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Abstract

Power control is important in interference-limited cellular, ad-hoc, and cognitive un-
derlay networks, when the objective is to ensure a certain quality of service to each
connection. Power control has been extensively studied in this context, including dis-
tributed algorithms that are particularly appealing in ad-hoc and cognitive settings. A
long-standing issue is that the power control problem may beinfeasible, thus requiring
appropriate admission control. The power and admission control parts of the problem
are tightly coupled, but the joint optimization problem is NP-hard. We begin with a
convenient reformulation which enables a disciplined convex approximation approach.
This leads to a centralized approximate solution that is numerically shown to outper-
form the prior art, and even yield close to optimal results incertain cases - at affordable
complexity. The issue of imperfect channel state information is also considered. A
distributed implementation is then developed, which alternates between distributed ap-
proximation and distributed deflation - reaching consensuson a user to drop, when
needed. Both phases require only local communication and computation, yielding a
relatively lightweight distributed algorithm with the same performance as its central-
ized counterpart.



Chapter 1

Introduction

Power control has been extensively studied in the context ofcellular networks, as a
way of mitigating intra-cell and inter-cell interference [29, 10]. Power control is also
important in infrastructure-less ad-hoc wireless networks, where multiple co-channel
links operate simultaneously, causing interference to oneanother. Originally motivated
by the need to support circuit-switched-quality voice services (now voice-over-IP and
other applications requiring guaranteed rate), the prevailing formulation of power con-
trol aims to ensure a certain quality of service, measured interms of a link’s signal to
interference plus noise ratio (SINR), to every user in the network. A key difficulty that
has long been recognized is that the problem is often infeasible: it is not possible to
simultaneously satisfy all user demands in the same time or frequency slot. This brings
up the issue of admission control, and a natural objective isto maximize the number
(or weighted sum) of admitted users. The joint admission andpower control problem
is NP-hard, but important in practice [1, 7, 3].

The work to date on joint admission and power control has focused ongradual
removals(e.g., [1, 7, 3]) until the problem becomes feasible, orgradual admissions
(e.g., [28, 25, 2, 22, 23, 24]) when possible. In both cases, the issue is whether or not
to remove or admit a single user, and adjust transmission powers if necessary. Dis-
tributed admission control algorithms that accept or reject an incoming call in a power-
controlled cellular network can be found in [28] and [25]. Joint admission and power
control strategies offering active user protection have been investigated in a series of
papers [2, 22, 23, 24]. Active user protection makes sense from a customer experience
point of view (e.g., few dropped calls). On the other hand, itcan be far from optimal in
terms of accommodating the maximum possible number of users, or other ‘social’ met-
rics; and it limits agility, which can be crucial in certain scenarios. Admission control
for maximal throughput in power-controlled networks has been considered in [15].

Efficient utilization of the wireless spectrum has been a growing concern lately, ow-
ing to the inherent scarcity of the resource and the plethoraof emerging mobile devices
and services competing for bandwidth. It has become apparent that static regulatory
allocations of parts of the spectrum to services/users is very inefficient. Cognitive
radio has thus emerged as an adaptive cohabitation paradigmfor wireless communi-
cation. Cognitive radio nodes sense their environment and adapt their transmission
mode to enable efficient spectrum sharing. The idea is to enable secondary spectrum
usage while avoiding or limiting interference to licensed primary users, in a way that is
fair to other peers. Building upon the functionality offered by (then nascent) software
radio, cognitive radio was conceived in the late ’90’s [20].The concept started gain-
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ing momentum a few years later, after a U.S. Federal Communications Commission
(FCC) Spectrum Policy Task Force report [8] highlighted that the typical utilization of
licensed bands is under 20%. There is plenty of idle spectrumin most places, most
of the time; the issue is how to discover it in a timely fashionand use it in an efficient
manner. This realization sparked considerable research, regulatory, and standardization
activity, starting in 2003 and growing fast nowadays.

Two basic modes of operation of cognitive radio have emergedso far [32, 31, 16]:
spectrum overlay, in which secondary users seek idle time-frequency slots (transmis-
sion opportunities) and try to avoid colliding with the primary users (e.g., see [33]); and
spectrum underlay, in which secondary users try to limit the amount of interference
they cause to the primary users, but otherwise forego activity detection and may trans-
mit ‘at will’ - even in the same time-frequency slot(s) as theprimary users. Both modes
require some level of situational awareness - spectrum sensing and activity detection
for spectrum overlay, interference channel gain estimation for spectrum underlay - but
at different accuracy and time scales. Overlay systems are collision-limited, but may
transmit at relatively high power when transmission opportunities arise. Underlay sys-
tems require proper power control, but afford relatively seamless coexistence without
stringent sensing requirements.

Taking advantage of spatial reuse, secondary spectrum underlay is closer in spirit
to the traditional point of view of interference-limited wireless networks. This has fa-
cilitated migration of research results on power control, transmit beamforming, and
scheduling from the cellular to the cognitive regime [12, 11, 30]. An uplink beam-
forming and power control scenario where the objective is tomaximize the sum rate
of the secondary users under interference constraints on the primary users has been
considered in [30]. Explicit user admission is not needed ina sum-rate context. A
downlink beamforming scenario for the secondary users is considered in [12], under
SINR constraints on the primary and secondary users. Infeasibility and user selection
issues were not dealt with in [12]. In the same context, a suboptimal user selection
strategy was recently proposed in [11], based on pairwise orthogonality of the channel
vectors.

The joint power and admission control problem is consideredin this paper, for a
cognitive underlay scenario where:

• Primary users must be guaranteed a premium service rate, measured by their
signal to interference plus noise ratio (SINR);

• Secondary users, if admitted, should be provided with at least a basic service
rate;

• The number of admitted secondary users should be maximized,and the total
power required to serve them should be minimized.

