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Abstract

The problem of tracking a frequency-hopped signal without knowledge of its hopping pattern

is considered. The problem is of interest in military communications, where, in addition to

frequency, hop timing can also be randomly shifted to guard against unauthorized reception

and jamming. A conceptually simple stochastic state-space model is proposed to capture the

randomness in carrier frequency and hop timing. The model is non-linear and non-Gaussian,

but naturally suited for the application of particle filtering tools, and fortuitous as well: it is

possible to compute the optimal importance function in closed-form. The optimal importance

function is computed for both single- and multi-channel reception, and a rejection procedure

is developed to draw samples from the resulting closed form. The performance of several

particle filtering algorithms is assessed and compared to the prior art in a range of experiments

using both simulated and measured data.



Chapter 1

Introduction

Tracking the parameters (frequency, complex amplitude) of a time-varying complex sinusoid

is an important problem that arises in numerous applications. In many cases the parameters

can be assumed to vary slowly in time. Slow variations can often be captured using a simple

Gaussian auto-regressive model. A related but different problem emerges in the context of

frequency hopping (FH) communications, where the carrier frequency is intentionally hopped

in a (pseudo-) random and discontinuous fashion. In military communications, FH is used to

guard against unauthorized reception and jamming, and hop timing can also be randomized for

added protection. In civilian communications (e.g., Bluetooth), FH is used to avoid persistent

interference and enable uncoordinated co-existence with other systems.

Several references have considered the problem of tracking a FH signal without knowledge

of the hopping pattern [13, 2, 10, 11]. Non-parametric methods based on the spectrogram [2]

are simple and useful as exploratory tools, but suffer from limited resolution due to leakage. It
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is possible to employ time-frequency distributions that are better-adapted to frequency hopping

[3], but the results are still not very satisfactory. Parametric methods for frequency hopping

explicitly model the frequency as piecewise-constant, assume a “budget” on the number of

hops within a given observation interval, and employ Dynamic Programming (DP) to track the

sought frequency and complex amplitude parameters [10, 11]. Other than an upper bound on

the number of hops, the methods in [10, 11] do not assume anything else about the frequencies

or complex amplitudes, which are treated as deterministic unknowns. The algorithms in [2,

10, 11] are also applicable when hop timing is random.

A different viewpoint is adopted in this thesis. A stochastic non-linear, non-Gaussian state-

space formulation is proposed, which captures frequency hopping dynamics in a probabilistic

sense. The proposed formulation is naturally well-suited for the application of particle filtering

for state estimation. Compared to the prior state-of-art in [10, 11], the new approach has a

number of desirable features. For a fixed average hop rate, the complexity of the DP algorithms

in [10, 11] is roughly fourth-order polynomial in the number of temporal signal snapshots, T ,

and DP requires back-tracking - implying that only short data records can be processed, and

in batch mode. Particle filtering can be implemented on-line, and its complexity is linear in T .

Furthermore, unlike previous methods, the stochastic state-space model can be easily tailored

to match a given scenario (e.g., spread bandwidth and modulation).

In closing this section, we remark that particle filtering solutions for tracking slowly-

varying parameters of a harmonic or chirp signal are discussed in [14, 15]. Interestingly,

the case of slowly-varying parameters is much different, and in a sense more difficult than the
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one considered here.
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Chapter 2

FH Data Model and Problem Statement

For simplicity of exposition the case of two receive antennas is discussed in the sequel, but the

derivations in the Appendix cover the case of L ≥ 1 antennas.

Let xk := [ωk, Ak, Bk]
T , denote the state at time k, where ωk ∈ [−π, π) denotes instanta-

neous frequency, while Ak ∈ C and Bk ∈ C denote the complex amplitude for the first and

second antenna, respectively. Let uk := [bk, ω̃k, Ãk, B̃k]
T denote an auxiliary i.i.d. sequence

of vectors with independent components and the following marginal statistics: bk is a binary

random variable with Pr(bk = 1) = h; ω̃k is uniformly distributed over [−π, π), denoted

U([−π, π)); and Ãk and B̃k are CN (0, 2σ2
A), i.e., complex circular Gaussian of variance σ2

A

for each real dimension. The state is assumed to evolve according to the following stochastic

model:

xk = f(xk−1,uk) =





xk−1 ,uk(1) = 0

[uk(2), uk(3), uk(4)]T ,uk(1) = 1

4



=





xk−1 , w.p. 1− h

[U ([−π, π)) , CN (0, σ2
A), CN (0, σ2

A)]
T

, w.p. h

,

and the measurements at time k are

yk(1) = xk(2)ejxk(1)k + vk(1),

yk(2) = xk(3)ejxk(1)k + vk(2),

where vk(·) denotes i.i.d. CN (0, σ2
n) measurement noise.

Some comments on our modeling assumptions are useful at this point.

• The above state-space formulation models frequency hopping in a probabilistic fashion.

Hops are random, i.i.d., with hop probability h per sample interval. This is different

from traditional models of frequency hopping, which assume that the frequency hops

periodically. In addition to frequency, hop timing can also be randomly shifted to help

guard against interception and repeat-back jamming. In addition, the random hopping

model is well-suited for on-line sequential estimation using particle filtering.

