
TECHNICAL UNIVERSITY OF CRETE
DEPARTMENT OF ELECTRONIC AND COMPUTER ENGINEERING

Master Thesis

Programming high-performance applications on the Cell BE processor

CHRISTOU PANAGIOTIS

Selection Committee

Ioannis Papaefstathiou, Assistant Professor of the Technical University of Crete (Supervisor)
Apostolos Dollas, Professor of the Technical University of Crete
Dionisios Pnevmatikatos, Associate Professor of the Technical University of Crete

CHANIA 2010



2



Contents

1 Introduction 13

2 Platform 15
2.1 Cell Broadband Engine . . . . . . . . . . . . . . . . . . . . . . . . . 15

2.1.1 Power Processor Element . . . . . . . . . . . . . . . . . . . . 16
2.1.2 Synergistic Processor Element . . . . . . . . . . . . . . . . . 18
2.1.3 Element Interconnect Bus . . . . . . . . . . . . . . . . . . . 21

2.2 Playstation3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2.1 Operating System . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.2 Memory System . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.2.3 Network Card . . . . . . . . . . . . . . . . . . . . . . . . . . 24
2.2.4 Graphics Card . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3 Glimmer Algorithm 25
3.1 An Introductory Background On Biology . . . . . . . . . . . . . . . 25
3.2 Gene Identification Problem . . . . . . . . . . . . . . . . . . . . . . 26
3.3 Interpolated Markov Models and Markov Chains . . . . . . . . . . . 26

3.3.1 Markov Chains . . . . . . . . . . . . . . . . . . . . . . . . . 27
3.3.2 Interpolated Markov Models (IMMs) . . . . . . . . . . . . . 28
3.3.3 Interpolated Context Models (ICMs) . . . . . . . . . . . . . 29

3.4 Glimmer Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.1 Algorithm Input . . . . . . . . . . . . . . . . . . . . . . . . 30
3.4.2 Algorithm Output . . . . . . . . . . . . . . . . . . . . . . . 31
3.4.3 The Glimmer System . . . . . . . . . . . . . . . . . . . . . . 31

4 Long-Range Noise Propagation and Helicopter Path Optimization
for Noise Reduction 33
4.1 Introduction and Background . . . . . . . . . . . . . . . . . . . . . 33
4.2 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
4.3 The PE-method in sound propagation . . . . . . . . . . . . . . . . . 36
4.4 PDE Solution with Crank-Nicholson Algorithm . . . . . . . . . . . 36

3



4 CONTENTS

4.5 Curvilinear Transformations of Coordinates . . . . . . . . . . . . . 37
4.6 CNPE Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.6.1 Algorithm Input . . . . . . . . . . . . . . . . . . . . . . . . 38
4.6.2 Algorithm Output . . . . . . . . . . . . . . . . . . . . . . . 38
4.6.3 Basic Steps Of The Application . . . . . . . . . . . . . . . . 39

5 Implementation Of The Glimmer 43
5.1 The Programming Model . . . . . . . . . . . . . . . . . . . . . . . . 44
5.2 The Application Enablement Process . . . . . . . . . . . . . . . . . 44
5.3 Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.4 The Hotspot of the Glimmer . . . . . . . . . . . . . . . . . . . . . . 47
5.5 Data Flow Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
5.6 Development Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.6.1 Implementation on x86 Architecture . . . . . . . . . . . . . 52
5.6.2 Port to PPE . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.6.3 PPE control . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
5.6.4 DMA Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . 60
5.6.5 Implementation with One and Multiple SPEs . . . . . . . . 62
5.6.6 Code Optimizations . . . . . . . . . . . . . . . . . . . . . . . 63

5.7 Software Tools problems . . . . . . . . . . . . . . . . . . . . . . . . 64

6 Implementation Of the CNPE algorithm 65
6.1 The Programming Model . . . . . . . . . . . . . . . . . . . . . . . . 65
6.2 The Application Enablement Process . . . . . . . . . . . . . . . . . 65
6.3 Profiling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
6.4 The Hotspot of the CNPE . . . . . . . . . . . . . . . . . . . . . . . 66
6.5 Dataflow Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
6.6 Development Stages . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

6.6.1 Implementation on x86 Architecture . . . . . . . . . . . . . 72
6.6.2 Port to PPE . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.6.3 PPE control . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
6.6.4 DMA Transfer . . . . . . . . . . . . . . . . . . . . . . . . . . 74
6.6.5 Implementation with One and Multiple SPEs . . . . . . . . 74
6.6.6 Code Optimizations . . . . . . . . . . . . . . . . . . . . . . . 75

7 Evaluation and Verification Of the Glimmer 79
7.1 Measuring Performance . . . . . . . . . . . . . . . . . . . . . . . . . 79
7.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

7.2.1 Performance of SPEs . . . . . . . . . . . . . . . . . . . . . . 80
7.2.2 Final Comparison . . . . . . . . . . . . . . . . . . . . . . . . 82

7.3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84



CONTENTS 5

8 Evaluation and Verification Of the CNPE 85
8.1 Measuring Performance . . . . . . . . . . . . . . . . . . . . . . . . . 85
8.2 Performance . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

8.2.1 Performance of SPEs . . . . . . . . . . . . . . . . . . . . . . 85
8.2.2 Final Comparison . . . . . . . . . . . . . . . . . . . . . . . . 91

8.3 Verification . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

9 Conclusions and Future Work 105
9.1 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105
9.2 Future Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105



6 CONTENTS



List of Figures

2.1 Cell Broadband Engine Architecture . . . . . . . . . . . . . . . . . 16
2.2 PPE Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 SPE Block Diagram . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
2.4 Synergistic Processor Element architecture . . . . . . . . . . . . . . 19
2.5 Latencies and pipe assignment for SPE . . . . . . . . . . . . . . . . 20
2.6 Element interconnect bus (EIB) . . . . . . . . . . . . . . . . . . . . 22

3.1 Sample ICM decomposition tree . . . . . . . . . . . . . . . . . . . . 30

4.1 Schematic of long-range noise propagation of a helicopter flying at
height H. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

4.2 Orthogonal mesh over an irregular bottom. . . . . . . . . . . . . . . 38
4.3 Non-Orthogonal mesh over an irregular bottom. . . . . . . . . . . . 38
4.4 Schematic of the seperated territorial region. . . . . . . . . . . . . . 39
4.5 The CNPE is applied for each height. . . . . . . . . . . . . . . . . . 39
4.6 The calculation of the Max Receiving Pressure of the receiver. . . . 40
4.7 The Max Receiving Pressure of the receiver for each height. . . . . 41
4.8 The optimal flight path. . . . . . . . . . . . . . . . . . . . . . . . . 41

5.1 Application enablement process. . . . . . . . . . . . . . . . . . . . . 45
5.2 Function-Wise Breakout for various datasets. . . . . . . . . . . . . . 48
5.3 The code of the function get prob of window1. . . . . . . . . . . . . 49
5.4 The code where the function get prob of window1 is called. . . . . . 51
5.5 The development flow chart. . . . . . . . . . . . . . . . . . . . . . . 51
5.6 An interative development process. . . . . . . . . . . . . . . . . . . 52
5.7 Function-Offload (or RPC) Model with stubs. . . . . . . . . . . . . 54
5.8 Production Flow for Function Offload (or RPC) Model. . . . . . . . 55
5.9 Overall scheduling process for 1st implementation of GLIMMER. . 56
5.10 Fork-join model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.11 PPE control. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58
5.12 Overall scheduling process for GLIMMER. . . . . . . . . . . . . . . 59

7



8 LIST OF FIGURES

5.13 Data Transfer from and to LS. . . . . . . . . . . . . . . . . . . . . . 61

6.1 Function-Wise Breakout for CNPE. . . . . . . . . . . . . . . . . . . 67
6.2 The code of the function CNPE. . . . . . . . . . . . . . . . . . . . . 68
6.3 The code of the function Amat. . . . . . . . . . . . . . . . . . . . . 68
6.4 The code of the function Rhs. . . . . . . . . . . . . . . . . . . . . . 69
6.5 The code of the function Trid. . . . . . . . . . . . . . . . . . . . . . 69
6.6 The development flow chart. . . . . . . . . . . . . . . . . . . . . . . 71
6.7 An interative development process. . . . . . . . . . . . . . . . . . . 71
6.8 Fork-join model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
6.9 Overall scheduling process for CNPE. . . . . . . . . . . . . . . . . . 73
6.10 A vector with four elements. . . . . . . . . . . . . . . . . . . . . . . 76
6.11 A part of the amat code. . . . . . . . . . . . . . . . . . . . . . . . . 77
6.12 A part of the amat’s vector code. . . . . . . . . . . . . . . . . . . . 77
6.13 Shuffle example: spu shuffle VT,VA,VB,VC instruction. . . . . . . . 77
6.14 Pipelining and dual-issue. . . . . . . . . . . . . . . . . . . . . . . . 78

7.1 Performance impact of various optimizations for NC003062.fna. . . 81
7.2 Performance impact of various optimizations for NC004463.fna. . . 81
7.3 SPE statistics for the Glimmer. . . . . . . . . . . . . . . . . . . . . 82
7.4 Performance comparisons of the Glimmer for dataset NC003062.fna. 83
7.5 Performance comparisons of the Glimmer for dataset NC004463.fna. 83

8.1 Performance impact of various optimizations. . . . . . . . . . . . . 86
8.2 Performance impact of various optimizations. . . . . . . . . . . . . 87
8.3 Performance impact of various optimizations. . . . . . . . . . . . . 88
8.4 Performance impact of various optimizations. . . . . . . . . . . . . 89
8.5 Performance impact of various optimizations. . . . . . . . . . . . . 90
8.6 Performance impact of various optimizations. . . . . . . . . . . . . 91
8.7 Performance comparisons for 36 CNPE with NZ=128, NR=1005 and

same trid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
8.8 Performance comparisons for 36 CNPE with NZ=256, NR=500 and

same trid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 93
8.9 Performance comparisons for 36 CNPE with NZ=512, NR=1005 and

same trid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94
8.10 Performance comparisons for 360 CNPE with NZ=128, NR=1005

and same trid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.11 Performance comparisons for 360 CNPE with NZ=256, NR=500 and

same trid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 95
8.12 Performance comparisons for 360 CNPE with NZ=512, NR=1005

and same trid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96



LIST OF FIGURES 9

8.13 Performance comparisons for 36 CNPE with NZ=128, NR=1005 and
different trid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 97

8.14 Performance comparisons for 36 CNPE with NZ=256, NR=500 and
different trid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98

8.15 Performance comparisons for 36 CNPE with NZ=512, NR=1005 and
different trid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

8.16 Performance comparisons for 360 CNPE with NZ=128, NR=1005
and different trid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.17 Performance comparisons for 360 CNPE with NZ=256, NR=500 and
different trid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

8.18 Performance comparisons for 360 CNPE with NZ=512, NR=1005
and different trid. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101

8.19 Speedup over P4-O3 and xeon-O3 for NZ=512 and NR=1005 with
same trid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

8.20 Speedup over P4-O3 and xeon-O3 for NZ=512 and NR=1005 with
different trid . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103



10 LIST OF FIGURES



List of Tables

5.1 Results of the profiling GLIMMER for Dataset CLASS A NC004061.fna 46
5.2 Function-wise breakout of Build-icm program . . . . . . . . . . . . 46
5.3 Results of the profiling GLIMMER for Dataset CLASS B NC003062.fna 46
5.4 Function-wise breakout of Glimmer2 program . . . . . . . . . . . . 47
5.5 Results of the profiling GLIMMER for Dataset CLASS C NC004463.fna 47
5.6 Function-wise breakout of Glimmer2 program . . . . . . . . . . . . 47
5.7 Total calls of the function get prob of window1 . . . . . . . . . . . 48
5.8 The amount of data is needed by procedure for various datasets. . . 50
5.9 The new amount of data is needed by procedure for various datasets. 50
5.10 The size of data is needed to store to Local Store. . . . . . . . . . . 50
5.11 DMA Transfers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

6.1 Results of the profiling CNPE for one call of the CNPE function . . 66
6.2 Function-wise breakout of CNPE program . . . . . . . . . . . . . . 66
6.3 Results of the profiling CNPE for twelve call of the CNPE function 66
6.4 Function-wise breakout of CNPE program . . . . . . . . . . . . . . 67
6.5 The amount of Local Store space needed. . . . . . . . . . . . . . . 70
6.6 DMA Transfers. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

7.1 Execution time of Glimmer for NC003062.fna. . . . . . . . . . . . . 80
7.2 Execution time of Glimmer for NC004463.fna. . . . . . . . . . . . . 81

8.1 Execution time of 36 CNPE for NZ=128 and NR=1005. . . . . . . 86
8.2 Execution time of 36 CNPE for NZ=256 and NR=500. . . . . . . . 87
8.3 Execution time of 36 CNPE for NZ=512 and NR=1005. . . . . . . 87
8.4 Execution time of 360 CNPE for NZ=128 and NR=1005. . . . . . . 88
8.5 Execution time of 360 CNPE for NZ=256 and NR=500. . . . . . . 89
8.6 Execution time of 360 CNPE for NZ=512 and NR=1005. . . . . . . 90
8.7 Execution time of 36 CNPE for NZ=128, NR=1005 and same trid. 92
8.8 Execution time of 36 CNPE for NZ=256, NR=500 and same trid. . 93
8.9 Execution time of 36 CNPE for NZ=512, NR=1005 and same trid. 93

11



12 LIST OF TABLES

8.10 Execution time of 360 CNPE for NZ=128, NR=1005 and same trid. 94
8.11 Execution time of 360 CNPE for NZ=256, NR=500 and same trid. 95
8.12 Execution time of 360 CNPE for NZ=512, NR=1005 and same trid. 96
8.13 Execution time of 36 CNPE for NZ=128, NR=1005 and different trid. 97
8.14 Execution time of 36 CNPE for NZ=256, NR=500 and different trid. 98
8.15 Execution time of 36 CNPE for NZ=512, NR=1005 and different trid. 98
8.16 Execution time of 360 CNPE for NZ=128, NR=1005 and different trid. 99
8.17 Execution time of 360 CNPE for NZ=256, NR=500 and different trid.100
8.18 Execution time of 360 CNPE for NZ=512, NR=1005 and different trid.101



Chapter 1

Introduction

Over the past decade, high-performance computing has ridden the wave of commod-
ity computing, building clusterbased parallel computers that leverage the tremen-
dous growth in processor performance fueled by the commercial world. As this pace
slows, processor designers face complex problems in their efforts to increase gate
density, reduce power consumption, and design efficient memory hierarchies. Pro-
cessor developers are looking for solutions that can keep up with the scientific and
industrial communities’ insatiable demand for computing capability and that also
have a sustainable market outside science and industry.

A major trend in computer architecture is integrating system components onto
the processor chip. This trend is driving the development of processors that can
perform functions typically associated with entire systems. Building modular pro-
cessors with multiple cores is far more cost-effective than building monolithic pro-
cessors, which are prohibitively expensive to develop, have high power consumption,
and give limited return on investment. Multicore system-on-chip (SoC) processors
integrate several identical, independent processing units on the same die, together
with network interfaces, acceleration units, and other specialized units.

Researchers have explored several design avenues in both academia and industry.
Examples include MIT’s Raw multiprocessor, the University of Texas’s Trips mul-
tiprocessor, AMD’s Opteron, IBM’s Power5, Sun’s Niagara, and Intel’s Montecito,
among many others.

In all multicore processors, a major technological challenge is designing the inter-
nal, on-chip communication network. To realize the unprecedented computational
power of the many available processing units, the network must provide very high
performance in latency and in bandwidth. It must also resolve contention under
heavy loads, provide fairness, and hide the processing units’ physical distribution
as completely as possible.

As the era of pure CMOS frequency scaling ends, architects must again respond
to massive technological changes by more efficiently exploiting density scaling. The

13



14 CHAPTER 1. INTRODUCTION

Cell Broadband Engine (Cell BE) answers these challenges by providing the first im-
plementation of a chip multiprocessor with a significant number of general-purpose
programmable cores targeting a broad set of workloads, including intensive multi-
media and scientific processing.

Jointly developed beginning in 2000 by IBM, Sony, and Toshiba (STI) for the
PlayStation 3 as well as other data-processing-intensive environments, Cell’s design
goal was to improve performance an order of magnitude over that of desktop systems
shipping in 2005 [et 05], [M. 06a], [M. 06b]. To meet that goal, designers had to
optimize performance against area, power, volume, and cost in a manner not possible
with legacy architectures. Thus, the design strategy was to exploit application
parallelism through numerous cores that support established application models,
thereby ensuring good programmability as well as programmer efficiency[A. 05].

