5 && y<0.75)
 {pressed=6;}
else if(0 != PVRShellGet(prefButtonState) && x<0.5 && x>0.25 && y>0.75)
 {pressed=7;}
else if(0 != PVRShellGet(prefButtonState) && x>0.75 && y>0.75) {pressed=8;}

// Takes the mouse position

if (NULL != (vec2PointerLocation = (float *)PVRShellGet(prefPointerLocation)))
{
 x = vec2PointerLocation[0];
 y = vec2PointerLocation[1];
}

 As we mentioned before, this is a simpler solution comparing to the other two

techniques because we avoid a lot of algorithm and code complexity. On the other

hand, it has not only advantages but also disadvantages. The main problem to deal

with in this technique is potential unwanted “clicks” that may occur from time to

time. For example you will realize that sometimes if you click on an object for more

than a moment, you might get to interact with an object from the next scene that will

appear. That same problem might also come up when typing a message or a call

number, where double clicking on a character without intention can be annoying. In

order to get past this, we should take care so that objects that lead to changing scene

do not lay one behind the other when possible. For example, an object at the main

menu would be better if it did not have the same coordinates as the “back” arrow from

the phone pad, so even if we click prolonged at the arrow we will not press anything

in the main menu by mistake.

Another way, in case we cannot go through the previous compromise, would

be to call the Sleep() function and idle the system for a few milliseconds so that we

give the user the necessary time for pressing each button. This solution, though

sounds simple and straight forward, must be used moderately because it slows down

the application a lot, and since this app is meant for real time embedded devices,

performance is very important.

3.8: Main Menu rendering

 To begin with, every section of our interface is implemented in a different

function for code readability reasons. All these functions are called in RenderScene()

depending on the values of our parameters.

35

 The Main Menu function is probably the most simple and easy to go through

comparing to all other functions. What we have to do first is bind the projection

matrix to the associated uniform variable in the shader. We can get the location of the

variable with glGetUniformLocation command. Then we pass the matrix in this

variable with glUniformMatrix4fv. Accordingly, we find the location of the model

view matrix and the light direction and pass them in the shader.

The last part of the glUniform command is not always the same though it is

kind of self-explanatory. As you probably already suspected, it depends on the kind of

uniform. If you want to set a simple uniform you have to use glUniform{number}{if}

where number ‘1’ stands for a float element, boolean or integer, ‘2’ stands for vec2,

‘3’ for vec3 and ‘4’ for vec4. If you want to set an array you just place a “v” at the

end – stands for vector – and if you want to set a matrix data type then you have to

use GlUniformMatrix{2,3,4}fv depending on what you want: mat2, mat3 or mat4.

There are two important things to remember here: the first one is that one uniform can

be used from both shaders as long as it is declared in both of them. The other thing to

notice is that glUniform* command is set to the current program in use. So it must be

used after we have selected our program – through the UseProgram command.

/*
 Bind the projection model view matrix (PMVMatrix) to the
 corresponding uniform variable in the shader.
 This matrix is used in the vertex shader to transform the vertices.
*/
int zLocation = glGetUniformLocation(m_uiProgramObject, "myPMVMatrix");
glUniformMatrix4fv(zLocation, 1, GL_FALSE, aPMVMatrix);
/*
 Bind the Model View Inverse Transpose matrix to the shader.
 This matrix is used in the vertex shader to transform the normals.
*/
zLocation = glGetUniformLocation(m_uiProgramObject, "myModelViewIT");
glUniformMatrix3fv(zLocation, 1, GL_FALSE, aModelViewIT);

// Bind the Light Direction vector to the shader
zLocation = glGetUniformLocation(m_uiProgramObject, "myLightDirection");
glUniform3f(zLocation, 0, 0, 1);

 Further on, we bind the Vertex Buffer Object with glBindBuffer, and we

enable the vertex attribute at the index VERTEX_ARRAY with

glEnableVertexAttribArray. Then we have to point to the data for this vertex attribute

with glVertexAttribPointer. There are two ways to store vertex attributes. Either put

them all together in a single buffer and form an array of structures, like in our case, or

put them in separate buffers and form a structure of arrays. Taking all arguments in

glVertexAttribPointer from the beginning, we have the vertex attribute index which is

0, the number of components in our vertex array that in our case is three (primitives,

texture and normals), the data format, an indicator which specifies if the non-floating

data format should be normalized, the stride which is the interval of elements from

primitive to primitive and finally a pointer to the data.

36

// Bind the VBO
glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[0]);
 // Pass the vertex data
glEnableVertexAttribArray(VERTEX_ARRAY);
glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);

 Then we have to go through the same procedure for textures and normals

before we draw our triangles and finally unbind the buffer. Here, we show the

interaction of all objects with the mouse event, with the use of the declared variable

“pressed”, which changes value depending on the coordinates on which the user has

clicked. So we bind the appropriate texture and project it on screen: the normal object

texture or the “green tick”. That of course goes only for the sections of the menu that

are not enhanced.

if(pressed==1)
{
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[18]);
}
else
{
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[0]);
}
glEnableVertexAttribArray(TEXCOORD_ARRAY);
glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride,
(void*) (3 * sizeof(GLfloat)));

 // Pass the normals data
glEnableVertexAttribArray(NORMAL_ARRAY);

glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride,
(void*) (5 * sizeof(GLfloat)) /* Normals start after the position and uvs */);

 glDrawArrays is used to draw the primitives in our screen. We have to specify

the kind of primitive we want to render, the stating vertex index and the number of

indices to be drawn, which is 6 for drawing a square (two triangles). There are

multiple kinds of primitives that we can select to draw. Of course we can draw points,

lines and triangles as we have already mentioned but we can also draw some

combinations formed of these three basic elements too. These would be a line strip, a

line loop, which is a strip that ends where it started, a triangle strip and a triangle fan.

After we complete the drawing we can finally unbind the current buffer.

37

 // Draws a non-indexed triangle array
glDrawArrays(GL_TRIANGLES, 0, 6);
 // Unbind the VBO
glBindBuffer(GL_ARRAY_BUFFER, 0);

 In the end of this function you can notice an object that is only rendered if a

variable called “AlActivation” is of value 1. This is for the rendering of the sign that

indicates if the alarm clock is switched on, but we will talk about this more later on.

// This obj will be rendered only if the alarm is activated

if(AlActivation==1)
{
glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[3]);
glEnableVertexAttribArray(VERTEX_ARRAY);
glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
glBindTexture(GL_TEXTURE_2D, m_uiTexture[20]);
glEnableVertexAttribArray(TEXCOORD_ARRAY);
glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride,
(void*) (3 * sizeof(GLfloat)));

glEnableVertexAttribArray(NORMAL_ARRAY);
glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride,
(void*) (5 * sizeof(GLfloat)));

glDrawArrays(GL_TRIANGLES, 0, 6);
glBindBuffer(GL_ARRAY_BUFFER, 0);

}

38

3.9: Sliding

 Another feature implemented in our smartphone interface is the sliding of the

screen. In order to further explain the implementation we first have to explain the

term of the viewport. The term refers to a 2D rectangle that is used to project a scene

of the virtual camera. It is actually the portion of the total image that is visible from

the user.

 The command that allows the developer to change the viewport is glViewport.

The command has four arguments. The first two handle the x and y coordinates of the

viewport and the other two handle the zoom of the viewport in the view frustum. The

way to achieve our goal, slide our viewport, would be to zoom in a certain area of our

screen and then to pass a variable argument in glViewport, in order to create a loop

and slide down or up depending on the user’s mouse click and our current position.

What is important to notice here is that RenderScene() is called for every frame that

appears on screen. So it is a loop function that breaks the loop only when we decide to

terminate the application. As a result, using another loop to slide down the screen

would lead to purposeless loops! The way to solve this problem is to use an “if”

statement. When the user decides to slide the screen, we diminish or increase the

argument variable in glViewport at each frame, until a lower or upper bound, which

sets our final view of the scene.

39

if(UpDown==0 && pressed!=7 && pressed!=2 && pressed!=8)
{
 if(kapa>-350){kapa-=SCREEN_SPEED;} // Change viewport position if needed
 glViewport(0,kapa,600,1100);
 Main_Menu();

.
.
.
.
.

else if(UpDown==1 && pressed!=7 && pressed!=2 && pressed!=8)
{
 if(kapa<0){kapa+=SCREEN_SPEED;} // Change viewport position if needed
 glViewport(0,kapa,600,1100);
 Main_Menu();

3.10: Screen saver implementation

 In all smartphones released in the market, there is some protection mechanism

in case the screen stays idle for some time. That would be either to use of a moving

screen saver or a screen switch off (which combines both protecting the screen and

saving battery power). Since the switch off of the screen does not present any interest

from the developer’s point of view, in this project you will find a screen saver

implementation.

 The first thing that we should consider about this is the way to determine for

how long the screen has been idle so as to enable the screen saver. The other

important issue to find a way to disable the screen saver when a mouse-event occurs,

and return back to the screen we were before.

 Taking one thing at a time let us see how to solve the first part. Here comes

again our valuable IMG SDK, to give a solution that simplifies things a lot. The tool

function offered to us hears the name PVRShellGetTime() and since it is first called in

our application, it enables a clock counting time. So, in InitVIew() where we initialize

the basis of our application we call PVRShellGetTime() and pass its return value into a

variable called “StartTime”.

m_ulStartTime = PVRShellGetTime(); // Initialize StartTime

 Thereafter, at every frame (in RenderScene()) we call again our tool function,

passing its return value to a variable called CurrentTime. Subtracting CurrentTime

minus StartTime gives us the time that has passed since the application started. But

since we do not only care when the app started but also when a mouse event occurred,

at every mouse click that happens we reset StartTime by passing a new return value

from PVRShellGetTime(). That way we can check at each frame how much time has

passed since the last mouse-event, and if that time exceeds a limit of our choice, we

enable the screen saver. It is needless to say, that after the screensaver has been

40

enabled, in case a mouse-click occurs, the StartTime resets and so we disable the

screen saver and return to our previous screen.

// Time passed since last mouse click

unsigned long ulCurrentTime = PVRShellGetTime() - m_ulStartTime;

if(0 != PVRShellGet(prefButtonState))
{
 m_ulStartTime = PVRShellGetTime(); // After mouse event reset CurrentTime
 Sleep(50); // To avoid pressing any Main Menu buttons
after ScreenSaver return

}

.
.
.
.

if(ulCurrentTime>TIMER) // If currentTime exceeds TIMER call ScreenSaver(in ms)
{
 glViewport(0,0,600,750);
 ScreenSaver();
}

 As you probably noticed, the screen saver enabling depends on a mouse-click

and not from mouse moving as it happens for example in a personal computer. That is

because this application is meant for an embedded touch screen device where

touching the screen is actually like having the mouse clicked continuously. So that is

the event that should trigger the screen saver disabling rather than just a mouse move.

 Moving on the screen saver itself, it is interesting to see how the spinning of

the object is implemented. In order to rotate it, we use different projection and model

view matrices comparing to what we used in the other screens. We pass sine and

cosine values in the matrices that depend from an “angle” variable, which controls the

angle, and increments constantly frame after frame. The rotation takes place around

the y-axis. The right hand rule defines the positive direction of all axes and so that

explains why our object moves anti-clockwise when the angle is incremented.

41

// Different ModelView and Projection Matrices
 // in order to achieve object rotation

float aModelViewIT[] =
{
 cos(m_fAngle), 0, sin(m_fAngle),
 0, 1, 0,
 -sin(m_fAngle), 0, cos(m_fAngle)
};

float aPMVMatrix[] =
{
 cos(m_fAngle), 0, sin(m_fAngle), 0,
 0, 1, 0, 0,
 -sin(m_fAngle), 0, cos(m_fAngle), 0,
 0, 0, 0, 1
};

int i32Location = glGetUniformLocation(m_uiProgramObject, "myPMVMatrix");
glUniformMatrix4fv(i32Location, 1, GL_FALSE, aPMVMatrix);
i32Location = glGetUniformLocation(m_uiProgramObject, "myModelViewIT");
glUniformMatrix3fv(i32Location, 1, GL_FALSE, aModelViewIT);
i32Location = glGetUniformLocation(m_uiProgramObject, "myLightDirection");
glUniform3f(i32Location, 0, 0, 1);

 // Increments the angle of the view
m_fAngle += .02f;

 I believe here is the right moment to tell a few more things about matrices, that

will help us understand a bit better all the above. Every object in our screen is defined

by a set of vertices that represent its x, y and z coordinates. What the model matrix

does is that it transforms the coordinates of the object in order to bring it to the centre

of our world space. We perceive this world space in our screen in the same way like

watching it through a camera. So the camera is actually the origin of our world space.

In order to move the world we use the view matrix. Now we can better understand the

use of our model-view matrix in our program. Finally, the projection matrix is the one

which gives us the perspective view of the world, by configuring the size of the

objects depending on their distance from the camera.

42

6

3.11: Pad implementation

 The first part of the smartphone interface - other than the Main Menu - that we

will go through, concerning the implementation, is the pad that is used for phone

calls. The primary problem that we faced here was the typing of the numbers to call.