• When the (discrete-time, baseband-equivalent) frequency hops, it hops anywhere within

[−π, π) with a uniform density. This is appropriate for FH signals sampled at the

Nyquist rate relative to the hopping bandwidth.

• Modulation-induced variations can be neglected when the objective is to estimate carrier

frequency, but could also be explicitly modeled using, e.g., a smooth auto-regressive

frequency variation model in-between hops, in lieu of the simplified constant model

postulated above.
5



• We assume independent and identically distributed (i.i.d.) Rayleigh fading in space

and frequency. This is realistic for frequency-hopped signals in rich multipath envi-

ronments without a dominant line-of-sight, when the receive antennas are sufficiently

well-separated (a few wavelengths apart). Aside from plausibility, this assumption is

also convenient for tractability (analytical integration and bounding) considerations. In-

terestingly, as we will see, it turns out that the resulting filters work well even when the

antennas are correlated. This further justifies the spatial independence assumption from

a simplicity viewpoint - there is no need to estimate antenna cross-correlation coeffi-

cients.

Given a sequence of observations {yk}T
k=1, our objective is to estimate the sequence of

system states {xk}T
k=1 - that is, the unknown carrier frequencies and complex amplitudes.

We will do this in an indirect way - estimating the posterior density p
(
xk | {yl}k

l=1

)
, from

which the state can be estimated using the conditional mean or mode. This leads us to particle

filtering.
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Chapter 3

Particle filtering

Particle filtering (PF) is an important estimation toolbox that is applicable to general non-

linear and/or non-Gaussian state-space models. We refer the reader to [1, 7, 8] for recent

tutorial overviews of PF. In PF, a continuous distribution p(x) is approximated by a discrete

random measure comprising “particles” (locations) and corresponding weights:

p(x) ≈
N∑

n=1

wnδ(x− xn),

where δ(·) denotes the Dirac delta functional. If our goal is to estimate the system state at time

k from measurements up to and including time k, the key distribution of interest is the posterior

density p
(
xk | {yl}k

l=1

)
. PF starts with a random measure approximation of the initial state

distribution, and uses subsequent measurements to estimate p
(
xk | {yl}k

l=1

)
, k ∈ {1, 2, · · · }

in a sequential fashion, i.e., generate a sequence of random measure approximations

p̂
(
xk | {yl}k

l=1

)
=

N∑
n=1

wn,kδ(xk − xn,k)
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The measure update step is based on the Bayes rule. If we could sample particles from the

desired posterior p
(
xk | {yl}k

l=1

)
, then all particle weights would have been equal. Unfortu-

nately, direct sampling from the desired posterior is not possible in most cases. For this reason,

we resort to importance sampling: we draw samples from a suitable importance function that

has the same support as the desired posterior, and we weigh the particles according to the ratio

of the two densities at the sample point. The choice of importance function is very important -

the more it resembles the desired density the better, but it should also be easy to sample from.

The simplest and most intuitive choice of importance function is the prior importance

function p(xk | xn,k−1); i.e., the n-th particle is passed through the state-evolution part of the

system: xn,k = f(xn,k−1,un). A drawback is that particles evolve without taking the latest

measurement into account. After all particles have been updated, the weights are adjusted

according to wn,k = wn,k−1p(yk | xn,k), followed by normalization to
∑N

n=1 wn,k = 1. Notice

that the new measurement affects the weight update.

A common problem in PF is degeneracy: the weights of all except a few particles become

negligible after several iterations; this can be detected and corrected using resampling tech-

niques [1, 7, 8, 4]. The importance function that minimizes the variance of the weights (a

precaution against degeneracy) is

p(xk|xn,k−1,yk) =
p(yk|xk)p(xk|xn,k−1)∫
x
p(yk|x)p(x|xn,k−1)dx

.

This is often referred to as the optimal importance function, and it usually strikes a better

estimation performance - complexity trade-off than other alternatives. Notice that the optimal

importance function takes into account the latest measurement. Both the prior and the optimal
8



importance function yield consistent estimates of the desired density when the number of

particles goes to infinity.

There are two obstacles to using the optimal importance function: it requires multidimen-

sional integration to compute the normalization factor (which is usually intractable); and sam-

pling from it can be complicated. Thankfully, it turns out that both obstacles can be overcome

for our particular model, as shown next.
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Chapter 4

Closed-form Optimal Importance

Function and Sampling Procedure for

Random Frequency Hopping

Denote xk := [ωk, Ak, Bk]
T , where ωk ∈ [−π, π), and Ak, Bk ∈ C; and likewise xn,k−1 :=

[ωn,k−1, An,k−1, Bn,k−1]
T . Let x := [ω, A,B]T , and

D(yk,xn,k−1) :=

∫

x

p(yk|x)p(x|xn,k−1)dx.

Then

D(yk,xn,k−1) =

∫

ω∈[−π,π)

∫

A∈C

∫

B∈C

1

2πσ2
n

e
− |yk(1)−Aejωk|2

2σ2
n × 1

2πσ2
n

e
− |yk(2)−Bejωk|2

2σ2
n ×

×
[
(1− h)δ(ω − ωn,k−1)δ(A− An,k−1)δ(B −Bn,k−1) +

h

2π

1

2πσ2
A

1

2πσ2
B

e
− |A|2

2σ2
A e

− |B|2
2σ2

A

]
dAdBdω
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This integral can be computed by completing the squares, yielding

D(yk,xn,k−1) =
h

(2π)2(σ2
n + σ2

A)2
e
− |yk(1)|2+|yk(2)|2

2(σ2
n+σ2

A
) +

1− h

(2πσ2
n)2

e
− |yk(1)−An,k−1e

jωn,k−1k|2

2σ2
n

− |yk(2)−Bn,k−1e
jωn,k−1k|2

2σ2
n .

