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Abstract

System Identification (SI) has been a hot research topic for over 30 years since it can
find applications in various fields such as biosciences, economics and control system
design to name few. This very fact leads to the development of a general mathematical
theory that can deal with the problem of SI independent of the field of application.

In this thesis we examine the family of linear state-space models and aim to find
the system parameters from a series of observation data. Contrary to the dominant
approaches of Least-Squares (LS) estimation of the system parameters we have devel-
oped a new procedure that solves the problem through the Expectation Maximization
(EM) algorithm.

Regardless of the estimation algorithm, if there are no restrictions on the form of
the matrices we want to estimate, the matrices can be determined up to within a linear
transformation and thus the result may be different than the true solution. Moreover,
the convergence of iterative algorithms may be affected by iterating in a neighborhood
of the true solution. To overcome this problem one must constrain the system matrices
to follow structures which are commonly known as canonical forms.

We examine a family of such canonical forms and apply the EM algorithm. First
we form the auxiliary function that is used in the EM algorithm and then by use of the
Kalman Filter and the Rauch-Tung-Striebel (RTS) Smoother we collect the sufficient
statistics that appear in the auxiliary function. Finally based on those statistics we
reestimate the system matrices. We examine the EM behavior both in the general form
of a system and its Innovation Representation (IR).

viii
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Introduction

A large variety of papers on system identification have appeared over the last 40 years.
Though there was a substantial progress in the theory of stochastic processes and mul-
tivariable statistical analysis during 1950s, it is widely recognized that the theory of
system identification started only in the mid-1960s with the publication of two im-
portant papers. The first was published from Åström and Bohlin [9], in which the
Maximum Likelihood (ML) method was extended to a serially correlated time series
to estimate Autoregressive Moving Average model with exogenous inputs model (AR-
MAX) models, while the second was published from Ho and Kalman [46], in which the
deterministic state-space realization problem was solved for the first time by forming a
Hankel matrix in terms of impulse responses. The (deterministic) realization problem
as stated in [54] is to find the state dimension and system matrices (up to similarity
transforms) from a sequence of impulse responses {Gt, t = 0, 1, · · · } or a transfer ma-
trix G(z). These two papers [9],[46] gave birth to the future developments of system
identification theory and techniques [35].

The work of Ho and Kalman [46] laid the foundation for the development of Sub-
space Methods for System Identification. Ho and Kalman dealt with the realization
problem of deterministic systems which does not consider any noise. The realization
problem for stochastic systems is to find all Markov models whose outputs simulate
given covariance data or spectral density matrix [54] and was first addressed by Faurre
[30] and Akaike [1]. A key step in stochastic realization is either to apply the determin-
istic realization theory to a certain Hankel matrix constructed with sample estimates
of the process covariances, or to apply the canonical correlation analysis (CCA) [48] to
the future and past of the observed process. Stochastic realization theory suffered from
the same drawback as deterministic realization theory, up to the early 1990s stochastic
realization supported modeling of stochastic processes, or time series, only. Thus the
results of realization theory could not be applied to a system in which both a deter-
ministic test input and a stochastic disturbance are involved. These realization theory
based techniques have led to a development of various so-called subspace identification
methods. The most well known algorithms for subspace identification are Numerical
algorithms for Subspace State Space System IDentification (N4SID) [93] and Multivari-
able Output-Error State sPace (MOESP) [96], [97] which apply the realization theory
along with linear algebra tools like LQ decomposition and Singular Value Decomposi-
tion (SVD).

Astrom and Bohlin [9] attacked the problem from a different angle. In their work,

x
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they attempted to build single-input, single-output (SISO) ARMAX models from ob-
served input-output data sequences applying ML estimation on the system parameters.
This work laid the foundation for many statistical identification techniques which have
been developed in the literature, most of which are now comprised under the label
of Prediction Error Methods (PEM), the common characteristic of these methods is
that they usually attempt to minimize a cost criterion. This has lead from the work
of Eykhoff [29] to perhaps the most successful books dealing with the subject of PEM
of Södesrstörm-Stoica [84] and of Ljung [60], both of which adopted the same clear
distinction between choice of model structure and choice of criterion. Södesrstörm and
Stoica gave more emphasis on analysis and alternative criteria (i.e correlation meth-
ods, Instrumental Variables) and less on design issues. Ljung’s book has become the
standard reference book in System Identification (SI). The impact of his book was
greatly amplified by the simultaneous production of the MATLAB identification tool-
box, which enabled further research in the field of SI. At this moment we can say that
theory of system identification for SISO systems is established, and the various identifi-
cation algorithms have been well tested, and are now available as MATLAB programs.
Identification of multiple-input multiple-output (MIMO) systems though is quite more
complex and the focus of much work among of which is ours too. The issues that arise
in MIMO SI will be addressed in detail in this work and we will present our proposal
on how to resolve them.

One of the main implications we face when dealing with the identification of MIMO
systems is that if there is no restriction on the form of the matrices we want to estimate,
the procedure can determine these matrices up to a linear transformation or affect the
convergence of iterative algorithms [36], [40]. To resolve this problem we have to adopt
some structural constraints which result on some specific forms on the matrices of the
system. These forms are known as Canonical Forms and the exact parametrization of
which has been extensively under study for some time [14], [63]. After the form of the
system matrices is established classical PEM methods involve an iterative procedure
aiming to minimize some cost function estimating in each step the new system matrices.
The estimation usually applied in this family of algorithms is Least Squares Estimation
and its variants. In our work we have managed to apply the Expectation Maximization
(EM) Algorithm [25] to a class of identifiable models presented in [91] by formulating
the auxiliary function that appears in the EM. To ensure the convergence to the true
system matrices we also examine the the convergence of the Steady-State Kalman Gain
(SSKG). We also move on to examine the identifiability of a state-space model in its
original form as well as its forward innovations representation.

The rest of the thesis is organized as follows: Chapter 1 introduces some basic
theory on linear state-space models. We will present the equations that describe a
linear state-space model, we will formulate the identification problem and discuss the
criteria that are typically used, while also we will give a brief overview of the Kalman
Filter. Chapter 2 describes the EM algorithm and we will explain how it is applied
in Hidden-state model identification . Chapter 3 examines Canonical Forms presented
in various texts and how they affect the identifiability. Our identification algorithm is
discussed in Chapter 4 and we will present our experimental results. Chapter 5 outlines
interesting directions for future work.



Chapter 1

Linear State-Space Model
Identification

1.1 Introduction

This chapter introduces some basic concepts of linear state-space models and their
identification. We will describe analytically the formulation of state-space models and
explain why we will deal with this class of models instead of other mathematical models
that exist. Then we define the problem of identification and present the criteria that
are used for identification procedures. We will also make an overview of the Discrete
Kalman Filter, which we use for our identification method as it will be shown in the fol-
lowing chapters. Finally, we will describe the basic concept behind PEM and Subspace
Methods for Identification.

1.2 State-Space Model Description

It is well established that there is an infinite collection of mathematical systems. In
this thesis, we have restricted ourselves to discrete time, linear, time-invariant, state
space models. This might seem like a highly restricted class of models (especially the
fact they are linear), but, surprisingly enough, many processes can be described very
accurately by this type of models and a large variety of scientific areas employ them
for modeling, i.e. economics, engineering, biosciences to name a few. Moreover, the
number of control system design tools that are available to build a controller based on
this type of models, is almost without bound ([18], [32]). For this reason, this model
class is a very interesting one.

Mathematically, these models are described by the following set of difference equa-
tions:

xk+1 = Fxk +Buk + wk (1.2.1a)

yk = Hxk +Duk + vk (1.2.1b)

E[
(
wp
vp

)
(wTp v

T
p )] =

 Q S

ST R

 δpq ≥ 0 (1.2.1c)

1
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where E denotes the expected value operator,AT denotes the transpose of a matrix and
δpq is the Kronecker delta.

In this model we have([94], [78]):

vectors: The vectors uk ∈ Rl and yk ∈ Rm are the measurements at time instant k
of the l inputs and m outputs of the process, respectively. The vector xk ∈ Rn

is the state vector of the process at discrete-time instant k and contains the
numerical values of n states. Of course, if the system states would have some
physical meaning, one could always find a similarity transformation of the state
space model to convert the states to physically meaningful ones. Both wk ∈ Rn

and vk ∈ Rm are unmeasurable vector signals, most commonly known as state
and measurement noise, respectively. It is assumed that they are zero mean,
stationary, white, gaussian noise vector sequences.

matrices: F ∈ Rn×n is called the (dynamical) system matrix. It describes the dynam-
ics of the system (as completely characterized by its eigenvalues). B ∈ Rn×l is
the input matrix which represents the linear transformation by which the deter-
ministic inputs influence the next state. H ∈ Rm×n is the output matrix, which
describes how the internal state is transferred to the outside world in the measure-
ments yk. The term with the matrix D ∈ Rm×l is called the direct feedthrough
term.The matrices Q ∈ Rn×n, S ∈ Rn×m and R ∈ Rm×m are the covariance
matrices of the noise sequences wk and vk. The matrix pair {F,H} is assumed
to be observable (see Theorem 1.2.2), which implies that all modes in the system
can be observed in the output yk and can thus be identified. The matrix pair
{F, [B Q1/2]} is assumed to be controllable (see Theorem 1.2.1), which in its turn
implies that all modes of the system are excited by either the deterministic input
uk and/or the stochastic input wk.

A graphical representation of the system described by equations 1.2.1 can be found
in the following figure.

Figure 1.1: Finite Dimension discrete time, linear, time-invariant, state space models
([94]).

Next we present two theorems for checking controllability and observability of a
pair of matrices, the proof of which can be found in [64].
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Theorem 1.2.1. For two matrices A ∈ Rn×n and B ∈ Rn×m we say that the pair
{A,B} is completely controllable if and only if the extended n× nm matrix

M = [B,AB, · · · , An−1B]

has rank n

Theorem 1.2.2. For two matrices A ∈ Rn×n and C ∈ Rm×n we say that the pair
{A,C} is completely observable if and only if the extended pn× n matrix

M =


C
CA

...
CAn−1


has rank n

Of course, there are more elaborate and robust methods to check for controllabil-
ity and observability [69], but for the purposes of this thesis the above theorems are
adequate.

In the systems we have examined we have made the assumption that we don’t have
external input, thus B = D = 0 and the cross-covariance of the state and measurement
noise is zero, S = 0, though the extension is straightforward. Moreover we assume that
we don’t have degenerate Gaussian noise neither in the state nor the measurement equa-
tion (meaning that their respective covariance matrices are positive definite). Hence,
the equations 1.2.1 describing the system become:

xk+1 = Fxk + wk (1.2.2a)

yk = Hxk + vk (1.2.2b)

E[
(
wp
vp

)
(wTq v

T
q )] =

 Q 0

0 R

 δpq > 0 (1.2.2c)

For the rest of the thesis this is the form of the state-space system we have adopted.

1.3 Kalman Filtering

The celebrated K alman Filter [52] is an estimator for what is called the linear-quadratic
problem, which is the problem of estimating the state at time k of a linear dynamical
system which is affected by white noise by using measurements linearly related to the
state which are also corrupted by white noise. Kalman Filter is an optimal estimator
with respect to any quadratic function of error estimation [39]. Moreover, the solution
is recursive in the sense that each updated estimate of the state is computed from the
previous estimate and the new input data, so only the previous estimate requires stor-
age. In addition to eliminating the need for storing the entire past observed data, the
Kalman Filter is computationally more efficient than computing the estimate directly
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from the entire past observed data at each step of the filtering process. The original
work of Kalman, where the derivation of the filter equations is described, can be found
in [52]. Though many different derivations which lead to the same result have been
developed over the years, many textbooks choose to follow the original derivation of
Kalman due to its elegancy [45], [59]. Kalman Filter is the succesor of the Wiener
Filter [99], which introduced the idea of statistically representing signals and Levinson
Filter [58], which simplifies some computational aspects of the Wiener theory.

1.3.1 Kalman Filter and RTS-Smoother

Kalman filtering is a recursive procedure that consists of two steps. In the first, the
model makes predictions of the state mean and covariance x̂k|k−1 and Σk|k−1 (prediction
step), then in the second, these predictions are updated by projecting them into the
observation space by computing the error ek of the true measurement yk and the
estimated ŷk, and adjusted to give the new estimates x̂k|k and Σk|k (update step). This
process provides a means of updating the state distribution as new observations are
made.