The resulting Cell design is a heterogeneous, multicore chip capable of massive
floating-point processing optimized for computation-intensive workloads and rich
broadband media applications.

The rest of this thesis is organized as follows: Chapter 2 introduces the Cell
Broadband Engine processor and the Playstation 3 that was used in the implemen-
tation. Chapter 3 outlines the gene identification problem, the Markov Chains and
Interpolated Markov Models and the Glimmer algorithm. Chapter 4 presents the
Long-Range Noise Propagation and Helicopter Path Opti- mization for Noise Re-
duction algorithm. Chapter 5 and Chapter 6 describe the development process
that was followed for the implementations of the Glimmer and CNPE applications
respectively. Chapter 7 and Chapter 8 present the final results for the implemen-
tations of the Glimmer and CNPE application respectively. Chapter 9 presents
some conclusions from this work and proposes some ideas for future work.



Chapter 2

Platform

This chapter describes the platform that was used for the implementation. The
Cell processor, its architecture as well as and the Playstation 3 game console are
described in this chapter. The purpose of the chapter is to introduce the reader to
the architecture of Cell and to the hardware that was used in the implementation.

2.1 Cell Broadband Engine

The Cell processor is the first implementation of the Cell Broadband Engine Ar-
chitetcture (CBEA), which is a fully compatible extension of the 64-bit PowerPC
Architecture. Its initial target is the PlayStation 3 game console, but its capabili-
ties also make it well suited for other applications such as visualization, image and
signal processing, and various scientific and technical workloads.

Figure 2.1 shows the Cell Broadband Engine, the first implementation of the
CBEA . The processor is a heterogeneous, multicore chip capable of massive floating-
point processing optimized for computation- intensive workloads and rich broadband
media applications. It consists of one 64-bit power processor element (PPE), eight
specialized coprocessors called synergistic processor elements (SPEs), a high-speed
memory controller, and a high-bandwidth bus interface, all integrated on-chip. The
PPE and SPEs communicate through an internal highspeed element interconnect
bus (EIB).

With a clock speed of 3.2 GHz, the Cell processor has a theoretical peak perfor-
mance of 204.8 Gflop/s (single precision) and 14.6 Gflop/s (double precision). The
element interconnect bus supports a peak bandwidth of 204.8 Gbytes/s for intrachip
data transfers, the memory interface controller provides a peak bandwidth of 25.6
Gbytes/s to main memory, and the I/O controller provides peak bandwidth of 25
Gbytes/s inbound and 35 Gbytes/s outbound[et 05].

15



16 CHAPTER 2. PLATFORM

Figure 2.1: Cell Broadband Engine Architecture

2.1.1 Power Processor Element

The Power processor element (PPE)[et 05],[IBM08b], [Sca09] consists of a 64- bit,
multithreaded Power Architecture processor with two concurrent hardware threads.
The PPE supports the Power Architecture vector multimedia extensions to accel-
erate multimedia applications using SIMD execution units.

The PPE consists of two main units, the Power Processor Unit (PPU) and the
Power Processor Storage Subsystem (PPSS), as shown in Figure 2.2. The PPE is
responsible for overall control of the system. It runs the operating systems for all
applications running on the Cell Broadband Engine.The PPU deals with instruction
control and execution. It includes the full set of 64-bit PowerPC registers, 32 128-bit
vector registers, a 32-KB level 1 (L1) instruction cache, a 32-KB level 1 (L1) data
cache, an instruction-control unit, a load and store unit, a fixed-point integer unit, a
floating point unit, a vector unit, a branch unit, and a virtual-memory management
unit.



2.1. CELL BROADBAND ENGINE 17

Figure 2.2: PPE Block Diagram

The PPU supports two simultaneous threads of execution and can be viewed
as a 2-way multiprocessor with shared dataflow. This appears to software as two
independent processing units. The state for each thread is duplicated, including all
architected and special-purpose registers except those that deal with system-level
resources, such as logical partitions, memory, and thread-control. Most nonarchi-
tected resources, such as caches and queues, are shared by both threads, except in
cases where the resource is small or offers a critical performance improvement to
multithreaded applications.

The PPSS handles memory requests from the PPE and external requests to the
PPE from other processors or I/O devices. It includes a unified 512-KB level 2 (L2)
instruction and data cache, various queues, and a bus interface unit that handles
bus arbitration and pacing on the EIB. Memory is seen as a linear array of bytes
indexed from 0 to 264 - 1. Each byte is identified by its index, called an address,
and each byte contains a value. One storage access occurs at a time, and all accesses
appear to occur in program order.

The L2 cache and the address-translation caches use replacement-management
tables that allow software to control use of the caches. This software control over
cache resources is especially useful for real-time programming.

Although clocked at 3.2 GHz PPE looks like a quite potent processor, its main
purpose is to serve as a controller and supervise the other cores on the chip. In
a Cell based system the PPE will run the operating system (OS) and most of the
applications but compute intensive parts of the OS and applications will be offloaded
to the SPEs. Thanks to the PPE’s compliance with the PowerPC architecture,
existing applications can run on the Cell out of the box, and be gradually optimized
for performance using the SPEs ,rather than written from scratch[et 05].



18 CHAPTER 2. PLATFORM

2.1.2 Synergistic Processor Element

Each of the eight Synergistic Processor Elements (SPEs)[et 05],[MS07],[IBM08b],
[Sca09] is a 128-bit RISC processor specialized for data-rich, compute-intensive
SIMD applications. It consists of two main units, the Synergistic Processor Unit
(SPU) and the Memory Flow Controller (MFC), as shown in Figure 2.3.

Figure 2.3: SPE Block Diagram

The SPU deals with instruction control and execution. It includes a single
register file with 128 registers (each one 128 bits wide), a unified (instructions and
data) 256-KB local store (LS), an instruction-control unit, a load and store unit,
two fixed-point units, a floating-point unit, and a channel-and-DMA interface. The
SPU implements a new SIMD instruction set, the SPU Instruction Set Architecture,
that is specific to the Broadband Processor Architecture.

Each SPU is an independent processor with its own program counter and is
optimized to run SPE threads spawned by the PPE. The SPU fetches instructions
from its own LS, and it loads and stores data from and to its own LS. With respect
to accesses by its SPU, the LS is unprotected and untranslated storage.

Most instructions operate in a SIMD fashion on 128 bits of data representing
either two 64-bit doubleprecision floating-point numbers or longer integers, four
32-bit single-precision floating-point numbers or integers, eight 16-bit subwords, or
sixteen 8-bit characters. The 128-bit operands are stored in a 128- entry unified
register file. Instructions may take up to three operands and produce one result.
The register file has a total of six read and two write ports.

The memory instructions also access 128 bits of data, with the additional con-
straint that the accessed data must reside at addresses that are multiples of 16
bytes. Thus, when addressing memory with vector load or store instructions, the
lower four bits of the byte addresses are simply ignored. To facilitate the loading



2.1. CELL BROADBAND ENGINE 19

and storing of individual values, such as a character or an integer, there is additional
support to extract or merge an individual value from or into a 128-bit register.

An SPE can dispatch up to two instructions per cycle to seven execution units
that are organized into even and odd instruction pipes, as shown in Figure 2.4.
Instructions are issued in order and routed to their corresponding even or odd pipe
by the issue logic, that is, a component which examines the instructions and deter-
mines how they are to be executed, based on a number of constraints. Independent
instructions are detected by the issue logic and are dual-issued (i.e., dispatched two
per cycle) provided they satisfy the following condition: the first instruction must
come from an even word address and use the even pipe, and the second instruction
must come from an odd word address and use the odd pipe. When this condi-
tion is not satisfied, the two instructions are executed sequentially. The instruction
latencies and their pipe assignments are shown in Figure 2.5.

Figure 2.4: Synergistic Processor Element architecture

The SPE’s 256-KB local memory supports fully pipelined 16-byte accesses (for
memory instructions) and 128-byte accesses (for instruction fetches and DMA trans-
fers). Because the memory has a single port, instruction fetches, DMA, and memory
instructions compete for the same port. Instruction fetches occur during idle mem-
ory cycles, and up to 3.5 fetches may be buffered in the instruction fetch buffer to
better tolerate bursty peak memory usage. The maximum capacity of the buffer
is thus 112 32- bit instructions. An explicit instruction can be used to initiate an



20 CHAPTER 2. PLATFORM

inline instruction fetch.

Figure 2.5: Latencies and pipe assignment for SPE

The SPE hardware assumes that branches are not taken, but the architecture al-
lows for a “branch hint” instruction to override the default branch prediction policy.
In addition, the branch hint instruction causes a prefetch of up to 32 instructions,
starting from the branch target, so that a branch taken according to the correct
branch hint incurs no penalty. One of the instruction fetch buffers is reserved for
the branch-hint mechanism. In addition, there is extended support for eliminating
short branches by using select instructions.

To access global data shared between threads executing on the PPE and other
SPEs, each SPE includes an MFC, which performs data transfers between SPU-
local storage and system memory. The MFC provides the SPEs with access to
system memory by supporting high-performance direct memory access (DMA) data
transfer between the system memory and the local store. Data transfers can range
in size from a single byte to 16-Kbyte blocks.

The MFC transfers copy between local store and system memory. An MFC
transfer request specifies the local store location as the physical address in the lo-
cal store. It specifies the system memory address as a Power Architecture virtual
address, which the MFC’s memory management logic translates to a physical ad-
dress based on system-wide page tables that the Power Architecture specification
provides.

Using the same virtual addresses to specify system memory locations indepen-
dent of processor element type enables seamless data sharing between threads ex-
ecuting on both the PPE and SPE. An application executing on Cell can pass a
PPE-generated pointer to code executing on the SPE and use it to specify the source
or target in an MFC transfer request. Using full memory translation also ensures
data protection between processes, as a thread can only access the system memory



2.1. CELL BROADBAND ENGINE 21

mapped into the associated process’s virtual memory space.
Finally, using virtual addressing makes traditional operating system services

such as demand paging available to SPE threads. When an SPE thread references
paged-out memory via its associated MFC, the MFC’s memory management unit
generates a page-fault exception and delivers it to the PPE. The PPE then services
the page fault on behalf of the SPE. When the page fault service has completed,
the PPE restarts the MFC transfer that caused the page fault.

2.1.3 Element Interconnect Bus

The Element Interconnection Bus (EIB) [M. 06b], [et 05], [A. 05], [Sca09] is a com-
munication bus internal to the Cell processor which connects the various on-chip
system elements: the PPE processor, the memory controller (MIC), the eight SPE
coprocessors, and two offchip I/O interfaces, for a total of 12 participants, as shown
in Figure 2.6. The EIB has separate communication paths for commands (requests
to transfer data to or from another element on the bus) and data. Each bus element
is connected through a point-to-point link to the address concentrator, which re-
ceives and orders commands from bus elements, broadcasts the commands in order
to all bus elements (for snooping), and then aggregates and broadcasts the command
response. The command response is the signal to the appropriate bus elements to
start the data transfer.

The EIB data network consists of four 16- byte-wide data rings: two running
clockwise, and the other two counterclockwise. Each ring potentially allows up to
three concurrent data transfers, as long as their paths don’t overlap. To initiate a
data transfer, bus elements must request data bus access. The EIB data bus arbiter
processes these requests and decides which ring should handle each request. The
arbiter always selects one of the two rings that travel in the direction of the shortest
transfer, thus ensuring that the data won’t need to travel more than halfway around
the ring to its destination. The arbiter also schedules the transfer to ensure that it
won’t interfere with other in-flight transactions. To minimize stalling on reads, the
arbiter gives priority to requests coming from the memory controller. It treats all
others equally in round-robin fashion. Thus, certain communication patterns will
be more efficient than others.

The EIB operates at half the processor-clock speed. Each EIB unit can simulta-
neously send and receive 16 bytes of data every bus cycle. The EIB’s maximum data
bandwidth is limited by the rate at which addresses are snooped across all units in
the system, which is one address per bus cycle. Each snooped address request can
potentially transfer up to 128 bytes, so in a 3.2GHz Cell processor, the theoretical
peak data bandwidth on the EIB is 128 bytes × 1.6 GHz = 204.8 Gbytes/s.

The on-chip I/O interfaces allow two Cell processors to be connected using a
coherent protocol called the broadband interface (BIF), which effectively extends the



22 CHAPTER 2. PLATFORM

Figure 2.6: Element interconnect bus (EIB)

multiprocessor network to connect both PPEs and all 16 SPEs in a single coherent
network.

2.2 Playstation3

Currently the easiest and the cheapest way to gain access to a Cell processor is the
Sony PlayStation 3 (PS3) [Son]. As mentioned before, Cell processor was originally
designed for PS3 and the vision was to achieve 1,000 times the performance of
PlayStation 2. Due to the need of access to the Cell’s computational power a Linux
based operating system designed to run on PS3. The need for real Cell hardware
mainly derives from the fact that IBM’s Cell simulator is very slow. Today anybody
can have access to the Cell processor by just installing an OS on PS3 and using it
as a normal PC with high capabilities. Although PS3 is an easy solution it may
not be the best, PS3 has some limitations on the performance of Cell. The main
limitations are the small memory, only 256 MB and the availability of only six SPEs



2.2. PLAYSTATION3 23

out of eight. One of the eight SPEs is disabled at the hardware level due to yield
reasons and another SPE is reserved for use by the PS3’s operating system. Apart
from these limitations PS3 remains a good choice for anybody who wants to have
its own Cell processor.

2.2.1 Operating System

The PS3 is shipped with an operating system called Game OS but is capable of
running Linux OS if installed on the console’s hard drive. The Linux operating
system runs on the PS3 on top of a virtualization layer, also called hypervisor,
the Game OS. This means that all the hardware is accessible only through the
hypervisor calls. The hardware signals the kernel through virtualized interrupts.
The interrupts are used to implement callbacks for non-blocking system calls. The
Game OS permanently occupies one of the SPEs and controls access to the hardware.
A direct consequence of this is larger latency in accessing hardware such as the
network card. Even worse, it makes some hardware inaccessible like the accelerated
graphics card. At this point, there are numerous distributions that have official or
unofficial support for PS3. The distributions that are currently known to work on
PS3 (with varying levels of support and end-user experience) include:

• Fedora Core 7 [Red]

• YellowDog 6.0 [Ter]

• Gentoo PowerPC 64 edition [Gen]

• Debian [Deb]

All the distributions mentioned include Sony-contributed patches to the Linux
kernel-2.6.16 to make it work on PS3 hardware and talk to the hypervisor. However,
the Linux kernel version 2.6.20 has PS3 support already included in the source code
without the need for external patches.

2.2.2 Memory System

The memory system is built of dual-channel Rambus Extreme Data Rate (XDR)
memory. PS3 provides a modest amount of memory of 256 MB, out of which
approximately 200 MB is accessible to Linux OS and applications. The memory
is organized in 16 banks. Real addresses are interleaved across the 16 banks on
a naturally aligned 128-byte (cache line) basis. Addresses 2 KB apart generate
accesses to the same bank. For all practical purposes the memory can provide the
bandwidth of 25.6 GB/s to the SPEs through the EIB, provided that accesses are
distributed evenly across all the 16 banks.



24 CHAPTER 2. PLATFORM

2.2.3 Network Card

The PS3 has a built-in GigaBit Ethernet network card. However, unlike standard
PC’s Ethernet controllers, it is not attached to the PCI bus. It is directly connected
to a companion chip. The network card has a dedicated DMA unit, which allows
making data transfer without PPE’s intervention. One of many advantages of Gi-
gaBit Ethernet is the possibility of increased frame size – so called Jumbo Frames.
It can increase available bandwidth by 20% in some case and significantly decreases
processor load when handling network traffic.

2.2.4 Graphics Card

PS3 features special edition from NVIDIA and 256 MB of video RAM. Unfortu-
nately, the virtualization layer does not allow access to these resources. At issue
is not as much accelerated graphics for gaming as is off-loading of some of the
computations to GPU and scientific visualization.



Chapter 3

Glimmer Algorithm

This chapter presents the Gene Locator and Interpolated Markov Modeler (Glim-
mer) algorithm that has been ported on the Cell processor. Glimmer was the
primary microbial gene finder used at The Institute for Genomic Research (TIGR),
where it was first developed, and has been used to annotate the complete genomes
of over 100 bacterial species from TIGR and other labs. The methodology, the basic
steps of algorithm as well as matters of algorithm input and output are introduced
in this chapter.

3.1 An Introductory Background On Biology

One of the fundamental principles of biology is that within each cell, DNA that
comprises the genes encodes RNA which in turn produces the proteins that regulate
all of the biological processes within an organism.