There are two ways one can use in order to reach the desirable result. One is certainly

way more efficient than the other, and it is only provided by the tools of Imagination

Technologies.

 So, generally speaking, there is no standard way of printing text on screen

using OpenGL ES. One way to overcome this issue would be to create a set of

textures with all letters, numbers and symbols that you would need, thereafter create a

set of objects which would have the screen coordinates on which you would like to

print and then combine the above and render the text that you want. Obviously, this

solution is neither efficient when it comes to performance, nor suitable for the

developer as it requires spending a lot of time and effort on something really

uninteresting from the implementation’s point of view.

 The other solution comes from the toolkit of IMG and it is called CPVRTPrint

3D class. This is a tool function that allows us to draw text anywhere in our app

window just by using the keyboard. We can also choose the size and the color of the

letters drawn. The source code of the function is open and it can be modified by

anyone in order to cover further possible needs.

The class uses its own shaders in order to draw the text and though any

changes we make to our shaders don’t affect the text drawn. That is very important to

remember for two reasons.

First is that no matter the implementation to our objects to be moving,

spinning, in a 3D frustum or any other effect, the text will be static and 2D and will

not be affected by all these procedures. If we want to make any changes regarding the

text we will have to interfere in the source code of the Print3D class.

Now, before to further talk about the second reason which we always have to

keep in mind that Print3D uses its own shaders, let us remember something that we

6
 http://www.opengl-tutorial.org

43

mentioned earlier when we talked about OpenGL ES. “The only restriction is that one

program object should have exactly one vertex and one fragment shader attached onto

it”, which leads us to the conclusion that since Print3D uses its own shaders, it also

uses its own program. All the rendering that is implemented in RenderScene, has its

basis on our shaders, and all commands actually refer to the last Program used! So, if

we put UseProgram in the InitView function, which is called only at the beginning of

our application, when we will call CPVRTPrint3D, the used program will change and

as a result at the next loop of RenderScence we will be using the shaders of

CPVRTPrint3D! So, the moment we will flash the context of Print3D to the screen,

everything will be lost from screen. Instead, we should put the UseProgram command

at the beginning of RenderScene function, and so at each loop we will refresh to our

previous shaders. This, although may seem obvious, it took me quite some time to

notice and thus I highlight it. Especially if you have no experience when it comes to

OpenGL ES, it can be proved to be tricky.

bool OGLES2Texturing::RenderScene()
{
glUseProgram(m_uiProgramObject); // Reuse our shaders as Print3D uses its own
 shaders when called

// Clears the color and depth buffer
glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

.

.

.

.

 Next, we should see the use of the class. The first thing to do is create an

instance of the class. Then, we should see the arguments passed when we are calling

the instance we declared. The first two arguments refer to the coordinates of the text.

The third argument determines the size of the text, the next one decides the color of

the text in an ARGB format, and finally we put the string we want to project in

quotation marks. All this won’t work until we flush the text at the screen.

The next thing to consider is how we will put the characters which the user

will choose on screen. First thing to do is declare a variable that will change value at

every frame, depending on where the user has clicked. Then, it is wise to put the text

in an array which will be filled according to the value of the previous variable.

Finally, we pass this array as an argument to the Print3D call. We have also set a

counter, which restricts the typed number length to 20 characters.

44

NumPad(); // Called to set the PrNum value according to user's click

if(PrNum==0)
{
 if(counter<20) // to avoid text overflow
 strcat(NumToCall,"0"); // add character to text
 counter++; // increment counter
}
else if(PrNum==1)
{
 if(counter<20)
 strcat(NumToCall,"1");
 counter++;
}
else if(PrNum==2)
{
 if(counter<20)
 strcat(NumToCall,"2");
 counter++;
}

.

.

.

.

// If no erasure command has been given, the number is flushed on screen

if(erase==0)
{
 m_Print3D.Print3D(10.0f, 45.0f, 1.0f, 0xFF302020, NumToCall);
 m_Print3D.Flush();
 Sleep(50);
 PrNum=100; // Change PrNum value to avoid constant printing of the pressed
 number
}

 Finally, we copy an empty string to our array that contains the number in

order to erase the number if the user chooses so by pressing the appropriate button; or

if he decides to go back at the main menu and we also flush the appropriate text –

“your call is being diverted”- if the user decides to call the keyed in number.

// If erasure command has been given copy an empty string to the array

else if (erase==1)
{
 erase=0; // Reset erase
 strcpy(NumToCall,empty);
 counter=0; // Reset counter
}

45

// if call button is pressed and a number is dialed print message
if(dial==1 && NumToCall[0]!=NULL)
{

m_Print3D.Print3D(10.0f, 50.0f, 0.8f, 0xFF605020, "your call is being
diverted...");

 m_Print3D.Flush();
}

 // If "back" arrow is pressed:
if(0 != PVRShellGet(prefButtonState) && x<0.25 && y>0.83)
{
 pressed=0; // Change value to return to main menu
 strcpy(NumToCall,empty); // Erase dialed number
 dial=0; // Erase printed message
 counter=0; // Reset counter
}

3.12: Alarm clock implementation

 As it may be suspected at the presentation of the GUI, the alarm clock

function has some interesting staff to be seen. To start with, the first issue that was

faced here was the implementation of the mechanism that would spin the time when

the user would press the plus-minus buttons. Depending on the user’s tap we have

created a four way branch. Each branch is for for incrementing or decreasing, the hour

or the minute indication respectively. In these branches we ensure that the hour

indication circles between zero and twenty three and the minute indication does not

exceed fifty nine of diminishes in values less than zero. Each digit is independent

from the one next to it, so we had to make sure that the digits act in pairs.

// The following algorithm handles the hour incrementing
 // when the user presses the "+" button
else if(0 != PVRShellGet(prefButtonState) && x>0.5 && x<0.725 && y<0.15)
{
 if(lhour==0 || lhour==1)
 {
 rhour++;
 if(rhour>9)
 {
 rhour=0;
 lhour++;
 }
 }
 else if(lhour==2)
 {
 rhour++;
 if(rhour>3)
 {
 lhour=0;
 rhour=0;
 }
 }

}

46

 // The following algorithm handles the hour diminishing
 // when the user presses the "-" button
else if(0 != PVRShellGet(prefButtonState) && x>0.5 && x<0.725 && y>0.15 && y<0.30)
{

 if(lhour==0)
 {
 rhour--;
 if(rhour<0)
 {
 lhour=2;
 rhour=3;
 }
 }
 else if(lhour==1 || lhour==2)
 {
 rhour--;
 if(rhour<0)
 {
 lhour--;
 rhour=9;
 }
 }
}
 // The following algorithm handles the minute incrementing
 // when the user presses the "+" button
else if(0 != PVRShellGet(prefButtonState) && x>0.75 && y<0.15) // minute +
{
 rmin++;
 if(rmin>9)
 {
 rmin=0;
 lmin++;
 if(lmin>5)
 {
 lmin=0;
 rmin=0;
 }
 }
}
 // The following algorithm handles the minute diminishing
 // when the user presses the "-" button
else if(0 != PVRShellGet(prefButtonState) && x>0.75 && y>0.15 && y<0.30)
{
 rmin--;
 if(rmin<0)
 {
 rmin=9;
 lmin--;
 if(lmin<0)
 {
 lmin=5;
 rmin=9;
 }
 }
}

47

The next issue here is that we have to use CPVRTPrint3D to display the time

on the screen and the tool function cannot take a number as an argument. This can be

addressed with “itoa” function, which transform an integer to string and so we are

able to pass the integer time in a matrix as a string, and then pass the matrix as an

argument in Print3D.

 // Turns the time intergers into strings
 // so that we can project it on screen
 // with CPVRTPrint3D class
itoa(rhour,buffe,10);
itoa(lhour,buffer,10);
itoa(rmin,buf,10);
itoa(lmin,buff,10);

m_Print3D.Print3D(99.0f, 30.0f, 1.5f, 0xFF202070, buf);
m_Print3D.Print3D(94.0f, 30.0f, 1.5f, 0xFF202070, buff);
m_Print3D.Print3D(91.0f, 30.0f, 1.5f, 0xFF202070, ":");
m_Print3D.Print3D(87.0f, 30.0f, 1.5f, 0xFF202070, buffe);
m_Print3D.Print3D(82.0f, 30.0f, 1.5f, 0xFF202070, buffer);
m_Print3D.Flush();

In this function, we can also see two more variables that were previously

initialized at the InitView function. “AlActivation” and “snooze” are used to record

when the alarm is activated and to keep track of the user’s preferences about the

snooze delay respectively. The rendering of two objects is also depended on

AlActivation. One is located in the main menu and the other one is found in the alarm

section. Both are used to signify the use of the alarm clock. The value of the snooze

variable is used to determine the string that will be projected under the snooze button.

else if(0 != PVRShellGet(prefButtonState) && x<0.25 && y<0.16)
{
 AlActivation = 1;
}
else if(0 != PVRShellGet(prefButtonState) && x<0.25 && y>0.16 && y<0.32)
{
 AlActivation = 0;
}

.

.

.

.
switch(snooze)
{
case 0:
 m_Print3D.Print3D(5.0f, 40.0f, 0.8f, 0xFF302020, "snooze off");
 m_Print3D.Flush();
 break;

48

case 1:
 m_Print3D.Print3D(5.0f, 40.0f, 0.8f, 0xFF302020, "1 min");
 m_Print3D.Flush();
 break;
case 2:
 m_Print3D.Print3D(5.0f, 40.0f, 0.8f, 0xFF302020, "3 min");
 m_Print3D.Flush();
 break;
case 3:
 m_Print3D.Print3D(5.0f, 40.0f, 0.8f, 0xFF302020, "5 min");
 m_Print3D.Flush();
 break;
case 4:
 m_Print3D.Print3D(5.0f, 40.0f, 0.8f, 0xFF302020, "10 min");
 m_Print3D.Flush();
 break;

}

3.13: Messages implementation

 In the main part of the messages section, the thing that worths attention is the

flag “sent” which is triggered when the user is sending a message. In this case we

have a counter which increments by one, and after we transform this integer to a

string, we print it out next to “sent messages”. That way we keep track of how many

messages the user has sent and at the same time we project it on screen.

if (send==1)
{
 send=0;
 incr++; // increments the sent messages vakue
}

itoa(incr,bu,10);
m_Print3D.Print3D(114.0f, 19.0f, 0.4f, 0xFF307030, bu);
m_Print3D.Print3D(113.0f, 19.0f, 0.4f, 0xFF307030, "()");
m_Print3D.Print3D(34.0f, 5.0f, 0.4f, 0xFF3010070, "Create Message");
m_Print3D.Print3D(35.0f, 19.0f, 0.4f, 0xFF307030, "Incoming Messages");
m_Print3D.Print3D(35.0f, 32.0f, 0.4f, 0xFF902070, "Back");
m_Print3D.Print3D(95.0f, 5.0f, 0.4f, 0xFF307030, "email");
m_Print3D.Print3D(95.0f, 19.0f, 0.4f, 0xFF902070, "Sent messages");
m_Print3D.Print3D(95.0f, 32.0f, 0.4f, 0xFF307030, "Draft");
m_Print3D.Flush();

 The inner part of the messages, which is the creation part, is more complex.

First we call a function which changes the value of the variable “MesNum” depending

on the user tap on the keyboard. Then we decide which character to display on screen

based on the value of this variable.

The main issue here is the implementation of the text display in different lines,

as a problem appears when each line reaches the end of the screen. The tool function

of IMG that displays text, takes as an argument only the coordinate from where the

text will begin. Other than that, it cannot realise when we are exceeding the screen’s

limits, or if we are printing messages above other rendered objects. That is up to the

developer to manage and control.

49

The solution to this problem comes as following. We create as many arrays as

many lines we want the user to be able to use. In our case this number is three arrays,

and so three lines of text. Then, we figure out how many characters fit in one line in

our screen, by making as many rendering trials as we need, and thereafter we create a

counter to be able to calculate the number of characters the user has typed. In our

screen, the selected font allows 46 characters per line before to get out of the screen’s

dimensions. So, we keep track of the counter’s value, and when this exceeds the 46th

character, we pass the next coming character to the second array which will be

projected at the next line. The same applies for the second and third line.

MesPad();

switch(MesNum)
{
case 0:
 if(counter<46) // to avoid text overflow
 strcat(text,"Q"); // add character to first line of text
 else if(counter>=46 && counter<92){strcat(text1,"Q");} // if 1st line is
 full add to the 2nd one

else if(counter>=92 &&counter<138){strcat(text2,"Q");} // if 2nd line is
 full add to the 3rd one
 counter++; // increment counter
 break;
case 1:
 if(counter<46)
 strcat(text,"W");
 else if(counter>=46 && counter<92){strcat(text1,"W");}
 else if(counter>=92 &&counter<138){strcat(text2,"W");}
 counter++;
 break;
case 2:
 if(counter<46)
 strcat(text,"E");
 else if(counter>=46 && counter<92){strcat(text1,"E");}
 else if(counter>=92 &&counter<138){strcat(text2,"E");}
 counter++;
 break;

For clearing up the text written, we pass a NULL value to the last character in

the array. Depending on which array we perform the erasure, we have to be careful.

