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Abstract

Machine translation between natural languages is a very challenging problem,
whose efficient dealing with is very important for the free flow of information
among people. Traditionally, statistical machine translation relies on the
extraction of information from parallel corpora, relying solely on lexical level
correspondence. As a result, linguistic information is not directly utilized.

This thesis aims at exploring an alternative way of improving the perfor-
mance of a statistical translation system. Instead of using more data, which
is generally not available in abundance, the use of morphological information
is proposed, in order to improve the translation quality.

Different ways of incorporating morphological knowledge are tried, using
a phrase-based Greek to English system as baseline. In addition to that, dif-
ferent ways of combining the baseline system with the morphological incorpo-
rating one are tried. The results show a small improvement in performance,
up to 3% and a great reduction in the out of vocabulary words, more than
60%. All the tools and resources used for the experiments are freely available
for research purposes, and are widely used by the scientific community.
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Chapter 1

Introduction

Machine translation is by no means a new concept. The first scientific formu-

lation of the problem can be traced bach to the first years following the end

of the second world war, by Warren Weaver. Alan Turing also refers to this

topic, but does not really deal with the problem. And it was for good reason

that these early approaches did not materialize into experiments; translat-

ing from one natural language into another one is a task far more difficult

from trying to decipher a code, or restoring a signal. It involves dealing

with structural differences between languages, as in grammar and syntax,

but also with conveying the meaning through the translation. While the

first part may seem somewhat more easy, since grammar and syntax can be

described in sufficient detail, the latter one still awaits for a satisfactory so-

lution. The reason this problem is so difficult is that there is no clear and

well defined representation of semantics, acceptable by all the speakers of a

language.

The progress of this scientific field is by no means linear; there have

been times of excitement, followed by long inactivity periods. This can be
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attributed to the combination of two facts:

1. Dealing with a difficult problem without having enough computational

resources

2. Setting the expectations too high, consequently leading to disappoint-

ment and resentment to continue such a line of research, like in [3].

Different approaches exist to machine translation. Transfer based uses

specific language dependent rules that model the vocabulary of the language

pair and the grammatical/syntactical transformations that have to be done

in order to translate from one language into another. Interlingual brakes the

translation into a two step process; the source language is first translated

into a representation (interlingua) and then into the target language. In

example based the system learns to translate from parallel corpora in various

languages. In its simplest form, the sentence to be translated is compared to

a set of sentences whose translation is known and one of these translations

is selected for the sentence in hand.

While the above schemes have been in practise for a long time, Statistical

Machine Translation (SMT) is a newer field, which started to become a se-

riously considered approach in 1990, after the seminal publication [5]. In the

general case, a parallel corpus1 is used, from which information is extracted

in an unsupervised manner, a process called training. To translate a text, we

search the most probable translation of the sentence at hand, with respect

to the statistics gathered in the training step.

1A corpus translated in the two languages by hand.
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SMT has proven to be a very competitive approach. The quality of the

translation achieved is considered to be superior to that of the other tech-

niques, as has been shown by a number of evaluation campaigns. It does

not ask for specific linguistic knowledge, since information is extracted in an

unsupervised manner from the training text. It is easy to adapt a system

to a new domain or language pair, since there is no need to rewrite rules,

just to use the corresponding corpus. Some limitations however do exist, and

they arise from the abstract level at which an SMT system works. Tradition-

ally, SMT systems operate strictly at the lexical level, discarding linguistic

information like morphology, syntax or semantic. This means that the in-

formation available in the parallel text is only partially utilized, the rest is

simply discarded, or in the best case it is only indirectly modelled. Given

that bilingual corpora are hard to gather, it becomes important to be able

to exploit the ones available as much as possible.

This thesis focuses on the incorporation of morphological knowledge into

an SMT system. Experimentation is done using a phrase based system, deal-

ing with the Greek-English language pair. The rest of this text is organised

as follows. Chapter 2 outlines the aims of this work. Chapter 3 describes

the baseline system used. Chapter 4 investigates the corpus used, and var-

ious statistics are gathered. Chapter 5 discusses the morphological features

extraction. Chapter 6 describes experiments conveyed. Chapter 7 presents

the results of the experiments. Chapter 8 concludes.

9



Chapter 2

Scientific goals

The objective of this thesis is to investigate ways of efficiently integrating

morphological information into a statistical machine translation system. It

is expected that this way the available resources will be better exploited and

the overall performance of the translation system will improve. A constraint

posed on the design of the system is that the modifications will be modu-

lar and easy to modify for use in different language pairs without requiring

special tools.

Data sparseness

The fact that the system operates only at the lexical level means that dif-

ferent word forms are treated completely independently, even if they are in

fact closely related, like different forms of a verb. This can become a severe

problem if the language pair includes a morphology rich language, as is the

case with Greek. In that case the ratio of distinct word forms to corpus size is

quite high, meaning that many words will not be observed in the training cor-

pus enough time to learn sufficient translation rules. The standard method
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to overcome this problem is to use more training data. Gathering bilingual

corpora is, however, a demanding task both in terms of time and resources

needed. The situation is even worse when dealing with scarce resource lan-

guages, where even monolingual text gathering can be a problem. This issue,

called data sparseness, can significantly downgrade the performance of the

system. This work aims at alleviating this problem.

Generic methods

An additional goal is to develop methods that do not make assumptions

about the languages involved, or the kind of input. While performance

might benefit more from using language specific tools and techniques, one

of the advantages of statistical machine translation is that it allows works

on an abstract level, without specific reference to language pair. The meth-

ods described here are not designed with a particular language in mind, thus

making it possible to be used on a wide variety of language pairs. In addition

to that, the way linguistic knowledge is incorporated is quite simple and does

not require any special annotation of the text. This makes easy the modifica-

tions to the current scheme, for example changing the way the morphologic

analysis is done. Finally, the current scheme just relies on the availability of

parallel text, which is eitherway a prerequisite to start developing an SMT

system. There is no need for language specific tools like parsers. This is

especially important because while there has been a great deal of research

about a few languages (like English, French), resulting in a variety of tools,

for the under resourced languages very few tools exist. It would not make

sense to build a system that instead of relying on large parallel corpora relies
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on elaborate linguistic analysis, when none of these exist for a language.
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Chapter 3

Baseline system

3.1 Theoretical background

The baseline system is a phrase based statistical machine translating system,

translating from Greek into English and vice versa, described in detail in [14].

It tries to find the most probable native sentence eI
1 = e1 . . . ei . . . eI , given

the foreign sentence f I
1 = f1 . . . fj . . . fI . Searching among all1 the possible

translations the most probable one is chosen:

êÎ
1 = arg max

I,eI
1

{Pr(eI
1|fJ

1 )} = (3.1)

= arg max
I,eI

1

{Pr(eI
1)Pr(fJ

1 |eI
1)} (3.2)

where the decomposition represents the well known noisy channel ap-

proach applied to statistical machine translation by [5]. Pr(eI
1) is the lan-

guage model while Pr(eI
1|fJ

1 ) is the translation model. The log-linear model

proposed by [23] gives

Pr(fJ
1 |eI

1) =
exp

(∑M
m=1 λmhm(eI

1, f
J
1 )

)
∑

I′,e′I′
1

exp
(∑M

m=1 λmhm(e′I
′

1 , fJ
1 )

) (3.3)

1Actually the search is not exhaustive, that would take too long
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where hm(eI
1, f

J
1 ) are the various feature functions for a native/foreign

phrase pair (eI
1, f

J
1 ), and λm the corresponding weights. The denominator in

Equation 3.1 is a normalization factor so it can be omitted thus reaching the

following form of the decision rule.

êÎ
1 = arg max

{
M∑

m=1

λmhm(eI
1, f

J
1 )

}
(3.4)

The weight vector λM
1 is maximized according to the translation quality,

measured by the BLEU metric, using the process described in [22]. Note

that the language model is a special case of feature function where we are

only concerned with the native language.

The system based on an initial implementation from [30], and its per-

formance is enhanced by elaborating the sentence alignment and phrase ex-

traction parts. Below follows a brief description of the parts used and the

complete process from training the system to using it to obtain the transla-

tion of an input text.

3.2 Corpus preprocessing

The corpus is not available in a convenient format for machine translation.

This Section reviews the preprocessing steps required to bring the texts in

the form needed to train the system. The first step is to detect the sentence

boundaries in the corpus and after to associate the sentences in the one side

of the corpus with their equivalent translations.
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3.2.1 Sentence boundary detection

The first preparation step is detecting the sentence boundaries. Sentence

boundaries are denoted in text by special characters like . ? ! ; . It is

not always true, however, that these punctuation marks denote the end of

a sentence since they can be part of an abbreviation, as is the case with

i.e.. To overcome this problem a list of abbreviations was assembled from

online dictionaries. Such a list cannot be complete, so a probabilistic mode

was applied on the corpus which checks if a token could be abbreviation or

honorific. The method was applied on 111408 English and 112756 Greek

sentences, and the results were evaluated by a human judge. The results are

displayed in Table 3.1. Most mistakes are caused by spelling mistakes in the

text.