As we have mentioned the Kalman Filter solves the optimum linear filtering problem
but it has been shown in [76] that smoothing the estimates of Kalman Fitler greatly
improves its performance. Smoothing is a non-real-time operation in that it involves
estimation of the state xk for 0 < k ≤ N , using all the available data, past as well
as future. In fact in [76] the optimum linear smoothing problem was solved and the
well known Rauch-Tung-Striebel (RTS) Smoother was introduced. The complete set
of equations of Kalman Filter (Forward Recursions) and RTS-Smoother (Backward
Recursions) for a state-space model described by 1.2.2 are summarized below:

Forward Recursions

x̂k|k = x̂k|k−1 +
(
Σk|k−1H

TΣ−1
ek

)
ek (1.3.1a)

x̂k+1|k = Fx̂k|k (1.3.1b)

ŷk+1|k = Hx̂k+1|k (1.3.1c)

ek = yk −Hx̂k|k−1 (1.3.1d)

Σek
= HΣk|k−1H

T +R (1.3.1e)

Σk|k = Σk|k−1 − Σk|k−1H
TΣ−1

ek
HΣk|k−1 (1.3.1f)

Σk,k−1|k =
(
I −

(
Σk|k−1H

TΣ−1
ek

)
H
)
FΣk−1|k−1 (1.3.1g)

Σk+1|k = FΣk|kF
T +Q (1.3.1h)
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Backward Recursions

x̂k−1|N = x̂k−1|k−1 +Ak
[
x̂k|N − x̂k|k−1

]
(1.3.2a)

Σk−1|N = Σk−1|k−1 +Ak
[
Σk|N − Σk|k−1

]
ATk (1.3.2b)

Ak = Σk−1|k−1F
TΣ−1

k|k−1 (1.3.2c)

Σk,k−1|N = Σk,k−1|k +
[
Σk|N − Σk|k

]
Σ−1
k|kΣk,k−1|k (1.3.2d)

The quantity Σk,k−1|k is not included in the standard Kalman Filter equations. It was
derived in [26] and we present it here since it is involved in the auxiliary function of
the EM algorithm, on which we have based our proposed identification method. The
term ŷk+1|k is the filtered output and is useful in some applications [57].

The term ek is called innovations process and a special case of state-space model
can be constructed from it, as we will see in Subection 1.3.3. The quantity defined
below:

Kk = FΣk|k−1H
TΣ−1

ek
(1.3.3)

is called Kalman Gain. In many texts (i.e. [82], [26], [31], [34] ) Kalman Gain is defined
by the quantity

Kk = Σk|k−1H
TΣ−1

ek
(1.3.4)

which appears in the forward and backward recursions in the set of equations 1.3.1,
1.3.2. The benefit of this definition is that it is directly involved in the Kalman Filter
equations and is in fact the optimal gain in the sense that minimizes the mean square
error of the estimates. We choose to follow the definition of equation 1.3.3 to avoid
confusion when we will discuss about the innovations model in Subsection 1.3.3.

There are numerous different implementations of the Kalman Filter. This is at-
tributed to the fact that when the Kalman Filter was implemented, it was discovered
that it is prone to numerical instabilities due to short word lengths of computers ([80])
and very sensitive to roundoff errors (more details about roundoff errors can be found
in [37]). The state covariance matrix Σ computed in the Kalman Filter should theoret-
ically always be a symmetric positive semi-definite matrix, but numerical problems in
computer implementations sometimes led to matrices that became indefinite or nonsym-
metric. Hence many alternative implementations of the Kalman Filter were developed
to deal with these problems, the most important of which are presented below:

• Information Filtering. This is an implementation of the Kalman Filter that prop-
agates the inverse of the state covariance matrix Σ (which is called information
matrix). It is used when the dimension of the measurement vector is much larger
than the dimension of the state vector. More details about information filtering
can be found in ([33]).

• Sequential Processing. Here the measurement vector is processed one component
at a time, as it is shown in [22]. This implementation is used mostly when the
noise of the output measurement vector is block-diagonal or constant.
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• Square-root Filtering. This implementation was first developed by James Potter
for systems without state noise and scalar measurement [53] and later extended
for state noise and vector measurements in [6], [13], [28]. Square-root Filtering
propagates the root of the state covariance Σ and improves the numerical char-
acteristics of the Kalman Filter (results in twice as much precision) at the cost
of computational requirements.

Now that computers have become so much more capable, we do not have to worry
about numerical problems as often and the original equations of Kalman Filter are
usually implemented [82].

There are variations of the Kalman Filter to non-linear filtering too. The most
common variations are :

• Extended Kalman Filter (EKF). The main idea of EKF is that we linearize the
nonlinear system around the Kalman filter estimate, and the Kalman filter esti-
mate is based on the linearized system. EKF was originally proposed by Stanley
Schmidt so that the Kalman filter could be applied to nonlinear spacecraft navi-
gation problems [13].

• Unscented Kalman Filter (UKF). UKF is an extension of the Kalman filter that
reduces the linearization errors of the EKF by a deterministic sampling approach
resulting in a better estimation of the mean and covariance of the state. UKF
was first proposed in [49] and further developed in [98].

Despite the existence of non-linear filters, in many applications it is assumed that the
system is linear and a version of the original Kalman Filter is implemented. This
is attributed to the fact that linear time-invariant (LTI) systems are the simplest and
most important class of dynamic systems used in practice and in the literature. Though
they are nothing but idealized models, experience shows that they can approximate well
many industrial processes [60].

1.3.2 Time-Invariant Kalman Filter

In this section, we are interested in determining the conditions for which that the
optimal filter for a model described by equations (1.2.2) is time invariant, or asymp-
totically time invariant and asymptotically stable, simultaneously. Time invariance or
asymptotic time invariance, arises when there is a constant, or asymptotically constant
solution of the variance equation :

Σk+1|k = F
[
Σk|k−1 − Σk|k−1H

T
(
HΣk|k−1H

T +R
)−1

HΣk|k−1

]
+Q (1.3.5)

if Σ̄ is a constant or asymptotically constant solution of the equation (1.3.5) then the
associated Kalman Gain is

K = F Σ̄HT
(
HΣ̄HT +R

)−1
(1.3.6)

If the signal process is stationary then Σk+1|k has a limiting solution [4], however it
is not obvious that the associated filter is also asymptotically stable. This question
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was answered in [56] and the filter is indeed asymptotically stable and the following
conclusions were drawn:

If a state-space model is time-invariant and asymptotically stable, i.e. |λi(F )| < 1
(where λi(F ) are the eigenvalues of F ) then:

1. For any nonnegative symmetric initial condition Σk0|k0−1
there exists

lim
k→∞

Σk+1|k = Σ̄ (1.3.7)

with Σ̄ independent of Σk0|k0−1
and satisfies the steady-state version of 1.3.5:

Σ̄ = F
[
Σ̄− Σ̄HT

(
HΣ̄HT +R

)−1
HΣ̄

]
+Q (1.3.8)

Equation 1.3.8 is known as Discrete Algebraic Riccati Equation (DARE).

2. It is true that
|λi (F −KH)| < 1 (1.3.9)

where λi (F −KH) are the eigenvalues of F −KH and K is given by 1.3.6 and
is called Steady-State Kalman Gain (SSKG) and is the steady-state version of
1.3.3.

In [8] it was proved that the solution of (1.3.8) is symmetric positive definite matrix if
the model is time-invariant and asymptotically stable and vice versa and an efficient
algorithm for solving (1.3.8) was implemented.

It is easily deductable that for a time-invariant and asymptotically stable model we
can formulate a steady-state version of the Kalman Filter (SSKF) by substituting with
the steady-state version of the state covariance on the set of equations (1.3.1), (1.3.2).

1.3.3 Innovations Representation

It is shown in [4] that there is a collection of state-space models with the same Kalman
Filter so there is a many-to-one nature of state-space models to Kalman Filter mapping.
So the question arises as to whether there is one particular model, among the collection
of state-space models, with one-to-one mapping to a Kalman Filter. Indeed there is,
this model is called innovations model, so-called because its input white noise process
is identical with the innovations process of the associated filter.

The most important properties of the innovations model are [4]:

1. It is determinable from the covariance data only and is unique

2. The input to the innovations model can be determined from its output.

3. The Kalman Filter can estimate the state of the innovations model with zero
error, and the Kalman Filter innovations sequence is identical with the input
noise sequence of the innovations model
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The equations that describe the innovations model are:

xk+1 = Fxk +Kkek x0 = 0 (1.3.10a)

yk = Hxk + ek (1.3.10b)

E
[
epe

T
q

]
= Λδpq > 0 E [ep] = 0 (1.3.10c)

where Kk is the Kalman Gain. A method for transforming a state-space model to its
innovations representation can be found in [92].

In the previous Subsection 1.3.2 we discussed about time-invariant systems, the
conclusions drawn there can be extended in the case of innovations representation too.
In fact it is proven ([4]) that a model of the form:

xk+1 = Fxk +Kek x0 = 0 (1.3.11a)

yk = Hxk + ek (1.3.11b)

E
[
epe

T
q

]
= Λδpq > 0 E [ep] = 0 (1.3.11c)

is an innovations representation if and only if |λi(F )| < 1 and |λi(F −KH)| ≤ 1.
The importance of the innovations representation of a model lies to the fact that it

is unique given the the covariance Λ and the steady-state Kalman Gain K. This is the
reason that many identification methods are applied in the innovations representation
of the model instead of its original form [60].

1.4 System Identification

System Identification (SI) is a methodology developed mainly in the area of automatic
control, by which we can choose the best model(s) from a given model set based on the
observed input-output data from the system. Thus the problem of System Identification
is specified by three elements [60] :

• A data set D obtained by input-output measurements.

• A model set M, or a model structure, containing candidate models.

• A criterion, or loss, function L to select the best model(s), or a rule to evaluate
candidate models, based on the data.

The input-output data D are collected through experiment. In this case, we must
design the experiment by deciding input signals, output signals to be measured, the
sampling interval, etc., thereby systems characteristics are well reflected in the observed
data. Thus, to obtain useful data for system identification, we should have some a priori
information, or some physical knowledge, about the system.

A choice of model set M is a difficult issue in system identification, but usually
several classes of discrete-time linear time-invariant (LTI) systems are used. Since these
models do not necessarily reflect the knowledge about the structure of the system, they
are referred to as black-box models. One of the most difficult problems is to find a good
model structure, or to fix the order of the model, based on the given input-output data.
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A solution to this problem is given by the Akaike Information Criterion (AIC) [1], [2].
Also, by using some physical principles, we can construct models that contain several
unknown parameters. These models are called gray-box models because some basic laws
from physics are employed to describe the dynamics of a system or a phenomenon.

The next step is to find a model in the model set M, by which the experimental
data is best explained. Therefore, we need a criterion to measure the distance between
a model and a real system, so that the criterion should be of physical meaning and
simple enough to be handled mathematically In terms of the input u, the output y of
a real system, and the model output yM , the criterion is usually defined as :

VN =
N∑
n=1

l (y(n), yM (n), u(n)) (1.4.1)

where l(·) is a nonnegative loss function, and N the number of data. If the model set is
parametrized as M = M(θ), θ ∈ Θ, then the identification reduces to an optimization
problem minimizing the criterion VN with respect to θ. The following Figure depicts a
graphical representation of the System Identification procedure.

Figure 1.2: A flow diagram of System Identification [84], [60].

It should be emphasized in this point that system identification is a technique of
approximating real systems by means of our models since there is no “true” system in
practical applications [3].

As we have already mentioned, our work deals with the identification of linear
state-space models and we assume that we have a well-defined data set. Hence our
interest focuses on the identification criteria, the most common of which we present in
the following section.

1.5 Identifiability Criteria

This far we have given a formal and thorough definition of System Identification.
Loosely speaking though, the goal of System Identification is to find a unique model
that is equal to the “true” system. To this end we have to choose a criterion that
expresses the relationship of the estimated model with the true system. The reason
we did not included the concept of the identification criterion to the formal definition
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is that it is a tool used in experiments when a new identification method is proposed
in order to check the validation and robustness of the proposed method. In general
there are two such criteria based on different scientific areas, one being closer to control
theory and the other closer to pattern recognition area.

Assume we have a model described by equations (1.2.2) which represents the true
system:

xk+1 = Fxk + wk

yk = Hxk + vk

with wk, vk zero-mean, white, Gaussian noises with covariances Q,R respectively and
N the number of our measurements. Let θ be the set of parameters we want to estimate
which are incorporated in the system matrices and F (θ̂N ), H(θ̂N ), Q(θ̂N ), R(θ̂N ) be our
estimates of the matrices based on our data. A choice of criterion (from a statistician’s
perspective) could be that an identification method results uniquely in the true system
if [91]:

F (θ̂N )→ F H(θ̂N )→ H Q(θ̂N )→ Q R(θ̂N )→ R

as N →∞

meaning that θ̂N must converge in probability to θ as N →∞.
Another approach (closer to control theory) for examining if the estimated system

have resulted in the true system is by comparing the transfer functions of the estimated
system with the true system [60]. Let H(z, θ) be the transfer function of the true system
above and H(z, θ̂) the transfer function of the estimated system, then if:

H(z, θ) ≡ H(z, θ̂)

for almost all z then θ = θ̂

So when someone is testing an identification procedure one may use one of the above
criterions to observe how well the procedure approximates the true system. Identifica-
tion criteria are closely related to the concept of identifiability which we will examine
at Chapter 3.

In the following sections we will present the basic idea of the two main approaches
that dominate System Identification, PEM and Subspace Identification. Though in our
work we examine systems without external inputs we will include external inputs, to
emphasize that these methods generalize in ARMAX models.

