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Chapter 1

Introduction

Many modern applications need to deal with massive datasets, that usually are
much larger than the size of the main memory.Additionally, many massive dataset
applications involve geometric data (for example points,lines or polygons) or data
that can be interpreted geometrically. Such applications often perform queries that
correspond to searching in massive multidimensional geometric databases for ob-
jects that satisfy certain spatial constraints. Typical queries include reporting
the objects intersecting a query region, reporting the objects containing a query
point, and reporting the objects near a query point.Examples of such applications
are applications in computer graphics, computer vision, database management sys-
tems, computer-aided design, solid modeling,robotics, geographic information sys-
tems (GIS), image processing, computational geometry, pattern recognition , and
other areas.

Solutions to proccess and store these massive datasets efficiently were needed.
To address this problem, many data structures and algorithmic techniques were
implemented. However, these early data structures were either slow or too difficult
to understand and implement, thus impractical. In recent years, a number of data
structures and algorithmic techniques have been developed, that improved and sim-
plified previous approaches. Despite all these efforts, industry resists to adopt many
of those algorithmic techniques. The main reason for that, is that there are still
some deficiencies in practice and the data structures that were developed are still
impractical to implement for industrial reasons.
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1.1 Memory Models

At first, algorithms were developed to run efficiently in idealized computer models
such as the Random Access Machine or the Pointer Machine. These early
models described a two-level computer system were the proccessor fetches instruc-
tions from the memory and executes them . Even though they are widely used, they
cannot accurately model contemporary computer systems that contain a multilevel
memory hierarchy. Algorithms that are implemented under these models, are thus
poor performing, especially in applications that need to deal with massive data.

For reasons of economy, contemporary general-purpose computer systems usually
contain a hierarchy of memory levels, each level with its own cost and performance
characteristics. At the lowest level, CPU registers and caches are built with the
fastest but most expensive memory. At a higher level, inexpensive but slower mag-
netic disks are used for external mass storage and even slower but larger capacity
devices, such as tapes and optical disks are used for archival storage.

The need to model memory and disk systems more accurately led to the develop-
ment of the External Memory Model [AV88] . In the External Memory Model
we have a two-level memory hierarchy which works with block transfers. Thus,
we can describe more precisely contemporary computers and modern applications
where data are so massive, that cannot fit in the main memory. In such cases the
Input/ Output (or I/O) communication between internal and external memory can
become a major performance bottleneck. Thus, the time needed to fetch data from
the external storage device usually overwhelms the CPU time. For example, loading
a register takes on the order of nanosecond (10−9 seconds) and accessing internal
memory takes tens of nanoseconds, but the latency of accessing data from a disk is
several milliseconds (10−3 seconds), which is about one million times slower. That’s
why the time complexity in this model is measured by the number of I/O operations
needed.

The central aspect of the external-memory model is that transfers between cache
and disk involves blocks of data. Specifically, the disk is partitioned into blocks of
B elements each, and the cache can store up to M/B blocks for a total size of M
elements. The main deficiency of this model is that external memory algorithms
depend on the M and B parameters. In practice though, we may have several stor-
age devices in our memory hierarchy with varying parameters.

The next attempt to define the memory hierarchy of contemporary computer
systems even more accurately was the Cache-Oblivious Model, introduced by
Frigo, Leiserson, Prokop and Ramachandran [FLPR99]. The principle is to design
external memory algorithms without knowing the external memory parameters B



and M. The consequence of that idea is that, if a cache-oblivious algorithm performs
well between two levels of the memory hierarchy, then it will automatically work
well between any two adjacent levels of the memory hierarchy. This model thus, ac-
curately represents even the common computer systems where the external memory
is constituted by several storage devices with varying parameters, in contrast with
the External Memory Model where we can model only one type of external memory.

1.2 Massive Data Applications

The aforementioned models were implemented due to the need to accurately model
computer systems running applications that deal with data so massive that can-
not fit in the main memory. One of the most common applications is spatial data
structures. Spatial data consist of points, lines, rectangles, regions, surfaces and
volumes. The challenge is to create efficient indexes for spatial data structures.

A fundamental database primitive in spatial databases is range search. For ex-
ample consider a cartographic database consisting of a number of maps. A typical
query would be to determine all cities within 50 kilometers of a well-known land-
mark. Other types of spatial queries include point location, ray shooting, nearest
neighboor, and intersection queries.

Simple data structures such as linked lists or binary trees were simply inadequate
to efficiently index spatial databases dealing with such kind of queries. For range-
searching a number of advanced internal memory structures were implemented, like
the elegant priority search tree [McC85b], that can be used to answer 3-sided
range queries in optimal query and update time using linear space. Other inter-
nal memory structures that were implemented to answer efficiently range searching
queries are the quadtree, the octree, the k-d tree and others. All these data struc-
tures are optimal in two-level memory models, but they fail in practice where the
majority of data resides in external storage devices.

The most fundamental external memory data structure that was implemented is
the B-tree [BM72]. The B-tree corresponds to an internal memory balanced search
tree. One-dimentional range queries, asking for all elements in the tree in a query
interval [q1, q2], can be answered in optimal time using linear space. There are
though, a number of problems, like multidimensional range searching that cannot
be handled efficiently by the B-tree. A number of external memory model advanced
data structures were implemented to cope with range-searching, like hB trees, var-
ious R-trees, external range trees, weight-balanced B-tree, O-tree, etc.



A usual method to implement an external memory data structure is to par-
tition the nodes of the corresponding internal memory data structure into blocks.
For example, to externalize the binary search tree, we just need to partition the
nodes of the tree into blocks, thus creating the B-tree. Just partitioning the nodes
of a tree into blocks to externalize it though, is not always I/O optimal, (as for
example the problem of externalizing the priority search tree) because of the high
fan-out of the tree. The External Priority Search Tree, an elegant solution
for the long-standing problem of externalizing the priority search tree was given in
[Sam01], utilizing advances techniques, such as bootstrapping and node buffering.

A very popular data structure for handling spatial queries that is based on the
B-tree, is the R-Tree [Gut85]. This data structure uses heuristic algorithms to opti-
maly partition space into rectangles that cover data figures (points, lines, polygons).
Even though the R-Tree is based on heuristic methods and we don’t have any perfor-
mance guarantees, it is used prevalently in modern database management systems.
Because of it’s great practical value, much research has been done to imporove it’s
efficiency. This research has resulted in many R-Tree variants. The most promising
one seems to be the Hilbert R-Tree, which uses the idea of space-filling curves to
optimize the partitioning of the space into rectangles.

1.3 Exploiting Parallelism

Very large indexes that don’t fit in main memory and thus need a large number
of I/Os to fetch data for every query, can become a major performance bottleneck
in database management systems. Much research has been done to improve the
efficiency of these data structures and even devise new clever ways to index massive
data. However very little work has been done to exploit parallelism, as a means to
improving the data structures’ performance.

In the past few years commodity computing hardware has become cheaper and
much more powerful. This fact along with the need to constantly process vast
amounts of data, has driven large organizations and companies to build robust and
highly scalable parallel systems. One recent effort that has attracted much attention
due to it’s scalability and efficiency is Google’s MapReduce model. The MapRe-
duce model uses the ideas of functional programing to parallelize programs, in a
way that is transparent and painless to the end user. The MapReduce system has
been used for many problems that require to deal with massive data such as sorting,
distributed grep, reverse web-link graph and others. It would be thus, very conve-



nient to somehow exploit these systems for improving data structures’ efficiency.

1.4 Our Thesis

All of the well-known memory models have some deficiencies in practice. The two-
level memory models (RAM, pointer machine) are adequate when the data we are
dealing with fits in main memory. However, when we are dealing with massive
data these models fail to take into account the high latencies incurred by the I/O
operations. This problem is handled by the other two models (cache-oblivious and
external-memory), but both of these models totally disregard the CPU cost of the
algorithms. There are practical cases though, where the CPU cost is not negligible
compared to the I/O cost. Consider for example an external memory B tree where
almost all the internal nodes are kept in main memory and just a percent of the
leaves of the tree are kept on disk. These cases are very common with contemporary
huge main memories. When we query this tree the search cost measured in I/O cost
is just 1, compared to the CPU cost which is approximately log N . Additionally,
there are cases where only a small part of the tree is kept in external storage devices.
In those cases a query may incur a small number of I/Os, or none at all. In all of
the above cases we must take into account both the CPU cost and the I/O cost
when we design an efficient algorithm. It is necessary therefore, to reexamine the
CPU efficiency of many I/O optimal external memory algorithms.

Additionaly, the new technological trends cannot be accurately represented by
these old models. With the introduction of multicore processors, the CPU speed
has dramatically increased and the bottleneck seems to be the I/O between main
memory and CPU. To minimize this I/O latency, a hierarchy of cache memories are
built near the processor. The memory levels that are closer to the processor are
faster, but of limited capacity. An important factor thus, in designing algorithms
is the concept of locality, which is not taken into account by the old cost models.
Another important technological aspect that is disregarded by the old cost models,
is the introduction of cheap and high capacity flash disks. These flash disks still
have a relatively large I/O cost, but compared to conventional magnetic disks they
have zero seek time, making them especially useful for point queries.

In our thesis we implement well-known I/O optimal external memory data struc-
tures such as the B-tree, the R-Tree and variants and the External Memory Priority
Search Tree (EPST), and conduct a series of experiments on them. These exper-
iments are conducted under various datasets and different hardware schemes. We



performe the same experiments in the corresponding internal memory data struc-
tures (priority search tree, R-Tree) and we analyze the results.

The results taken from the external memory data structures and their corre-
sponding internal memory data structures are compared. We examine the cases
when it is optimal to use the external memory data structures and the cases when
it is optimal to use the corresponding internal memory data structures. We prove
that the CPU cost can be comparable and even higher than the I/O cost in some
cases and vice versa. We also note the effect of varying the block size in the overall
performance of external memory data structures.

In the second part we exploit parallelism to improve the bulk-loading perfor-
mance of a packed Hilbert R-Tree. An algorithm is provided to adapt the process of
bulk-loading a Hilbert R-Tree in the MapReduce model. The Hadoop open source
implementation of the MapReduce model is used to experiment with this algorithm.
The hardware we used was a five node computing cluster. Finally we conduct ex-
periments that test the scalability and the overall efficiency of the system and the
data structures.

Out results can be summarized as follows:

• We show that data structures with proven performance guarantees such as
the priority, the EPST and the B Tree perform better, especially for certain
datasets and queries, than the data structures that rely on heuristic algo-
rithms, such as the R Tree and variants.

• We experimentally prove that heuristic data structures perform well only un-
der certain datasets and queries which is very limiting in practise.

