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Abstract

Option pricing is a fundamental problem in modern economics that en-
tails rigorous calculations. The current thesis presents a reconfigurable sys-
tem for option pricing that exploits the capability of FPGAs to execute
massively parallel calculations to speedup the process. The system is based
on a parallel architecture that can accommodate the basic finite-difference
methods used for option pricing with the Black-Scholes model. The ex-
plicit and Crank Nicholson schemes for Black-Scholes option pricing were
implemented. The designed system consists of a variable number of inter-
connected processing units able to achieve a fair performance gain over an
up-to-date dual-core CPU.



Introduction

As financial markets grow bigger and more complex the volume of calcula-
tions is escalating. Derivative markets in particular have seen an outstanding
growth since the 1970’s when the first types of option contracts were openly
traded. Figure 1 shows the annual volume of traded option contracts at the
Chicago Options Board Exchange and is indicative of the development of
derivative markets. Meanwhile the mathematical models used to price such
financial instruments are becoming more and more complex and computa-
tionally intensive in order to address sophisticated derivative types. Greater
performance must be achieved on the other hand in terms of speed and
power efficiency. Financial institutions turned to high performance comput-
ing (HPC) solutions such as clusters, grids and recently GPUs and FPGAs
to gain speed edge. FPGAs have proven their ability to speed up process-
ing in various scientific fields such as bioinformatics and image processing.
They are also power efficient, occupy minimal space and their acquisition
and maintenance cost is low.

An FPGA-based high performance solution for option pricing is proposed
in the current thesis. It consists of a parallel reconfigurable architecture
suitable for finite-difference schemes used extensively in financial derivatives
pricing. The implemented schemes include the explicit and Crank-Nicholson
methods. Other schemes can also be implemented easily.

The parallel architecture includes a number of interconnected cores or-
dered in ring topology. Each core has a local memory, a programmable
Von-Neumann memory controller, and a hardwired dataflow-based float-
ing point unit. The implementation of an algorithm over this architecture
requires the programming of the memory controller with assembly-like in-
structions and the ”rewiring” of the floating point unit. This model tried
to combine the flexibility of a control-flow architecture for memory address-
ing and inter-core communication with the speed of the dataflow approach
for the floating point operations. Transferring the algorithmic complexity
to software level results in simpler core architecture and reduced resource
utilization. The Mapping of an algorithm to as series of instructions though
cannot exploit possible parallelization at instruction level. The reduced re-
source utilization per core allowed for massive process-level parallelization,
compensating for no instruction level parallelism: More than 64 cores can
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Figure 1: Annual volume of traded options in millions at the Chicago Op-
tions Board Exchange (source: Chicago Board Options Exchange 2008 An-
nual Report)

be fitted in high-end reconfigurable devices such as the VirtexTM 5 fam-
ily achieving up to eigh-fold speed-up compared to an up-to-date dual-core
CPU.

Great effort has also been focused on the selection of the implemented
option-pricing algorithms. The strictly economical techniques have been
rejected in favor of finite differences that can be applied in a broad range
of scientific fields. The usability of the proposed reconfigurable architecture
can be extended well beyond option pricing in this way. In the context of
the implemented Crank-Nicholson finite-difference scheme we also had the
chance to explore methods for solving tridiagonal systems efficiently over
parallel architectures, contributing a variant of cyclic odd-even reduction (a
parallelizable method for solving tridiagonal systems) that requires smaller
machine precision than the original method without compromising speed of
execution.
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Chapter 1

Options in finance

1.1 Definition

An option is a contract which entitles its buyer (holder) with the right but
not the obligation to buy or sell an asset (underlying asset) at a predefined
price (strike price) and at some future moment before or at a predefined
date (expiry date). The seller (issuer) of the contract is obliged to sell or
buy the asset when the holder chooses to exercise his right. Options for
buying assets are named call options and those for selling, put options.

A simplified example of the usage of an option is that of a producer of
wheat who wants to fix a price for his future crop buying the right to sell it
to a wheat trader at a specified price when it is ready. If the price of wheat
falls, exercising his right shall be profitable. If the price rises on the other
hand, he can sell his crop elsewhere at higher price trading off the price he
has paid for the option. No matter what happens he has mitigated the risk
of falling wheat prices. In other words options are used for offsetting the
exposure to price fluctuations and other risks (hedging).

1.2 Types of options

The most important option types are European and American. European
options can be exercised only at the expiry date of the option. American
options can be exercised anytime up to the expiry date. Other types can
be exercised only at specific dates before or on expiry (Bermudan), or when
the value of the underlying asset reaches a specified price (Barrier). Options
not included in these categories are characterized as exotic.

1.3 Option pricing

Options are financial instruments whose value derives from the value of
the underlying asset. Their price depends on various factors, including the
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current price of the underlying asset (stock price), the time remaining until
the expiration date, the price volatility of the asset and the strike price.
The way these drivers affect the price of an option is determined using
option pricing models. The most important are the Black-Scholes and the
Binomial model. Options can be priced with these models or with Monte-
Carlo techniques. Option pricing and especially the Black-Scholes model is
the main issue addressed by the current thesis. General information about
the other methods are given below in order to get an intuition about all
Option pricing methods available.

1.3.1 The Black-Scholes model

It was introduced by Fischer Black and Myron Scholes in 1973 [1] (a primi-
tive version is attributed to [2]) and is founded on the following assumptions:

• The asset price follows a lognormal random walk (geometric Brownian
motion) or equivalently the return (change of price) of the asset under-
lying the option is modelled as a Wiener process. The return consists
of two components, a deterministic called drift and a random with
constant volatility. The former quantifies the tendency of the prices
to get higher and the latter represents the unexpected change of the
asset price in the course of time. The random component is Markovian
implying that all history of changes is contained in the current asset
price and price is adapted instantaneously to new market conditions
(efficient-market hypothesis) [3].

• There are no arbitrage opportunities, that is to say no opportunities to
make instantaneous risk-free profit. To gain intuition on this assump-
tion consider an option and an underlying asset whose values depend
on the same source of uncertainty. We can form a portfolio consisting
of the asset and the option which eliminates this source of uncertainty
(in other words it becomes ”riskless”). The Black-Scholes model de-
termines a fair price for the option so that this portfolio does not yield
any profit (risk-free profit).

Other conditions include the divisibility of the asset and the absence of
transaction costs and dividents payment by the underlying asset. The Black-
Scholes model considers that the value V of an option is a function of the
time t and the asset price S (V = f(S, t)) that satisfies a second order partial
differential equation known as the Black-Scholes formula. This equation can
be solved analytically or approximated with numerical methods. Details on
its solution are presented in the following chapters.
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The main advantage of the Black-Scholes model is its speed. It allows the
calculation of option prices quicker than the Binomial model. Its main lim-
itation on the other hand is that it cannot provide a closed form expression
for the price of American style and exotic options.

1.3.2 The Binomial model

It was introduced by Cox, Ross and Rubinstein in 1979 [4] and belongs
to the family of Lattice methods. In essence it is a numerical technique
for pricing options that calculates a tree of possible option values as time
progresses. The time to expiry date is divided in discrete time intervals. At
each time step it is assumed that the stock price shall increase or decrease
with some certain probability. This procedure produces a binomial tree
of stock values, upon which the corresponding option values are calculated
afterwards starting from the expiry date and moving backwards. The value
of the option is the one corresponding to the root of the binomial tree of
stock prices.

The binomial model is based upon the assumption of risk neutrality as
the Black-Scholes model and the modelling of the movement of the stock
price as discrete random walk. Its main advantage over the Black-Scholes
model is that it can be used to accurately price American options and handle
complex conditions, albeit it is far slower.

1.3.3 Monte Carlo methods

Monte Carlo option pricing Considers that the price of the asset underlying
the option follows geometric Brownian motion as the Black Scholes and
binomial model. A simplified approach of Monte Carlo methods generates
large numbers of random paths for the underlying asset price. Afterwards
it calculates the price of the option over them as the exercise price of the
option at that moment (equal to the payoff function of the option). The
option price is calculated as the average of these prices and discounted to the
present moment at risk-free interest rate, as the initial prices were calculated
for the expiry date of the option.

The accuracy of Monte-Carlo methods depends on the number of gener-
ated asset price paths. When other sources of uncertainty exist apart from
the asset price, they must be modelled as random processes and new paths
must be generated for them for each path of the asset price. Thus Monte-
Carlo methods are vary adaptive to options or other derivatives with various
sources of uncertainty.
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Chapter 2

Option Pricing with the
Black-Scholes model

2.1 The Black-Scholes equation

The Black-Scholes model is summarized in the following equation:

rV =
∂V

∂t
+ rS

∂V

∂S
+

1
2
σ2S2∂

2V

∂S2
(2.1)

where:

S : Stock price (0 ≤ S <∞).

r : Risk-free rate of interest. It represents the theoretical rate of return
of a risk-free investment such as government bonds over a period of
time.

σ : Volatility of the stock. It quantifies the option price fluctuation
till the expiry date.

t : Time interval after the signing of the option (0 ≤ t ≤ T , T: expiry
date). T − t is the time remaining until the expiration date.

Parameters r and σ are considered constant until the expiry date T of the
option. Equation 2.1 is a second order partial differential equation that is
produced upon the assumptions mentioned in the previous chapter. The
way it is produced exceeds the purposes of the current thesis and thus it is
omitted.

2.2 General boundary conditions

The solution of the Black-Scholes equation is a boundary value problem, that
is to say a possible solution must satisfy certain constraints called boundary
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conditions along with the partial differential equation itself. The boundary
conditions describe the behavior of the solution on the boundaries of the
independent variables domain. These boundary conditions for the case of
European call options and their real-world interpretations are given below:

• V (0, t) = 0

The value of an option over zero price asset is zero.

• V (S, T ) = max(S −K, 0)

The value of a call option on the expiry date is equal to the profit
made by the holder if he exercises the option (buys the underlying
asset) - this profit is equal to the price of the asset S minus the strike
price K and constitutes the payoff function of the option. This condi-
tion is referred to as terminal condition as it concerns the expiry date
of the option [3].