1.6 Prediction Error Methods

Consider an innovations representation of a discrete-time LTI system of the form:

xk+1 = Fxk +Buk +Kek

yk = Hxk +Duk + ek

E
[
epe

T
q

]
= Λδpq E [ep] = 0
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where yk ∈ Rm is the output vector,uk ∈ Rp is the input vector, xk ∈ Rn is the
state vector, ek ∈ Rm is the innovation vector with mean zero and a positive definite
covariance matrix Λ > 0 and F,H,B,D,K are matrices of appropriate dimensions. The
unknown parameters in the state space model are contained in these system matrices
and covariance matrix Λ of the innovations process. Applying the Kalman Filter on
the system we can find the state estimations x̂k and compute the prediction error εk(θ)
by a linear state-space model of the form

x̂k+1(θ) = [F (θ)−K(θ)H(θ)] x̂k(θ) + [B(θ)−K(θ)D(θ)]uk +K(θ)yk(θ) (1.6.1a)

εk(θ) = −H(θ)x̂k(θ)−D(θ)uk + yk(θ) (1.6.1b)

with initial condition x̂0(θ) = 0. The formulation of equations 1.6.1 is known as
Whitening Filter [4]. So, in terms of εk(θ), the performance index is given by:

VN (θ) =
N−1∑
k=0

‖εk(θ)‖2

where N is the number of data.
Thus the PEM estimates are obtained by minimizing VN (θ) with respect to θ, and

the covariance matrix Λ of e is estimated by computing the sample covariance matrix
of εk, k ∈ [0, 1, 2, . . . , N − 1].

If we can evaluate the gradient ∂VN
∂θ , we can in principle compute a (local) minimum

of the criterion VN (θ) by utilizing a gradient method. Usually an iterative procedure is
followed where based on the new estimates of the system matrices we predict again the
states xk(θnew) and based on minimizing the new cost function V new

N we re-estimate the
system matrices using again optimization methods to determine the minimum of the
cost function [61]. Optimization methods though need canonical parameterizations and
it may be difficult to guess a suitable canonical parametrization from the outset. Since
no single continuous parametrization covers all possible multi-variable linear systems, it
may be necessary to change parametrization in the course of the optimization routine.
Moreover it is well known that for a triplet (m,n, p) there does not exist a unique
MIMO state-space model which will be the result of the optimization routine if some
form of canonical or pseudo-canonical parametrization is not applied on the system
matrices [40], [63], [36]. In Chapter 3 we will examine in more detail why canonical
parameterizations are necessary for PEM methods and the effect they have on the
identifiability of the systems. Prediction Error Methods are examined in detail in [84]
and [60].

1.7 Subspace Identification Methods

Subspace Identification Methods differ from PEM in the sense that they do not attempt
to minimize a cost function but instead they enlist linear algebra and geometrical tools
to estimate the system matrices [24]. Subspace identification methods are based on
the following idea. Suppose that an estimate of a sequence of state vectors of the state
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space model (see below) are somehow constructed from the observed input-output data.
Then for k = 0, 1, · · · , N − 1 xk+1

yk

 =

 F B

H D

 xk

uk

+

 ηk

νk


where x ∈ Rn is the estimate of the state vector, y ∈ Rm the output vector, u ∈ Rl

the input vector, F,H,B,D matrices of the appropriate dimensions and η, ν are the
residuals. Since we have assumed that we know the state estimates we can find a

Least-Squares estimate of Θ :=

F B

H D

 from the following formula:

Θ̂LS =

N−1∑
k=0

 xk+1

yk

 [xTk uTk
]N−1∑

k=0

 xk

uk

 [xTk uTk
]−1

This class of estimates uniquely exists if the following rank condition is satisfied [38]:

rank

 x0 x1 · · · xN−1

u0 u1 · · · uN−1

 = n+ l

Also the covariance matrices of the residuals are given by: Q S

ST R

 =
1
N

N−1∑
k=0

 ηk

νk

 [ηk νk]

The question that remains to be answered is how we compute the state estimates. A
possible answer to this question is by applying LQ Decomposition on block Hankel
Matrices defined by the input and output data [94]:

U0|k−1 =


u0 u1 · · · uN−1

u1 u2 · · · uN−1

...
...

. . .
...

uk−1 uk · · · uN+k−2

 ∈ Rkp×N

and

Y0|k−1 =


y0 y1 · · · uyN−1

y1 y2 · · · yN−1

...
...

. . .
...

yk−1 yk · · · yN+k−2

 ∈ Rkp×N

where k > n and N is sufficiently large. For simplicity, let p and f denote the past and
future, respectively. Then, we define the past data as Up := U0|k−1 and Yp := Y0|k−1 and
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the joint past W T
p := [UTp Y T

p ]. Similarly, we define the future data as Uf := Uk|2k−1

and Yf := Yk|2k−1. We have the following LQ decomposition
Uf

Wp

Yf

 =


R11 0 0

R21 R22 0

R31 R32 R33



QT1

QT2

QT3


where R11 ∈ Rkl×kl,R22 ∈ Rk(m+l)×k(m+l) and R33 ∈ Rkm×km are upper triangular
matrices while Qi, i = 1, 2, 3 are orthogonal matrices. The oblique projection of the
future Yf onto the joint past Wp along the future Uf is given by [94]:

ξ = Ê‖Uf
{Yf |Wp} = R32R

†
22Wp

where (·)† denotes the pseudo-inverse of a matrix. Ê‖Z{x|Y } denotes the oblique
projection of x onto Y along Z. Moreover it can be shown ([54]) that ξ can be
factored to the extended observability matrix Ok and the future state vector Xf :=
[xk, xk+1, · · · , xk+N−1] ∈ Rn×N thus we have:

ξ = OkXf = R32R
†
22Wp

Let the SVD of ξ be given by ξ = UΣV T with rank(Σ) = n. The extended observability
matrix is O = UΣ1/2 [94]. Hence we have Xf = O†ξ = Σ1/2V T which is the state
estimates we wanted to calculate. Of course there are other ways to calculate the state
estimates in ARMAX models, in [24] the problem was solved using principal angles
while Aoki in [7] used Canonical Correlation Analysis (CCA) to estimate the states.
Subspace Identification methods are examined exclusively in [54] and [94].

Figure 1.3: Subspace and classical methods of system identification, [54].

In Figure 1.3, we see some differences in the classical and subspace methods of sys-
tem identification, where the left-hand side is the subspace method, and the right-hand
side is the classical optimization-based method. It is interesting to observe the differ-
ence in the flow of two approaches; in the classical method, a transfer function model is
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first identified, and then a state-space model is obtained by using some realization tech-
nique; from the state-space model, we can compute state vectors, or the Kalman Filter
state vectors. In subspace methods, we first construct the state estimates from given
input-output data by using a procedure based on tools of numerical linear algebra, and
a state-space model is obtained by solving a least-squares problem.

1.8 Summary

In this chapter we described general state-space model and their relation to Kalman
Filter. We presented the equations of the filter and some alternative implementations
while we also talked about the innovations representation and emphasized that it is
unique for every state-space system. Also we described the steady-state case of model
and how it affects the corresponding Kalman Filter. We mentioned the concept of
identification criterion and finally presented the basic idea behind the two approaches
that govern System Identification Theory.



Chapter 2

Identification through the EM
Algorithm

2.1 Introduction

In this chapter we will view the Expectation Maximization (EM) Algorithm and how
it is used to maximize a likelihood function. The main difference of EM from classical
Maximum Likelihood (ML) optimization is that EM is an iterative procedure that
increases the likelihood function at each iteration by maximizing an auxiliary function.
Auxiliary functions are categorized as strong-sense or weak-sense and we will explain
this distinction. Furthermore we will demonstrate analytically how we can use the EM
Algorithm for linear state-space model identification and the role of Kalman Filter in
this procedure.

2.2 Expectation Maximization Algorithm

The EM algorithm is an efficient iterative procedure to compute the Maximum Like-
lihood estimate when we have missing or hidden data and was first introduced in its
current context in [25], though it had appeared in many forms previously. In Maxi-
mum Likelihood estimation, we wish to estimate the model parameters for which the
observed data are the most “likely”.

There are two main applications of the EM algorithm. The first occurs when there
are missing (or hidden) values from the data. The second occurs when optimizing
the likelihood function is analytically intractable but when the likelihood function can
be simplified by assuming the existence of values for additional but missing (or hid-
den) parameters [16]. In both cases, maximization of the likelihood function is very
complicated or not feasible at all, thus an auxiliary function Q is attempted to be
maximized. The basic idea in the expectation maximization or EM algorithm, is to
iteratively estimate the likelihood given the data that is present and consists of two
steps: The Expectation step (E-step), and the Maximization step (M-step). During the
first step, the expectation (E) step, the expected log-likelihood of the complete data
(by complete we mean both the observed and the missing components of the data) is
calculated based on the observed data and the current parameter estimates, thus the

15
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auxiliary function is formed which serves as a new likelihood function. In the M-step,
this likelihood function is maximized with respect to the parameters we want to esti-
mate. The estimate of the missing data from the E-step are used in lieu of the actual
missing data.

We will give a description of the algorithm as given in [27] on an example of cor-
rupted data. Consider a dataset D = {x1, . . . , xN} drawn from a single d−dimensional
distribution. Suppose that some features are corrupted thus any sample point can be
written as xk = {xkg, xkb}, a combination of the “good” features and the missing or
“bad” ones. We separate these features into two sets, Dg and Db with D = Dg ∪Db
being the union of such features. Next we form the function

Q(θ; θi) = EDb
[ln p(Dg, Db; θ|Dg; θi)] (2.2.1)

where Q represents the auxiliary function of the EM and E the expectation operator.
The use of the semicolon denotes, for instance on the left hand side, that Q(θ; θi) is a
function of θ with θi assumed fixed, on the right hand side it denotes that the expected
value is over the missing features assuming θi are the true parameters describing the
distribution. Simply stated, the parameter vector θi is the current best estimate for the
distribution, θ is a candidate vector for an improved estimate. Given such a candidate
θ, the right hand side of 2.2.1 calculates the likelihood of the data, including the
unknown feature Db marginalized with respect to the current best distribution, which
is described by θi. Different candidate θs will of course lead to different such likelihoods.
The EM algorithm will select the best such candidate θ and call it θi+1 which is the
one corresponding to the greatest Q(θ; θi). In general the steps of the EM algorithm
with i representing the iteration counter and T a convergence threshold are described
in [27] as:

1. begin initialize θ0, T, i = 0

2. do i← i+ 1

3. E-Step compute Q(θ; θi)

4. M-Step θi+1 ← arg max
θ
Q(θ; θi)

5. until Q(θi+1; θi)−Q(θi; θi−1) ≤ T

6. return θ̂ ← θi+1

7. end

It can be shown that the successive estimates θi never decrease the likelihood function,
the likelihood function keeps increasing until a maximum (local or global) is reached
and the EM algorithm converges [25], [100], [19]. Theoretical results as well as practical
experimentation confirm that the convergence is slower than the quadratic convergence
of Newton-type searching algorithms, although near the optimum a speedup may be
possible. However, the great advantage of the algorithm is that its convergence is
smooth and is not vulnerable to instabilities. Furthermore, it is computationally more
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attractive than Newton-like methods, which require the computation of the Hessian
matrix [87].

Two of the most important problems in statistical estimation are solved through
the EM algorithm (which indicates its importance). The first is the estimation of
the parameters of a Gaussian Mixture Model (GMM), the weights, mean vectors and
covariance matrices [87], [16], [27]. Though of course there are methods to estimate
GMM parameters,, EM is the dominant estimation method. The second problem is
the estimation of the parameters of a Hidden Markov Model (HMM), the transition
Matrix and the output probabilities (which often expressed as a GMM) and this is the
well known Baum-Welch Algorithm which is actually an implementation of the EM
Algorithm [75], [47].

One might wonder about the reason behind EM’s properties of convergence and
robustness. The answer is that the auxiliary function that is used in the EM is a
strong-sense auxiliary function. If a function F(θ) is to be maximized, then Q(θ, θi) is
a strong-sense auxiliary function for F(θ) if and only if:

Q(θ, θi)−Q(θi, θi) ≤ F(θ)−F(θi) (2.2.2)

as stated in [73], [74].
This property holds for the auxiliary function that is used in the EM Algorithm.

The idea is illustrated in Figure 2.1-(a). A maximum with respect to θ of the function
Q(θ, θi) is found indicated by the arrow. If this increases Q (the lower line) then it
will also increase F and if Q is at a local maximum then F is at a local maximum
too. These conditions follow from (2.2.2) and imply that repeated maximization of the
auxiliary function Q is guaranteed to reach a local maximum of F which makes EM
(who uses a strong-sense auxiliary function) such an attractive choice.

Figure 2.1: Use of (a) strong-sense and (b) weak-sense auxiliary functions for function
optimization, [73].

The difference of a weak-sense with a strong-sense auxiliary function is that a weak-
sense auxiliary function for F(θ) around θi is a smooth function G(θ, θi) such that:

∂

∂θ
G(θ, θi)

∣∣∣∣
θ=θi

=
∂

∂θ
F(θ)

∣∣∣∣
θ=θi

(2.2.3)

The idea is shown in Figure 2.1-(b). The gradients of the two functions are the same
around the point θi. Maximization of the function G with respect to θ though does
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not guarantee an increase in F . However, if there is no change in θ after maximization
of a particular iteration, this implies that we have reached a local maximum of F (the
gradient is zero at that point). If the update converges it will be to a local maximum.
The weak-sense auxiliary function condition of (2.2.3) can be considered a minimum
condition for an auxiliary function used for optimization [73]. The usefulness of weak-
sense auxiliary functions lie to the fact that they can be used to modify procedures
based on strong-sense auxiliary functions as the EM Algorithm.