Because the counter value with which we keep track of the amount of the characters,

contains the total amount of the characters and not necessarily the right array position.

That applies only for the first array that is connected with the first line of text. In the

case of the other two arrays, we have to subtract 46 and 92 for the second and third

array respectively, if we are to pass the counter as a pointer to the array.

50

 // Erase the last element of the text
else if(erase==1)
{
 erase=0;
 if(counter<46)
 {
 text[counter]=NULL;
 }
 else if(counter>=46 && counter<92)
 {
 text1[counter-46]=NULL; // Subtract elements of the 1st line array
 }
 else if(counter>=92 && counter<138)
 {
 text2[counter-92]=NULL; // Subtract elements of the 1st line and
 second line array
 }
 counter--; // Subtract one from counter
 Sleep(30);
}

3.14: Performance tips

 In handheld devices like smartphones, tablets and navigators, performance is a

constant target to aim for. Because of their small size, it is difficult for these devices

to provide powerful hardware to work on, while at the same time, users’ demands to

get what they ask from the product that very moment is constantly growing. So I

consider it important to discuss some ways of how we can achieve better performance

through our programming, some of which I came across while implementing this

project.

 To start with, when we know where our programme will be applicable, it is

important to understand our target device. Knowing the GPU architecture is essential,

but not enough on its own. Every System on Chip (SoC) has different characteristics

such as CPU efficiency or memory bandwidth. Moreover, every device has difference

operating system, or even uses different features of the same operating system

comparing to other devices, and so it is possible that background processes conflict

with our application and slow the system down. The Tile Based Differed Rendering

Technique already provides a good starting point for performance enhancement as it

restricts memory access to a minimum. Besides that, it is important to know the

specifications of our target device and reading through the manufacturer’s handbook

may prove valuable.

 Something else that developers should always have in mind is keeping state

changes within a program to a minimum. That means that changing shaders during the

rendering state should be avoided because it costs a lot when it comes to performance.

Note here, Hidden Surface Removal has already helped us towards achieving this,

because it allows us to sort objects by render state and not by depth. By the same

reasoning, if a group of objects is static, it should be grouped into a single mesh and

be rendered at the same state.

There are even more simple solutions to keep performance high, like for

example keeping geometry complexity low. We don’t need to draw details and use

polygons excessively, that will never be seen on screen. Likewise, it is a waste to use

51

many polygons to draw a quad, since it can always be done simply and quickly.

Furthermore, always use Vertex Buffer Objects to store your vertex data as they are

handled by the driver and there is no need to copy arrays from the client side at each

draw call. It is wise to store your vertex data interleaved, meaning that it is better to

put all data for every vertex in a block, and then another block for the following

vertex and so on, into a single array, instead of using many arrays each one for one

kind of data, for example an array of normals and a different array of coordinates.

So, store all your vertices data in the same Vertex Buffer object – unless there is a

mixture or static and dynamic data – and when possible put the objects that always

appear together in the same VBO.

Another thing to remember is that vertex shaders always expect attributes to

be of type float. Any other type should be transformed into float, and that task falls on

USSE. As a result, using other type of variable attributes burdens the USSE and slows

down the application. Precision selection in shaders is also an important factor that

can boost performance. In general, the best way to arrive at the right precision is to

start from lowp and then gradually increase the precision until the desired result

comes upon your screen. Other than that, there are some common rules to follow

when it comes to choose precision. Highp precision should be used for vertex position

calculations as well as for world, model and projection matrices. Medium precision

offers a performance improvement comparing to the highp and it should be used when

possible instead of hiphp precision. Finally lowp precision is useful for representing

colours and low precision textures.

Texture optimization can also provide solutions when it comes to

performance. Except very few cases, we have to remember that larger textures do not

offer better quality. There is no point in putting a 512x512 size texture in an 8x8 area

of screen. As we mentioned in the beginning of this presentation, texture compression

can be a life saver. Using PVRTC compression reduces memory footprint of a loaded

texture and thus it does not burden the system memory bandwidth. The difference

with common compressed image file format – bitmap, jpg, png – is that these

techniques actually reduce storage footprint rather than memory footprint. In simple

words, that means than on run time the picture will unzip and occupy a lot of RAM.

Conclusion / Future work

 After completing my diploma thesis, and having the opportunity to review and

reexamine it from the beginning while writing this report, I can finally have an

integrated opinion on the result of this work. As mentioned in the beginning, the

target of this thesis was not to implement as many as possible features for a

smartphone interface. So it goes without saying that moving towards this direction,

without importing much of anything innovative, it is quite easy to complete the rest of

the features that were not implemented.

 What is more interesting though at this time is to see where this work

provides a good reference for future similar work and what it could be done

differently in order to get a better result.

As we have already repeatedly stated, performance is handheld devices is an

important factor which determines the quality of our work. In this case, a combination

of the performance tips previously provided along with various hints described in the

52

code presentation makes this project a good example of high performance

implementation when it comes to graphics. That would be more obvious if we would

load it in a smartphone, which is quite easy as the application is meant to be portable.

Moreover, the overall organization of the code is quite efficient as it improves

readability and provides a good structure example. Another set of features that worth

notice is the SDK tools and functions as their use simplifies a lot of implementation

parts that otherwise would be quite difficult to deal with. Finally, the simplistic

picking technique, according to the author’s opinion, could provide a viable solution

even in a 3D interface smartphone environment, as long as there is no overlapping

between objects.

On the other hand there are some parts that in a real mobile device would be

differently handled. The most obvious part is texture selection. Probably this

particular theme is outside of the scope of this project, but it is inevitable to mention

that the selected textures are just a decent effort of finding appropriate images online.

In a modern retail device, most of the textures used, are designed by professionals in

graphics software used for animation. In addition to this, most devices have fancy

graphics features, like trembling objects when selected or gradually fading away

menus that could be added to this project also. Another technique that can be

questioned is the one used for sliding. Besides the fact that is kind of unusual, it

causes many consequative renderings of the image – that means state changes – which

is not clear if they would diminish the performance of an embedded device. The usual

practice for similar procedures is texture sliding, but since our rendering context is

simple, there is a chance that it would not make a real difference. Finally, I think it

would be very interesting to try and load this interface in a smartphone in order to see

its behavior in the real environment for which it is intended.

To conclude, this project can provide a solid start up to anyone who wants to

meet the world of graphics as it did for me too, while at the same time it has aspects

which could be further enhanced and examined in order to give a fully functional,

portable interface of any smartphone.

Sources-Bibliography

 OpenGL ES 2.0 Programming Guide, Aaftab Munshi, Dan Ginsburg, Dave

Shreiner, Addison-Wesley publishing

 C++ Primer, 5th Edition, Stanley B. Lippman, Josee LaJoie, Barbara E. Moo,

Addison-Wesley publishing

 http://www.imgtec.com/

 IMG PowerVR forum (http://forum.imgtec.com/categories/powervr-graphics)

 Imagination technologies SDK (available at www.imgtec.com)

 http://www.khronos.org

 http://db-in.com/blog/category/opengl/Wikipedia

 http://www.opengl-tutorial.org/

 http://en.wikipedia.org/

 http://www.gamedev.net/page/index.html

 http://schabby.de/

http://www.imgtec.com/
http://forum.imgtec.com/categories/powervr-graphics
file:///C:/Users/geo/Desktop/www.imgtec.com
http://www.khronos.org/
http://db-in.com/blog/category/opengl/Wikipedia
http://www.opengl-tutorial.org/
http://en.wikipedia.org/
http://www.gamedev.net/page/index.html
http://schabby.de/

53

Appendix

This appendix was compiled regarding certain explanation on some parts of

the code which could possibly raise questions. These details were not referred in the

main chapter where the code was presented either because the author thought that it

would not be appropriate to spend time in tiring details or because they had no

relevance with the rest of the parts that were analysed.

I. At the inclusion of the libraries needed in our program, one can notice the

following part of code that could possibly raise questions.

#if defined(__APPLE__) && defined (TARGET_OS_IPHONE)
#import <OpenGLES/ES2/gl.h>
#import <OpenGLES/ES2/glext.h>
#else
#include <GLES2/gl2.h>
#endif

The macros APPLE and TARGET_OS_IPHONE are defined in the source

code of PVRShell and help our application become portable in different kind

of devices. The IMG framework recognizes the device that is loaded onto, and

accordingly decides to load the appropriate libraries so that the application

will run unabruptly. Since we run the program on a personal computer the

libraries gl.h and glext.h will not be included and instead the gl2.h will be

used.

II. Reading the names of many variables, you will see that some initials before

the actual name of the variable. These help us keep track of the type of the

variable so that we are not obligated to always search the top lines of the code.

So for example “ui” shows that the variable is an unsigned int and “f” shows

that the variable is a float. This technique is usual at very big programs where

the amount of lines of code and the large number of declared variables makes

it difficult to remember all details.

III. Another point that requires further analysis is the declaration of Print3D.

CPVRTPrint3D is declared at the source code with the use of “typedef”.

Typedef is a keyword used in C and C++ in order to form complex types from

more basic ones and assign simple names to the combinations. In this case this

method is followed for a similar reason. Since every compiler has different

convention when it comes to naming variables, setting up a define in our

source code saves us time, in a way that if for example a gcc compiler does

not accept this definition of ours, we can go and apply changes only to the

definition of our source code and not to the whole of our program. That is very

important for the application as our goal is always to be portable and able to

cooperate with many different platforms with minimum changes.

54

IV. As it is also mentioned in the comments on the code, Print3D class needs to

know the viewport dimensions and whether the text will be rotated or not, in

order to display text. We can get this information using the SDK tools as

shown below.

bool bRotate = PVRShellGet(prefIsRotated) && PVRShellGet(prefFullScreen);

if(m_Print3D.SetTextures(0, PVRShellGet(prefWidth), PVRShellGet(prefHeight),
bRotate) != PVR_SUCCESS)

 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot initialise Print3D\n");
 return false;
 }

V. In the beginning of our initialization function, we use CPVRTResourceFile

resource file helper class. Resource files can be placed on disk next to the

executable or in a platform dependent read path. We need to tell the class

where that read path is. Additionally, it is possible to wrap files into cpp

modules and link them directly into the executable. In this case no path will be

used. Files on disk will override "memory files".

 55

Code

#include <stdio.h>
#include <cstdlib> //for itoa() Func
#include <string.h>
#include <math.h>
#include <windows.h> // for Sleep() Func

#if defined(__APPLE__) && defined (TARGET_OS_IPHONE)
#import <OpenGLES/ES2/gl.h>
#import <OpenGLES/ES2/glext.h>
#else
#include <GLES2/gl2.h>
#endif

#include "PVRShell.h"
#include <OGLES2Tools.h>

#define VERTEX_ARRAY 0
#define TEXCOORD_ARRAY 1
#define NORMAL_ARRAY 2
// Screensaver Timer in ms
#define TIMER 20000
// Changes viewport coordinates defining the sliding speed
#define SCREEN_SPEED 3

// Size of the texture we create
#define TEX_SIZE 128

// Pvr texture files
const char c_aTextureFile[] = "agenda.pvr"; //0
const char c_bTextureFile[] = "alarm.pvr";
const char c_cTextureFile[] = "camera.pvr";

 56

const char c_dTextureFile[] = "contacts.pvr";
const char c_eTextureFile[] = "files.pvr";
const char c_gTextureFile[] = "messages.pvr"; //5
const char c_hTextureFile[] = "music.pvr";
const char c_iTextureFile[] = "tools.pvr";
const char c_jTextureFile[] = "back.pvr";
const char c_kTextureFile[] = "fun.pvr";
const char c_lTextureFile[] = "google.pvr"; //10
const char c_mTextureFile[] = "sim.pvr";
const char c_nTextureFile[] = "youtube.pvr";
const char c_oTextureFile[] = "phonecall.pvr";
const char c_pTextureFile[] = "pad.pvr";
const char c_qTextureFile[] = "IMGlogo.pvr";
const char c_rTextureFile[] = "YesNo.pvr";
const char c_sTextureFile[] = "erase.pvr";
const char c_tTextureFile[] = "tick.pvr";
const char c_uTextureFile[] = "PlusMinus.pvr";
const char c_vTextureFile[] = "notification.pvr"; //20
const char c_wTextureFile[] = "off.pvr";
const char c_xTextureFile[] = "on.pvr";
const char c_yTextureFile[] = "snooze.pvr";
const char c_zTextureFile[] = "bell.pvr";
const char c_aaTextureFile[] = "CreateMessage.pvr";
const char c_abTextureFile[] = "Draft.pvr";
const char c_acTextureFile[] = "email.pvr";
const char c_adTextureFile[] = "Incoming.pvr";
const char c_aeTextureFile[] = "Outgoing.pvr";
const char c_afTextureFile[] = "MesPad.pvr";

// Matrix to store displayed call-num
char NumToCall[20]={};
// Matrices to store message text
char text[46]={};
char text1[46]={};
char text2[46]={};
// Empty matrix used for clearing call number
char empty[20]={};
// Variables used for screen sliding
int kapa=-350;