• V (S, t) = S −Ke−r(T−t), S →∞

When S tends to infinity, the value of the option is the asset price
minus the exercise price discounted by the risk-free interest rate (in-
terest rate of a risk-free investment such as depositing the same amount
of money K to a bank account) [5]. A simpler condition argues that
V (S, t) = S, S →∞ as the influence of the strike price K on the option
value diminishes when S →∞.

The above conditions concern the value of the solution at the boundaries of
the domain and are known as Dirichlet conditions. Conditions that concern
the value of the derivative of the solution on the boundaries are known as
Von Neumann conditions and for the case of European call options are given
below:

• ∂2V/∂S2 = 0, S →∞

This condition comes from the Dirichlet conditions V (S, t) = S and
more precisely V (S, t) = S − e−r(T−t) when S → ∞ (it is equivalent
to ∂V/∂S = 1, S →∞) [6], [7].

• ∂V/∂S = 0, S = 0

Equivalent to the Dirichlet condition V (0, t) = 0.
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2.3 Conversion to the heat diffusion equation

The Black-Scholes equation can be converted to a simpler form known as
the heat diffusion equation:

∂u

∂τ
=
∂2u

∂x2
(2.2)

The above partial differential equation is used to model the spread of heat
in a single dimension (x) inside a medium over time (τ). It is simpler than
the Black-Scholes equation in the sense that the coefficients of the partial
derivatives are constant resulting in more convenient numerical approxima-
tions. In order to transform the Black-Scholes PDE to the heat diffusion
equation we make the following transformation of variables:

S = K · ex

t = T − τ/1
2
· σ2

V (S, t) = K · e−
1
2
(k−1)x− 1

4
(k+1)2τu(x, τ)

with k = r/1
2σ

2

Applying the above transformations, the BS equation is transformed to equa-
tion 2.2 with −∞ < x < +∞ and 0 ≤ τ ≤ σ2T/2. The new Dirichlet
boundary conditions shall be:

u(x, 0) = max(e
1
2
(k+1)x − e

1
2
(k−1)x, 0)

u(x, τ) = 0, x→ −∞

u(x, τ) = (ex − er·τ/
1
2
σ2

) · e
1
2
(k−1)x+ 1

4
(k+1)2τ , x→∞

The above conditions derive from the Dirichlet conditions of the Black Sc-
holes equation after making the transformations that lead to the heat diffu-
sion equation.

2.4 Analytical solution

The Black-Scholes equation can be solved analytically only for European
call and put options. When it comes to American or other exotic options
there is no analytical solution and the option price can only be approximated
with numerical methods. The current section provides a brief description of
the analytical solution meant only for comparison with the finite-difference
family of methods that is described afterwards.
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The analytical solution of the Black-Scholes equation that calculates the
value of a European call option has the following form:

C(S, t) = S ·N(d1)−K · e−r(T−t) ·N(d2)

with

d1 =
ln( SK ) + (r + σ2

2 )(T − t)
σ
√
T − t

d2 = d1 − σ
√
T − t

N(x) is the cumulative distribution function of a standard normal random
variable x. For the case of the European put option the analytical solution
takes the following form:

P (S, t) = K · e−r(T−t) ·N(−d2)− S ·N(−d1)

The above closed form solution require complex computations involving
logarithms and exponentials. Despite the fact that they can be implemented
in software in a straightforward way, designing a reconfigurable system to
implement these solutions is impractical not only in terms of complexity but
also because only European put and call options will be handled.

2.5 Numerical solution

The most important class of methods for the numerical solution of the Black-
Scholes equation is finite differences. There also exist other more sophisti-
cated techniques such as the radial basis functions approximation [8] and
finite elements [9] which are more complicated and are more suitable for
software implementation over generic architectures. The next chapter is
dedicated to the finite-difference methods implemented on the reconfigurable
architecture proposed by the current thesis.
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Chapter 3

Finite differences

3.1 Introduction

Finite difference methods are numerical techniques for approximating the
solution of partial differential equations. They are very flexible as they can
approximate the solution of partial differential equations that cannot be
solved analytically and thus price virtually every financial derivative instru-
ment whose value can be described by such an equation. The basic ideas
behind this class of methods are:

• The independent variables found in the partial differential equation
(PDE) are discretized. The discretization process generates a grid of
points each one of which corresponds to a unique combination of values
of the indepenent variables. After the discretization of the continuous
space of the independent variables, the value of the function described
by the PDE is calculated over the points of the grid.

• The partial derivatives inside the PDE are approximated with finite
differences of the values of the function to be found over consecutive
points divided by the finite differential of the respective independent
variable.

The above concepts shall become more tactile to the reader during the
description of finite differences as applied to the Black-Scholes PDE for the
case of European call options.

3.2 Finite differences for the Black-Scholes equa-
tion

Finite differences were first applied to option pricing by Brennan and Schwartz
[10]. This section describes the basic principles of these methods as applied
to the European call options pricing with the Black-Scholes model.
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The independent variables of the Black-Scholes equation are the stock
price S and the time t that has elapsed after the option was signed. These
two variables form a 2-D space, over which the function that describes the
option price V (S, t) forms a three dimensional curve. Instead of looking for
a closed form expression for the function V (S, t), finite-difference methods
approximate its value over discrete points of this space that form a grid.

3.2.1 Grid definition

The time t takes values in the domain [0, T ] - time is zero at the moment
when the option contract is signed and reaches T at the expiry date of
the option. We shall substitute t with τ = T − t, 0 ≤ τ < T in order to
transform the terminal condition V (S, t) = max(S − K, 0), t = T to the
initial condition V (S, τ) = max(S − K, 0), τ = 0. The necessity of this
substitution shall be clarified during the description of the finite-difference
schemes. The Black-Scholes PDE after this transformation shall be:

rV = −∂V
∂τ

+ rS
∂V

∂S
+

1
2
σ2S2∂

2V

∂S2
(3.1)

The asset price S takes values from the domain [0,∞] as an asset can
have zero or positive price. In order to set a finite number of discrete points
in the dimension of asset price we must make the hypothesis that the asset
price takes a finite maximum value Smax.

Apart from the selection of an upper boundary value for S, another issue
that arises is the degree of granulation of the grid, or in other words how
many points should the grid include. These issues are addressed in different
ways depending on the type of finite-difference method used. For now we
shall consider that the space (S, τ) shall be divided in Nτ points in the time
dimension and NS points in the S dimension. The grid shall also be bounded
to the domain [0, Smax] for S and [0, T ] for τ .

Another issue to be addressed before the grid is thoroughly defined is
whether the points shall have constant distance from each other or shall
be positioned using some special pattern. Sophisticated grid patterns can
increase accuracy and minimize the number of grid points for given accu-
racy goals, whereas a grid with its points placed at fixed distances (uniform
mesh) has the advantage of algorithmic simplicity. As the proposed option
pricing system shall be implemented on reconfigurable hardware simplicity
was considered vital and the linear grid was selected.

For a uniform mesh of size NS × Nτ and amplitude [0, T ] for τ and
[0, Smax] for S the distance dS between two consecutive points shall be
dS = Smax/NS in the S direction and dτ = T/Nτ in the τ direction (See
also Fig. 3.1). The value of the function calculated over the point (Si, τj)
shall be denoted as Vi,j and shall approximate the real value of the function
at this point: Vi,j ≈ V (Si, tj).
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𝑑𝑆 = 𝑆𝑚𝑎𝑥 /𝑁𝑆 

𝑑𝜏 = 𝑇/𝑁𝑇 

𝑉 𝑆𝑖 , 𝜏𝑗  
𝑆𝑖 = 𝑖𝑑𝑆 

𝑆𝑚𝑎𝑥  

𝑆 

𝜏 𝑇 𝜏𝑗 = 𝑗𝑑𝜏 0 𝑇 

Figure 3.1: Finite grid over the independent variables space (S, τ) of the
Black Scholes PDE.

The Black-Scholes equation over the discrete space shall have the follow-
ing form:

rVi,j = −∂V
∂τ

+ rSi
∂V

∂S
+

1
2
σ2S2

i

∂2V

∂S2
(3.2)

The next step after defining the grid is to approximate the partial deriva-
tives found in the PDE. The way they are approximated as finite difference
quotients leads different algorithms of approximation. If we consider a func-
tion f over a point x and a small positive amount h there are three types of
finite differences:

• Forward difference: ∆f = f(x+ h)− f(x)

• Backward difference: ∆f = f(x)− f(x− h)

• Central difference: ∆f = f(x+ h)− f(x− h)

There are three main finite-difference methods (schemes): the explicit,
the implicit, and the Crank-Nicholson which make different use of the above
types of finite differences to approximate the partial derivatives of the PDE
to be solved.

3.2.2 Boundary conditions

The general boundary conditions for the Black-Scholes equation defined in
the previous chapter must be mapped onto the finite grid used by the finite
differences. These conditions describe the behavior of the discretized Black-
Scholes equation over the borders of the grid. The Dirichlet conditions for
the discretized Black-Scholes equation are the following:

• Vi,0 = max(Si −K, 0)
It constitutes the initial condition and is equal to the value at the
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𝑉0,𝑗 = 𝑆𝑚𝑎𝑥 −𝐾𝑒−𝑟𝑗𝑑𝜏  ,  
𝜕𝑉

𝜕𝑆
= 1 

𝑉0,𝑗 = 0  ,  
𝜕𝑉

𝜕𝑆
= 0 

𝑉 𝑖
,0
=
m
ax
(
𝑆 𝑖
−
𝐾
,0
) 

𝑆𝑚𝑎𝑥  

𝑆 

𝜏 0 
𝑇 

Figure 3.2: Boundary conditions on the borders of the finite grid.

expiry date (τ = 0) is the payoff function of the call option. This
is the terminal condition of the conntinuous Black-Scholes equation
described in paragraph 2.2.

• VNS ,j = Smax −Ke−rjdτ
This condition determines the value of the option for the upper bound
of S and maps the asymptotical option price for S → ∞ of the con-
tinuous space (paragraph 2.2) to the finite grid. A simpler but less
accurate boundary condition is VNS ,j) = Smax.

• V0,j = 0
This is the lower boundary condition for S = 0. The intuition behind
it is that for a zero asset price the call option shall definitely not be
executed (it is ”out of the money” in economic jargon), thus its price
is zero!