DNA is a double chain of simpler molecules called nucleotides, tied together in
a double helix helical structure. The nucleotides are distinguished by a nitrogen
base that can be of four kinds: adenine (A), cytosine (C), guanine (G) and thymine
(T). Adenine (A) always bonds to thymine (T) whereas cytosine (C) always bonds
to guanine (G), forming base pairs. DNA can be specified uniquely by listing its
sequence of nucleotides, or base pairs. Proteins are molecules that accomplish most
of the functions of a living cell, determining its shape and structure. A protein is a
linear sequence of molecules called amino acids. Twenty different amino acids are
commonly found in proteins. Similar to DNA, proteins are conveniently represented
as a string of letters expressing their sequence of amino acids. A gene is a contiguous
stretch of genetic code along the DNA that encodes a protein. Not all parts of a
DNA molecule encode genes; some segments, called introns, have no influence on
protein synthesis[Dav05].

In molecular genetics, an open reading frame (ORF) is a portion of an organism’s

25



26 CHAPTER 3. GLIMMER ALGORITHM

genome which contains a sequence of bases that could potentially encode a protein.
In a gene, ORFs are located between the start-code sequence (initiation codon)
and the stop-code sequence (termination codon). ORFs are usually encountered
when sifting through pieces of DNA while trying to locate a gene. Since there exist
variations in the start-code sequence of organisms with altered genetic code, the
ORF will be identified differently[The].

3.2 Gene Identification Problem

Accurate microbial gene identification is becoming ever more important with the
increasing rate of whole genome sequencing projects. In the past year alone, eight
new bacterial and archaeal genomes have appeared, and the pace continues to accel-
erate. Each new genome contains thousands of new genes, all of which are deposited
into public databases. These genes then become the basis for much further research
into the biology of these organisms, and their sequences are used for further bio-
logical study. For work such as microarray analysis, in which specific sequences are
arrayed onto a substrate and used as probes to measure expression levels, the ac-
curacy of gene predictions is critical. The same point can be made about knockout
experiments, which are an important tool to use in determining the function of the
large numbers of genes whose function is unknown at the time of publication. Such
hypothetical proteins typically comprise 30–40% of the genes in a newly sequenced
genome.

The sizes of biological sequence databases are usually very large. Not all the
sequences are coding, namely are a template for a protein. For example, in the
human genome only 3%-5% of the sequences are coding. Due to the size of the
database, manual searching of genes who do code for proteins is not practical. Gene-
findings aim to provide computational methods to automatically identify genes that
encode proteins[Ste99][Dav05].

3.3 Interpolated Markov Models and Markov Chains

Markov models are a well-known tool for analyzing biological sequence data, and
the predominant model for microbial sequence analysis is a fixed-order Markov
chain[BM93][BD95]. A fixed order Markov model predicts each base of a DNA
sequence using a fixed number of preceding bases in the sequence. For example,
a 5th-order model uses the five previous bases to predict the next base. However,
learning such models accurately can be difficult when there is insufficient training
data to accurately estimate the probability of each base occurring after every pos-
sible combination of five preceding bases. In general, a kth-order Markov model



3.3. INTERPOLATED MARKOV MODELS AND MARKOV CHAINS 27

for DNA sequences requires 4k+1 probabilities to be estimated from the training
data (e.g., 4096 probabilities for a 5th-order model). In order to estimate these
probabilities, many occurrences of all possible kmers must be present in the data.

An IMM overcomes this problem by combining probabilities from contexts of
varying lengths to make predictions, and by only using those contexts (oligomers)
for which sufficient data are available. In a typical microbial genome some 5mers
will occur too infrequently to give reliable estimates of the probability of the next
base, while some 8mers may occur frequently enough to give very reliable estimates.
In principle, using longer oligomers is always preferable to using shorter ones, but
only if sufficient data is available to produce good probability estimates. An IMM
uses a linear combination of probabilities obtained from several lengths of oligomers
to make predictions, giving high weights to oligomers that occur frequently and
low weights to those that do not. Thus an IMM uses a longer context to make a
prediction whenever possible, taking advantage of the greater accuracy produced
by higher-order Markov models. Where the statistics on longer oligomers are in-
sufficient to produce good estimates, an IMM can fall back on shorter oligomers to
make its predictions.

3.3.1 Markov Chains

A Markov chain[Ste98][Ste99][Twe05] is a sequence of random variables Xi, where
the probability distribution for each Xi depends only on the preceding k variables
Xi–1, ..., Xi–k, for some constant k. For DNA sequence analysis, a Markov chain
models the probability of a given base b as depending only on the k bases immedi-
ately prior to b in the sequence. We refer to these preceding k bases as the context
of base b in the sequence. A first order Markov chain is a sequence of random
variables where the probability that Xi takes a particular value only depends on the
preceding variable Xi–1. Note that for DNA sequences a first-order Markov chain
is specified completely by a matrix of 16 probabilities: p(a|a), p(a|c), ..., p(t|t).
The most common type of Markov chain is a fixed-order chain, in which the entire
k-base context is used at every position. For example, a fixed 5th-order Markov
chain model of DNA sequences comprises 45 = 1024 probability distributions, one
for each possible 5mer context. Such fixed 5th-order models have proven effective
at gene prediction in bacterial genomes[BM93][BD95]. Ideally, larger values for k
are always preferable.Unfortunately, because the training data available for building
models is limited, we must limit k. In most collections of DNA coding sequences,
however, there is substantial variability in the frequency of occurrence of different
kmers.

The Glimmer algorithm uses seven submodels to find genes in microbial DNA.
The algorithm builds six submodels one for each of the possible reading frames
(three forward and three revers) and a seventh model for non-coding regions. Each



28 CHAPTER 3. GLIMMER ALGORITHM

model makes different predictions for the bases in the three codon positions. Even
with a 0th-order model, the frequency of g in codon position 1 will be different from
its frequency in another frame, so even this very weak model has some ability to
identify the right reading frame for a gene.

Using the Markov models for each of the six possible frames plus a model of
non-coding DNA, we can straightforwardly produce a simple algorithm for finding
genes. Simply score every orf using all seven models, and choose the model with
the highest score. The scores can be normalized so they represent the probability
that a sequence is coding. If the model corresponding to the true coding region in
the correct frame scores the highest, then the orf can be labeled as a gene.

3.3.2 Interpolated Markov Models (IMMs)

An Interpolated Markov Model (IMM)[Ste98][Ste99] uses a combination of all the
probabilities based on 0, 1, 2, ..., k previous bases, where k is a parameter given
to the algorithm. In GLIMMER, we use k = 8. Thus for oligomers that occur
frequently, the IMM can use an 8th-order model, while it might use a 5th or even
lower-order model for rare oligomers. In order to ‘smooth’ its predictions, an IMM
uses predictions from the lower-order models, where much more data is available,
to adjust the predictions made from higher-order models.

During training, GLIMMER computes the probability of each base a, c, g, t,
following all kmers for 0 ≤ k ≤ 8. Then, for each kmer it computes a weight to use
in combining the predictions of different order models. Details of the algorithm for
computing these weights are given in the Algorithm and system design section. Once
the weights are computed, GLIMMER evaluates new sequences by computing the
probability that the model M generated the sequence S, P (S|M). This probability
is computed as

P (S|M) =
n∑
x=1

IMM8(Sx) (3.1)

where Sx is the oligomer ending at position x, and n is the length of the sequence.
IMM8(Sx), the 8th-order interpolated Markov model score, is computed as

IMMk(Sx) = λk(Sx–1) · Pk(Sx) + [1–λk(Sx–1)] · IMMk–1(Sx) (3.2)

where λk(Sx–1) is the numeric weight associated with the kmer ending at position x
– 1 in the sequence S and Pk(Sx) is the estimate obtained from the training data of
the probability of the base located at x in the kth-order model. Thus, the 8th-order
IMM score of an oligomer is a linear combination of the predictions made by the
8th, 7th and lesser-order models all the way down to the 0th-order model, which is
just the simple prior probabilities of a, c, g, t.



3.3. INTERPOLATED MARKOV MODELS AND MARKOV CHAINS 29

3.3.3 Interpolated Context Models (ICMs)

Interpolated context models (ICMs)[Ste99] are a further extension of IMMs. For a
given context C = b1b2 . . . bk of length k, the IMM in GLIMMER 1.0 computes a
probability distribution for bk+1 using as many of the bases immediately preceding
bk+1 as the training data set allows. The ICM is more flexible and can select any
of the bases in C (not just those adjacent to bk+1) to determine the probability of
bk+1. In general, from a given context, the ICM will choose approximately the same
number of bases as the IMM. In GLIMMER 2.0, the motivation for choosing bases
other than those at the end of the context is the fact that in coding regions the
significance of a given base depends strongly on its position in a codon.

The criterion employed by the ICM to select which bases of a context C to use
is mutual information. The mutual information between a given pair of discrete
random variables X and Y is defined to be:

I(X;Y ) =
∑
i

∑
j

P (xi, yi)log(
P (xi)P (yi)

P (xi, yi)
) (3.3)

where xi and yj are the values taken by random variables X and Y respectively, and
P (xi, yj) is the joint probability of xi and yj together.

To construct an ICM with context length k from a training set T of DNA se-
quences, we begin by considering all windows (i.e. oligomers) of length k+1 that
occur in T. The algorithm lets random variable X1 be the distribution of bases in
the first position of those windows; X2 be the distribution of bases in the second
position; and so on through Xk+1.It then calculates the mutual information values
I(X1;Xk+1), I(X2;Xk+1), . . . , I(Xk;Xk+1), and choose the maximum. Suppose that
maximum is I(Xj;Xk+1). It then partitions set of windows into four subsets based
on the nucleotide that occurs in position j in the window.

The same procedure can now be performed again for each of the four sets of
windows. Within each set, the position that has the highest mutual information
with the base at position k+1 is chosen. The four nucleotide values at that position
induce a further partitioning of the current set of windows into four subsets.

This process can be viewed as constructing a tree of positions within context
strings. A sample portion of such a tree is shown in Figure 3.1. The construction is
terminated when the tree depth reaches a predetermined limit, or when the size of
a set of windows becomes too small to be useful to estimate the probability of the
last base position.

Each node in the ICM decomposition tree represents a set of windows that
provide a probability distribution for the final base position. The root node, which
includes all possible windows, represents a 0th-order Markov model. All other nodes
give a probability distribution for the final base position, conditional on a specific



30 CHAPTER 3. GLIMMER ALGORITHM

Figure 3.1: Sample ICM decomposition tree

set of bases occurring at the positions indicated on the path to the root from that
node.

3.4 Glimmer Algorithm

Glimmer (Gene Locator and Interpolated Markov Modeler) [Ste98][Dav05] finds
genes in microbial DNA. Its uses interpolated Markov models (IMMs) to identify
coding and noncoding regions in the DNA. The program consists of essentially two
steps: the first step trains the IMM from an input set of sequences, the second step
uses this trained IMM for finding putative genes in the input genome.

3.4.1 Algorithm Input

Glimmer takes a sequence file in FASTA format. FASTA format is a text-based
format for representing either nucleotide sequences or peptide sequences, in which



3.4. GLIMMER ALGORITHM 31

base pairs or amino acids are represented using single-letter codes. The format also
allows for sequence names and comments to precede the sequences. The simplicity
of FASTA format makes it easy to manipulate and parse sequences using text-
processing tools and scripting languages like Python and Perl.

3.4.2 Algorithm Output

The algorithm outputs a list of all open reading frames (orfs) together with scores
for each as a gene. An open reading frame (ORF) is a portion of an organism’s
genome which contains a sequence of bases that could potentially encode a protein.

3.4.3 The Glimmer System

The GLIMMER system consists of four programs.The first program long-orfs takes
a sequence file in FASTA format and outputs a list of all long ”potential genes” in
it that do not overlap by too much. The extract program takes a FASTA format
sequence file and a file with a list of start/stop positions in that file as produced by
the long-orfs program and extracts and outputs the specified sequences. Program
build-icm creates and outputs an interpolated Markov model (IMM) as describe in
the section 3.3.2. Final, the glimmer2 takes a sequence file in FASTA format and
a collection of Markov models for genes as produced by the program build-icm . It
outputs a list of all open reading frames (orfs) together with scores for each as a
gene.

Glimmer does not use sliding windows to score regions. Instead, it first identifies
all orfs longer than some specified threshold value, and scores each one in all six
reading frames. Those that score higher than a designated threshold in the correct
reading frame are then selected for further processing. These selected orfs are then
examined for overlaps. If two orfs in different reading frames overlap (by more than
some designated minimum length), the overlapping region alone is scored separately.
The overlap region’s six reading frame scores are then compared with those of the
two overlapping orfs to see which frame scores highest. In general, when a longer
orf overlaps a shorter orf and the overlap region scores highest in the reading frame
of the longer orf, then the shorter orf is eliminated as a gene candidate. The final
output of the program is a list of putative gene coordinates in the genome, together
with notations for each one that may have had a suspicious overlap with another
gene candidate. These ‘suspect’ gene candidates (usually a very small percentage
of the total) can then be examined manually to determine if they are in fact genes.



32 CHAPTER 3. GLIMMER ALGORITHM



Chapter 4

Long-Range Noise Propagation
and Helicopter Path Optimization
for Noise Reduction

This chapter presents the Long-Range Noise Propagation and Helicopter Path Opti-
mization for Noise Reduction algorithm that has been ported on the Cell processor.
The algorithm developed by FORTH Research at Heraklion of the Crete [FOR].

This application is an accurate and computationally efficient procedure for the
prediction of long-range propagation over realistic, complex terrain of the low fre-
quency noise components from helicopter rotors. The sound propagation method
is based on the computationally efficient parabolic equation (PE) approach that
describes accurately the time-harmonic, far-field sound propagation. Accurate and
efficient methods developed in the past are used for the numerical solution. At-
mospheric, terrain impedance, Geographic Information System (GIS) models or
measurements are used for realistic PE predictions. Standard optimization tech-
niques are combined with the computationally efficient long-range noise propaga-
tion method to prescribe the helicopter flight path that minimizes noise level at the
reception point. The methodology, the basic steps of algorithm as well as matters
of algorithm input and output are introduced in this chapter.

4.1 Introduction and Background

The aerodynamic noise generated by helicopter rotors has been thoroughly studied
in the past. Despite the efforts for improved aerodynamic designs that reduce
noise emission from helicopter rotors, helicopter noise remains a problem for both
civilian and military missions. Low frequency noise components from helicopter
rotors propagate with small attenuation over long distances in the atmosphere. As

33



34CHAPTER 4. LONG-RANGE NOISE PROPAGATION ANDHELICOPTER PATHOPTIMIZATION FORNOISE REDUCTION

a result, noise received at remote locations gives warning for the approaching vehicle
long before it is visible at the reception point. Prediction of long-range propagation
of noise over complex terrain and selection of the optimal helicopter flight path that
yields the minimum noise level at the reception point is therefore important for
mission success.

Long-range propagation of noise over complex terrain is described by the Euler
linear equations [J. 09]. However, the numerical solution of these equations is far
from trivial and computationally intensive even for moderate-size domains, because
it requires application of high-order accurate in space and time, low-diffusion nu-
merical methods, which are needed in order to propagate the sound waves with
minimal distortion. On the other hand, application of the efficient but approx-
imate ray methods for noise propagation does not yield accurate predictions for
sound waves propagating over complex terrain, in inhomogeneous environment, and
strong wind gradients. Understanding noise propagation mechanisms in the atmo-
sphere has attracted significant attention due to the great socio-economic impact of
controlling environmental noise levels. The atmosphere is an inhomogeneous moving
medium where winds, atmospheric turbulence, and temperature variations result in
a height- and range-varying sound speed in the air. The significant variation of the
sound speed in the atmosphere combined with the complexity of the terrain adds
more difficulties to long-range noise prediction.

For near-horizontal sound propagation in an inhomogeneous atmosphere, “parax-
ial approximations” of the Helmholtz equation[S. 08] in cylindrical coordinates that
yield a parabolic equation in range have been effectively used in the past to model
long-range propagation. In particular, the standard narrow-angle parabolic equa-
tion approximation introduced by Tappert [N. 08] and the third-order wide-angle
parabolic approximation introduced by Claerbout [N. 08] were used to model sound
propagation in axially symmetric atmosphere. In addition, these methods were
coupled with atmospheric turbulence models to study the effects of atmospheric
turbulence on sound propagation. Numerical simulations of acoustic propagation in
an atmosphere with height-dependent sound speed and surfaces with range varying
impedance were also carried out. Recently, numerical models based on the parabolic
approximation for sound propagation in the atmosphere were interfaced with a ge-
ographic information system (GIS) for the prediction of sound propagation over
irregular terrain.