In the next section we will see how we can apply the EM Algorithm to a linear
time-invariant state-space model in order to estimate its system parameters.

2.3 Hidden-state model identification using the EM algo-
rithm

Assume that a sequence of observations Y = [y0, y1, . . . , yN ] is generated by the finite-
dimensional linear state-space model:

xk+1 = Fxk + wk (2.3.1a)

yk = Hxk + vk (2.3.1b)

E[wpwTq ] = Qδpq (2.3.1c)

E[vpvTq ] = Rδpq (2.3.1d)

where δqp is the Kronecker delta, the state x is a n × 1 vector, the observation y is
m×1 vector and wk,vk are uncorrelated zero-mean Gaussian vectors noise vectors with
covariances defined by (2.3.1c) and (2.3.1d) respectively. We further assume that the
initial state x0 is Gaussian with known mean and covariance x0 N(µ0Σ0). Maximum
likelihood estimates of the unknown parameters θ in F,H,Q,R can be obtained by
minimizing the negative log likelihood or equivalently the quantity [41]:

J(Y, θ) = −L(Y, θ) =
N∑
k=0

{log Σek
(θ) + eTk (θ)Σ−1

ek
ek(θ)}+ constant (2.3.2)

where AT , A−1 denotes the transpose and inverse of the matrix A respectively. The
terms ek(θ),Σek

are the prediction error and its covariance and can be obtained from
the Kalman Filter equations (see 1.3.1). The minimization of (2.3.2) with respect to θ
requires the computation of the gradient and perhaps the Hessian. The quantities that
must be computed for this purpose are the state sensitivities with respect to each one
of the system parameters which is a complex procedure as shown in [41].

An alternative approach through the EM framework can indeed simplify the prob-
lem. Consider for the moment the following slightly modified estimation problem,
where we assume that the state of the system described by equations (2.3.1) is not
hidden and we want to find the ML estimates of the system parameters θ given
Y = [y0, y1, . . . , yN ] and X = [x0, x1, . . . , xN ]. In this case the ML estimates of θ
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are obtained by maximizing:

L(X,Y, θ) = −
N∑
k=1

{
log|Q|+ (xk − Fxk−1)TQ−1(xk − Fxk−1)

}
−

N∑
k=0

{
log|R|+ (yk −Hxk)TR−1(yk −Hxk)

}
+ constant

(2.3.3)

since, without loss of generality, wk and vk were assumed uncorrelated white Gaussian
noise sources and the base of log is e.

A critical observation here that enables us to apply the EM Algorithm is that the
original problem can be treated as one with incomplete data with the state vector
playing the role of missing observations. In this case, the auxiliary function of the EM
becomes [26]:

Q(θi+1, θ) = E
{
L(X,Y, θi+1)|Y, θi

}
(2.3.4)

which is the conditional expectation of L(X,Y, θ) defined by equation (2.3.3) given
the observed data Y and the current parameter estimations θi. It can be shown [25]
that the EM algorithm for the exponential family, as is our case under the Gaussian
assumption, reduces to computing the conditional expectations of the complete data
sufficient statistics during the E-step and using these in place of the complete-data
sufficient statistics in the M-step in order to compute the ML estimates.

At this point we give the definition of differentiation of a scalar function with respect
to a matrix and some basic properties of such derivatives as presented in [42]. Consider
the n × m matrix X = [xij ] and a scalar function f(x), then the derivative of f(x)
with respect to the matrix X = [xij ] is a matrix with elements the partial derivatives
of f(x) with respect to the matrix elements of corresponding position.

∂f(x)
∂X

=


∂f(x)
∂x11

∂f(x)
∂x12

. . . ∂f(x)
∂x1m

∂f(x)
∂x21

∂f(x)
∂x22

. . . ∂f(x)
∂x2m

...
...

. . .
...

∂f(x)
∂xn1

∂f(x)
∂xn2

. . . ∂f(x)
∂xnm


Using this definition, it is easy to prove that ∂(f(x)+g(x))

∂X = ∂f(x)
∂X + ∂g(x)

∂X (addition
property)[42]. It also follows that for vectors a, b and matrices X,D (where D is
symmetric) of appropriate dimensions the following equations are true

∂aTXb

∂X
= abT

∂aTXT b

∂X
= baT

∂aTXTDXb

∂X
= DTXabT +DXbaT

∂ log |X|
∂X

= X−1

(2.3.5)

More formulas of matrix derivatives can be found in [70].
Assuming that there are no constraints on the structure of the system matrices we

take the partial derivatives of (2.3.3) with respect to the matrices of interest and set
to zero. Below we will present the derivation of Ĥ and R̂ and by the same manner the
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estimates of F̂ and Q̂ are computed. Since the first sum and the constant of (2.3.3)
are not dependent of H we neglect those terms (their derivatives with respect to H is
zero).

∂L(X,Y, θ)
∂H

= 0⇒ − ∂

∂H

N∑
k=0

{
log |R|+ (yk −Hxk)TR−1(yk −Hxk)

}
= 0⇒

∂

∂H

N∑
k=0

{
log |R|+ yTk R

−1yk − yTk R−1Hxk − xTkHTR−1yk + xTkH
TR−1Hxk

}
= 0⇒

N∑
k=0

{
− ∂

∂H
yTk R

−1Hxk −
∂

∂H
xTkH

TR−1yk +
∂

∂H
xTkH

TR−1Hxk

}
= 0⇒

N∑
k=0

{
−R−1ykx

T
k −R−1ykx

T
k + 2R−1Hxkx

T
k

}
= 0⇒

−2R−1
N∑
k=0

ykx
T
k + 2R−1H

N∑
k=0

xkx
T
k = 0⇒

Ĥ =

[
N∑
k=0

ykx
T
k

][
N∑
k=0

xkx
T
k

]−1

To obtain this result, we have used the addition property, the formulae in (2.3.5), the
fact that R−1 is a positive definite symmetric matrix (since R is the covariance matrix
of a gaussian random variable) and the observation that ∂

∂H log |R| = 0. We have also
assumed that we have enough data N for

∑N
k=0 xkx

T
k to be full rank (thus becoming

invertible).
Now that we have find Ĥ we move on to find an estimate for R. Again, we will

take partial derivative of (2.3.3) neglecting the first sum and the constant. Maximizing
(2.3.3) with respect to the elements of R is equivalent to maximizing with respect to
the elements of its inverse [26]. Thus, we have:

∂L(X,Y, θ)
∂R−1

= 0⇒ − ∂

∂R

N∑
k=0

{
log |R|+ (yk − Ĥxk)TR−1(yk − Ĥxk)

}
= 0⇒

∂

∂R−1

N∑
k=0

log |R|−1 − ∂

∂R−1

N∑
k=0

{
(yk − Ĥxk)TR−1(yk − Ĥxk)

}
= 0⇒

N
∂

∂R−1

N∑
k=0

log |R−1| −
N∑
k=0

{
(yk − Ĥxk)(yk − Ĥxk)T

}
= 0⇒

(N + 1)R =

[
N∑
k=0

yky
T
k

]
−

[
N∑
k=0

ykx
T
k

]
ĤT − Ĥ

[
N∑
k=0

xky
T
k

]
+ Ĥ

[
N∑
k=0

xkx
T
k

]
ĤT = 0⇒
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(N + 1)R =

[
N∑
k=0

yky
T
k

]
−

[
N∑
k=0

ykx
T
k

]
ĤT − Ĥ

[
N∑
k=0

xky
T
k

]
+ Ĥ

[
N∑
k=0

xkx
T
k

]
ĤT = 0⇒

(N + 1)R =

[
N∑
k=0

yky
T
k

]
−

[
N∑
k=0

ykx
T
k

][
N∑
k=0

xkx
T
k

]−1 [ N∑
k=0

ykx
T
k

]T

−

[
N∑
k=0

ykx
T
k

][
N∑
k=0

xkx
T
k

]−1 [ N∑
k=0

xky
T
k

]

+

[
N∑
k=0

ykx
T
k

][
N∑
k=0

xkx
T
k

]−1 [ N∑
k=0

xkx
T
k

][
N∑
k=0

xkx
T
k

]−1 [ N∑
k=0

ykx
T
k

]T
= 0⇒

(N + 1)R =

[
N∑
k=0

yky
T
k

]
−

[
N∑
k=0

ykx
T
k

][
N∑
k=0

xkx
T
k

]−1 [ N∑
k=0

ykx
T
k

]T

+

[
N∑
k=0

ykx
T
k

][
N∑
k=0

xkx
T
k

]−1 [ N∑
k=0

ykx
T
k

]T

−

[
N∑
k=0

ykx
T
k

][
N∑
k=0

xkx
T
k

]−1 [ N∑
k=0

xky
T
k

]

(N + 1)R =

[
N∑
k=0

yky
T
k

]
−

[
N∑
k=0

ykx
T
k

][
N∑
k=0

xkx
T
k

]−1 [ N∑
k=0

xky
T
k

]

(N + 1)R =

[
N∑
k=0

yky
T
k

]
−

[
N∑
k=0

ykx
T
k

][ N∑
k=0

ykx
T
k

][
N∑
k=0

xkx
T
k

]−1
T

R =
1

N + 1

[
N∑
k=0

yky
T
k

]
− 1
N + 1

[
N∑
k=0

ykx
T
k

]
ĤT

To reach this result first we used the logarithm property a log x = log xa, we also ex-
ploited the fact that log |R|−1 = log |R−1|, this is easy to prove1 since log |R−1| =
log 1

|R| = − log |R| = log |R|−1. Moreover, we facilitated the properties 2.3.5 and
observed that (under the assumption that N is large to satisfy invertibility) that∑N

k=0 xkx
T
K is symmetric. Finally, we used some properties of a transpose of a ma-

trix such as (A + B)T = AT + BT and (AB)T = BTAT , as well as the fact that the
transpose of a symmetric matrix is the matrix itself.

The derivation of F,Q are made in a similar manner. Assuming that there are no
1we remind that |AA−1| = |I| ⇒ |A||A−1| = 1 ⇒ |A−1| = 1

|A|
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constraints on the structure of the matrices F,H,Q,R the estimates are:

F̂ = Γ4Γ−1
3 (2.3.7a)

Q̂ = Γ2 − Γ4Γ−1
3 ΓT4 = Γ2 − Γ4F̂

T (2.3.7b)

Ĥ = Γ6Γ−1
1 (2.3.7c)

R̂ = Γ5 − Γ6Γ−1
1 ΓT6 = Γ5 − Γ6Ĥ

T (2.3.7d)

where the sufficient statistics are [26]:

Γ1 =
1

N + 1

N∑
k=0

xkx
T
k (2.3.8a)

Γ2 =
1
N

N∑
k=1

xkx
T
k (2.3.8b)

Γ3 =
1
N

N∑
k=1

xk−1x
T
k−1 (2.3.8c)

Γ4 =
1
N

N∑
k=1

xkx
T
k−1 (2.3.8d)

Γ5 =
1

N + 1

N∑
k=0

yky
T
k (2.3.8e)

Γ5 =
1

N + 1

N∑
k=0

ykx
T
k (2.3.8f)

As we have mentioned earlier in the text, the EM algorithm for the exponential family
as is our case under the Gaussian assumption, reduces to computing the conditional
expectations of the complete data sufficient statistics during the E-step and using these
in place of the complete-data sufficient statistics in the M-step in order to compute the
ML estimates. In simpler words, this means that the EM estimates are given by 2.3.7
but we have to find the expected values of the sufficient statistics (2.3.8). Thus, the
problem of maximizing the auxiliary function (2.3.4) has reduced to calculating the
quantities at each iteration i:

E
{
ykx

T
k |Y, θi

}
= ykE

{
xTk |Y, θi

}
(2.3.9a)

E
{
yky

T
k |Y, θi

}
= yky

T
k (2.3.9b)

E
{
xkx

T
k |Y, θi

}
(2.3.9c)

E
{
xkx

T
k−1|Y, θi

}
(2.3.9d)

Now, since the input process is Gaussian, then the state process will also be Gaussian
(since we have assumed that the initial state x0 follows a Gaussian distribution and that
the sum of Gaussian random variables is also a Gaussian random variable), furthermore
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the conditional distribution of the state of the system given the observations on a fixed
interval is Gaussian [23]:

xk ∼ N(x̂k|N ; Σk|N )

Thus, the statistics in (2.3.9) at iteration i become:

E
{
ykx

T
k |Y, θi

}
= ykE

{
xTk |Y, θi

}
(2.3.10a)

E
{
yky

T
k |Y, θi

}
= yky

T
k (2.3.10b)

E
{
xk|Y, θi

}
= x̂k|N (2.3.10c)

E
{
xkx

T
k |Y, θi

}
= Σk|N + x̂k|N x̂

T
k|N (2.3.10d)

E
{
xkx

T
k−1|Y, θi

}
= Σk,k−1|N + x̂k|N x̂

T
k−1|N (2.3.10e)

The fixed interval smoothing form of the Kalman Filter, the RTS Smoother, can be ap-
plied here to compute the required statistics. It consists of a backward pass that follows
the standard Kalman Filter forward recursions. The Kalman Filter and RTS Smoother
are described by equations (1.3.1) and (1.3.2) in Subsection 1.3.1. For convenience, we
present them again here.