The Von Neumann conditions (paragraph 2.2) that determine the value
of the derivative of V on the boundaries have the same form but correspond
to the finite boundaries [0, Smax] (see also fig. 3.2).

3.2.3 Selection of the best-fitting boundary conditions

The implemented finite-difference methods make use of the Von Neumann
conditions. This is done because no extra values have to be calculated for
the boundaries. The Dirichlet conditions for Smax derive from a complex
formula and implementing it on reconfigurable hardware is a problem of its
own. A way to use these conditions is pre-calculating them on the host
computer and sending them to the FPGA option pricer. Nevertheless this
choice comes with an increased IO delay toll. Von Neumann conditions on
the other hand are equivalent with Dirichlet ones as they are produced by
them and can be subtly incorporated to the implemented method.

13



3.2.4 Explicit scheme

Introduction

The Explicit scheme uses a forward difference quotient to approximate the
time derivative:

∂V

∂τ

∣∣∣∣
S=Si,τ=τj

≈ Vi,j+1 − Vi,j
dτ

(3.3)

It also uses central difference for both the first and second order deriva-
tives in the asset price direction:

∂V

∂S

∣∣∣∣
S=Si,τ=τj

≈ Vi+1,j − Vi−1,j

2dS
(3.4)

∂2V

∂S2

∣∣∣∣
S=Si,τ=τj

≈ Vi+1,j + Vi−1,j − 2Vi,j
dS2

(3.5)

Analysis

The explicit scheme calculates the option values Vi,j+1 of the j + 1-th time
moment(next time step) over all the internal (not boundary) values of the
asset price (0 < i < NS) using the option values of the current time step
Vi,j 3.3. The option values for the first time step (j = 0) are known from
the initial condition Vi,0 = max(Si −K, 0).

Substituting equations (3.3) and (3.4) to the discretized Black-Scholes
equation (eq. 3.2) we reach the following equation:

rVi,j =− Vi,j+1 − Vi,j
dτ

+ rSi
Vi+1,j − Vi−1,j

2dS

+
1
2
σ2S2

i

Vi+1,j + Vi−1,j − 2Vi,j
dS2

(3.6)

and after executing the computations one reaches the following formula that
calculates Vi,j+1 using the known Vi−1,j , Vi,j , Vi+1,j :

Vi,j+1 = ai · Vi−1,j + bi · Vi,j + ci · Vi+1,j (3.7)

The parameters ai, bi, ci for i < 0 < NS remain constant in the course of
time and have the following values:

ai = −1
2
ridτ +

1
2
σ2i2dτ

bi = 1− rdτ − σ2i2dτ

ci =
1
2
ridτ +

1
2
σ2i2dτ

14
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Figure 3.3: Explicit scheme: flow of option value calculations over the grid.

The parameters ai, bi, ci on the boundaries i = 0, i = NS shall be calculated
using the Von Neumann conditions. For the upper boundary (i = NS) we
have the condition:

∂V

∂S

∣∣∣∣
S=Smax

= 1 (3.8)

∂2V

∂S2

∣∣∣∣
S=Smax

= 0 (3.9)

For the lower boundary the following conditions hold:

∂V

∂S

∣∣∣∣
S=0

= 0 (3.10)

∂2V

∂S2

∣∣∣∣
S=0

= 0 (3.11)

Substituting the central difference 3.5 that approximates the second order
derivative to the condition 3.9 we take:

rVNS+1,j = 2VNS ,j − 2VNS−1,j (3.12)

For the lower boundary we substitute 3.5 to equation 3.11 to acquire:

rV−1,j = 2V0,j − 2V1,j (3.13)

Consider the explicit formula (3.7) over the boundaries (i = 0, NS). We
replace the option values VNS+1,j , and V−1,j that appear in the upper and
lower boundary expressions respectively from equations 3.12 and 3.13. The
final form for the upper boundary shall be:

V NS , j + 1 = aNS
· V NS − 1, j + bNS

· V NS , j (3.14)

with:

aNS
= −rNSdτ

bNS
= 1− rdτ + rNSdτ

15



For the lower boundary we shall have:

V0,j+1 = b0 · V0,j + c0 · V1,j (3.15)

with:

b0 = 1− rdτ
c0 = 0

Reaching equations 3.14 and 3.15 we managed to eliminate the influence
of VNS+1,j and V−1,j in the calculation of VNS ,j+1 and V0,j+1 respectively.

Remarks

We have presented an explicit finite difference scheme implementation us-
ing the Von Neumann conditions in order to simplify the calculations on the
boundaries. The explicit scheme is first order accurate in the time dimension.
This happens because the time derivative is approximated with a forward
finite difference that produces a local truncation (discretization) error of or-
der O(dτ). It is also second order accurate in the asset price direction as the
central differences used generate a truncation error of order O(dS2) Despite
its simplicity compared to other schemes it is not always stable - small errors
in the approximations used grow bigger over time. The necessary condition
for stability is that the coefficients ai, bi, ci must be non-negative for all is
[10]. It can be proven that (dτ/d2

S) ≈ 1 in order that bi > 0. This condition
says that the time steps should be equal to the square of the asset price
points.

The explicit scheme applied to the heat diffusion equation

The Black-Scholes equation can be transformed to the heat diffusion equa-
tion 2.2 as mentioned in the previous chapter. The explicit scheme can be
applied on this equation in a simpler way as the heat diffusion equation has
constant coefficients.

The quantity u(x, τ) instead of V (S, t) is approximated with:

x = ln(S/K)

τ =
1
2
σ2(T − t)

∂u

∂τ
=
∂2u

∂x2

with k = 2r/σ2.
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It is approximated over the grid (xi, τj) with xi = idx, −Nx ≤ i ≤ Nx,
and τj = jdτ, 0 ≤ τ ≤ Nτ . The borders of the grid are [−X,X] (Nx =
2X/dx) and [0, σ2/2T ] (Nτ = σ2/2T/dτ).
Using a forward difference for ∂u/∂τ and a central difference for ∂2u/∂x2

we produce the following formula:

ui,j+1 = a · ui−1,j + (1− 2a) · ui,j + a · ui+1,j (3.16)

where: a = dτ/dx2

The boundary conditions are the following:

ui,0 = max(e
1
2
(k+1)xi − e

1
2
(k−1)xi , 0),

u−Nx,j = 0,

uNx,j = (eX − er·τ/
1
2
σ2

) · e
1
2
(k−1)X+ 1

4
(k+1)2τ

In order to acquire the corresponding V (S, t) values we have to make the
following transform:

V (S, t) = K · e−
1
2
(k−1)x− 1

4
(k+1)2τu(x, τ)

It is easily noticed that the explicit scheme applied to the heat diffusion
equation is far less complicated than that applied to the initial Black-Scholes
equation as the coefficients of the explicit formula (eq. 3.16) are constant.
This simplicity comes to the expense of the various transformations required.
The explicit scheme for the heat diffusion equation has been implemented
on the proposed FPGA architecture.

3.2.5 Implicit scheme

Introduction

The implicit scheme calculates three consecutive option values Vi−1,j , Vi,j ,
Vi+1,j for (0 < i < NS) (internal values of the asset prices) of the j-th time
step using the option value Vi,j−1 of the previous time step 3.4. The option
values for the first time step (j = 0) are known from the initial condition
Vi,0 = max(Si −K, 0) as in the case of the explicit scheme.

Analysis

The implicit scheme uses central differences for the first and second order
derivatives with respect to the asset price (eq. 3.4, 3.5) and a backward
difference in the time direction:

∂V

∂τ

∣∣∣∣
S=Si,τ=τj

≈ Vi,j − Vi,j−1

dτ
(3.17)
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Figure 3.4: Implicit scheme: flow of option value calculations over the grid.

The substitution of the partial derivatives of equations 3.4, 3.5 and 3.17
to the discretized Black-Scholes equation (eq. 3.2) produces the following
expression:

rVi,j =− Vi,j − Vi,j−1

dτ
+ rSi

Vi+1,j − Vi−1,j

2dS

+
1
2
σ2S2

i

Vi+1,j + Vi−1,j − 2Vi,j
dS2

(3.18)

Carrying out the computations we end up with the following formula:

ai · Vi−1,j + bi · Vi,j + ci · Vi+1,j = Vi,j−1 (3.19)

with:

ai =
1
2
ridτ − 1

2
σ2i2dτ

bi = 1 + rdτ − σ2i2dτ

ci = −1
2
ridτ − 1

2
σ2i2dτ

The parameters ai, bi, ci as computed above apply only to the calculation
of Vi,j for 0 < i < NS . In order to calculate the boundary option values V0,j ,
VNS ,j in each time step we use the Von Neumann conditions used previously
in the Explicit scheme. Considering the implicit formula 3.19 for the upper
boundary NS and substituting the quantity VNS+1,j from expression 3.12we
obtain:

aNS
· VNS−1,j + bNS

· Vi,j = Vi,j−1 (3.20)

with:

aNS
= rNSdτ

bNS
= 1 + rdτ + 3σ2N2

Sdτ
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In order to obtain the formula for the lower boundary we consider the im-
plicit formula 3.19 for the lower boundary (i = 0) and substitute the quantity
V−1,j from expression 3.13:

b0 · V0,j + c0 · V1,j = V0,j−1 (3.21)

with:

b0 = 1 + rdτ

c0 = 0

Equation 3.19 obtained for 0 < i < NS along with the boundary formulae
(eq. 3.20, 3.21) constitute a linear system of equations. The unknowns are
the option values of the current time step (Vi,j). The right hand side of the
system consists of the option values of the previous time step (Vi,j−1) which
are considered known. This system shall have the following form in matrix
notation:


b0 c0 0 · · · 0
a1 b1 c1 · · · 0
...

. . . . . . . . .
...

0 · · · aNS−1 bNS−1 cNS−1

0 · · · 0 aNS
bNS




V0,j

V1,j
...

VNS−1,j

VNS ,j

 =


V0,j−1

V1,j−1
...

VNS−1,j−1

VNS ,j−1



Remarks

The implicit scheme entails the solution of a series of tridiagonal systems
equal in number to the multitude of time steps . The solutions produced
by each system are used as the right hand side of the next to be solved.
The increased complexity compared to the explicit scheme compensates for
better stability. This scheme is unconditionally stable and as the explicit
one it is first order accurate in the time direction and second order accurate
in the asset price direction.