(4.1)

The weight update for the optimal importance function is

wn,k ∝ wn,k−1p(yk|xn,k−1) = wn,k−1D(yk,xn,k−1),

followed by normalization to 1. We need a way to sample from the optimal importance func-

tion. As a first step towards this end, note that p(xk|xn,k−1,yk) can be written as a mixture of

two pdfs

p(xk|xn,k−1,yk) = (1− h̃)p0(xk|xn,k−1,yk) + h̃p1(xk|xn,k−1,yk),

where

p0(xk|xn,k−1,yk) := δ(ωk − ωn,k−1)δ(Ak − An,k−1)δ(Bk −Bn,k−1),

p1(xk|xn,k−1,yk) :=

1
(2π)5

1
(σ2

Aσ2
n)2

e
− |yk(1)−Akejωkk|2

2σ2
n

− |yk(2)−Bkejωkk|2
2σ2

n
− |Ak|2−|Bk|2

2σ2
A

1
(2π)2

h
(σ2

n+σ2
A)2

e
− |yk(1)|2+|yk(2)|2

2(σ2
n+σ2

A
)

,

and

h̃ := h

1
(2π)2

h
(σ2

n+σ2
A)2

e
− |yk(1)|2+|yk(2)|2

2(σ2
n+σ2

A
)

D(yk,xn,k−1)
.

It follows that with probability 1 − h̃ we simply copy the previous particle, else we draw a

particle from p1(xk|xn,k−1,yk). We will use rejection for the latter step. Rejection is an exact

sampling technique that is well-known and widely-used [6, pp. 40-42]. We wish to draw

samples from a density φ(x), for which there exists a dominating density g(x) and a known
11



constant c such that φ(x) ≤ cg(x),∀x. In practice, we choose g(x) to be easy to sample

from, and such that c is as small as possible. We then i) draw a sample x from g(·) and an

independent sample U ∼ U([0, 1]); ii) set τ := c g(x)
φ(x)

; iii) if Uτ ≤ 1 we accept x else reject it

and repeat the process. Rejection requires c trials, on average, to return an accepted sample.

The number of trials is geometrically distributed with parameter 1 − 1
c
, so the probability

of longer trials decays exponentially. In our context, the variance in the number of trials is

averaged over many particles, which reduces the variance in execution time per input sample.

Still, depending on c, rejection can be computationally very demanding, which is a serious

drawback for on-line filtering. On the other hand, rejection is an exact sampling method,

whereas alternatives would rely on importance sampling.

We wish to sample from the density p1(xk|xn,k−1,yk). Define

µ1 :=
|yk(1)|σ2

A

σ2
n + σ2

A

, µ2 :=
|yk(2)|σ2

A

σ2
n + σ2

A

, σ2 :=
σ2

nσ
2
A

σ2
n + σ2

A

.

Using the triangle inequality, it can be shown that the following is a dominating density:

g(xk|xn,k−1,yk) =
e−

(|Ak|−µ1)2

2σ2 e−
(|Bk|−µ2)2

2σ2

(2π)3σ2(σe−
µ1
2σ2 +

√
2πQ1)(σe−

µ2
2σ2 +

√
2πQ2)

,

for which it holds that p1(xk|xn,k−1,yk) ≤ cg(xk|xn,k−1,yk), with

c :=
1

σ2
(σe−

µ1
2σ2 +

√
2πQ1)(σe−

µ2
2σ2 +

√
2πQ2),

Qi :=

∫ ∞

r=0

1

σ
√

2π
e−

(r−µi)
2

2σ2 dr =
1

2
erfc(− |yk(i)|σA

σn

√
2(σ2

n + σ2
A)

).

Through experimentation, we have found that even better results can be attained using an outer

rejection loop, which declines candidates xn,k generated through rejection when the following
12



metric exceeds a certain small value (set to 3× 10−3 in our experiments):

h̃(yk,xn,k) := h

1
(2π(σ2

n+σ2
A))2

e
− |yk(1)|2+|yk(2)|2

2(σ2
n+σ2

A
)

D(yk,xn,k)
,

where the function D(·, ·) is defined in (4.1). This outer rejection loop selects particles that are

consistent with the new measurement (cf. the functional form of the denominator) and, at the

same time, have large weight after the associated update. We do not have a full explanation

at this point, yet this version of the algorithm appears to yield the best results - in particular,

better than the one based on the optimal importance function. Note that the latter is optimal

with respect to minimizing the variance of the weights after the update (and typically works

better than the one based on the prior importance function), but it is not necessarily optimal in

terms of the performance - complexity trade-off.
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Chapter 5

Experiments

In our experiments, we compared the following PF algorithms:

• P - using the prior importance function;

• O - using the optimal importance function (both single- and dual-channel versions); and

• M - the modified O algorithm that also uses the outer rejection loop (both single- and

dual-channel versions).