The ad-hoc setting can be viewed as a special case wherein allusers are peers, and
there are no primary interference constraints. A disciplinedconvex approximation ap-
proachis adopted in this paper. Instead of aiming for the hard-to-get optimal solution
or directly trying to approximate it, the idea is to approximate the problemper seby a
suitable convex problem that is “close” to the original one.The solution of the convex
problem is then used to guide the search for a good feasible solution of the original
problem. In our particular context, linear programming relaxation is used for convex
approximation, and the final approximate solution is obtained through a sequence of
linear programs. The issue of imperfect channel state information (CSI) is also consid-
ered. Assuming bounded CSI errors, and insisting that the SINR constraints be met in
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the worst case, a robust reformulation of the joint power andadmission control prob-
lem is obtained. This admits a second order cone programming(SOCP) relaxation, and
approximate solution through a sequence of SOCP programs. Simulation results are in-
cluded to illustrate the merits of the approach. Two scenarios are considered: with or
without a primary user. In the latter, several good heuristic algorithms are available in
the literature, and the prevailing one is used as a baseline.A brute-force enumeration
algorithm is used in both cases to assess the gap from the optimal solution.

An appealing feature of classical power control solutions is that they lend them-
selves to distributed implementation. When the power control problem is feasible, the
global optimum can be reached using only local updates. Eachlink uses local inter-
ference plus noise measurements at the receiver to update the corresponding power
at the transmitter. Distributed implementation is important for a number of reasons,
including scalability, agility (the ability to track changes in the operational environ-
ment), and reduced vulnerability to node failures. Depending on the kind of feedback
required, distributed implementation can also be more lightweight in terms of signaling
overhead. These considerations motivate distributed implementation of the proposed
algorithm. This is the subject of the last part of the paper. The resulting implementa-
tion alternates between distributed approximation and distributed deflation - reaching
consensus on a user to drop, when needed. The approximation phase uses dual de-
composition - each node updates its local primal variables,while subgradient iterations
are used to update the dual variables. The deflation phase employs a consensus-on-
the-max algorithm to reach agreement on which user to drop, if needed. Both phases
require only local communication and computation, yielding a relatively lightweight
distributed algorithm that converges to the same approximate solution as its centralized
counterpart.

This body of work is the expansion of my undergraduate diploma thesis under the
supervision of Prof. Sidiropoulos. In that thesis, the workpresented in [18], we focused
on the centralized algorithm. Additions in this thesis include: a proof of NP-hardness
for the original problem, a distributed implementation, a robust version of the problem
and algorithm and comprehensive simulations.
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Chapter 2

Problem Formulation

Consider a channel that is used by a single primary userU0 andK secondary users
U := {1, . . . ,K}. By ‘user’ here we mean a transmitter - receiver pair (directed link).
A single primary user is considered for brevity of exposition. It is straightforward to
include additional constraints to account for more primaryusers; this does not change
the structure of the problem in any way. Userk transmits with powerpk ≤ PMAX

k . The
primary user’s transmission powerp0 is fixed, because cooperation cannot be assumed.
For each linkk we defineck as the SINR threshold that must be attained for the link to
meet its QoS requirement. Letσ2

k denote the thermal noise power at the reviver of link
k andGij the link gain from the transmitter of linki to the receiver of linkj.

Our purpose is to allow secondary users to use the channel without disrupting the
primary user’s communication. One way to achieve this is by controlling the secondary
user transmission powers. When there are many secondary links competing for service
and/or the SINR constraints are tighter than can be satisfied, power control alone cannot
solve the problem. In this case we need to employ some form of admission control.
Admission control should be optimized together with power allocation, because the
two are intertwined.

The problem of interest can be described in two stages: maximize the number of
secondary users that can be admitted, and then minimize the total power required to
serve them. Mathematically, the first stage can be expressedas follows.

So = argmaxS⊆{1,...,K},{pk∈R+}K

k=1
|S| (2.1)

s.t.pk ≤ PMAX
k , ∀k ∈ {1, . . . ,K} (2.2)

Gkkpk
∑K

l=1, l 6=k Glkpl +G0kp0 + σ2
k

≥ ck, ∀k ∈ S (2.3)

G00p0
∑K

l=1 Gl0pl + σ2
0

≥ c0 . (2.4)

Here (2.3) is the SINR constraint for the secondary users, and (2.4) is the SINR
constraint for the primary user. Notice that the termG0kp0 in the denominator of (2.3)
accounts for the interference caused by the primary user to userk.

Once a maximal admissible subset of secondary users is found, what remains is to
adjust their powers to minimize the total transmitted power. This can be written as
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min
{pk∈R+}K

k=1

∑

k∈So

pk (2.5)

s.t.pk ≤ PMAX
k , ∀k ∈ So (2.6)

Gkkpk
∑

l 6=k,l∈So
Glkpl +G0kp0 + σ2

k

≥ ck, ∀k ∈ So (2.7)

G00p0
∑

l∈So
Gl0pl + σ2

0

≥ c0 (2.8)

Remark 1 There may be multiple equivalent (in terms of cardinality) solutions of
(2.1)-(2.4), which may lead to different sum-power in (2.5)-(2.8). If multiple solutions
do exist, one may wish to solve (2.5)-(2.8) for each candidate solution of (2.1)-(2.4),
and pick the one that yields the overall smallest sum power inthe end. In the sequel,
we will reformulate the overall problem in a way that will take us directly to the global
minimum power solution through a single optimization problem.

The power control problem in the second stage (2.5)-(2.8) isa Linear Program (LP)
and thus easily solved - there even exist specialized solutions that are far more efficient
than generic LP solvers for the particular problem in (2.5)-(2.8). The challenge lies in
the first (subset selection) stage:

Claim 1 The subset selection problem in (2.1)-(2.4) is NP-hard.