An additional simplification may be introduced with the use of Green functions
[G. 89] approach for the Parabolic Equation. The Green function approach is ex-
pected to significantly reduce the computing cost of three-dimensional solutions.
However, the Green function approach introduces additional modeling error and
evaluation of this approach through comparisons with the full parabolic equation
solutions is needed especially for the three-dimensional cases



4.2. PROBLEM STATEMENT 35

4.2 Problem Statement

The objective of this research is to identify the flight path of a flying object that
yields minimum sound levels at a given reception point. This approach is demon-
strated with the simple two-dimensional schematic of Fig. 4.1 where the optimiza-
tion parameter is the flight height, H, of the noise source (helicopter) from an irreg-
ular terrain. The optimal height is determined for several stations, O1, O2, . . . , ON ,
by repeating the optimization problem N times for progressively reduced domains,
and the optimal flight path is determined as shown in Fig. 4.1.

Figure 4.1: Schematic of long-range noise propagation of a helicopter flying at height
H.

In three dimensions, the optimization problem is more complex but still possible
to be solved (even the three-dimensional parabolic equation can be solved very
efficiently).



36CHAPTER 4. LONG-RANGE NOISE PROPAGATION ANDHELICOPTER PATHOPTIMIZATION FORNOISE REDUCTION

4.3 The PE-method in sound propagation

The standard parabolic equation (PE) was introduced by Tappert [F. ] as a model
to describe time-harmonic, narrow-angle, far-field sound propagation in underwater
acoustics. For the range r and depth z, using the approximation

φ(r, z) = u(r, z)H(r), (4.1)

where H(r) is the Hankel function of the first kind and zero order, the PE can be
obtained by decomposing the elliptic wave equation

[∂rr + (
1

r
)∂r + ∂zz + k2(r, z)]φ = 0 (4.2)

Furthermore, by ignoring the term urr the following parabolic approximation of the
elliptic wave equation is obtained

ur =
ik0

2
[n2(r, z)− 1]u+

i

2k0

uzz, (4.3)

where n(r, z) = c0
c(r,z)

is the index of refraction, c(r,z) is the local sound speed, c0

is a reference sound speed, k0 = 2πf
c0

the associated reference wavenumber, and f is

the source frequency. Substituting α(r, z) = ik0
2

[n2(r, z)− 1] and β = i
2k0

,Eq.(4.3) is
written as

ur = α(r, z)u+ βuzz. (4.4)

For the solution of the Eq.(4.4) are used the following simple boundary conditions

u(r, 0) = u(r, zmax) = 0. (4.5)

4.4 PDE Solution with Crank-Nicholson Algorithm

Crank-Nicholson Algorithm is a classical model, which has been prove to be an
accurate and reliable approach in both 2D and 3D propagation [Cra]. CN-PE can
incorporate complex environments, while a lot of research has been carried out and
various techniques have been proposed, part of which was due to its application in
underwater acoustics, also. The main disadvantage of the method is the computa-
tional cost, resulting from the requirement for small discretization step in range.

For the solution of the Eq.(4.4) over a domain, it is necessairy the boundary
conditions. The Eq.(4.5) are the boundary conditions just over the terrain. We want
to find a numerical solution u that satisfies Eq.(4.4) over an orthogonal domain. We
assume that the domain is divided normally in the smaller orthogonals (∆r ×∆z)
by using a mesh. The solution u is calculated over the nodes of the mesh by using
the 2nd degree Crank-Nikolson.



4.5. CURVILINEAR TRANSFORMATIONS OF COORDINATES 37

A second-order accurate algorithm for implicit marching of Eq.(4.4) in the time-
like direction is obtained with the second-order accurate Crank-Nicholson (CN-2)
method [

U − ∆r

2
R
]n+1

k
=

[
U +

∆r

2
R
]n
k

(4.6)

where Un
k is the approximal solution u of the Eq.(4.4) over node (n∆r, k∆z) and

R(u) = ur.
Second-order accurate in space numerical solutions with the CN-2 method of

Eq.(4.6) imply the following tridiagonal matrix inversion

alU
n+1
k−1 + blU

n+1
k + alU

n+1
k+1 = arU

n
k−1 + brU

n
k + arU

n
k+1, (4.7)

where the coefficients for the CN-2 scheme of Eq.(4.7) are

al = −βhrhz, ar = βhrhz,

bl = 1− αhr + 2βhrhz, br = 1 + αhr − 2βhrhz

with hr = ∆r
2

and hz = 1
(∆z)2

.

The Eq. (4.7) produces a tridiagonal system with unknown values the solution
of the PE of Eq. (4.4) on the discretization nodes. A tridiagonal algorithm [C. 00]
resolves this system (a variance of LU method is used when the system table is
zero-valued apart from the central diagonal and sub-diagonals above and below).

4.5 Curvilinear Transformations of Coordinates

Numerical solutions of sound propagation in complex domains are obtained using
curvilinear transformations of coordinates ξ = ξ(r, z), η = η(r, z). These transfor-
mations map the physical domain (r,z), which is unequally spaced and irregular,
to an equally spaced rectangular domain, referred to as the (ξ, η) computational
domain. The numerical solution is performed in the computational domain equally
spaced grid using unweighted finite-difference formulas. A typical body-fitted grid
in which the η = constant lines follow the shape of the bottom and the ξ = constant
lines are approximately orthogonal to the bottom surface to facilitate application
of Neumann-type boundary conditions, is shown in Figure 4.2.

In most applications it is sufficient to use an equally spaced mesh with straight
lines along time-like, or ξ, direction and stretched grid lines fitted to the bottom
surface with irregular shape. Then,the simpler transformation of coordinates ξ =
ξ(r), η = η(r, z), is sufficient. A typical body-fitted grid, in which the η = constant
lines follow the shape of the bottom and the ξ =constant lines for each time-like
step are parallel lines not orthogonal to the bottom surface, is shown in Figure 4.3.



38CHAPTER 4. LONG-RANGE NOISE PROPAGATION ANDHELICOPTER PATHOPTIMIZATION FORNOISE REDUCTION

Figure 4.2: Orthogonal mesh over an irregular bottom.

Figure 4.3: Non-Orthogonal mesh over an irregular bottom.

4.6 CNPE Algorithm

This section describes the input, the output and the basic steps of the CNPE ap-
plication. The code of the algorithm has been developed by Dr. C. Arvanitis in
programming language C.

4.6.1 Algorithm Input

The CNPE application accepts as entry the position of the receiver, the height of
the transmitter and the topographic elements of a region.

4.6.2 Algorithm Output

The CNPE application returns the biggest received sound pressure by the receiver.



4.6. CNPE ALGORITHM 39

4.6.3 Basic Steps Of The Application

Step 1: The territorial region is separated in orthogonal departments by using
curvilinear transformations of coordinates as shown in Figure 4.4.

Figure 4.4: Schematic of the seperated territorial region.

Step 2: The CNPE algorithm is applied for various heights and lengths as shown
in Figure 4.5.

Figure 4.5: The CNPE is applied for each height.



40CHAPTER 4. LONG-RANGE NOISE PROPAGATION ANDHELICOPTER PATHOPTIMIZATION FORNOISE REDUCTION

Step 3: For every height and length the CNPE method resolves the tridiagonal
system and calculates Max Receiving Pressure to the receiver as shown in
Figure 4.6.

Figure 4.6: The calculation of the Max Receiving Pressure of the receiver.

Step 4: The pressure vector is created for every height as shown in Figure 4.7.

Step 5: The height that causes the minimum sound pressure to the receiver is
calculated. Repeating the same process for each length the optimal path is
designed as shown in Figure 4.8.



4.6. CNPE ALGORITHM 41

Figure 4.7: The Max Receiving Pressure of the receiver for each height.

Figure 4.8: The optimal flight path.



42CHAPTER 4. LONG-RANGE NOISE PROPAGATION ANDHELICOPTER PATHOPTIMIZATION FORNOISE REDUCTION



Chapter 5

Implementation Of The Glimmer

This chapter describes the process of enabling the Glimmer algorithm to the Cell
processor on the Playstation 3. Programming for the CBE processor requires an
understanding of parallel programming. Traditional computing platforms contain
a single processor, which computes a single thread of control. High-performance
computing platforms contain many processors, with potentially many threads of
control.

The first, vital step in parallelizing any program is to consider where there might
be exploitable concurrency. Time spent analyzing the program and its algorithms
and data structures will be repaid many-fold in the implementation and coding
phase. In other words, by no means immediately start to code a program to take
advantage of this or that parallel programming model. Spend time understanding
the data flow, data dependencies, and functional dependencies.

The most important question is: Will the anticipated speedup from parallelizing
a program be greater than the effort to parallelize a program, which includes any
overhead for synchronizing different tasks or access to shared data? The second
question is: Which parts of the program are the most computationally intensive?
It is worthwhile to do initial performance analysis on typical data sets, to be sure
the hot spots in the program are being targeted.

When you know which parts of the program can benefit from parallelization,
you can consider different patterns for breaking down the problem. Ideally, you can
identify ways to parallelize the computationally-intensive parts:

• Break down the program into tasks that can execute in parallel.

• Identify data that is local to each subtask.

• Analyze dependencies among tasks.

In this context, a task is a unit of execution that is enough to keep one processor

43



44 CHAPTER 5. IMPLEMENTATION OF THE GLIMMER

element busy for a significant amount of time, and that performs enough work to
justify any overhead for managing data dependencies. Key elements to examine are:

• Function calls.

• Loops.

• Large data structures that could be operated on in chunks.

This chapter refers with details to explain the overall development flow that
was followed in our implementation as the data partitioning procedure, the levels of
parallelism, the data transfers and the code optimizations. It also describes some
of the problems that were encounter during the development and the solutions that
were provided.

5.1 The Programming Model

The programming model that was chosen for our implementation was the function
offload model [IBM08b],[A. 07],[et 05]. The function offload model is the quickest
way to effectively use the Cell processor with an existing application. In this model,
the main application runs on the PPE and calls selected procedures to run on one
or more SPEs. In this programming model, the SPEs are used as accelerators
for certain types of performance-critical functions, hotspots. This model replaces
complex or performance-critical functions invoked by the main application with
functions offloaded into one or more SPEs, without changing the main application
logic at all. The original performance-critical function is optimized and recompiled
for the SPE environment and an SPE-executable program is being created.

Currently, the programmer statically identifies which functions should execute
on the PPE and which should be offloaded to SPEs by utilizing separate source and
compilation for the PPE and SPE components. It is also programmer’s responsibil-
ity to manually partition and schedule the work to one or more SPEs. This model
was selected because we already had an implementation of the Glimmer algorithm
and we just wanted to improve the performance of the algorithm with parallelism.

5.2 The Application Enablement Process

The process of enabling an application on Cell BE can be incremental and iterative
[A. 07]. It is incremental in the sense that the hotspots of the application should
be moved progressively off the PPE to the SPE. It is iterative as for each hotspot,
the optimization can be refined at the SIMD, synchronization and data movement
levels until satisfactory levels of performance are obtained.



5.3. PROFILING 45

As for the starting point, a thorough profiling of the application on a general
purpose system (PPE is just fine for this) will give all the hotspots that need to be
looked at. Then, for each hotspot, we can write a multi-SPE implementation with
all the data transfer and synchronization between the PPE and the SPE. Once this
first implementation is working, we then turn to the SIMDization and tuning of the
SPE code. The last two steps can be repeated in a tight loop until we get a good
performance. We can repeat the same process for all the major hotspots. This is
shown in Figure 5.1.

Figure 5.1: Application enablement process.

5.3 Profiling

The first step of the application enablement process is the profiling, as shown in
Figure 5.1. The system that we used was a Intel P4 at 2,66Mhz with 1GB memory,
operating system Ubuntu 8.04 and Vtune Performance Analyzer 9.0 for Linux. For
profiling we have used input datasets of various sizes from Bioperf suite. Below, we
present the results of profiling for various datasets.



46 CHAPTER 5. IMPLEMENTATION OF THE GLIMMER

• Table 5.1 and Table 5.2 show the results of the profiling for dataset CLASS
A NC004061.fna.

Program Clockticks (%) Clockticks Events

Build-icm 48.02 5894526000
Glimmer2 16.96 2082146000
Long-orfs 2.72 333250000
Extract 1.02 125302000
Get-Putative 0.09 10664000

Table 5.1: Results of the profiling GLIMMER for Dataset CLASS A NC004061.fna

Build-icm
Function Clockticks (%) Clockticks Events

count window 40.78 1940848000
count base pairs with 35.24 1676914000
get mut info 18.21 866450000

Table 5.2: Function-wise breakout of Build-icm program

• Table 5.3 and Table 5.4 show the results of the profiling for dataset CLASS B
NC003062.fna.

Program Clockticks (%) Clockticks Events

Glimmer2 73.47 83909684000
Build-icm 7.84 8955094000
Long-orfs 1.25 1428976000
Extract 0.36 413230000
Get-Putative 0.14 162626000

Table 5.3: Results of the profiling GLIMMER for Dataset CLASS B NC003062.fna

• Table 5.5 and Table 5.6 show the results of the profiling for dataset CLASS
C NC004463.fna.



5.4. THE HOTSPOT OF THE GLIMMER 47

Glimmer2
Function Clockticks (%) Clockticks Events

get prob of window1 63.78 35948344000
filter 17.26 9728234000

Table 5.4: Function-wise breakout of Glimmer2 program

Program Clockticks (%) Clockticks Events

Glimmer2 82.20 399329476000
Build-icm 3.99 19389818000
Long-orfs 0.94 4572190000
Extract 0.26 1271682000
Get-Putative 0.11 551862000

Table 5.5: Results of the profiling GLIMMER for Dataset CLASS C NC004463.fna

Glimmer2
Function Clockticks (%) Clockticks Events

get prob of window1 61.82 159272172000
filter 19.78 50976586000

Table 5.6: Function-wise breakout of Glimmer2 program

Figure 5.2 shows the most time-consuming part of the Glimmer application for
various datasets. After observating the results, we decided to offload the function
get prob of window1 to the SPEs. This is a useful fact for an implementation on the
Cell processor as significant speed up might be obtained for the Glimmer application
by only offloading function get prob of window1 to the SPUs.

5.4 The Hotspot of the Glimmer

An important thing that makes the function get prob of window1 the most time-
consuming part of the Glimmer application is the fact that it is executed many
times, as shown in Table 5.7. From Figure 5.3, we observe that the computation-
intensive part of the get prob of window1 is the for-loop statement. For each call
of the function, the processor executes seven iretations of the for-loop, seven mul-
tiplications, seven additions, seventeen loads and many branches. The SPEs are
dual-issue processors, and can perform a load, store, shuffle, channel or branch op-



48 CHAPTER 5. IMPLEMENTATION OF THE GLIMMER

Figure 5.2: Function-Wise Breakout for various datasets.

eration in parallel with a computation. With a 6 cycle load latency to the 256kB
local store and software controlled branch prediction, the SPE is highly effective at
computation (basically anything with a loop that can be unrolled and interleaved),
but not optimally efficient at “gcc/TPCC” (load-compare-add- branch) type codes.
From the above it is concluded that the code of the function get-prob-of-window1
might not to be suitable to offload to the SPUs.

CLASS A CLASS B CLASS C

TOTAL CALLS 1109432 54549884 259799328

Table 5.7: Total calls of the function get prob of window1

5.5 Data Flow Analysis

After having decided which function would run on the SPEs, a data flow analysis
was required to determine the amount of data that had to be transferred to the
SPEs LS. The function has three input arguments, a value type of integer, a data
structure of type tModel, an array of type char and returns a value type of double.
The data structure contains an integer and a floating point array with four elements.
The size of the Delta array remains the same except for the array orf. The number
of the orf array elements varies from 4281 to 17067 depending on the dataset. Table



5.5. DATA FLOW ANALYSIS 49

Figure 5.3: The code of the function get prob of window1.

5.8 shows the total size in Bytes for each input and output of the function and the
total size needed by the procedure get prob of window1.

From the data flow analysis, we observed that it was unable to execute the
function get-prob of window1 at the SPEs due to the limited size of their Local
Store (LS). This observation led us to the conclusion that in order to execute the
function get prob of window1 at the SPEs it was necessary to partition the data in
order to fit in the Local Store. The data partitioning on the six SPEs of the PS3
has not been possible due to the arbitrary values of the variable num node in the
function get prob of window1. Thus, the total size of data needed by each SPE was
over 441 KBytes, see Table 5.8.

From the code of the function, see Figure 5.3, we observed that the computation-
intensive part of the get prob of window1 is the for-loop statement, as described in
section 5.4. Thus, we decided to implement this part of the function at the SPEs



50 CHAPTER 5. IMPLEMENTATION OF THE GLIMMER

and the rest of the code at the PPE. From this assumption, the amount of data at
the Local Store is reduced due to the second member of the data structure tModel,
which is not needed for the execution of the for-loop statement. Furthermore, we
observed that this part of the code uses 8000 elements from the total 21845 of the
Delta array and returns a value type of integer. Thus, the new data flow analysis
is shown in Table 5.9.