3.2.6 Crank-Nicholson scheme

Introduction

The Crank-Nicholson scheme can be perceived as the average of implicit
and explicit schemes. It uses a central differences for both the asset price
derivatives 3.4, 3.5 and the time derivative 3.3. The option value is also
approximated over the point (i, j + 1/2) as the average of the values at the
points (i, j + 1) and (i, j):
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V (Si, τj+1/2) =
Vi,j+1 − Vi,j

2
(3.22)

All the partial derivatives are centered at the point Si, τj+1/2 too:

∂V

∂τ

∣∣∣∣
S=Si,τ=τj+1/2

=
Vi+1 − Vi

dτ

∂V

S

∣∣∣∣
S=Si,τ=τj+1/2

=
Vi+1,j+1 + Vi+1,j − Vi−1,j+1 − Vi−1,j

4dS

∂2V

S2

∣∣∣∣
S=Si,τ=τj+1/2

=
Vi+1,j+1 + Vi+1,j + Vi−1,j+1 + Vi−1,j − 2Vi,j+1 − 2Vi,j

2dS2

Analysis

Using the approximations mentioned above for the partial derivatives and
the option values, the discretized Black-Scholes equation takes the following
form:

r
Vi,j+1 + Vi,j

2
=− Vi,j+1 − Vi,j

dτ
+ rSi

Vi+1,j+1 + Vi+1,j − Vi−1,j+1 − Vi−1,j

4dS

+
1
2
σ2S2

i

Vi+1,j+1 + Vi+1,j + Vi−1,j+1 + Vi−1,j − 2Vi,j+1 − 2Vi,j
2dS2

(3.23)

Another way to come up with the above expression is to average the
explicit formula (eq. 3.6) and implicit one (eq. 3.18) replacing the time step
index j with j+ 1 in the latter. After rearranging the option value terms in
equation 3.23 so that those of step j + 1 move to the left side and those of
step j go to the right, we obtain the following expression:

aiVi−1,j+1 + biVi,j+1 + ciVi+1,j+1 = d0,iVi−1,j + d1,iVi,j + d2,iVi+1,j (3.24)

with:

ai =
ridτ

2
− 1

2
σ2i2dτ,

bi = 2 + rdτ + σ2i2dτ,

ci = −ridτ
2
− 1

2
σ2i2dτ,

d0,i = −ai,
d1,i = 2− rdτ − σ2i2dτ,

d2,i = −ci,
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Figure 3.5: Crank-Nicholson: flow of option value calculations over the grid.

Equation 3.24 associates the unknown values of time step j+1 with those
of time step j that are known. The way the option values are interwined
can also be visualized in figure 3.5.

The above expressions for the parameters ai, bi, ci, d0, i, d1, i, d2, i are
valid over non-boundary asset prices (0 ¡ i ¡ NS). As for the boundaries,
we shall resort once again to the Von Neumann conditions. For the case
of the upper boundary we consider the Crank-Nicholson formula 3.24 for
i = NS and substitute the values VNS+1,j+1 and VNS+1,j that show up
from expression 3.12 obtained for j + 1 and j respectively. After executing
the necessary computations to the derived formula we reach the following
equation:

aNS
· VNS−1,j+1 + bNS

· VNS ,j+1 = d0,NS
· VNS−1,j + d1,NS

· VNS ,j (3.25)

with:

aNS
= rNSdτ,

bNS
= 2 + rdτ − rNSdτ,

d0,NS
= −aNS

,

d1,NS
= 2− rdτ + rNSdτ

We obtain the lower bound formula in similar way:

b0 · V0,j+1 + c0 · V1,j+1 = d1,0 · V0,j + d2,0 · V1,j (3.26)

with:

b0 = 2 + rdτ

c0 = 0,
d1,0 = 2− rdτ,
d2,0 = 0
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A linear tridiagonal system is produced by equation 3.24 for 0 < i < NS

along with the boundary formulae 3.25 and 3.26 with unknowns the option
values of time step j + 1 using those of the j-th time step:


b0 c0 0 · · · 0
a1 b1 c1 · · · 0
...

. . . . . . . . .
...

0 · · · aNS−1 bNS−1 cNS−1

0 · · · 0 aNS
bNS




V0,j+1

V1,j+1
...

VNS−1,j+1

VNS ,j+1

 =


e0,j
e1,j

...
eNS−1,j

eNS ,j



with:
e0,j
e1,j

...
eNS−1,j

eNS ,j

 =


d1,0V0,j + d2,0V1,j

d0,1V0,j + d1,1V1,j + d2,1V2,j
...

d0,NS−1VNS−2,j + d1,NS−1VNS−1,j + d2,NS−1VNS ,j

d0,NS
VNS−1,j + d1,NS

VNS ,j



Remarks

The Crank-Nicholson scheme requires the solution of a tridiagonal system
in each time step and the update of the right hand side with the new val-
ues for ei, 0 < i < NS . Therefore it is the most computationally intensive
of the three schemes. Nevertheless the use of central differences for the
approximation of the time derivatives permits 2nd order accuracy with re-
spect to time. In the asset price direction the accuracy remains quadratic
[11]. Moreover it is unconditionally stable. The Crank-Nicholson scheme is
the last of the three finite difference methods implemented on the proposed
FPGA architecture.

3.2.7 Parallelization of finite-difference schemes

Finite-differences schemes calculate the values of the unknown function over
a grid of points. Its value on a given time step depends on values over the
neighboring points of the previous step in the case of the explicit scheme
(see fig. 3.3). For the implicit and Crank-Nicholson schemes the dependency
is extended to neighboring points of the current time step (see fig. 3.4,
3.5). This locality of data dependencies allows for large scale parallelization.
Ideally if a processing unit (core) is available for the calculation of a function
value over a single point in the asset price direction, all the values of the
same time step could be calculated simultaneously (at least in the case of
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Figure 3.6: Allocation of grid points over the cores of a conceptual parallel
architecture.

explicit finite differences). Given a parallel architecture with a fixed number
of cores, if an equal number of grid points is allocated to each one of them,
the process can be accelerated by a factor equal to the number of processors.
The way the grid is partitioned can be seen in figure 3.6. It should be
noted that accelerating the implicit and Crank-Nicholson scheme requires a
parallelized way for solving the underlying system of equations. This is the
subject of the next chapter.
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Chapter 4

Solving Tridiagonal systems

The implicit and explicit schemes require the solution of a linear tridiagonal
system in each time step. Such systems can be solved directly with more
efficient algorithms than those used for general form linear systems such
as Gaussian Elimination [12]. Two of these methods shall be presented in
the current chapter. The first one is the LU-decomposition for tridiagonal
systems and the other is the cyclic odd-even reduction.

4.1 LU-Decomposition

The idea behind LU-decomposition is to factorize the matrix M of a tridi-
agonal linear system Mx = e in two matrices L, U (M = LU), the first
lower triangular and the last upper triangular, and solve the pair of matrix
equations Lz = e and Ux = z afterwards.

Consider a tridiagonal linear system of size N that has the following
form:


b0 c0 0 · · · 0
a1 b1 c1 · · · 0
...

. . . . . . . . .
...

0 · · · aN−2 bN−2 cN−2

0 · · · 0 aN−1 bN−1


︸ ︷︷ ︸

M


x0

x1
...

xN−2

xN−1


︸ ︷︷ ︸

x

=


e0
e1
...

eN−2

eN−1


︸ ︷︷ ︸

e

(4.1)

The first phase of LU-Decomposition is the factorization of M in the
matrices L, U which is called decomposition or reduction. The second phase
is finding the solution of the equation Lz = b with forward substitution. The
last phase includes the solution of Ux = z with backward substitution (see
also algorithm 1).
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b0 c0 0 · · · 0
a1 b1 c1 · · · 0
...

. . . . . . . . .
...

0 · · · aN−2 bN−2 cN−2

0 · · · 0 aN−1 bN−1


︸ ︷︷ ︸

M

=


1 0 · · · 0
a′1 1 · · · 0
...

. . . . . .
...

0 · · · a′N−1 1


︸ ︷︷ ︸

L

·


b′0 c0 · · · 0
...

. . . . . .
...

0 · · · b′N−2 cN−2

0 · · · 0 b′N−1


︸ ︷︷ ︸

U

Algorithm 1 LU-Decomposition
b′0 = b0
e′0 = e0
for i = 1 to N − 2 do
{Decomposition}
a′i = ai/b

′
i−1

b′i = bi − a′i · ci−1

{Forward substitution}
zi = ei − a′i · zi−1

end for
{Backward substitution}
xN−1 = eN−1/b

′
N−1

for i = N-2 to 0 do
xi = (zi − ci · xi+1)/b′i

end for

The time complexity of the tridiagonal LU-decomposition is linear with
respect to the system size. It does not require complex computations, never-
theless it cannot be fully parallelized without extensive modifications [13] as
data dependencies exist in each loop iteration of the decomposition/forward
substitution phase and during the backward substitution too. Moreover
these two phases cannot be executed in parallel (see algorithm 1). Only
the last two operations within the same loop iteration of the decomposi-
tion/forward substitution phase can be parallelized. This parallelization
cannot escalate on massively parallel systems whatsoever.

4.2 Cyclic Odd-Even Reduction

Cyclic reduction is a family of methods for solving tridiagonal systems in-
vented by G.H. Golub and R. W. Hockney in mid 1960’s. The basic idea be-
hind these methods is to apply a transformation on a set of linear equations
that results in two (or more) sets of linear equations which are independent
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of each other. In other words the initial linear system is decoupled in a
number of linear systems that can be solved independently.

Odd-even reduction is a type of cyclic reduction that eliminates recur-
sively half of the unknowns (the odd-indexed ones) and produces a new
system with half size (consisting of the even-indexed ones) till reaching a
unit size system which can be solved trivially. Starting from the calculated
unknown of the unit size system and going backwards, the eliminated odd-
indexed unknowns of each step are retrieved using the already calculated
even-indexed ones.