 57

int lamda = 0;
// Matrices to store alarm set time
char bu[10],buf[10],buff[10],buffe[10],buffer[10];

// Default projection and modelview matrix
float aPMVMatrix[] =
 {
 1, 0, 0, 0,
 0, 1, 0, 0,
 0, 0, 1, 0,
 0, 0, 0, 1
 };

 float aModelViewIT[] =
 {
 1, 0, 0,
 0, 1, 0,
 0, 0, 1
 };

class OGLES2Texturing : public PVRShell
{
 // Print3D class used to display text
 CPVRTPrint3D m_Print3D;

 // The vertex and fragment shader OpenGL handles
 GLuint m_uiVertexShader, m_uiFragShader;

 // The program object containing the 2 shader objects
 GLuint m_uiProgramObject;

 // Texture handle
 GLuint m_uiTexture[31];
 // Timer handle
 unsigned long m_ulStartTime;
 unsigned long StartButton;

 // VBO handle
 GLuint m_ui32Vbo[26];

 58

 unsigned int m_ui32VertexStride;
 // Rotation angle
 float m_fAngle;

 // Handle of mouse coordinates
 float *vec2PointerLocation;
 float x,y;
 // Handle of mouse click
 GLuint UpDown;
 GLuint LeftRight;
 GLuint pressed;
 GLuint mes;
 GLuint send;
 GLuint incr;
 // Handle of mouse click (call pad)
 GLuint PrNum;
 GLuint MesNum;
 // Handle of mouse click (alarm)
 GLuint AlActivation;
 GLuint snooze;
 GLint rmin;
 GLint lmin;
 GLint rhour;
 GLint lhour;
 // Handle of text overflow
 GLuint counter;
 // Dial handle
 GLuint dial;
 GLuint erase;

public:
 // Default PVRShell functions
 virtual bool InitApplication();
 virtual bool InitView();

 59

 virtual bool ReleaseView();
 virtual bool QuitApplication();
 virtual bool RenderScene();
 // Menu functions
 virtual void Main_Menu();
 virtual void AlarmClock();
 virtual void Pad();
 virtual void NumPad();
 virtual void ScreenSaver();
 virtual void Messages();
 virtual void WriteMes();
 virtual void MesPad();
};

/*!**
 @Function InitApplication
 @Return bool true if no error occured
 @Description Code in InitApplication() will be called by PVRShell once per
 run, before the rendering context is created.
 Used to initialize variables that are not dependant on it
 (e.g. external modules, loading meshes, etc.)
 If the rendering context is lost, InitApplication() will
 not be called again.
**/
bool OGLES2Texturing::InitApplication()
{
 /*
 CPVRTResourceFile is a resource file helper class. Resource files can
 be placed on disk next to the executable or in a platform dependent
 read path. We need to tell the class where that read path is.
 Additionally, it is possible to wrap files into cpp modules and
 link them directly into the executable. In this case no path will be
 used. Files on disk will override "memory files".
 */

 // Get and set the read path for content files
 CPVRTResourceFile::SetReadPath((char*)PVRShellGet(prefReadPath));

 60

 // Get and set the load/release functions for loading external files.
 // In the majority of cases the PVRShell will return NULL function pointers implying that
 // nothing special is required to load external files.

 CPVRTResourceFile::SetLoadReleaseFunctions(PVRShellGet(prefLoadFileFunc), PVRShellGet(prefReleaseFileFunc));

 // Set window's dimensions
 PVRShellSet(prefWidth,1200);
 PVRShellSet(prefHeight,1500);
 // Initialize rotation angle
 m_fAngle = 0;

 return true;
}

/*!**
 @Function QuitApplication
 @Return bool true if no error occured
 @Description Code in QuitApplication() will be called by PVRShell once per
 run, just before exiting the program.
 If the rendering context is lost, QuitApplication() will
 not be called.
**/
bool OGLES2Texturing::QuitApplication()
{
 return true;
}

/*!**
 @Function InitView
 @Return bool true if no error occured
 @Description Code in InitView() will be called by PVRShell upon
 initialization or after a change in the rendering context.
 Used to initialize variables that are dependant on the rendering
 context (e.g. textures, vertex buffers, etc.)
**/
bool OGLES2Texturing::InitView()
{
 /*

 61

 Initialize the textures used by Print3D.
 To properly display text, Print3D needs to know the viewport dimensions
 and whether the text should be rotated. We get the dimensions using the
 shell function PVRShellGet(prefWidth/prefHeight). We can also get the
 rotate parameter by checking prefIsRotated and prefFullScreen.
 */
 bool bRotate = PVRShellGet(prefIsRotated) && PVRShellGet(prefFullScreen);

 if(m_Print3D.SetTextures(0, PVRShellGet(prefWidth), PVRShellGet(prefHeight), bRotate) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot initialise Print3D\n");
 return false;
 }

 // Fragment and vertex shaders code
 const char* pszFragShader = "\
 uniform sampler2D sampler2d;\
 varying mediump float varDot;\
 varying mediump vec2 varCoord;\
 void main (void)\
 {\
 gl_FragColor.rgb = texture2D(sampler2d,varCoord).rgb * varDot;\
 gl_FragColor.a = 1.0; \
 }";

 const char* pszVertShader = "\
 attribute highp vec4 myVertex;\
 attribute mediump vec3 myNormal;\
 attribute mediump vec4 myUV;\
 uniform mediump mat4 myPMVMatrix;\
 uniform mediump mat3 myModelViewIT;\
 uniform mediump vec3 myLightDirection;\
 varying mediump float varDot;\
 varying mediump vec2 varCoord;\
 void main(void)\
 {\
 gl_Position = myPMVMatrix * myVertex;\
 varCoord = myUV.st;\
 mediump vec3 transNormal = myModelViewIT * myNormal;\

 62

 varDot = max(dot(transNormal, myLightDirection), 0.0);\
 }";

 // Create the fragment shader object
 m_uiFragShader = glCreateShader(GL_FRAGMENT_SHADER);

 // Load the source code into it
 glShaderSource(m_uiFragShader, 1, (const char**)&pszFragShader, NULL);

 // Compile the source code
 glCompileShader(m_uiFragShader);

 // Check if compilation succeeded
 GLint bShaderCompiled;
 glGetShaderiv(m_uiFragShader, GL_COMPILE_STATUS, &bShaderCompiled);
 if (!bShaderCompiled)
 {
 // An error happened, first retrieve the length of the log message
 int i32InfoLogLength, i32CharsWritten;
 glGetShaderiv(m_uiFragShader, GL_INFO_LOG_LENGTH, &i32InfoLogLength);

 // Allocate enough space for the message and retrieve it
 char* pszInfoLog = new char[i32InfoLogLength];
 glGetShaderInfoLog(m_uiFragShader, i32InfoLogLength, &i32CharsWritten, pszInfoLog);

 /*
 Displays the message in a dialog box when the application quits
 using the shell PVRShellSet function with first parameter prefExitMessage.
 */
 char* pszMsg = new char[i32InfoLogLength+256];
 strcpy(pszMsg, "Failed to compile fragment shader: ");
 strcat(pszMsg, pszInfoLog);
 PVRShellSet(prefExitMessage, pszMsg);

 delete [] pszMsg;
 delete [] pszInfoLog;
 return false;
 }

 63

 // Loads the vertex shader in the same way
 m_uiVertexShader = glCreateShader(GL_VERTEX_SHADER);
 glShaderSource(m_uiVertexShader, 1, (const char**)&pszVertShader, NULL);
 glCompileShader(m_uiVertexShader);
 glGetShaderiv(m_uiVertexShader, GL_COMPILE_STATUS, &bShaderCompiled);
 if (!bShaderCompiled)
 {
 int i32InfoLogLength, i32CharsWritten;
 glGetShaderiv(m_uiVertexShader, GL_INFO_LOG_LENGTH, &i32InfoLogLength);
 char* pszInfoLog = new char[i32InfoLogLength];
 glGetShaderInfoLog(m_uiVertexShader, i32InfoLogLength, &i32CharsWritten, pszInfoLog);
 char* pszMsg = new char[i32InfoLogLength+256];
 strcpy(pszMsg, "Failed to compile vertex shader: ");
 strcat(pszMsg, pszInfoLog);
 PVRShellSet(prefExitMessage, pszMsg);

 delete [] pszMsg;
 delete [] pszInfoLog;
 return false;
 }

 // Create the shader program
 m_uiProgramObject = glCreateProgram();

 // Attach the fragment and vertex shaders to it
 glAttachShader(m_uiProgramObject, m_uiFragShader);
 glAttachShader(m_uiProgramObject, m_uiVertexShader);

 // Bind the custom vertex attribute "myVertex" to location VERTEX_ARRAY
 glBindAttribLocation(m_uiProgramObject, VERTEX_ARRAY, "myVertex");
 // Bind the custom vertex attribute "myUV" to location TEXCOORD_ARRAY
 glBindAttribLocation(m_uiProgramObject, TEXCOORD_ARRAY, "myUV");

 // Link the program
 glLinkProgram(m_uiProgramObject);

 // Check if linking succeeded in the same way we checked for compilation success
 GLint bLinked;

 64

 glGetProgramiv(m_uiProgramObject, GL_LINK_STATUS, &bLinked);

 if (!bLinked)
 {
 int i32InfoLogLength, i32CharsWritten;
 glGetProgramiv(m_uiProgramObject, GL_INFO_LOG_LENGTH, &i32InfoLogLength);
 char* pszInfoLog = new char[i32InfoLogLength];
 glGetProgramInfoLog(m_uiProgramObject, i32InfoLogLength, &i32CharsWritten, pszInfoLog);

 char* pszMsg = new char[i32InfoLogLength+256];
 strcpy(pszMsg, "Failed to link program: ");
 strcat(pszMsg, pszInfoLog);
 PVRShellSet(prefExitMessage, pszMsg);
 delete [] pszMsg;
 delete [] pszInfoLog;
 return false;
 }

 // Actually use the created program
 // glUseProgram(m_uiProgramObject);

 // Sets the sampler2D variable to the first texture unit
 glUniform1i(glGetUniformLocation(m_uiProgramObject, "sampler2d"), 0);

 // Sets the clear color
 glClearColor(0.99f, 0.99f, 0.99f, 1.0f);

 /*
 Loads the texture using the tool function PVRTTextureLoadFromPVR.
 The first parameter is the name of the file and the
 second parameter returns the resulting texture handle.
 The third parameter is a CPVRTString for error message output.
 This function can also be used to conveniently set the filter modes. If
 those parameters are not given, OpenGL ES defaults are used.
 Setting a mipmap filter on a mipmap-less texture will result in an error.
 */

///////////////////// Agenda 0
 if(PVRTTextureLoadFromPVR(c_aTextureFile, &m_uiTexture[0]) != PVR_SUCCESS)

 65

 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the first texture\n");
 return false;
 }
 //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);
 //glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

/////////////////////// Alarm 1
 if(PVRTTextureLoadFromPVR(c_bTextureFile, &m_uiTexture[1]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the second texture\n");
 return false;
 }

//////////////////// Camera 2
 if(PVRTTextureLoadFromPVR(c_cTextureFile, &m_uiTexture[2]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the third texture\n");
 return false;
 }

//////////////////// Contacts 3
 if(PVRTTextureLoadFromPVR(c_dTextureFile, &m_uiTexture[3]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the fourth texture\n");
 return false;
 }

//////////////////// Files 4
 if(PVRTTextureLoadFromPVR(c_eTextureFile, &m_uiTexture[4]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the fifth texture\n");
 return false;
 }

//////////////////// Messages 6
 if(PVRTTextureLoadFromPVR(c_gTextureFile, &m_uiTexture[5]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 6th texture\n");

 66

 return false;
 }

//////////////////// Music 7
 if(PVRTTextureLoadFromPVR(c_hTextureFile, &m_uiTexture[6]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 7th texture\n");
 return false;
 }

//////////////////// Tools 8
 if(PVRTTextureLoadFromPVR(c_iTextureFile, &m_uiTexture[7]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 8th texture\n");
 return false;
 }

//////////////////// Back 9
 if(PVRTTextureLoadFromPVR(c_jTextureFile, &m_uiTexture[8]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 9th texture\n");
 return false;
 }

//////////////////// fun 10
 if(PVRTTextureLoadFromPVR(c_kTextureFile, &m_uiTexture[9]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 10th texture\n");
 return false;
 }

 /////////////////// google 11
 if(PVRTTextureLoadFromPVR(c_lTextureFile, &m_uiTexture[10]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 11th texture\n");
 return false;
 }
 /////////////////// sim