Forward Recursions

x̂k|k = x̂k|k−1 +
(
Σk|k−1H

TΣ−1
ek

)
ek (2.3.11a)

x̂k+1|k = Fx̂k|k (2.3.11b)

ek = yk −Hx̂k|k−1 (2.3.11c)

Σek
= HΣk|k−1H

T +R (2.3.11d)

Σk|k = Σk|k−1 − Σk|k−1H
TΣ−1

ek
HΣk|k−1 (2.3.11e)

Σk,k−1|k =
(
I −

(
Σk|k−1H

TΣ−1
ek

)
H
)
FΣk−1|k−1 (2.3.11f)

Σk+1|k = FΣk|kF
T +Q (2.3.11g)

Backward Recursions

x̂k−1|N = x̂k−1|k−1 +Ak
[
x̂k|N − x̂k|k−1

]
(2.3.12a)

Σk−1|N = Σk−1|k−1 +Ak
[
Σk|N − Σk|k−1

]
ATk (2.3.12b)

Ak = Σk−1|k−1F
TΣ−1

k|k−1 (2.3.12c)

Σk,k−1|N = Σk,k−1|k +
[
Σk|N − Σk|k

]
Σ−1
k|kΣk,k−1|k (2.3.12d)
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We remind that the term Σk,k−1|k and its smoothed form Σk,k−1|N are not involved
neither in the standard Kalman Filter equations nor the RTS Smoother. The term was
first calculated in [26] and its derivation can be found there.

To summarize, the EM Algorithm involves at each iteration the computation of the
sufficient statistics described in equations (2.3.10) using the recursions of the Kalman
Filter (2.3.11) and the RTS Smoother (2.3.12) and the old estimates of the model pa-
rameters (E-step). The new estimates for the system parameters can then be obtained
from these statistics as the simple multivariate regression coefficients given in (2.3.7)
(M-step) as described in [26].

2.4 Summary

In this Chapter, we presented the Expectation Maximization Algorithm and analyzed
its basic properties as well as the importance of the (strong-sense) auxiliary function it
is involved in the procedure, its formulation on the E-step and then its maximization
on the M-step. Then we showed how the EM Algorithm is applied in identification of a
general state-space model when its matrices are unconstrained. We showed how we can
get the ML estimates of the parameters through the EM by computing the sufficient
statistics through the Kalman Filter and the RTS Smoother. In the next chapter, we
will deal with systems which matrices that are in Canonical Form, examine the concept
of identifiability based on these forms, while in Chapter 4 we show how we can apply
the EM to a family of systems whose matrices are in a specific canonical form.



Chapter 3

Canonical Forms and
Identifiability

3.1 Introduction

In this chapter we deal with the matter of identifiability and its relation to canonical
forms. We will present some canonical forms that were developed in various works and
examine under which identification criteria these forms are identifiable. We also show
how to construct canonical forms based on canonical parameter sets and how to extract
those parameters from a state-space model in its general form.

3.2 Canonical Parameter Sets,Forms and Pseudo-Canonical
Forms

We have already mentioned in Introduction that if there is no restriction on the form
of the matrices we want to estimate, the procedure can determine these matrices up to
a linear transformation. Kalman in [51] showed that for a deterministic system of the
form:

xk+1 = Fxk +Buk (3.2.1a)

yk = Hxk (3.2.1b)

there are many different triplets (F,H,B) which can produce a given data set. Two
systems of the form 3.2.1 with F,B controllable pair and F,H observable pair have
the same behavior (transfer function, impulse response) if and only if there exists an
invertible matrix T such that:

F1 = TF2T
−1 B1 = TB2 H1 = H2T

−1 (3.2.2)

Therefore, external measurements determine an equivalence class of systems in form
(3.2.1). (F1, H1, B1) and (F2, H2, B2) are equivalent if and only if (3.2.2) is satisfied. In
general (if the matrices do not have a specific structure) the equivalence class includes
more than one member and identification of F,H,B is impossible.

25
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However, if F,H are constrained to specific forms then the equivalence class will
have only one member (or equivalently T = I, the identity matrix) [14], [63], [40].
Moreover in [65], [91] it is proven that for a deterministic system of the form (3.2.1),
constraining only F,H and not B to follow specific forms, is a sufficient condition
for the equivalence class to contain only one member. These constrained forms are
commonly known as canonical forms, when constructed from a canonical parameter
set, or pseudo-canonical forms otherwise, though in general the term canonical form is
most commonly used even if it is not based on canonical parameter sets describing the
structure of the matrices [91].

According to [91], a Canonical Parameter Set (CPS) S for the pair (F,H), is an
ordered set of numbers, uniquely determined by (F,H), with the following properties:

• Invariance: S remains unchanged if (F,H) is replaced by (TFT−1, HT−1),
where T is a nonsingular matrix.

• Independence: for any S there is an observable pair (F,H) whose cps is equal
to S

• Completeness: if (F1, H1) and (F2, H2) have the same cps S there exists a
nonsingular matrix T such that F1 = TF2T

−1,H1 = H2T
−1

The independence property implies that there are no fixed relations among the
elements of S. There are many different types of canonical parameter sets associated
with linear systems. Two of these will be described in the following subsections.

3.2.1 Canonical Parameter Set Type A

This canonical parameter set was first developed in [72] by Popov. Consider a control-
lable and observable system with state vector of dimension n × 1, observation vector
of dimension m× 1 and the ordered set of vectors:

h1, h2, . . . , hm, h1F, h2F, . . . , hmF, h1F
2, h2F

2, . . . , hmF
2, . . . (3.2.3)

where hi is the ith row of H. For i = 1, 2, . . . ,m let ni be the smallest non-negative
integer such that ciFni is linearly dependent on its antecedents (vectors to its left) in
(3.2.3). A vector cjF k is called a regular vector if and only if k < nj . It is clear that
every nonsingular vector in (3.2.3) is a linear combination of its regular antecedents
and that regular vectors are linearly dependent. This fact implies that there is a unique
set of numbers {αijk} such that, for i = 1, 2, . . . ,m:

hiF
ni =

i−1∑
j=1

min(ni,nj−1)∑
k=0

αijkhjF
k +

m∑
j=1

min(ni,nj)−1∑
k=0

αijkhjF
k (3.2.4)

Obviously if ni = 0 3.2.4 becomes:

hi =
∑
j∈J

αij0hj , J = {j : 1 ≤ j ≤ i− 1 and nj > 0} (3.2.5)
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Moreover the observability condition implies that

n1 + n2 + . . .+ nm = n (3.2.6)

In [72], [91] the ordered set {ni, αijk} is proved to be a canonical parameter set for
F,H. An example follows of how we can compute the the CPS for a specific matrix
pair (F,H).

Consider the following matrices:

F =


0 −1 0

1 0 1

1 1 0

 H =

1 1 0

1 1 0


In this case, it easy to observe that h2 is linearly dependent on h1 thus n2 = 0.
Moreover h1 = h2 = [1 1 0], h1F = h2F = [1 − 1 1], h1F

2 = h2F
2 = [0 0 − 1] and

h1F
3 = [−1 − 1 0] which makes it the first linear dependent vector for i = 1 on its

antecedents in (3.2.3) thus n1 = 3. Since we have found n1 = 3 and n2 = 0 equations
(3.2.4), (3.2.5) become:

h1F
3 = α110h1 + α111h1F + α112h1F

2

h2 = α210h1

Now, all that is left is to solve the linear system and since h1F
3 =

[
−1 −1 0

]
the

following equations determine αijk:

−1 = α110 + α111

−1 = α110 − α111

0 = α111 − α112

1 = α210

Thus, α110 = −1, α111 = 0, α112 = 0, α210 = 1.

3.2.2 Canonical Parameter Set Type B

This canonical parameter set was developed in [91] and is similar to the canonical
parameter set we described in Subsection 3.2.1. Consider the vectors in (3.2.3) in a
different order and name:

h1, h1F, . . . , h1F
p1−1, h2, h2F, . . . , h2F

p2−1, . . . , hm, hmF, . . . , hmF
pm−1 (3.2.7)

where pi, i = 1, 2, . . . ,m is the smallest non-negative integer such that hiF pi is linearly
dependent on its antecedents in (3.2.7).

As before, every non-regular vector in (3.2.7) can be uniquely expressed as linear
combination of its regular antecedents. Thus, there is a unique ordered set of numbers
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βijk for i = 1, 2, . . . ,m such that:

hiF
pi =

i∑
j=1

pj−1∑
k=0

βijkhiF
k if pi > 0

hi =
i−1∑
j=1

pj−1∑
k=0

βijkhjF
k if pi = 0

(3.2.8)

Again, the observability condition ensures that p1 + p2 + . . .+ pm = n
Of course, one may find other canonical parameter sets. Based on canonical param-

eter sets canonical forms are constructed, a more formal definition of canonical form
can be found in [91] and states:

A canonical form is a pair of matrices (F,H) which is expressed only in terms of
a canonical parameter set S and which has S as its canonical parameter set.

In literature the term canonical form has been used to describe specific structures
of matrices which are not necessarily constructed from canonical parameter sets. We
will make the distinction and separate these structured forms by the name of pseudo-
canonical forms. For the pseudo-canonical forms we will present, it is proved in [91],
that for a certain structure of a pseudo-canonical form the number of free parameters
is equal or greater than the number of free parameters the structure would have if it
had been constructed based on canonical parameter set.

3.2.3 Pseudo-Canonical Forms

Here we will present some of the most common pseudo canonical forms.

Type I

The following canonical form was introduced by Luenberger in [63] and examined fur-
ther by Rosenbrock in [78]. Consider the following structure:

F =


F11 · · · F1m

...
. . .

...

Fm1 · · · Fmm

 (3.2.9a)

Fii =



0 1 0 · · · 0

0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1

× × · · · × ×


, Fij =


0 · · · 0
...

. . .
...

0 · · · 0

× · · · ×

 (3.2.9b)

hi =
[
0 · · · 0 1 0 · · · 0

]
, ni > 0 (3.2.9c)
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where Fii is a ni × ni matrix filled with zeros and has ones in its superdiagonal while
we let the last row be filled with free parameters ×, Fij is ni × nj matrix filled with
zeros and we let its last row be filled with free parameters × and hi has 1 in column
1 + n1 + · · · + ni−1. If ni = 0 then hi has a free parameter × in every column in
which h1, h2, . . . , hi−1 have non-zero entries and zeros elsewhere. We will present two
examples of construction of canonical form type I based on a canonical parameter set
A ([91]).

Consider the canonical parameter set ni, αijk with values

n1 = 3, n2 = 0
α110 = −1, α111 = 0, α112 = 0, α210 = 0.7

For this canonical parameter set canonical form type I is:

F =


0 1 0

0 0 1

−1 0 0

 , H =

 1 0 0

0.7 0 0


Now consider that n1 = 1, n2 = 2 then in terms of {αijk} the canonical form type I is:

F =


α110 α120 0

0 0 1

α210 α220 α221

 , H =

1 0 0

0 1 0
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Type II

The following pseudo-canonical form was developed in [20]. The matrices have the
following forms:

F =


F11 · · · F1m

...
. . .

...

Fm1 · · · Fmm

 (3.2.10a)

Fii =



0 0 · · · 0 ×
1 0 · · · 0 ×
0 1 · · · 0 ×
...

...
. . .

...
...

0 0 · · · 1 ×


, Fij =


0 · · · 0 ×
...

. . .
... ×

0 · · · 0 ×

 (3.2.10b)

H =
[
H1 H2 · · · Hm

]
, Hi =



0 · · · 0 0
...

. . .
...

...

0 · · · 0 0

0 · · · 0 1

0 · · · 0 ×
...

. . .
...

...

0 · · · 0 ×


(3.2.10c)

where Fii is a ni × n1 matrix filled with zeros with ones in its subdiagonal and free
parameters × in its last column, Fij is a ni×nj matrix filled with zeros except its last
column which is filled with free parameters ×. Hi is a m×ni matrix with 1 appearing
in the ith row. We will present an example of construction of a canonical form type II
based on canonical a parameter set type A ([91]).

Consider the canonical parameter set ni, αijk with values

n1 = 3, n2 = 0
α110 = −1, α111 = 0, α112 = 0, α210 = 0.7

For this canonical parameter set canonical form type II is:

F =


0 0 −1

1 0 0

0 1 0

 , H =

0 0 1

0 0 0.7
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Type III

The next pseudo-canonical form was developed by Luenberger in [63] and Bucy in [21]
in the special case where pi > 0 and by Mayne in [65] for the general case:

F =


F11 0 · · · 0

F21 F22 · · · 0
...

...
. . .

...

Fm1 Fm2 · · · Fmm

 (3.2.11a)

Fii =



0 1 0 . . . 0

0 0 1 · · · 0
...

...
...

. . . 0

0 0 0 · · · 1

× × × × ×


, Fij =


0 0 · · · 0

0 0 · · · 0
...

...
...

...

× × · · · ×

 (3.2.11b)

hi = [0, . . . , 0, 1, 0, . . . , 0] if pi > 0 (3.2.11c)

hi = [×,×, . . . ,×, 0, . . . , 0] if pi = 0 (3.2.11d)

where F is a lower triangular block matrix, Fii is pi × pi matrix filled with zeros with
ones in its superdiagonal and its last row filled with free parameters × while Fij is a
pi × pj matrix filled with zeros and its last row is filled with free parameters ×, as for
hi in the first case where pi > 0 the 1 is in the 1 + p1 + . . . + pi−1 column and in the
second case where pi = 0 the free parameters occupy the first p1 + . . .+ pi−1 columns.
An example will follow to clarify the construction of this form based on a canonical
parameter set type B ([91]).