Greek English
Sentences 112756 111408
Candidate Punctuation Marks 120225 113207
False detections 205 175
Error (%) 0.17% 0.15%

Table 3.1: Sentence boundary detection statistics

3.2.2 Sentence aligning

Having detected the boundaries of each sentence, it is now possible to es-

tablish the correspondence between the two sides of the parallel text. This

part is quite important, because low quality will hamper the performance of

the system. It is also important to come up with an unsupervised solution

to this problem because parallel corpora can be quite a hundred thousand
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sentences long and it would require a lot of human work hours to manually

identify correspondence between the languages involved.

This process, called Bilingual Sentences Alignment, relies on the assump-

tion that there is a correlation between the sizes of corresponding sentences.

It is an implementation of the Church & Gale algorithm, presented in [9].

The results for a set of 2051 aligned sentences are shown in Table 3.2.

Category total count mistake count Percentage of errors
1-1 1912 19 0.99
1-0 or 0-1 3 3 100
1-2 or 2-1 139 9 6.1

Table 3.2: Bilingual sentence alignment evaluation

Category 1-1 corresponds to one English sentence being translated into

one Greek sentence, 1-0 and 0-1 one English sentence not being translated

into a Greek one and vice versa, while 1-2 and 2-1 to two sentences in one

languages to being translated into one in the other language.

3.3 Word alignment

Having now established a correspondence between the translated sentences

in the parallel corpus, we need to find out in each phrase pair which chunks of

words are translated into which. This process should be unsupervised, that

is, no human intervention should be necessary to annotate the sentences be-

forehand. Although this seems quite difficult to achieve there is a simple

solution that works quite well. We begin by assuming all alignments to be

equiprobable, and then use the Expectation Maximization algorithm to find
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out the most probable. This is an iterative process, which is implemented by

the freely available toolkit GIZA++ [23]. One problem is that the GIZA++

toolkit produces alignments with the inherent constraint that only 1 word

in the source language can be aligned to N words in the foreign language.

By intuition this is not correct, as context information is important, chang-

ing the meaning of single words. The solution used is to run the process

bidirectionally, using each language as source and target.

3.4 Translation table building

The next step is to build the translation table. The translation table consists

of entries of the form :

source phrase target phrase feature scores

To construct this table first we need a set of bilingual phrases, which are

extracted from the GIZA++ alignment. For a sentence pair (eI
1, f

J
1 ) where

I is the length of the source sentence and J of the target one the alignment

produced by GIZA++ can be viewed as an IxJ matrix A. The bilingual

phrases are the ones which satisfy the following criterion:

BP (fJ
1 , eI

1, A) =
{(

f j+m
j , em+n

i

)
: ∀(i′

, j
′
) ∈ A : j ≤ j

′ ≤ j+m ↔ i ≤ i
′ ≤ i+n

}
(3.5)

In this system the maximum length of the bilingual phrases is 4, so in

Equation 3.5 the additional constrained m, n ≤ 4 is imposed. This constrain

is used because bigger sizes lead to very big translation tables, which take

long time to train and occupy more space. An additional problem is that

their handling becomes more cumbersome. In addition to that, in [27] it has
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been experimentally established that incorporation of higher order ngrams

does not improve significantly performance2. The baseline system uses a set

of five features for each bilingual phrase. Namely,

Bidirectional phrase translation model The probabilities are approxi-

mated using the Maximum Likelihood estimation:

P (f̄ |ē) ≈ PML(f̄ |ē) =
c(f̄ , ē)∑
f̄ c(f̄ , ē)

(3.6)

It is the most important feature of the translation table and it models

how probable is to observe phrase e as a translation of phrase f and

vice versa.

Word penalty model The word penalty is used to control the length of the

produced translation, end is computed using the following equation:

Ppen(fJ
1 , eI

1) = I (3.7)

The reason to include this model is to control the tendency of machine

translation systems to produce short translations.

Distortion model The distortion model is actually computed at decode

time, since it is dependent on the order at which the phrases are trans-

lated. It discourages the decoder to change the order in which the

phrases are translated. It is convenient to use when translating be-

tween highly correlated languages, as is the case with Latin languages,

also because it prunes the search depth. When dealing however with

2This is not necessarily true when training a system on a specific domain, where the
vocabulary will be quite small; in this case it might make sense to increase the order of
ngrams
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highly different languages pairs, as from Japanese into English it is

necessary to relax this constraint, since in this case there are profound

differences in syntax. It is computed using the following equation:

D(e, f) = −
∑

i

di (3.8)

where di for each target phrase ei produced is computed as di = |ai −

bi−1 +1|, where ai is the first word position of the ith translated phrase

and bi−1 is the last word position of the (i− 1)th translated phrase.

Language model The language model computation is described in the next

section. It serves as a way to ensure that the sentences produced are

fluent, and not just a meaningless concatenation of phrase chunks.

3.5 Language modeling

Language modeling is an integral part of the translation process. It is the

main way to model the fluency of the produced translation. The most ele-

mentary, yet surprisingly effective form is ngram language model. The idea

is that the probability of an I length sentence eI
1 is computed as the product

of the conditional probabilities of each word on the previous n

P (eI
1) =

I∏
i=1

P (ei|ei−1
i−n+1) (3.9)

What is needed in Equation 3.9 is an efficient way to compute the prob-

abilities P (ei|ei−1
i−n+1). The simplest way is to compute the Maximum Likeli-

hood estimation of this term,

P (ei|ei−1
i−n+1) =

c(ei
i−n+1)

c(ei−1
i−n+1)

(3.10)

19



where c(eb
a) denotes the count of the string ea . . . eb.

The counts are calculated using a sufficiently big corpus. How big is

sufficient cannot be easily answered. The first problem arising is that for a

10000 word vocabulary the possible 4grams are 1012, and such a big corpus is

very difficult to gather. Even if it is available, the implementation problems

of gathering the counts and computing the probabilities pose a big problem.

One can ofcourse argue that the biggest part of these permutations are noise,

phrases syntactically incorrect without ant meaning. Even though, the prob-

lem is still apparent. An additional problem is that ML works well when the

number of observations is high, so even for phrases that exist only a few times

the probabilities estimated will not be reliable. There has been a great deal

of research on this area. One way to deal with this problem is discounting,

where the probabilities of well observed phrases are redistributed among the

less frequently seen/unseen ones. All these techniques are implemented in

the freely available toolkit SRILM [32]. For the baseline system a 4gram lan-

guage model is trained using the Chen and Goodman’s modified Kneser-Ney

discounting described in [6].

3.6 Decoder

Having trained all the necessary models, it is now possible to translate a

source sentence into the target language. What is needed is to search among

all the possible target language sentences and choose according to the cri-

terion of Equation 3.1. The search is conducted using the Moses decoder,

described in [17]. Moses is a replacement for the Pharaoh [15] decoder. Its

main differences is that it is open source, thus allowing the modification of

20



the search process and that it offers the possibility of performing factor based

translation, which is a generalization of phrase based translation where each

word is replaced by a vector with arbitrary entries. Moses is currently widely

used in the research community.

Moses implements a beam search. Instead of searching exhaustively

among all possible translations, it limits the search space to only a radius

around the best translation found so far. It should be noted that the al-

gorithm used can be also used to perform exhaustive search, but the small

performance improvement does not justify the increased time and space com-

plexity. The user can modify various parameters to tune for quality or speed;

it is possible to change the translation table size, the hypothesis stack size

(the beam of the search) and the reordering limit. In addition to that it is

possible to change the weights that are assigned to the translation and lan-

guage models. An interesting feature is that it is possible to get the n best

translations for an input sentence. It is then possible to perform rescoring on

this list by adding features that are too expensive to incorporate directly into

the decoder and this way improve the translation quality. Another interesting

feature is that it supports factored based translation. Words are replaced by

vectors which might contain the word itself, the Part Of Speech tag, semantic

labels and other kinds of information. This is an interesting option, because

it allows for integration of linguistic information into the translation process.

It should be noted, however, that in this case the translation process is much

more expensive requiring much more time and computational resources.
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Chapter 4

Corpus

4.1 Introduction

As already mentioned, the corpus used are the Proceedings of the European

Parliament [16]. It has been chosen because it is available on a large number

of languages, thus allowing for easily testing the performance of the system on

different language pairs. It is also widely used in the community of statistical

machine translation, allowing for comparable results with other approaches.

In this Chapter the characteristics of the corpus for the Greek - English pair

are analyzed.

4.2 Corpus statistics

The characteristics of the corpus are depicted in Table 4.1. For each language

the whole 540k sentence corpus is used as well as four subsets.

For the two languages and the different sets, are counted the

• number of word forms (distinct words appearing in the text)

• of tokens
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• of singletons (word forms appearing only once)

• of not observed word forms in a 5000 sentence test set (Table 4.2)

A first observation concerns the number of words appearing only once is

a substantial part of the corpus. For example, in the 40k sentence Greek

corpus, 16956 out of the 39110 total words appear only once. One can accu-

rately predict that these words will not be correctly translated. The number

of not observed words is also quit high, 1195 for English and 2450 for Greek.