 67

 if(PVRTTextureLoadFromPVR(c_mTextureFile, &m_uiTexture[11]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 12th texture\n");
 return false;
 }
 /////////////////// youtube
 if(PVRTTextureLoadFromPVR(c_nTextureFile, &m_uiTexture[12]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 13th texture\n");
 return false;
 }
 /////////////////// phonecall
 if(PVRTTextureLoadFromPVR(c_oTextureFile, &m_uiTexture[13]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 14th texture\n");
 return false;
 }
 /////////////////// pad
 if(PVRTTextureLoadFromPVR(c_pTextureFile, &m_uiTexture[14]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 15th texture\n");
 return false;
 }
 /////////////////// ImgLogo
 if(PVRTTextureLoadFromPVR(c_qTextureFile, &m_uiTexture[15]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 16th texture\n");
 return false;
 }
 /////////////////// YesNo
 if(PVRTTextureLoadFromPVR(c_rTextureFile, &m_uiTexture[16]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 17th texture\n");
 return false;
 }
 /////////////////// Erase
 if(PVRTTextureLoadFromPVR(c_sTextureFile, &m_uiTexture[17]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 18th texture\n");

 68

 return false;
 }
 /////////////////// tick
 if(PVRTTextureLoadFromPVR(c_tTextureFile, &m_uiTexture[18]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 19th texture\n");
 return false;
 }
 /////////// PlusMinus
 if(PVRTTextureLoadFromPVR(c_uTextureFile, &m_uiTexture[19]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 20th texture\n");
 return false;
 }
 /////////////////// notification
 if(PVRTTextureLoadFromPVR(c_vTextureFile, &m_uiTexture[20]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 21st texture\n");
 return false;
 }
 ///////////////////// off
 if(PVRTTextureLoadFromPVR(c_wTextureFile, &m_uiTexture[21]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 22nd texture\n");
 return false;
 }
 /////////////////// on
 if(PVRTTextureLoadFromPVR(c_xTextureFile, &m_uiTexture[22]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 23rd texture\n");
 return false;
 }
 /////////////////// snooze
 if(PVRTTextureLoadFromPVR(c_yTextureFile, &m_uiTexture[23]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 24th texture\n");
 return false;
 }
 /////////////////// bell

 69

 if(PVRTTextureLoadFromPVR(c_zTextureFile, &m_uiTexture[24]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 25th texture\n");
 return false;
 }
 /////////////////// CreateMessage
 if(PVRTTextureLoadFromPVR(c_aaTextureFile, &m_uiTexture[25]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 26th texture\n");
 return false;
 }
 /////////////////// Draft
 if(PVRTTextureLoadFromPVR(c_abTextureFile, &m_uiTexture[26]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 27th texture\n");
 return false;
 }
 /////////////////// email
 if(PVRTTextureLoadFromPVR(c_acTextureFile, &m_uiTexture[27]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 28th texture\n");
 return false;
 }
 /////////////////// Incoming
 if(PVRTTextureLoadFromPVR(c_adTextureFile, &m_uiTexture[28]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 29th texture\n");
 return false;
 }
 /////////////////// Outgoing
 if(PVRTTextureLoadFromPVR(c_aeTextureFile, &m_uiTexture[29]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 30th texture\n");
 return false;
 }
 /////////////////// MesPad
 if(PVRTTextureLoadFromPVR(c_afTextureFile, &m_uiTexture[30]) != PVR_SUCCESS)
 {
 PVRShellSet(prefExitMessage, "ERROR: Cannot load the 31th texture\n");

 70

 return false;
 }

 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MIN_FILTER, GL_LINEAR_MIPMAP_NEAREST);
 glTexParameteri(GL_TEXTURE_2D, GL_TEXTURE_MAG_FILTER, GL_LINEAR);

 glGenBuffers(26, &m_ui32Vbo[0]);
 m_ui32VertexStride = 8 * sizeof(GLfloat); // 3 floats for the pos, 2 for the UVs , 3 for the normals

 // objects: 0 1 2 3
 // 4 5 6 7
 // 8 9 10 11
 // 12 13 14 15
 // 16 17 18 19
 // 20 21 22 23
 // Position UVs Normals
 GLfloat zerVertices[] = {-0.51f,0.70f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 -0.96f,0.70f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,
 -0.96f,1.00f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f, // 0
 -0.51f,0.70f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 -0.96f,1.00f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 -0.51f,1.00f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f};
 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[0]);
 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride, zerVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 GLfloat oneVertices[] = { 0.02f,0.36f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,
 0.02f,1.00f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 0.47f,1.00f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f, // #1 PlusMinus obj
 0.47f,1.00f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f,
 0.02f,0.36f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,
 0.47f,0.36f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f};
 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[1]);
 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride, oneVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 GLfloat twoVertices[] = {0.02f,0.70f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,

 71

 0.47f,0.70f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 0.47f,1.00f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f, // 2
 0.02f,0.70f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,
 0.47f,1.00f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f,
 0.02f,1.00f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f };
 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[2]);
 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride, twoVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 GLfloat thrVertices[] = {0.85f,0.925f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,
 0.96f,0.925f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 0.96f,1.00f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f, // 3 // changed to small
 0.85f,0.925f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,
 0.96f,1.00f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f,
 0.85f,1.00f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f };
 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[3]);
 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride, thrVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 GLfloat forVertices[] = {-0.51f,0.36f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 -0.96f,0.36f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,
 -0.96f,0.66f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f, // 4
 -0.51f,0.36f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 -0.96f,0.66f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 -0.51f,0.66f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f};
 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[4]);
 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride, forVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 GLfloat fivVertices[] = {-0.02f,0.36f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 -0.47f,0.36f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,
 -0.47f,0.66f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f, // 5
 -0.02f,0.36f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 -0.47f,0.66f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 -0.02f,0.66f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f};
 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[5]);

 72

 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride , fivVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 GLfloat sixVertices[] = {0.02f,0.36f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,
 0.47f,0.36f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 0.47f,0.66f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f, // 6
 0.02f,0.36f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,
 0.47f,0.66f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f,
 0.02f,0.66f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f};
 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[6]);
 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride, sixVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 GLfloat sevVertices[] = { 0.51f,0.36f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,
 0.96f,0.36f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 0.96f,0.66f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f, // 7
 0.51f,0.36f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,
 0.96f,0.66f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f,
 0.51f,0.66f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f};
 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[7]);
 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride, sevVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 GLfloat eitVertices[] = {-0.51f,0.02f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 -0.96f,0.02f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,
 -0.96f,0.32f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f, // 8
 -0.51f,0.02f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 -0.96f,0.32f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 -0.51f,0.32f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f };
 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[8]);
 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride , eitVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 GLfloat ninVertices[] = {0.51f,0.36f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,
 0.51f,1.00f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 0.96f,1.00f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f, // #2 PlusMinus obj
 0.96f,1.00f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f,
 0.51f,0.36f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,

 73

 0.96f,0.36f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f};
 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[9]);
 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride , ninVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 GLfloat tenVertices[] = { 0.02f,0.02f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,
 0.47f,0.02f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 0.47f,0.32f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f, // 10
 0.02f,0.02f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,
 0.47f,0.32f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f,
 0.02f,0.32f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f};
 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[10]);
 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride, tenVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 GLfloat eleVertices[] = { 0.51f,0.02f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,
 0.96f,0.02f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 0.96f,0.32f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f, // 11
 0.51f,0.02f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,
 0.96f,0.32f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f,
 0.51f,0.32f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f};

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[11]);
 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride, eleVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 GLfloat twlVertices[] = {-0.51f,-0.32f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 -0.96f,-0.32f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,
 -0.96f,-0.02f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f, // 12
 -0.51f,-0.32f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 -0.96f,-0.02f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 -0.51f,-0.02f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f};
 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[12]);
 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride, twlVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 GLfloat trnVertices[] = {-0.02f,-0.32f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 -0.47f,-0.32f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,

 74

 -0.47f,-0.02f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f, // 13
 -0.02f,-0.32f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 -0.47f,-0.02f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 -0.02f,-0.02f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f};
 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[13]);
 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride, trnVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 GLfloat frnVertices[] = {0.02f,-0.02f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 0.47f,-0.02f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f,
 0.47f,-0.32f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f, // 14
 0.02f,-0.02f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 0.47f,-0.32f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 0.02f,-0.32f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f };
 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[14]);
 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride, frnVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 GLfloat ffnVertices[] = {0.51f,-0.02f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 0.96f,-0.02f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f,
 0.96f,-0.32f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f, // 15
 0.51f,-0.02f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 0.96f,-0.32f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 0.51f,-0.32f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f };
 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[15]);
 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride, ffnVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 GLfloat sxnVertices[] = {-0.51f,-0.36f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f,
 -0.96f,-0.36f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 -0.96f,-0.66f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f, // 16
 -0.51f,-0.36f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f,
 -0.96f,-0.66f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,
 -0.51f,-0.66f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f};
 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[16]);
 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride, sxnVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 75

 GLfloat svnVertices[] = {-0.02f,-0.36f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f,
 -0.47f,-0.36f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 -0.47f,-0.66f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f, // 17
 -0.02f,-0.36f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f,
 -0.47f,-0.66f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,
 -0.02f,-0.66f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f};
 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[17]);
 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride , svnVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 GLfloat etnVertices[] = {0.02f,-0.36f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 0.47f,-0.36f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f,
 0.47f,-0.66f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f, // 18
 0.02f,-0.36f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 0.47f,-0.66f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 0.02f,-0.66f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f};
 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[18]);
 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride, etnVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 GLfloat nnnVertices[] = { 0.51f,-0.36f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 0.96f,-0.36f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f,
 0.96f,-0.66f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f, // 19
 0.51f,-0.36f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 0.96f,-0.66f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 0.51f,-0.66f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f};
 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[19]);
 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride, nnnVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 GLfloat tweVertices[] = {-0.51f,-0.70f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f,
 -0.96f,-0.70f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 -0.96f,-1.00f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f, // 20
 -0.51f,-0.70f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f,
 -0.96f,-1.00f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,
 -0.51f,-1.00f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f };

 76

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[20]);
 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride , tweVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 GLfloat tweoneVertices[] = {-0.02f,-0.70f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f,
 -0.47f,-0.70f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 -0.47f,-1.00f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f, // 21
 -0.02f,-0.70f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f,
 -0.47f,-1.00f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,
 -0.02f,-1.00f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f};
 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[21]);
 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride , tweoneVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 GLfloat twetwoVertices[] = { 0.02f,-0.70f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 0.47f,-0.70f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f,
 0.47f,-1.00f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f, // 22
 0.02f,-0.70f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 0.47f,-1.00f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 0.02f,-1.00f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f};
 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[22]);
 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride, twetwoVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 GLfloat twethrVertices[] = { 0.51f,-0.70f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 0.96f,-0.70f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f,
 0.96f,-1.00f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f, // 23
 0.51f,-0.70f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f,
 0.96f,-1.00f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 0.51f,-1.00f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f};

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[23]);
 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride, twethrVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 GLfloat padVertices[] = { 0.90f, 0.90f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f,
 0.90f,-0.10f,0.0f, 1.0f,0.0f , 0.0f,0.0f,1.0f,
 -0.90f,-0.10f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f, // pad
 -0.90f,-0.10f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f,

 77

 0.90f, 0.90f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f,
 -0.90f, 0.90f,0.0f, 0.0f,1.0f , 0.0f,0.0f,1.0f};
 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[24]);
 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride, padVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 GLfloat scrVertices[] = { 0.90f, 0.90f,0.0f, 1.0f,1.0f , 0.0f,0.0f,1.0f,
 0.90f, 0.00f,0.0f, 1.0f,0.5f , 0.0f,0.0f,1.0f, //screen saver obj
 -0.90f, 0.00f,0.0f, 0.0f,0.5f , 0.0f,0.0f,1.0f,
 -0.90f, 0.00f,0.0f, 0.0f,0.5f , 0.0f,0.0f,1.0f,
 0.90f, 0.00f,0.0f, 1.0f,0.5f , 0.0f,0.0f,1.0f,
 -0.90f,-0.90f,0.0f, 0.0f,0.0f , 0.0f,0.0f,1.0f };

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[25]);
 glBufferData(GL_ARRAY_BUFFER, 6 * m_ui32VertexStride, scrVertices, GL_STATIC_DRAW);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 m_ulStartTime = PVRShellGetTime(); // Initialize StartTime
 counter = 0; // initialize Counter
 dial = 0; // Initialize call button
 erase = 0; // Initialize call number erasure
 UpDown = 0; // Initialize central menu sliding
 pressed = 0; // Initialize central menu button state
 snooze = 0; // Initialize snooze button state
 rmin = 0; // Initialize + - buttons state
 lmin = 0;
 rhour = 0;
 lhour = 0;
 mes = 0; // Initialize message screen state
 send = 0; // Initialize sent messages state
 incr = 0; // Initialize counter that keeps sent messages
 LeftRight = 0; // Initialize message menu sliding
 AlActivation = 0; // Initialize alarm state
 StartButton = 0; // Initialize screensaver timer