The process of eliminating the odd-indexed unknowns is called forward
elimination. As the size of the system reduces to half in each step, the total
number of steps till reaching a unit size system is dlogNe. Consider the
following tridiagonal system at the beginning of the algorithm (the first of
the two indices of each coefficient which is zero denotes that the system
refers to the initial step):


b0,0 c0,0 0 · · · 0
a0,1 b0,1 c0,1 · · · 0

...
. . . . . . . . .

...
0 · · · a0,N−2 b0,N−2 c0,N−2

0 · · · 0 a0,N−1 b0,N−1




x0

x1
...

xN−2

xN−1

 =


e0,0
e0,1

...
e0,N−2

e0,N−1


In the k-th step the initial system shall be reduced to the following

system of size Nk = dN/2ke:


bk,0 ck,0 0 · · · 0
ak,1 bk,1 ck,1 · · · 0

...
. . . . . . . . .

...
0 · · · ak,Nk−2 bk,Nk−2 ck,Nk−2

0 · · · 0 ak,Nk−1 bk,Nk−1




x0

x2k

...
x(N−2)/2k

x(N−1)/2k

 =


ek,0
ek,1

...
ek,Nk−2

ek,Nk−1


By the completion of dlogNe steps, the system is reduced to a single

equation with one unknown variable: x0. After calculating x0, the other
unknowns are calculated with back substitution of the already calculated
ones to the linear systems produced during forward elimination. Having
calculated xi·2k , with i = 0, . . . , Nk − 1 where k is the current algorithm
step, xi·2k with i = 1, 3, . . . , Nk−1 are calculated. This process can be vi-
sualized in figure 4.1 for N = 8, where pk = (ak, bk, ck, ek) is the matrix
of all the coefficients and the right hand side of the system of k-th step.
Notice the order in which the unknowns are calculated during the backward
substitution.

Two approaches of odd-even reduction are described in the following sec-
tions. The first one is the original version and the second is a new variant
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Figure 4.1: Cyclic odd-even reduction applied on a system of size N = 8 -
Flow of computations.

- the one chosen for implementation on the proposed reconfigurable archi-
tecture. The implemented variant is based on the hypothesis that the main
diagonal of the initial system is unit and applies a slightly modified for-
ward elimination in order to produce systems with unit main diagonal too.
These two approaches are presented in the following sections followed by a
comparison of their performance.

4.2.1 Traditional odd-even reduction

The traditional odd-even reduction eliminates the odd-indexed unknowns
of each step and produces the coefficients of the new half-size system by
adding the even-indexed i-th equation with multiples of the odd-indexed
i − 1, i + 1 ones using the formulae described in algorithm 1. The out-of-
bounds coefficients of the first and last iteration are considered zero: a−1 =
c−1 = e−1 = 0.0, aNk

= cNk
= eNk

= 0.0

Algorithm 2 Forward Phase of traditional Odd-Even Reduction
for i = 0 to Nk − 1 do

ak+1,i/2 = −ak,i−1ak,ibk,i+1

bk+1,i/2 = bk,i−1bk,ibk,i+1 − ck,i−1ak,ibk,i+1−
bk,i−1ck,iak,i+1

ck+1,i/2 = −bk,i−1ck,ick,i+1

ek+1,i/2 = bk,i−1ek,ibk,i+1 − ek,i−1ak,ibk,i+1−
bk,i−1ck,iek,i+1

i+ = 2
end for

The back-substitution phase of the algorithm, during which the un-
knowns are calculated is described in algorithm 3.

It can be easily observed that fine grained parallelism can be achieved for
both phases of the odd-even reduction as loop iterations are not data depen-
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Algorithm 3 Backward Phase of traditional Odd-Even Reduction
for i = 1 to Nk − 1 do
xi2k = (ek,i − ak,ix(i−1)2k − ck,ix(i+1)2k)/bk,i
i+ = 2

end for

dent. Odd-even reduction requires more operations than LU-decomposition
but its performance can be leveraged with the use multiple processing units.

Despite its parallelization capabilities, odd-even reduction has a major
valnerability. The products of the formula for the calculation of bk+1,i in-
crease excessively with k and for a given finite computer arithmetic precision
it is possible that they can not be represented. In order to address this issue
we implemented a variant of this method that normalizes the main diagonal
in each step avoiding the excessive growth of the coefficients [14].

4.2.2 The new odd-even reduction variant

This variant requires that the initial system has unit main diagonal. This
prerequisite does not limit the generality of this approach as the main di-
agonal of a general form tridiagonal system can be normalized by dividing
both sides of each equation with the corresponding main diagonal element,
producing an equivalent system with the desirable property. The main di-
agonal of the half-size systems produced during forward elimination is kept
unit applying slightly different operations. This strategy ensures that the
produced coefficients do not grow excessively as in the case of traditional
odd-even reduction.

The forward phase is summarized in algorithm 4. It is derived from
algorithm 2 by substituting b0,i = 1 initially (as we made the hypothesis
that the initial system has unit main diagonal. Dividing all the produced
coefficients with the quantity 1−c0,i−1a0,i−c0,ia0,i+1 afterwards we normalize
the produced main diagonal (b1,i/2 = 1). At step k the new coefficients are
produced in the same way knowing in advance that bk−1,i = 1.

Algorithm 4 Forward elimination of the implemented Odd-Even Reduction
variant

for i = 0 to Nk − 1 do
temp = 1.0/(1− ck,i−1ak,i − ck,iak,i+1)
ak+1,i/2 = −temp · (ak,i−1ak,i)
ck+1,i/2 = −temp · (ck,ick,i+1)
ek+1,i/2 = temp · (ek,i − ek,i−1ak,i − ck,iek,i+1)
i+ = 2

end for

The back substitution phase of the implemented variant (alg. 5) is de-
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rived from the original back substitution (alg. 3) by substituting bk,i with
unity, with x0 = edlogNe,0 initially.

Algorithm 5 Back substitution of the implemented Odd-Even Reduction
variant

for i = 1 to Nk − 1 do
xi2k = ek,i − ak,ix(i−1)2k − ck,ix(i+1)2k

i+ = 2
end for

4.2.3 Comparison of tridiagonal system solution algorithms

All the algorithms described above have linear execution time with respect
to the system size. The loops of the forward and backward phase of LU-
decomposition are executed N − 1 times each in total(see alg.1). So do the
respective loops of the two variants of odd-even reduction. The number
of operations inside these loops is illustrative of the relative speed of each
method. This information is shown in table 4.1.

Table 4.1: Number of operations of a single Step for each method
Forward step Backward step

Operation type #mul #add/ #div #mul #add/ #div
#sub #sub

LU 2 2 1 1 1 1
decomposition

Traditional 16 4 0 2 2 1
odd-even Red.
Implemented 9 4 1 2 2 0

odd-even Red.

The implemented odd-even reduction variant requires less operations
than the original, eliminating at the same time its main weakness of produc-
ing quantities that may exceed the finite machine precision. Though slower
in terms of total number of operations compared to LU-decomposition, it is
more suitable for parallel architectures. Given such a multicore architecture,
odd-even reduction can be almost fully parallelized by allocating a part of
the initial system to each core (see also fig. 4.2).

As for memory requirements, LU decomposition is the most thrifty of the
three, requiring space only for the three main diagonals and the right hand
side. Odd-even reduction is recursive requiring double the necessary space of
LU-decomposition in order to store the coefficients of the produced systems
without overwriting the initial ones. The implemented odd-even reduction
variant does not require the storage of the main diagonal, as it implies that it
remains unit throughout the algorithm. At this point it should be mentioned
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Figure 4.2: Cyclic odd-even reduction applied on a system of size N = 8 -
Flow of computations.

that odd-even reduction as implemented in the proposed architecture cannot
handle systems whose size is not a power of two. The same must apply to
the number of cores of the architecture.

Despite the fact that no stability issues have arisen during the application
of the above mentioned methods to Black-Scholes option pricing, it should
be mentioned that LU-decomposition is of equivalent stability with Gaussian
elimination without pivoting [15]. The odd-even reduction is essentially a
special case of gaussian elimination were certain permutations are applied
to the initial system in order to eliminate the odd-indexed unknowns first,
thus it has equivalent stability with gaussian elimination on the permutated
systems [16].
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Chapter 5

Towards the proposed
reconfigurable architecture

The current chapter provides information about the evolution process of the
proposed reconfigurable system, detailing the necessities that dictated its
final form. A number of already existent approaches is described alongside.
At this point we have to take a retrospective view at the targeted problem
itself.

5.1 Retrospection on the attacked problem

The problem we focused on in its most abstract formulation is financial
option pricing. The mathematical tools available for its modelling are the
option pricing models(techniques) presented in chapter 2. The Black-Scholes
model is one of them and provides a rather compact way to describe the op-
tion pricing problem by means of an elegant differential equation. It reduces
the initial problem to the solution of a partial differential equation, a prob-
lem which is quite familiar to engineers, can be solved in many ways and
can describe a variety of real world problems. These observations consisted
strong motives for the selection of the Black-Scholes model instead of others
despite its ineffectiveness on pricing cutting-edge financial derivative prod-
ucts. The available methods for solving the partial differential equations
have their own strong points and weaknesses and the selection of the most
appropriate one is a problem of its own.

Given that the available platform for the implementation of the method
to be chosen would be an FPGA device, the initial selection was based on
three main drivers:

• Speed: The target of the proposed system is to price options at greater
speeds than software implementations on commodity CPUs. An inher-
ently fast algorithm implemented on software can outperform a slower
even efficiently implemented on an FPGA device.
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• Accuracy: It is crucial for financial computations to be accurate.

• Simplicity and regularity, in order to be implemented in a straightfor-
ward way on reconfigurable hardware.

• Ability to parallelize in order to be mapped efficiently on FPGAs and
achieve greater speeds than software implementations.

The numerical techniques for the approximation of the Black-Scholes
equation were favored instead of the analytical solution because they can be
applied to every partial derivative equation and they entail simple compu-
tations.

Among the available numerical techniques finite differences are the most
fundamental ones with scalable performance in terms of speed and accuracy.
The basic finite-difference schemes were presented in chapter 3, with the so-
called Crank-Nicholson outperforming the others in terms of stability and
speed of convergence. In order to capitalize on these advantages the initial
approach was to develop a reconfigurable system for the Crank-Nicholson
scheme. Before proceeding to the description of the initial approach we shall
refer to a couple of already existent ones.