• We prove that both the CPU cost and the Disk I/O cost, can be of great
importance for certain types of datasets, despite the assumptions made by
the cost models.

• We also experimentally prove that the increase of the block size affects the data
structures’ performance negatively or positively, depending on the dataset size.

• We implement an algorithm that expresses the process of bulk-loading Hilbert
R-Trees with the MapReduce model.

• We use the Hadoop system to experimentally evaluate the above algorithm in
a cluster of five nodes.

• We prove that our algorithm is scalable and efficient.



• The experimental results, indicate that the trees produced by this parallel
procedure, have almost the same query performance with the equivalent trees
which are bulk-loaded in serial.





Chapter 2

Overview Of Memory Models

Data structures are always specified within a particular memory model. Space and
time costs, that usually determine the quality of an algorithm, are therefore relative
to the model under which an algorithm is analysed. As a consequence of that, some
models are more suitable than others depending on the application.

The early memory models, like the random acess memory, or the pointer ma-
chine model, described an oversimplified two-level computer architecture. These
models produce simple and efficient algorithms for a broad range of applications.
Algorithms though, for applications that need to deal with massive data cannot be
efficiently implemented with these simplistic models.

More sofisticated models were thus implemented, like the external memory model
or the cache-oblivious model. These models managed to describe more accurately
contemporary computer systems, by incorporating the notion of memory hierar-
chies. Algorithms that are implemented under these models, for applications that
deal with massive data, are far more efficient than their internal memory counter-
parts. A major drawback however, of those sofisticated models is that algorithms
are more complicated and difficult to implement.

2.1 The RAM Model

At first, algorithms were developed to run efficiently in a hypothetical computer
called the Random Access Machine. Computations on this machine can only
be performed on objects in the internal memory. The Random Access Machine has
a proccessor that fetches instructions from the memory and executes them. The
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Random Access Machine can perform “simple” operations such as addition, mul-
tiplication and substraction, in a single step. Instructions are executed one after
another with no concurrent operations.

This two-level model of computation is called the Random Access Machine
Model.Under the RAM model, we measure the run time of an algorithm by count-
ing up the number of steps it takes on a given problem instance. By assuming that
our RAM executes a given number of steps per second, the operation count converts
to the actual run time easily. A great number of algorithms are still developed under
this model.

The RAM model is simple and the algorithms constructed under this model are
both easy to understand and implement. However, the RAM model of computation
is obviously unrealistic and leads to the development of poor performing algorithms
for modern applications. The main reason is that in the RAM model we do not at-
tempt to model the memory hierarchy that is common in contemporary computers.
Thus, the only practical use of the RAM model is in applications where data ( or at
least the majority of data) resides in the main memory. Whenever we have to deal
with massive datasets, where the majority of data resides in the external memory
storage, the RAM model fails to produce efficient algorithms.

2.2 The Binary Search Tree

Binary Search Trees and Search Trees in general are the most widely used data
structures that are analyzed under the RAM model. Search trees are data structures
that support many dynamic-set operations, including Search, Minimum, Maximum,
Predecessor, Successor, Insert and Delete

The binary search tree is a linked data structure in which each node is an object
(Figure 2.1). In addition to a key field and satellite data each node contains fields
left,right and p that point to the node corresponding to its left child, its right child
and its parent respectively. If a child or the parent is missing, the appropriate field
contains the value NIL. The root node is the only node in the tree whose parent
field is NIL.

The keys in a binary search tree are always stored in such a way as to satisfy
the binary-search-tree property:

Let x be a node in a binary search tree. If y is a node in the left subtree of x,
then key[y] ≤ key[x]. If y is a node in the right subtree of x, then key[x] ≤ key[y].

The most fundamental operations of a binary search tree are described below.



Figure 2.1: A typical binary search tree.

Searching

Searching a binary search tree for a specific key stored in the tree, can be imple-
mented as a recursive or an iterative process. In the recursive case we begin by
comparing the key of the root with the given value k. If the key of the root is equal
to k or it is equal to NIL (the tree is empty), then we return with a pointer to root.
If the key of the root is less than the given value then we traverse the right subtree
of the root, otherwise we traverse the left subtree of the root. This procedure is
continued recursively and it is depicted in the algorithm below.

Algorithm 1: SEARCH(x,k)

if x = NIL or k = key[x] then
return x

end if
if k ≤ key[x] then

return SEARCH(left[x],k)
else

return SEARCH(right[x],k)
end if

Insertion

The first part of the insertion is to search for the approppriate node for the new
value u to be inserted, so as the binary trees’ invariants are not violated. We begin



by searching the root and if the root is not equal to u, then we proceed iteratively
in the left and the right subtree of the root, exactly as we did in operation search.
Eventually, we will reach an external node and add the value as its right or left child,
depending on the node’s value. Algorithm 2 depicts the procedure of inserting a
node z for which key[z] = u, left[z] = NIL and right[z] = NIL, in a binary search
tree T .

Algorithm 2: TREE-INSERT(T ,z)

y ← NIL
x← root[T ]
while x 6= NIL do

y ← x
if key[z] < key[x] then

x← left[x]
else

x← right[x]
end if

end while
p[z]← y
if y = NIL then

root[T ]← z
else if key[z] < key[y] then

left[y]← z
else

right[y]← z
end if

Deletion

If we want to delete a given node z from a binary search tree we have to consider
separately several cases. If z has no children, we modify its parent p[z] to replace
z with NIL as its child. If the node has only a single child, we ”splice out” z by
making a new link between its child and its parent. Finaly, if the node has two
children, we splice out z’s successor y, which has no left child and replace z’s key
and satellite data with y’s key and satellite data. The procedure of deleting a node
z from a binary search tree T is depicted in algorithm 3.



Algorithm 3: TREE-DELETE(T ,z)

if left[z] = NIL or right[z] = NIL then
y ← z

else
y ← TREE − SUCCESSOR(z)

end if
if left[y] 6= NIL then

x← left[y]
else

x← right[y]
end if
if x 6= NIL then

p[x]← p[y]
end if
if p[y] = NIL then

root[T ]← x
else if y = left[p[y]] then

left[p[y]]← x
else

right[p[y]]← x
end if
if y 6= z then

key[z]← key[y]
end if
return y



2.2.1 Red-Black Trees

As we saw the main drawback of the binary search trees is that after a number of
random insertions they may become unbalanced, resulting in poor performance due
to the increase of the height h of the tree. To address this problem many solutions
based on the binary search tree were implemented, that utilized techniques trying to
avoid the loss of balance. One of the most popular data structures of this kind is the
Red-Black Tree, invented in 1972 by Rudolf Bayer [Bay72]. The red-black tree
is more complex than the simple binary search tree but it guarantees logarithmic
time complexity in the worst case.

A red-black tree is a binary search tree with one extra bit of storage per node:
its color, which can be either RED or BLACK. By constraining the way nodes can
be colored on any path from root to a leaf, red-black trees ensure that no such path
is more than twice as long as any other, so that the tree is approximately balanced.

Each node of the tree now contains the fields color,key,left,right and p. If a child
or the parent of a node does not exist, the corresponding pointer field of the node
contains the value NIL. In red-black trees, the leaf nodes are not relevant and do
not contain data. To save memory, sometimes a single sentinel node performs the
role of all leaf nodes. All references from internal nodes to leaf nodes instead point
to the sentinel node.

Red-Black trees must confine to the following properties:

1. Every node is either red or black.

2. The root is black.

3. Every leaf is black.

4. If a node is red, then both its children are black.

5. For each node, all paths from the node to descendant leaves contain the same
number of black nodes.

We call the number of black nodes on any path from, but not including, a node
x down to a leaf the black-height of the node, denoted bh(x). By the last prop-
erty, the notion of the black-height is well defined, since all descending paths from
the node have the same number of black nodes. We define the black-height of a
red-black tree to be the black-height of its root.

These constraints enforce a critical property of red-black trees: that the longest



Figure 2.2: Three-sided query

path from the root to a leaf is no more than twice as long as the shortest path from
the root to a leaf in that tree. The result is that the tree’s height is no more than
2 log n + 1. Since operations such as inserting, deleting, and finding values requires
worst-case time proportional to the height of the tree, this theoretical upper bound
on the height allows red-black trees to be efficient in the worst-case, unlike ordinary
binary search trees.

To see why these properties guarantee this, it suffices to note that no path can
have two red nodes in a row, due to property 4. The shortest possible path has all
black nodes, and the longest possible path alternates between red and black nodes.
Since all maximal paths have the same number of black nodes, by property 5, this
shows that no path is more than twice as long as any other path.

2.2.2 Priority Search Tree

Binary search trees and variants are optimal when dealing with simple one-dimensional
queries. However, when we need to perform multi-dimensional queries like finding
all items in a confined space, then more advanced data structures like interval trees,
range trees, segment trees etc. are more suitable. The most efficient data structure
for solving three-sided queries (report all points that lie in a region of the form
[x1, x2]× [−∞, y] Figure 2.2) is the elegant priority search tree by R. McCreight
[McC85a].

The priority search tree is the combination of a binary search tree and a heap.
A heap is a binary tree defined as follows. The root of the tree stores the point



with minimum y-value. The remainder of the set is partitioned into two subsets
of almost equal size, and these subsets are stored recursively in the same way. We
can do a query with (−∞ : qy] by walking down the tree. When we visit a node
we check if the y-coordinate of the point stored at the node lies in (−∞ : qy]. If it
does, we report the point and continue the search in both subtrees; otherwise, we
abort the search in this part of the tree.

The priority search tree is consisted from a base binary search tree on x-coordinates
and a heap on y coordinates. A formal definition of a priority search tree for a set
P of points is as follows. We assume that all points have distinct coordinates whith
no loss of generality.

• If P = ∅ then the priority search tree is an empty leaf.

• Otherwise let Pmin be the point in the set P with the smallest y-coordinate.
Let xmid be the median of the x-coordinates of the remaining points. Let

Pbelow = {p ∈ P{pmin} : px < xmid},
Pabove = {p ∈ P{pmin} : px > xmid},

The priority search tree consists of a root node v where the point p(v) = pmin

and the value x(v) = xmid are stored. Furthermore,

• the left subtree of v is a priority search tree for the set Pbelow,

• the right subtree of v is a priority search tree for the set Pabove.

The running time for building a priority search tree is optimal O(nlogn). Priority
search trees can be even built in linear time, if the points are already stored on x-
coordinate. The idea is to construct the tree bottom-up instead of top-down, in the
same way heaps are normally constructed. The priority search tree requires optimal
O(n) space for storing n points, since there is one node for each point

Searching A Priority Search Tree

Performing a three-sided query on a priority search tree involves reporting all points
that lie in the region [x1, x2]×[−∞, y]. The following is the algorithm for performing
this query:

• If the tree is NULL we return without reporting any points.