 78

 return true;
}

/*!**
 @Function ReleaseView
 @Return bool true if no error occured
 @Description Code in ReleaseView() will be called by PVRShell when the
 application quits or before a change in the rendering context.
**/
bool OGLES2Texturing::ReleaseView()
{
 // Frees the textures
 glDeleteTextures(1, &m_uiTexture[0]);
 glDeleteTextures(1, &m_uiTexture[1]);
 glDeleteTextures(1, &m_uiTexture[2]);
 glDeleteTextures(1, &m_uiTexture[3]);
 glDeleteTextures(1, &m_uiTexture[4]);
 glDeleteTextures(1, &m_uiTexture[5]);
 glDeleteTextures(1, &m_uiTexture[6]);
 glDeleteTextures(1, &m_uiTexture[7]);
 glDeleteTextures(1, &m_uiTexture[8]);
 glDeleteTextures(1, &m_uiTexture[9]);
 glDeleteTextures(1, &m_uiTexture[10]);
 glDeleteTextures(1, &m_uiTexture[11]);
 glDeleteTextures(1, &m_uiTexture[12]);
 glDeleteTextures(1, &m_uiTexture[13]);
 glDeleteTextures(1, &m_uiTexture[14]);
 glDeleteTextures(1, &m_uiTexture[15]);
 glDeleteTextures(1, &m_uiTexture[16]);
 glDeleteTextures(1, &m_uiTexture[17]);
 glDeleteTextures(1, &m_uiTexture[18]);
 glDeleteTextures(1, &m_uiTexture[19]);
 glDeleteTextures(1, &m_uiTexture[20]);
 glDeleteTextures(1, &m_uiTexture[21]);
 glDeleteTextures(1, &m_uiTexture[22]);
 glDeleteTextures(1, &m_uiTexture[23]);
 glDeleteTextures(1, &m_uiTexture[24]);
 glDeleteTextures(1, &m_uiTexture[25]);

 79

 glDeleteTextures(1, &m_uiTexture[26]);
 glDeleteTextures(1, &m_uiTexture[27]);
 glDeleteTextures(1, &m_uiTexture[28]);
 glDeleteTextures(1, &m_uiTexture[29]);
 glDeleteTextures(1, &m_uiTexture[30]);

 // Release Vertex buffer object.
 glDeleteBuffers(1, &m_ui32Vbo[0]);
 glDeleteBuffers(1, &m_ui32Vbo[1]);
 glDeleteBuffers(1, &m_ui32Vbo[2]);
 glDeleteBuffers(1, &m_ui32Vbo[3]);
 glDeleteBuffers(1, &m_ui32Vbo[4]);
 glDeleteBuffers(1, &m_ui32Vbo[5]);
 glDeleteBuffers(1, &m_ui32Vbo[6]);
 glDeleteBuffers(1, &m_ui32Vbo[7]);
 glDeleteBuffers(1, &m_ui32Vbo[8]);
 glDeleteBuffers(1, &m_ui32Vbo[9]);
 glDeleteBuffers(1, &m_ui32Vbo[10]);
 glDeleteBuffers(1, &m_ui32Vbo[11]);
 glDeleteBuffers(1, &m_ui32Vbo[12]);
 glDeleteBuffers(1, &m_ui32Vbo[13]);
 glDeleteBuffers(1, &m_ui32Vbo[14]);
 glDeleteBuffers(1, &m_ui32Vbo[15]);
 glDeleteBuffers(1, &m_ui32Vbo[16]);
 glDeleteBuffers(1, &m_ui32Vbo[17]);
 glDeleteBuffers(1, &m_ui32Vbo[18]);
 glDeleteBuffers(1, &m_ui32Vbo[19]);
 glDeleteBuffers(1, &m_ui32Vbo[20]);
 glDeleteBuffers(1, &m_ui32Vbo[21]);
 glDeleteBuffers(1, &m_ui32Vbo[22]);
 glDeleteBuffers(1, &m_ui32Vbo[23]);
 glDeleteBuffers(1, &m_ui32Vbo[24]);
 glDeleteBuffers(1, &m_ui32Vbo[25]);

 // Release Print3D Textures
 m_Print3D.ReleaseTextures();

 // Frees the OpenGL handles for the program and the 2 shaders
 glDeleteProgram(m_uiProgramObject);

 80

 glDeleteShader(m_uiVertexShader);
 glDeleteShader(m_uiFragShader);
 return true;
}
/*!**
 @Function RenderScene
 @Return bool true if no error occured
 @Description Main rendering loop function of the program. The shell will
 call this function every frame.
 eglSwapBuffers() will be performed by PVRShell automatically.
 PVRShell will also manage important OS events.
 Will also manage relevent OS events. The user has access to
 these events through an abstraction layer provided by PVRShell.
**/
bool OGLES2Texturing::RenderScene()
{
 glUseProgram(m_uiProgramObject); // Reuse our shaders as Print3D uses its own shaders when called

 // Clears the color and depth buffer
 glClear(GL_COLOR_BUFFER_BIT | GL_DEPTH_BUFFER_BIT);

 // Takes the mouse position
 if (NULL != (vec2PointerLocation = (float *)PVRShellGet(prefPointerLocation)))
 {
 x = vec2PointerLocation[0];
 y = vec2PointerLocation[1];
 }

 // Time passed since last mouse click
 unsigned long ulCurrentTime = PVRShellGetTime() - m_ulStartTime;

 if(0 != PVRShellGet(prefButtonState))
 {
 m_ulStartTime = PVRShellGetTime(); // After mouse event reset CurrentTime
 Sleep(50); // To avoid pressing any Main Menu buttons after ScreenSaver return
 }
 if(0 != PVRShellGet(prefButtonState) && x>0.9 && y<0.1)
 {
 UpDown=0;

 81

 }
 else if(0 != PVRShellGet(prefButtonState) && x<0.1 && y>0.9)
 {
 UpDown=1;
 }

 if(ulCurrentTime>TIMER) // If currentTime exceeds TIMER call ScreenSaver(in ms)
 {
 glViewport(0,0,600,750);
 ScreenSaver();
 }
 else
 {
 if(UpDown==0 && pressed!=7 && pressed!=2 && pressed!=8)
 {
 if(kapa>-350){kapa-=SCREEN_SPEED;} // Change viewport position if needed
 glViewport(0,kapa,600,1100);
 Main_Menu();
 // Depending on click position pressed takes the appropriate value
 if(0 != PVRShellGet(prefButtonState) && x<0.25 && y<0.25) {pressed=1;}
 else if(0 != PVRShellGet(prefButtonState) && x<0.75 && x>0.5 && y<0.25) {pressed=2;}
 else if(0 != PVRShellGet(prefButtonState) && x<0.5 && x>0.25 && y>0.25 && y<0.5) {pressed=3;}
 else if(0 != PVRShellGet(prefButtonState) && x>0.75 && y>0.25 && y<0.5) {pressed=4;}
 else if(0 != PVRShellGet(prefButtonState) && x<0.25 && y>0.5 && y<0.75) {pressed=5;}
 else if(0 != PVRShellGet(prefButtonState) && x<0.75 && x>0.5 && y>0.5 && y<0.75) {pressed=6;}
 else if(0 != PVRShellGet(prefButtonState) && x<0.5 && x>0.25 && y>0.75) {pressed=7;}
 else if(0 != PVRShellGet(prefButtonState) && x>0.75 && y>0.75) {pressed=8;}

 }
 else if(UpDown==1 && pressed!=7 && pressed!=2 && pressed!=8)
 {
 if(kapa<0){kapa+=SCREEN_SPEED;} // Change viewport position if needed
 glViewport(0,kapa,600,1100);
 Main_Menu();
 // Depending on click position pressed takes the appropriate value
 if(0 != PVRShellGet(prefButtonState) && x<0.25 && y<0.25) {pressed=5;}
 else if(0 != PVRShellGet(prefButtonState) && x<0.75 && x>0.5 && y<0.25) {pressed=6;}
 else if(0 != PVRShellGet(prefButtonState) && x<0.5 && x>0.25 && y>0.25 && y<0.5) {pressed=7;}
 else if(0 != PVRShellGet(prefButtonState) && x>0.75 && y>0.25 && y<0.5) {pressed=8;}

 82

 else if(0 != PVRShellGet(prefButtonState) && x<0.25 && y>0.5 && y<0.75) {pressed=9;}
 else if(0 != PVRShellGet(prefButtonState) && x<0.75 && x>0.5 && y>0.5 && y<0.75) {pressed=10;}
 else if(0 != PVRShellGet(prefButtonState) && x<0.5 && x>0.25 && y>0.75) {pressed=11;}
 else if(0 != PVRShellGet(prefButtonState) && x>0.75 && y>0.75) {pressed=12;}

 }
 else if(pressed==7)
 {
 glViewport(0,0,600,750);
 Pad();
 }
 else if(pressed==2)
 {
 glViewport(0,0,600,750);
 AlarmClock();
 }
 else if(pressed==8 && mes==0)
 {
 if(0 != PVRShellGet(prefButtonState) && x>0.95 && y>0.3 && y<0.6)
 {
 LeftRight=1;
 }
 else if(0 != PVRShellGet(prefButtonState) && x<0.05 && y>0.3 && y<0.6)
 {
 LeftRight=0;
 }
 switch(LeftRight)
 {
 case 0:
 if(lamda<0){lamda+=SCREEN_SPEED;} // Change viewport position if needed
 glViewport(lamda,-630,1160,1350);
 Messages();
 break;
 case 1:
 if(lamda>-580){lamda-=SCREEN_SPEED;} // Change viewport position if needed
 glViewport(lamda,-630,1160,1350);
 Messages();
 break;
 }

 83

 }
 else if(pressed==8 && mes==1)
 {
 glViewport(0,0,600,750);
 WriteMes();
 }
 }
 return true;

}

/*!**
 @Function NewDemo
 @Return PVRShell* The demo supplied by the user
 @Description This function must be implemented by the user of the shell.
 The user should return its PVRShell object defining the
 behaviour of the application.
**/

PVRShell* NewDemo()
{
 return new OGLES2Texturing();
}

/***
 @Function Main_Menu
 @Return -
 @Description This function is called in RenderScene Function
 in order to render the main menu objects. Textures
 rendered differ depending on the user's mouse click
**/
void OGLES2Texturing::Main_Menu(){

 /*
 Bind the projection model view matrix (PMVMatrix) to the
 corresponding uniform variable in the shader.

 84

 This matrix is used in the vertex shader to transform the vertices.
 */
 int zLocation = glGetUniformLocation(m_uiProgramObject, "myPMVMatrix");
 glUniformMatrix4fv(zLocation, 1, GL_FALSE, aPMVMatrix);
 /*
 Bind the Model View Inverse Transpose matrix to the shader.
 This matrix is used in the vertex shader to transform the normals.
 */
 zLocation = glGetUniformLocation(m_uiProgramObject, "myModelViewIT");
 glUniformMatrix3fv(zLocation, 1, GL_FALSE, aModelViewIT);

 // Bind the Light Direction vector to the shader
 zLocation = glGetUniformLocation(m_uiProgramObject, "myLightDirection");
 glUniform3f(zLocation, 0, 0, 1);

 // Bind the VBO
 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[0]);
 // Pass the vertex data
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 // Pass the texture coordinates data depending on the value of "pressed" variable
 if(pressed==1)
 {
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[18]);
 }
 else
 {
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[0]);
 }
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 // Pass the normals data
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)) /* Normals start after
the position and uvs */);
 // Draws a non-indexed triangle array
 glDrawArrays(GL_TRIANGLES, 0, 6);
 // Unbind the VBO
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 85

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[2]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[1]);
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[5]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 if(pressed==3)
 {
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[18]);
 }
 else
 {
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[6]);
 }
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[7]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 if(pressed==4)
 {
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[18]);

 86

 }
 else
 {
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[3]);
 }
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[8]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 if(pressed==5)
 {
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[18]);
 }
 else
 {
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[4]);
 }
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[10]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 if(pressed==6)
 {
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[18]);
 }

 87

 else
 {
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[7]);
 }
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[13]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[13]);
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[15]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[5]);
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 88

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[16]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 if(pressed==9)
 {
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[18]);
 }
 else
 {
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[2]);
 }
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[18]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 if(pressed==10)
 {
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[18]);
 }
 else
 {
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[10]);
 }
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[21]);
 glEnableVertexAttribArray(VERTEX_ARRAY);

 89

 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 if(pressed==11)
 {
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[18]);
 }
 else
 {
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[9]);
 }
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[23]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 if(pressed==12)
 {
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[18]);
 }
 else
 {
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[12]);
 }
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 // This obj will be rendered only if the alarm is activated
 if(AlActivation==1)
 {
 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[3]);
 glEnableVertexAttribArray(VERTEX_ARRAY);

 90

 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[20]);
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 }

}

/***
 @Function Pad
 @Return -
 @Description This function is called when "call now"
 is selected in Main Menu. Handles all
 rendering in the call pad section of the
 interface.
**/
void OGLES2Texturing::Pad()
{

 int zLocation = glGetUniformLocation(m_uiProgramObject, "myPMVMatrix");
 glUniformMatrix4fv(zLocation, 1, GL_FALSE, aPMVMatrix);
 zLocation = glGetUniformLocation(m_uiProgramObject, "myModelViewIT");
 glUniformMatrix3fv(zLocation, 1, GL_FALSE, aModelViewIT);
 zLocation = glGetUniformLocation(m_uiProgramObject, "myLightDirection");
 glUniform3f(zLocation, 0, 0, 1);

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[24]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[14]);