Dataset Start Delta orf ret value Total

(Bytes) (Bytes) (Bytes) (Bytes) (Bytes)

CLASS A 4 436900 4281 8 441193
CLASS B 4 436900 8547 8 445459
CLASS C 4 436900 17067 8 453979

Table 5.8: The amount of data is needed by procedure for various datasets.

Dataset Start Delta orf ret value Total

(Bytes) (Bytes) (Bytes) (Bytes) (Bytes)

CLASS A 4 32000 4281 4 36289
CLASS B 4 32000 8547 4 40555
CLASS C 4 32000 17067 4 49075

Table 5.9: The new amount of data is needed by procedure for various datasets.

Figure 5.4 shows us the part of the code where the function get prob of window1
is called. From this Figure, we have observed that the procedure is called with
different arguments Delta and namely Delta0, Delta1 and Delta2. Thus, we need to
transfer two more arrays type of integer to the Local Store. Table 5.10 shows the
total amount of data that we must transfer to the Local Store.

Dataset Start Delta0,1,2 orf ret value Total

(Bytes) (Bytes) (Bytes) (Bytes) (Bytes)

CLASS A 4 3x32000 4281 4 100289
CLASS B 4 3x32000 8547 4 104555
CLASS C 4 3x32000 17067 4 113075

Table 5.10: The size of data is needed to store to Local Store.



5.6. DEVELOPMENT STAGES 51

Figure 5.4: The code where the function get prob of window1 is called.

5.6 Development Stages

This section refers with details the overall development flow that was followed in
our implementation as the levels of parallelism, the data transfers and the code
optimizations. The development stages were chosen prior to the beginning of the
code development and later revised. The purpose of introducing these stages was
to provide a way to monitor progress of the project and seemed like a practical way
to develop the solution. A detail development flow chart is shown on Figure 5.5.

Figure 5.5: The development flow chart.

For some or all of the development stages, we used an interative development



52 CHAPTER 5. IMPLEMENTATION OF THE GLIMMER

Figure 5.6: An interative development process.

process that includes the stages code,test and verify, as shown in Figure 5.6. The
code stage represents the actual physical writing of code. This may include the
implementation of a formal program specification or coding done without any doc-
umentation other than code directly from the programmers brain. The test stage
represents the testing of code that has been compiled. For Cell BE applications,
testing is still a necessary and critical step in producing well performing applica-
tions. The test process for Cell BE application will undoubtably require testing for
code performance. Testing is normally focused on code that runs on the Cell BE
SPU and the focus is more on making sure all code paths are processed and the
accuracy of the output. The verify stage represents an important aspect of many
Cell BE applications. The need for verification of code that runs on the SPU is
of special importance. Code being ported from other processor platforms presents
a unique oppurtunity. The verification of Cell BE programs is done by comparing
output from the original application for accuracy.

All the code has been developed with the use of IBM’s Cell SDK 3.1 and Full-
System Simulator. For the final stage of the development a PS3 was used with
Yellow Dog Linux 6.0 OS.

5.6.1 Implementation on x86 Architecture

At this stage we used the code of the GLIMMER algorithm from Bioperf suite.
We split the code of the get prob of window1 in two parts, as described in section
5.5. Furthermore, we used 8000 elements for the array Delta instead of 21845 and a
maximum of 8000 elements for the array orf. The goal from this stage was to prove
that the basic algorithm produced correct results and would meet our requirements
for running on an SPU.

The implementation was run on P4 machine at 3.0 GHz with memory 512 MB.
The operating system was fedora 9, the code was developed in the Linux based
editor Geany 0.16 and the debugging of the compiled code was made with GNU



5.6. DEVELOPMENT STAGES 53

gdb debugger.

5.6.2 Port to PPE

At this stage, the x86 GLIMMER implementation was ported to PowerPC hardware
(PPE) by recompiling the x86 source code with ppu-gcc compiler and the necessairy
makefiles for the Cell processor [IBM08b], [IBM08a], [Sca09]. This porting to the
PPE was made to confirm the correct execution of x86 implementation on the PPE.
The PowerPC version of the code performed much slower than the x86 version of
the code. This is due to the difference in the relative power of the PPU portion
of the Cell BE compared to a fairly high end x86 CPU on which the x86 code
was developed. Even though this code was simple and single threaded, the x86
processor core used for development is a much more power processor core than the
PPU. After this step the application was running on PPU and the next step was to
begin offloading the functions to the SPEs.

5.6.3 PPE control

The PPU’s most important role is managing the Synergistic Processor Elements
(SPEs) [IBM08b], [A. 07], [IBM08a], [Sca09]. Below, we describe two implementa-
tion approaches which we followed in our design.

1st Implementation

In our first implementation, the function offload model implemented using stubs as
proxies. A method stub, or simply stub, is a small piece of code used to stand in
for some other code. The stub or proxy acts as a local surrogate for the remote
procedure, hiding the details of server communication. The main code on the PPE
contains a stub for each remote procedure on the SPEs. Each procedure on an SPE
has a stub that takes care of running the procedure and communicating with the
PPE.

The stub code, together with the runtime code, controls the execution, data
transfer, and program coordination between the PPE and SPE during program
execution. A procedure is loaded onto an SPE only once, and the program on the
PPE can then make multiple calls to that procedure without having to reload it.

When the program on the PPE calls a remote procedure, it actually calls that
procedure’s stub located on the PPE. The stub code initializes the SPE with the
necessary data and code, packs the procedure’s parameters, and sends a mailbox
message to the SPE to start its stub procedure. Figure 5.7 shows an example of a
program using this method. Converting a PPE program to use RPCs requires the
following steps:



54 CHAPTER 5. IMPLEMENTATION OF THE GLIMMER

Figure 5.7: Function-Offload (or RPC) Model with stubs.

• Produce an Interface Definition Language file (IDL file) [Cen05]. The IDL
file defines the interface between the main program on the PPE and the re-
mote procedures on the SPEs. This specification of the program’s remote
procedures is defined using the Cell Broadband Engine’s IDL.

• Process the IDL file using the IDL compiler. The IDL compiler produces
three files to be used in the program-compilation phase. One file is a C
header file and the other two are C source files—one to be compiled with the
PPE program and the other to be compiled with the SPE procedures. The
generated header file contains the declarations and data structures required
by both stubs for data transfer between the PPE and the SPE.

• Compile the PPE and SPE code into separate programs. The PPE code must
be compiled with the PPE stub code produced by the IDL compiler, and the
SPE code must be compiled with its stub code, thus producing two program
files.

Figure 5.8 shows the production flow for producing an application. Boxes with bold
borders represent source-code files.

The RPC model is implemented with the use of specific library calls provided
by the RPC runtime management library. PPE requests for SPE executions are
represented in the RPC runtime code as task structures. As each remote procedure
is invoked, a new task is created and placed in a task queue. Each SPE has its own
task queue, so having the procedure loaded on multiple SPEs does not increase the
size of the queue, it only enables the procedure to execute on multiple SPEs at the
same time. The number of slots in a queue is fixed. If the PPE requests a remote
procedure call and the queue is full, the application must wait for a free slot in the
queue. When a remote procedure call returns, a slot in the queue becomes available.

On invocation of a remote procedure call, the PPE program can either wait
for the procedure to return (synchronous execution), or continue processing and
synchronize with the procedure later (asynchronous execution). Whether a remote
procedure is synchronous or asynchronous is specified by the procedure’s definition
in the IDL file.



5.6. DEVELOPMENT STAGES 55

Figure 5.8: Production Flow for Function Offload (or RPC) Model.

All remote procedure calls are RPC functions that return a value of type idl id t.
The value returned is unique, and identifies that instance of the procedure call. This
value is used by the PPE program to synchronize with asynchronous procedure calls.
There are three synchronization functions used for this purpose:

• int idl join foo( idl id t id ). This function blocks until the remote procedure
with the idl id t value of id completes execution on the SPE. When the SPE
function finishes, it sends a signal to the PPE.

• int idl poll foo( idl id t id ). This function polls to see if the SPE remote
procedure with the idl id t value of id has finished.

• int idl join all foo( ). This function blocks and waits for all instances of remote
procedure foo to complete.

In our implementation, before the first function-call of the get prob of the window1,
we introduce on the PPE a stub for remote procedure on the SPEs which transfers
the data from main memory to the Local Store of the SPEs. When the program on
the PPE calls a remote procedure, it actually calls that procedure’s stub located on
the PPE. The stub code initializes the SPE with the necessary data and code, packs
the procedure’s parameters, and sends a mailbox message to the SPE to start its
stub procedure. At the first time of the SPE’s program execution, the arrays Delta0,
Delta1 and Delta2 are transferred from the main memory to the Local Store of each
SPE. This happens only once as the data of these arrays do not change during the
execution of the program. When the SPE code has been executed the program
returns to the PPE side.



56 CHAPTER 5. IMPLEMENTATION OF THE GLIMMER

Furthermore, for each function-call of the get prob of the window1 in the loop,
we introduce on the PPE a stub for remote procedure on the SPEs which transfers
the proper data to Local Store and executes the function get prob of the window1.
When the SPE code has been executed, the program returns to the PPE side and
creates the result array until the next function-call, as shown in Figure 5.9.

Figure 5.9: Overall scheduling process for 1st implementation of GLIMMER.

It has been proved that this implementation did not work well when we applied
the optimization PPU unroll to reduce the overhead from the scheduling process.
For more details see in Section 5.7.

2nd Implementation

In this implementation, the scheduling and control of the threads are based on a
fork-join model, as shown in Figure 5.10. Fork-join is a model where a master
execution thread (PPE) calls (fork) multiple parallel execution SPEs threads and
waits for their completion (join). While the threads are running the PPE can either
continue execution (asynchronous execution) or can wait the SPE threads to finish
(synchronous execution).

The fork-join model is implemented with the use of specific library calls provided



5.6. DEVELOPMENT STAGES 57

Figure 5.10: Fork-join model.

by the SPE runtime management library (libspe2 ) [IBM08c], [IBM08d]. A PPE
module starts an SPE module running by creating a thread on the SPE, using the
spe context create, spe program load, and spe context run library calls, as shown in
Figure 5.11.

The libspe2 functions don’t access SPE resources directly but they operate on
data structure that represent aspects of an SPE’s operation. PPU code accesses
SPEs through data structures called contexts, and each context represents a single
SPE. This data structure contains fields that access the SPE’s processing unit,
memory, and communication resources.

The spe context create call creates a context for the SPE thread which contains
the persistent information about a logical SPE. Before being able to run a SPE con-
text, a SPE program has to be loaded into the context using the spe program load
subroutine. A SPE context is executed on a physical SPE by calling the spe context run
function.

The total scheduling procedure consumes a significant amount of time compared
with the total execution time. Some overhead from the scheduling process is un-
avoidable but it was managed to be reduced as much as possible. In order to reduce
the overhead the context was created only once and the program was loaded to the
SPEs only once, when it was possible.



58 CHAPTER 5. IMPLEMENTATION OF THE GLIMMER

Figure 5.11: PPE control.

Before the first function-call of the get prob of the window1, we introduce a series
of scheduling operations that initiates the execution of the SPE code, as shown
in Figure 5.12. More specifically, the program creates the control block, creates
context, loads program to the SPEs, creates SPE threads and runs SPE threads.
At the first time of the SPE’s program execution, the data of the arrays Delta0,
Delta1 and Delta2 is transferred from the main memory to the Local Store of each
SPE. This happens only once as the data of these arrays do not change during the
execution of the program. When the SPE code has been executed the program
returns to the PPE side.

Since the SPEs were running the same program it wasn’t necessary to create
new context and load the program each time. Thus, for each function-call of the
get prob of the window1 in the loop the program updates the control block, which
is different for every function call and executes the SPE thread, as shown in Figure
5.12. When the SPE code has been executed, the program returns to the PPE side
and creates the result array until the next function-call. With this approach, the
creation of the context and the program loading was done outside the loop to avoid
their unnecessary repeat.



5.6. DEVELOPMENT STAGES 59

Figure 5.12: Overall scheduling process for GLIMMER.



60 CHAPTER 5. IMPLEMENTATION OF THE GLIMMER

5.6.4 DMA Transfer

Being a multiprocessor system on a chip, the CBE processor has many attributes
of a shared-memory system. The PPE and all SPEs have coherent access to main
storage. But the CBE processor is not a traditional shared-memory multiprocessor.
For example, an SPE can execute programs and directly load and store data only
from and to its private local store (LS). In a traditional shared-memory multipro-
cessor, data communication and synchronization among processors happen at least
partially as a side-effect of the fact that all processors use the same shared memory.

Since SPEs lack shared memory, they must communicate explicitly with other
entities in the system using DMA (Direct Memory Access) communication mech-
anism [IBM08b], [IBM08a], [A. 07], [Sca09]. This mechanism is implemented and
controlled by the SPE’s MFC (Memory Flow Controller). The MFC is a copro-
cessor specifically designed to send and receive data on the EIB. The advantage
of performing data transfer outside the SPU is that the MFC can perform its job
without interfering with SPU’s regular operation.

An MFC supports naturally aligned DMA transfer sizes of 1, 2, 4, 8, and 16 bytes
and multiples of 16 bytes up to 16 KB of data between an LS of and main storage.
There are two categories of DMA commands the mfc put and the mfc get; the
mfc put commands move data from LS to main storage and the mfc get com-
mands move data from main storage to LS.

Cell processor supports two kinds of DMA transfers, PPE initiated and SPE
initiated, in our implementation only SPE initiated DMA transfers were used. This
choice was made because there are eight times more SPEs than PPEs and the
number of cycles to initiate a transfer from the SPEs is smaller than the number of
cycles to initiate the same transfer from the PPE.

The data transferring process can be described from the following steps:

• SPU needs data.

1. SPU initiates DMA request for data.

2. DMA requests data from the memory.

3. Data is copied to the LS.

4. SPU can access data from the local store.

• SPU operates on data then copies data from local store back to memory in a
similar process

Figure 5.13 describes the total procedure for data transfer to and from the
LS. The circled numbers shown in the figure correspond to the steps of the data



5.6. DEVELOPMENT STAGES 61

Figure 5.13: Data Transfer from and to LS.



62 CHAPTER 5. IMPLEMENTATION OF THE GLIMMER

transferring process as it was defined above. The black arrows are for data transfer
from the main memory to the LS and the red arrows are for the opposite process,
data transfers from the LS to the main memory.

In our implementation, we need to transfer from main memory to the Local
Store three arrays type of integer and an array type of char. Furthermore, we need
to transfer the result fron Local Store to the main memory. Each array type of
integer has 8000 elements, the array type of char has maximum 8000 elements and
the result is a variable type of integer. Thus, we used 2 mfc get for each array type
of integer, 1 mfc get for orf array and 1 mfc put for the result. Table 5.11 shows
us a summary of the required DMA transfers.

Data Size (KBytes) DMA-get (KBytes) DMA-put (KBytes)

Delta0 32 2x16 -
Delta1 32 2x16 -
Delta2 32 2x16 -

orf 8 1x8 -
num node 0.004 - 1x0.004

Table 5.11: DMA Transfers.

5.6.5 Implementation with One and Multiple SPEs

At this stage, we take the PPU code of the function get prob of window1 and more
specifically the for-loop statement and run it on a single SPU. This involved restruc-
turing the code by adding calls to the SDK to load an SPU module. More code
was added to implement a simple DMA model for streaming data into the SPU and
streaming it back to main store memory. At this stage there is no parallelism since
only one SPE it was used.

The design was extended on two and finally on six SPEs, the procedure remains
the same as in the case of one SPE. The advantage now is that the total number of
iterations that are required, as shown in Figure 5.4, is distributed on multiple SPEs.
In each iteration, the SPE should known informations about which data must fetch,
where should store the result and which array Delta should use. This information
is passed once at each SPE through a structure called control block. The control
block contains information such as, arrays addresses, result address and information
related to the selection of the suitable Delta that should be used.



5.6. DEVELOPMENT STAGES 63

5.6.6 Code Optimizations

Unlike conventional processors, near theoretical-maximum performance can be achieved
for real applications on the Cell Broadband Engine processor. However, we must be
aware of the architectural characteristics of the processor to achieve optimal perfor-
mance [D. 06], [A. 07], [IBM08b], [IBM08a]. These characteristics include multiple
heterogeneous execution units, Single Instruction Multiple Data (SIMD) process-
ing engines, limited local store, software managed cache, memory access latencies,
dual instruction issue rules, both large and wide register files, quad-word memory
accesses, branch prediction, and synchronization facilities. Below, we describe the
code optimizations that we applied to improve the performance.