Proof 1 Consider the following special case of (2.1)-(2.4):

So = argmaxS⊆{1,...,K},{pk∈[0,1]}K

k=1
|S| (2.9)

s.t.
pk

∑K
l=1, l 6=k Glkpl + 1

≥ 1, ∀k ∈ S (2.10)

We will show that it contains the maximal independent set problem, which is known to
be NP-hard [9]. LetΓ = (V,E) be an undirected graph, with|V | = K vertices, one
for each user, and edgesel,k ∈ E. A subset of verticesS ⊆ V of Γ is independent
when no two vertices inS are connected by an edge inE. Given anyΓ = (V,E),
define a corresponding instance of (2.9)-(2.10) by setting

Glk =

{

1, el,k ∈ E
0, otherwise

(2.11)

LetSi be a maximal independent set inΓ. Setting

pk =

{

1, k ∈ Si

0, otherwise
(2.12)

will satisfy
pk

∑K
l=1, l 6=k Glkpl + 1

= 1, ∀k ∈ Si (2.13)
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because, by definition of independent set andGlk, the nodes inSi do not interfere with
one another, and the power of any remaining nodes has been switched off. It follows
that |So| ≥ |Si|. Conversely, let{pk ∈ [0, 1]}

K
k=1 be such that

pk
∑K

l=1, l 6=k Glkpl + 1
≥ 1, ∀k ∈ S (2.14)

for someS ⊆ {1, . . . ,K}. The only way for this to hold is to havepk = 1, ∀k ∈ S,
hence it must be thatGlk = 0 for all pairs l ∈ S, k ∈ S. By definition ofGlk,
this implies thatS is an independent set inΓ. This is true in particular forSo, hence
|Si| ≥ |So|.

Note that NP-hardness of joint admission and power control in a cellular context has
been considered in [1], but the proof there is incomplete1.

1[1] does not show that anarbitrary instance of the chosen NP-hard problem can be posed as an instance
of (2.1)-(2.4).
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Chapter 3

Convex Approximation

3.1 Step 1: Single-stage Reformulation

We next reformulate the two-stage problem in (2.1)-(2.4) and (2.5)-(2.8) into anequiv-
alent single-stage optimizationproblem. This is in the spirit of the approach in [17],
albeit it does not follow as a special case. Let us consider the following problem:

min
{pk∈R+,sk∈{−1,+1}}K

k=1

ǫ

K
∑

k=1

pk + (1− ǫ)

K
∑

k=1

λk(sk + 1)2 (3.1)

s.t.pk ≤ PMAX
k , ∀k ∈ {1, . . . ,K} (3.2)

Gkkpk + δ−1
k (sk + 1)2

∑K
l=1, l 6=k Glkpl +G0kp0 + σ2

k

≥ ck, ∀k ∈ {1, . . . ,K} (3.3)

G00p0
∑K

l=1 Gl0pl + σ2
0

≥ c0 (3.4)

We have introduced binary scheduling variablessk which take the value -1 for an
admitted user and 1 for a dropped one. Notice that variablesk also appears in the
SINR constraint of userk. For sufficiently smallδk andsk = 1, the SINR constraint of
userk becomes inactive; whereas forsk = −1 the constraint remains active. The cost
function (3.1) accounts for both admission and power control. The admission control
component of the cost is discrete-valued, whereas the powercomponent is bounded. By
choosingǫ small enough, we can ensure that admission control has absolute priority
over power control: dropping any user costs more than can possibly be saved in terms of
transmission power for the rest. A ruler analogy in which thedecimal ticks correspond
to the discrete admission cost and the intervals between ticks are (partially) spanned by
the power cost can be helpful to intuitively appreciate the following result:

Claim 2 For λk = 1, ∀k ∈ {1, · · · ,K}, and

0 < ǫ <
4

∑K
k=1 P

MAX
k + 4

(3.5)

δk ≤
4

ck

(

∑K
l=1, l 6=k GlkPMAX

l +G0kp0 + σ2
k

) (3.6)
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the single-stage reformulation in (3.1)-(3.4) is equivalent to solving the two-stage prob-
lem in (2.1)-(2.4) and (2.5)-(2.8). In fact, if there are multiple solutions to (2.1)-(2.4),
solving (3.1)-(3.4) will yield the one of minimum sum power.

The proof is by contradiction, similar to the line of argument in [17]. We skip it here
for space considerations.

The reason for introducing the weightsλk is that these can be used to promote
‘social welfare’ or ‘fairness’. For example, settingλk proportional to thekth user’s
queue length will optimize system throughput; setting it inversely proportional to a
running average estimate of the user’s service rate will encourage fairness. Do note,
however, that the equivalence to (2.1)-(2.4) and (2.5)-(2.8) is lost when the weights are
not equal, as this differentiates the users.

3.2 Step 2: Isolating Non-convexity

The problem in (3.1)-(3.4) is of course also NP-hard1 and not directly amenable to
convex approximation. The followingequivalentreformulation explicitly reveals the
non-convex part of the problem, thus getting us closer to a convex one:

min
{pk∈R+,Sk∈R2×2}K

k=1

ǫ

K
∑

k=1

pk + (1− ǫ)

K
∑

k=1

λkTr(12×2Sk) (3.7)

s.t.pk ≤ PMAX
k , ∀k ∈ {1, . . . ,K} (3.8)

Gkkpk + δ−1
k Tr(12×2Sk)

∑K
l=1, l 6=k Glkpl +G0kp0 + σ2

k

≥ ck, ∀k ∈ {1, . . . ,K} (3.9)

G00p0
∑K

l=1 Gl0pl + σ2
0

≥ c0 (3.10)

Sk ≥ 0, rank(Sk) = 1, Sk(1, 1) = Sk(2, 2) = 1 ∀k ∈ {1, . . . ,K} (3.11)

whereSk ≥ 0 means that matrixSk is positive semidefinite. Its diagonal elements are
1’s and its off-diagonal elements hold the original scheduling variablesk. Matrix 12×2

is the2× 2 matrix of all1’s.
The rank-one constraint restricts the scheduling variables in the set{−1,+1}. This

is the only source of non-convexity in (3.7)-(3.11).