• Let R be the root of the tree, Rx be its X-coordinate, Ry be its Y -coordinate
and X(R) be the value of the axis separating the X-ranges of R’s child sub-
trees.

• Compare Ry to y. If Ry > y then return without reporting any points (all the
other nodes of the tree will have even larger Y-coordinate).

• Else if x1 ≤ Rx ≤ x2 then report the root point.

• If x1 < X(R), the X-range of the left subtree must overlap with the X-range
of the query. Recursively search the left subtree of R.

• If X(R) < x2, the X-range of the right subtree must overlap with the X-range
of the query. Recursively search the left subtree of R.

The complexity of a query of size k in a priority search tree of size O(n) is optimal
O(k + logn).

Dynamic Operations

Insertion and deletion in a priority search tree are also optimal with an overall cost
of O(logn) in the worst case. The procedure for inserting a point P in a priority
search tree with root R is described in the algorithm below.

• Compare Py with Ry.

• If it is bigger recursively insert P in the subtree on path to Px

• If it is smaller replace root with P and recursively insert root in the proper
subtree.

2.3 The Pointer Machine Model

Another popular early model for analyzing algorithms, similar to the RAM model is
the Pointer Machine Model. Pointer Machines correspong roughly to high-level
programming languages without arrays. There are many types of pointer machine
models but the most popular is the Storage Modification Machine (SMM) intro-
duced by Schönhage in 1970 [Sch80].



The pointer machine model resembles the RAM model in having a stored pro-
gram and a similar flow of control. However, instead of operating on registers in
memory it operates on a single storage structure, called a ∆-structure, where ∆ is
a finite alphabet of at least two symbols. Typical is the binary alphabet 0, 1 . A
∆ structure S is a finite directed graph in which each node has k = #∆ outgoing
edges, which are labeled by the k elements of ∆. A path along nodes and edges of
the structure, represents every word (string of symbols e.g. 101101) ”the machine”
can accept.

Similar to the RAM model, the program of the pointer machine consists of a
flow of control instructions (goto, Accept, Halt,. . . ), transput instructions (Read
and Print where a Read will input a single bit and act like a conditional jump
depending on the value of the bit read), and instructions which operate on memory,
in this case a ∆ structure S. There exists three types of instructions of the latter
type:

1. new w: creates a new node which will be located at the end of the path traced
by w. All outgoing edges of the new node will be directed to the former node
p⋆(w).

2. set w to u: redirects the last pointer on the path labeled by w to the former
node p⋆(u).

3. if u = w (if u 6= w) then . . . : the conditional instruction. Here it is tested
whether the nodes p⋆(w) and p⋆(u) coincide or not.

The pointer machine model is rather more complicated and difficult to under-
stand than the RAM model. Aditionally, it is equally inefficient with the RAM
model when we have applications that deal with massive data, because it doesn’t
model the memory hierarchy of a typical contemporary computer system.

2.4 Memory Hierarchies

The memory of contemporary computer systems is structured under a hierarchy of
levels that are successively bigger in size and cheaper, but significantly slower. At
the top level of the hierarchy we have the inexpensive but low-speed external storage
devices, with access times that are many orders slower than the access time of high-
speed memory. In many applications therefore, external storage device access time
is the speed bottleneck. That’s why efficient algorithms must focus on minimizing



Figure 2.3: Memory hierarchy of a typical contemporary computer.

as much as possible the I/O accesses.
The design of increasingly faster Central Processing Units during the latest years,

was not accompanied by a similar boost in speed for computer memory. To deal with
the problem of speed difference between CPUs and memories, memory hierarchies
were introduced (Figure 2.3). According to this approach, small but fast memory is
kept at the first level close to the CPU. At the next levels we have memory devices,
that are larger in size and cheaper, but significantly slower. Memory in level i, acts
as a buffer for the memory at the next level i + 1.

The adoption of the memory hierarchy model is based on the principle of the
locality of reference. This principle states that, when a program references a par-
ticular memory address, it is very likely that it will reference it again many times
in a short period of time (time locality). Additionaly it is higly possible that a pro-
gram referencing a particular memory address, will reference neighbouring memory
addresses as well (space locality).

When a program requests a data item from the memory, CPU examines if the
data item resides in the first-level memory, which is closer to the processor. When
the data item cannot be found in the first-level memory, a cache miss is marked and
the processor tries to fetch the requested data item from the next memory level.
Caching and prefetcing heuristics have been developed to reduce the number of oc-
curences of a cache miss.

Caching and prefetching methods though, are typically designed to be general-
purpose and thus cannot be expected to take full advantage of the locality present



in every computation. Additionaly some computations themselves are inherently
nonlocal and are doomed to perform large amounts of cache misses. All these facts
are totally disregarded in the oversimplistic RAM model (§2.1) and the pointer ma-
chine model (§2.3) , resulting in poor performing algorithms for applications that
deal with massive data. That’s why even though most data structure research in
the algorithms community has focused on worst-case efficient internal memory data
structures, several authors have considered more accurate and complex multi-level
memory models than the two-level model.

2.5 The External Memory Model

Aggarwal and Vitter at 1988 [AV88], introduced the external memory model or
the I/O model. This level describes a computer system with a two-level memory.
The first level memory is the fast but limited in space main memory, with a capacity
of size M . The next level memory is the external storage device, which has a huge
capacity, but is extremely slow compared to the main memory. Transfers between
these two, are done via blocks of size B (Figure 2.4). The main memory thus, can
hold at most M/B blocks of the external memory. Whenever we read or write a
block from (or into) the external memory, an I/O operation is charged. We therefore,
use the term I/O to designate the communication between the internal memory and
the disks.

The primary feature of disks we want to model in the external memory model,
is their extremely long access time relatively to that of the internal memory. In
order to amortize the access time over a large amount of data, typical disks read or
write large blocks of contiguous data at once. Computation can only be performed
on objects in the internal memory. The measures of performance in this model are
the numbers of I/Os used to solve a problem, as well as the amount of space (disk
blocks) used. That’s why the primary concern when we design algorithms under
the external memory model is to minimize the number of I/Os, ignoring the CPU
time needed for the computations of the algorithm.

2.5.1 Fundamental External Memory Data Structures

In this section we will ilustrate some of the most fundamental external memory data
structures and the techniques and ideas used in their development. Several of the



Figure 2.4: In the external memory model transfers between disk and internal mem-
ory are done via blocks of data, containing B contiguous elements.

worst-case efficient data structures we consider are simple enough to be of practical
interest. Still, there is the need ,mainly in the database industry, to develop even
simpler data structures for practical purposes.

The B-tree

Tree-based data srtuctures arise naturally in applications, where data can be up-
dated and queries must be processed immediately.The B tree is propably the most
famous external memory data strucure [BM72, Com79]. The B-tree corresponds
to an internal memory balanced search tree.Many database systems use B-trees, or
variants of B-trees, to store information.

B-trees differ from internal memory binary trees, in that B-tree nodes may have
many children, from a handful to thousand. That is, the branching factor of a B-tree
can be quite large, although it is usually determined by the hardware characteristics
of the disk unit used.

The degree of each node in the B-tree (with the exception of the root) is re-
quired to be Θ(B), which guarantees that the height of a B-tree storing N items



Figure 2.5: Externalization of an internal memory search tree. B nodes are parti-
tioned together, to form a node of the B tree.

is Θ(logBN). The procedure of turning an internal memory data structure into its
equivalent external memory, is called externalization. To externalize the balanced
tree and thus create the B tree, we use a standard and simple technique, which
partitions the nodes of the tree into blocks of size B (Figure 2.5). The parameter
B represents a block of data and is chosen to be equal with the hardware storage
device block parameter to optimize the B-tree in terms of I/O disk accesses.

B-trees support dynamic dictionary operations and one-dimensional range search.
B-tree uses linear space (O(N/B) disk blocks) and supports insertions and deletions
in O(logBN) I/Os, which is optimal. One-dimensional range queries, asking for all
elements in the tree in a query interval [q1, q2], can be answered in O(logBN +T/B)
I/Os, where T is the number of reported elements. The space, update, and query
bounds obtained by the B-tree are the bounds we would like to obtain in general for
more complicated problems. The bounds are significantly better than the bounds
we would obtain if we just used an internal memory data structure. Note that the
query bound consists of an O(logBN) search-term corresponding to the familiar
O(log2N) internal memory search-term and an O(T/B) reporting term accounting
for the O(T/B) I/Os needed to report T elements.

The B tree is formaly defined in [CLR90] as follows:
A B-tree T is a rooted tree (whose root is root[T ]) having the following prop-

erties:

1. Every node x has the following fields:



(a) n[x], the number of keys currently stored in node x

(b) the n[x] keys themselves, stored in nondecreasing order, so that key1[x] ≤
key2[x] ≤ . . . ≤ keyn[x],

(c) leaf [x], a boolean value that is TRUE if x is a leaf and FALSE if x is
an internal node.

2. Each internal node x also contains n[x + 1] pointers c1[x], c2[x], . . . , cn[x]+1[x]
to its children. Leaf nodes have no children, so their ci fields are undefined.

3. The keys keyi[x] separate the ranges of keys stored in each subtree: if ki is
any key stored in the subtree with root ci[x], then

k1 ≤ key1[x] ≤ k2 ≤ key2[x] ≤ . . . ≤ keyn[x][x] ≤ keyn[x]+1.

4. All leaves have the same depth, which is the tree’s height h.

5. There are lower and upper bounds on the number of keys a node can contain.
These bounds can be expressed in terms of a fixed integer t ≥ 2 called the
minimum degree of the B-tree:

(a) Every node other than the root must have at least t − 1 keys. Every
internal node other than the root thus has at least t children. If the tree
is nonempty, the root must have at least one key.

(b) Every node can contain at most 2t− 1 keys. Therefore, an internal node
can have at most 2t children. We say that a node is full if it contains
exactly 2t− 1 keys.

When a node overflows during an insertion, it splits into two half-full nodes and if
the splitting causes the parent node to overflow, the parent node splits and so on.
Splitting can thus propagate up to the root, which is how the tree grows in height.
Deletions are handled in a symmetric way by merging nodes. During a deletion the
tree’s height may decrease.

The B+ Tree

An important variant of the B tree is the B+ tree [BM72]. The major difference of
the B+ tree is that all the records are stored in the leaves of the tree. The internal



Figure 2.6: A typical three-level B+ tree. Leaves are linked together, to optimize
range search.

nodes of the tree contain only keys and pointers and thus can have a higher branch-
ing factor. The leaves are linked together (usually in a linked list), in symmetric
order to facilitate range queries and sequential access (Figure 2.6).This does not
substantially increase space consumption or maintenance on the tree.