Although increasing the corpus size lowers the number of not observed word

forms, the same does not apply for singletons, which number steadily to one

third of the number of word forms. It is also interesting to note an important

difference between the two languages. While the number of tokens is almost

the same, the number of Greek word forms is bigger than the equivalent

figure for English by a factor of 2-2.5, depending on the corpus size. This

accounts for the fact that the number of singletons and not observed words

in Greek are more than in the English text by the same factor, more or less.

In addition, in Figure 4.1 one can see the distribution of word frequencies

in the 40k sentence corpus. In the horizontal axis are the frequencies of

appearance of a word in the corpus, and on the vertical the size of a group

of words that have the same frequency. Inspection of this figure reveals that

most words only appear in the corpus a few times. For the English side, the

number of words that appear more than 10 times is just 4760, a mere 24%

of the corpus, while the equivalent percentage for Greek is 17%. Considering

that translating is more than just using a dictionary mapping of individual

words, but context plays an equally important role, it becomes pretty obvious

that the majority of the words will lack sufficient context information to build

23



translation rules.

4.3 Conclusion

As the above statistics suggest, training a system using the Europarl can be

a quite challenging process. The low frequency of appearances of words can

be attributed to two reasons:

morphology The richer the morphology of a language the bigger the num-

ber of word forms. In the Greek-English example this is obvious, where

the ratio of word forms per tokens is 0.0225 for English while the same

figure for Greek is 0.0448, more than double.

domain the nature of the text; unlike specific domain corpora, the Europarl

is a transcription of the proceedings of the European parliament. As a

result the topic of the conversation is not constrained, but can include

politics, economic, military as well as other subjects to a smaller extent.

This essentially means that for sure the test corpus will contain words

that have not been observed in the train corpus enough times, or even

at all.

Another problem, not obvious from the previous analysis, is that the pro-

ceedings are not really translations in the strict sense, but rather rendering.

This can pose a significant obstacle in identifying improvements, because we

are constrained to using only one available reference translation to evaluate

the system output. This can prove quite a hindrance, because in the case

where an improved translation is using different words to convey a meaning
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equivalent to the reference translation, the current evaluation techniques will

not detect the improvement over a totally wrong translation.

language type sentences word forms tokens singletons not observed

English

normal 40k 19858 882003 7396 1195
normal 80k 26574 1771690 9533 814
normal 160k 36380 3544252 13329 518
normal 320k 50241 7065540 18736 361
normal 540k 61820 11933322 23543 278

English

stemmed 40k 13534 882003 4892 881
stemmed 80k 18155 1771690 6463 647
stemmed 160k 25253 3544252 9516 469
stemmed 320k 37155 7065540 15373 344
stemmed 540k 48310 11933322 21045 274

English

split 40k 13534 882003 4892 881
split 80k 18256 2461856 6456 645
split 160k 25348 4925518 9510 468
split 320k 37244 9811677 15362 344
split 540k 48393 16554523 21033 274

Greek

normal 40k 39110 875577 16956 2450
normal 80k 54078 1751859 22335 1659
normal 160k 73687 3485946 29395 1047
normal 320k 115910 6981613 49760 645
normal 540k 155337 11836340 67838 492

Greek

stemmed 40k 23278 875577 8625 1534
stemmed 80k 30858 1751859 10827 1115
stemmed 160k 40742 3485946 14082 846
stemmed 320k 74482 6981613 34766 603
stemmed 540k 112632 11836340 56914 471

Greek

split 40k 23693 1370565 8653 1537
split 80k 31284 2741915 10832 1115
split 160k 41165 5454721 14075 846
split 320k 74898 10879833 34748 603
split 540k 113033 18381187 56888 471

Table 4.1: Train set characteristics (40k-80k-160k-320k-540k sentences)
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language type word forms tokens

English
normal 8151 121166

stemmed 5566 121166
split 5760 174591

Greek
normal 13487 117607

stemmed 8415 117607
split 8900 184413

Table 4.2: Test set characteristics (5k sentences)

Figure 4.1: Frequencies of words in 40k sentence corpus
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Chapter 5

Morphology

5.1 Introduction

It is obvious from the above that a translation system trained on the above

corpus will display poor performance since many words will first time be

observed in the test corpus. One way to deal with this problem is to use more

data for training, which however, is not always an option since parallel texts

are not in abundant supply. Another one is to better exploit the available

parallel corpora and also to use monolingual corpora, which are much easier

to find, so as to address the data sparseness problem.

In natural languages, instead of using a totally different word for each

and every possible meaning, words that convey similar meaning are similar

themselves, usually differing in some parts of them (e.g. their endings). This

is the basic concept that constitutes the notion of the morphology of a natural

language.

Since morphology is an essential structural element of a natural language,

it comes as no surprise that it is already widely used in Natural Language

Processing applications. In Information Retrieval, for example, the notion
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of stemming is common, which refers to the segmentation of a word into

root (stem) and suffix. In Statistical Machine Translation, however, there

is need for more complex representation, modelling the interaction between

morphemes and groups of morphemes.

The rest of this chapter is organised as follows. Section 5.2 is devoted

to exploring what is a morphology. Section 5.3 reviews methods for arriving

in a morphologic analysis of a natural language. Section 5.4 describes the

way morphological analysis is extracted from raw monolingual corpus for

this work. Section 5.5 deals with a small postprocessing step applied on the

analysis derived from Linguistica in order to improve its precision. Section

5.6 discusses the impact of morphological analysis on the characteristics of

the corpus used in the experiments done.

5.2 Natural language morphology

5.2.1 Morphemes and the kinds of morphologies

Morphemes are defined as the minimal meaning-bearing units in a language.

Apart from the stem of a word, a morpheme can be an affix, which usu-

ally provides additional meaning of some kind to the main concept that is

provided by the stem. An affix may be a prefix, suffix, circumfix or infix,

whether it precedes the stem, follows it, does both or is being inserted in it,

accordingly. Prefixes and suffixes (and circumfixes as well, since they may

be viewed as a combination of a prefix and a suffix) are often called con-

catenative morphology, since a word is composed of a number of morphemes

concatenated together. In some languages, morphemes are combined in com-

plex ways, using what is called nonconcatenative morphology. Another kind
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of this type is the templatic morphology that is very common in languages

like Arabic, Hebrew etc. and uses root words and templates that transform

them

There are two broad classes of ways to form words from morphemes:

inflection and derivation and thus we speak of inflectional or derivational

morphology. These two are partially overlapping, since the borders between

them are usually not absolutely clear. Inflection mostly deals with the usage

of affixes, while derivation is the combination of a word stem with a gram-

matical morpheme usually resulting in a word of a different class, often with

a meaning hard to predict exactly.

Three general classes of linguistic knowledge are needed in order to build

a morphological parser:

Lexicon The list of stems and affixes, together with basic information about

them.

Morphotactics The model of morpheme ordering that explains which classes

of morphemes can follow the other classes of morphemes inside a word.

Orthographic rules Spelling changes that occur due to morpheme attach-

ment.

5.2.2 Learning a morphology

In recent years, there has been much interest in computational models that

learn aspects of the morphology of a natural language from raw or structured

data. These models are of great practical interest, minimizing the expert

resources or need of linguistics in order to develop stemmers and analyzers.
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There are three distinct ways of learning a language’ s morphology:

Supervised learning The data consists of a set of pair of words.

Unsupervised learning The data consists of a single set of all the words

in the corpus.

Partially supervised learning The data consists of two sets of words,

without any indication of the relationship between the individual words.

We will mostly deal with unsupervised learning, since such methods may be

used with untagged corpus which is often the case, performing morphological

analysis based only on a corpus. This can be a valuable tool that may be

used in statistical machine translation, where the system is being trained

using such untagged corpora.

5.3 Acquiring a natural language morphol-

ogy

5.3.1 Introduction

In this section, the most important approaches of (mostly) unsupervised

morphology learning are presented. One way to categorize the existing ap-

proaches on this matter is by evaluating whether human input is provided

in the process of deriving the morphology and whether the goal is to only

obtain affixes or to perform a complete morphological analysis. According

to this categorization, we may therefore cluster the various approaches and

techniques as follows:

• Bootstrapping using a knowledge source
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• Obtaining affix inventories

• Performing a complete morphological analysis

For the first two categories we will provide short descriptions, while for

the third one we will describe in detail an example application.

5.3.2 Bootstrapping using a knowledge source

A first approach in obtaining morphologies is to begin with some initial

human-labeled source from which to induce other morphological components.

Although their work may be more suited to information retrieval (IR), Xu

and Croft[33] are proposing a technique that is an example to this case.

They are basing their work around the hypothesis that the word forms that

should be conflated for a given corpus will co-occur in documents from that

corpus. They use a co-occurrence measure to modify an initial set of confla-

tion classes generated by a stemmer, refining the output of the well known

Porter stemmer. This corpus-based stemming automatically modifies the

equivalence classes (conflation sets) to suit the characteristics of a given text

corpus. They perform experiments in English and Spanish, but they do agree

that generating the initial conflation classes in languages with more complex

morphologies may be a problem.