In all cases, we used resampling at each time step - in particular, the residual resampling

implementation of Arnaud Doucet and Nando de Freitas. We also included two baseline al-

gorithms in the comparison: the DP algorithm in [10], and a simple spectrogram estimator

(SpE). The DP algorithm in [10] can only be used with short data records due to complexity

considerations, and requires an upper bound on the number of hops. The tighter the bound

the better its performance, so we gave it the correct number of hops. For each time instant
14



k, SpE effectively computes the periodogram of {yk−`+1, · · · , yk}, where ` is the window

length, and then finds its peak. This can be implemented by peak-picking a full-overlap fac-

tor rectangularly-windowed spectrogram. SpE requires minimal parameter tuning (window

length ` - we used ` = 8 or 16 with zero-padding to 1024 samples in our experiments) and

would be the first exploratory method that one would use in practice. For the PF algorithms,

the initial state was assumed known. This is reasonable for tracking applications, following

initial acquisition. We used Root Mean Square Error (RMSE) of frequency estimation as a

performance measure.

We conducted experiments with simulated and measured data. The simulated data were

generated using our model, and the PF algorithms utilized the correct model parameters. This

is meant to assess the performance potential of the proposed algorithms under controlled con-

ditions. Interestingly, PF algorithms proved to be robust even with higher parameters than

the model’s. This allows to use PF even if the estimation of the parameters of the model is

not accurate. We also conducted experiments using measured data which deviate significantly

from our modeling assumptions. The setups and associated results are presented next.
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5.1 Simulations

For the simulated data, as model parameters for the initial experiments, we used σ2
A = 0.5,

and σ2
n = 0.1 and generated data for variance parameters 1 and 0.2 respectively.

5.1.1 Single-channel case

Fig. 5.2 shows RMSE results for the three single-channel PF algorithms, for T = 100, and h =

0.01, as a function of the number of particles. The results are averaged over 300 Monte-Carlo

(MC) trials. Note that the O algorithm is more accurate than the P algorithm, as expected; and

the M algorithm is more accurate than the O algorithm. The advantage of O and M over P is

pronounced for a relatively small number of particles.

Fig. 5.3 shows RMSE results for the single-channel PF algorithms vs. DP and SpE for

T = 300, h = 0.02, and 200 MC trials. Notice that PF outperforms DP and SpE when the

number of particles is sufficiently large; there is a sharp knee in the RMSE performance of PF

at about 1000 particles.

5.1.2 Dual-channel case

Fig. 5.4 shows the RMSE performance of single- vs. dual-channel PF as a function of the

number of particles, for T = 100, h = 0.01, and 400 MC trials. The ’single O alg1’ and

’single M alg2’ curves are for the correct model parameters. All the other curves use σ̂A
2 = 1,

and σ̂n
2 = 0.2, to study the effect of the parameter mismatch. As it is shown, the approach
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is robust even for this kind of model mismatch. So, all the following experiments are con-

ducted for those parameters. Whereas the dual-channel algorithms have been derived under

the assumption of uncorrelated complex amplitudes for the different antennas, we also tested

the correlated case, and the curves are parameterized by the antenna correlation coefficient.

Notice that dual-channel PF continues to work well when the antennas are correlated. Fig. 5.5

shows the corresponding mean execution times. Notice that antenna correlation reduces the

mean execution time.

5.1.3 Split-signal case

When the received signal is oversampled by an integer factor, M , ωk lies in [−π/M, π/M). In

this case it is possible to create a multichannel signal by de-interleaving the baseband sample

stream from a single antenna; e.g., splitting the signal into odd and even sample subsequences

for M = 2. This doubles the frequency and creates a two-channel signal. For a pure (un-

modulated) carrier signal, the two sub-channels are perfectly correlated. Carrier hopping, data

modulation, and noise partially de-correlate the two channels in practice.

Such de-interleaving has been proposed to enhance the resolution of subspace-based para-

metric line spectra estimators such as MUSIC and ESPRIT [9]. The basic idea is that mul-

tiplying the frequency by a factor of M likewise increases the separation of spectral lines.

Interestingly, de-interleaving can also enhance the frequency estimation performance of sub-

optimal estimators even for a single harmonic in noise. This suggests that de-interleaving

might also be useful in our present context. Thus the idea is to split the received sample
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sequence into odd and even subsequences, and apply a dual-channel algorithm.

Fig. 5.6 shows an RMSE comparison of split-signal vs. the original (single-signal stream)

O and M PF algorithms for T = 100, h = 0.01, and 200 MC trials, and Fig. 5.7 shows the

corresponding mean execution times. Notice that the split-signal algorithm is more accurate

for a low number of particles, but at a significant complexity cost.
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5.2 Measured data

We further tested our approach using measured FH data, made available by Telcordia Tech-

nologies through the ARL Collaborative Technology Alliance (ARL-CTA) for Communica-

tions and Networks under Cooperative Agreement DADD19-01-2-0011. The measurement

campaign was conducted in 2004, and comprised a diverse array of scenarios. The particular

data that we used corresponds to a line-of-sight (LoS) scenario called T3-LoS. Over-the-air

testing was performed using a software-defined radio and Agilent 4438 synthesizers; the car-

rier frequency was 1.875 GHz, with a two-sided bandwidth of 1.25 MHz; the signal bandwidth

was 1 MHz. The received signal was sampled at 4 Ms/s with a 12-bit ADC. The (baseband)

hopping bandwidth was from −0.5 to 0.5 MHz, divided into 32 equi-spaced frequency bins,

and slow FH with binary Gaussian Minimum Shift Keying (GMSK) modulation was used.