Reduction overhead from the scheduling process

As described in section 5.6.3, a SPE thread executes only once the function get prob of window1.
The PPU code, at this point, was gradually unrolled until the improvement was not
important. Finally, the code was unrolled 624 times that means a SPE thread ex-
ecutes 624 times the function get prob of window1. This approach has resulted in
the reduction of the overhead from the scheduling process compared with the total
execution time.

Branch Elimination

The SPU hardware assumes linear instruction flow and produces no stall penalties
from sequential instruction execution. A branch instruction has the potential of
disrupting the assumed sequential flow. Correctly predicted branches execute in one
cycle, but a mispredicted branch (conditional or unconditional) incurs a penalty of
approximately 18-19 cycles. Considering the typical SPU instruction latency of two-
to-seven cycles, mispredicted branches can seriously degrade program performance.
Branches also create scheduling barriers, reducing the opportunity of for dual issue
and covering up dependency stalls.

The most effective means of reducing the impact of branches is to eliminate them
using two primary methods:

• Loop Unrolling

• Function Inline

Loop-unrolling technique can be used to increase the size of basic blocks (se-
quences of consecutive instructions without branches), which increases scheduling
opportunities. It eliminates branches by decreasing the number of loop iterations.
The compiler SPU by default has the optimization level set to three, -O3, which
does some loop-unrolling. Furthermore, we made extra loop-unrolling that did not



64 CHAPTER 5. IMPLEMENTATION OF THE GLIMMER

increase important the performance. The SPE code was gradually unrolled until
the code fit in the Local Store. Finally, the code was unrolled seventy-five times
(75x).

Function-inlining is another technique that can be used to increase the size of
basic blocks (sequences of consecutive instructions without branches). This tech-
nique eliminates the two branches associated with function-call linkage - the branch
for function-call entry and the branch indirect for function-call return.

The first step of the optimizations was the use of the compiler in such way to
produce optimized code. A specific flag was used, the -Winline, in the makefiles
to force the compiler produce code with function inlining. The compiler by default
has the optimization level set to three, -O3, which does some function inlining so
the extra inlining that was applied didn’t had significant increase in performance.

5.7 Software Tools problems

During the development process, apart from the design problems that were described
in the previous paragraph, many other problems came up, mostly related with the
software tools. In this section a list of these problems is presented, as well as how
each problem solved or avoided.

Initially, we used the IBM SDK for Multicore Acceleration Version 2.1 (Devel-
opment Tools + Full-System Simulator) on server for compilation. The source code
compilation and execution with SDK 2.1 were working fine untill the PPU unroll
optimization was applied in the first implementation of the PPE control. The prob-
lem was that the execution of Glimmer was very slow as the processor remained idle
unduly nevertheless the application returned correct results after considerable time.
The solution of the problem was to setup SDK 3.1 on our P4 host machine with OS
fedora 9. In the SDK 3.1 the IDL tools was not included, so we implemented the
PPE control with Fork-Join model.

The Full-System Simulator application that is included in the SDK is a very
demanding application and especially the cycle-mode was extremely slow on the
host machine. This was delaying the development process and it was necessary
to avoid it, the solution was to execute the applications directly on hardware and
measure the performance in different way. The only available hardware was a PS3
and to be able executing applications on the PS3 the installation of an OS was
required.

The Yellow Dog Linux 6.0 (YDL) was installed on the PS3, the installation
procedure was done by following the detailed guide for YDL installation. The only
conflict during the installation was the monitor configuration, because PS3 normally
is connected on HDMI monitor, the installation was not working until the proper
settings for the monitor were chosen.



Chapter 6

Implementation Of the CNPE
algorithm

This chapter describes the process of enabling the CNPE algorithm to the Cell pro-
cessor on the Playstation 3. It refers with details to explain the overall development
flow that was followed in our implementation as the data partitioning procedure,
the levels of parallelism, the data transfers and the code optimizations.

6.1 The Programming Model

The programming model that was chosen for our implementation was the function
offload model [IBM08b],[A. 07],[et 05]. See more details Chapter 5, section 5.1.

6.2 The Application Enablement Process

See more details Chapter 5, section 5.2.

6.3 Profiling

The first step of the application enablement process is the profiling, as shown in
Figure 5.1. The system that we used was a Intel P4 at 2,66Mhz with 1GB mem-
ory, operating system Ubuntu 8.04 and Vtune Performance Analyzer 9.0 for Linux.
Below, we present the results of profiling for one and twelve calls of the CNPE
function.

• Table 6.1 and Table 6.2 show the results of the profiling for one call of the
CNPE function.

65



66 CHAPTER 6. IMPLEMENTATION OF THE CNPE ALGORITHM

Program Clockticks (%) Clockticks Events

CNPE 66.03 3777722000
Others 33.97 1888861000

Table 6.1: Results of the profiling CNPE for one call of the CNPE function

CNPE
Function Clockticks (%) Clockticks Events

Znorm 23.47 306590000
ZdivZ 17.96 234608000
rhs 15.10 197284000
trid 12.04 157294000
amat 4.69 53320000
ZsubZmulZ 3.88 7998000

Table 6.2: Function-wise breakout of CNPE program

• Table 6.3 and Table 6.4 show the results of the profiling for twelve calls of the
CNPE function.

Program Clockticks (%) Clockticks Events

CNPE 88.93 41706904000
Others 11.07 5154785888

Table 6.3: Results of the profiling CNPE for twelve call of the CNPE function

Figure 6.1 shows the most time-consuming part of the CNPE application. After
observating the results, we decided to offload the function CNPE to the SPEs. This
is a useful fact for an implementation on the Cell processor as significant speed up
might be obtained for the CNPE application by only offloading function CNPE to
the SPUs.

6.4 The Hotspot of the CNPE

The most time-consuming part of the CNPE application is the CNPE function, as
described in previous section. The following analysis explains the reasons that make
computation-intensive the CNPE function for the processors. Figure 6.2 shows the



6.4. THE HOTSPOT OF THE CNPE 67

CNPE
Function Clockticks (%) Clockticks Events

Znorm 28.14 3617762000
rhs 19.18 2466050000
ZdivZ 18.77 2412730000
trid 10.99 1412980000
ZsubZmulZ 5.08 767808000
amat 4.79 653170000

Table 6.4: Function-wise breakout of CNPE program

Figure 6.1: Function-Wise Breakout for CNPE.

code of the CNPE function. From Figure 6.2, we observe that the computation-
intensive part of the CNPE function is the for-loop statement. This for-loop ex-
ecutes (NR-1) iterations, in each iretation it calls three time-consuming functions
rhs, amat and trid.

Amat function contains a for-loop statement, as shown in Figure 6.3. This for-
loop is executed (NZ-1) times, in each iteration a number of the complex operations
(multiplications, additions, substractions) is executed.

Rhs function contains two for-loop statement, as shown in Figure 6.4. The first
for-loop is the most time-consuming part of the rhs. This for-loop is executed (NZ-
2) times, in each iteration a number of the complex operations (multiplications,
additions, substractions) is executed.

Trid contains two for-loop statement, as shown in Figure 6.5. The first for-loop



68 CHAPTER 6. IMPLEMENTATION OF THE CNPE ALGORITHM

Figure 6.2: The code of the function CNPE.

Figure 6.3: The code of the function Amat.

is the most time-consuming part of the trid. This for-loop is executed (NZ-1) times,
in each iteration a number of the complex operations (divisions, multiplications,
additions, substractions) is executed.

The functions ZmulZ and ZdivZ calculate the multiplication and the division of
the complex numbers. The Znorm calculates the magnitude of the complex number
and the ZsubZmulZ calculates the multiplications and substractions of the complex
numbers . Another important thing that makes even harder the CNPE function is
that the complex numbers have single-precision floating-point real and imaginary
part.



6.4. THE HOTSPOT OF THE CNPE 69

Figure 6.4: The code of the function Rhs.

Figure 6.5: The code of the function Trid.



70 CHAPTER 6. IMPLEMENTATION OF THE CNPE ALGORITHM

6.5 Dataflow Analysis

After the function that would run on SPEs was chosen, a data flow analysis was
required to determine the amount of data that had to be transferred to the SPEs LS.
The function accepts a float as input and returns a value type of float. Furthermore,
the function CNPE needs the following data:

• The matrices ca[NR][NZ], cb[NR][NZ] and cc[NR][NZ] of complex type.

• The arrays al[NZ], ad[NZ], au[NZ], uu[NZ] and c[NZ] of complex type.

• The arrays U1[NZ], U2[NZ], contour[NZ], zz[NZ] of float type.

where NR=1005 and NZ=501.
The matrices ca[NR][NZ], cb[NR][NZ], cc[NR][NZ] and the array zz[NZ] must

be transferred from the main memory to the Local Store each SPE. The array con-
tour[NZ] must be transferred from the Local Store to main memory. The remaining
data is created during the execution of theCNPE function. Table 6.5 shows the
amount of Local Store space needed.

Data Size (Bytes)

ca,cb,cc 12084120
al,ad,au,uu,c 12024

U1,U2,contour,zz 8016

Total Size 12104160

Table 6.5: The amount of Local Store space needed.

From Table 6.5, we observed that was unable to execute the function CNPE at
the SPEs due to the limited size of their Local Store (LS). This observation led us
to the conclusion that in order to execute the function CNPE at the SPEs it was
necessary to partition the data in order to fit in the Local Store of the SPEs. More
specifically, it was necessary to partition the data ca, cb and cc. For more details,
see section 6.6.4 .

6.6 Development Stages

This section refers with details the overall development flow that was followed in
our implementation as the levels of parallelism, the data transfers and the code
optimizations. The development stages were arrived at prior to the beginning of
the code development and later revised. The purpose of introducing these stages



6.6. DEVELOPMENT STAGES 71

was to provide a way to monitor progress of the project and seemed like a practical
way to develop the solution. A detail development flow chart is shown on Figure
6.6. For some or all of the development stages, we used an interative development
process that includes the stages code,test and verify, as shown in Figure 6.7. For
more details, see in section 5.6.

Figure 6.6: The development flow chart.

Figure 6.7: An interative development process.

All the code was developed with the use of IBM’s Cell SDK 3.1 and Full-System
Simulator. For the final stage of the development a PS3 was used with Yellow Dog
Linux 6.0 OS.



72 CHAPTER 6. IMPLEMENTATION OF THE CNPE ALGORITHM

6.6.1 Implementation on x86 Architecture

At this stage we used the code of the CNPE algorithm that was developed by
FORTH Research at Heraklion of the Crete. The only change in the code that
we made was the splitting of the matrix type of complex in two matrices type
of float. The first matrix stores the real part of the complex number and the
second the imaginary part. For example, the matrix ca[NR][NZ] is split in the
matrices ca re[NR][NZ] and ca im[NR][NZ]. The goal from this stage was to prove
that the basic algorithm produced correct results and would meet our requirements
for running in an SPU.

The implementation was run on P4 machine at 3.0 GHz with memory 512 MB.
The operating system was fedora 9 and the code was developed in the Linux based
editor Geany 0.16 and the debugging of the compiled code was made with GNU
gdb debugger.

6.6.2 Port to PPE

At this stage, the x86 CNPE implementation was ported to PowerPC hardware
(PPE) by recompiling the x86 source code with ppu-gcc compiler and the necessairy
makefiles for the Cell processor [IBM08b], [IBM08a], [Sca09]. This porting to the
PPE was made to confirm the correct execution of x86 implementation on the PPE.
The PowerPC version of the code performed much slower than the x86 version of
the code. This is due to the difference in the relative power of the PPU portion
of the Cell BE compared to a fairly high end x86 CPU on which the x86 code
was developed. Even though this code was simple and single threaded, the x86
processor core used for development is a much more power processor core than the
PPU. After this step the application was running on PPU and the next step was to
begin offloading the functions to the SPEs.

6.6.3 PPE control

The PPU’s most important role is managing the Synergistic Processor Elements
(SPEs) [IBM08b], [A. 07], [IBM08a], [Sca09]. In our implementation, the scheduling
and control of the threads are based on a fork-join model, as shown in Figure 5.7.
For more details, see in section 5.6.3.

The total scheduling procedure consumes a significant amount of time compared
with the total execution time. Some overhead from the scheduling process is un-
avoidable but it was managed to be reduced as much as possible. In order to reduce
the overhead the context was created only once and the program was loaded to the
SPEs only once, when it was possible. Before the first function-call of the function
CNPE, we introduce a series of scheduling operations that creates the control block,



6.6. DEVELOPMENT STAGES 73

Figure 6.8: Fork-join model.

Figure 6.9: Overall scheduling process for CNPE.



74 CHAPTER 6. IMPLEMENTATION OF THE CNPE ALGORITHM

creates context and loads program to the SPEs, as shown in Figure 6.9. Since the
SPEs were running the same program it wasn’t necessary to create new context and
load the program each time. Thus, for each function-call of the CNPE in the loop
the program updates the control block, which is different for every function call and
executes the SPE thread, as shown in Figure 6.9. When the SPE code has been
executed, the program returns to the PPE side and creates the result. With this
approach, the creation of the context and the program loading was done outside the
loop to avoid their unnecessary repeat.

6.6.4 DMA Transfer

The DMA mechanism is described in Section 5.6.4. In our implementation, we
need to transfer from main memory to the Local Store the matrices ca re[NR][NZ],
cb re[NR][NZ], cc re[NR][NZ], ca im[NR][NZ], cb im[NR][NZ], cc im[NR][NZ] and
an array zz[NZ] type of float. Initially, we used a mfc get command for the array
zz. The matrices do not fit in the Local Store.Thus, we segment them in NR arrays
of each NZ elements because each iteration of the for-loop the program needs a
row from each matrix , as shown in Figure 6.2, 6.3, 6.4. With this approach, in
each iteration, we store a row from each matrix in the LS. Furthermore, in each
iteration we used a mfc put command for the array contour[NZ]. Table 6.6 shows
us a summary of the required DMA transfers.

Data Size (Bytes) DMA-get (Bytes) DMA-put (Bytes)

zz 2004 1x2004 -
ca re 2014020 1005x2004 -
ca im 2014020 1005x2004 -
cb re 2014020 1005x2004 -
cb im 2014020 1005x2004 -
cc re 2014020 1005x2004 -
cc im 2014020 1005x2004 -

contour 2014020 - 1005x2004

Table 6.6: DMA Transfers.

6.6.5 Implementation with One and Multiple SPEs

At this stage, we take the PPU code of the function CNPE and run it on a single
SPU. This involved restructuring the code by adding calls to the SDK to load
an SPU module. More code was added to implement a simple DMA model for



6.6. DEVELOPMENT STAGES 75

streaming data into the SPU and streaming it back to main store memory. At this
stage there is no parallelism since only one SPE it was used.

The design was extended on two and finally on six SPEs, the procedure remains
the same as in the case of one SPE. The advantage now is that the total number
of functions calls CNPE that are required is distributed on multiple SPEs. In each
function call, the SPE should known informations about which data must fetch and
where should store the result. This information is passed once at each SPE through
a structure called control block. The control block contains information such as,
arrays addresses, result address.

6.6.6 Code Optimizations

In this section, we describe the code optimizations that we applied to improve the
performance.

Overlap data with computations

One of the unique features of the Cell BE architecture is the DMA engines in each of
the SPEs which enables asynchronous data transfer. Thus, we used this feature to
achieve overlapping between data transfers and computations. With this technique,
we achieved the SPUs to execute computations untill of completion of the DMA
transfers

Trid optimization

From the code of the function trid, we observed that the division of the complex
numbers was made by using the polar form. This form helps the programmer
to write code easily but it requires a great number of computations. Thus, we
implemented the division by using the normal form.

Furthermore, the product of two complex numbers is given by the following
equation:

(a+ ib)(c+ id) = (ac− bd) + i(ad+ bc) (6.1)

From mathematics, we have the following equation:

(a+ b)(c+ d)–ac–bd = ac+ ad+ bc+ bd–ac–bd = ad+ bc (6.2)

From equations 6.1 and 6.2, we observed that we can implement the multiplication
of two complex numbers by using optimized version (ad+ bc) to get rid of multiply.
The improvement was important by applying these optimizations, as is shown in
Chapter 8 section 8.2.



76 CHAPTER 6. IMPLEMENTATION OF THE CNPE ALGORITHM

SIMD Programming

Both the PPE and the SPEs support parallel processing of Single Instruction Mul-
tiple Data (SIMD) vector elements. A vector is an instruction operand containing
a set of data elements packed into a one-dimensional array, as shown in Figure
6.10. In the CBE processor, the vector elements can be fixed-point (integer) or
floating-point values. Almost all Vector/SIMD Multimedia Extension and SPU in-
structions operate on vector operands. Vectors are also called SIMD operands or
packed operands.