 91

 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[20]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[8]);
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[19]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[17]);
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[23]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[16]);
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 92

 NumPad(); // Called to set the PrNum value according to user's click

 if(PrNum==0)
 {
 if(counter<20) // to avoid text overflow
 strcat(NumToCall,"0"); // add character to text
 counter++; // increment counter
 }
 else if(PrNum==1)
 {
 if(counter<20)
 strcat(NumToCall,"1");
 counter++;
 }
 else if(PrNum==2)
 {
 if(counter<20)
 strcat(NumToCall,"2");
 counter++;
 }
 else if(PrNum==3)
 {
 if(counter<20)
 strcat(NumToCall,"3");
 counter++;
 }
 else if(PrNum==4)
 {
 if(counter<20)
 strcat(NumToCall,"4");
 counter++;
 }
 else if(PrNum==5)
 {
 if(counter<20)
 strcat(NumToCall,"5");
 counter++;
 }

 93

 else if(PrNum==6)
 {
 if(counter<20)
 strcat(NumToCall,"6");
 counter++;
 }
 else if(PrNum==7)
 {
 if(counter<20)
 strcat(NumToCall,"7");
 counter++;
 }
 else if(PrNum==8)
 {
 if(counter<20)
 strcat(NumToCall,"8");
 counter++;
 }
 else if(PrNum==9)
 {
 if(counter<20)
 strcat(NumToCall,"9");
 counter++;
 }
 else if(PrNum==10)
 {
 if(counter<20)
 strcat(NumToCall,"#");
 counter++;
 }
 else if(PrNum==11)
 {
 if(counter<20)
 strcat(NumToCall,"*");
 counter++;
 }
 // If no erasure command has been given, the number is flushed on screen
 if(erase==0)
 {

 94

 m_Print3D.Print3D(10.0f, 45.0f, 1.0f, 0xFF302020, NumToCall);
 m_Print3D.Flush();
 Sleep(50);
 PrNum=100; // Change PrNum value to avoid constant printing of the pressed number
 }
 // If erasure command has been given copy an empty string to the array
 else if (erase==1)
 {
 erase=0; // Reset erase
 strcpy(NumToCall,empty);
 counter=0; // Reset counter
 }

 // if call button is pressed and a number is dialed print message
 if(dial==1 && NumToCall[0]!=NULL)
 {
 m_Print3D.Print3D(10.0f, 50.0f, 0.8f, 0xFF605020, "your call is being diverted...");
 m_Print3D.Flush();
 }

 // If "back" arrow is pressed:
 if(0 != PVRShellGet(prefButtonState) && x<0.25 && y>0.83)
 {
 pressed=0; // Change value to return to main menu
 strcpy(NumToCall,empty); // Erase dialed number
 dial=0; // Erase printed message
 counter=0; // Reset counter
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.75 && y>0.83 && y<0.91)
 {
 dial=1;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.75 && y>0.91)
 {
 dial=0;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.75 && y<0.83 && y>0.66)
 {
 erase=1;

 95

 }

}

/**
@Function NumPad
@Return -
@Description This function is called in Pad Function to initialize
 PrNum depending on click position
***/
void OGLES2Texturing ::NumPad()
{
 if(0 != PVRShellGet(prefButtonState) && x>0.06 && x<0.275 && y<0.19 && y>0.07)
 {
 PrNum=0;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.275 && x<0.5 && y<0.19 && y>0.07)
 {
 PrNum=1;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.5 && x<0.725 && y<0.19 && y>0.07)
 {
 PrNum=2;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.725 && x<0.94 && y<0.19 && y>0.07)
 {
 PrNum=3;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.06 && x<0.275 && y<0.36 && y>0.24)
 {
 PrNum=4;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.275 && x<0.5 && y<0.36 && y>0.24)
 {
 PrNum=5;

 96

 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.5 && x<0.725 && y<0.36 && y>0.24)
 {
 PrNum=6;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.725 && x<0.94 && y<0.36 && y>0.24)
 {
 PrNum=7;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.06 && x<0.275 && y<0.53 && y>0.41)
 {
 PrNum=8;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.275 && x<0.5 && y<0.53 && y>0.41)
 {
 PrNum=9;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.5 && x<0.725 && y<0.53 && y>0.41)
 {
 PrNum=10;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.725 && x<0.94 && y<0.53 && y>0.41)
 {
 PrNum=11;
 }

}

/***
@Function ScreenSaver
@Return -
@Description This function is called when no mouse
 event occurs for sometime.
**/
void OGLES2Texturing::ScreenSaver()
{
 // Different ModelView and Projection Matrices
 // in order to achieve object rotation

 97

 float aModelViewIT[] =
 {
 cos(m_fAngle), 0, sin(m_fAngle),
 0, 1, 0,
 -sin(m_fAngle), 0, cos(m_fAngle)
 };

 float aPMVMatrix[] =
 {
 cos(m_fAngle), 0, sin(m_fAngle), 0,
 0, 1, 0, 0,
 -sin(m_fAngle), 0, cos(m_fAngle), 0,
 0, 0, 0, 1
 };

 int i32Location = glGetUniformLocation(m_uiProgramObject, "myPMVMatrix");
 glUniformMatrix4fv(i32Location, 1, GL_FALSE, aPMVMatrix);
 i32Location = glGetUniformLocation(m_uiProgramObject, "myModelViewIT");
 glUniformMatrix3fv(i32Location, 1, GL_FALSE, aModelViewIT);
 i32Location = glGetUniformLocation(m_uiProgramObject, "myLightDirection");
 glUniform3f(i32Location, 0, 0, 1);

 // Increments the angle of the view
 m_fAngle += .02f;

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[25]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[15]);
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 98

}

/***
@Function AlarmClock
@Return -
@Description This function is called when the user
 nagivates into the alarm clock of the
 interface.
**/
void OGLES2Texturing::AlarmClock()
{
 int zLocation = glGetUniformLocation(m_uiProgramObject, "myPMVMatrix");
 glUniformMatrix4fv(zLocation, 1, GL_FALSE, aPMVMatrix);
 zLocation = glGetUniformLocation(m_uiProgramObject, "myModelViewIT");
 glUniformMatrix3fv(zLocation, 1, GL_FALSE, aModelViewIT);
 zLocation = glGetUniformLocation(m_uiProgramObject, "myLightDirection");
 glUniform3f(zLocation, 0, 0, 1);

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[1]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[19]);
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[9]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[19]);
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 99

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[0]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[22]);
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[4]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[21]);
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[8]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[23]);
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[20]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[8]);
 glEnableVertexAttribArray(TEXCOORD_ARRAY);

 100

 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 // Obj rendered only if the alarm is activated
 if(AlActivation==1)
 {
 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[23]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[24]);
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);
 }

 if(0 != PVRShellGet(prefButtonState) && x<0.25 && y>0.83)
 {
 pressed=0;
 }
 else if(0 != PVRShellGet(prefButtonState) && x<0.25 && y<0.16)
 {
 AlActivation = 1;
 }
 else if(0 != PVRShellGet(prefButtonState) && x<0.25 && y>0.16 && y<0.32)
 {
 AlActivation = 0;
 }
 else if(0 != PVRShellGet(prefButtonState) && x<0.25 && y>0.32 && y<0.48)
 {
 Sleep(20);
 snooze+=1; // Snooze value changes depending on mouse events
 if(snooze>4) // Reset snooze

 101

 snooze=0;
 }

 // The following algorithm handles the hour incrementing
 // when the user presses the "+" button
 else if(0 != PVRShellGet(prefButtonState) && x>0.5 && x<0.725 && y<0.15)
 {
 if(lhour==0 || lhour==1)
 {
 rhour++;
 if(rhour>9)
 {
 rhour=0;
 lhour++;
 }
 }
 else if(lhour==2)
 {
 rhour++;
 if(rhour>3)
 {
 lhour=0;
 rhour=0;
 }
 }

 }
 // The following algorithm handles the hour diminishing
 // when the user presses the "-" button
 else if(0 != PVRShellGet(prefButtonState) && x>0.5 && x<0.725 && y>0.15 && y<0.30) // hour -
 {

 if(lhour==0)
 {
 rhour--;
 if(rhour<0)
 {
 lhour=2;
 rhour=3;

 102

 }
 }
 else if(lhour==1 || lhour==2)
 {
 rhour--;
 if(rhour<0)
 {
 lhour--;
 rhour=9;
 }
 }
 }
 // The following algorithm handles the minute incrementing
 // when the user presses the "+" button
 else if(0 != PVRShellGet(prefButtonState) && x>0.75 && y<0.15) // minute +
 {
 rmin++;
 if(rmin>9)
 {
 rmin=0;
 lmin++;
 if(lmin>5)
 {
 lmin=0;
 rmin=0;
 }
 }
 }
 // The following algorithm handles the minute diminishing
 // when the user presses the "-" button
 else if(0 != PVRShellGet(prefButtonState) && x>0.75 && y>0.15 && y<0.30) // minute -
 {
 rmin--;
 if(rmin<0)
 {
 rmin=9;
 lmin--;
 if(lmin<0)
 {

 103

 lmin=5;
 rmin=9;
 }
 }
 }

 // Turns the time intergers into strings
 // so that we can project it on screen
 // with CPVRTPrint3D class
 itoa(rhour,buffe,10);
 itoa(lhour,buffer,10);
 itoa(rmin,buf,10);
 itoa(lmin,buff,10);

 m_Print3D.Print3D(99.0f, 30.0f, 1.5f, 0xFF202070, buf);
 m_Print3D.Print3D(94.0f, 30.0f, 1.5f, 0xFF202070, buff);
 m_Print3D.Print3D(91.0f, 30.0f, 1.5f, 0xFF202070, ":");
 m_Print3D.Print3D(87.0f, 30.0f, 1.5f, 0xFF202070, buffe);
 m_Print3D.Print3D(82.0f, 30.0f, 1.5f, 0xFF202070, buffer);
 m_Print3D.Flush();

 // Snooze cases
 switch(snooze)
 {
 case 0:
 m_Print3D.Print3D(5.0f, 40.0f, 0.8f, 0xFF302020, "snooze off");
 m_Print3D.Flush();
 break;
 case 1:
 m_Print3D.Print3D(5.0f, 40.0f, 0.8f, 0xFF302020, "1 min");
 m_Print3D.Flush();
 break;
 case 2:
 m_Print3D.Print3D(5.0f, 40.0f, 0.8f, 0xFF302020, "3 min");
 m_Print3D.Flush();
 break;
 case 3:
 m_Print3D.Print3D(5.0f, 40.0f, 0.8f, 0xFF302020, "5 min");
 m_Print3D.Flush();

 104

 break;
 case 4:
 m_Print3D.Print3D(5.0f, 40.0f, 0.8f, 0xFF302020, "10 min");
 m_Print3D.Flush();
 break;

 }

}

/***
@Function Messages
@Return -
@Description This function is called when the user
 nagivates into the messages of the
 interface.
**/
void OGLES2Texturing::Messages(){

 int zLocation = glGetUniformLocation(m_uiProgramObject, "myPMVMatrix");
 glUniformMatrix4fv(zLocation, 1, GL_FALSE, aPMVMatrix);
 zLocation = glGetUniformLocation(m_uiProgramObject, "myModelViewIT");
 glUniformMatrix3fv(zLocation, 1, GL_FALSE, aModelViewIT);
 zLocation = glGetUniformLocation(m_uiProgramObject, "myLightDirection");
 glUniform3f(zLocation, 0, 0, 1);

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[8]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[8]);
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 105

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[0]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[25]);
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[4]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[28]);
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[2]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[27]);
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[6]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[29]);
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));

 106

 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[10]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[26]);
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 if (send==1)
 {
 send=0;
 incr++; // increments the sent messages vakue
 }

 itoa(incr,bu,10);
 m_Print3D.Print3D(114.0f, 19.0f, 0.4f, 0xFF307030, bu);
 m_Print3D.Print3D(113.0f, 19.0f, 0.4f, 0xFF307030, "()");
 m_Print3D.Print3D(34.0f, 5.0f, 0.4f, 0xFF3010070, "Create Message");
 m_Print3D.Print3D(35.0f, 19.0f, 0.4f, 0xFF307030, "Incoming Messages");
 m_Print3D.Print3D(35.0f, 32.0f, 0.4f, 0xFF902070, "Back");
 m_Print3D.Print3D(95.0f, 5.0f, 0.4f, 0xFF307030, "email");
 m_Print3D.Print3D(95.0f, 19.0f, 0.4f, 0xFF902070, "Sent messages");
 m_Print3D.Print3D(95.0f, 32.0f, 0.4f, 0xFF307030, "Draft");
 m_Print3D.Flush();

 /*if (send==1)
 {
 send=0;
 incr++;
 itoa(incr,bu,10);
 m_Print3D.Print3D(95.0f, 22.0f, 0.4f, 0xFF307030, "bu");

 107

 m_Print3D.Flush();
 }*/

 if(0 != PVRShellGet(prefButtonState) && x<0.45 && y>0.65 && LeftRight==0)
 {
 Sleep(100);
 pressed=0;
 }
 else if(0 != PVRShellGet(prefButtonState) && x<0.45 && y<0.30 && LeftRight==0)
 {
 mes=1;
 }
}