5.3.3 Obtaining affix inventories

A second, knowledge free category of research has focused on obtaining affix

inventories. DeJean[8] is inspired by the works of Zellig Harris[13], a dis-

tributional approach where the distribution of an element is the set of the
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environments in which it occurs. His work uses untagged and non artificial

corpora without specific knowledge about the studied language. The algo-

rithm is divided into three steps: the first step computes the list of the most

frequent morphemes, which is being extended in the second step by segment-

ing words with the help of the morphemes already generated, while the third

step consists in the segmentation of all the words with the morphemes ob-

tained at the second step. A symmetric procedure can be used to identify

prefixes; the letters of the words are just reversed. Morpheme boundaries for

the most frequent morphemes are discovered when the number of different

letters that are found to follow some sequence of letters is higher than a

threshold.

5.4 Linguistica

5.4.1 Introduction

Linguistica [10], is a freely available for research usage toolkit which per-

forms a complete morphologic analysis of a natural language, relying on the

Minimum Description Length model. The process of training is fully unsu-

pervised, so it provides an easy way to come up with a morphologic analysis

for a new language, provided that there is a corpus available. This charac-

teristic is very important, as it does not constrain the methods explored in

this work to a specific language pair; if one wants to apply them in a dif-

ferent one, it is not necessary to find tools to perform morphologic analysis,

but just to use Linguistica on the new corpus. This Section start with a

brief review of the MDL model, continues with a description of Linguistica

and concludes with a simple heuristic rule used to postprocess the resulting
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analysis in order to improve the accuracy.

5.4.2 Minimum Description Length Model

The central idea of minimum description length (MDL) analysis[29] is com-

posed of four parts:

1. A model of a set of data assigns a probability distribution to the sample

space from which the data is assumed to be drawn.

2. The model can then be used to assign a compress length to the data,

using familiar information-theoretic notions.

3. The model can itself be assigned a length.

4. The optimal analysis of the data is the one for which the sum of the

length of the compressed data and the length of the model is the small-

est.

In other words, we seek a minimally compact specification for both the model

and the data. Linguistica tries to analyze words into morphemes, using MDL

as guideline. In order to provide a morphology to evaluate using MDL, first

bootstrapping heuristics are needed that provide an initial morphology.

5.4.3 Heuristics for word segmentation

Two heuristics are used to produce an initial morphology analysis.

• The first one (called take-all-splits), considers for each word of length

of length l all the possible cuts into w1,i +wi + 1, l, 1 ≤ i < l. For each
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cut

H(w1,i, wi+1,l) = −(i log freq(stem = w1,i)+(1−i) log freq(suffix = wi+1,l))

(5.1)

is computed; then it is used in the following formula to assign a prob-

ability to the cut of w into w1,i + wi + 1, l.

prob(w = w1,i + wi + 1, l) =
1

Z
e−H(w1,i+wi+1,l) (5.2)

where

Z =
n−1∑
i=1

H(w1,i + wi + 1, l) (5.3)

For each word the best parse is noted, and then we iterate until no

word changes, which typical takes less than five iterations.

• Using the convention that each word ends with an end-of-word symbol

we compute the counts of all n-counts between two and six letters

(including the end of word). Then for each ngram [n1n1 . . . nk] we

compute
[n1n1 . . . nk]

total count ofngrams
log

[n1n2 . . . nk]

[n1][n2] . . . [nk]′
(5.4)

The top 100 ngrams on the basis of this measure are chosen as candidate

suffixes. Then all words are parsed into stem plus suffix, if possible,

using a parse from the candidate set. For those words that more than

one parsing are possible, we keep the most probable, according to the

previous heuristic.

Consequently, for each stem we make a list of all the suffixes which appear

with it, called a signature. Stems having the same signatures are merged.
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Initially all signatures with only one stem (which account for about 90% of

the initial signatures) are removed, as well as those with only one stem. The

remaining are called regular signatures. The resulting signatures are of the

form


stem1

stem2

stem3


{

suffix1

suffix2

}
(5.5)

Variations of the resulting grammar are considered and adopted only if

they reduce the description length of the grammar and the corpus. First

each suffix is tested to see if it is a concatenation of two independent suffixes.

Then suffixes in the same signature are tested to see if they begin with the

same letter or sequence of letters, so that these letters can be considered part

of the preceding stems. Finally signatures with only a small number of stems

are checked to see if they are worth keeping, or discarding them leads to a

better model.

5.5 Postprocessing of Linguistica analysis

5.5.1 Introduction

Using Linguistica on a corpus we can have a morphological analysis. It is

possible, however, especially when the available corpus is small that the pro-

duced morphology will not be very good, both in terms of precision and

recall. Linguistica offers the chance of adjusting some parameters, to influ-

ence the resulting morphology. However, to use them one must take into

account the way the morphology is built. We have tried to offer a simple and

cheap (both in terms of time and computational power needed) way of in-
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creasing the precision of the resulting morphological analysis, on the expense

of recall.

5.5.2 Heuristic proposed

Examination of the resulting morphological analysis provided by Linguistica

easily leads to an observation. In most words mistakenly analyzed, the error

is assigning stem characters to the suffix. The opposite error, assigning suffix

characters to the stem is not so important since it is more easy to identify

a stem with extra characters in the end than a chopped stem. The problem

of false identification is even more important when dealing with short words,

where removal of the suffix usually leaves a very short stem (maybe two

or three characters long), which is possibly useless for training a statistical

machine translation system. To overcome these problems we use a heuristic

rule which uses two parameters

• The length of the words l.

• The ratio r of the length of the suffix divided by the length of the whole

word.

We examine every word analyzed by Linguistica. We adopt the analysis only

for words that have lword > l0 and rword < r0, or else discard it.

5.5.3 Results-evaluation

In order to be able to choose values for r0 and l0 we carried out a simple

experiment. We used Lingustica to provide morphological analysis based on

a 1M token Greek corpus. Then we randomly picked 1k words (2k tokens)
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for which Linguistica had produced morphological analysis. To evaluate the

performance of the heuristic, a human judge decided for each word if the

analysis was correct or mistaken. The results, using different values for r0

and l0 are shown in Table 5.1.

r0 l0 Precision(%)
1 0 79

0.2 0 89
0.2 4 89
0.2 5 89
0.2 6 93
0.3 0 84
0.3 4 84
0.3 5 90
0.3 6 94

Table 5.1: Linguistica precision for the Greek corpus

5.6 Morphological analysis on Europarl

The results of applying morphological analysis to the europarl corpus can be

seen on Table 4.1, in page 25.

One can easily note that the number of singletons and not observed word

forms is substantially smaller in both the stemmed and split level than in

the lexical one.

The behavior of other tools (TextPro[2], Porter’s[1] stemmer1, Orphano’s[25]

lemmatizer) is shown in Figures 5.1, 5.2, for the greek and english sides of

the corpus respectively. In the horizontal axis are the number of words that

1Subset is the subset of rules that only split words, rather than changing letters
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can be created from a given stem, while on the vertical the number of stems

with the same count of possible word creations. Linguistica heuristic is the

analysis provided by Linguistica when applying the heuristics rules discussed

before. Porter subset is the analysis provided from porter stemmer, when

using only the subset if rules that do not modify the stem of the word. The

graphs show that Linguistica displays comparable performance with other

tools. It should be noted that Orphano’s lemmatizer is not directly com-

parable to Linguistica, since it is not a stemmer, but provides the lemma

from which a word is derived, thus the difference in behavior between the

two tools.
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Figure 5.1: Stem count distribution for English using different analysis tools
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Figure 5.2: Stem count distribution for Greek using different analysis tools

40



Chapter 6

Morphology incorporation

6.1 Introduction

Having analyzed how a morphological analysis for a natural language can

be achieved, it is now time to investigate approaches of incorporating this

information into the baseline translation system.

This chapter is devoted to the exploration of different approaches to this

problem. There has been some work on this field, on various language pairs.

What exactly is considered morphology and how it is incorporated to the

base system, however, varies quite a lot. In this work morphology is used

in its simplest form; words are just analyzed into stem and suffix or not at

all. This is quite a simplistic approach in comparison to related work, where

various morphosyntactic tags are used to describe the alterations applied to

a base form to produce the word, as seen in the text. In the experiments

which follow morphology has been either applied as a preprocessing step,

and in some case also as postprocessing. It has also been tried to change

the way the translation table is created, in which case the input text is not

necessary to be altered. In addition to that, the possibility of using the nbest
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list produced by the decoder to improve the translation has been explored.

Experiments have been conveyed to combine the output of different systems

as well as to assess the upper limit of the quality of the produced translation.

The rest of this chapter is organized as follows; Section 6.2 reviews the

relative work in the field. Section 6.3 describes initial experiments conveyed,

pre/postprocessing the input and output of the translation system. Sec-

tion 6.4 extends the ideas of the previous section by incorporating nbest

list processing. Section 6.5 describes the main part of the work done, using

morphology in order to enhance the translation table coverage. Section 6.6

describes a simple way to combine different systems in the translation ta-

ble level. Section 6.7.2 deals with combining the output of different systems

based on the confidence of each one. Finally, in Section 6.7.3 system com-

bination is performed on the basis of which system is expected to perform

better, judging on statistics gathered from the input sentence.