The maximum modulation-induced frequency deviation was 1
128

-th of the FH bin width.

The transmitted waveform was known, and included a long synchronization preamble,

which also affords accurate channel estimation. The received signal was down-converted and

oversampled at the receiver by a factor of 4. This compresses the frequency variation to a

quarter of the band, and is (grossly) inconsistent with our model; we therefore sub-sampled

the signal prior to processing by a factor of 4. The end result is a full-band SFH GMSK signal

with 128 samples per dwell, from which we extracted a segment comprising 2000 samples.

The corresponding hopping sequence is plotted in Fig. 5.8.

There are many reasons why testing with measured data is important. The measured data

violate several of our assumptions, which is to be expected in practice:
19



• Due to the presence of a strong LoS component and only minor multipath, the signal’s

amplitude is approximately constant across dwells. This violates our i.i.d. Rayleigh

fading assumption from dwell to dwell.

• Within a dwell, the frequency is not constant; it varies slowly due to GMSK modula-

tion. This induces a time-varying residual phase noise relative to the true carrier. This

is illustrated in Fig. 5.9, which shows one dwell of the unmodulated and the received

signal after downconversion to the hopping bandwidth, synchronization, amplitude and

phase correction. The net effect is that the compound noise term is correlated and non-

Gaussian. This is illustrated in Fig. 5.10, which shows a Normal probability plot of the

real part of the noise signal. Notice the significant deviation from the Normal distribu-

tion in the tails.

• Carrier hopping is not i.i.d. random as postulated in our model; it is periodic (without

intentional jitter - see Fig. 5.8).

• The parameters of our model (h, σ2
A, σ2

n) have to be estimated.

For the above reasons, trying our algorithms on the measured data is a meaningful test of

robustness to model mismatch.

The hop period (dwell duration) Td can be accurately estimated from the spectrogram, or

using cyclostationarity. We therefore set h = 1/Td = 1/128. Given Td, it is possible to

segment the signal in fixed-length dwells using a serial acquisition search, and estimate the

remaining parameters from the segments. We empirically set σ2
A = 0.9, σ2

n = 0.05. These
20



values are somewhat lower yet work better than the associated sample averages, which we

attribute to model mismatch.

The results of our experiments using measured data are summarized in Fig. 5.11, which

shows the RMSE frequency estimation performance of O and M PF algorithms vis-a-vis the

SpE. Notice the sharp knee in the performance of the two PF algorithms, which occurs at 500

particles for the M algorithm and between 500 and 1000 particles for the O algorithm. This

behavior has been validated by further tests (re-sampling, time-reversal, and adding small

amounts of noise to the received waveform).
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Figure 5.2: RMSE results for the three single-channel PF algorithms (Prior, Optimal, Modi-

fied): T = 100, h = 0.01, 300 MC trials.
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Figure 5.3: RMSE comparison of PF solutions vs. DP and SpE for simulated data: T = 300,

h = 0.02, 200 MC trials.
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Figure 5.4: RMSE comparison of single- vs. dual-channel PF for T = 100, h = 0.01, 400 MC

trials. For dual-channel PF algorithms, the curves are parameterized by antenna correlation.
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Figure 5.5: Execution time for T = 100 samples averaged over 400 MC trials for h = 0.01.

For dual-channel PF algorithms, the curves are parameterized by antenna correlation.
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Figure 5.6: RMSE comparison of split-signal vs. original PF algorithms: T = 100, h = 0.01,

200 MC trials.
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Figure 5.7: Execution time for split-signal and original PF algorithms for T = 100 samples

averaged over 200 MC trials for h = 0.01.
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Figure 5.8: Hopping sequence for the measured data (T = 2000 temporal samples).
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Figure 5.9: One dwell of the carrier and the received signal after synchronization, amplitude

and phase correction. Notice the residual phase noise due to modulation.
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Figure 5.10: Normal probability plot of real part of residual signal for T = 2000 time steps.

Notice significant deviation from Normal distribution in the tails, primarily due to carrier

modulation.
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Figure 5.11: RMSE of PF vs. SpE for measured data, T = 2000, h = 1/128.
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Chapter 6

Conclusions

The multichannel filters were developed under the assumption that the channels fade indepen-

dently, yet simulations (cf. Fig. 5.4 and Fig. 5.5) suggest that the filters remain operational

when the channels are (even strongly) correlated; and in fact channel correlation substantially

reduces complexity, while RMSE appears insensitive to channel correlation.

Using more channels can reduce RMSE, but complexity grows very quickly with the num-

ber of channels, even if the number of particles is kept fixed (cf. Fig. 5.5). This is because

every additional channel requires augmenting the state with another complex-valued dimen-

sion to model the associated complex amplitude. Dual-channel filters are already much more

complex than their single-channel counterparts. As a result, if more than two channels are

available, it makes sense to select a pair that exhibits the highest correlation; this will yield

good performance at relatively low complexity.