3.3 Step 3: Semidefinite Programming Relaxation

Dropping the rank-one constraints (which is equivalent to allowing thesk ’s to take any
value in[−1 + 1]) leaves us with a Semidefinite Programing (SDP) [5] problem:

min
{pk∈R+,Sk∈R2×2}K

k=1

ǫ

K
∑

k=1

pk + (1− ǫ)

K
∑

k=1

λkTr(12×2Sk) (3.12)

1To see this, setλk = 1, ∀k, and sendǫ → 0 to recover (2.1)-(2.4). A formal proof can be constructed
to show that it contains the maximal independent set problem, asper the proof of Claim 1
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s.t.pk ≤ PMAX
k , ∀k ∈ {1, . . . ,K} (3.13)

Gkkpk + δ−1
k Tr(12×2Sk)

∑K
l=1, l 6=k Glkpl +G0kp0 + σ2

k

≥ ck, ∀k ∈ {1, . . . ,K} (3.14)

G00p0
∑K

l=1 Gl0pl + σ2
0

≥ c0 (3.15)

Sk ≥ 0, Sk(1, 1) = Sk(2, 2) = 1 ∀k ∈ {1, . . . ,K} (3.16)

In [26], it is shown that this rank relaxation yields the Lagrange bi-dual problem,
which is the closest convex problem to (3.7)-(3.11) in a certain sense, thus motivating
rank relaxation; see also [13] and [14] for further insightsand motivation.

In our case, the relaxed problem (3.12)-(3.16) can be easilyshown to be equivalent
to the following linear program.

min
{pk∈R+,tk∈R+}K

k=1

ǫ
K
∑

k=1

pk + (1− ǫ)
K
∑

k=1

λktk (3.17)

s.t.pk ≤ PMAX
k , ∀k ∈ {1, . . . ,K} (3.18)

Gkkpk + δ−1
k tk

∑K
l=1, l 6=k Glkpl +G0kp0 + σ2

k

≥ ck, ∀k ∈ {1, . . . ,K} (3.19)

G00p0
∑K

l=1 Gl0pl + σ2
0

≥ c0 (3.20)

0 ≤ tk ≤ 4, ∀k ∈ {1, . . . ,K} (3.21)

which further simplifies computation. The solution of (3.17)-(3.21) yields a lower
bound on the objective of (3.7)-(3.11), and thus a way to assess the quality of subop-
timal solutions to (3.7)-(3.11). Still, solving the relaxed problem in (3.17)-(3.21) is
certainlynot equivalent to solving the original problem in (3.7)-(3.11). How to obtain
a good approximate solution of (3.7)-(3.11) using (3.17)-(3.21) is addressed in the next
section.

3.4 Step 4: Approximation Algorithm

The main idea is to employdeflationover (3.17)-(3.21). That is, solve (3.17)-(3.21),
and check if all the original constraints are satisfied. If not, choose a user to drop and
repeat until the problem becomes feasible.

Algorithm 1 LinearProgrammingDeflation (LPD):

1. U ← {1, ...,K}

2. Solve (3.17)-(3.21) for the users inU only.

3. If all links in U attain target SINR go to Step 4. Else use a heuristic (see text
below) to choose a link, remove it fromU and go to Step 2.
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A quite important factor for the performance of this algorithm is the heuristic em-
ployed to drop links at each iteration. We tried many, and themost promising one is
as follows. At each step, after solving (3.17)-(3.21), we calculate a metric for each
link. Let pek be the excess transmission power needed for linkk to attain its target
SINR, assuming all other link powers are as calculated from (3.17)-(3.21). This ex-
cess transmission power for linkk causes excess interference to all other links. Let
xe
k = pek

∑

l 6=k Gkl be the sum of excess interference powers caused to all other links
due topek. Let yek =

∑

l 6=k Glkp
e
l be the excess interference caused to linkk due to

the excess transmission powers of all other links. The link metric used for choosing
the link to drop ismk := xe

k + yek. The link that has the largestmk is dropped, and
the process continues by solving again (3.17)-(3.21) for the remaining links, until a
feasible solution (requiring no excess power for any link) is found.

10



Chapter 4

Imperfect Channel State
Information

An important issue in practice is what happens when the channel gains are not known
exactly, but only estimates are available. Assuming that the estimation errors are
bounded, it is possible to extend the basic approach to incorporate uncertainty, as ex-
plained next. The key is the LP relaxation in (3.17)-(3.21),for robust LP with bounded
uncertainty in the constraint parameters is SOCP (see, e.g., section [4.4.2] in [5]).