The fact that in the internal nodes of a B+ tree we need to store only keys
and pointers, allows for compression on these nodes. For example we can compress
the pointers stored in the internal nodes, with the following simple technique: if we
suppose that some consecutive blocks i, i + 1 . . . i + k are stored contiguously, then
it will suffice to store only a pointer to the first block and the count of consecutive
blocks.

The ReiserFS filesystem (for Unix and Linux), XFS filesystem (for IRIX and
Linux), JFS2 filesystem (for AIX, OS/2 and Linux), and NTFS all use this type
of tree for block indexing. B+ trees are also the index structure of choice in most
database implementations.

The Multiversion B-tree

In some database applications we need to be able to update the current database
while querying both the current and earlier versions of the database (data struc-
ture). One simple but very inefficient way of supporting this functionality is to
copy the whole data structure every time an update is performed. Another and
much more efficient way is throuh the (partially) persistent, or multiversion method



[BGO+96].
In this method, instead of making copies of the structure every time an update

is performed, we maintain one structure at all times, but for each element we keep
track of the time interval at which it is really present in the structure. This can
be done by augmenting each data element with a time interval. Every time an
update is performed to the data, a new version is created. We say that an element
is alive in it’s existence interval. In this structure we can search any element at any
version, but we can update only the most recent version, that’s why we call it a
partially persistent structure. In a fully persistent data structure instead, we can
make updates (inserts or deletes) in the history as well.

The Multiversion B-tree supports all the operations that the B-tree supports,
such as insert, delete, query. With the Multiversion B-tree we can also perform
a range query which returns all records whose keys lies between the given lowkey
and the given highkey in the given version. If we think of each data element as an
interval, where the interval’s endpoints are the time stamps of the element, then we
can also perform a time-stabbing query. This type of query, which is very useful
in computational geometry, returns all the data elements that are alive in a given
version i (Figure 2.7).

The Multiversion B-tree is asymptotically optimal concerning the query time,
achieving a bound of O(logBN + T ) I/Os , where T is the number of the reported
elements. It is also optimal concerning the space needed, achieving a spatial bound
of O(N/B). To achieve this kind of linear space requirement, certain constraints
are imposed on the number of elements that a node must contain.

More specifically, for each version i and each block A except the roots of the
versions, we require that the number of entries of version i in block A, is either
zero or at least d, where b = kd for block capacity b and some constant k; this is
called the weak version condition. After each structural change certain invariants
must also be maintained, which ensure the linear space bound of the multiversion
B tree. A structural change is triggered in two ways. A block overflow occurs as
the result of an insertion of an entry into a block that already contains b entries. A
block underflow, can never occure because entries are never removed from blocks.
However, the weak version condition may be violated in a non-root block as a result
of a deletion. This situation occurs if an entry is deleted in a block with exactly d
live entries and is called a weak version underflow.

After a block overflow occurs, the block is copied and all but the live entries
are removed. This operation is called a version split. In general, a copy produced
by this version split may be an almost full block. In that case, a few subsquent
insertions would again trigger a version split, resulting in a space cost of Θ(1) block



Figure 2.7: Time-stabbing query at time i.

per insertion. To avoide this and reduce the space cost of the MVBT, the following
invariant is imposed: After a version split, at list ǫd + 1 insert or delete operations
are necessary to arrive at the next block overflow or version underflow in that block,
where ǫ is a constant chosen to reflect the fraction of the data entries that are guar-
anteed to be in a new node in the underlying data structure (for the B-tree ǫ = 0.5).
As a consequence, the number of current entries after a version split must be in the
range from (1+ǫ)d) to (k−ǫ)d. This condition is called the strong version condition.
If a version split leads to less than (1 + ǫ)d entries, a strong version underflow is
marked and a merge is attempted with a copy of a sibling block containing only its
current entries. Similarly, if a version split leads to more than (k − ǫ)d entries in a
block, a strong version overflow is marked and a key split is performed.

R-Tree

The need to index multidimensional data led to the development of new advanced
data structures that stem from the B tree. One of the most widely used data str-
cutures for spatial databases indexing multidimensional information is the R-Tree



[Gut85] and its variants. A common operation on spatial data handled by the R-
Tree is a search for all objects in an area, for example to find all countries that have
land within 20 miles of a particular point. The R-Tree can be used for efficiently
storing and retrieving a variety of geometric objects, such as points, segments, poly-
gons and polyhedra, using linear disk space.

The R-Tree partitions the space whith hierarchically nested, and possibly over-
lapping, minimum bounding rectangles of the spatial objects that are represented
(MBR, otherwise known as bounding boxes, i.e. ”rectangle”, what the ”R” in R-
tree stands for). The internal nodes contain the minimum bounding rectangles of
rectangles below each child.

The basic rules for the formation of an R-tree are similar to those for a B-tree.
All leaf nodes appear at the same level. Each entry in a leaf node is a 2-tuple of
the form (R, O) such that R is the smallest rectangle that spatially contains data
object O. Each entry in a non-leaf node is a 2-tuple of the form (R, P ) such that
R is the smallest rectangle that spatially contains the rectangles in the child node
pointed at by P . An R-Tree of order (m, M) means that each node in the tree, with
the exception of the root, contains between m ≤ ⌈M/2⌉ and M entries. The root
node has at least two entries unless it is a leaf node.

Searching An R-Tree

Searching with a query rectangle and reporting the R-Tree’s rectangles that inter-
sect it, is done in a similar manner with the B Tree. The search starts from the root
node of the tree and proceeds to the children determining if every rectangle in a
node, overlaps the search rectangle or not. For all the internal nodes whose entries
overlap the search rectangle, recursively call the search procedure for the subtree
rooted at these nodes. For the leaf nodes a search is performed in their entries to
check if they overlap the search rectangle and if they do, they are reported.

The only problem with this search procedure, is that a large number of nodes
have to be examined since a rectangle may be contained in the covering rectangles of
many nodes while its corresponding record is contained only in one of the leaf nodes.
Due to this deficiency the search complexity of the R-Tree can be even linear in the
worst case. The efficiency of the R-Tree relies on the assumption that for the most
kinds of data the update algorithm will maintain the tree in a form that allows the
search algonthm to elimimate irrelevant regions of the indexed space, and examime
only data near the search area. Variants of the R-Tree have been implemented to
cope with this deficiency, such as the packed R-Tree by Royssopoulos and Leifker



[RL85].

Dynamic Operations In An R-Tree

The algorithm for inserting an object (i.e., a record corresponding to its enclosing
rectangle) in an R-Tree is analogous to that used for B-trees. New rectangles are
added to leaf nodes. The appropriate leaf node is determined by traversing the
R-tree starting at its root and at each step choosing the subtree whose correspond-
ing rectangle would have to be enlarged the least. Once the leaf node has been
determined a check is made to see if insertion of the rectangle will cause the node
to overflow. If yes, the node must be split and the records of the node must be
distributed in the two new nodes. Splits are propagated up the tree.

Deletion of a node, say R, from an R-tree proceeds by locating the leaf node,
say L containing R and removing R from L. Next, adjust the covering rectangles on
the path from L to the root of the tree while removing all nodes in which underflow
occurs and adding them to the set U . Once the root node is reached, if it has just
one son, the son becomes the new root. The nodes at which underflow occured
(i.e., members of U) are inserted at the root. Elements of U that correspond to leaf
nodes correspond in the placement of their constituent rectangles in the leaf nodes,
while other nodes are placed at a level so that their leaf nodes are at the same level
as those of the whole tree.

The Hilbert R-Tree

Even though the R-Tree is widely adopted by the database industry and has proven
to perform well in practise, it is still a heuristic method with no well-defined qual-
ity guarantees. In particular, when multiple dynamic operations are performed,
the space utilization of the R-Tree severely deteriorates, so as the time to answer
queries.To address these deficiencies several variants of the R-Tree have been pro-
posed, like the R+-tree, the R∗-tree etc. One very popular variant is the Hilbert
R-tree [KF94].

The Hilbert R-tree is based on space filling curves (or fractals), and specifically,
the Hilbert curve to achieve better space utilization and thus better overall perfo-
mance. The Hilbert curve is used to impose a linear ordering on the data rectangles
and thus achieving a better clustering of the rectangles in the nodes of the tree.



Figure 2.8: Hillbert curves of order 1,2 and 3

Space-filling curves

Space-filling curves are used in database context whenever we want to map from
multiple dimensions to one dimension in a way that preserves locality. A space
filling curve visits all points in a k-dimensional grid and never visits itself. Besides
the Hilbert curve, we have the Z-order ( or Peano curve), the Gray-code curve etc. It
has been proven experimentally, that the Hillbert curve achieves the best clustering.
The Hilbert curve is used extensively in a wide variety of applications.

To construct the Hilbert curve we begin with the basic Hilbert curve on a 2X2
grid denoted by H1, which is shown in figure 2.8(a). To construct the second order
Hilbert curve we replicate the first order curve in four quadrants. When replicating
the lower left quadrant is rotated clockwise 90o, the lower right quadrant is rotated
antl-clockwlse 90o, and the sense (or direction of traversal) of both lower quadrants
is reversed. The two upper quadrants have no rotation and no change of sense Thus
we obtain figure 2.8(b). Remembering that all rotation and sense computations
are relative to previously obtained rotation and sense in a particular quadrant, a
repetition of this step gives rise to figure 2.8 (c). We can obtain higher order Hilbert
curves by repeating this process. It is straightforward to obtain the linear coordinate
along the curve for any given X and Y coordinate value in the 2-D grid.



Packed Hilbert R-Trees

Static data appear in several applications. For example, in cartographic databases,
insertions and deletions are rare; the same is true for databases that are published
on CD-ROMs; databases with spatio-temporal metereological and environmental
data are seldom modified too. The volume of data in these databases is expected
to be enormous, in which case it is crucial to minimize the space overhead of the
index.

Bulk-loading a tree with a static dataset is a well-known and very important
technique to create indexes, that has many advantages compared to the method
using individual insertions. First of all, it is much easier and faster to create the
index via bulk-loading methods. More importantly, the space utilization is much
better when we use bulk-loading techniques to create indexes(usually 100%), im-
proving the overall efficiency by minimizing the number of nodes visited when we
query the index. Finally, when we bulk-load R-tree like structures, we can minimize
the overlap between the nodes, that severely degrades the performance of the tree.

Kamel and Faloutsos [KF93] developed algorithms for bulk-loading hilbert R-
trees with static spatial datasets. Their experimental results shows that the packed
Hilbert R-tree performs better in practise than a tree constructed using individual
insertions.