6.2 Previous work

What follows is a review of previous attempts of morphology utilization into

SMT systems. The gains in performance reported are relative improvements

of the translation quality as measured with the BLEU metric [26].

In [28], the language pairs dealt with are Catalan/Spanish to English and

Serbian to English. In the first case a 13k sentence corpus is used, while for

the second system the size of the train corpus is just 2k sentences. In the

first case only verbs are considered, while for the Serbian to English system

all words are treated. For the Spanish/Catalan system syntax information

is used in addition. In both systems morphology is used only on the source
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side. Linguistic information is used in the first case to split words into the

base form (lemma or stem). For the second system only the stem is kept

while the suffix is discarded. The improvements reported between 5% and

8%.

In [4], translation is from Spanish into Chinese and vice versa. The train

corpus is 28k sentences. Morphology is applied on the Spanish only side of the

corpus, which is either stemmed or lemmatized. In the Spanish to Chinese

system just the input is analyzed. In the opposite direction, however, a

Chinese to analyzed Spanish system is cascaded with an analyzed Spanish

to Spanish system. Small improvements are reported.

In [34], systems translating from German and Finnish into English are

trained on corpora 5k to 750k sentences. The idea is that the translation

table of the baseline system is enhanced with backoff probabilities for the

cases where a word has not been observed in the lexical level, but only in the

stem level. Improvements up to 8.5% are reported.

In [11] translation is from Czech into English. The corpus is 21k sentences.

Source words are analyzed and different representation schemes are tried.

The most interesting part of this work is that morphemes are also used to

establish the word to word correspondence, which generally is based only on

lexical level information. Improvements up to 20% are reported.

In [35], Arabic is translated into English, using a 20k sentence train cor-

pus. The Arabic side of the corpus is split into morphemes, taking into ac-

count the probability of each possible split, as well as discarding morphemes

which carry linguistic information not present in the English translation.

Improvements up to 5% are reported.
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In [18], translation is carried out from Arabic into English using varying

corpora sizes for training, from 3.5k to 3.3M sentences. Both sides of the

corpus are tagged with part of speech tags, and various models are used

to find out if each tag in the Arabic corpus is corresponding to an English

one, or it can be deleted/merged. This process is also repeated on the to be

translated input text. Improvement up to 150% is reported.

In [20], experiments are carried out from English to Russian and Arabic,

using corpora of 1M and 500k sentences respectively. The idea is to predict

the generation of each target word from stem into the lexical level, depending

on features such as the inflections of the context words, the tags of the asso-

ciated words in the input. The experimental framework, however, does not

provide a testing of these method since their performance is only evaluated

against an already translated corpus in terms of accuracy.

In [7], morphology is used to improve the word alignment of a 100k sen-

tence German-English corpus. Words in both sides of the corpus are replaced

into their citation form and consequently precision and recall improvements

on the word alignment are reported. No mention, however, is made of

whether this improved alignment actually results in training an improved

translation system.

In [21], translation is from German into English using a corpus of 58k

sentences. Using morphology words are decomposed to a lemma-tag repre-

sentation, and various restructuring schemes are used, like merging German

verbs with the detached prefixes, idiomatic multiword expression into a single

tokens. Performance improvements up to 30% are reported for the resulting

translation quality.
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6.3 Pre/Postprocessing incorporation

The simplest way to utilize morphological information is as a post/preprocessing

step. The advantage is that the baseline system can be used without mod-

ifications, since all modifications are done at earlier or later step. These

experiments can also be used to assess what kind of improvement can be

expected by incorporating higher level linguistic information in the develop-

ment of the system. Below follows a description of the systems that have

been built and evaluated.

• normal is the baseline system.

• stemsource is the baseline trained with the source language stemmed

and the target language same as in the baseline. The motivation is that

some morphological aspects of the one language are not translated into

the other. Using a more simple form of the word, possibly redundant

information is discarded and the result can be improved quality trans-

lation. The fact the translation output is in the lexical level helps to

avoid implementing a generative model.

• splitsource is the baseline trained with the source language split and

the target language same as in the baseline. The motivation is same as

above, only now the suffixes are not discarded, but kept as individual

words. The idea behind building this model is that maybe ignoring

all the suffixes in the source language discards useful information. By

keeping them it is possible that the ones that are useful will be aligned

in the target language, while the ones will not be consistently aligned,

thus resulting in low probability translation rules.

45



• split is the baseline trained with both languages split and then, as

a postprocesing step, the output is concatenated. The idea is that

splitting words into stem and suffix might result in a mapping between

stems in the source and target language as well as suffix mapping. Since

the translation produced is not only words, but also stems and affixes,

the consecutive words in the output are checked against the morpho-

logical analysis used to find out if their concatenation corresponds to

a legitimate word.

• stem is the translation when the system is trained at stem level. The

reason this model is built is to check if its performance is better than

the output of the baseline system, on a stem basis. If so, it is an

indication that there is room for improvement by operating on other

than the lexical level.

• normal stemmed is the stemmed output of the baseline system. This

model is just used in order to compare with the performance of the

stem system.

• normal giza is the translation produced by the baseline system using

an improved word alignment, trained with stems instead of words. This

is done to inspect if the alignment produced at stem level is superior

to the one created at lexical level.

6.4 split + rescoring

Experimental results suggest that the split model generates a lot of spurious

words. These words are mostly suffixes, and to a less extend stems, which

46



are reordered during the translation, and therefore it is not possible to con-

catenate them with a stem during postprocessing. It is also difficult to spot

them, because these morphemes can be either words or suffixes. Consider

for example the word on. It is possible that it is a preposition, or the suffix

created by splitting, for example, decision into decisi + on.

One approach to deal with this ambiguity is to tag all suffixes created with

a special token. That way, identifying spurious suffixes becomes straightfor-

ward. Since the translation process, however, results in reordering of the

tokens in the output, it is possible that even though it is possible to identify

a token as spurious, it is not following a stem in order to concatenate them

in to a legitimate word. To overcome this problem, we apply this technique

on the nbest list provided by the decoder. Starting from the first entry we

traverse the list downwards and pick as translation the first hypothesis en-

countered which does not contain a spurious suffix. The process is described

below.

• Source text split as usually (decision → decisi on)

• Target text split with special character (decision → decisi Xon)

• 4gram language model built

• After translation, keep 1000-best list 1.

• Try to merge words. (decisi Xon → decision)

• Find best scoring translation without X symbol

1Actually smaller list size does not harm performance, because low scoring sentences
are eitherway bad translations
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6.5 Generating translation rules

One different approach is to train a stem to stem system and then try to

generate rules consisting of words. The idea is to first train a stem to stem

translation system, for which the corpora available are less affected by data

sparseness, and then to transform the stem level rules into lexical level rules.

This is based on the assumption that high probable lexical level rules can de

derived by correspondingly high level stem level rules. So what is needed is to

provide a mapping from the stem level rules to lexical level. Such a mapping

ofcourse will have to take into account the probability of the derivation of a

certain word from a stem. The approach consists of the following steps

1. Stem corpus using the analysis provided by Linguistica

2. Train stem to stem translation system

3. For each rule produced (stem level) generate the possible rules created

(word level)

4. Rank the produced rules and choose top ranking

The implementation of the first two steps is straightforward and already

described above. What is needed is to create a mapping from rules in the

stem level into rules in the lexical level.

P (e|f) = F (P (es|fs)) (6.1)

where e and f are the native and foreign sides of a translation rule in

lexical level, and es and fs the native and foreign sides of a translation rule
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in the stem level. This process is approximated by the following formula:

P (e|f) = αP (es|fs) exp {λ1P (e|es) + λ2P (ea) + λ3P (fa) + λ4P (ea|fa)}

(6.2)

where α is a normalization constant, P (e|es) the probability of deriving

the lexical rule e from the stem level rule es, ea and fa is the sequence of suf-

fixes in the e and f phrases respectively, P (ea) and P (fa) the corresponding

language modes and P (ea|fa) the probability of observing the suffix sequence

ea given fa in a translation rule e|f . Intuitively Equation 6.2 states that the

probability of a lexical level rule is analogous to the corresponding stem level

rule. P (e|es) models how probable is to generate e from es, based on the

stem to word probability. The terms P (ea) and P (fa) constrain the possible

generations to the ones whose suffix sequence is syntactically correct and fi-

nally P (ea|fa) is a measure of how probable is to observe the suffix sequence

ea in a rule e|f .