5.2 Related work

Various approaches to the option pricing problem have been proposed in
algorithmic and implementation level. The most commonly implemented
methods are Monte-Carlo simulation and binomial pricing. The most preva-
lent platforms of high performance computing over which these methods are
implemented are FPGAs and GPUs (at least at academic level).

5.2.1 Related work on high performance Option Pricing

Monte carlo option pricing is very popular due to its ability to parallelize and
adapt to various types of financial derivative products. Two FPGA-based
approaches of Monte-Carlo simulation are described in [17],[18]. with both
of them achieving great performance boost. In [19] Monte-Carlo simulation
was implemented over a hybrid supercomputer called Maxwell [20] consist-
ing of a 32 CPUs and 64 Virtex-4 Xilinx FPGAs achieving more than 100x
speedup. GPU implementations of Monte-Carlo Simulation option pricing
achieve performance gains of the same order of magnitude as FPGA-based
approaches. Two such approaches implemented over NVIDIA GPUs are de-
scribed in [21] and [22]. The performance gain is based on the simultaneous
production of multiple random paths of option prices.

The binomial model calculates one Option value at a time building a
binomial tree of asset prices. An implementation of binomial option pric-
ing implementation over FPGAs and GPUs is discussed in [23] achieving
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triple-digit accelation over mainstream CPUs. The speedup is achieved by
calculating option prices in parallel using multiple binomial trees.

High performance finite-difference approaches are not strictly focused
on option pricing such as the explicit scheme described in [24] for the wave
equation. An explicit scheme implementation for option pricing over FPGA
and GPU is described in [25]. The maximum achieved speedup of the FPGA
implementation is 12.2x while the GPU-based reaches 43.9x.

5.2.2 Motivation from other approaches

The plethora of Monte-Carlo based and binomial pricing implementations
and their achieved speedups have discouraged us from designing a same
method implementation. Monte-Carlo simulation generates random asset
price paths over which calculates the option value as the average of the values
calculated over these paths while the Binomial model creates a binomial
lattice for the calculation of single option value. Despite their ability to
parallelize they are inherently slower than finite differences that calculate
multiple option prices at a time. A possible speed comparison of the above
implementations should take this remark into consideration.

The inherent speed of finite differences along with their adaptability to a
wide range of scientific problems has motivated us in exploring them. More-
over the lack of FPGA implementations for the Crank-Nicholson scheme (as
far as we know) which is faster in terms of convergence than the imple-
mented explicit ones has decisively influenced our decision to implement it
on FPGA.

5.3 The initial approach

The initial approach consisted of a reconfigurable system for solving tridiag-
onal systems with the traditional odd-even reduction. The plan was aban-
doned for various reasons explained in the current section.

5.3.1 Algorithmic level

The Crank-Nicholson scheme was selected for our initial implementation for
its robustness and performance. When it comes to be mapped on recon-
figurable hardware, it requires an efficient implementation of a method to
solve the entailed tridiagonal systems (see also section 3.2.6 and algorithm
6).

Setting aside the computation of the right hand side ek+1 for the sys-
tem of the next time step, our problem is degenerated to the solution of a
tridiagonal system. The traditional odd-even reduction has been selected
for this purpose due to its ability to parallelize extensively.
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Algorithm 6 Crank-Nicholson algorithm

for each time step k do
- Solve the tridiagonal system with main diagonals a,b, c, unknown
vector Vk and right hand side ek.
- Compute the right hand side ek+1.

end for

Figure 5.1: Top-level architecture of the initial processing unit for odd-even
reduction

5.3.2 Implementation level

The initial implementation consisted of an independent dual port block
RAM for each vector a, b, c, e, V , that appears in the system to be solved.
When no data had to be written, two consecutive elements were read from
each diagonal and the right hand side. At the i-th iteration these were:
(ai, ai+1), (bi, bi+1), (ci, ci+1), (ei, ei+1). These elements were pumped to a
control unit that decided which of them would be further dispatched to the
floating point units. When results were ready to be written back to memory,
the control unit paused reading to write the results at the second port of the
appropriate memory. An abstract schematic for this core is shown in figure
5.1.

There are four floating point units: two for multiplication, one for addi-
tion and one for division. Each one of them is equipped with the correspond-
ing floating point operator and three FIFOs for temporary data storage. A
simplified schematic of an implemented floating point unit is shown in figure
5.2. Two floating point multiplication units were used in order to calculate
simultaneously the products inside the forward and backward loops (see al-
gorithms 2, 3). The products are passed to the adder/subtractor unit or
returned immediately to memory.
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Figure 5.2: A floating point unit equipped with two FIFOs for temporary
data storage.

Table 5.1: Resource Utilization of the initial single core architecture on a
VirtexTM 5 330T Board

Resource Type Used Utilization % Available
Slice Registers 3,275 1% 207,360
Slice LUTs 3,889 1% 207,360
Occupied Slices 1,496 2% 51,840
LUT Flip Flop pairs 4,661 - -
BlockRAM/FIFO 5 1% 324
DSPs 8 4% 192

This approach was relatively fast - approximately twice slower than LU
decomposition and 6% slower than odd-even reduction with both executed
on PentiumTM 4 (see also 5.2). Moreover it was frugal in resource utilization
(5.1) allowing the deployment of a number of instances on a high-end FPGA
device (such as the VirtexTM 5 family) capable of out-performing the soft-
ware competitors. It was downloaded successfully on a SpartanTM3E FPGA
board. The architecture of the downloaded system consisted of one instance
of the core attached to the PLB bus of microblazeTM embedded processor.
The latter was in charge of the data IO bridging the peripheral core with
the host computer via the serial port (see also fig. 5.3).

Despite its virtues, this single-core architecture was extremely cumber-
some to parallelize and incorporate the right-hand-side (RHS) update func-
tionality. Apart from that, it inherited the excessive arithmetic precision
requirements of the traditional odd-even reduction. In order to map the
new variant, incorporate the (RHS) update and coordinate a number of
these cores to run in parallel we had to design from the beginning at least
the main control unit. Given these difficulties we decided to take a more
flexible approach in order to be able to accommodate new functionalities
that might be proved necessary during the development of the final system.
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Table 5.2: Execution time for a single tridiagonal system: the initial recon-
figurable core vs a PentiumTM 4 single-core CPU

FPGA PentiumTM PentiumTM

VirtexTM 5 330T 4 Core 2 Duo
Method Odd-Even Odd-Even LU-Dec. Odd-Even LU-Dec.

Red. Red. Red.
Clock freq. 144MHz 2.6GHz 2.0GHz
system size execution time (us)
256 49 35 23 12 7
512 92 88 49 23 15
1024 178 235 104 44 32

Figure 5.3: The initial option pricing system as peripheral of microblazeTM

connected serially to host PC.
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Chapter 6

The proposed architecture

The proposed architecture consists of a number of interconnected cores that
run in parallel and are able to communicate with each other with message
passing. The core architecture described in the previous chapter was aban-
doned as once instantiated multiple times, the instances needed extensive
modifications in order to communicate with each other.

6.1 Architecture of a single core

The architecture of a single core consists of three main parts:

• The local memory: A dual port memory that stores all the necessary
data - both integer and floating point data.

• The memory controller: Its main tasks is the resolution of addresses
for reading and writing data, the synchronization of the floating point
operations and sending data to other cores.

• The floating point unit: The part that executes the necessary floating
point operations.

These three sub-units and the way they are connected can be seen in
figure 6.1. Each one of them is described meticulously in the following
sections.

6.1.1 Local memory - Data organization

The local memory of each core stores general information such as the size of
the local grid partition, the IDs of the neighboring cores etc. that constitute
integer data, along with the coefficients and initial conditions of each finite-
difference scheme (see also fig. 6.2a).

These coefficients are stored immediately after the integer data and in-
clude the initial condition (option values of the initial time step Vi,0) and
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Figure 6.1: Architecture of a single core: Sub-units are arranged according
to the pipeline stage they belong.

the parameters inside the formula of each scheme. These are the coefficient
vectors a, b, c for the explicit scheme (fig. 6.2b) - the only coefficients when
heat-diffusion transform is applied are α and 1 − 2α (fig. 6.2c)- and the
non-zero diagonals a, b, c of the implicit and Crank-Nicholson schemes. Us-
ing the proposed Odd-even reduction variant we can avoid storing the main
diagonal b which is implied to be unit. For the Crank-Nicholson scheme we
must also store the vectors: d0, d1, d2 that participate in the right-hand-side
update at each time step and the right hand side e itself. Hopefully d0 = −a
and d2 = −c and no extra space is required for them (fig. 6.2d). Additional
space is required for storing the vectors ak, ck, ek of the k-th forward step
of Odd-even reduction. As the system size is reduced by half its value at
the k-th forward step is Nk = N/2k and the total extra space (data words)

required for these vectors is equal to:
dlogNeN/2k∑

k=1

= N .

The local memory is 32 bits wide in order to store single precision float-
ing point numbers (IEEE 754-1985 standard) used for the implemented algo-
rithms. The memory controller datapath utilizes only the 24 less significant
bits of integer data stored in the local memory. Data produced by the mem-
ory controller are sign-extended in order to be stored to the local memory.
The 24-bit width allows the addressing of 224 memory positions in total.

Implementation

The data memory was implemented as true dual port BRAM. The first port
is used by the memory controller for reading and writing local data. The
second is directly connected to the inter-core communication network and is
used for writing the incoming data from other cores or the host computer.
The memory requirements for each algorithm can be seen in figure 6.3(a).
The available on-chip Block RAM memory of VirtexTM 5 330T can easily
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Figure 6.2: Memory organization: (a) General information stored first (b)
Stored coefficients for the explicit scheme (c) Stored coefficients for the ex-
plicit scheme with Heat-Diffusion transform (d) Stored coefficients for the
Crank-Nicholson scheme.

Table 6.1: Memory requirements for the implemented algorithms with re-
spect to the number asset price points NS of the grid

Method Memory words KB
Explicit 4NS 2−3NS

Explicit/Heat Diffusion transform NS + 2 2−5(NS + 2)
Crank-Nicholson 8NS 2−2NS

satisfy the needs of all the implemented algorithms (see also fig. 6.3(b)).