2.5.2 The External Priority Search Tree

Due to its great practical importance the priority search tree has been the target
of many externalization attempts [IKO87], [BG90], [RS94]. All off these solutions
have either suboptimal query time, or they use non-linear space. Samoladas and
independently Arge and Vitter [ASV99], [Sam01], solved this long-standing prob-
lem optimally in both space O(N/B) and query time O(logB N + T/B) I/Os, with
optimal worst-case update cost O(logB N) I/Os.

The External Priority Search (EPS) Tree is applied to the 3-sided query
problem for 2-d points as it’s internal memory counterpart, but ,unlike the simple
priority tree, it is optimal concerning the I/O access. The natural idea for construct-
ing an EPS tree is to partition the blocks of the internal memory priority search
tree into “supernodes” of fan-out Θ(B). However, this solution is not optimal con-
cerning the I/O search cost, since one has to pay non-optimal cost (O(logB N +T ))
for searching and reporting T points. Better results can be achieved if a technique
callled bootstrapping is used. The EPS tree uses this technique by employing a B+



Figure 2.9: An internal node of the EPS tree. The Y -sets of the children of the
node indicated by the bold points are the points within the x-range of the children,
which have the highest y-coordinates.

Tree (or a Weight Balanced B Tree) as the underlying base tree and associating each
node of the base tree with a small substructure called a child cache that supports
three-sided queries. Each node in the base tree corresponds to a one-dimensional
range of x-values, called its x-range, and its Θ(B) children correspond to subranges
consisting of vertical slabs as depicted in Figure 2.9. The child cache associated
with each node w contains O(B2) nodes, O(B) corresponding to each child u of
the node, called the Y -set of the u node. The Y -Set of the node u contains all the
points with the highest y-coordinate among the points within its x-range that are
not already stored in ancestors of w. Y -sets of the leafs of the base tree must be
either empty or contain at least B/2 points.

Querying The EPS-tree

Performing one or two-dimensional queries in the EPS-tree can be done in exactly
the same manner as the simple B-tree. The primary function of the EPS-tree is per-
forming I/O efficiently, three-sided queries Q(a, b, c). A three-sided query starts at
the root of the tree and descends to its children where their child caches are queried.
A child u of a node v is visited if its full Y -set was reported, or its x-range contains
the x-restriction points, a and b, of the query (a, b, c). This is done because if one
or more points of the Y -set corresponding to u isn’t reported, then all the subtree



rooted at u won’t be reported either, due to the construction of the EPS-tree (all
the nodes of the subtree rooted at u will have smaller y-coordinates than u).

The time complexity for querying the EPS-tree is optimal O(logB N + T/B)
I/Os. This upper bound can be explained as follows. The complexity of visiting an
internal node v is O(1 + Tv/B) I/Os, where Tv is the number of points reported in
node v. The nodes on the path to the leaf containing the boundary points a, b are
reported adding up to a complexity bound of O(logB N + T/B). The other inter-
nal nodes vi are reported only if their parent’s full Y -sets corresponding to vi and
containing Θ(B) points are reported adding up O(T/B) to the overall complexity.

Updating The EPS-tree

To insert a point p(x, y) into an EPS-tree with root u, we are first inserting it’s
x coordinate into the base tree data structure. Then, a proper update of the ap-
propriate child caches is needed, called a “bubble down” operation. During this
operation we first query the child cache of the root to find the Y -set ,corresponding
to the child ui with the proper x-range which includes px. If py is smaller than the
y-coordinates of all the Θ(B) points of the Y -set, then we insert recursively p into
ui. Otherwise we insert p into the Y -set and we insert the point with the smallest
y-coordinate of the Y -set, recursively into ui. If u is a leaf we simply store p into
the associated block.

To delete a point p from an EPS-tree we perform a search and we delete p from
the proper Y -set of node u corresponding to it’s child ui. Because the invariant that
a Y -set must contain Θ(B) points has been violated with this operation, we must
promote a point from ui, with a recursive operation called “bubble up”. During this
operation we recursively promote the point p′ with the highest y-coordinate from
the child ui belonging to a Y -set corresponding to the slab containing p. Afterwards,
we delete the point p′ from it’s original Y -set.

To calculate the cost of inserting a point in the EPS we first calculate the cost
of finding and inserting the point in the base tree which is O(logB N). To query
the child caches we use O(logB B2 + B/B) = O(1)I/Os amortized assuming that
we are performing queries that return at most B points. When a node u of the base
tree splits due to the insertion of the point p, then the corresponding child cache
also splits. To maintain the invariant that a child cache contains Θ(B2) points,
we have to perform a rebalancing “bubble up” operation, which promotes Θ(B)
points with the highest y-coordinate from the children of the node u to the child
cache of u. In the worst case an insertion can cause O(logB N) splits, so the cost of



the rebalancing operations will be O(B logB N) in the worst case. However, these
splits happen only one in every B/2 insertions, so by amortizing this cost we can
conclude that the cost of the rebalancing operations is O(logB N). Thus, the over-
all cost of inserting a point p into the EPS-tree is the optimal O(logB N+T/B) I/Os.

2.6 The Cache-Oblivious Model

As computer systems become more complex, the memory hierarchy that is incorpo-
rated in them grows in the number of levels that it contains. As a result of that, the
external memory model cannot accurately represent the contemporary computer
systems, because it considers only a two-level memory hierarchy (main memory and
external storage) and the external memory algorithms depend on the M and B pa-
rameters of the internal memory and the external storage. In practice though, we
may have several levels in our memory hierarchy with varying parameters.

The need to describe contemporary computer systems even more accurately,
led to the adoption of the Cache-Oblivious Model by Frigo et al. [FLPR99].
The cache-oblivious model, assumes no knowledge about the memory hierarchy. In
essence, a cache-oblivious algorithm is an algorithm formulated in the RAM model
but analyzed in the I/O model, with the analysis required to hold for any B and
M. Memory transfers are assumed to be performed by an on-line optimal replace-
ment strategy. The beauty of the cache-oblivious model is that since the I/O-model
analysis holds for any block and memory size, it holds for all levels of a multi-level
memory hierarchy. In other words, by optimizing an algorithm to one unknown
level of the memory hierarchy, it is optimized on all levels simultaneously. Thus
the cache-oblivious model is effectively a way of modeling a complicated multi-level
memory hierarchy using the simple two-level I/O-model.

Another benefit of the cache-oblivious model is self-tuning. Typical cache-aware
algorithms require tuning to several cache parameters which are not always avail-
able from the manufacturer and often difficult to extract automatically. Parameter
tuning makes code portability difficult. Perhaps the first and most obvious moti-
vation for cache-oblivious algorithms is the lack of such tuning: a single algorithm
should work well on all machines without modification.

The complexity of the cache-oblivious algorithms is studied under the ideal
cache model (Z, L), which enables us to reason about a two level memory model
like the external memory model but prove results about a multilevel memory model.
This model, which is illustrated in Figure 2.10, consists of a computer with a two-



level memory hierarchy consisting of an ideal (data) cache of Z words and an ar-
bitrarily large main memory. The cache is partitioned into cache lines, each con-
sisting of L consecutive words which are always moved together between cache and
main memory. Cache designers typically use L > 1, banking on spatial locality to
amortize the overhead of moving the cache line. We shall generally assume in this
paper that the cache is tall:

Z = Ω(L2)

which is usually true in practice. The model is built upon some basic assumptions.
The following four assumptions are key to the model.

• Optimal replacement The replacement policy refers to the policy chosen
to replace a block when a cache miss occurs and the cache is full. In most
hardware, this is implemented as FIFO, LRU or Random. The model assumes
that the cache line chosen for replacement is the one that is accessed furthest
in the future. The strategy is called optimal on-line replacement strategy.

• Two levels of memory There are certain assumptions in the model regarding
the two levels of memory chosen. They should follow the inclusion property
which says that data cannot be present at level i unless it is present at level
i + 1. In most systems, the inclusion property holds. Another assumption is
that the size of level i of the memory hierarchy is strictly smaller than level
i + 1.

• Full associativity When a block of data is fetched from the slower level of
the memory, it can reside in any part of the faster level.

• Automatic replacement When a block is to be brought in the faster level of
the memory, it is automatically done by the OS/hardware and the algorithm
designer does not have to care about it while designing the algorithm. Note
that we could access single blocks for reading and writing in the external
memory model, which is not allowed in the cache oblivious model.

Unlike various other hierarchical-memory models in which algorithms are ana-
lyzed in terms of a single measure, the ideal-cache model uses two measures. An
algorithm with an input of size n is measured by its work complexity W (n), –its
conventional running time in a RAM model– and its cache complexity Q(n; Z; L)
–the number of cache misses it incurs as a function of the size Z and line length
L of the ideal cache. When Z and L are clear from context, we denote the cache
complexity simply as Q(n) to ease notation.



Figure 2.10: The ideal-cache model



2.6.1 The Van Emde Boas Layout

A fundamental data structure that is optimal for the cache-oblivious model is the
van Emde Boas layout. This data structure is merely a layout of data in a memory
array, such that answering a search of an element among N comparable elements,
can be answered in optimal O(logB N) memory transfers. What makes this data
structure optimal for the cache-oblivious model, is that we don’t have to know about
the B parameter. This data structure corresponds to a static binary search tree in
the RAM model, but with much better performance for memory hierarchies.

To construct the Van Emde Boas layout for N items, we just construct a binary
search tree for these items. This tree will be stored sequentially in memory accord-
ing to a recursive layout (Figure 2.11). Conceptually split the tree at the middle
level of edges, resulting in one top recursize subtree and roughly

√
N bottom re-

cursive subtrees, each of size roughly
√

N . Recursively lay out the top recursive
subtree, followed by each of the bottom recursive subtrees. Each recursive subtree
is laid out in a single segment of memory, and these segments are stored together
without gaps.

The van Emde Boas layout is a kind of divide-and-conquer algorithm, except
that just the layout is divide-and-conquer, whereas the search algorithm is just the
usual tree-search algorithm: look at the root and go left or right appropriately. One
way to support the search navigation is to store left and right pointers at each node.



Figure 2.11: The van Emde Boas layout.





Chapter 3

Experimental Evaluation Of Data
Structures

The performance analysis of external memory data structures has mainly concen-
trated on their I/O efficiency. However, as main memory cost decreases, it is usual
in practice to load a data structure almost entirely in main memory. The CPU cost
thus in these cases, overwhelms the I/O cost. In internal memory data structures
on the other hand, disk latencies are almost totally disregarded when analyzing
them with the RAM model, even though data intensive applications need to access
secondary data storage frequently.