Consider the following canonical parameter set pi, βijk with values

p1 = 2, p2 = 0, p3 = 0
β110 = −0.3, β111 = 0.7, β310 = 0.3, β311 = 0.5, β330 = β331 = 0.4

β210 = β221 = 0.6

For this canonical parameter set canonical form type III is:

F =


0 1 0 0

−0.3 0.7 0 0

0 0 0 1

0.3 0.5 0.4 0.4

 , H =


1 0 0 0

0.6 0.6 0 0

0 0 0 1


This form holds some special properties, which will examine in following sections and
in fact this is the form we have employed for our identification procedure.

In [91] there are details on how to construct canonical (and not pseudo-canonical)
forms for each of the types we have presented.
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It is mentioned in [90], [91] and proven in [50] that for a general stochastic system
of the form:

xk+1 = Fxk + wk (3.2.12)
yk = Hxk + vk (3.2.13)

constraining the matrices F,H is not enough to ensure that the equivalence class will
have only one member due to the effect of state and observation noise (which in general
case are not the same). To overcome this problem, most identification algorithms are
applied on the innovations representation form of the system, since it is unique for
every system [4]. Moreover, an equivalence class can be defined for the innovations
representation ([50]), for which matrix structures exist that ensure that the class will
have only one member. In the next section, we present one well-known form for the
innovations representation developed in [60] .

3.3 Identifiable Forms for Transfer Function Identifiabil-
ity

As we have already mentioned in Section 1.5 there are different approaches in checking
when a system is identifiable. For each of these approaches in order for the system to
be identifiable (to ensure in other words that we will determine uniquely the system
parameters and these parameters are equal to the “true” system) the matrices of the
system must be constrained to specific forms. Consider a steady-state innovation rep-
resentation of the form (3.3.2), it is shown in [50] there exists an invertible matrix T
such that:

F (θ1) = TF (θ2)T−1 B(θ1) = TB(θ2)

K(θ1) = TK(θ2) H(θ1) = H(θ2)T−1
(3.3.1)

This means that there exists a linear transformation of the system matrices for which if
we replace the matrices F (θ1), H(θ1),K(θ1), B(θ1) with TF (θ2)T−1, H(θ2)T−1, TK(θ2),
TB(θ2) we have the same output or differently stated the equivalence class of the sys-
tem contain more than one member in the general case. This creates the problem that
an identification procedure can yield not the true system matrices but a linear trans-
formation of those. Thus the need arises to impose some form on the matrices in order
the identification procedure to result to the true solution (equivalently to ensure that
T = I, the identity matrix) or in simpler words make the system “identifiable”. The
forms we have presented in the previous section ensure identifiability (under certain
identification procedures).

Transfer function identifiability, which was studied excessively in [60], is the focus
of this section. We remind that under this rule a system is identifiable if and only if
H(z, θ̂) = H(z, θ) meaning that the transfer function of the system with the parameters
we have estimated is the same as the transfer function of the true system [60]. A
pseudo-canonical form was developed, which we will describe below.
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Consider a multivariate state-space model in the steady-state innovation represen-
tation form

xk+1 = F (θ)xk +B(θ)uk +Kek (3.3.2a)

yk = H(θ)xk + ek (3.3.2b)

E
[
epe

T
q

]
= Λδpq > 0 (3.3.2c)

where δpq is the Kronecker delta and E is the expectation operator. The following
pseudo-canonical form was introduced by Ljung in [60]:

F (θ) =



0 1 0 0 0 0 0 0 0

0 0 1 0 0 0 0 0 0

× × × × × × × × ×
0 0 0 0 1 0 0 0 0

× × × × × × × × ×
0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1

× × × × × × × × ×



, B(θ) =



× ×
× ×
× ×
× ×
× ×
× ×
× ×
× ×
× ×



K(θ) =



× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×
× × ×



, H(θ) =


1 0 0 0 0 0 0 0 0

0 0 0 1 0 0 0 0 0

0 0 0 0 0 1 0 0 0



(3.3.3)

In the example presented here, the state dimension is n = 9, the input dimension is
m = 2 and the observation dimension is p = 3. The number of rows with × in F (θ)
equals the number of outputs. The structure in general can be defined as ([60]):

Let F (θ) initially be a matrix filled with zeros and with ones along the superdiago-
nal. Let then row numbers r1, r2, . . . , rp, where rp = n, be filled with parameters. Take
r0 = 0 and let H(θ) be filled with zeros, and then let row i have a one in column ri−1+1.
Let B(θ) and K(θ) be filled with parameters.

The parametrization is uniquely characterized by the p numbers ri that are to be
chosen by the user. Moreover, in [60] it is proven that the structure we have presented
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is identifiable if and only if the matrix pair (F (θ), [B(θ) K(θ)]) is controllable pair. The
input can be omitted, eliminating the input matrix B, in which case the structure of
F,H remain exactly the same and the controllability condition must hold for the pair
(F,K).

3.4 Identification of Innovations Representation through
the EM Algorithm

We have already mentioned that we cannot apply an identification procedure straight
on a linear state-space model but rather on its innovation representation. In Chapter 2
we stated that for the exponential family the EM reduces to computing the conditional
expectations of the complete data sufficient statistics during the E-step and using these
in place of the complete data sufficient statistics in the M-step. In [26], [5] it is proven
that if [e1(θ) e2(θ) · · · eN (θ)] has full rank and θ,Σ have no common parameters then
the quantity:

L = −N
2

log |Σ| − 1
2

N∑
k=1

eTk (θ)Σ−1ek(θ) (3.4.1)

is maximized by

θ̂ = arg min
θ

∣∣∣∣∣
[

1
N

N∑
k=1

ek(θ)eTk (θ)

]∣∣∣∣∣
Σ̂ =

1
N

N∑
k=1

ek(θ̂)eTk (θ̂)

(3.4.2)

We will now examine if we can determine uniquely the parameters of an innovation
representation by the above equations.

Consider the following transformation of an innovation representation:

xk+1 = Fxk +Kek

yk = Hxk + ek
⇒

xk+1 = Fxk +K (yk −Hxk)
ek = −Hxk + yk

then by some manipulation we can easily see that:

ek+1 = [−HF +HKH]xk −HKyk + yk+1

= yk+1 − [HF −HKH HK]

 xk

yk

 (3.4.3)

The joint log-likelihood of the complete (observed and unobserved) data (xk, yk) can
be calculated by substituting 3.4.3 in equation 3.4.1.

We will now examine for some pseudo-canonical forms, if we can determine the
parameters uniquely based on equations (3.4.2) with ek given by (3.4.3). Consider the
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following form constructed by Ljung’s method presented in Section 3.3:

F =


0 1 0

f1 f2 f3

f4 f5 f6

 then

r0 = 0

r1 = 2

r3 = 3

thus
h1 = r0 + 1 = 1

h2 = r1 + 1 = 3
⇒

H =

1 0 0

0 0 1

 , K =


k1 k2

k3 k4

k5 k6


by substituting in (3.4.3) we have:

HF =

1 0 0

0 0 1




0 1 0

f1 f2 f3

f4 f5 f6

 =

 0 1 0

f4 f5 f6



HK =

1 0 0

0 0 1



k1 k2

k3 k4

k5 k6

 =

k1 k2

k5 k6



HKH =

k1 k2

k5 k6

1 0 0

0 0 1

 =

k1 0 k2

k5 0 k6


It easy to see that the parameters f1, f2, f3, k3, k4 are eliminated, which means that we
cannot get unique solutions for these terms which in turn, renders the system uniden-
tifiable through the Expectation-Maximization framework. This was expected since
Ljung’s form contains 2nm parameters and the parameters of the system of equations
in (3.4.3) are at most nm + m2 since m <= n. The only case where someone can
find unique solution for the equation system is when m = n, which makes H = I (the
identity matrix) and F filled with free parameters in all its rows.

Now let us examine what would happen if the system matrices were constrained in
Type III form. Consider the following Type III form:

F =


0 1 0 0

f1 f2 0 0

0 0 0 0

f3 f4 f5 f6

 , H =


1 0 0 0

h1 h2 0 0

0 0 1 0


by substituting in 3.4.3 we have:

HF =


1 0 0 0

h1 h2 0 0

0 0 1 0




0 1 0 0

f1 f2 0 0

0 0 0 0

f3 f4 f5 f6

 =


0 1 0 0

h2f1 h1 + h2f2 0 0

0 0 0 0

 (3.4.4)
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It is obvious that we cannot find unique solutions for the elements of F .
It has now become clear, that the innovations representation is not recommended

for identification through an EM framework and canonical forms that would give unique
solutions under other identification procedures cannot yield results that converge to the
true system. In the next section we describe how we overcome this problem.

3.5 Identifiability of the Steady-State Kalman Filter

In Subsection 1.3.3 we referred to the nature of mapping of a state-space model to a
Kalman Filter, which is many-to-one [4]. If we could find some form of the system
matrices that could reduce the mapping to one-to-one and estimate uniquely the pa-
rameters of the Kalman Filter, then we would have identified the parameters of the
model. Consider the linear time-invariant system given by:

xk+1 = Fxk + wk (3.5.1a)

yk = Hxk + vk (3.5.1b)

E[wpwTq ] = Qδpq E[vpvTq ] = Rδpq (3.5.1c)

where wk and vk are zero-mean Gaussian noises with covariance matrices Q and R
respectively. We define θ = {F,H,Q,R} and make the following assumptions:

• F is stable

• (F,H) is observable pair

• (F,K) is controllable pair, where K is the steady-state Kalman Gain given by
3.5.2b.

A compact subset of θ with the above properties will be denoted Rc. Now, let Σ
be the steady-state state covariance given by the Discrete Algebraic Riccati Equation
(DARE):

Σ = F
[
Σ− ΣHT

(
HΣHT +R

)−1
HΣ

]
+Q (3.5.2a)

K = FΣHT
(
HΣHT +R

)−1
(3.5.2b)

Furthermore, consider ȳ the random variable which express the “filtered” output of a
steady-state Kalman Filter. Since the system (3.5.1) is linear and the noises are Gaus-
sian, p(ȳk|Y k−1, θ) is Gaussian with mean ŷk|k−1 (see subsection 1.3.1) and covariance
HΣHT +R as k →∞ (steady-state). According to [85]:
Two parameters θ1, θ2 ∈ Rc, θ1 6= θ2 are said to be CML (Constraint Maximum Like-
lihood) unresolvable if the quality:

p(yk|Y k−1, θ1) = p(yk|Y k−1, θ2)

holds with probability 1 with respect to θ1 and θ2 as k → ∞, which means that we
cannot determine uniquely the parameters of the steady-state filter through Maximum
Likelihood estimation. In [85] the equivalence class (3.5.3) is presented and it is proven
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that θ1, θ2 ∈ Rc are CML unresolvable if and only if there exists a nonsingular matrix
T such that:

F1 =TF2T
−1

H1 =H2T
−1

K1 =TK2

H1Σ1H
T
1 +R1 =H2Σ2H

T
2 +R2

(3.5.3)

As long as (3.5.3) is satisfied, the equivalence class has more than one member. This
means that the two steady-state Kalman Filters have the same impulse response, which
implies that a steady-state Kalman Filter in this case cannot determine uniquely a linear
system. Alternatively the steady-state Kalman Filter can be associated with a number
of different systems.

Two critical observations are made and proven in [91]:

1. If the matrices F,H of system of the form (3.5.1) follow the structure of pseudo-
canonical form type III, then there is only member in the equivalence class which
in turn means that the mapping of the system with the Kalman Filter is one-to-
one.

2. The parameters (F,H,Σek
,K) of the steady-state Kalman Filter are uniquely

determined by the output measurements, and the filter is therefore identifiable,
as long as F,H are in pseudo-canonical form type III. Where Σek

= HΣHT +R
is the covariance of the innovations noise.

Hence, if we constraint the matrices F,H in pseudo-canonical form type III we can iden-
tify the system parameters by identifying the parameters of its associated steady-state
Kalman Filter. Based on these observations, we will present our proposed algorithm of
system identification when the matrices are constrained in pseudo-canonical form type
III in the next chapter.

3.6 Summary

In this chapter we presented several pseudo-canonical forms developed in literature.
We showed that these forms are a necessary condition for identifiability of a system
but in order to be a sufficient condition too we must examine the identification pro-
cedure. We showed that we can not use the Expectation-Maximization algorithm for
identification of an innovation representation, other alternatives should be considered.
One such alternative is the identifiability of the steady-state Kalman Filter. Based on
this observation, we laid the foundation to present our proposed system identification
algorithm in the next chapter.



Chapter 4

Maximum Likelihood Estimation
of Identifiable State-Space
Models

4.1 Introduction

In the previous chapter we described some of the most common pseudo-canonical forms
presented in literature and examined the identifiability of these forms under the Expec-
tation Maximization Algorithm. We established that applying EM on the innovation
representation is a complicated task that cannot yield unique estimation of the sys-
tem parameters. We overcome this issue by reducing the association of a steady-state
Kalman Filter with a state-space system to one-to-one and then identifying the param-
eters of the steady-state Kalman Filter, thus identifying the model. In this chapter
we will describe out proposed algorithm for system identification of systems whose
matrices are constrained to be in canonical form type III.