Figure 6.10: A vector with four elements.

As the SIMD name implies, this style of programming allows one instruction
to be applied to the multiple data elements of a vector in parallel. In this way,
SIMD processing exploits data-level parallelism. SIMD programming is prevalent
in multimedia, graphics-intensive stream processing (such as gaming), and high
performance computing—basically, in any compute-intensive application. The CBE
processor is designed to operate efficiently on SIMD code, so programmers benefit
from learning how to efficiently exploit data parallelism in their programs and how
to take advantage of compiler optimizations for SIMD code.

In both the PPE and SPEs, the vector registers hold multiple data elements as a
single vector. The data paths and registers supporting SIMD operations are 128 bits
wide, corresponding to four full 32-bit words. This means that four 32-bit words
can be loaded into a single register, and, for example, added to four other words
in a different register in a single operation. Similar operations can be performed
on vector operands containing 16 bytes, 8 halfwords, or 2 doublewords. Both the
vector unit of PPE and SPE instruction set have extensions that support C-language
intrinsics [IBM08b], [IBM08a], [IBM08d]. Intrinsics are C-language commands, in
the form of function-calls that are convenient substitutes for one or more inline
assembly-language instructions. In our design all the data were float, so the vector
registers could only hold four 32-bit values and the data parallelism offered by the
SIMD vectorization is reduced to four simultaneous operations. This means that
once the data were promoted from float to vector type it was able to execute four
loads, four multiplications, four additions, etc, simultaneously and so the iterations
were reduced by a factor of four.

In our implementation, we vectorized the functions amat and rhs. Below, we
describe how the code of the functions was vectorized. Let us suppose we have the
following code part of the amat, as shown in Figure 6.11.

Instead of loading one element into one 128-bit register we use the data type



6.6. DEVELOPMENT STAGES 77

Figure 6.11: A part of the amat code.

vector and load four elements into one register. Furthermore, we use the function
spu splats to convert scalar data to vectors whose elements equal the scalar. Thus,
for the constants ’1’ and ’2’ we have the vectors vone and vtwo respectively. The
function spu sub(vone,vcca re) executes four operations of type (1.− cca.re) simul-
taneously, the function spu madd(vtwo,vccc re,spu sub(vone,vcca re)) executes four
operations of type (1. − cca.re + 2. ∗ ccc.re) simultaneously and so the iretations
were reduced by a factor of four. Figure 6.12 shows the vector implementation of
the scalar code in Figure 6.11.

Figure 6.12: A part of the amat’s vector code.

We followed the same process to vectorize the function rhs. One important
difference was that the data must be reorganized in registers to produce a correct
result because the vector register needs data from the compination of the two vectors
in each iretation of the loop. The reorganization of the data in registers was made
by using the instruction spu shuffle. The spu shuffle accepts two input vectors of
similar type and a third control vector. Each byte in the result vector is determined
by the corresponding byte in the control vector, as shown in Figure 6.13.

Figure 6.13: Shuffle example: spu shuffle VT,VA,VB,VC instruction.



78 CHAPTER 6. IMPLEMENTATION OF THE CNPE ALGORITHM

Pipeline loops

Most loops generally have the same basic structure. Per iteration, they load input
data, perform computation, and finally store the results. Since loads, stores, quad-
word rotates, and shuffles execute on pipeline 1, and most computation instructions
execute on pipeline 0, we applied software pipelined loops technique to improve
dual-issue rates by computing at the same time as loading and storing data, as
shown in Figure 6.14.

Figure 6.14: Pipelining and dual-issue.

Branch Elimination

We applied some extra loop-unrolling and function-inlining for branch elimination
but we did not had significant increase in performance.



Chapter 7

Evaluation and Verification Of the
Glimmer

This chapter presents the performance of the design and compares it with the per-
formance of other processors for the specific algorithm. The measuring procedure
is also described here as well as the verification of the implementation.

7.1 Measuring Performance

Measuring the performance of an application is a very important step and provides
the programmer with critical information about its design. For the Cell processor
there are currently three ways to measure the performance of an application running
on Cell. The first two methods are using two software tools that are available in
the SDK to assist in measuring the performance, the spu-timing analyzer and the
IBM Full System Simulator for Cell B.E [IBM07b], [IBM07c]. The last method for
measuring and the one that was followed in the design is the dynamic profiling using
the hardware counters.

The processor includes two software-visible 64-bit time-base registers in the PPE
one for configuration and one for counting and eleven software-visible 32-bit decre-
menters (down-counters), three in the PPE and one in each of the eight SPEs
[IBM07a]. The time-base registers and the decrementers are not clocked at the 3.2
GHz as the core clock, they have their one frequency called time-base frequency.
This frequency is different on the PS3 than on the Cell Blades [IBM], the PS3
time-base frequency is 79.8 MHz and this value was used for our measurements.

During the measuring procedure the one 64-bit time-base register in the PPE
was used to measure the total execution time and execution time of code segments
at the PPE. The SPEs performance was measured with the use of the decrementers
of each SPE. Both types of time-base registers were providing us with a number

79



80 CHAPTER 7. EVALUATION AND VERIFICATION OF THE GLIMMER

of clockticks which was converted to execution time by dividing with the time-base
frequency. In the case of the SPEs, when multiple SPEs were used the greater time
was considered as the SPEs execution time.

In order to have a fair comparison the total execution time for P4 was measured
in a similar way. The time.h library was used for the P4 to measure the real
execution time through the OS. The main purpose was to compare the processors
and not the systems, so for both measurements the amount of time for loading
data to the main memory and for storing data to the hard disk was taken out.
Furthermore all the printf system-calls were removed from the programs to avoid as
much as possible the OS since the two processors are running different OS. Due to
the OS measurements of the same code had a small variation, so ten measurements
were taken for each case and the average is being presented as the final result.

7.2 Performance

This section presents all the performance measurements that were done to evaluate
the implementation. First the performance of the total code running on SPEs was
measured and compared with the various optimizations. Finally the total execution
time of Glimmer algorithm was evaluated and compared with the P4 at 2.66 GHz
with 1 GB memory.

7.2.1 Performance of SPEs

This section presents the total execution time of the Glimmer algorithm with
various optimizations for input datasets CLASS B NC003062.fna and CLASS C
NC004463.fna from Bioperf suite. The summary of the results is shown in the next
tables and figures.

Execution Original Unroll ppu Unroll ppu Unroll ppu Unroll ppu
Time (sec) 48x 288x 576x 624x

1-SPU 4,714.448 2,212.978 1,301.550 656.508 625.109
2-SPU 2,357.224 1,106.354 650.675 328.104 312.545
4-SPU 1,178.612 553.397 324.725 163.987 156.172
6-SPU 810.547 368.931 216.283 109.245 107.705

Table 7.1: Execution time of Glimmer for NC003062.fna.

As shown in Figures 7.1 and 7.2, the performance of the code had a significant
improvement with the use of multiple SPEs and the optimizations. The use of the
technique PPU unroll reduces the overhead from the scheduling process, as it was



7.2. PERFORMANCE 81

Execution Original Unroll ppu Unroll ppu Unroll ppu Unroll ppu
Time (sec) 48x 288x 576x 624x

1-SPU 20,748.067 10,145.846 3,062.252 2,675.632 2,673.604
2-SPU 10,474.034 5,022.923 1,539.626 1,339.816 1,335.252
4-SPU 5,187.017 2,521.462 764.813 669.408 668.626
6-SPU 3,577.253 1,725.146 527.457 460.971 459.742

Table 7.2: Execution time of Glimmer for NC004463.fna.

Figure 7.1: Performance impact of various optimizations for NC003062.fna.

Figure 7.2: Performance impact of various optimizations for NC004463.fna.



82 CHAPTER 7. EVALUATION AND VERIFICATION OF THE GLIMMER

mentioned in Section 5.6.6. From the 576x to 624x PPU unroll, we observe that
the reduction of the total execution time is not significant. Thus, we could have
further reduction of the total execution time by applying more optimizations in the
SPU code.

The next step was to run the Glimmer on the simulator to understand where the
SPUs stall. From Figure 7.3 we observe that the SPUs stall due to branch misses
and data dependencies. As it was mentioned in Section 5.6.6, we tried to eliminate
branches by applying loop unrolling and function inlining but the improvement of
the performance was not significant. Furthermore, the structure of the SPU code
prevented us from using SIMD technique. For the above reasons we have these
undesirable results.

Figure 7.3: SPE statistics for the Glimmer.

7.2.2 Final Comparison

This section presents the performance of Glimmer algorithm compared with the
reference P4 machine and with the execution of the application on the PPE only. For
the P4 machine, the Glimmer algorithm was measured with -O3 option which had an
important improvement in performance. The following figures show the performance
comparisons of the Glimmer for datasets NC003062.fna and NC004463.fna.

From figures 7.4 and 7.5, we observe that the cell processor is slower than PPU in
all cases. As described in previous section, the structure of the SPU code prevented
us to achieve desirable results.



7.2. PERFORMANCE 83

Figure 7.4: Performance comparisons of the Glimmer for dataset NC003062.fna.

Figure 7.5: Performance comparisons of the Glimmer for dataset NC004463.fna.



84 CHAPTER 7. EVALUATION AND VERIFICATION OF THE GLIMMER

7.3 Verification

The last but not least step of the design was the overall verification of the applica-
tion. As it was mentioned in section 4.6.2 the output of the application is a list of all
open reading frames (orfs) together with scores for each as a gene, so a comparison
of this list and these scores were made to verify the results. The results produced
by the execution of the original code were compared with the results produced from
the execution on PS3. The verification process was successful and all the results
were the same.



Chapter 8

Evaluation and Verification Of the
CNPE

This chapter presents the performance of the design and compares it with the per-
formance of other processors for the specific algorithm. The measuring procedure
is also described here as well as the verification of the implementation.

8.1 Measuring Performance

Measuring the performance of an application is a very important step and pro-
vides the programmer with critical information about its design. The measuring
procedure that was followed is same with the Glimmer algorithm, as described in
Chapter 7 section 7.1.

8.2 Performance

This section presents all the performance measurements that were done to evaluate
the implementation. First the performance of the total code running on SPEs was
measured and compared with the various optimizations. Finally the total execution
time of CNPE algorithm was evaluated and compared with the P4 at 3.0 GHz with
512 MB memory and Xeon at 2.66 GHz with 9 GB memory.

8.2.1 Performance of SPEs

This section presents the total execution time of the CNPE algorithm for 36 and
360 calls of the function CNPE. Furthermore, in the two cases it presents the total
execution time of the CNPE algorithm with various optimizations for different NZ
and NR. The summary of the results is shown in the following tables and figures.

85



86 CHAPTER 8. EVALUATION AND VERIFICATION OF THE CNPE

• Table 8.1 shows the total execution time of the CNPE algorithm for 36 calls
of the function CNPE with NZ=128 and NR=1005. Figure 8.1 shows the
gradual improvement of the performance for this case.

Execution Original +Overlap +Trid opt +SIMD +Unroll&Pipeline
Time (sec) data comput Loops

1-SPU 4.363 4.342 1.359 0.724 0.589
2-SPU 2.218 2.198 0.717 0.401 0.335
4-SPU 1.152 1.131 0.396 0.243 0.211
6-SPU 0.797 0.777 0.295 0.193 0.175

Table 8.1: Execution time of 36 CNPE for NZ=128 and NR=1005.

Figure 8.1: Performance impact of various optimizations.

• Table 8.2 shows the total execution time of the CNPE algorithm for 36 calls of
the function CNPE with NZ=256 and NR=500. Figure 8.2 shows the gradual
improvement of the performance for this case.

• Table 8.3 shows the total execution time of the CNPE algorithm for 36 calls
of the function CNPE with NZ=512 and NR=1005. Figure 8.3 shows the
gradual improvement of the performance for this case.



8.2. PERFORMANCE 87

Execution Original +Overlap +Trid opt +SIMD +Unroll&Pipeline
Time (sec) data comput Loops

1-SPU 4.415 4.394 1.342 0.703 0.578
2-SPU 2.246 2.226 0.707 0.388 0.324
4-SPU 1.163 1.143 0.389 0.233 0.204
6-SPU 0.806 0.789 0.286 0.197 0.176

Table 8.2: Execution time of 36 CNPE for NZ=256 and NR=500.

Figure 8.2: Performance impact of various optimizations.

Execution Original +Overlap +Trid opt +SIMD +Unroll&Pipeline
Time (sec) data comput Loops

1-SPU 17.378 17.351 5.335 2.767 2.256
2-SPU 8.818 8.799 2.793 1.517 1.262
4-SPU 4.544 4.526 1.529 0.899 0.773
6-SPU 3.125 3.107 1.117 0.715 0.634

Table 8.3: Execution time of 36 CNPE for NZ=512 and NR=1005.



88 CHAPTER 8. EVALUATION AND VERIFICATION OF THE CNPE

Figure 8.3: Performance impact of various optimizations.

Execution Original +Overlap +Trid opt +SIMD +Unroll&Pipeline
Time (sec) data comput Loops

1-SPU 43.042 43.021 13.009 6.657 5.321
2-SPU 21.589 21.565 6.589 3.413 2.474
4-SPU 10.889 10.867 3.378 1.787 1.481
6-SPU 7.318 7.293 2.318 1.255 1.064

Table 8.4: Execution time of 360 CNPE for NZ=128 and NR=1005.



8.2. PERFORMANCE 89

Figure 8.4: Performance impact of various optimizations.

• Table 8.4 shows the total execution time of the CNPE algorithm for 360 calls
of the function CNPE with NZ=128 and NR=1005. Figure 8.4 shows the
gradual improvement of the performance for this case.

• Table 8.5 shows the total execution time of the CNPE algorithm for 360 calls of
the function CNPE with NZ=256 and NR=500. Figure 8.5 shows the gradual
improvement of the performance for this case.

Execution Original +Overlap +Trid opt +SIMD +Unroll&Pipeline
Time (sec) data comput Loops

1-SPU 43.547 43.528 12.885 6.496 5.249
2-SPU 21.862 21.845 6.523 3.337 2.706
4-SPU 11.002 10.984 3.341 1.751 1.443
6-SPU 7.395 7.378 2.285 1.245 1.039

Table 8.5: Execution time of 360 CNPE for NZ=256 and NR=500.

• Table 8.6 shows the total execution time of the CNPE algorithm for 360 calls
of the function CNPE with NZ=512 and NR=1005. Figure 8.6 shows the
gradual improvement of the performance for this case.



90 CHAPTER 8. EVALUATION AND VERIFICATION OF THE CNPE

Figure 8.5: Performance impact of various optimizations.

Execution Original +Overlap +Trid opt +SIMD +Unroll&Pipeline
Time (sec) data comput Loops

1-SPU 171.605 171.585 51.281 25.513 20.411
2-SPU 85.998 85.976 25.791 12.944 10.393
4-SPU 43.209 43.187 13.085 6.663 5.391
6-SPU 28.963 28.942 8.858 4.622 3.781

Table 8.6: Execution time of 360 CNPE for NZ=512 and NR=1005.



8.2. PERFORMANCE 91

Figure 8.6: Performance impact of various optimizations.

As shown in the above Tables and Figures the performance of the code had a
significant improvement with the use of multiple SPEs and the optimizations. The
techniques trid opt and SIMD contribute to increased efficiency considerably. The
impact of the optimizations is gradually decreased as the number of SPEs increases.
This is caused by the reduction of the percentage of the execution time that accepts
the optimizations each time and the increase of the added overhead.

8.2.2 Final Comparison

This section presents the performance of the CNPE algorithm compared with the
references machines P4, Xeon and with the execution of the application on the PPE
only. For the machines P4 and Xeon, the CNPE algorithm was measured with -O3
option which had an important improvement in performance. First, it presents the
performance of CNPE algorithm compared with the references machines P4, Xeon
and PPE with same trid function (optimized) and afterwards with different trid.
The same trid contains the trid opt optimization which we applied at the spus. The
summary of the results is shown in the next tables and figures.

• Table 8.7 shows the total execution time of the CNPE algorithm for 36 calls of
the function CNPE with NZ=128, NR=1005 and same trid. Figure 8.7 shows
the performance comparisons for this case.



92 CHAPTER 8. EVALUATION AND VERIFICATION OF THE CNPE

Processor PPE P4 P4 -O3 Xeon Xeon -O3 Cell

Execution Time (sec) 1.651 2.568 1.311 0.881 0.406 0.175

Table 8.7: Execution time of 36 CNPE for NZ=128, NR=1005 and same trid.

Figure 8.7: Performance comparisons for 36 CNPE with NZ=128, NR=1005 and
same trid.