It is also interesting to note that the mean execution time for O and M filters is a slightly
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sub-linear1 function of the number of particles. This can be explained as follows. Recall

that previous particles are copied with probability 1 − h̃, and new ones are drawn, using

rejection, with probability h̃. When the O and M filters track well, h̃ is small, thus reducing

the complexity cost of rejection. Tracking performance is improved with increasing number

of particles, thus reducing h̃, which in turn reduces the per-particle complexity.

In all scenarios considered, the M filter outperforms the O filter in terms of RMSE but also

in terms of execution time for the same number of particles. This suggests that the M filter

uses particles more efficiently than the O filter. For both, there is no appreciable improvement

in RMSE beyond a certain number of particles, but the breakpoint is smaller for the M filter.

The robustness of O and M filters with respect to model mismatch has been assessed using

measured FH data, which violate many of our assumptions. The measured data feature strong

LoS (approximately constant signal amplitude), dwell frequency modulation, periodic hop

timing, and correlated non-Gaussian noise - thus significantly departing from our working

assumptions. Still, the proposed O and M filters work remarkably well, with as few as 500-

1000 particles. To appreciate this, consider the following back-of-the-envelope calculation. If

a tracking algorithm misses a half-band hop of π rads by a single sample, but otherwise tracks

the signal perfectly over a dwell of 128 samples, the associated RMSE will be approximately

0.27. Most hops are less than half-band, yielding lower RMSE in the same scenario; but

there will also be errors over the duration of the dwell. M and O filters (with 500 and 1000

particles, respectively) in Fig. 5.11 yield an RMSE of 0.24. This speaks for a key strength of

1Fig. 5.5 and Fig. 5.7 are in log scale, requiring careful reading to notice this sub-linearity.
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PF solutions versus window-based methods (such as SpE): the ability to accurately track hop

timing. PF solutions can overcome the need to trade-off bias for variance, at the expense of

much higher complexity, which is the main drawback of PF.

At present, O and M filters are too complex for practical on-line implementation, and

mainly serve as performance benchmarks. While the particle sampling step can be parallelized

and there has been recent progress [4, 5] in parallel and distributed implementation of PF

algorithms, much remains to be done to bring on-line implementation within reach. Replacing

rejection with a more efficient sampling scheme will certainly help in this direction. On the

other hand, rejection generates exact samples, thereby affording the opportunity to assess

ultimate performance, without regard to complexity.
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Chapter 7

Appendix

7.1 Derivation of closed form expression for the optimal im-

portance density

Assume that L antennas and corresponding receive chains are available, for any L ≥ 1. Define

the state vector The state xk := [ωk, A
(1)
k , ..., A

(L)
k ]T where ωk ∈ [−π, π) denotes instantaneous

frequency and A
(1)
k , ..., A

(L)
k ∈ C are complex amplitudes . Define the auxiliary i.i.d. sequence

of random vectors uk := [bk, ω̃k, Ã
(1)
k , ..., Ã

(L)
k ]T , where bk is a binary random variable with

Pr(bk = 1) = h; ω̃k is U([−π, π)); and Ã
(1)
k , ..., Ã

(L)
k are i.i.d. CN (0, σ2

A).

Then

xk = f(xk−1,uk) =





xk−1 ,uk(1) = 0

[uk(2), ..., uk(L + 1)]T ,uk(1) = 1
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=





xk−1 , w.p. 1− h

[U ([−π, π)) , CN (0, σ2
A), ..., CN (0, σ2

A)]
T

, w.p. h

,

yk(l) = xk(l + 1)ejxk(1)k + vk(l), l ∈ {1, ..., L},

where vk(·) denotes CN (0, σ2
n) measurement noise that is assumed to be i.i.d. in space (l) and

time (k).

From the viewpoint of minimizing the variance of the weights, the optimal importance

function is given by [1, 7]

p(xk|xn,k−1,yk) =
p(yk|xk)p(xk|xn,k−1)∫
x
p(yk|x)p(x|xn,k−1)dx

.

The integral D(yk,xn,k−1) :=
∫
x
p(yk|x)p(x|xn,k−1)dx can be computed in closed form

for general L.

D(yk,xn,k−1) =

∫

ω∈[−π,π)

∫

A(1)∈C
...

∫

A(L)∈C

L∏
m=1

[
1

2πσ2
n

e
− |yk(m)−A(m)ejωk|2

2σ2
n

]

×
[
(1− h)δ(ω − ωn,k−1)

L∏
m=1

δ(A(m) − A
(m)
n,k−1) +

h

2π

L∏
m=1

(
1

2πσ2
A

e
− |A(m)|2

2σ2
A

)]
dA(1)...dA(L)dω = D1+D2,

where

D1 =
1− h

(2πσ2
n)L

∫

ω∈[−π,π)

∫

A(1)∈C
...

∫

A(L)∈C

L∏
m=1

[
e
− |yk(m)−A(m)ejωk|2

2σ2
n

]

×
[
δ(ω − ωn,k−1)

L∏
m=1

δ(A(m) − A
(m)
n,k−1)

]
dA(1)...dA(L)dω =

1− h

(2πσ2
n)L

e
−
PL

m=1 |yk(m)−A
(m)
n,k−1

e
jωn,k−1k|2

2σ2
n ,

and
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D2 =

∫

ω∈[−π,π)

∫

A(1)∈C
...