The probability of a word e given a stem es is approximated using the

Maximum Likelihood estimation

P (e|es) = PML(e|es) =
count(e, es)∑
e count(e, es)

(6.3)

and the stem to lexical level probability of a lexical sequence eI
l1 =

el1 . . . eli . . . elI given the stem sequence eI
s1 = es1 . . . esi . . . esI is calculated

as

P (eI
l1|eI

s1) =
I∏

i=1

P (eli|esi) (6.4)

Implementation We will now review the calculation of the terms in Equa-

tion 6.2. For P (es|fs) we just need to stem the available bilingual corpus using
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Linguistica and then use the baseline system to create the translation table,

whose entries will be the probabilities we are looking for. The terms P (ea)

and P (fa) are easily found by processing the available monolingual corpora

using Linguistica and discarding the stems of all the words, keeping the af-

fixes and calculating a 4gram language model on the resulting corpus. In case

a word is not analyzed, it is simply replaced by a unique token. P (ea|fa) is

easily obtained by transforming the translation rules of the baseline system

and keeping only the suffix of each word. In order to evaluate Equation 6.3

for all the possible stem to word generations we stem the available corpus

and calculate the probabilities needed.

In order to efficiently create all the possible mappings of a stem sequence

to the lexical sequences finite state machines are used. Each rule in the

stem translation table is represented as an acceptor Fs. A transducer Ts→w

representing Equation 6.3 is created and the composition Fs ◦ Ts→w creates

all the possible rules. For the finite state machines the Carmel [12] toolkit

was used.

Computational issues The result of the above composition is a graph

with all the possible rules. The size of the graph, however, can vary consid-

erably. Given that a typical translation table consists of 500k-800k entries

(depending on the max ngram size and the corpus size), the number of pos-

sible rules quickly grows out of control; for a 4gram translation table with

around 500k stem rules the possible rules produced are 96.08e+12. If one

uses 8gram translation table, 770779 rules, the possible rules are an astonish-

ing 16980.92e+12. It is obvious that such a huge file cannot be even stored
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in a hard disk, let alone be used as a translation table. The solution to

this problem is well known; pruning. For each stem rule only the 1000 most

probable are stored, out of which the top ranking ones are picked.

6.6 Translation table level system combina-

tion

Since the system proposed in 6.5 is quite different from the baseline, it is

worth investigating the combination of these two systems. One way to achieve

this is to create a translation model based on the baseline and rule-generation

translation models. The basic idea is that for each rule Plex(e|f) present in

the baseline system we compute a new score P (e|f) = aPlex(e|f) + (1 −

a)Pgen(e|f), where 0 ≤ α ≤ 1 and Pgen(e|f) is the equivalent rule in the

generation system which is created using the procedure described in 6.5. The

resulting system is referred to as interpolation. Another approach tried is

not to interpolate the rules, but to use them both, effectively adding two

features to the translation table. This system is called interpolation 4cols.

It should be noted that the two systems (baseline and rule generation)

do not have the same rules. While the rule generation system translation

table has around 8101708 rules, the equivalent figure for the baseline system

is 460221. Of these rules the 369987 exist also in the rule generation system,

while the rest 90234 do not. For the non-existent ones we just keep the value

of the baseline system.

51



6.7 Sentence level combination

6.7.1 Motivation

Up to now we have dealt with modifying the baseline SMT system in order to

obtain improved quality translation. A different approach, complementary

to this one, is to combine the output of several MT systems which might

result in a better performance. There has been extensive work in this field.

Regardless of the way the combination is made, all research on this topic

agrees on one issue; the systems to be combined must be uncorrelated [19].

Generally speaking there exist two ways to integrate the output of differ-

ent systems. In both cases the first step is to translate the input indepen-

dently using all the available systems. For producing the final translation

each method uses a different technique.

Sentence level Use some global score functions for each hypotheses and

choose, for each input sentence, the best scoring one.

Phrase level Break each hypothesis into phrases and choose between phrases.

In this work we have constrained ourselves to only applying sentence level

combination.

6.7.2 System combination using decoder scores

Both the baseline and the improved system provide a score with each trans-

lation. The most straightforward way to combine their output is to choose

for each source sentence the one produced by the most “confident” system,

that is, the system supplying the highest score for the sentence at hand. If
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for each source sentence f we call the ith’s system translation ei and the

corresponding score P (ei), the sentence e is chosen among the candidates

according to the following decision rule

ê = arg max
i

P (ei) (6.5)

6.7.3 System combination based on input

The system using morphology information is expected to outperform the

baseline system in cases where the input contains words/phrases that have

not been observed in the training corpus enough times to train reliable trans-

lation rules. This intuition leads to the idea that it is possible to combine

their output by choosing the translation from the morphology system when

the input contains segments that have not appeared with high frequency in

the train corpus. The decision rule used relies on the mean frequency with

which the words of the input appear in the train corpus. If this figure is

above a threshold the baseline translation is chosen; if not the translation of

the rule generative system is chosen.

As seen in Chapter 4 however, there are a few words that appear with

great frequency in the corpus. These words need not be taken into account

since

1. Good translation rules exist for them anyway

2. Their bigger frequency defines decisively the mean frequency

For each source sentence f I
1 we pick the translation between the baseline

and the generative system hypothesis according to the following rule
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e =

{
ebase , R ≥ Ro

egen , R < Ro
(6.6)

where Ro is an arbitrary threshold, and R is computed using the equation

6.7

R =

∑
i∈A c(fi)

|A|
(6.7)

where c(fi) is the count of word fi in the train corpus, A a set with the

property c(fi) ≤ T, ∀i ∈ A and |A| its element count. The values of the

constants Ro and T are experimentally defined.
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Chapter 7

Results

Introduction

In this section are presented the results of experimenting with the previously

described techniques. For these experiments the 40k sentence subset of the

available corpus has been used for training, because it allows for quicker

development cycle and the improvements from these approaches are expected

to be more significant with small corpora, where data sparseness is more

severe. The experiments in 7.1 and 7.2 were conducted using a 5000 sentences

test set, while the rest on a 500 sentence subset of the test set, because the

amount of time needed for the latter is much bigger. For the same reason the

second group of experiments were only conducted from Greek into English

only.

7.1 Pre/Postprocessing incorporation

The results for the methods described in 6.3 are shown in Table 7.1. All

systems were evaluated using the BLEU [26]/NIST [24] metrics on the 5000
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sentence test set.

We can see that all systems except for normal giza perform worse than

the baseline. For stemsource and splitsource this can be attributed to

the fact that the information discarded is more valuable than the expected

gains. For split one additional reason is the problem of concatenating words

in the translation output. The only case where the modified system outper-

forms the baseline system is normal giza. This can be attributed to the

fact that less word forms help produce a better word alignment, resulting

in improved translation model. However the difference is too small to be

considered satisfactory.

gr2en en2gr
BLEU NIST BLEU NIST

normal 0.1911 5.8698 0.1389 4.8008
splitsource 0.1855 5.7289 0.1348 4.7176
stemsource 0.1898 5.8274 0.1339 4.6373

split 0.1873 5.7276 0.1343 4.6895
normal giza 0.1935 5.8835 0.1408 4.8388

normal stemmed 0.1947 5.9628 0.1475 5.1338
stem 0.1959 6.0060 0.1453 5.0906

Table 7.1: Scores for pre/postprocessing systems translating from Greek into
English and vice versa

7.2 split + rescoring

Using the methodology described in 6.4 the results of Table 7.2 are obtained.

normal is the baseline translation system, split is the normal split system,

and split special is the system described in 6.4. The items marked sub-
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set, correspond to the subset of the translation, where we were able to find

a translation in the lattice without spurious suffixes (4156 out of 5000 sen-

tences). This approach does not yield any improvement. It is interesting

to note that for the subset that it is possible to find translations without

spurious words the translation quiality is ofcourse higher, but the baseline

system is still better. This implies that this subset contains sentences that

are easier to translate, so no performance is gained by splitting the words.

BLEU NIST

normal 0.1911 5.8698
split 0.1873 5.7276

split special 0.1895 5.7566
normal subset 0.2029 5.9753
split subset 0.1991 5.8708

split special subset 0.2011 5.8780

Table 7.2: Scores for the split and rescoring system translating from Greek
into English

7.3 Generating translation rules

In order to build the translation table of the system described in 6.5 we must

first decide how many lexical rules will be generated per stem rule1. For

this reason we checked the quality of the translation, as measured by the

BLEU score, for different values of r. The results are depicted in Figure 7.1.

The horizontal axis value corresponds to the maximum number of lexical

rules generated per stem rule, while the vertical to the score of the produced

translation. The systems in the graph are:

1From now on we will refer to this ratio as r
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baseline , the system described in Chapter 3

rule generation system , is using the weight vector λ4
1 = [1110] (from

Equation 6.2)

rule generation system with affix translation features , is using the

weight vector λ4
1 = [1111]

For r < 10 the results are quite below the baseline system. After they

are comparable and the maximum improvement is when r = 24. This is the

value we have used for the rest of the experiments.

Another interesting observation regards the comparison between the two

rule generation systems. While for small values of r the system incorporating

affix translation features is clearly better than the simple one, for larger values

of r (r > 5) the situation is inverted, since the affix incorporating system is

quite inferior. This can be attributed to the fact that for small values of r

just a few lexical level rules are generated per stem rule, many of which are

not syntactically correct, so include the affix translation feature is important.

For bigger r values, however, the “good” rules are anyway included, and its

inclusion actually harms performance. This does not mean that it is not a

useful feature, but rather that it is not correctly modelled at present. Since

at its present form the affix translation modeling it does not help, it is not

used, and only the rule generation system is used in the next experiments.