The SINR constraints in (3.19) can be compactly written as

ḡT
k p−

δ−1
k

ck
tk ≤ −σ

2
k, ∀k ∈ {1, . . . ,K} (4.1)

where

ḡk = [G0k G1k . . . G(k−1)k −
Gkk

ck
G(k+1)k . . . GKk]

T (4.2)

and the augmented power vector (note thatp0 is not an optimization variable)

p = [p0 p1 . . . pK ]T . (4.3)

Likewise, the primary user’s SINR constraint in (3.20) can be expressed as

ḡT
0 p ≤ −σ

2
k, ∀k ∈ {1, . . . ,K} (4.4)

where

ḡ0 = [−
G00

c0
G10 G20 . . . GK0]

T (4.5)

Now, assume that the true vectorsgk and vectorg0 lie inside ellipsoidsEk andE0
with centers the respective estimated valuesḡk andḡ0:

gk ∈ Ek = {ḡk + Eku | ||u||2 ≤ 1} , ∀k ∈ {0, . . . ,K} (4.6)

where matrixEk ∈ R
K+1×K+1 determines the size, shape and orientation of ellipsoid

Ek. The robust counterpart of (4.1) is

gT
k p−

δ−1
k

ck
tk ≤ −σ

2
k, ∀gk ∈ Ek, ∀k ∈ {1, . . . ,K} (4.7)
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or equivalently, for eachk,

sup

{

gT
k p−

δ−1
k

ck
tk | gk ∈ Ek

}

≤ −σ2
k

sup
{

gT
k p | gk ∈ Ek

}

−
δ−1
k

ck
tk ≤ −σ

2
k

ḡT
k p+ sup

{

uTET
k p | ||u||2 ≤ 1

}

−
δ−1
k

ck
tk ≤ −σ

2
k

ḡT
k p+ ||ET

k p||2 −
δ−1
k

ck
tk ≤ −σ

2
k (4.8)

To ensure that the inequality holds when linkk is not admitted, we have to pick aδk
that satisfies it forpl = PMAX

l , ∀l 6= k, pk = 0 andtk = 4. For diagonalEk, δk
should satisfy

δk ≤
4

ck

(

∑K
l=0, l 6=k GlkPMAX

l + ||ET
k P

MAX
−k ||2 + σ2

k

)

wherePMAX
−k is the vector of maximum link powers, including the primary user,

with a zero in elementk. Note that the primary user transmits with a fixed power
p0 = PMAX

0 . In the same manner, the robust counterpart of the primary user’s SINR
constraint (4.4) is

gT
0 p ≤ −σ

2
0 , ∀g0 ∈ E0 (4.9)

which can be reduced to
ḡT
0 p+ ||ET

0 p||2 ≤ −σ
2
0 (4.10)

Replacing inequalities (4.1), (4.4) with their robust versions (4.8), (4.10) yields a
SOCP problem. The overall approximation algorithm remainssimilar to LPD for the
case of perfect CSI, except that the SOCP formulation is now employed in lieu of LP
as the basic deflation step, and the robust constraints (4.8), (4.10) are used to check
whether links attain their target SINR in the worst case.

In scenarios with severe uncertainty, we found that introducing an additional step
(see below) helps prevent overestimating interference during the course of deflation,
thus yielding significantly better results. The complete robust algorithm is as follows.

Algorithm 2 SecondOrder ConeDeflation (SOCD):

1. U ← {1, ...,K}

2. Solve (3.17),(3.18),(4.8),(4.10),(3.21) for the usersin U only.

3. If all links inU attain target SINR terminate.

4. Solve again only for the links that attained their SINR target and update their
powers in the previous solution.

5. Use the heuristic on the full solution (resulting power vector) to choose a link,
remove it fromU and go to Step 2.
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Chapter 5

Distributed Implementation

The first obstacle in designing a distributed algorithm for (3.17)-(3.21) is that the con-
straints in (3.19)-(3.20) are coupled across users. Ideally, we would like each user
to optimize its own variables (pk and tk), relying on low-rate feedback from other
users to ensure that the solution converges to the global optimum. Towards this end,
we will employ a dual decomposition approach [21, 34]. Letp = [p1, p2, . . . pK ]

T ,
t = [t1, t2, . . . tK ]

T denote the primal variables, andµ = [µ0, µ1, . . . µK ]
T the vector

of dual variables (bear in mind that theλk’s are link weights defined in the original
problem formulation; for this reason, the dual variables are denoted byµk.). Let us
form the partial Lagrangian

L(p, t,µ) = ǫ

K
∑

k=1

pk + (1− ǫ)

K
∑

k=1

λktk

+
K
∑

k=1

µk



ck

K
∑

l=0,l 6=k

Glkpl + ckσ
2
k −Gkkpk − δ−1

k tk





+µ0

(

c0

K
∑

l=1

Gl0pl + c0σ
2
0 −G00p0

)

= ǫ
K
∑

k=1

pk + (1− ǫ)
K
∑

k=1

λktk +
K
∑

k=0

µkck

K
∑

l=0,l 6=k

Glkpl

+

K
∑

k=0

µkckσ
2
k −

K
∑

k=0

µkGkkpk −

K
∑

k=1

µkδ
−1
k tk

All terms in this expression are separated (sums of individual user contributions), ex-
cept for the third one. Notice, however, that this term may berewritten as

K
∑

k=0

µkck

K
∑

l=0,l 6=k

Glkpl =
K
∑

k=0

K
∑

l=0,l 6=k

µkckGlkpl

=
K
∑

l=0

K
∑

k=0,k 6=l

µkckGlkpl =
K
∑

l=0

pl

K
∑

k=0,k 6=l

µkckGlk
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This is a key step towards distributing the computation. Swapping variablesk and l
and substituting back in the Lagrangian, we obtain

L(p, t,µ) = ǫ
K
∑

k=1

pk + (1− ǫ)
K
∑

k=1

λktk +
K
∑

k=0

pk

K
∑

l=0,l 6=k

µlclGkl

+

K
∑

k=0

µkckσ
2
k −

K
∑

k=0

µkGkkpk −

K
∑

k=1

µkδ
−1
k tk

=

K
∑

k=0

pk



ǫ+

K
∑

l=0,l 6=k

µlclGkl − µkGkk





+

K
∑

k=1

tk
(

(1− ǫ)λk − µkδ
−1
k

)