∫

A(L)∈C

1

(2πσ2
n)L

1

(2πσ2
A)L

h

2π
e
−
PL

m=1 |yk(m)−A(m)ejωk|2
2σ2

n e
−
PL

m=1 |A(m)|2
2σ2

A dA(1)...dA(L)dω

=
h

(2π)(2L+1)σ2L
A σ2L

n

∫

ω∈[−π,π)

L∏
m=1

[∫

A(m)∈C
e
− |yk(m)−A(m)ejωk|2

2σ2
n e

− |A(m)|2
2σ2

A dA(m)

]
dω.

The integral inside the brackets in the above equation can be computed by completing the

squares:

A(m)ג =

∫

A(m)∈C
e
− |yk(m)−A(m)ejωk|2

2σ2
n e

− |A(m)|2
2σ2

A dA(m) =

∫

A(m)∈C
e
− z

2σ2
A

σ2
n dA(m),

where, z is defined as

z := σ2
A|yk(m)− A(m)ejωk|2 + σ2

n|A(m)|2 =

= σ2
A

[|yk(m)|2 − 2<(A(m)y∗k(m)ejωk) + |A(m)|2] + σ2
n|A(m)|2 =

= (σ2
A + σ2

n)|A(m)|2 − 2< [
A(m)(σ2

Ay∗k(m)ejωk)
]
+ σ2

A|yk(m)|2,

where <(·) (=(·)) extracts the real (imaginary) part of its argument. Let W ∗ :=
σ2

Ayk(m)∗ejωk

σ2
A+σ2

n
;

then

z = (σ2
A + σ2

n)
[|A(m)|2 − 2<(A(m)W ∗) + |W |2]− (σ2

A + σ2
n)|W |2 + σ2

A|yk(m)|2 =

= (σ2
A + σ2

n)|A(m) −W |2 +
σ2

Aσ2
n

σ2
A + σ2

n

|yk(m)|2.

We now readily see that A(m)ג can be written as

A(m)ג =

∫

A(m)∈C
e
− (σ2

A+σ2
n)|A(m)−W |2
2σ2

A
σ2

n e
− |yk(m)|2

2(σ2
A

+σ2
n) dA(m) =
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= e
− |yk(m)|2

2(σ2
A

+σ2
n)

∫

A(m)∈C
e

− |A(m)−W |2

2
σ2

A
σ2

n

σ2
A

+σ2
n dA(m) =

= e
− |yk(m)|2

2(σ2
A

+σ2
n) ×

∫

<(A(m))

∫

=(A(m))

e

− (<(A(m))−<(W ))2

2
σ2

A
σ2

n

σ2
A

+σ2
n e

− (=(A(m))−=(W ))2

2
σ2

A
σ2

n

σ2
A

+σ2
n d=(A(m))d<(A(m)) =

= e
− |yk(m)|2

2(σ2
A

+σ2
n) ×




∫

<(A(m))

e

− (<(A(m))−<(W ))2

2
σ2

A
σ2

n

σ2
A

+σ2
n d<(A(m))

∫

=(A(m))

e

− (=(A(m))−=(W ))2

2
σ2

A
σ2

n

σ2
A

+σ2
n d=(A(m))


 .

This yields

(m)ג
A = e

− |yk(m)|2
2(σ2

A
+σ2

n)




√
π

σ2
A+σ2

n

2σ2
Aσ2

n


×




√
π

σ2
A+σ2

n

2σ2
Aσ2

n


 =

= 2π
σ2

Aσ2
n

σ2
A + σ2

n

e
− |yk(m)|2

2(σ2
A

+σ2
n) .

D2 can now be written as

D2 =
h

(2π)(2L+1)σ2L
A σ2L

n

∫

ω∈[−π,π)

L∏
m=1

[
2π

σ2
Aσ2

n

σ2
A + σ2

n

e
− |yk(m)|2

2(σ2
A

+σ2
n)

]
dω

=
h

(2π(σ2
A + σ2

n))L
e
−
PL

m=1 |yk(m)|2
2(σ2

A
+σ2

n) ,

and

D(yk,xn,k−1) =
1− h

(2πσ2
n)L

e
−
PL

m=1 |yk(m)−A
(m)
n,k−1

e
jωn,k−1k|2

2σ2
n +

h

(2π(σ2
A + σ2

n))L
e
−
PL

m=1 |yk(m)|2
2(σ2

A
+σ2

n) .