4.2 Description of the Algorithm

This far we have established that our method first attempts to estimate the parameters
of a steady-state Kalman Filter and through it identify the parameters of the system.
To ensure that the association of the steady-state Kalman Filter with the system is
unique, the matrices must be constrained to follow pseudo-canonical form Type III.
Consider the linear time-invariant system:

xk+1 = Fxk + wk (4.2.1a)

yk = Hxk + vk (4.2.1b)

E[wpwTq ] = Qδpq E[vpvTq ] = Rδpq (4.2.1c)

where wk and vk are zero-mean Gaussian noises with covariance Q and R respectively,
also xk ∈ Rn and yk ∈ Rm. Furthermore we make the following assumptions:

38
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• F is stable

• (F,H) is observable pair

• (F,K) is controllable pair, where K is the steady-state Kalman Gain given by
(3.5.2b).

Then, the steady-state Kalman Filter for the above system 4.2.1 is:

Steady-State Kalman Filter

ek = yk −Hx̂k|k−1 (4.2.2a)

Σek
= HΣk|k−1H

T +R (4.2.2b)

x̂k|k = x̂k|k−1 +
(
ΣHTΣ−1

ek

)
ek (4.2.2c)

x̂k+1|k = Fx̂k|k (4.2.2d)

(4.2.2e)

where Σ is given by the Discrete Algrebraic Riccati Equation:

Σ = F
[
Σ− ΣHT

(
HΣHT +R

)−1
HΣ

]
+Q (4.2.3)

and the steady-state Kalman Gain is given by

K = FΣHT
(
HΣHT +R

)−1
(4.2.4)

As we can see in the steady-state form of the Kalman Filter, we can pre-compute some
quantities to reduce the computational cost.

The parameters we need to estimate for a steady-state Kalman Filter and a state-
space model are:

• The parameters of a steady-state Kalman Filter given by (4.2.2: F,H,Σek
,K

• The parameters of a state-space model given by (4.2.1): F,H,Q,R

As we can see the matrices F,H are common parameters in the steady-state Kalman
Filter and state-space model. We remind that the matrices F,H must be in type III
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form, presented in Subsection 3.2.3, and formulates F,H such that:

F =


F11 0 · · · 0

F21 F22 · · · 0
...

...
. . .

...

Fm1 Fm2 · · · Fmm

 (4.2.5a)

Fii =



0 1 0 . . . 0

0 0 1 · · · 0
...

...
...

. . . 0

0 0 0 · · · 1

× × × × ×


, Fij =


0 . . . 0

0 0 · · · 0
...

...
...

...

× × · · · ×

 (4.2.5b)

hi = [0, . . . , 0, 1, 0, . . . , 0] if pi > 0 (4.2.5c)

hi = [×,×, . . . ,×, 0, . . . , 0] if pi = 0 (4.2.5d)

F being a lower triangular block matrix, Fii a pi×pi matrix filled with zeros with ones
in its superdiagonal and its last row filled with free parameters × while Fij a pi × pj
matrix filled with zeros and its last row filled with free parameters ×. hi in the case
where pi > 0 has the 1 in the 1 + p1 + . . .+ pi−1 column and in the case where pi = 0
the free parameters occupy the first p1 + . . .+ pi−1 columns.

Now, since the mapping of the steady-state Kalman Filter with the system is one-to-
one, if the parameters of the Kalman Filter converge to the “true” values then the pa-
rameters of the system will converge to their “true” values and vice versa. To estimate
the parameters of the system through the EM Algorithm, consider that the states of the
system described by equations 4.2.1 is not hidden and we want to find the Maximum
Likelihood estimates of the system parameters θ given Y = [y0, y1, . . . , yN ] and X =
[x0, x1, . . . , xN ]. In this case the ML estimates of θ are obtained by maximizing:

L(X,Y, θ) = −
N∑
k=1

{
log|Q|+ (xk − Fxk−1)TQ−1(xk − Fxk−1)

}
−

N∑
k=0

{
log|R|+ (yk −Hxk)TR−1(yk −Hxk)

}
+ constant

(4.2.6)

since, without loss of generality, wk and vk were assumed uncorrelated white Gaussian
noise sources and the base of log is e. This problem can be treated as one with
incomplete data with the state vector playing the role of missing observations thus
enabling us to apply the EM Algorithm. In this case the auxiliary function of the EM
becomes [26]:

Q(θi+1, θ) = E
{
L(X,Y, θi+1)|Y, θi

}
(4.2.7)

which is the conditional expectation of L(X,Y, θ) defined by equation 4.2.6 given the
observed data Y and the current parameter estimations θi. As we have mentioned in
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Chapter 2 the EM algorithm for the exponential family as is our case under the Gaussian
assumption reduces to computing the conditional expectations of the complete data
sufficient statistics during the E-step and using these in place of the complete-data
sufficient statistics in the M-step in order to compute the ML estimates [25].

We remind that in [26], [5] it is proven that if [e1(θ) e2(θ) · · · eN (θ)] has full rank
and θ,Σ have no common parameters then the quantity:

L = −N
2

log |Σ| − 1
2

N∑
k=1

eTk (θ)Σ−1ek(θ)

is maximized by

θ̂ = arg min
θ

log

∣∣∣∣∣
[

1
N

N∑
k=1

ek(θ)eTk (θ)

]∣∣∣∣∣
Σ̂ =

1
N

N∑
k=1

ek(θ̂)eTk (θ̂)

(4.2.8)

We can replace the first term in 4.2.8 with:

θ̂ = arg min
θ

∣∣∣∣∣
[

1
N

N∑
k=1

ek(θ)eTk (θ)

]∣∣∣∣∣
= arg min tr

θ

[
log

1
N

N∑
k=1

ek(θ)eTk (θ)

] (4.2.9)

where trA express the trace of matrix A. The above equality was proven in [10].
Under the assumption that F,H,Q,R do not have common parameters we can ex-

amine the terms of (4.2.6) separately. Let us consider the first term of (4.2.6). The
difference with the classical approach presented in Section 2.3 is that here θ does not
include all the elements of F but only the free parameters that appear the predeter-
mined positions of the type III pseudo-canonical form. Hence we have to maximize the
first term of (4.2.6) only with respect to these free parameters that appear in F and
not all the elements of F , this problem is one of patterned matrix derivative (more on
patterned matrix derivatives can be found in [55], [71], [89]).

In our case in (4.2.8), ek(θ) = xk − Fxk−1. We will expand 4.2.9 for every element
fij in F and then take the partial derivatives and set to zero only with respect to the
elements that are the free parameters (since the rest are constant terms, zeros or ones):

J =tr

[
log

1
N

N∑
k=1

(xk − Fxk−1)(xk − Fxk−1)T
]

=

log

(
1
N

N∑
k=1

(xk,1 − f11xk−1,1 − f12xk,2 − . . .− f1nxk−1,n)2
)

+

log

(
1
N

N∑
k=1

(xk,2 − f21xk−1,1 − f22xk,2 − . . .− f2nxk−1,n)2
)

+ . . .

(4.2.10)
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where the second subindex l in xk−1,l and xk,l denotes the position in the vector. It
is easy to observe in 4.2.10 that each term depends only on elements of the same row
of F . By construction ,F contains free elements to the left-most part of each row (the
rest being zero) and by assumption each element is independent from any other, thus
we can take partial derivatives to the elements of each row, hence ignoring the terms
of J that contain elements of other rows than the one under differentiation. Assume
that the free parameters in the first row are only f11 and f12 then by construction the
rest elements of the row are zero. Taking partial derivatives with respect to the free
parameters we have:

∂J

∂f11
= 0⇒

N∑
k=1

xk,1xk−1,1 −
N∑
k=1

f1,1x
2
k−1,1 −

N∑
k=1

f1,2xk−1,1xk−1,2 = 0

∂J

∂f12
= 0⇒

N∑
k=1

xk,1xk−1,2 −
N∑
k=1

f1,1xk−1,1x
2
k−1,2 −

N∑
k=1

f1,2x
2
k−1,2 = 0

By expressing the above result in matrix form we have:[
f11 f12

]
=[

N∑
k=1

[
xk,1xk−1,1 xk,1xk−1,2

]] N∑
k=1

xk−1,1

xk−1,2

[xk−1,1 xk−1,2

]−1

We remind that we assume N is large enough to guarantee positive definiteness of the
matrix

∑
k xkx

T
k , which means that the upper block diagonal of the matrix is positive

definite too and thus invertible [42], [66]. Now, if f13 is a free parameter and the rest
elements of the row are zero, we have:[
f11 f12 f13

]
=

[
N∑
k=1

[
xk,1xk−1,1 xk,1xk−1,2 xk,1xk−1,3

]] N∑
k=1


xk−1,1

xk−1,2

xk−1,3

[xk−1,1 xk−1,2 xk−1,3

]
−1

By the same procedure, we can estimate the parameters of the other rows. By induction
we have the general formula for each row i with r ≤ n free parameters:[

fi1 fi2 . . . fir

]
=
[∑N

k=1 xkx
T
x−1

]
[i,1:r]

[∑N
k=1 xk−1x

T
k−1

]−1

[1:r,1:r]
(4.2.11)

where [i, 1 : r] denotes the first r elements of row i and [1 : r, 1 : r] denotes the upper
square r× r matrix. What is left now is the estimation of Q, which involves derivation
with respect to all of its elements. By expanding the second term of 4.2.8 on our
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estimation of F , F̂ we have:

Q̂ =
1
N

(
N∑
k=1

xkx
T
k −

[
N∑
k=1

xkx
T
k−1

]
F̂ T

−F̂

[
N∑
k=1

xkx
T
k−1

]T
+ F

[
N∑
k=1

xk−1x
T
k−1

]
F̂ T

 (4.2.12)

With exactly the same procedure we can estimate the free elements of H (the fact that
is not square does not affect the derivation) and the covariance matrix R. To sum up
the estimation formulas are:[

fi1 fi2 . . . fir

]
=
[∑N

k=1 xkx
T
x−1

]
[i,1:r]

[∑N
k=1 xk−1x

T
k−1

]−1

[1:r,1:r]
(4.2.13a)[

hj1 hj2 . . . hjl

]
=
[∑N

k=1 ykx
T
x

]
[j,1:l]

[∑N
k=1 xkx

T
k

]−1

[1:l,1:l]
(4.2.13b)

Q̂ =
1
N

(
N∑
k=1

xkx
T
k −

[
N∑
k=1

xkx
T
k−1

]
F̂ T

−F̂

[
N∑
k=1

xkx
T
k−1

]T
+ F̂

[
N∑
k=1

xk−1x
T
k−1

]
F̂ T

 (4.2.13c)

R̂ =
1

N + 1

(
N∑
k=0

yyx
T
k −

[
N∑
k=0

ykx
T
k

]
ĤT

−Ĥ

[
N∑
k=0

ykx
T
k

]T
+ Ĥ

[
N∑
k=0

xkx
T
k

]
ĤT

 (4.2.13d)

for which the sufficient statistics are:

Γ1 =
1

N + 1

N∑
k=0

xkx
T
k (4.2.14a)

Γ2 =
1
N

N∑
k=1

xkx
T
k (4.2.14b)

Γ3
1
N

N∑
k=1

xk−1x
T
k−1 (4.2.14c)

Γ4
1
N

N∑
k=1

xkx
T
k−1 (4.2.14d)

Γ5
1

N + 1

N∑
k=0

yky
T
k (4.2.14e)

Γ6
1

N + 1

N∑
k=0

ykx
T
k (4.2.14f)
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Of course, we replace the sufficient statistics by their expected values to complete the
EM Algorithm. The statistics at iteration i are:

E
{
ykx

T
k |Y, θi

}
= ykE

{
xTk |Y, θi

}
(4.2.15a)

E
{
yky

T
k |Y, θi

}
= yky

T
k (4.2.15b)

E
{
xk|Y, θi

}
= x̂k|N (4.2.15c)

E
{
xkx

T
k |Y, θi

}
= Σk|N + x̂k|N x̂

T
k|N (4.2.15d)

E
{
xkx

T
k−1|Y, θi

}
= Σk,k−1|N + x̂k|N x̂

T
k−1|N (4.2.15e)

where x̂k|N , Σk|N , Σk,k−1|N are computed by the RTS smoother. The above results
conclude the EM procedure for the estimation of the matrices F,H,Q,R. Due to
the one-to-one mapping (under type III pseudo-canonical form) of the system and the
steady-state Kalman Filter if the system parameters converge to the “true” parameters
then the filter parameters will converge to the “true” parameters too. To summarize
the steps of our algorithm are:

1. Initialize F,H,Q,R

2. Solve the DARE equation 4.2.3 to find Σk|k−1 as k → ∞, the Steady

State Kalman Gain K and innovation noise Σek
.

3. Apply the Steady-State Kalman Filter to the data set Y and then the

RTS smoother

4. Collect sufficient statistics

5. re-estimate F,H,Q,R through the statistics gathered in previous step

6. return to step 2 and solve the DARE with the new matrices

The steps 2-4 could be considered the E-step of the EM while step 5 could be
considered as the M-step if we project the EM algorithm on our procedure. In the next
section we will present experimental results testing our identification procedure.