After that, Minimum Error Training [22] is performed on both the base-

line and the generative system, in order to find the optimum weighting scheme

for each, in reference to the achieved BLEU score. The results are given on

Tables 7.5 and 7.6, in the column generative. The systems are tuned on the
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development test, while the performance is tested on test sets 1-9. All sets

are 500 randomly picked sentence subsets of the Europarl. The performance

of the rule generation system is not clearly better than that of the baseline.

It is also interesting to see the number of unknown words. In Figure 7.2

are plotted the number of unknown words in the baseline system and in the

system using the rule generation scheme, when translating the development

set. It is obvious that the number of unknown words is much smaller in the

case of generation rules. However the performance is improved accordingly

terms of BLEU/NIST score. This is an indication that while the vocabulary

is extended enough to include previously unknown words, the correspondence

between source and target language phrase pairs has not been correctly es-

tablished.

7.4 Translation table level system combina-

tion

The baseline system is interpolated with the rule generative system from

Section 7.3. A good value for α has to be approximated experimentally. In

order to do that translation tables for different α values were constructed

and used to translate the test set. The results are shown in Figure 7.3. The

best score was achieved for α = 0.2. For this value of α Minimum Error

Training was performed on the development set and translation quality was

measured on the test sets. The results are in Tables 7.5 and 7.6 for the

BLEU and NIST metrics respectively. It is obvious that the interpolation

improves on the performance of the rule generation system a little across the

different test sets. What is interesting is that the four feature variant gains
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Figure 7.1: Impact of ratio of lexical rules generated per stem rule in BLEU
score
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Figure 7.2: Impact of ratio of lexical rules generated per stem rule in the
amount of unknown words
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Figure 7.3: BLEU score of interpolation system as a function of α

significant improvements over the rest of the systems, but only regarding the

NIST metric. This could be an indication that the further tuning is needed.

7.5 Sentence level combination

7.5.1 Sentence level combination upper limit

Independently of the approach used, it is convenient to know what is the

optimum performance possible by combining the output of the systems in

the sentence level. For the optimized versions of the baseline and the rule

generation system, each sentence translated is scored by the TER metric [31]
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2. Then for each sentence translated by the two systems, the highest scoring

is chosen. The results are shown in Tables 7.3 and 7.4. The column oracle

max is the translation constructed with the aforementioned process. The

gain in performance is consistently at least 1 BLEU point above the baseline

system. In addition to the best possible translation, the worst possible was

computed, using the same process and the results are in the column denoted

oracle min. It is interesting to note that the baseline system performance is

generally halfway between the lower and the upper bound.

test set Baseline generative oracle max oracle min
dev set 0.2112 0.2138 0.2313 0.1934

1 0.2021 0.1990 0.2136 0.1868
2 0.1941 0.1944 0.2056 0.1825
3 0.2063 0.1991 0.2175 0.1869
4 0.2045 0.2040 0.2195 0.1879
5 0.2065 0.2048 0.2195 0.1898
6 0.2104 0.2133 0.2263 0.1964
7 0.2137 0.2078 0.2249 0.1959
8 0.2122 0.2119 0.2248 0.1982
9 0.2168 0.2098 0.2269 0.1978

Table 7.3: Oracle translation BLEU scores of weight optimized baseline and
rule generation system combination in different test sets

7.5.2 System combination using decoder scores

The results for the combination based on decoder scores are given in Tables

7.5 and 7.6, in the column decoder score combination. The system outper-

forms the baseline in 8 out of 10 sets (including the development set). It is

important to note that although tuning was done in respect to the BLEU

2It is preferred over BLEU as it provides more manageable figures on per sentence basis
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test set Baseline generative oracle max oracle min
dev set 5.5309 5.5453 5.8049 5.2772

1 5.5044 5.4769 5.7464 5.2362
2 5.4188 5.4156 5.6787 5.1498
3 5.5137 5.4127 5.7236 5.1994
4 5.5145 5.4639 5.7283 5.2470
5 5.5247 5.4776 5.7742 5.2371
6 5.4659 5.4842 5.7336 5.2183
7 5.6019 5.5347 5.8105 5.3372
8 5.6089 5.5965 5.8436 5.3692
9 5.7033 5.5555 5.8901 5.3884

Table 7.4: Oracle translation NIST scores of weight optimized baseline and
rule generation system combination in different test sets

metric only, the results are consistent across the two different metrics. This

ensures that the improvement noticed corresponds to translation quality im-

provement and not exploitation of one metric’s particular deficiency. The

improvement, however, is not consistent across all experiments, since for

some cases the difference is too small to be considered significant.

7.5.3 System combination based on input

In order to combine the systems output depending on the input sentence we

need to find the optimum values for the two constants Ro and T . Using test

set 1, we combined the systems for different values of Ro and T . The opti-

mum value, with reference to the BLEU score of the produced translation,

are T = 3 and Ro = 1. In other words, we only consider words which have

appeared at most 3 times in the train corpus, and accept the baseline system

translation if their mean frequency is at least equal to 1. The performance

of this combination is shown in Tables 7.5 and 7.6, for the BLEU and NIST
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metrics respectively. While the performance is clearly improved on the de-

velopment set, in the test sets the results are less satisfactory. This means

that the classification of sentences using the mean frequency of appearance

of the words in the train corpus is not robust.

System
test set baseline generative interpolation interpolation decoder score train frequency

4 columns combination combination
dev set 0.2112 0.2138 0.2126 0.2121 0.2163 0.2189

1 0.2021 0.1990 0.1986 0.1986 0.2041 0.2023
2 0.1941 0.1944 0.1940 0.1923 0.1948 0.1929
3 0.2063 0.1991 0.2060 0.2009 0.2076 0.2089
4 0.2045 0.2040 0.2070 0.2059 0.2048 0.2071
5 0.2065 0.2048 0.2076 0.2057 0.2093 0.2071
6 0.2104 0.2133 0.2113 0.2120 0.2159 0.2122
7 0.2137 0.2078 0.2142 0.2102 0.2116 0.2134
8 0.2122 0.2119 0.2116 0.2083 0.2163 0.2135
9 0.2168 0.2098 0.2145 0.2166 0.2132 0.2151

Table 7.5: BLEU scores for baseline, rule generation, translation table, de-
coder score based and input frequency based combination systems with op-
timized weighting scheme
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Figure 7.4: BLEU score in different test sets for baseline, rule generation,
translation table, decoder score based and input frequency based combination
systems with optimized weighting scheme
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Figure 7.5: NIST score in different test sets for baseline, rule generation,
translation table, decoder score based and input frequency based combination
systems with optimized weighting scheme
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System
test set baseline generative interpolation interpolation decoder score train frequency

4 columns combination combination
dev set 5.5309 5.5453 5.5546 5.5889 5.6099 5.6367

1 5.5044 5.4769 5.4873 5.5284 5.5588 5.5085
2 5.4188 5.4156 5.4211 5.4968 5.4286 5.3974
3 5.5137 5.4127 5.4863 5.5180 5.5236 5.5221
4 5.5145 5.4639 5.5091 5.5493 5.5224 5.5430
5 5.5247 5.4776 5.5272 5.5666 5.5904 5.5410
6 5.4659 5.4842 5.4839 5.5612 5.5220 5.4747
7 5.6019 5.5347 5.5750 5.6266 5.6020 5.6147
8 5.6089 5.5965 5.5931 5.6435 5.6625 5.6142
9 5.7033 5.5555 5.6726 5.7308 5.6345 5.6577

Table 7.6: NIST scores for baseline, rule generation, translation table, de-
coder score based and input frequency based combination systems with op-
timized weighting scheme
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Chapter 8

Conclusions

In this work we have experimented with a novel approach into incorporating

morphological information into a phrase based SMT system. The experi-

mental results are encouraging. Small performance improvements have been

achieved, while the amount of out of vocabulary words has dropped by more

than half.

Possible ways to build up on this research line include:

1. Experimentation with the features used to compute the probabilities

of the generated rules.

2. Better pruning criteria, to limit the possible generations. Instead of

using a constant threshold, it could be taken into account features

like the length of the phrase, the frequency of the tokens in the stem

corpus, the probability of the generations that produce the resulting

lexical rule.

3. Better generation model. Currently only the stem at hand is taken

into account. It is almost sure that better results can be achieved by
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judging also on the adjacent stems and generations.

4. It would be interesting to try the system in the inverse translation

direction, from English into Greek. Translating into a morphology rich

language may result in bigger improvements upon the baseline system.