+

K
∑

k=1

µkckσ
2
k

=
K
∑

k=0

Lk(pk, tk,µ)

where fork ∈ {1, . . . ,K}

Lk(pk, tk,µ) = pk



ǫ+

K
∑

l=0,l 6=k

µlclGkl − µkGkk





+ tk
(

(1− ǫ)λk − µkδ
−1
k

)

+ µkckσ
2
k (5.1)

and

L0(µ) = p0

(

ǫ+

K
∑

l=1

µlclG0l − µ0G00

)

+ µ0c0σ
2
0 (5.2)

Notice thatL0 is a function of justµ sincep0 is constant and not included inp and
there is not0 - the primary user is always admitted. Dual variableµk is the cost users
have to pay to interfere with userk. We have rewritten the Lagrangian as the sum of
K + 1 individual Lagrangians involving only local variables andthe dual variables.
The dual function can be split as well,

d(µ) = inf
p,t

K
∑

k=0

Lk(pk, tk,µ) =

K
∑

k=0

dk(µ)

where we have suppressed the box constraints onp, t for brevity, and fork ∈ {1, . . . ,K}

dk(µ) = inf
pk,tk

pk



ǫ+
K
∑

l=0,l 6=k

µlclGkl − µkGkk





+ tk
(

(1− ǫ)λk − µkδ
−1
k

)

+ µkckσ
2
k (5.3)

whereas

d0(µ) = p0

(

ǫ+

K
∑

l=1

µlclG0l − µ0G00

)

+ µ0c0σ
2
0 (5.4)
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As expectedd0 is constant overp andt. This is a consequence of the fact that the
primary user has no local (i.e. primary) variables to optimize. The resulting dual
problem is

max
µ∈R

K+1

+

d(µ) (5.5)

which can be solved in a distributed fashion using the projected subgradient method.
The overall approach iterates between computing minimizers of (5.3) inclosed form,
using them to calculate subgradients ofd, and updating costsµ.

In order to recover the solution of (3.17)-(3.21) (i.e., theoptimal primal variables)
from the dual problem, the objective of the primal problem should be strictly convex.
The linear objective in (3.17) is convex, but not strictly convex. We may bypass this
difficulty by approximating the objective in (3.17) with

ǫ

K
∑

k=1

p1+θ
k + (1− ǫ)

K
∑

k=1

λkt
1+θ
k (5.6)

whereθ is a small positive constant which can be chosen to ensure that the solution of
the modified problem is within specified tolerance from that of the original problem.
With this modification, (5.1) becomes

Lk(pk, tk,µ) = pk



ǫpθk +

K
∑

l=0,l 6=k

µlclGkl − µkGkk





+ tk
(

(1− ǫ)λkt
θ
k − µkδ

−1
k

)

+ µkckσ
2
k (5.7)

whereas (5.3) becomes

dk(µ) = inf
pk,tk

pk



ǫpθk +
K
∑

l=0,l 6=k

µlclGkl − µkGkk





+ tk
(

(1− ǫ)λkt
θ
k − µkδ

−1
k

)

+ µkckσ
2
k (5.8)

and both are strictly convex. Note thatLk(pk, tk,µ) contains a term depending only on
pk, another depending only ontk, and separate interval constraints onpk, tk. It follows
that minimization ofLk(pk, tk,µ) with respect topk, tk amounts to two separate 1-
D strictly convex subproblems. Taking partial derivativeswith respect topk, tk, and
equating to zero, we obtain

p∗k =

(

µkGkk −
∑K

l=0,l 6=k µlclGkl

ǫ (1 + θ)

)1/θ

(5.9)

and

t∗k =

(

µkδ
−1
k

(1− ǫ)λk (1 + θ)

)1/θ

(5.10)

followed by projection ofp∗k onto [0 PMAX
k ], andt∗k onto [0 4]. In each iteration, user

k updatespk andtk as above, then updatesµk using a projected subgradient step

µk = [µk − αρk]+ (5.11)
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where[·]+ denotes projection onto the positive half-space,α is a suitable step size,ρk
is the positive slack from the SINR constraints, which fork ∈ {1, . . . ,K} is given by

ρk(pk, tk) = Gkkpk + δ−1
k tk − ck

∑

l 6=k

Glkpl − ckσ
2
k (5.12)

and
ρ0 = G00p0 − c0

∑

l 6=0

Gl0pl − c0σ
2
0 (5.13)

It has been shown (e.g., section 6.3 in [4], and [34]) that, iffor everyk and givenµ,
p∗k andt∗k are minimizers ofLk, the vector of slacksρk(p∗k, t

∗
k) makes up a subgradi-

ent of the negative dual function−d at µ. Using the update rule in (5.11) results in
minimizing−d or, equivalently, solving our dual problem.

The convergence properties of the algorithm are dependent on the choice of step
sizeα. There are various strategies for the step size choice in theliterature. We chose
αi = α0/i wherei is the iteration number andα0 is the initial step size (this sequence is
square summable but not summable). This ensures convergence to the optimal solution
(e.g., Proposition 6.3.4 in [4]), however the speed of convergence depends heavily on
the choice ofα0. Fig. 6.8 illustrates convergence of the primaltk variables in an
infeasible scenario withK = 3 nodes.

5.1 Distributed Deflation and Feedback Requirements

The algorithm used in the distributed setting is essentially the LPD algorithm described
in Section 3.4, where the primal-dual method described in this section is used instead
of a centralized LP solver for step 2. In each iteration of this primal-dual method, user
k ∈ {1, . . . ,K} updates its local variables using (5.9), (5.10), (5.12), (5.11) [or (5.13),
(5.11) fork = 0]. The update in (5.9) requires that nodek is aware ofcl, Gkl and the
current priceµl for each neighboring nodel affected by interference from nodek (i.e.,
for whichGkl 6= 0). A separate low-rate control channel can be used to pass around
this information to neighboring nodes. The update in (5.12), (5.11), [or (5.13), (5.11)
for k = 0] is lighter in terms of feedback, as it only requires measuring the received
interference plus noise (i.e., the quantity

∑

l 6=k Glkpl + σ2
k).