In this chapter we try to address this issue, by experimentally evaluating both
the I/O cost as well as the CPU cost of querying and loading external memory
data structures. Internal memory data structures query times are also evaluated by
altering the data set size and noticing the effects of the introduction of high disk
latencies. Various data structures such as the R-Tree and variants, the EPS tree
and the priority tree are compared and conclusions are drawn from their relative
performance under various data sets.

3.1 Implementation Details

3.1.1 The EMIL Library

All of our external memory algorithm implementations make use of the External
Memory Infrastructure Library (EMIL) written by Vasilis Samoladas. EMIL is
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a C++ library that abstracts external memory management primitives. The pro-
grammer can thus implement disk-oriented data structures almost as easy as writing
main-memory data structures. My contribution was to port the documentation to
the Doxygen documentation tool [Dox].

External memory is organized in blocks in EMIL. The size of the block is a
user defined multiple of the operating system’s page size. The effect of the choice
of the block size in the overall performance of the external memory data structures,
is examined experimentally. A set of blocks in EMIL is organized in pools, which
is an abstraction for files in external storage. Blocks are accessed in EMIL through
pins which contain information about the block’s pool and it’s unique id. Pins are
much like pointers in regular programming, which makes it easy for programmers
to implement external memory data structures. EMIL has also a buffer manager
for the blocks, which uses an LRU replacement policy, minimizing the I/Os needed
to fetch the blocks from disk to internal memory and thus making it more efficient.

3.1.2 Experiment Setup

All of the data structures were implemented in C++ using the EMIL library for the
external memory data structures. An External Priority Search Tree (EPST) was
implemented using the algorithms from [Sam01]. Two implementations of a simple
R-tree, one using the EMIL library and one main-memory, were implemented as a
straightforward application of the algorithms in [Gut85]. The Linear-Cost algorithm
was used as a choice for handling node overflows, due to it’s decreased complexity.
A Hilbert R-Tree was constructed, because it is a popular R-tree variant. A bulk-
loaded version of the Hilbert R-tree was also implemented, using algorithms from
[KF93]. From the different methods proposed, we chose to compute the Hilbert
values for the center of the rectangles.

To evaluate the external memory data structures, various three-sided queries
were performed. We chose two different synthetic datasets and evaluated the data
structures by querying them with different query sizes and aspects. We also varied
the block size in pages to measure its effect in query performance.

We constructed two kinds of synthetic datasets for the experiments; a Fibonacci
dataset and a uniform one with varying sizes (1,000,000 , 10,000,000 and 100,000,000
keys). Using these datasets a number of trees were constructed and queried by a
set of uniformly distributed queries. The expected query size was varied from 10
to 50,000 keys. The block size was varied from one to four operating system pages.
We also measured the time to load the datasets on the trees.



The quantities that were measured to evaluate the performance of the external
memory data structures were the total running (real) time, the CPU time and the
number of disk I/Os. To neutralize the effect of the operating system buffer, that
would alter the number of disk I/Os, we turned the operating system’s swap mem-
ory off. Because EMIL has also got a buffer and we needed to make sure that the
pages requested were from the disk and not from the main memory buffer of EMIL,
we reserved a large amount of main memory within our programs.

Our primary concern is to identify the hidden constant in the asymptotic anal-
ysis of the external memory data structures. We also want to examine by varying
the dataset size, at which point the I/O cost overwhelms the CPU cost and for
relatively small datasets, where does CPU cost dominate the total running time.
We also want to study the performance of loading the data structures with a rel-
atively large dataset. We expect that the bulk-loaded data structures will greatly
outperform the data structures built with individual insertion. Bulk-loading is also
expected to enhance the quality of the data structures and its overall performance,
which is to be experimentally asserted. Finally, we expect that by choosing small
block sizes, the performance will be better for small data sets and worse for large.

3.1.3 Results

Bulk-Loading Data Structures

The loading time of an online data structure is arguably less important than the
query time for most applications. Still, the construction time must be reasonable
for a data structure to have any practical use, and can be used to further discrim-
inate between solutions that have similar query performance. We expect that the
data structures that are bulk-loaded with a static dataset, will perform much better
than the data structures that are built with individual insertions. Additionaly, we
expect that the data structures that are built with heuristic algorithms, such as the
R-Tree and variants will pay an extra overhead for visiting irrelevant nodes for some
insertions. The main memory data structures will perform well until the dataset
gets big enough so that it can’t fit in main memory. In that point the disk I/Os
will dominate the total running time.

We experimented with the bulk-loading efficiency of the EPST, the Hilbert R-
Tree, the Packed Hilbert R-Tree and the Priority tree. We constructed several
synthetic Fibonacci datasets with sizes ranging from 100,000 points to 30,000,000
points. Each point is a struct holding two unsigned integers. The block size for all



the data structures was set to one operating system page. For each dataset we con-
structed the data structures and we measured their efficiency in terms of CPU and
real time in nanoseconds, needed to complete the bulk-loading. The EPST, priority
tree and the Hilbert R-Tree were built with individual insertions using straightfor-
ward implementations of the algorithms described in chapter 2. The paked Hilbert
R-Tree was bulk-loaded with the algorithm Hilbert-Pack as in [KF93]. To sort the
rectangles on ascending hilbert values we used an external merge-sort algorithm.

The results are shown in Figure 3.1 where we can see the CPU and the real
time in nanoseconds to bulk-load the EPST, the Priority tree, the Packed Hilbert
and the Hilbert R-Tree for various dataset sizes. As we expected the Packed Hilbert
R-Tree outperforms the data structures that are loaded with individual insertions.
The priority tree performs worse than the EPST due to the increased number of
I/Os needed for a main memory data structure when loaded with a large dataset.
The simple Hilbert R-Tree performs poorly mainly because many irrelevant nodes
are visited at each insertion. We also notice that for large datasets the total running
time for the priority tree increases dramaticaly. This is because of the disk I/Os
that greatly affect the performance.

Query Performance

Measuring The Performance Of Data Structures In Terms Of Disk I/Os

The query performance is the most important factor when we want to examine the
quality of a data structure. That’s why we are going to analyze every factor af-
fecting the query performance of the data structures. When dealing with massive
datasets, the disk I/Os can become a major performance bottleneck affecting query
performance. The total time needed to fetch a block from the disk can be orders
of magnitude higher than the time needed to fetch a page from the main memory.
That’s why a data structure that deals with massive data needs to be I/O efficient.

We will query and examine the disk I/O efficiency of the EPST, the R-Tree
and the Hilbert R-Tree. The trees are loaded with various datasets and the queries
are rectangles and three-sided queries of various sizes and aspects. We expect that
the Hilbert R-Tree will outperform the simple R-Tree for some queries, because of
it’s improved insertion algorithms. Because of these algorithms, the Hilbert R-Tree
achieves better space utilization which affects the query performance. Many of the
queries that were conducted have a high aspect ratio. We expect that the R-Trees
will perform poorly under these queries because they will have to visit many redun-
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Figure 3.1: Plot showing CPU and real time(ns) needed to bulk load various data
structures, against the dataset size.



dant nodes. Additionally, because of the heuristic nature of the R-Trees, we expect
that they will perform well only for certain datasets and queries.

The trees were constructed with a uniform and a Fibonacci dataset, both of
them of size 10,000,000 points. The block size was set to two operating system
pages. The queries were a set of rectangles for the R-Trees and variants and a set of
three-sided queries for the EPST of various sizes. The query algorithms that were
used, are straightforward implementations of the algorithms described in chapter 2.
To measure raw disk I/Os and not the blocks that were fetched by the operating
system’s or the Emil’s buffer, we reserved a large amount of main memory for our
programs and we turned the operating system’s swap memory off.

The results are shown in Figure 3.2 where we can see scatter plots that depict the
disk I/Os against the query size for a simple R-Tree, a Hilbert R-Tree and in Figure
3.3 for the EPST. The trees are loaded with a Fibonacci synthetic dataset. There
is also a least square approximation of the results depicted in these figures. From
these results we notice as we expected, that the R-Trees perform poorly compared
to the EPST. We notice also that there is a tight correlation between the query size
and the disk I/Os in the EPST, which we don’t see in the R-Tree and variants. This
is because, even though some queries return a small number of points, the R-Trees
still have to visit a great number of irrelevant nodes. The type of these queries
simply don’t abide with the assumptions made in the heuristic R-Tree algorithms.
We also observe that, as we expected, the Hilbert R-Tree indeed outperforms the
simple R-Tree in terms of disk I/Os.

In Figure 3.4 we can see a scatter plot of disk I/Os vs the query size for a
simple R-Tree loaded with a uniform synthetic dataset.The block size was set to
four operating system pages. We observe that, even though the performance is still
rather poor, the I/Os are correlated with the query size. A “good” dataset thus,
greatly affects the performance and the quality of the resulting R-Tree which is not
the case for the EPST.

Measuring The Performance Of Data Structures In Terms Of CPU Time

When the dataset is small enough to fit in the main memory of the computer the
major factor that affects the query performance of a data structure is the CPU time
needed. But with the introduction of cheap and large capacity main memory, even
for massive datasets we can have all, or a great part of the tree fit in the main
memory. In these cases, the CPU time will play a significant role in the overall
performance of the data structure and thus we cannot afford to ignore it in our
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Figure 3.3: Plot showing Disk I/Os vs the query size for the EPST.
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analysis.
We will evaluate experimentally in terms of CPU time the Packed Hilbert R-

Tree, the Hilbert R-Tree, the EPST, the R-Tree, the priority tree and the main
memory R-Tree. We expect that data structures that have performance guaran-
tees such as the EPST and the priority tree, will perform overall better than the
heuristic data structures such as the R-Tree and variants. Additionally, we expect
that the bulk-loaded data structures such as the packed Hilbert R-Tree will perform
better than the equivalent data structures that were built with individual insertions,
because of the better space utilization that they exhibit. Again we expect that for
”suitable” datasets, such as the uniform, and certain types of queries, the R-Trees
and variants will perform much better.

All the trees were loaded with two datasets of size 10,000,000 points. The one
was a Fibonacci and the other a Uniform dataset. The block size for the external
memory data structures loaded with the Fibonacci dataset was set to one operating
system page. For the data structures loaded with a uniform dataset, the block size
was configured to two operating system pages. The data structures were queried
by a set of three-sided queries for the EPST and the priority tree and rectangles
for the R-Trees and variants, of varying size and aspect. The time was measured in
nanoseconds

Figures 3.5, 3.6 show the CPU time in nanoseconds against the query size for
the EPST, the Packed Hilbert R-Tree and the R-Tree. We notice, as we expected,
that the R-Trees perform poorly compared to the EPST due to the nature of the
dataset and the queries. Again we can see in the R-Tree and variants, that even
for small query sizes we have a wide spread in the CPU time for different queries,
which is because of their aspects. We also notice that the Packed Hilbert R-Tree
indeed outperforms the simple R-Tree in all kinds of queries

In 3.7 we can see how a Hilbert R-Tree and an EPST, both loaded with a uni-
form dataset, perform in terms of CPU time. Again the EPST outperforms the
Hilbert R-Tree, but we observe that there is a tight correlation between the query
size and the CPU time that doesn’t exist for the Fibonacci dataset for the R-Trees.
The type of dataset thus, severely affects the R-Tree’s and variants’ performance.