(7.1)

For the above optimal choice of the importance function, the weight update is given by

wn,k ∝ wn,k−1p(yk|xn,k−1) = wn,k−1D(yk,xn,k−1),

followed by normalization to 1. What is missing is a way to sample from the optimal impor-

tance function. As a first step towards this end, note that p(xk|xn,k−1,yk) can be written as a
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mixture of two pdfs

p(xk|xn,k−1,yk) = (1− h̃)p0(xk|xn,k−1,yk) + h̃p1(xk|xn,k−1,yk),

where

p0(xk|xn,k−1,yk) := δ(ωk − ωn,k−1)
L∏

m=1

δ(A
(m)
k − A

(m)
n,k−1),

p1(xk|xn,k−1,yk) :=

1
(2πσ2

n)L
1

(2πσ2
A)L

1
2π

e
−
PL

m=1 |yk(m)−A
(m)
k

ejωk|2

2σ2
n e

−
PL

m=1 |A
(m)
k

|2

2σ2
A

1
(2π)L

1
(σ2

n+σ2
A)L e

−
PL

m=1 |yk(m)|2
2(σ2

A
+σ2

n)

,

and

h̃ := h

1
(2π)L

1
(σ2

n+σ2
A)L e

−
PL

m=1 |yk(m)|2
2(σ2

A
+σ2

n)

D(yk,xn,k−1)
.

It follows that with probability 1 − h̃ we simply copy the previous particle, else we draw a

particle from p1(xk|xn,k−1,yk). We will use rejection sampling techniques for this latter step,

as explained next.
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7.2 Derivation of dominating density

The density p1(xk|xn,k−1,yk) can be written as

p1(xk|xn,k−1,yk) =
1

(2π)(L+1)

(
σ2

n + σ2
A

σ2
Aσ2

n

)L

e
−PL

m=1

"
|yk(m)−A

(m)
k

ejωk|2

2σ2
n

+
|A(m)

k
|2

2σ2
A

#

e

PL
m=1 |yk(m)|2
2(σ2

A
+σ2

n) .

Using the triangle inequality, we have

|yk(m)− A
(m)
k ejωk|2

2σ2
n

+
|A(m)

k |2
2σ2

A

> |yk(m)|2 + |A(m)
k |2 − 2|yk(m)||A(m)

k |
2σ2

n

+
|A(m)

k |2
2σ2

A

=

(
|A(m)

k | − |yk(m)|σ2
A

σ2
A+σ2

n

)2

2
σ2

Aσ2
n

σ2
A+σ2

n

+
|yk(m)|2

2(σ2
A + σ2

n)

and since e−x is monotonically decreasing, for m = 1, ..., L

e
− |yk(m)−A

(m)
k

ejωk|2

2σ2
n

− |A
(m)
k

|2

2σ2
A

+
|yk(m)|2
2(σ2

A
+σ2

n) 6 e−
(|A(m)

k
|−µm)

2

2σ2

where σ2 :=
σ2

Aσ2
n

σ2
A+σ2

n
and µm :=

|yk(m)|σ2
A

σ2
A+σ2

n
for m = 1, ..., L. Using the above inequalities,

p1(xk|xn,k−1,yk) =
1

(2π)(L+1)σ2L
e

PL
m=1

"
− |yk(m)−A

(m)
k

ejωk|2

2σ2
n

− |A
(m)
k

|2

2σ2
A

+
|yk(m)|2
2(σ2

A
+σ2

n)

#

6 1

(2π)(L+1)σ2L
e−

PL
m=1(|A

(m)
k

|−µm)
2

2σ2 .

The only remaining part is to evaluate the normalization factor and the dominating density;

for the former

c :=

∫

ωk∈[−π,π)

∫

A
(1)
k ∈C

...

∫

A
(L)
k ∈C

1

(2π)(L+1)σ2L
e−

PL
m=1(|A

(m)
k

|−µm)
2

2σ2 dA
(1)
k ...dA

(L)
k dωk =

1

(2π)(L+1)σ2L

∫

ωk∈[−π,π)

dωk

L∏
m=1

(∫

A
(m)
k ∈C

e−
(|A(m)

k
|−µm)

2

2σ2 dA
(m)
k

)
,
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with
∫

A
(m)
k ∈C

e−
(|A(m)

k
|−µm)

2

2σ2 dA
(m)
k = 2π

∫

|A(m)
k |∈R+

|A(m)
k |e−

(|A(m)
k

|−µm)
2

2σ2 d|A(m)
k |

= (2π)(σ2e−
µm
2σ2 + σ

√
2πQm),m = 1, ..., L,

with

Qm :=

∫ +∞

r=0

1√
2πσ

e−
(r−µm)2

2σ2 dr =
1

2
erfc

(
− |yk(m)|σA

σn

√
2(σ2

A + σ2
n)

)
.

Hence

c =
1

σL

L∏
m=1

(
σe−

µm
2σ2 +

√
2πQm

)

(recall σ2 =
σ2

Aσ2
n

σ2
A+σ2

n
, µm =

|yk(m)|σ2
A

σ2
A+σ2

n
for m = 1, ..., L) and the dominating density is

g(xk|xn,k−1,yk) =
1

(2π)L+1 σL

L∏
m=1

e−
(|A(m)

k
|−µm)

2

2σ2

(
σe−

µm
2σ2 +

√
2πQm

) .
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7.3 Modified algorithm (M) for general L

For general L, the modified PF algorithm (M) uses an outer particle rejection loop with the

following metric

h̃(yk,xn,k) := h

1
(2π(σ2

n+σ2
A))L e

−
PL

m=1 |yk(m)|2
2(σ2

n+σ2
A

)

D(yk,xn,k)
,

where D(·, ·) is defined in (7.1). This outer loop selects particles that are consistent with the

new measurement (cf. the functional form of the denominator) and, at the same time, have

large weight after the associated weight update step.
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