/**
@Function WriteMes
@Return -
@Description This function is called when the user
 nagivates into the section of the
 interface intended for creating messages
**/
void OGLES2Texturing::WriteMes()
{

 int zLocation = glGetUniformLocation(m_uiProgramObject, "myPMVMatrix");
 glUniformMatrix4fv(zLocation, 1, GL_FALSE, aPMVMatrix);
 zLocation = glGetUniformLocation(m_uiProgramObject, "myModelViewIT");
 glUniformMatrix3fv(zLocation, 1, GL_FALSE, aModelViewIT);
 zLocation = glGetUniformLocation(m_uiProgramObject, "myLightDirection");
 glUniform3f(zLocation, 0, 0, 1);

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[24]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[30]);
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));

 108

 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 glBindBuffer(GL_ARRAY_BUFFER, m_ui32Vbo[20]);
 glEnableVertexAttribArray(VERTEX_ARRAY);
 glVertexAttribPointer(VERTEX_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, 0);
 glBindTexture(GL_TEXTURE_2D, m_uiTexture[8]);
 glEnableVertexAttribArray(TEXCOORD_ARRAY);
 glVertexAttribPointer(TEXCOORD_ARRAY, 2, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (3 * sizeof(GLfloat)));
 glEnableVertexAttribArray(NORMAL_ARRAY);
 glVertexAttribPointer(NORMAL_ARRAY, 3, GL_FLOAT, GL_FALSE, m_ui32VertexStride, (void*) (5 * sizeof(GLfloat)));
 glDrawArrays(GL_TRIANGLES, 0, 6);
 glBindBuffer(GL_ARRAY_BUFFER, 0);

 MesPad();

 switch(MesNum)
 {
 case 0:
 if(counter<46) // to avoid text overflow
 strcat(text,"Q"); // add character to first line of text
 else if(counter>=46 && counter<92){strcat(text1,"Q");} // if 1st line is full add to the 2nd one
 else if(counter>=92 &&counter<138){strcat(text2,"Q");} // if 2nd line is full add to the 3rd one
 counter++; // increment counter
 break;
 case 1:
 if(counter<46)
 strcat(text,"W");
 else if(counter>=46 && counter<92){strcat(text1,"W");}
 else if(counter>=92 &&counter<138){strcat(text2,"W");}
 counter++;
 break;
 case 2:
 if(counter<46)
 strcat(text,"E");
 else if(counter>=46 && counter<92){strcat(text1,"E");}
 else if(counter>=92 &&counter<138){strcat(text2,"E");}
 counter++;
 break;

 109

 case 3:
 if(counter<46)
 strcat(text,"R");
 else if(counter>=46 && counter<92){strcat(text1,"R");}
 else if(counter>=92 &&counter<138){strcat(text2,"R");}
 counter++;
 break;
 case 4:
 if(counter<46)
 strcat(text,"T");
 else if(counter>=46 && counter<92){strcat(text1,"T");}
 else if(counter>=92 &&counter<138){strcat(text2,"T");}
 counter++;
 break;
 case 5:
 if(counter<46)
 strcat(text,"Y");
 else if(counter>=46 && counter<92){strcat(text1,"Y");}
 else if(counter>=92 &&counter<138){strcat(text2,"Y");}
 counter++;
 break;
 case 6:
 if(counter<46)
 strcat(text,"U");
 else if(counter>=46 && counter<92){strcat(text1,"U");}
 else if(counter>=92 &&counter<138){strcat(text2,"U");}
 counter++;
 break;
 case 7:
 if(counter<46)
 strcat(text,"I");
 else if(counter>=46 && counter<92){strcat(text1,"I");}
 else if(counter>=92 &&counter<138){strcat(text2,"I");}
 counter++;
 break;
 case 8:
 if(counter<46)
 strcat(text,"O");
 else if(counter>=46 && counter<92){strcat(text1,"O");}

 110

 else if(counter>=92 &&counter<138){strcat(text2,"O");}
 counter++;
 break;
 case 9:
 if(counter<46)
 strcat(text,"P");
 else if(counter>=46 && counter<92){strcat(text1,"P");}
 else if(counter>=92 &&counter<138){strcat(text2,"P");}
 counter++;
 break;
 case 10:
 if(counter<46)
 strcat(text,"A");
 else if(counter>=46 && counter<92){strcat(text1,"A");}
 else if(counter>=92 &&counter<138){strcat(text2,"A");}
 counter++;
 break;
 case 11:
 if(counter<46)
 strcat(text,"S");
 else if(counter>=46 && counter<92){strcat(text1,"S");}
 else if(counter>=92 &&counter<138){strcat(text2,"S");}
 counter++;
 break;
 case 12:
 if(counter<46)
 strcat(text,"D");
 else if(counter>=46 && counter<92){strcat(text1,"D");}
 else if(counter>=92 &&counter<138){strcat(text2,"D");}
 counter++;
 break;
 case 13:
 if(counter<46)
 strcat(text,"F");
 else if(counter>=46 && counter<92){strcat(text1,"F");}
 else if(counter>=92 &&counter<138){strcat(text2,"F");}
 counter++;
 break;
 case 14:

 111

 if(counter<46)
 strcat(text,"G");
 else if(counter>=46 && counter<92){strcat(text1,"G");}
 else if(counter>=92 &&counter<138){strcat(text2,"G");}
 counter++;
 break;
 case 15:
 if(counter<46)
 strcat(text,"H");
 else if(counter>=46 && counter<92){strcat(text1,"H");}
 else if(counter>=92 &&counter<138){strcat(text2,"H");}
 counter++;
 break;
 case 16:
 if(counter<46)
 strcat(text,"J");
 else if(counter>=46 && counter<92){strcat(text1,"J");}
 else if(counter>=92 &&counter<138){strcat(text2,"J");}
 counter++;
 break;
 case 17:
 if(counter<46)
 strcat(text,"K");
 else if(counter>=46 && counter<92){strcat(text1,"K");}
 else if(counter>=92 &&counter<138){strcat(text2,"K");}
 counter++;
 break;
 case 18:
 if(counter<46)
 strcat(text,"L");
 else if(counter>=46 && counter<92){strcat(text1,"L");}
 else if(counter>=92 &&counter<138){strcat(text2,"L");}
 counter++;
 break;
 case 19:
 if(counter<46)
 strcat(text,"Z");
 else if(counter>=46 && counter<92){strcat(text1,"Z");}
 else if(counter>=92 &&counter<138){strcat(text2,"Z");}

 112

 counter++;
 break;
 case 20:
 if(counter<46)
 strcat(text,"X");
 else if(counter>=46 && counter<92){strcat(text1,"X");}
 else if(counter>=92 &&counter<138){strcat(text2,"X");}
 counter++;
 break;
 case 21:
 if(counter<46)
 strcat(text,"C");
 else if(counter>=46 && counter<92){strcat(text1,"C");}
 else if(counter>=92 &&counter<138){strcat(text2,"C");}
 counter++;
 break;
 case 22:
 if(counter<46)
 strcat(text,"V");
 else if(counter>=46 && counter<92){strcat(text1,"V");}
 else if(counter>=92 &&counter<138){strcat(text2,"V");}
 counter++;
 break;
 case 23:
 if(counter<46)
 strcat(text,"B");
 else if(counter>=46 && counter<92){strcat(text1,"B");}
 else if(counter>=92 &&counter<138){strcat(text2,"B");}
 counter++;
 break;
 case 24:
 if(counter<46)
 strcat(text,"N");
 else if(counter>=46 && counter<92){strcat(text1,"N");}
 else if(counter>=92 &&counter<138){strcat(text2,"N");}
 counter++;
 break;
 case 25:
 if(counter<46)

 113

 strcat(text,"M");
 else if(counter>=46 && counter<92){strcat(text1,"M");}
 else if(counter>=92 &&counter<138){strcat(text2,"M");}
 counter++;
 break;
 case 26:
 if(counter<46)
 strcat(text," ");
 else if(counter>=46 && counter<92){strcat(text1," ");}
 else if(counter>=92 &&counter<138){strcat(text2," ");}
 counter++;
 break;
 case 27:
 if(counter<46)
 strcat(text,"@");
 else if(counter>=46 && counter<92){strcat(text1,"@");}
 else if(counter>=92 &&counter<138){strcat(text2,"@");}
 counter++;
 break;
 case 28:
 if(counter<46)
 strcat(text,".");
 else if(counter>=46 && counter<92){strcat(text1,".");}
 else if(counter>=92 &&counter<138){strcat(text2,".");}
 counter++;
 break;
 }

 // Flush text to screen
 if(erase==0)
 {
 m_Print3D.Print3D(7.0f, 45.0f, 0.6f, 0xFF302020, text);
 m_Print3D.Print3D(7.0f, 50.0f, 0.6f, 0xFF302020, text1);
 m_Print3D.Print3D(7.0f, 55.0f, 0.6f, 0xFF302020, text2);
 m_Print3D.Flush();
 Sleep(20);
 MesNum=100; // Change to random value to aoid constant printing
 }

 114

 // Erase the last element of the text
 else if(erase==1)
 {
 erase=0;
 if(counter<46)
 {
 text[counter]=NULL;
 }
 else if(counter>=46 && counter<92)
 {
 text1[counter-46]=NULL; // Subtract elements of the 1st line array
 }
 else if(counter>=92 && counter<138)
 {
 text2[counter-92]=NULL; // Subtract elements of the 1st line and second line array
 }
 counter--; // Subtract one from counter
 Sleep(30);
 }

 if((0 != PVRShellGet(prefButtonState) && x<0.20 && y>0.80) || send==1)
 {
 Sleep(100);
 pressed==8; // Takes it back to main message menu
 mes=0;
 strcpy(text,empty); // Empties written text on exit
 strcpy(text1,empty);
 strcpy(text2,empty);
 }

}

/**
@Function MesPad
@Return -
@Description This function is called in MesPad Function to initialize
 MesNum depending on click position
***/

 115

void OGLES2Texturing ::MesPad()
{
 if(0 != PVRShellGet(prefButtonState) && x>0.05 && x<0.13 && y<0.17 && y>0.12)
 {
 MesNum=0;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.14 && x<0.22 && y<0.17 && y>0.12)
 {
 MesNum=1;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.23 && x<0.31 && y<0.17 && y>0.12)
 {
 MesNum=2;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.32 && x<0.40 && y<0.17 && y>0.12)
 {
 MesNum=3;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.41 && x<0.49 && y<0.17 && y>0.12)
 {
 MesNum=4;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.50 && x<0.58 && y<0.17 && y>0.12)
 {
 MesNum=5;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.59 && x<0.67 && y<0.17 && y>0.12)
 {
 MesNum=6;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.68 && x<0.76 && y<0.17 && y>0.12)
 {
 MesNum=7;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.77 && x<0.85 && y<0.17 && y>0.12)
 {
 MesNum=8;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.86 && x<0.92 && y<0.17 && y>0.12)

 116

 {
 MesNum=9;
 }

 else if(0 != PVRShellGet(prefButtonState) && x>0.09 && x<0.17 && y>0.18 && y<0.23)
 {
 MesNum=10;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.18 && x<0.26 && y>0.18 && y<0.23)
 {
 MesNum=11;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.27 && x<0.35 && y>0.18 && y<0.23)
 {
 MesNum=12;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.36 && x<0.44 && y>0.18 && y<0.23)
 {
 MesNum=13;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.45 && x<0.53 && y>0.18 && y<0.23)
 {
 MesNum=14;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.54 && x<0.62 && y>0.18 && y<0.23)
 {
 MesNum=15;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.63 && x<0.71 && y>0.18 && y<0.23)
 {
 MesNum=16;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.72 && x<0.80 && y>0.18 && y<0.23)
 {
 MesNum=17;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.81 && x<0.89 && y>0.18 && y<0.23)
 {
 MesNum=18;

 117

 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.18 && x<0.26 && y>0.24 && y<0.29)
 {
 MesNum=19;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.27 && x<0.35 && y>0.24 && y<0.29)
 {
 MesNum=20;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.36 && x<0.44 && y>0.24 && y<0.29)
 {
 MesNum=21;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.45 && x<0.53 && y>0.24 && y<0.29)
 {
 MesNum=22;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.54 && x<0.62 && y>0.24 && y<0.29)
 {
 MesNum=23;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.63 && x<0.71 && y>0.24 && y<0.29)
 {
 MesNum=24;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.72 && x<0.80 && y>0.24 && y<0.29)
 {
 MesNum=25;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.23 && x<0.53 && y>0.30 && y<0.35)
 {
 MesNum=26;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.54 && x<0.65 && y>0.30 && y<0.35)
 {
 MesNum=27;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.66 && x<0.77 && y>0.30 && y<0.35)
 {

 118

 MesNum=28;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.83 && x<0.92 && y>0.24 && y<0.29)
 {
 erase=1;
 }
 else if(0 != PVRShellGet(prefButtonState) && x>0.75 && x<0.92 && y>0.30 && y<0.35)
 {
 send=1;
 }
}