For the main memory data structures, we can see in 3.8 the Priority and the
R-Tree’s CPU performance against the query size, for a Fibonacci dataset. From
these diagrams, we notice that the main memory data structures perform better
than their external memory counterparts when the query size is small. This is be-
cause of the overhead that is introduced by the external memory framework. We
also notice that the priority tree is not affected by the queries’ aspect and exhibits
a tight correlation between query size and CPU time, which is not the case for the



R-Tree.

Effect Of Diks I/Os And CPU Time In The Total Running Time Of A
Query

Main memory data structures are analyzed and implemented in a way that the CPU
cost is minimized, disregarding any other factor. It is certain however, that when
the dataset size exceeds the size of the main memory, disk I/Os contribute signif-
icantly in the total running time of a query and in fact, they sometimes dominate
it. External memory data structures on the other hand are implemented in a way
such that the number of disk I/Os will be as small as possible, disregarding any
other factor. However, for certain datasets and queries the CPU cost contributes
significantly in the total running time of a query. In this section we are going to
experimentally investigate the correlation between disk I/Os and CPU time with
the total running time, when querying data structures. We are expecting, that for
main memory data strucures the CPU cost will be the dominant factor for small
dataset sizes, but after a certain dataset size the introduction of disk I/Os will
severely affect the trees’ performance. For external memory data structures, we are
expecting that for small to medium dataset sizes the CPU cost will not be negligible
as their model imply, but as the dataset size increases, the contribution of the disk
I/Os to the total running time will be significantly bigger.

In this section we measured the total running time and the CPU time in nanosec-
onds of a query returning approximately 50,000 points for the priority tree. We also
measured the disk I/Os needed to query a Packed Hilbert R-Tree where the query
size is again approximately 50,000 points. We loaded the data structures with Fi-
bonacci datasets of various sizes, from 10,000 to 30,000,000 points for the priority
tree and from 10,000 to 60,000,000 points for the Packed Hilbert R-Tree. The block
size for the Packed Hilbert R-Tree was configured to one operating system page.

In Figure 3.9 we can see a plot of the total time and the CPU time needed for
a query that returns approximately 50,000 points, against the dataset size for the
priority tree. As we can see from the diagram, the total time is almost linearly
correlated to the dataset size, until the size of 20,000,000 points when we notice a
sharp increase of the query time. From this point on the disk I/Os introduce a high
overhead, making this main memory data structure impractical. We also notice how
little does the CPU time contribute in the total running time for large datasets. In
Figure 3.10 we can see the disk I/Os needed to query packed Hilbert R-Trees of
various sizes. We notice that for small but not negligible dataset sizes, the number
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Figure 3.5: Scatter plot showing CPU time vs the query size for the R-Tree and the
Hilbert R-Tree.
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Figure 3.6: Scatter plot showing CPU time vs the query size for the Packed Hilbert
R-Tree and the EPST.
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Figure 3.7: Scatter plot showing CPU time vs the query size for the Hilbert R-Tree
and the EPST loaded with a uniform dataset.
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Figure 3.8: Scatter plot showing CPU time vs the query size for the Priority Tree
and the Main Memory R-Tree.



of disk I/Os is rather small and thus they play a small role in the overall tree’s
performance. After the dataset size of approximately 10,000,000 points the number
of disk I/Os sharply increases and so do their contribution to the total running time
of the query.
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Figure 3.9: Total time against dataset sizes for main memory priority search trees.

Effect Of The Block Size In Query Performance

External memory data structures transfer data between the main memory and the
disk via blocks of user defined size B. By transfering data in chunks, they are able
to reduce the number of I/Os needed for a query and improving their performance.
We are expecting thus, that by increasing the block size for an external memory
data structure, it’s query performance will be improved. However, by increasing the
block size the CPU cost is also increased. There must be therefore, a limit where
the increase of the block size will actually not be beneficial for the overall query
performance of a data structure.

In this section we experimented with EPSTs loaded with Fibonacci datasets of
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sizes 1,000,000 points and 100,000,000 points with varying block sizes (1,2,4 pages).
We measured the query performance of these trees, by running a set of three-sided
queries and measuring the CPU time and the total running time in nanoseconds
and the disk I/Os.

In Figures 3.11, 3.12, 3.13 we see the effects of varying the block size (1,2,4
pages) on the EPST performance (CPU time, disk I/Os, total time). The trees are
loaded with a relatively small Fibonacci dataset of 1,000,000 points that fits in the
main memory. We notice that a small increase of the block size is beneficial for the
overall tree performance. Of course, the increase in the tree’s performance is not
linearly correlated with the block size, as we can also see from the diagrams, and we
expect that for a very large block size, the performance would actually deteriorate.

In Figures 3.14, 3.15, 3.16, we can see two EPSTs loaded with a large dataset
of 100,000,000 points that doesn’t fit in the main memory. The one has block size
set to one page and the other set to four pages. We notice that here the overall
performance deteriorates when we increase the block size. As we can see from Fig-
ure 3.15, even though the number of disk I/Os decreases as we increase the block



size, the overall query time (Figure 3.16) increases. This result directly disproves
the assertion that is made in the external memory model, where only the disk I/Os
are taken into account and not the CPU time, in the analysis of data structures.
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Figure 3.11: Scatter plot showing the effect of the block size in CPU time for the
EPST loaded with a small dataset.
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Figure 3.12: Scatter plot showing the effect of the block size in disk IOs for the
EPST loaded with a small dataset.
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Figure 3.13: Scatter plot showing the effect of the block size in real time for the
EPST loaded with a small dataset.
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Figure 3.14: Scatter plot showing the effect of the block size in CPU time for the
EPST loaded with a large dataset.
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Figure 3.15: Scatter plot showing the effect of the block size in disk I/Os for the
EPST loaded with a large dataset.
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Figure 3.16: Scatter plot showing the effect of the block size in real time for the
EPST loaded with a large dataset.





Chapter 4

Parallel Bulk-Loading Hilbert
R-Trees

4.1 The MapReduce Model

The need to process vast amounts of data in large organizations like Google or Ya-
hoo!, has led to the development of highly scalable and efficient parallel systems.
The majority of the computations that take place in such large organizations are
conceptually straightforward. However, the input data is usually large and have
to be distributed across hundreds of thousands of machines in order to finish in a
reasonable amount of time. Unfortunately, the majority of the distributed systems
that are available, obscure the original simple computation with large amounts of
complex code that deals with issues of parallelism.

As a reaction to this complexity, a new abstraction was designed to separate the
messy details of parallelization, such as fault tolerance, data distribution and load
balancing, from the actual computations. This abstraction is called the MapRe-
duce [DG04] model and was inspired by functional programming primitives. Com-
putations with the MapReduce model, involve applying a map operation to each
logical record in our input, in order to compute a set of intermediate key/value
pairs, and then applying a reduce operation to all the values that shared the same
key, in order to combine the derived data appropriately. All computations that can
be expressed with this model, can be parallelized easily, regardless of their size.

The computations in the MapReduce model take a set of key/value pairs as
input, and produce a set of output key/value pairs. The user must provide only
two functions: Map and Reduce. Map function provided by the user, must take
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an input pair and provide a set of intermediate key/value pairs. The MapReduce
library will group together all intermediate values associated with the same key, and
pass them to the user defined Reduce function. The Reduce function accepts an
intermediate key and a set of values for that key. It merges together these values
to form a possibly smaller set of values. All the other issues of parallelization are
handled by the MapReduce library and are abstracted from the user. Many inter-
esting data intensive applications can be expressed in the MapReduce model, such
as distributed grep, reverse web-link graph, distributed sort and many more.

4.1.1 Apache Hadoop

A widely used open source implementation of the MapReduce interface is Hadoop
[Had] by the Apache Software Foundation. Hadoop is a framework that allows
running applications on large clusters built of commodity hardware. Clusters can
consist of hundreds or thousands of machines, and therefore machine failures are
common. Node failures are automatically handled by the Hadoop framework. In
addition, it provides a distributed file system (HDFS) that stores data on the com-
pute nodes, providing very high aggregate bandwidth across the cluster. All the
messy details of parallelism are abstracted from the user.

The HDFS filesystem stores large files across multiple machines. It achieves re-
liability by replicating the data across multiple hosts, and hence does not require
RAID storage on hosts. The filesystem is built from a cluster of data nodes, each
of which serves up blocks of data over the network using a block protocol specific
to HDFS. They also serve the data over HTTP, allowing access to all content from
a web browser or other client. Data nodes can talk to each other to rebalance data,
to move copies around, and to keep the replication of data high.

HDFS requires one unique server, the name node. This is a single point of fail-
ure for an HDFS installation. If the name node goes down, the filesystem is offline.
When it comes back up, the name node must replay all outstanding operations. This
replay process can take over half an hour for a big cluster. The filesystem includes
what is called a Secondary Namenode, which regularly connects with the namenode
and downloads a snapshot of the primary Namenode’s directory information, which
is then saved to a directory. This Secondary Namenode is used together with the
edit log of the Primary Namenode to create an up-to-date directory structure.

Above the file systems comes the MapReduce engine, which consists of one Job
Tracker, to which client applications submit MapReduce jobs. The Job Tracker
pushes work out to available Task Tracker nodes in the cluster, striving to keep



Figure 4.1: HDFS Architecture.

the work as close to the data as possible. With a rack-aware filesystem, the Job
Tracker knows which node contains the data, and which other machines are nearby.
If the work cannot be hosted on the actual node where the data resides, priority is
given to nodes in the same rack. This reduces network traffic on the main backbone
network. If a Task Tracker fails or times out, that part of the job is rescheduled. If
the Job Tracker fails, all ongoing work is lost.

4.2 Previous Work

Because of the great importance of the R-tree and its prevalent use in modern
database systems for indexing spatial data, there is a lot of research for building
efficient indexes in comparatively short time. Bulk-loading an R-Tree in parallel,
would thus seem as a natural idea to dramatically decrease the time consumption
of this process. However, even though a lot of work has been done for devising effi-
cient serial bulk-loading techniques of spatial data structures, little has been done
to address the issue of bulk-loading in parallel.