After convergence of the primal-dual method (end of step 2 inthe algorithm), each
link checks if its SINR constraint is satisfied. If not, a distributed consensus process to
select a link to drop is initiated by any link, via the controlchannel. In order for the
link dropping heuristic described in 3.4 to be used, again certain quantities need to be
communicated over the control channel.

Let pek be the excess power needed for linkk to attain its target SINR, assum-
ing all other link powers are those obtained upon convergence. Link k computes
the sum ofexcessinterference caused to and received from neighboring links, i.e.,
mk := pek

∑

l 6=k Gkl +
∑

l 6=k Glkp
e
l . This requires that linkk also knowsGlk, pel for

the links it receives interference from. This information can be locally shared using the
control channel. A distributed consensus-on-the-max algorithm can then be employed
over the control channel to reach agreement on the index of the link with maximum
mk and drop that link.

Distributed consensus algorithms have attracted considerable interest in signal pro-
cessing lately, sparked by the work of Xiao and Boyd [27], among others. Distributed
consensus has a longer history though, including the case ofconsensus-on-the-max
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and general functions; see [6] and references therein. A distributed flow that achieves
consensus-on-the-max in finite time for strongly connectedgraphs is given in [6]. A
conceptually simpler discrete-time approach is to let eachnode compute a local maxi-
mum at each time-step. If the graph is strongly connected, this will yield consensus on
the global maximum in at mostr steps, wherer is the radius of the graph. This assumes
that interim estimates are exchanged between neighbors at each time step, however it is
easy to relax this requirement and still guarantee convergence, under mild assumptions.
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Chapter 6

Simulations

We carried out three sets of experiments: centralized with perfect CSI, distributed with
perfect CSI and robust centralized with CSI uncertainty. Ineach case we examined
scenarios with and without a primary user, to cover cognitive radio and ad-hoc settings,
respectively. In all our simulations we tested the ability of each algorithm to admit
a close to optimal (as given by enumeration) number of users for varyingK (user
population), target SINR, or channel gain uncertainty in the robust case.

In the sequel, each figure reports Monte-Carlo (MC) average results for at least300
MC runs. For each MC run, transmitter locations are uniformly drawn on a2 Km × 2
Km square. For each transmitter location, a receiver location is drawn uniformly in a
disc of radius400 meters, excluding a radius of10 meters. The power budget for any
link k is given byPMAX

k = bPMIN
k , wherePMIN

k is the minimum power required for
the link to satisfy its SINR constraint in the absence of any interference. The primary
user’s power is fixed toPMAX

k . Link gains are calculated byGij = 1/d4ij wheredij is
the Euclidean distance between transmitteri and receiverj, and receiver noise is set to
−60 dBm. For our relaxation-based algorithms, theδk are kept close to the respective
bounds (specifically at0.999 times the value given by (3.6)) andǫ is set to one order of
magnitude smaller than the upper bound given by (3.5).

6.1 Centralized Algorithm under Perfect CSI

Results for this set of experiments are summarized in Figures 6.1 to 6.5. As a baseline
for our LPD algorithm, we implemented the gradual removals GRN-DCPC algorithm
of [1]. This algorithm was not developed for a cognitive radio scenario (it does not
account for interference to the primary user). Despite its age, [1] still represents the
state-of-art in the case when no primary users are considered. The heuristic used was
’SMART’ as described in [1]. In the course of implementing this algorithm, we came
up with an improved variant, which we also included in our simulations under the name
’GRN-DCPC SMART Modified’1.

In order to include the ultimate upper bound in our comparisons, we also developed
a carefully optimized stack-based enumeration algorithm that always finds the optimum
solution for modest problem sizes (up to 20 secondary users). This works by either

1The modification consists of normalizing cross gains by the transmitter’s self link gain, instead of the
receiver’s self link gain. Using the notation in [1] (bewareof the reversed role of indices) this translates to
αij = gij/gjj instead of the originalαij = gij/gii (for j 6= i).
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growing or pruning the candidate set of users. In growing mode, once an infeasible
set has been detected, its supersets are not tested; in pruning mode, once a feasible set
has been found, its subsets are not tested. The code was verified against brute-force
enumeration in extensive Monte-Carlo experiments for up to12 users.

In all experiments in this section, except for figure 6.3 we set the power budget
coefficient tob = 5. A comparison of LPD, the two flavors of GRN-DCPC, and the
optimal solution (via enumeration) in terms of the average number of admitted users
versus the user population,K, is provided in Figure 6.1 forck = 0 dB andck = 8 dB.
Our modification of ’GRN-DCPC SMART’ performs better than the original and LPD
performs very close to optimal for the range considered. Figure 6.2 shows the average
number of admitted users versus a larger number of candidateusers, illustrating the
increasing gap of LPD relative to both flavors of GRN-DCPC.

The transition from the power limited to the interference limited regime is illus-
trated in Figure 6.3, as the average number of admitted usersover the power budget
coefficientb. There we can see a ’law of diminishing returns’-type behavior, where
gains from power are only reaped in the early stages of increasing the power budget.