6.1.2 Memory controller

The memory controller is essentially a pipelined 24-bit integer datapath (fig.
6.4). It includes a small instruction memory, a register file, an adder/subtractor,
a barrel shifter and a comparator. The pipeline stages are: instruction fetch
- instruction decoding - execution - writing data to the register file or a
floating point register. It utilizes a small instruction set that supports the
following operations:

• Addition/Subtraction

• Shifting

• Branching and Jumps

• Memory reading/Writing

• Dispatching data to and from the floating point unit.
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(a) Memory requirements in KB (b) Memory requirements as percentage of
VirtexTM 5 330T BRAM resources

Figure 6.3: Memory requirements of the implemented schemes

• Sending data to other cores or the host computer

Figure 6.4: Architecture of the memory controller.

The instruction words are 32 bits long. They are decomposed in the op-
eration code field (6 bits long), the result register field that can refer to either
to a position in the register file or to a floating point unit (FPU) register
($r), the two read positions from the register file ($a, $b) and the immediate
operand field (imm) that occupies the last 12 bits (see also fig. 6.5). The
available instructions, their encoding, and their operation are shown in table
A.1 of appendix A. An interpreter has been written in Python in order to
facilitate the programming of the memory controller. It translates the in-
structions from the encoding of table A.1 to machine code. The instructions
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are preloaded to the instruction memory before downloading the design to
the FPGA device.

Instruction code 
(op-code)  

 

Write register 
($r) 

 

1st Read register 
($a) 

 

2nd Read register 
($b) 

 

Immediate operand 
(imm) 

 

6 bits 6 bits 4 bits  
 

4 bits 12 bits 

 
Figure 6.5: The 32-bit instruction word of the memory controller and its
fields.

The architecture of the memory controller is control-flow based [26]. The
executed process is carried out as a sequence of instructions that specify
an operation and the position of the participating operands, or transfer
the control to another instruction. The availability of the operands is not
guaranteed by the instructions themselves but from the way the execution
flow is controlled. The floating point unit does not follow this model. It is
based on dataflow rather than control-flow.

Implementation

This section discusses the implementation details of each component of the
memory controller.

The instruction memory has been implemented as single port LUT-based
ROM with depth 128 for the the explicit schemes. A single port Block
ROM with capacity 272 words has been used for the more complex Crank-
Nicholson scheme. Block ROM was selected in order to spare LUTs.

The register file has two read ports and one for writing and numbers 16
registers 24-bit long each.

All the integer arithmetic units handle 24-bit operands and are single-
cycled. An integer adder was implemented for the execution of additions
and subtractions. The comparator unit entails one comparator ”less” and
one ”equal” for the evaluation of branch conditions. The shifting operations
are carried out with a barrel shifter that can shift up to seven positions at a
time (its second operand is 3-bit long) for minimal complexity. The explicit
scheme implementations do not include a barrel shifter as no such operation
was necessary.

6.1.3 Floating point unit

The floating point unit follows the dataflow model. There is no predefined
sequence for the operations to be executed. The sequence is determined only
by the availability of data [27]. As long as the operands are ready, and the
corresponding operation unit is not busy, the operation is executed.
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The architecture of the FPU shall be described by means of the following
example. Consider the formula: a · b + c · d + e, the quantities a, b, c, d, e
are read from memory and the result of the formula is stored there. Similar
expressions appear in the implemented finite difference schemes and the
odd-even reduction. This expression can be compiled to a dataflow graph
like the one in figure 6.6(a).

Consider an architecture that is a precise mapping of the graph of fig-
ure 6.6(a) into operational(addition and multiplication) units (denoted by
circles) and registers (denoted by rectangles). Now let us consider the iter-
ative calculation of the above mentioned expression resembling the iterative
calculations of the explicit formulae or the forward reduction and back sub-
stitution phases of odd-even reduction. If all the quantities are loaded at
the same rate, then the quantity e is replaced before it is used. Replacing
the corresponding register with a FIFO, this problem is solved to the extend
that the FIFO does not overflow (see fig. 6.6(b)).

If the quantities a, b, c, e are read in the same clock cycle, the architecture
can fully utilize all the operation units every clock cycle. The utilization
drops when these quantities are read serially, as happens in our case, where
the memory controller reads one data word at each clock cycle. In order to
keep the resource utilization minimal the duplicate units can be removed.
Grouping the storage elements for the operands of the same type of units
afterwards, we end up with the reduced dataflow graph of figure 6.6(c).

The problem of an architecture based on the reduced graph is that when
the operands of two or more operations of the same type become available
simultaneously, only one of them shall be executed. Prioritizing these op-
erations and executing them serially is the solution. When operands are
available while operational units are busy, the possibility of replacing them
increases.

This problem is addressed using FIFOs and status flags indicating when
the respective storage elements have valid data and the corresponding op-
eration can be executed or are empty and new data can be loaded to them.
The status flag of a register is set to busy each time new data arrives and to
zero when the corresponding operation is executed. The status of a FIFO
is the reverse of the ”empty” flag from the side of the operational unit that
drains its content and the full flag from the side of the content source.

This abstraction leads to a generic dataflow model for the FPU which is
hardwired for a single dataflow graph but can be easily adapted for others
too. It includes a number of operational units each one of which has its own
group of storage elements that can be either registers or FIFOs. A priority
encoder selects the operation to be executed according to the availability
of data for each unit. Modifying the combination of data that trigger each
operation and its priority, results in a different dataflow graph.

The FPU for the odd-even reduction based Crank-Nicholson scheme has
one multiplier, one adder and one divider. The FPU for the explicit schemes

42



(a) The dataflow graph of a · b+
c · d + e

(b) The dataflow graph of a ·b+
c ·d+e with a FIFO for the stor-
age of e.

(c) The reduced dataflow graph af-
ter removing the duplicate opera-
tional units and grouping their stor-
age elements.

Figure 6.6: Evolution of data flow graphs until the implemented form.

has no divider on the other hand, as no divisions are carried out (fig. 6.7).
The results that are to be written in memory are stored temporarily in
a result FIFO. When new results are produced, a signal is issued to the
memory controller to store them to memory using a routine defined for this
purpose.

Implementation

The implementation of the FPU was based on the IP cores for floating point
operations provided by the Xilinx Core GeneratorTM tool (Floating-Point
Operator v3.0 IP [28]). The floating point multiplier was selected to make
max usage of DSPs (3 DSP48E slices). The usage of DSPs can be set to
full or medium or no at all depending on the available DSP resources of the
target device and the number of implemented cores. The adder and divider
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Figure 6.7: The reduced dataflow graph after removing the duplicate oper-
ational units and grouping their storage elements.

cores are thoroughly LUT-based (the latter was deployed only for the Crank-
Nicholson scheme). Details about their characteristics can be found in table
6.2.

Table 6.2: Characteristics of the Xilinx Floating-Point Operator v3.0 IP
cores used for addition, multiplication, addition

Unit type DSP usage Latency Cycles per operation
Multiplier max (3 DSP48E) 4 1
Adder No 8 1
Divider No 14 12

The storage elements of each operational unit were implemented either as
registers or FIFOs obtained by the FIFO Generator v4.4 included in Core
GeneratorTM. A priority encoder was implemented for selecting the next
operation to be executed according to the status bits of the two operands
and the priority of the operation. Each storage element has also its own
data source which is either an operational unit or the data memory.

6.2 Top-level architecture

The top-level architecture follows the model of interconnected peer units
(cores) with different local memories that communicate through messages
achieving process level parallelism [29]. The whole system acts as co-processor
of a host computer where the option pricing tasks are offloaded. The host
computer sends the initial parameters and triggers the co-processor and the
produced results are sent back (client-server model) (see also fig. 6.8).
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Figure 6.8: The top-level architecture of the FPGA co-processor connected
to a host computer.

6.2.1 Interconnection network

The communication between cores is message-driven. Each message is ac-
companied by a destination header which is the ID of the destination core
concatenated with the target local memory address. After each data ship-
ping, an acknowledgement message is sent by the issuing core that has value
equal to its ID. The recipient core is polling the local memory position where
the acknowledgement is to be received when the local forthcoming opera-
tions are dependent on the exchanged data. The reception of messages is
done through the second port of the local memory (fig. 6.8).

The first approach for the interconnection network was hierarchical, hav-
ing the form of a tree topology. Eight cores were connected to a common
bus. Each bunch of eight processors was connected to a higher level bus.
A system comprised of 32 processors for instance had two hierarchical bus
levels and a message required three ”hops” in the worst case to reach its

45



(a) Hierarchical inter-
connection network.

(b) The implemented ring interconnec-
tion network

Figure 6.9: The tested interconnection networks

destination. Each bus used an arbiter permitting round-robin usage. This
approach was incited by the odd-even reduction algorithm during which
data exchanges form a tree structure. Despite that, it was abandoned as it
required excessive resources and new hierarchical levels had to be added for
extra cores.

The succeeding approach that was eventually implemented uses point-
to-point connections between cores forming a ring topology. The last node
of the network is used by the host computer and the messages flow in a
single direction (see fig. 6.9(b)). This approach was selected as the ma-
jority of data exchanges in finite-difference schemes and odd-even reduction
concern neighboring cores. Its resource utilization is less than that of the
tree approach and can be easily generalized for arbitrary number of cores.
Nevertheless the maximum number of ”hops” for message forwarding, being
equal to the number of cores, is greater than that of the tree structure.

6.2.2 Input-Output

The IO-operations between the FPGA co-processor that constitutes the pro-
posed architecture and the host computer are limited. The initial parameters
of the explicit schemes should be sent from the Host to the FPGA and upon
the completion of calculations, the FPGA sends the results back to the Host.
The IO-operations being limited to the beginning and the end of the algo-
rithm are not critical for the performance of the FPGA co-processor, thus
they do not require great performance. The best IO solution is the use of the
PCI Express interconnect. An endpoint block of PCI express is required in
the side of the FPGA, connected to the inter-core communication network.