5. Incorporate morphologic information into the language model. This

should not be very difficult, since the language model toolkit used in

this work offers the option to use factored based models.
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Appendix A

Translation Examples

Below are listed some translation examples from the test sets used. The first

translation is from the baseline system and the second one from the rule

generation system.

parakal¸ loipìn na diorjwjeÐ sthn hmer sia di�taxh thc

pèmpthc all� kai sto ex c autì na lhfjeÐ upìyh se k�je

èggrafo pou diakineÐtai epis mwc ed¸ sto q¸ro mac

i would therefore be corrected in the agenda for thursday but also in that

it should be taken into account in any document which diakineÐtai officially

here in our own area

i would ask you to be on the agenda for thursday but also in the future this

will be borne in mind in any official documents sent here in our area

gia na epiteuqjeÐ autì prèpei na dhmiourg soume èna ka-

nonistikì perib�llon pou na eunoeÐ to kef�laio epiqeirhma-

tik¸n summetoq¸n en¸ par�llhla qrei�zetai na jespisjoÔn

orismèna kanonistik� mètra
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to achieve this we need to create a regulatory environment which is fa-

vourable to the capital summetoq’wn while we need to adopt a number of

measures kanonistik’a business

to achieve this we need to create a regulatory environment which is favourable

to the venture capital while we need to introduce some regulatory measures

participation

kat� sunèpeia uposthrÐzw pl rwc thn �poyh tou koino-

boulÐou epÐ tou shmeÐou pou kaleÐ thn epitrop  na mac krat�

en merouc se taktik� diast mata gia tic teleutaÐec exelÐxeic

i therefore fully support the view of parliament on this point which calls

on the commission to give us krat� en merouc in regular basis of the latest

developments

i therefore fully support the view of parliament on this point which calls on

the commission to inform us krat� in regular basis of the latest developments

de kÔrie prìedre kÔrie epÐtrope kurÐec kai kÔrioi h èkjesh

eÐnai polÔ kal  ìpwc akoÔsame  dh

mr president commissioner ladies and gentlemen this report is excellent

as we have already heard

mr president commissioner ladies and gentlemen this report is very good as

we have already heard

h an�ptuxh prèpei na uposthriqjeÐ kalÔtera

this development must be better
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growth must be better

mèsw ependÔsewn sthn Ðdrush nèwn epiqeir sewn dhmiour-

goÔntai kai jèseic apasqìlhshc

through investment to the establishment of new companies and create

jobs

through the establishment of new companies creating jobs and investment

se pollèc peript¸seic up�rqei kai h peribìhth zoÔgkla apì

kanìnec èntupa kai grafeÐa pou empodÐzoun touc mikroepiqei-

rhmatÐec na prosl�boun proswpikì

in many cases there is also the peribìhth jungle of rules and offices which

hinder the mikroepiqeirhmatÐec to prosl�boun staff away

in many cases there is also the notorious jungle of documents and office which

prevents the mikroepiqeirhmatÐec to recruit staff regulations

h problhmatik  eÐnai gnwst  se ìlouc mac èqoume bèbaia

fragmoÔc pou dusqeraÐnoun shmantik� thn an�lhyh kindÔnou

kai to epiqeireÐn

the problem is known to all of us have of course barriers which dusqeraÐ-

noun considerably the taking risks and the epiqeireÐn

the problem is known to all of us have of course which import barriers hin-

dering the taking risks and the epiqeireÐn

h ìlh idèa dÐnei ìmwc kai thn aform  gia thn �skhsh kri-
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tik c

the whole idea it but also the opportunity to exercise them

the whole idea it but also the opportunity for exercising criticism

h empeirÐa mac deÐqnei to antÐjeto

experience shows quite the reverse

experience shows us the opposite

kai stic dÔo peript¸seic up�rqei saf c upost rixh thc koi-

notik c strathgik c gia thn an�ptuxh twn epiqeirhmatik¸n

kefalaÐwn sthn eurwpaðk  ènwsh

in both cases there is a clear support for the community strategy for the

development of business capital within the european union

and in both cases there is a clear support for the community strategy for the

development of venture capital in the european union

an analÔsoume ta arijmhtik� stoiqeÐa me apìluta krit ria

ja prèpei na eÐmaste polÔ ikanopoihmènoi me autì to apotè-

lesma

if we analyse the figures with completely criteria will have to be very

pleased with this result

if we analyse the figures in total criteria will have to be very satisfied with

this result

up�rqoun Ðswc mìno mÐa   dÔo q¸rec metaxÔ twn ìpou oi
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en lìgw ependÔseic leitourgoÔn kanonik�

there are perhaps one or two countries between where these investments

are normally

perhaps there is only one or two countries between where these investments

function normally

h jèsh aut  eÐnai meÐzonoc shmasÐac gia tic prosp�jeièc

mac gia thn pagÐwsh emb�junsh kai dieÔrunsh tou politikoÔ

dialìgou

the position is vitally important for our efforts to pagÐwsh deepening and

widening the political dialogue

the position that is essential for our effort to consolidating deepening and

enlargement the political dialogue

h deÔterh di�skeyh koruf c asem pou diex qjh sto londÐno

to katèlhxe sthn epituq  èkbash thc krÐshc

the second summit asem held in london the subscribes to the successful

outcome of the crisis

secondly the asem summit held in london the conclusion to the successful

outcome of the crisis

to Ðdruma asÐaseur¸phc sunèbale shmantik� sthn epÐteuxh

autoÔ tou stìqou

the institution asÐaseur¸phc contributed substantially to achieving this

objective
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the establishment of asÐaseur¸phc made a significant contribution to achie-

ving this objective

prèpei na axiopoi soume thn eukairÐa aut  pou mac prosfè-

rei kai th dunatìthta na eisakoustoÔn ekeÐ oi arqèc mac

we must use this opportunity and which offers us the opportunity to ei-

sakoustoÔn where the authorities us

we must take advantage of this opportunity and give us the opportunity to

have heard that the us authorities

h antallagèc metaxÔ sqoleÐwn panepisthmÐwn kai epiqeirh-

mati¸n upìsqontai poll� kai to Ðdruma eur¸phsasÐac k�nei

kal  doulei�

the exchanges between schools panepisthmÐwn and business for many and

the institution eur¸phsasÐac done a good job

the university exchanges between schools and businesses for many and the

establishment of eur¸phsasÐac done a good job

giatÐ den pi�noun to mpal�ki h iapwnÐa   h kÐna

why not pi�noun the mpal�ki the japan and china

why not pi�noun the mpal�ki the china or japan

nomÐzw epÐshc ìti h aisiodoxÐa pou epideÐxame ìson afor�

th diadikasÐa epanènwshc thc korèac  tan lÐgo uperbolik 

i also believe that the optimism that epideÐxame with regard to the process
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of epanènwshc kor’eas was a little excessive

i also believe that the optimism that we show in the process of reunification

korea was a little excessive

h kubèrnhsh tou wahid èqei kalèc projèseic kai epijumeÐ

eilikrin� na diorj¸sei tic pr�xeic palai¸n kajest¸twn

the government of the wahid has good intentions and wishes to sincerely

for their actions former regimes

the government of wahid has good intentions and i wish to correct deeds old

regime

profan¸c h kat�stash sth mèsh anatol  ja eÐnai èna apì

ta jèmata ta opoÐa ja prèpei na suzhthjoÔn sthn en lìgw

di�skeyh koruf c parìti eÐnai anepÐshmh clearly the case in the

middle east is one of the issues which will need to be discussed in this sum-

mit although it is informal

clearly the case in the middle east will be one of the issues which should be

discussed in this summit although it is information

kai afoÔ antikeimenik� den mporeÐ tìte mia nhsiwtik  q¸ra

pou anagkastik� prèpei na èqei poll� tètoia lim�nia eÐnai

dÐkaio na mhn mporeÐ na èqei ta an�loga ofèlh wc proc thn

limenik  thc upodom 

and since this is a country which has must have many more such ports is

fair could not have the benefits in terms of the structure of limenik  depen-
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ding nhsiwtik  can then

and since then an island country which inevitably must have many more such

ports is fairly could not have the relevant benefits in terms of port infrastruc-

ture cannot objectives

oi limènec twn paramejìriwn perioq¸n èqoun idiaÐterh sh-

masÐa parìlo pou o ìgkoc tou fortÐou kai o arijmìc twn

epibat¸n eÐnai qamhlìteroi apì ìti stic kentrikèc perioqèc

the port of border areas are particularly important even though the vo-

lume of residues and the number of passengers is qamhlìteroi than in the

central regions

the ports of border regions are particularly important although the volume

of freight and the number of passengers is qamhlìteroi than in the central

regions

aisj�nomai idiaÐterh ikanopoÐhsh gia to gegonìc ìti èqoun

sumperilhfjeÐ sto sÔnolo oi strathgikèc axiolog seic twn

epipt¸sewn

i am particularly pleased about the fact that they included on all the

strategies evaluations of the consequences

i am particularly pleased about the fact that they included in all the strategic

impact evaluations

den ja tonÐsw ta shmeÐa thc èkjeshc me ta opoÐa sumfwn¸

wstìso ja  jela na tonÐsw k�poia jèmata pou apasqoloÔn
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tìso emèna ìso kai k�poiouc �llouc bouleutèc

we would stress the points in the report with which i agree but i should

like to stress a few points which are both myself and some other members

i would single out the points in the report with which i agree but i should

like to stress a few points concerning both myself and some other members

den mporeÐ na epidi¸koume k�ti tètoio

we are not able to do so

we cannot do this

jal�ssioi limènec tropologÐec kai

jal�ssioi ports amendments nos and

maritime ports amendments nos and
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