Figures 6.4 and 6.5 depict results in a cognitive radio setting. The primary trans-
mitter and receiver, when present, are located on an edge of the2 Km × 2 Km square,
1 Km apart and symmetrically with respect to the edge midpoint. For Figure 6.4, a
single primary user is present withc0 = 2dB, and for the secondary usersck = 2dB,
or ck = 5dB. Figure 6.5 shows the average number of admitted users versus the sec-
ondary user’s SINR target, with or without a primary user (curves markedP = 1 or
P = 0, respectively) withc0 = 2dB. In this case, the number of admitted users de-
creases roughly linearly with respect to the SINR target in dB. In both figures we notice
that our LPD algorithm performs close to optimal in the scenarios considered.

6.2 Centralized Algorithm with Imperfect CSI

In order to assess the performance of our robust SOCD algorithm, we use the same
simulation setup as in our previous experiments. The new element lies in our modeling
of channel gain uncertainty. As already described in Section 4, for any given receiver,
the receiving gains are assumed to be lying in an ellipsoid centered on the nominal gain
values. Furthermore, for the purpose of these simulations we assume diagonal ellipsoid
matrices and perfect self link gain knowledge. Specifically, the entries of the ellipsoid
matrixEk are given by:

Ek(i, j) =

{

ηkGik, i = j andi 6= k
0, otherwise

,

whereηk ∈ [0, 1) represents the level of uncertainty for the receiving gainsestimated
by receiverk. The amount of this uncertainty is a fraction of the actual gains, modeling
an additive uncertainty for an estimate in dB.

The deflation algorithm employed here is the robust SOCD described in section
4. Only enumeration is available for comparison in the robust case. This is similar
to the enumeration algorithm used in our earlier simulations, only this time using the
SOCP formulation of Section 4 to test user subsets for admissibility. Figure 6.6 shows
the average number of admitted users versus the total numberof users forck = 2,
no primary user present, and uncertainty coefficientsηk = 0.1 or ηk = 0.9. Figure
6.7 shows the average number of admitted users for10 candidate users, versus the
uncertainty coefficientηk. For this figureck = 0, one set of curves is without a primary
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user and the other set includes a primary user withc0 = 2 and higher estimation
uncertainty than the more versatile secondary users (η0 = 2ηk). Again our SOCD
algorithm performs very close to optimal.

6.3 Distributed Algorithm

To assess the performance of our distributed LPD algorithm we will again compare to
the two flavors of GRN-DCPC and enumeration, described in Section 6.1. We present
indicative simulation results for both an ad-hoc scenario without a primary user (to
enable comparison with [1]), and a cognitive radio scenariowith a primary user present.
In all experiments in this section we set the power budget coefficient to b = 2.

For the distributed-algorithm-specific parameters discussed in Section 5 we setθ =
0.2, and the initial step-size was empirically set toα0 = 1. The dual variables were
initialized asµk ∼ 1/Gkk, and the slacksρk were normalized byGkkδ

−1
k to bring

the different links to scale and ensure approximately equalrates of convergence. A
maximum of 5K iterations were allowed for the primal-dual distributed solver of the
relaxed problem, followed by a final phase that linearly bringsαi to 0 in 500 iterations,
thus damping any residual oscillation.

Figure 6.9 reports the average number of users admitted versus the total number of
users forck = 2, for enumeration, the two flavors of GRN-DCPC, the centralized LPD
algorithm, and its distributed counterpart, with or without a primary user withc0 = 2.
Since the GRN-DCPC algorithms are not applicable in scenarios with primary users,
they are omitted in the second set of curves. Finally, figure 6.10 shows the average
number of users admitted versus the secondary users’ SINR target for 12 users and
c0 = 2.

We notice that our distributed LPD performs the same as the centralized LPD,
which is a significant improvement over ’GRN-DCPC SMART’. Our modification of
’GRN-DCPC SMART’ performs close to LPD in this simulation, however we would
like to point again to the results in figure 6.2, which demonstrate the clear superiority
of LPD for a large number of users.

For the purpose of discussing the communication requirements and solution speed
of our distributed algorithm, let us give an example. Assumea 10 Mbps control chan-
nel. At every iteration, every user has to broadcast its dualvariableµk. A conservative
estimate of the message size including coding and user ID gives us a packet of 50 bits.
Assuming a total of 10 users this translates to 20K iterations or approximately4 link
removals per second. Compared to this, simpler algorithms like GRN-DCPC [1] (or
its improved variant proposed herein) take only a small fraction of the time, making
the use of distributed deflation worth when we do admission control infrequently (for
relatively longer transmission rounds) and/or in difficultscenarios where we need to
squeeze-in the maximum possible number of users.
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Figure 6.1: Mean number of admitted users vs. total number ofcandidate users, for
ck = 0 andck = 8 dB.
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Figure 6.2: Mean number of admitted vs. total number of users, for a large candidate
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Figure 6.3: Mean number of admitted users vs. power budget coefficientb, for ck = 2
and 50 users.
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Chapter 7

Discussion and Conclusions

Our results suggest that the proposed LPD algorithm is very promising. It indeed
comes close to attaining the performance of the optimal solution at the cost of solving
O(K) LP problems in the worst case. This requires a fraction of a second on a current
personal computer, as opposed to several minutes needed forenumeration forK = 20,
which is modest. LPD clearly outperforms the state-of-art when no primary users are
considered. This is already important, because the joint admission and power control
problem has been under scrutiny for many years. Interestingly, our robust solution (the
SOCD algorithm) appears to have an even smaller gap relativeto the optimal robust
solution.

We have also developed a distributed implementation of the joint admission and
power control algorithm. The new implementation alternates between a distributed
approximation phase and a distributed deflation phase. The latter employs consensus-
on-the-max to select a link to drop, if needed. Both phases require local communication
and computation. Still, communication and computation requirements are considerably
higher than those of simpler heuristic solutions, making distributed deflation worth
its cost in relatively challenging scenarios, or when we schedule for (and costs are
amortized over) longer horizons.
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