Papadopoulos et al [PM03] have created an algorithm that partitions the space
in a way similar to the construction of a kd-tree and assign one partition to each
processor. Each processor creates a local subindex. All of the subindices are finally



merged to a global index. The authors claim that their method is efficient and ex-
ploits parallelism to a certain degree. Another recent work on parallel bulk-loading
R-trees has been done by Cary et al [CSHR09]. In their work they use Google’s
MapReduce model to bulk load a simple R-tree. Their algorithm, computes a parti-
tioning function f , that partitions the given dataset D into R parts. This function
uses the idea of space-filling curves, specifically the z-order curve to map the multi-
dimensional data objects into an ordered sequence of single-dimensional values. The
mappers use this function to divide the given dataset into R partitions and assign
them to R reducers. Then, the reducers build R independent R-tree indices. At
the final stage the local R-tree indices are merged into a single global R-tree. The
authors tested experimentally these methods on a grid and showed that for a high
level of parallelization, there is a significant gain in the time needed to bulk-load an
R-tree.

4.3 Bulk-Loading Hilbert R-Trees With MapRe-

duce

To parallelize the process of bulk-loading Hilbert R-Trees using the MapReduce
framework, we just need to devise an algorithm that follows the functional pro-
gramming primitives of MapReduce. The input of our problem is a set of tuples of
the form < x1, y1, x2, y2 > that represent the minimum bounding rectangles (MBRs)
of our spatial data. We want each node of our cluster to process a subset of these
tuples. The first problem we encounter is to find an optimal way to distribute those
records to the processors, so that we can achieve maximum load-balancing between
the nodes, and achieve the highest possible locality.

What we need therefore, is an optimal partitioning of the data into k equal parts,
where k is the number of the nodes. The obvious way, is to sort the input data
according to their Hilbert value, and then pick the k quantiles. However, sorting the
data introduces a significant overhead, especially for large input datasets. We can
avoid sorting the data, by using data sampling as in [Mal08] the TeraSort Hadoop
application.

We perform a MapReduce operation to calculate the optimal partitioning of the
data. A uniform random sample of size M is extracted from the input dataset and
is fed as input to our Map function. The Mapper application receives the input
data and calculates in parallel the Hilbert values of the centers of the input MBRs.



Figure 4.2: Calculating the optimal partitioning of the data.

Figure 4.3: Bulk-loading a Hilbert R-Tree.

Then, it emits key value pairs, where the key of each record is it’s Hilbert value,
and the value is the MBR. The records are sorted automatically according to their
keys by the Hadoop system, and are fed to a single reducer, which calculates the
partition intervals by simply splitting the dataset into k equal parts. We expect
that the size M of our sample will have an effect in the quality of the partitioning.
The optimal intervals are written in a text file and are persisted in the HDFS. Note
that no actual partitioning or data moving happens at this point. The next face
utilizes the optimal intervals to assign each node a proper subset of the records.

In the next phase we perform a second MapReduce application. The Mappers
receive the input data and read the text file with the optimal partitioning of the
data. Then, they emit a key wich consists of the partition number r that each tuple
belongs (1 <= r <= k) and the hilbert value of the tuple. They also emit a value
for each record, which is the MBR of the spatial data. The partioner of the Hadoop
framework assigns to each of the r reducers a proper subset of the data. The re-
ducers built a local Hilbert R-Tree from the subsets. The trees are then copied in
one of the node’s hard drive. In the final step, which is done serially because of it’s
low complexity, a global tree is created, by constructing a root that has the local
indices’ roots as children.



4.4 Experiments

In this thesis we used a cluster of the Softnet laboratory, which contains five nodes
running open source software, including the Linux operating system and Apache’s
Hadoop. Each node has approximately half terrabyte of storage and a quad core
Intel Xeon CPU of 2.50 GHz. Access to the cluster is provided by the secure shell
protocol.

Interaction with the cluster is done through Hadoop’s shell scripts. To upload
the input data on the cluster, a special script is used, which saves data as a set of
files in HDFS. These files are in turn stored as a sequence of blocks (typically of 64
MB in size) that are replicated on multiple nodes to provide fault-tolerance. The
language that is mainly used with Hadoop is Java, but because we used the EMIL
framework, which is written in C++, MapReduce application was written in C++.
We used the Streaming utility that comes with the Hadoop distribution and works
in a way similar to Unix pipes. The utility allows us to create and run map/reduce
jobs with any executable or script as mapper or reducer. The data are fed as input
from standard input to the mapper script, which outputs the intermediate values.
The reducer script, then receives the intermediate values as input from standard
input and emits the output key/value pairs.

The experiments were conducted with real and synthetic uniform datasets of
varying size. We ran the experiments with one node (pseudoparallelism), and with
all the nodes. The number of mappers was configured to 10 and the number of
reducers to 5 in most of the experiments. Because load-balancing is handled in
our application, the number of reducers was defined to be the optimal minimum of
approximatelly 0.95 multiplied by number of nodes.

In table 4.1 we can see the total time in seconds for bulk-loading Hilbert R-
Trees in parallel with various dataset sizes. As expected, there are great differences
in performance between full parallelism and pseudo-parallelism for large datasets,
where we have the additional benefit that by splitting our dataset in smaller sizes,
much less I/Os are needed to bulk-load the local R-trees. This is because each local
subindex is much smaller than the overall tree and can thus fit entirely or partially
in the main memory of the nodes. For small dataset sizes, because of the replication
of data and the general overhead that the Hadoop distributed system introduces,
the pseudo-distributed mode seems to outperform the parallel mode. We also run
the experiments with a small real dataset (MBRs of the Greek roads Figure 4.4 of
size approximately 1 MB), for full parallelism and without using hadoop at all. Be-
cause the size of the dataset is so small, the serial version actually performed better
than the parallel version, again because of the large overhead that the Hadoop and



Table 4.1: Job completion times for bulk-loading Hilbert R-Trees with MapReduce
measured in seconds, for various dataset sizes, exploiting full parallelism and pseudo-
parallelism.

Dataset Size Total Time Reducers
10,000 20 5
100,000 22.612 5

1,000,000 35.725 5
10,000,000 88.197 5
30,000,000 201.632 5
50,000,000 340.136 5

Greek Roads 19 5
10,000 11.2 1
100,000 12.58 1

1,000,000 27.37 1
30,000,000 499.44 1
50,000,000 839.42 1
70,000,000 1022.67 1

Greek Roads 0.89 serial

the HDFS system introduce. It is also interesting, to compare the running times
for bulk-loading Hilbert R-Trees with synthetic datasets of different sizes in parallel
and serially without using the Hadoop system. Figure 4.5 depicts the user time in
seconds, needed to bulk-load Hilbert R-Trees of various sizes, in parallel and serialy,
against the dataset size, where we can draw similar conclusions.

We expect that by removing nodes from our parallel system, the performance
will deteriorate, at least for a relatively large dataset. To prove this, we conducted
experiments where we measured the total time in seconds to bulk-load Hilbert R
trees with a dataset of 20,000,000 points, and altered the number of working nodes
in Hadoop. The results can be seen in Figure 4.6. As can be observed from the
results, even though linear scalability is not achieved, there is a significant improve-
ment in performance, as we increase the number of nodes.

We also experimented with really large datasets that exceed the main memory of



Figure 4.4: Real dataset containing the minimum bounding rectangles of the greek
roads [Rtr].
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Figure 4.5: User time to load Hilbert R-Trees of various sizes in parallel and serially.
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Figure 4.6: Total time to bulk-load Hilbert R-Trees for various number of nodes.
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Figure 4.7: Total time to bulk-load Cube Trees in parallel for various dataset sizes.

all the nodes combined (20 GB). For that end we constructed a cubetree [RKR97],
which is a simple packed R-Tree, that sorts the data points first by y coordinate and
then by x coordinate. Three datasets were used, one relatively small (1.8G), one
that is about the size of nodes’ main memory(18G) and one that exceeds the size
of nodes’ main memory(36G). As we can see in 4.7 that depicts the total time to
bulk-load cubetrees with the Hadoop parallel system for various dataset sizes, there
is a steep increase in time as we exceed the main memory size. This is explained
mainly by the introduction of disk I/Os, that greatly affect the overall performance.

The first part of our algorithm, computes the optimal partitioning of the data,
by using a random sample and calculating the k quantiles, where k is the number of
the nodes. Because we only sample a small part of the data, we expect a slight mis-
calculation of the optimal partitions. This would result in imperfect load-balancing
and the locality of the data would also be affected. We investigated these hypothe-
ses, by conducting queries on the trees that were created in the previous step. We
expect that there will be a slight deterioration of the tree’s performance, when we
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Figure 4.8: Query performance of Hilbert R Trees, created in parallel with various
number of nodes.

increase the number of nodes, due to imperfect load-balancing. Figure 4.8 is a scat-
ter plot of the CPU time in nanoseconds, against the query size, for three Hilbert R
Trees, bulk-loaded with the Hadoop system, using two, three and five nodes. The
results show that the difference in the tree’s performance is insignificant, proving
that a small change in the number of nodes doesn’t result in deterioration of the
tree’s performance.



Chapter 5

Conclusions

In this dissertation we experimented with several well-known data structures and
noticed their overall efficiency for various types of datasets and query types. We
showed that data structures with proven performance guarantees such as the prior-
ity, the EPST and the B Tree, perform better, especially for certain datasets and
queries, than the data structures that rely on heuristic algorithms, such as the R
Tree and variants. These data structures perform well only under certain datasets
and queries which is very limiting in practise.

Another contribution of this thesis is that we proved that both the CPU cost
and the disk I/O cost, can be relevant for certain types of datasets. These results
directly contradict the assumptions made in both the external and the main mem-
ory model. We also experimentally proven that the increase of the block size affects
the data structures’ performance negatively or positively, depending on the dataset
size.

We also devised an algorithm that expresses the process of bulk-loading Hilbert
R-Trees with the MapReduce model. The very promising Hadoop implementation
of the MapReduce system was used to experimentally evaluate our algorithm. The
algorithm has proven to be scalable in a cluster of five nodes. The trees produced
from the parallel system have almost the same query performance, whith trees pro-
duced with serial bulk-loading.

This work can stimulate research for a unified memory model that will take in a
proper manner under consideration both the CPU and the I/O cost of an algorithm.
On the practical side, there are many promising data structures with theoritically
proved optimal performance, such as the Priority R-Tree [AdBHY04], which need to
be experimentaly evaluated. This evaluation will decide about the practical useful-
ness of these data structures and will assist their adoption by the database industry.
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There is also much future work to be done for fully parallelizing external memory
data structures with the MapReduce model. Very important work can be done on
parallelizing the query process for an index, or maybe executing parallel joins and
scans.
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