46



Chapter 7

Results and Evaluation

7.1 Resource utilization

7.1.1 Estimation methodology

The resource utilization estimation has been done using Xilinx ISE design
suite. The selected target device is the VirtexTM 5 330T. The main criterion
for its selection was the great number of built-in logic cells. Three versions
of the designed system were placed and routed on the target device for
resource usage estimation. One implementing the Crank-Nicholson scheme,
the second the explicit scheme and the last the explicit scheme applying the
heat-diffusion equation transform. The measurements were obtained for 1,
4, 8, 16 and 32 cores per system. Extra measurements for a 54-core explicit
scheme system, and a 56-core heat-diffusion transform explicit one. Tables
7.3, 7.2, 7.1 provide more precise information on the number of occupied
resources for a unit-core and a 32-bit core system of each version.

Table 7.1: Resource Utilization for explicit scheme on a VirtexTM 5 330T
Board

Number of cores 1 32
Resource Type Used Util. % Used Util. % Available
Slice Registers 1,051 1% 39,092 18 207,360
Slice LUTs 1,268 1% 22,584 21 207,360
Occupied Slices 530 1% 17,481 33 51,840
LUT Flip Flop pairs 1,607 - 56,187 - -
BlockRAM/FIFO 5 1% 176 54 324
DSPs 3 1% 96 50 192
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(a) (b)

(c)

Figure 7.1: Number of used slice registers and slice LUTs

7.1.2 Analysis

The resource utilization of the Crank-Nicholson scheme is greater than the
others as a result of the usage of a floating point divider in the FPU and
a barrel shifter in the memory controller. These extra components also
influence the achieved clock frequency which is slightly smaller in the case
of the Crank-Nicholson scheme for given number of cores. Small differences
in resource utilization and clock frequency between the two explicit schemes
are attributed to the slightly different dataflows of their FPUs.

Figure 7.1 shows the number of slice registers and slice LUTs used by
each version of the proposed system for various numbers of processor. Re-
source utilization increases proportionately to the number of cores in all
the implemented schemes. Following this tendency, we can observe that a
64-core system for all schemes can be easily hosted in the target device.
Resource measurements were not obtained in this case as memory because
of the excessive memory requirements of the synthesizer.

Figure 7.2 shows the maximum achievable clock frequency of the three
systems for various numbers of cores. As we can see the frequency is slightly
declining as the number of cores increases. As the system increases in size
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Table 7.2: Resource Utilization for explicit scheme with heat-diffusion equa-
tion transform on a VirtexTM 5 330T Board

Number of cores 1 32
Resource Type Used Util. % Used Util. % Available
Slice Registers 1,054 1% 39,188 18 207,360
Slice LUTs 1,278 1% 45,398 22 207,360
Occupied Slices 526 1% 17,299 37 51,840
LUT Flip Flop pairs 1,610 - 56,681 - -
BlockRAM/FIFO 5 1% 176 54 324
DSPs 3 1% 96 50 192

Table 7.3: Resource Utilization for Crank-Nicholson scheme with heat-
diffusion equation transform on a VirtexTM 5 330T Board

Number of cores 1 32
Resource Type Used Util. % Used Util. % Available
Slice Registers 1,564 1% 55,444 26 207,360
Slice LUTs 2,239 1% 76,274 36 207,360
Occupied Slices 931 1% 29,654 57 51,840
LUT Flip Flop pairs 2,735 - 92,006 - -
BlockRAM/FIFO 9 1% 192 59 324
DSPs 3 1% 96 50 192

the routing becomes harder and has an negative impact on the maximum
achievable clock frequency. At this point it should be mentioned that synthe-
sis, placement and routing have been done using the default optimization
strategy of ISE suite. A timing optimization strategy could have yielded
slightly greater frequency.

7.2 Speed comparison

7.2.1 Methodology

Speed comparisons have been made against a PentiumTM Core 2 Duo CPU
with 2 GHz clock frequency and 3Gbyte RAM. The software versions of the
implemented algorithms were written in C++, compiled with the g++ com-
piler and executed in Windows Vista environment. The Crank-Nicholson
scheme was tested against two software versions of itself: one using odd-
even reduction and one LU-decomposition. The software execution time
estimation was made with VtuneTM performance analyzer.

Soft versions were executed for systems of 4096 and 8192 size, five times
each. The number of time steps depended on the method; For explicit
schemes Nτ = N2

S and for the Crank-Nicholson scheme Nτ = NS . The aver-
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age of these five execution times for each system size was computed. These
average times were divided by the number of time steps, in order to obtain
the average execution time for a single time step. For the Crank-Nicholson
scheme execution times were obtained using both LU-decomposition and
odd-even reduction. For the latter we obtained measurements for each of the
three phases. The execution time was measured in CPU CLK UNHALTED
events. A metric that counts the processor’s clock ticks for non-halt cpu
state [30]. The execution times were obtained using the formula:

Execution time = CPU CLK UNHALTED.TOTAL CYCLES / Proces-
sor Frequency / Number of Cores

It should be pointed out that the execution time calculated in this way
implies perfect load balancing on both cores of the Core 2 Duo architecture.
Once the single-time step average execution times for system sizes 4096 and
8192 were obtained, they were divided by the FPGA execution times. The
latter were measured in clock ticks by simulation on Modelsim Simulator
for architectures with 4, 8, 16 and 32 cores and divided by the maximum
achieved frequency for each architecture (see also fig. 7.2). Averaging two
speedup values for each architecture - one for NS = 4096 and the other for
NS = 8192 - we obtained the final speedup value for a single time step. These
values are shown in figure 7.3. The last column of each graph that refers to 64
processors was not obtained by simulation but extrapolating the measured
execution times and the maximum clock frequencies of the corresponding
architectures and constitutes a projected value. The accommodation of 64
cores on the target device is feasible according to the resource utilization
results (see also figure 7.1).

7.2.2 Analysis

The comparison indicates that 8 cores on average equal the performance of
PentiumTM Core 2 Duo CPU. Each time the number of cores in the archi-
tecture is doubled, the performance of the reconfigurable system is increased
nearly twofold. The highest performance is achieved by the explicit scheme,
which is approximately 4x times faster than the CPU using 32 cores and can
reach a projected 8x using 64 cores. As for the Crank-Nicholson scheme the
performance gain is worse compared to software LU-decomposition as the
latter is more efficient over CPUs with small scale parallelization, compared
to the gain over software odd-even reduction (fig. 7.4(b)). As for the differ-
ent phases of odd-even reduction (fig. 7.4(a)), the best performing one is the
forward phase contrary to the back substitution phase that demonstrates the
poorest performance. This happens because of the limited data throughput
from the data memory to the FPU. This overhead is negligible compared to
the bulk of computations of the forward reduction phase, but is significant
compared to the limited computations of back substitution phase.
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(a) Explicit scheme implementation (b) Explicit scheme with heat-diffusion
transform implementation

(c) Crank-Nicholson scheme implementa-
tion

Figure 7.2: Maximum clock frequency achieved for various number of cores

(a) (b)

Figure 7.3: Average achieved speedup of explicit schemes implementations
for various number of cores
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(a) (b)

Figure 7.4: Average achieved speedup of Crank-Nicholson scheme imple-
mentation for various number of cores

52



Chapter 8

Conclusions and future Work

The reconfigurable architecture presented in the current thesis has achieved
a fair speedup over the Pentium Core 2 Duo processor. The control-flow
part of the memory controller of each core that was selected for increased
flexibility is mainly responsible for the moderate performance. The presence
of commodity CPUs with more than two cores intensifies the antagonism and
the proposed architecture can compete them only if multiple FPGAs are
utilized. Our architecture can be easily distributed across multiple FPGA
devices. Apart from that it can be a good starting point for more specialized
architectures that implement a single scheme. A primitive customization
has already been made excluding the floating point divider and the shifter
from the explicit scheme implementations. More extensive modifications in
the control-flow datapath of the memory controller can yield the desirable
performance boost.

Apart from the possible modifications targeting better performance of
the already implemented algorithms, future efforts could be focused on the
implementation of other option pricing techniques on the current platform.
An interesting candidate is the binomial option pricing model, as it can be
parallelized and entails simple computations.
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Appendix A

Core instruction set

Table A.1: The instruction set of the memory controller

Instruction encoding Operation
add / sub instructions

iadd $r $a $b $r = $a + $b
iaddi $r $a imm $r = $a + imm
isub $r $a $b $r = $a − $b
isubi $r $a imm $r = $a − imm

shift instructions
isll $r $a $b $r = $a << $b
islli $r $a imm $r = $a << imm
isrl $r $a $b $r = $a >> $b
isrli $r $a $b $r = $a >> imm

load / store integer instructions
ildin $r $b $r = mem[$b]
ildini $r imm $r = mem[imm]
iswin $a $b mem[$b] = $a
iswini $a imm mem[imm] = $a

load / store float instructions
ildf $r(f) $b $r(f) = mem[$b]
ildfi $r(f) imm $r(f) = mem[imm]
ildfa $r(f) $a $b $r(f) = mem[$a], $a = $a + $b
ildfai $r(f) $a imm $r(f) = mem[$a], $a = $a + imm
ildfs $r(f) $a $b $r(f) = mem[$a], $a = $a − $b
ildfsi $r(f) $a imm $r(f) = mem[$a], $a = $a − imm
iswf $b mem[$b] = FPU result
iswfi imm mem[imm] = FPU result
iswfa $a $b mem[$a] = FPU result, $a = $a + $b
iswfai $a imm mem[$a] = FPU result, $a = $a + imm
iswfs $a $b mem[$a] = FPU result, $a = $a − $b
iswfsi $a imm mem[$a] = FPU result, $a = $a − imm

branch instructions
ibeq $a $b imm if $a == $b jump to imm
ibne $a $b imm if $a ! = $b jump to imm
iblt $a $b imm if $a < $b jump to imm
ibge $a $b imm if $a >= $b jump to imm

Jump / Stall instructions
ij imm jump to imm
iwst $r(f) wait for FPU position $r(f) to be freed
ijcc jump to the current execution context after signal handling

Instructions for sending data to other cores or the host
isnm $r $b $r (destination core ID / memory address) = mem[$b]
isnmi $r imm $r (destination core ID / memory address) = mem[imm]

Other instructions
isint imm Set imm as the address of the signal handling routine
isintc imm Set imm as the address of the signal handling routine/

clear the FPU storage elements.
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