4.3 Experimental Results

In this section we will present some experimental results of our identification procedure.
We estimate the system matrices with the EM Algorithm and check their convergence
with respect to the “true” values. We also check the convergence of the steady-state
Kalman Filter parameters, since if those parameters converge to the true values then the
system parameters will converge to the true values too. We remind that the matrices



45

F,H follow type III pseudo-canonical form. The experiments were implemented in
MATLAB R2009a. We examine the convergence by measuring the “distance” between
the system matrices from which we have generated the data and the estimated matrix in
each iteration of our algorithm. The distance is expressed by calculating the Frobenius
norm of the difference of the true matrix and the estimated one. The Frobenius norm
of a matrix A is given by :

‖A‖F =

√√√√ n∑
i−1

m∑
j=1

|aij |2

In our experiments we have generated 10000 multi-dimensional observation vectors
yk from a given system and our aim is to try and identify the system parameters
through the observation data only.

4.3.1 Experiment 1

Let’s assume that we have the following parameter set: p1 = 3, p2 = 0 then by the
construction formula of pseudo-canonical form of type III will be:

F =


0 1 0

0 0 1

−0.2 0.1 −0.1

 , H =

 1 0 0

0.3 0.3 0


where the free parameters occupy the last row of matrix F and the two first positions
of the last row of matrix H. The covariance matrices Q,R are:

Q = R =


1 0 0

0 1 0

0 0 1


all the elements in Q,R are free parameters. For these matrices the associated steady-
state Kalman Gain and Innovation covariance are:

K =


−0.1328 0.4867

0.0601 −0.0158

−0.1589 0.0163

 ,Σek
=

3.7552 0.7927

0.7927 1.4125


The figures below show in each step the distance of the estimated matrices with the
true system matrices.
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Figure 4.1: Experiment 1 - Convergence of the system matrices.

We also check the convergence of the innovation noise and steady-state Kalman
Gain to ensure that the steady-state Kalman Filter converges to the true values thus
ensuring the identification of the system.

Figure 4.2: Experiment 1 - Convergence of the steady-state Kalman Gain and Innova-
tions covariance.

As we can see from the figures in each step the Frobenius norm of the difference
between the true matrix and the estimated approaches zero which means that the
matrices converge to their true values.
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4.3.2 Experiment 2

In this experiment we construct the pseudo-canonical based on the parameters pi having
values: p1 = 2, p2 = 2, p3 = 2. For this set the matrices are:

F =



0 1 0 0 0 0

0.1 0.2 0 0 0 0

0 0 0 1 0 0

−0.2 0.1 0.2 −0.3 0 0

0 0 0 0 0 1

0.2 0.1 −0.1 0.3 −0.2 −0.1


, H =


1 0 0 0 0 0

0 0 1 0 0 0

0 0 0 0 1 0



where the free parameters occupy the first two elements of the second row, the first
four elements of the fourth row and the last row of matrix F . H does not have free
parameters and is a constant matrix. The covariance matrices Q,R are:

Q =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, R =


1 0 0

0 1 0

0 0 1



where all the elements in Q,R are free parameters. For these matrices the associated
steady-state Kalman Gain and Innovation covariance are:

K =



0.0705 0.0010 0.0024

0.0812 0.0002 0.0008

0.0295 −0.1176 0.0119

−0.1359 0.1715 −0.0061

0.0379 0.1155 −0.0409

0.1456 −0.1126 −0.1268


,Σek

=


3.0358 −0.0017 0.0293

−0.0017 3.1347 −0.1088

0.0293 −0.1088 3.1487



As we can see from figure 4.3 the parameters of the system converge to their true values
since the Frobenius norm of the distance approaches zero.
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Figure 4.3: Experiment 2 - Convergence of the system matrices.

Not only the system parameters converge but it is obvious from figure 4.4 that the
parameters of the steady-state Kalman Filter converge to their true values too thus
ensuring the identification of the system.

Figure 4.4: Experiment 2 - Convergence of the steady-state Kalman Gain and Innova-
tions covariance.

In this experiment we have not included a diagram for the convergence of matrix
H since it is a constant matrix and does not contain free parameters. Obviously all
the matrices converge to their true values.
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4.3.3 Experiment 3

In this experiment we assume that the parameters pi have values: p1 = 1, p2 = 1, p3 = 1.
For these parameters the matrices become:

F =


0.1 0 0

0.2 −0.1 0

−0.2 0.1 −0.1

 , H =


1 0 0

0 1 0

0 0 1


where the free parameters appear in the first position of the first row, the first and
second position of the second row and in the last row of matrix F , H is a constant
matrix and does not contain parameters to be estimated. The covariance matrices Q,R
are:

Q = R =


2 0 0

0 2 0

0 0 2


and as before we consider all their elements to be free parameters. In this experiment
the steady-state Kalman Gain and Innovation covariance are:

K =


0.0501 0.0002 −0.0002

0.1000 −0.0501 0.0001

−0.0998 0.0507 −0.0509

 ,Σek
=


4.0100 0.0200 −0.0200

0.0200 4.0500 −0.0500

−0.0200 −0.0500 4.0602


Figure 4.5 clearly depicts that the system parameters again converge to the true values
of the system.

Figure 4.5: Experiment 3 - Convergence of the system matrices.

Again we present the diagrams that show the convergence of the steady-state Filter
parameters in figure 4.6:
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Figure 4.6: Experiment 3 - Convergence of the steady-state Kalman Gain and Innova-
tions covariance.

We remind that in this experiment we do not present a diagram for matrix H since
it is a constant and does not contain free parameters. We easily conclude from figures
4.5, 4.6 that the identification procedure approaches the true values in each iteration
step.

4.3.4 Experiment 4

In this final experiment we present we have assumed that: p1 = 3, p2 = 0, p3 = 0, p4 = 3
then the matrices become:

F =



0 1 0 0 0 0

0 0 1 0 0 0

0.1 0.2 −0.3 0 0 0

0 0 0 0 1 0

0 0 0 0 0 1

−0.1 0.3 −0.1 0.2 −0.2 0.1


, H =


1 0 0 0 0 0

0.4 0.3 0 0 0 0

0.3 0.2 0 0 0 0

0 0 0 1 0 0



In this case the free parameters are the first tree elements of the third row and the last
row of F . Moreover, H contains free parameters in the first two positions of the second
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and third row. The covariances matrices Q,R are:

Q =



1 0 0 0 0 0

0 1 0 0 0 0

0 0 1 0 0 0

0 0 0 1 0 0

0 0 0 0 1 0

0 0 0 0 0 1


, R =


2 0 0 0

0 2 0 0

0 0 2 0

0 0 0 2



in this case the steady-Kalman Gain and innovation covariance are:

K =



−0.1474 0.2332 0.1506 −0.0054

0.0985 −0.0143 −0.0062 0.0024

−0.0053 0.0680 0.0451 −0.0011

−0.0399 −0.0006 −0.0017 0.0046

0.1180 0.0174 0.0155 −0.0790

−0.0865 0.0564 0.0347 0.1121


,Σek

=


4.9479 1.0718 0.8128 0.1028

1.0718 2.5810 0.4230 0.0314

0.8128 0.4230 2.3091 0.0244

0.1028 0.0314 0.0244 5.2295



It is obvious from Figure 4.7 that the system matrices approach the true values with
each iteration step.

Figure 4.7: Experiment 4 - Convergence of the system matrices.

Moreover in Figure 4.8 we can see the the steady-state Kalman Filter parameters
converge too. It is worthy to observe that in this experiment that it takes only few
iterations for the matrices to converge.
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Figure 4.8: Experiment 4 - Convergence of the system matrices.

4.4 Conclusions

We have presented a robust method for EM identification of general state-space models
in which the matrices follow pseudo-canonical form type III. We have presented the
inherent problems of EM identification, when the system is in innovation representation
and proved that we can apply the EM straight on the original form of the system
under the assumptions we have made on the form of matrices. By exploiting the
one-to-one mapping of a steady-state Kalman Filter to a state-space system when
its matrices follow Type III pseudo-canonical forms we have managed to correctly
identify the parameters of the system. In all our experiments we observed that the
system matrices converge to the “true” system values only after few iterations. To
the best of our knowledge, this is the first work that solves the problem of maximum-
likelihood identification of linear state-space models for arbitrary state and observation
dimensions. ML identifiability is ensured by using canonical forms and the solution is
obtained using the EM framework. The experimental results show good convergence
properties in all the cases that we examined.



Chapter 5

Extension and Future Research

5.1 Introduction

In this final chapter we will state our opinion regarding future work on identification
through the Expectation Maximization Algorithm. We will also present some other
ideas that attack the problem from different perspectives. Finally, we will make a brief
review on the problem of nonlinear identification.

5.2 Future Work

In the previous chapter we described analytically the algorithm we developed for sys-
tem identification and presented some experimental results that confirm our theoretical
results and validate the procedure. Identification of systems through and EM frame-
work was first introduced in [26] for the general case and to the best of our knowledge
this is the first work that attempts to identify systems in canonical forms.

One interesting idea is to attempt the extension of our EM procedure to other
system classes, such as closed-loop systems, bilinear systems, continuous-time systems,
descriptor systems, periodic systems.

Moreover, we have not examined the mapping of the steady-state Kalman Filter to
other canonical forms presented in literature. For those canonical forms that guarantee
the one-to-one mapping of the steady-state Kalman Filter and the system we can
attempt to extract Maximum Likelihood sufficient statistics.

Expectation Maximization could also be applied in identification of nonlinear mod-
els. Though the EM have been applied in nonlinear models [79], [81] the nonlinearity
has been described with nonparametric methods. Our goal is to employ some para-
metric structure, like radial basis functions, to describe the nonlinearity and apply the
EM algorithm for estimating the parameters of the system.

5.3 Other Innovative Approaches

System Identification is a challenging and hot topic that attracts many researchers
which not only aim to improve current techniques but also propose alternative methods.
De Cock for example in [24] tried to enrich subspace methods by introducing elements
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for other scientific areas such as Information Theory, Statistics, Geometry among others
and developed a new subspace identification method based on principal angles.

Ribarits in [77], trying to overcome the problem of canonical form parametrization,
developed an identification method based on Data Driven Local Coordinates and Gen-
eralized Least Squares. The result was an iterative algorithm whose innovation lied to
the fact that there was no need for canonical forms to be applied in system matrices.

A main focus of research on system Identification is a unification attempt of predic-
tion error methods and subspace methods, trying to combine the advantages of both
approaches under a single coherent theory [86].

5.4 Non-Linear System Identification

Though in our work our attention was focused on linear time-invariant systems, iden-
tification of nonlinear systems maybe the most active area in System Identification
today [62]. Stan Ulam characterized nonlinear system identification as “non-elephant”
zoology in an attempt to describe how huge this topic is.

To construct and estimate models on non-linear dynamic systems is an important
and difficult task. It draws upon many different scientific areas such as: physical mod-
eling ([17]), mathematical statistics ([43]), neural network techniques ([12]), learning
theory and support vector machines ([95]), automatic control and system identification
([83]) and several others. Nonlinear models play important roles in many different ap-
plication fields, and many specific problem areas have developed their own techniques
and methodologies. Therefore, there is a vast amount of methods, concepts and results.
It is not possible to give a short, comprehensive survey of the field but we will try to
make a brief review of the problem and present some classic approaches.

The equations describing a nonlinear system in state-space form are:

xk+1 = f(xk) + wk

yk = h(xk) + vk

where f, h are nonlinear functions and wk, vk are noise vectors.
Identification of a nonlinear system involves estimating the covariance matrices of

wk, vk but also defining the nature of functions f and h.
Indeed, one can find numerous approaches in literature with theories drawn from

many scientific areas as Statistics, Time Series Analysis, Machine Learning, Artificial
Neural Networks, etc. One approach is to try and “linearize the problem” by con-
sidering the problem as one of linear time-varying one [11]. Then one can apply the
well-known theory of linear systems for identifying the model parameters.

Another approach which is usually applied only when the observation equation is
nonlinear, is to model the nonlinearity with an artificial neural network. By training
the neural network from the observations ([44]), one can define the nonlinearity and
then by application of Extended or Unscented Kalman Filter estimate the states, from
which point on various estimation methods can be employed for the determination of
the parameters of the state equation [88].

Roweis in [79] attempted to apply the EM Algorithm for identification of nonlinear
systems. The goal was to to integrate over the uncertain estimates of the unknown
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hidden states and optimize the resulting marginal likelihood of the parameters given
the observed data. The Extended Kalman Filters was used to estimate the approximate
state distribution and they modeled the nonlinearities with Radial Basis Functions
Neural Networks.

As we have already mentioned, Nonlinear System Identification is a vast research
topic and there exist a number of algorithms and approaches to deal with the problem.
Some texts dealing exclusively with the problem of nonlinear system identification are
[68], [67], [15].

5.5 Summary

This chapter concludes this thesis. We outlined some interesting directions for future
work based on identification through the Expectation Maximization Algorithm. More-
over, we presented some other innovative ideas that have emerged in the area of system
identification. Finally, we attempted to give a brief review of nonlinear identification
problem and present some approaches found in literature that attack the problem from
different perspectives. In our opinion, even though there are numerous identification
methods and approaches (both for linear and nonlinear identification), still the subject
is far from closed and new ideas can have large contribution in the field.
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