8.2. PERFORMANCE 93

• Table 8.8 shows the total execution time of the CNPE algorithm for 36 calls of
the function CNPE with NZ=256, NR=500 and same trid. Figure 8.8 shows
the performance comparisons for this case.

Processor PPE P4 P4 -O3 Xeon Xeon -O3 Cell

Execution Time (sec) 1.823 2.462 1.344 0.919 0.482 0.176

Table 8.8: Execution time of 36 CNPE for NZ=256, NR=500 and same trid.

Figure 8.8: Performance comparisons for 36 CNPE with NZ=256, NR=500 and
same trid.

• Table 8.9 shows the total execution time of the CNPE algorithm for 36 calls of
the function CNPE with NZ=512, NR=1005 and same trid. Figure 8.9 shows
the performance comparisons for this case.

Processor PPE P4 P4 -O3 Xeon Xeon -O3 Cell

Execution Time (sec) 7.897 7.089 4.171 4.133 2.455 0.634

Table 8.9: Execution time of 36 CNPE for NZ=512, NR=1005 and same trid.



94 CHAPTER 8. EVALUATION AND VERIFICATION OF THE CNPE

Figure 8.9: Performance comparisons for 36 CNPE with NZ=512, NR=1005 and
same trid.

From the above results, we observe that in the first two cases we achieve the
same speedup over P4-O3 and Xeon-O3. In the first case we achieve speedup 7.49x
over P4-O3 and 2.32x over Xeon -O3 and in the second 7.63x and 2.74x respectively.
Finally, in the third case we achieve 6.58x speedup over P4-O3 and 3.81x over Xeon-
O3.

• Table 8.10 shows the total execution time of the CNPE algorithm for 360 calls
of the function CNPE with NZ=128, NR=1005 and same trid. Figure 8.10
shows the performance comparisons for this case.

Processor PPE P4 P4 -O3 Xeon Xeon -O3 Cell

Execution Time (sec) 16.102 24.845 13.602 8.588 4.037 1.064

Table 8.10: Execution time of 360 CNPE for NZ=128, NR=1005 and same trid.

• Table 8.11 shows the total execution time of the CNPE algorithm for 360
calls of the function CNPE with NZ=256, NR=500 and same trid. Figure
8.11 shows the performance comparisons for this case.

• Table 8.12 shows the total execution time of the CNPE algorithm for 360 calls
of the function CNPE with NZ=512, NR=1005 and same trid. Figure 8.12
shows the performance comparisons for this case.



8.2. PERFORMANCE 95

Figure 8.10: Performance comparisons for 360 CNPE with NZ=128, NR=1005 and
same trid.

Processor PPE P4 P4 -O3 Xeon Xeon -O3 Cell

Execution Time (sec) 18.136 24.606 13.602 8.725 4.228 1.039

Table 8.11: Execution time of 360 CNPE for NZ=256, NR=500 and same trid.

Figure 8.11: Performance comparisons for 360 CNPE with NZ=256, NR=500 and
same trid.



96 CHAPTER 8. EVALUATION AND VERIFICATION OF THE CNPE

Processor PPE P4 P4 -O3 Xeon Xeon -O3 Cell

Execution Time (sec) 76.281 77.051 46.817 40.282 24.192 3.781

Table 8.12: Execution time of 360 CNPE for NZ=512, NR=1005 and same trid.

Figure 8.12: Performance comparisons for 360 CNPE with NZ=512, NR=1005 and
same trid.



8.2. PERFORMANCE 97

From the above results, we observe that in the first case we achieve speedup
12.78x over P4-O3 and 3.86x over Xeon -O3 and in the second 13.1x and 4.07x
respectively. Finally, in the third case we achieve 12.38x speedup over P4-O3 and
6.39x over Xeon-O3.

Below, the section presents the results of the comparison for different trid.

• Table 8.13 shows the total execution time of the CNPE algorithm for 36 calls
of the function CNPE with NZ=128, NR=1005 and different trid. Figure 8.13
shows the performance comparisons for this case.

Processor PPE P4 P4 -O3 Xeon Xeon -O3 Cell

Execution Time (sec) 10.513 5.831 4.332 3.150 2.056 0.175

Table 8.13: Execution time of 36 CNPE for NZ=128, NR=1005 and different trid.

Figure 8.13: Performance comparisons for 36 CNPE with NZ=128, NR=1005 and
different trid.

• Table 8.14 shows the total execution time of the CNPE algorithm for 36 calls
of the function CNPE with NZ=256, NR=500 and different trid. Figure 8.14
shows the performance comparisons for this case.

• Table 8.15 shows the total execution time of the CNPE algorithm for 36 calls
of the function CNPE with NZ=512, NR=1005 and different trid. Figure 8.15
shows the performance comparisons for this case.



98 CHAPTER 8. EVALUATION AND VERIFICATION OF THE CNPE

Processor PPE P4 P4 -O3 Xeon Xeon -O3 Cell

Execution Time (sec) 12.038 5.474 4.274 3.206 1.953 0.176

Table 8.14: Execution time of 36 CNPE for NZ=256, NR=500 and different trid.

Figure 8.14: Performance comparisons for 36 CNPE with NZ=256, NR=500 and
different trid.

Processor PPE P4 P4 -O3 Xeon Xeon -O3 Cell

Execution Time (sec) 60.851 21.675 14.304 12.851 7.908 0.634

Table 8.15: Execution time of 36 CNPE for NZ=512, NR=1005 and different trid.



8.2. PERFORMANCE 99

Figure 8.15: Performance comparisons for 36 CNPE with NZ=512, NR=1005 and
different trid.

From the above results, we observe that in the first case we achieve speedup
24.75x over P4-O3 and 11.75x over Xeon -O3 and in the second 24.28x and 11.16x
respectively. Finally, in the third case we achieve 22.56x speedup over P4-O3 and
12.47x over Xeon-O3.

• Table 8.16 shows the total execution time of the CNPE algorithm for 360 calls
of the function CNPE with NZ=128, NR=1005 and different trid. Figure 8.16
shows the performance comparisons for this case.

Processor PPE P4 P4 -O3 Xeon Xeon -O3 Cell

Execution Time (sec) 104.849 57.927 42.833 30.874 19.971 1.064

Table 8.16: Execution time of 360 CNPE for NZ=128, NR=1005 and different trid.

• Table 8.17 shows the total execution time of the CNPE algorithm for 360 calls
of the function CNPE with NZ=256, NR=500 and different trid. Figure 8.17
shows the performance comparisons for this case.

• Table 8.18 shows the total execution time of the CNPE algorithm for 360 calls
of the function CNPE with NZ=512, NR=1005 and different trid. Figure 8.18
shows the performance comparisons for this case.



100 CHAPTER 8. EVALUATION AND VERIFICATION OF THE CNPE

Figure 8.16: Performance comparisons for 360 CNPE with NZ=128, NR=1005 and
different trid.

Processor PPE P4 P4 -O3 Xeon Xeon -O3 Cell

Execution Time (sec) 119.995 57.310 42.595 31.653 19.240 1.039

Table 8.17: Execution time of 360 CNPE for NZ=256, NR=500 and different trid.

Figure 8.17: Performance comparisons for 360 CNPE with NZ=256, NR=500 and
different trid.



8.2. PERFORMANCE 101

Processor PPE P4 P4 -O3 Xeon Xeon -O3 Cell

Execution Time (sec) 491.191 214.944 153.385 127.141 77.216 3.781

Table 8.18: Execution time of 360 CNPE for NZ=512, NR=1005 and different trid.

Figure 8.18: Performance comparisons for 360 CNPE with NZ=512, NR=1005 and
different trid.



102 CHAPTER 8. EVALUATION AND VERIFICATION OF THE CNPE

From the above results, we observe that in the first case we achieve speedup
40.26x over P4-O3 and 18.77x over Xeon -O3 and in the second 41x and 18.52x
respectively. Finally, in the third case we achieve 42.15x speedup over P4-O3 and
20.42x over Xeon-O3.

Furthermore, we observe that the speedup over Xeon -O3 and P4-O3 raises as
the size of problem increases from 36 to 360 CNPE. This happens because the rest
of code which runs on the PPE consumes a significant amount of time compared
with the total execution time in the case of 36 CNPE.

Figure 8.19: Speedup over P4-O3 and xeon-O3 for NZ=512 and NR=1005 with
same trid

Finally, we take measurements for the 720 CNPE but we did not have improve-
ment in the performance, the speedup was same as the 360 CNPE.

From Figures 8.19 and 8.20, we observe that the maximum achieved speedup
over P4-O3 and Xeon-O3 is 42.15x and 20.42x respectively with different trid, and
speedup 12.38x and 6.39 over P4-O3 and Xeon-O3 respectively with same trid.

8.3 Verification

The last but not least step of the design was the overall verification of the appli-
cation. As it was mentioned in section 4.6.2 the output of the application is the
biggest received sound pressure by the receiver, so a comparison of this value was



8.3. VERIFICATION 103

Figure 8.20: Speedup over P4-O3 and xeon-O3 for NZ=512 and NR=1005 with
different trid

made to verify the result. A result produced by the execution of the original code
was compared with a result produced from the execution on PS3. The verification
process was successful and all the results were the same.



104 CHAPTER 8. EVALUATION AND VERIFICATION OF THE CNPE



Chapter 9

Conclusions and Future Work

This chapter presents the conclusions from this work and proposes some ideas for
future work.

9.1 Conclusions

The main contribution of this work was the parallelization of the Glimmer and
CNPE algorithm, and their execution on the Cell processor.

The first algorithm is a biological application and the second is a applied mathe-
matics application. Furthermore, the offloaded function of the Glimmer application
had different characteristics in relation with the offloaded function of the CNPE.
The offloaded function of the Glimmer contained many control statements and few
calculations, on the other hand the offloaded function of the CNPE contained many
calculations, as additions, multiplications, substractions and divisions between in
single-precision floating point numbers.

From the final results, we concluded that the SPUs are highly effective at com-
putations, but not optimally efficient at gcc/TPCC (load-compare-add- branch)
type codes. This happens because the SPUs use a software controlled prediction of
branches.Thus, correctly predicted branches are executed in one cycle, but a mis-
predicted branch (conditional or unconditional) incurs a penalty of approximately
18-19 cycles. Considering the typical SPU instruction latency of two- to-seven cy-
cles, mispredicted branches degrade program performance.

9.2 Future Work

In the current thesis, we have applied most of the possible improvements that could
be done with the use of the function offload model. Below, we propose some ideas
for future work.

105



106 CHAPTER 9. CONCLUSIONS AND FUTURE WORK

For both applications, the complete redesign of the application, the vectorization
of the code running on the PPE and the use of a different model would probably
increase their performance. Furthermore, the solution of the tridiagonal system
with a different method would result better performance for the CNPE application.



Bibliography

[A. 05] A. Eichenberger et al. “Optimizing Compiler for the Cell Processor”.
Proc. 14th Int’l Conf. Parallel Architectures and Compilation Techniques
(PACT 2005), IEEE CS Press, pages 161–172, 2005.

[A. 07] A. Arevalo, et al. “Programming the Cell Broadband Engine: Examples
and Best Practices”. 1st ed. IBM, 2007.

[BD95] McIninch J. Koonin E. Rudd K. Medigue C. Borodovsky M. and Danchin.
Nucleic Acids Res., 23, pages 3554–3562, 1995.

[BM93] M. Borodovsky and .D. Mcininch. Comp. Chem.,17, pages 123–133, 1993.

[C. 00] C. D. Cantrell. “Modern Mathematical Methods for Physicists and Engi-
neers”. ISBN: 978-0521598279, 2000.

[Cen05] STI Design Center. “A Remote Procedure Call Implementation for the
Cell Broadband Architecture”, 1st edition, 2005.

[Cra] Crank, J. and P. Nicolson. “A practical method for numerical evaluation
of solutions of partial differential equations of the heat conduction type”.
Proc. Camb. Phil. Soc. 43: 50-67, 1947.

[D. 06] D. A. Brokenshire. “Maximizing the Power of the Cell Broadband Engine
Processor: 25 Tips to Optimal Application Performance”. IBM develop-
erWorks technical article, 2006.

[Dav05] David A. Bader, Yue Li, Tao Li and Vipin Sachdeva. “BioPerf: A
Benchmark Suite to Evaluate High-Performance Computer Architecture
on Bioinformatics Applications”. The IEEE International Symposium on
Workload Characterization (IISWC 2005), Austin, TX, October 6-8, 2005.

[Deb] Debian Team. “Debian”. http: // www. debian. org/ .

[et 05] J. Kahle et al. “Introduction to the Cell Multiprocessor”. IBM J. Research
and Development, pages 589–604, September 2005.

107



108 BIBLIOGRAPHY

[F. ] F. D. Tappert. “The parabolic approximation method,in wave Propagation
and Underwater Acoustics, eds J. B. Keller and J. S. Papadakis, Lecture
Notes in Physics”. Vol. 70 (Springer-Verlag, Heidelberg,1977), pages 224–
287.

[FOR] FORTH Research. “Long-Range Noise Propagation and Helicopter path
Optimization for Noise Reduction”. http: // www. forth. gr .

[G. 89] G. Barton. “Elements of Green’s Functions and Propagation: Potentials,
Diffusion, and Waves”. ISBN: 978-0198519980, 1989.

[Gen] Gentoo Linux. “Gentoo”. http: // www. gentoo. org/ .

[IBM] IBM. “IBM BladeCenter QS20”. http: // www-03. ibm. com/ technology/

splash/ qs20/ .

[IBM07a] IBM. “Cell Broadband Engine Programming Handbook”, 1.1 edition, Apr.
2007.

[IBM07b] IBM. “Full-System Simulator for the Cell Broadband Engine Processor”,
3.0 edition, Oct. 2007.

[IBM07c] IBM. “Performance Analysis with the Full-System Simulator”, 3.0 edi-
tion, Oct. 2007.

[IBM08a] IBM. “Cell Broadband Engine Programming Handbook”, 3.1 edition,
2008.

[IBM08b] IBM. “Cell Broadband Engine Programming Tutorial”, 3.1 edition, 2008.

[IBM08c] IBM. “SPE Runtime Management Library”, 3.1 edition, 2008.

[IBM08d] IBM. “SPU C/C++ Language Extensions”, 3.1 edition, 2008.

[J. 09] J. A. Trangenstein. “Numerical Solution of Hyperbolic Partial Differential
Equations”. ISBN: 978-0521877275, 2009.

[M. 06a] M. Gschwind et al. “Synergistic Processing in Cell’s Multicore Architec-
ture”. IEEE Micro, pages 10–24, Mar./Apr. 2006.

[M. 06b] M. Kistler et al. “Cell Multiprocessor Communication Network: Built for
Speed”. IEEE Micro, pages 10–23, May/June 2006.

[MS07] Michael Gschwind, IBM T.J. Watson Research Center and Sid Manning,
Mark Nutter and David Erb, IBM Austin. “An Open Source Environment
For Cell Broadband Engine System Software”, June 2007.



BIBLIOGRAPHY 109

[N. 08] N. A. Kampanis, V. Dougalis, J. A. Ekaterinaris. “Effective Computa-
tional Methods for Wave Propagation (Numerical Insights)”. ISBN: 978-
1584885689, 2008.

[Red] Red Hat. “Fedora Project”. http: // fedoraproject. org .

[S. 08] S. Marburg, B. Nolte. “Computational Acoustics of Noise Propagation in
Fluids - Finite and Boundary Element Methods”. ISBN: 978-3540774471,
2008.

[Sca09] Matthew Scarpino. “Programming the Cell Processor”, prentice hall,1st
edition, 2009.

[Son] Sony Computer Entertainment. “Playstation 3”. http: // gr.

playstation. com/ ps3/ index. html .

[Ste98] Steven L. Salzberg, Arthur L. Delcher, Simon Kasif and Owen White.
“Microbial gene identification using interpolated Markov models”. Nucleic
Acids Research, Vol. 26, No. 2, pages 544–548, 1998.

[Ste99] Steven L. Salzberg, Arthur L. Delcher, Douglas Harmon, Simon Kasif and
Owen White. “Improved microbial gene identification with GLIMMER”.
Nucleic Acids Research, Vol. 27, No. 23, pages 4636–4641, 1999.

[Ter] TerraSoft. “Yellow Dog Linux”. http: // www. terrasoftsolutions. com/

products/ ydl/ .

[The] The Board of Regents of the University of Wisconsin System. “Translation
and Open Reading Frame”. http: // www. npac. syr. edu/ projects/

cpsedu/ summer98summary/ examples/ hpf/ hpf. html .

[Twe05] S. P. Meyn and R.L. Tweedie. “Markov Chains and Stochastic Stability”.
Cambridge University Press, 2005.


